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Abstract

Motivation: In bioinformatics, machine learning-based methods that predict the compound–pro-

tein interactions (CPIs) play an important role in the virtual screening for drug discovery. Recently,

end-to-end representation learning for discrete symbolic data (e.g. words in natural language proc-

essing) using deep neural networks has demonstrated excellent performance on various difficult

problems. For the CPI problem, data are provided as discrete symbolic data, i.e. compounds are

represented as graphs where the vertices are atoms, the edges are chemical bonds, and proteins

are sequences in which the characters are amino acids. In this study, we investigate the use of end-

to-end representation learning for compounds and proteins, integrate the representations, and de-

velop a new CPI prediction approach by combining a graph neural network (GNN) for compounds

and a convolutional neural network (CNN) for proteins.

Results: Our experiments using three CPI datasets demonstrated that the proposed end-to-end ap-

proach achieves competitive or higher performance as compared to various existing CPI prediction

methods. In addition, the proposed approach significantly outperformed existing methods on an unbal-

anced dataset. This suggests that data-driven representations of compounds and proteins obtained by

end-to-end GNNs and CNNs are more robust than traditional chemical and biological features obtained

from databases. Although analyzing deep learning models is difficult due to their black-box nature, we

address this issue using a neural attention mechanism, which allows us to consider which subsequen-

ces in a protein are more important for a drug compound when predicting its interaction. The neural

attention mechanism also provides effective visualization, which makes it easier to analyze a model

even when modeling is performed using real-valued representations instead of discrete features.

Availability and implementation: https://github.com/masashitsubaki

Contact: tsubaki.masashi@aist.go.jp

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Identifying interactions between compounds and proteins is important

in the discovery and development of safe and effective drugs (Keiser

et al., 2009). Revealing unknown compound–protein interactions

(CPIs) is useful for the prediction of potential side effects and finding

new uses for the existing drugs, i.e. drug repositioning (Lounkine

et al., 2012; Medina-Franco et al., 2013). However, identifying CPIs

experimentally is time-consuming and expensive.
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To identify potential CPIs effectively, machine learning-based

prediction methods have been developed from a chemogenomics

perspective (Bredel and Jacoby, 2004), which considers the chemical

space, genomic space, and its interactions in a unified framework.

In line with this thinking, various types of compound and protein

features and algorithms to predict CPIs have been investigated. For

example, Jacob and Vert (2008) used the tensor product-based fea-

tures between chemical substructures and protein families and then

applied SVMs with pairwise kernels. In addition, Yamanishi et al.

(2008) proposed a bipartite graph learning method that maps com-

pounds and proteins into a common feature vector space and mini-

mized the Euclidean distances between vectors linked by known

interactions (otherwise maximized). Furthermore, Bleakley and

Yamanishi (2009) proposed a bipartite local model (BLM) that

employs the similarity measurements between chemical structures

and protein sequences and then applied SVMs with known interac-

tions. Recently, to reduce the high dimensionality of the chemoge-

nomics space, Cheng et al. (2012) applied feature selection

techniques prior to training an SVM, and Tabei and Yamanishi

(2013) focused on improving the prediction performance of a linear

SVM using a minwise hashing algorithm to obtain compact finger-

prints of compound–protein pairs. van Laarhoven et al. (2011) used

Gaussian interaction profile (GIP) kernels based on a CPI network

topology, and Gönen (2012) used kernelized Bayesian matrix factor-

ization with twin kernels.

Recently, among various machine learning methods, deep neural

networks (DNNs) have achieved excellent performance for various

problems, such as speech recognition and visual object recognition.

In particular, end-to-end learning is a powerful representation learn-

ing technique widely used in natural language processing problems,

such as machine translation (Sutskever et al., 2014). The end-to-end

representation learning technique consists of three steps: (i) embed-

ding discrete input symbols, such as words, in a low-dimensional

real-valued vector space, (ii) designing various neural networks con-

sidering data structures (e.g. sequences and graphs) and (iii) learning

all network parameters by backpropagation, including the embed-

ding vectors of discrete input symbols. Note that this technique can

be used for various discrete symbolic data. On the CPI problem,

data are provided as discrete symbolic data, i.e. compounds are rep-

resented as graphs in which a vertex is an atom, an edge is a chem-

ical bond, and proteins are represented as sequences in which a

character is an amino acid. Based on these observations, there is

room to consider end-to-end learning of CPI representations. While

DNNs have been used for compounds and proteins (Hamanaka

et al., 2017; Tian et al., 2016; Wan and Zeng, 2016), such DNN-

based methods do not apply end-to-end representation learning and

depend on molecular fingerprints and protein family databases as in-

put features, which are fixed in the DNN training process.

In this paper, we investigate the use of end-to-end representation

learning for compounds and proteins, integrate the representations

and develop a new CPI prediction approach. Specifically, we propose

the use of graph neural networks (GNNs) (Kearnes et al., 2016;

Scarselli et al., 2009) and convolutional neural networks (CNNs)

(Kim, 2014), which can learn low-dimensional real-valued vector rep-

resentations of molecular graphs and protein sequences (Sections 3

and 4). Note that most existing methods use fixed input features (i.e.

binary values) in the training process of e.g. SVMs. We assume that

this leads to poor performance on an unbalanced CPI dataset; Indeed,

handling of an unbalanced dataset, i.e. a dataset that include small

positive samples (i.e. interact) and large negative samples (i.e. not

interact), is a common problem in CPI prediction (Tabei and

Yamanishi, 2013), and the performance of existing methods is

relatively poor (Liu et al., 2015). On the other hand, end-to-end repre-

sentation learning, which can learn input features (i.e. real values) in

the DNN training process instead of fixing them, can potentially ob-

tain data-driven features. Thus, end-to-end representation learning

can benefit from a large training dataset regardless of the balance be-

tween positive and negative samples. That is, without any chemical

and biological features, we expect to achieve more robust perform-

ance on both balanced and unbalanced datasets with end-to-end rep-

resentation learning. Furthermore, the combination of a GNN and a

CNN can naturally handle pairs of data with different structure, i.e.

molecular graphs and protein sequences, and we can input them to a

unified framework, i.e. end-to-end learning of chemogenomics repre-

sentation space. Finally, we use the compound and protein representa-

tions, which have the same dimensionality, as input to a classifier to

predict whether they interact (Section 5). An overview of the proposed

CPI prediction method is shown in Figure 1.

Although analyzing deep learning models is difficult due to their

black-box nature, we demonstrate that this problem can be solved

using a neural attention mechanism (Bahdanau et al., 2014). This

mechanism allows us to consider which subsequences in a protein

are important for a drug compound to predict CPIs (i.e. interaction

sites) by using weights, which are also learned in the proposed neur-

al networks (Section 5.1). Furthermore, by using the obtained

weights, the neural attention mechanism provides clear visualiza-

tions, which makes models easier to analyze (Fig. 9) even when

modeling is performed using real-valued vector representations ra-

ther than discrete features.

In our experiments using three CPI datasets (Liu et al., 2015;

Mysinger et al., 2012), we demonstrated that the proposed ap-

proach based on end-to-end learning of GNN and CNN can achieve

competitive or higher performance than existing approaches:

feature-based classical machine learning methods such as SVMs,

other methods specifically for CPI prediction, a non-machine learn-

ing method (i.e. virtual screening and docking), and a recently pro-

posed structure-based deep learning model. In particular, the

proposed method significantly outperformed these methods on an

unbalanced dataset; this indicates that the data-driven representa-

tions obtained by end-to-end learning of GNNs and CNNs are more

Fig. 1. An overview of the proposed CPI prediction approach. Compound and

protein vectors, which are low-dimensional real-valued representations

obtained using a GNN (Section 3) and a CNN (Section 4), are concatenated

and input to a classifier (Section 5) to predict whether the compound and pro-

tein interact. The proposed method is based on end-to-end representation

learning, which uses only raw inputs of compounds and proteins (i.e. SMILES

and amino acid sequences) instead of features such as molecular fingerprints

and protein domains extracted from databases. More precisely, we input mo-

lecular graphs obtained from SMILES pre-processed using the RDKit and split

protein sequences based on n-gram amino acids to a GNN and CNN,

respectively
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robust than traditional chemical and biological features. We believe

that the data-driven features can be more flexible compared to

chemical and biological features that are fixed in the training pro-

cess; this provides robust performance even with large, unbalanced

training datasets. Furthermore, we visualized the interaction sites

between a drug and the substructures of a protein. It is important to

emphasize that we can obtain the information of 3D structural inter-

action sites from representation learning based on the information

of 2D molecular graphs and 1D protein sequences.

2 Materials

Most datasets used to evaluate machine learning-based CPI predic-

tion methods (Hamanaka et al., 2017; Tian et al., 2016; Wan and

Zeng, 2016) include positive samples (i.e. interact) and randomly

generated negative samples (i.e. not interact). However, such ran-

dom negative samples may include unknown positive samples. Even

if a classifier is trained with such a dataset and achieves high per-

formance, it may demonstrate poor performance with real test data-

sets. Based on this observation, screening true negative samples is

important to create highly credible CPI datasets (Ding et al., 2014).

First, we experimented with two sets of CPI datasets, for human

and C.elegans, recently created by Liu et al. (2015). The datasets in-

clude highly credible negative samples of compound–protein pairs

obtained by using a systematic screening framework, based on the

assumption that ‘the proteins dissimilar to any known/predicted tar-

get of a given compound are not much likely to be targeted by the

compound and vice versa (Liu et al., 2015).’ Positive samples of the

datasets were retrieved from two manually curated databases:

DrugBank 4.1 (Wishart et al., 2008) and Matador (Günther et al.,

2008). In the end, the human dataset contains 3369 positive interac-

tions between 1052 unique compounds and 852 unique proteins;

the C.elegans dataset contains 4000 positive interactions between

1434 unique compounds and 2504 unique proteins.

In the above screening framework, Liu et al. (2015) assumed

that similar compounds interact with the proteins that are similar to

known proteins. Then they defined the dissimilarity rules for pro-

teins and drugs, and applied these rules to their screening framework

to identify more reliable negative samples. In addition, it is also

known that chemical compounds with similar (or different) features

may interact with different (or similar) target proteins. Based on the

observation, they considered that the number of predicted interac-

tions between a target protein and negative compound candidates

should be larger than some predefined threshold. By setting a thresh-

old, they got compounds and proteins used to construct the negative

samples. Furthermore, they expected that the features of proteins

(compounds) interact with a specific compound (protein) should be

different from each other as largely as possible. Since variance is a

common measurement to evaluate data divergence, they carried out

a statistical test to check whether the similarity variance of proteins

(or compounds) corresponding to each compound (or protein) in the

negative samples is larger than the population variance. Finally, they

filtered out specious candidates and obtained credible negative sam-

ples of CPIs.

In the experiments of CPI prediction, since real-world CPI data-

sets are typically unbalanced, we evaluated the robustness of the

compared methods using the unbalanced dataset. In our experi-

ments, the ratios of positive and negative samples (positive:negative)

were 1:1, 1:3, and 1:5, whereas the number of positive samples was

fixed. This experimental setting was proposed by Tabei and

Yamanishi (2013) and has been used in other studies. The negative

samples used in our experiments were extracted from the top candi-

dates based on the scores obtained by Liu et al. (2015). As CPI pre-

diction is a classification problem, its performance is evaluated

using the AUC, precision and recall.

In addition to various machine learning methods, we also com-

pared the proposed method with ‘non-machine learning’ methods

on the DUD-E dataset, an enhanced and rebuilt version of DUD, a

directory of useful decoys (Mysinger et al., 2012). The DUD-E

benchmark, which is a challenging and robust dataset for structure-

based virtual screening methods, contains 102 diverse target pro-

teins (provided as PDB files), 22 886 active pairs of proteins

and compounds (provided as SMILES), and its average is 224

compounds per target protein. In this paper, we followed the experi-

mental setting of Wallach et al. (2015). We randomly divided 102

DUD-E targets into 72 targets as a training dataset and 30 targets as

a test dataset. Note that we use only 1D protein sequences and 2D

molecular graphs in the DUD-E dataset as our model does not re-

quire 3D information of proteins, although the DUD-E targets are

provided as PDB files. Note moreover that we use the balanced data-

set of DUD-E, i.e. the number of training samples is 22 886 active

(i.e. positive) and 22 886 decoy (i.e. negative). The prediction per-

formance is also evaluated using the AUC.

3 Graph neural network for molecular graph

Notation. Throughout the paper, vectors are written in lowercase bold-

face letters (e.g. v 2 R
d), matrices are written in uppercase boldface let-

ters (e.g. M 2 R
m�n), and scalars and discrete symbols such as graphs,

vertices and edges are written in non-bold letters (e.g. G, v and e).

As shown in Figure 1, we use a GNN for molecular graphs. In this

section, we describe the GNN, which can obtain low-dimensional

real-valued vector representations of molecular graphs. A GNN maps

a graph G to a vector y 2 R
d with two functions, i.e. transition and

output functions, originally proposed by Scarselli et al. (2009). Here,

the transition function updates each vertex (i.e. an atom in a molecule)

information in consideration of its neighboring vertices and edges (i.e.

the chemical bonds in a molecule) in G, and the output function maps

the set of vertices to vector y. Note that both functions are imple-

mented using neural networks. In our GNN, a combined transition

and output function y ¼ f ðGÞ is differentiable, and all parameters in f,

including the input features, are learned by backpropagation. This is

end-to-end learning and this differentiable function f requires invari-

ance in symmetry and isomorphism for arbitrary sized, shaped and

complex structured graphs.

3.1 Input: embeddings based on r-radius subgraphs
A graph is represented as G ¼ ðV; EÞ, where V is the set of vertices

and E is the set of edges. In a molecule, vi 2 V is the ith atom and eij

2 E is the chemical bond between the ith and jth atoms. Given a

graph G, we first embed all atoms and chemical bonds in a d-dimen-

sional real-valued vector space in consideration of these types.

However, in molecules, there are very few types of atoms (e.g.

hydrogen and carbon) and chemical bonds (e.g. single and double);

thus, representation learning is ineffective due to the small number

of learning parameters in the model.

To address this problem, we use r-radius subgraphs (Costa and

De Grave, 2010), which are induced by the neighboring vertices and

edges within radius r from a vertex. This r value is also assumed to

equal the number of hops from a vertex. More precisely, given a

graph G ¼ ðV; EÞ, we represent a set of all neighboring vertex indices

within radius r from the ith vertex as Nði; rÞ. Note that
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Nði; 0Þ ¼ fig. Then, we define the r-radius subgraph for vertex vi as

follows:

v
ðrÞ
i ¼

�
VðrÞi ; EðrÞi

�
; (1)

where

VðrÞi ¼ fvj j j 2 Nði; rÞg;

EðrÞi ¼ femn 2 E j ðm; nÞ 2 N ði; rÞ � Nði; r� 1Þg:

In this paper, we refer to v
ðrÞ
i as the r-radius vertex. For example,

CH3–CHO (acetaldehyde) contains 1-radius vertices, e.g. CH3–C

and C–CHO. In addition, we define the r-radius subgraph for edge

eij as follows:

e
ðrÞ
ij ¼

�
Vðr�1Þ

i [ Vðr�1Þ
j ; EðrÞi \ E

ðrÞ
j

�
: (2)

In this paper, we refer to e
ðrÞ
ij as the r-radius edge. For example,

CH3–CHO contains 1-radius edges, e.g. C–H and C¼O. Then, for

each type of r-radius vertex and r-radius edge, we assign an embed-

ding (i.e. vector) depending on the type, i.e. v
ðrÞ
i 2 R

d and e
ðrÞ
ij 2 R

d,

which is randomly initialized and subsequently trained by backpro-

pagation during supervised learning (Section 5.2). The left of

Figure 2 shows examples of r-radius vertices, r-radius edges and

their assigned embeddings.

For simplicity, vertex embedding vi ¼ v
ð0Þ
i and edge embedding

eij ¼ e
ð0Þ
ij are used to describe our GNN procedure in the following

for explanatory purposes, and embeddings based on r-radius sub-

graphs are used for our implementation and experiments (Sections 6

and 7).

3.2 Two transition functions in GNN
Here, we first describe the transition function for vertices (i.e. vertex

transition) in our GNN. In addition, we consider the transition

function for edges (i.e. edge transition) because edges are also repre-

sented by vector embeddings, as described in Section 3.1.

Vertex transition: Given a graph G and the randomly initialized

embeddings of vertices and edges, we represent the ith vertex

embedding at time step t as v
ðtÞ
i 2 R

d. We then update v
ðtÞ
i using the

following transition function:

v
ðtþ1Þ
i ¼ r

�
v
ðtÞ
i þ

X
j2NðiÞ

h
ðtÞ
ij

�
; (3)

where r is the element-wise sigmoid function: r(x) ¼ 1=(1þ e–x),

NðiÞ is the set of neighboring indices of i, and h
ðtÞ
ij 2 R

d is the hidden

neighborhood vector. This hidden vector can be computed by con-

sidering the neighboring vertex vj and edge eij using the following

neural network:

h
ðtÞ
ij ¼ f

�
Wneighbor

v
ðtÞ
j

e
ðtÞ
ij

2
4

3
5þ bneighbor

�
; (4)

where f is a non-linear activation function such as ReLU (LeCun

et al., 2015): f(x) ¼ max (0, x), Wneighbor 2 R
d�2d is the weight ma-

trix, bneighbor 2 R
d is the bias vector and e

ðtÞ
ij 2 R

d is the edge embed-

ding between the ith and jth vertices at time step t. Thus, by

summing the neighboring hidden vectors and iterating them over

time steps, vertex embeddings can gradually gather more global in-

formation on the graph.

Edge transition: The above iterative procedure can also be

applied to edge embeddings in a similar manner. Here, we update

e
ðtÞ
ij using both side vertex embeddings v

ðtÞ
i and v

ðtÞ
j as follows:

e
ðtþ1Þ
ij ¼ r

�
e
ðtÞ
ij þ g

ðtÞ
ij

�
; (5)

g
ðtÞ
ij ¼ f

�
Wside

�
v
ðtÞ
i þ v

ðtÞ
j

�
þ bside

�
; (6)

where Wside 2 R
d�d is the weight matrix and bside 2 R

d is the bias

vector. Note that we compute v
ðtÞ
i þ v

ðtÞ
j in Eq. (6) because edges are

undirected in a molecular graph, e.g. C¼O and O¼C. In other

words, C¼O and O¼C are identical, and these vectors are the same

representations.

Thus, with the vertex and edge transition functions, both embed-

dings are considered equally and updated simultaneously in our

GNN. The right of Figure 2 illustrates both transition functions.

3.3 Output: molecular vector representation
To obtain the final output ymolecule 2 R

d from the set of vertex vec-

tors obtained by the transition function, i.e. V ¼ fvðtÞ1 ; v
ðtÞ
2 ; . . . ; v

ðtÞ
jVjg,

we use the average of the vertex vectors as follows:

ymolecule ¼
1

jVj
XjVj

i¼1

v
ðtÞ
i ; (7)

where jVj is the number of vertices in the molecular graph. While

this is the simplest operation to obtain a molecular vector, we pro-

pose another output function considering a protein to interact

(Section 5).

4 Convolutional neural network for protein
sequence

As shown in Figure 1, we use a CNN for protein sequences. In this

section, we describe the CNN, which can obtain low-dimensional

real-valued vector representations of protein sequences. CNNs for

Fig. 2. Overview of the proposed GNN for molecular graph with subgraph-

based vectors, two transition functions, and an output function. Embeddings

(Section 3.1): we first consider the use of an r-radius subgraph (induced by

neighboring vertices and edges within radius r from a vertex) to learn the rep-

resentation. We embed the r-radius subgraphs of molecules in low-dimen-

sional real-valued vector space. Transition (Section 3.2): we develop two

transition functions in our GNN, i.e. vertex and edge transitions. The basic

idea is that the local information of vertices and edges is propagated in the

graph by (i) summing neighboring embeddings and (ii) iterating the process.

Output (Section 3.3): we use the summation of the hidden vectors of vertices

to obtain the output (i.e. a molecular vector representation)

312 M.Tsubaki et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/35/2/309/5050020 by U
niversity of M

ichigan user on 11 N
ovem

ber 2019

Deleted Text: -
Deleted Text: ,
Deleted Text: -
Deleted Text: -
Deleted Text: -
Deleted Text: ,
Deleted Text: -
Deleted Text: &hx2009;
Deleted Text: &hx2009;
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: -
Deleted Text:  
Deleted Text: ,
Deleted Text: -
Deleted Text: -
Deleted Text: ,
Deleted Text: &hx2009;&hx003D;&hx2009;
Deleted Text: &hx2009;&hx003D;&hx2009;
Deleted Text: &hx2009;&hx003D;&hx2009;
Deleted Text: &hx2009;&hx003D;&hx2009;
Deleted Text: ,
Deleted Text: N
Deleted Text: N
Deleted Text: P
Deleted Text: S


sequences map a sequence C to a vector y 2 R
d with multiple filter

functions. Note that the dimensionality d of protein sequences is the

same as that of the molecular graphs described in Section 3.3. Using

a filter function, our CNN computes a hidden vector from the subse-

quences of C (input features) and weight matrix (learning param-

eter), applies the filter function in a hierarchical manner, and then

produces the output vector y. Note that all filter functions are imple-

mented by neural networks. In our CNN, the total function y ¼ f ðCÞ
is differentiable and all parameters in f, including the input features,

are learned by backpropagation. Similar to our GNN, this CNN is

also end-to-end learning.

4.1 Input: embeddings based on n-gram amino acids
To apply the CNN to proteins, we first define ‘words’ in protein

sequences as n-gram amino acids (Dong et al., 2006). We then split

the protein sequences into overlapping n-gram amino acids. Since

there are 20 types of amino acids, the total number of possible n-

grams is 20n. In this study, to keep the vocabulary size tractable and

avoid low-frequency words in the learning representations, we set a

relatively small n-gram number n¼3. For example, we can split a

protein sequence into an overlapping 3-gram amino acid sequence

as follows: MAAVRM � � �LDLK! “MAA”; “AAV”; “AVR”; . . . ;

“LDL”;“DLK:”

Given a protein sequence S ¼ x1;x2; . . . ;xjSj, where xi is the ith

word and jSj is the sequence length, we first translate all words to

randomly initialized embeddings, which we refer to as ‘word

embeddings.’ Here, let the sequence of word embeddings be:

x1; x2;x3; . . . ; xjSj�1;xjSj;

where xi 2 R
d is the d-dimensional embedding of the ith word.

Alternatively, we can also consider a sequence whose elements com-

prise concatenated word embeddings. For example, the sequence

composed of a concatenation of three contiguous embeddings is as

follows:

½x1; x2; x3�; ½x2; x3; x4�; . . . ; ½xjSj�2; xjSj�1; xjSj�;

where ½xi; xiþ1; xiþ2� 2 R
3d is the concatenation of xi; xiþ1, and xiþ2.

Here, xi:iþw�1 refers to ½xi; � � � ; xiþw�1�, where w is the window size

to be concatenated. In the proposed approach, such a sequence is in-

put to the CNN.

4.2 Filter function in CNN
Our CNN uses a filter function, where the input is xi:iþw�1 ¼ c

ð0Þ
i

2 R
dw and the output is a hidden vector c

ð1Þ
i 2 R

d expressed as

follows:

c
ð1Þ
i ¼ f ðWconvc

ð0Þ
i þ bconvÞ; (8)

where f is a non-linear activation function (e.g. ReLU), Wconv

2 R
d�dw is the weight matrix, and bconv is the bias vector. Note that

this filter function allows us to obtain a d-dimensional hidden vector

from a dw-dimensional input vector. As a result, we can apply the

function hierarchically, i.e. we compute the tth hidden vector as

c
ðtÞ
i ¼ f ðWconvc

ðt�1Þ
i þ bconvÞ to obtain a set of hidden vectors:

C ¼ fcðtÞ1 ; c
ðtÞ
2 ; . . . ; c

ðtÞ
jCjg. Figure 3 illustrates the filter functions in our

CNN.

4.3 Output: protein vector representation
To obtain the final output yprotein 2 R

d from the set of hidden vec-

tors C ¼ fcðtÞ1 ; c
ðtÞ
2 ; . . . ; c

ðtÞ
jCjg, we use the average of C as follows:

yprotein ¼
1

jCj
XjCj

i¼1

c
ðtÞ
i : (9)

Note that yprotein has the same dimensionality as ymolecule (Section

3). While this is the simplest operation to obtain a protein vector, in

Section 5, we propose another output function considering a mol-

ecule to interact.

5 Compound–protein interaction prediction

In this section, using the obtained vector representations of com-

pounds and proteins (Sections 3.3 and 4.3, respectively), we propose

a CPI prediction model. In the proposed model, we consider the

interactions between a compound and the subsequences in a protein

sequence. To model such interactions, we use the recently proposed

neural attention mechanism, which is widely used in machine learn-

ing (Bahdanau et al., 2014). We describe this mechanism, the classi-

fier, and the training process in the following.

5.1 Capturing interaction sites between compound and

protein with neural attention mechanism
Given a molecular vector ymolecule and a set of hidden vectors of sub-

sequences in a protein C ¼ fcðtÞ1 ; c
ðtÞ
2 ; . . . ; c

ðtÞ
jCjg, we wish to weight for

c
ðtÞ
i considering ymolecule. In other words, we compute which subse-

quences in the protein are more important for the molecule by

assigning greater weights to the subsequences. Such weights can be

modeled using neural networks, i.e. the neural attention mechanism

(Bahdanau et al., 2014).

More precisely, given ymolecule and c
ðtÞ
i , we compute the following

dot product-based scalar values as the weights:

hmolecule ¼ f ðWinterymolecule þ binterÞ;

hi ¼ f ðWinterci þ binterÞ;

ai ¼ rðh>moleculehiÞ;

where Winter is the weight matrix and binter is the bias vector. The

weight value ai, which is called attention, can be assumed to repre-

sent the interaction strength between a molecule and the subse-

quence of a protein. Using the attention weights, we obtain the

weighted sum of hi as follows:

yprotein ¼
XjCj

i¼1

aihi: (10)

Thus, using the attention mechanism, we have the flexibility to

model the interactions between compounds and proteins rather than

obtaining a simple summation. Figure 4 illustrates the attention

mechanism for CPI prediction. Note that the attention mechanism

allows us to analyze CPIs by visualizing the weight values (Section

7.2, Fig. 9).

Fig. 3. Overview of our CNN for protein sequence with hierarchical filter

functions
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5.2 Classifier
We concatenate ymolecule and yprotein, i.e. ½ymolecule; yprotein�, and obtain

an output vector z 2 R
2, which is the input to the CPI classifier:

z ¼Woutput½ymolecule; yprotein� þ boutput;

where Woutput 2 R
2�2d is the weight matrix and boutput 2 R

2 is the

bias vector. Finally, a softmax layer is added on top of the output

vector z ¼ ½y0; y1� to model the CPI probability as follows:

pt ¼
expðytÞP
i exp ðyiÞ

;

where t 2 {0, 1} is the binary label (i.e. interact or not) and pt is the

probability of t. Thus, we use a softmax classifier for CPI prediction.

5.3 Training
Given a set of all compound–protein pairs and the labels in a train-

ing dataset, the training objective is to minimize the loss function ‘,

given as the cross-entropy loss as follows:

‘ðHÞ ¼ �
XN
i¼1

log pti
þ k

2
jjHjj22;

where H is the set of all weight matrices and bias vectors in our

GNN, CNN, the embeddings of r-radius vertices and edges, and the

embeddings of n-gram amino acids, and N is the total number of

molecule–protein pairs in the training dataset, ti is the ith label, and

k is an L2 regularization hyper-parameter. Then, we use backpropa-

gation to train H.

6 Experiments

6.1 Implementation and training
Our GNN takes SMILES as input, which is a string encoding of a

molecule. Note that SMILES was converted to a graph representa-

tion using RDKit. We then extracted various information of the mo-

lecular graph, such as atom types, chemical bonds, and the

adjacency list of atoms. For proteins, the pre-processing is not

required because our CNN takes a raw amino acid sequence as

input.

We implemented our GNN and CNN using Chainer (version

3.2.0) (Tokui et al., 2015), and the training details of these neural

networks are as follows: optimization: ADAM (Kingma and Ba,

2014), which is one of the SGD-based algorithms; radius r: 0 (i.e.

each atom and chemical bond), 1 or 2; n-gram: 1 (i.e. 20 amino

acids), 2 or 3; window size: 11 (fixed); vector dimensionality of ver-

tices, edges and n-grams: 5, 10, 20 and 30; number of time steps (i.e.

depth) in GNN: 2, 3 or 4; number of layers (i.e. depth) in CNN: 2, 3

or 4; regularization k: 1e�5, 1e�6 and 1e�7. Note that the batch

size is 1; a batch contains a molecule, and the molecule contains a

relatively large number of vertices and edges. In addition, using the

batch size 1, we achieved the best performance in terms of the con-

vergence of accuracy.

We perform grid search over a combination of the above hyper-

parameters using five-fold cross-validation. While deep learning

models generally require careful hyperparameter tuning, we can ob-

tain high performance with a relatively small range about hyper-

parameter tuning. In Section 6, We analyzed the effects of these

hyperparameters relative to improving CPI prediction performance.

6.2 Main results: AUC, precision and recall on balanced

and unbalanced datasets
Tables 1 and 2 show the AUC, precision and recall results of various

traditional machine learning methods and the proposed method

obtained using the balanced and unbalanced datasets from Liu et al.

(2015). First, on the balanced and small dataset (i.e. positive:negative

is 1:1), the proposed method achieved lower (on the human dataset)

or higer (on the C.elegans dataset) performance compared to other

methods: k-NN, random forest (RF), L2-logistic (L2) and SVM,

which the results are obtain in Liu et al. (2015) and the experimental

settings are as follows: k-NN and RF were run by Weka 3.7, L2 was

run by liblinear 1.94, and the SVM was run by libsvm 3.17. Each clas-

sifier was learned by default setting of each software, e.g. SVM uses

the radial basis function (RBF) as a non-linear kernel function. On the

other hand, on the unbalanced and large dataset (i.e. positive:negative

is 1:5), the proposed method outperformed the existing methods on

both human and C.elegans datasets. This suggests that the proposed

method is robust even if the dataset is unbalanced and when using a

large dataset. This also implies that the end-to-end learned representa-

tions obtained using the GNN and CNN, i.e. the data-driven features,

can reflect the useful properties of compounds and proteins for pre-

dicting interactions. Note that the proposed GNN and CNN do not

rely on any chemical and biological features of molecular graphs and

protein sequences used in the existing methods, such as PubChem fin-

gerprints and Pfam domains.

6.3 Comparison with various methods specifically for

CPI prediction
In additional experiments, we compared the proposed method to

other existing methods specifically for CPI prediction, i.e. BLM

Bleakley and Yamanishi (2009), the RLS-avg and RLS-Kron classi-

fiers with GIP kernels van Laarhoven et al. (2011), and KBMF2K-

classification and KBMF2K-regression Gönen (2012), which were

run using the same experimental settings as Liu et al. (2015). Note

that these methods take a chemical structure similarity matrix, pro-

tein sequence similarity matrix, and CPI matrix as inputs. Figures 5

and 6 show the AUC scores on the human and C.elegans datasets.

As can be seen, on both datasets, the proposed method also achieved

competitive or greater performance compared to these methods.

Fig. 4. CPI prediction model using weighted sums of the compound and pro-

tein embeddings with the neural attention mechanism, which considers inter-

actions between subgraphs in a molecular graph and subsequences in a

protein sequence
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6.4 Comparison with non-machine learning methods

and other deep learning models on the DUD-E dataset
As the final experiment, we compared with some non-machine

learning methods and recently proposed deep learning models. In

this experiment, we used the DUD-E benchmark, according to the

experimental setting of Wallach et al. (2015) as described in Section

2. We compared our model with AutoDock Vina (Trott and Olson,

2009) and Smina (Koes et al., 2013) as the non-machine learning

methods, and AtomNet (Wallach et al., 2015) and 3D-CNN

(Ragoza et al., 2017) as the deep learning models. AutoDock Vina is

an open-source molecular docking program of small ligands to tar-

get proteins, and Smina is also a molecular docking program, which

is a fork of the Autodock Vina and adds better control of scoring

function and minimization. AtomNet (Wallach et al., 2015) is a 3D

structure-based CNN, which incorporates 3D information of pro-

teins and compounds, for predicting the bioactivity of small mole-

cules for drug discovery. AtomNet combines the information of

ligand and the structure of target protein, which requires the coordi-

nates of each atom in the binding site of the target protein. 3D-CNN

(Ragoza et al., 2017) also a 3D structure-based CNN, which discre-

tizes a protein-ligand structure into a grid, incorporates 3D informa-

tion of protein and ligand based on the grid, and predicts the

interaction. This is similar to the CNNs that take images as inputs,

where a scene is discretized into pixels with red, green and blue val-

ues (RGB). When we evaluated our proposed model using 72 targets

as a training dataset and 30 targets as a test dataset based on the

DUD-E dataset, we found that, as shown in Figure 7 in terms of the

AUC scores, our model achieved greater performance compared to

these methods.

Note that this is not a complete comparison due to the difference

in terms of input information, i.e. Vina, Smina, AtomNet and 3D-

CNN use 3D structure information of proteins, whereas we use only

1D sequence information of proteins. We believe that our approach,

based on only protein sequences, is reasonable for applications such

as large-scale CPI prediction and screening.

7 Discussion and conclusion

7.1 Model analysis
In this section, we analyze the effects of the model hyperparameters

on CPI prediction performance using learning curves, where the x-

axis is the epoch and the y-axis is the AUC obtained with the test

data (Fig. 8). To describe the learning curves, we use the DUD-E

dataset. In addition, we visualize CPI sites by highlighting high-

value weights obtained by the neural attention mechanism (Fig. 9).

Effects of r-radius subgraphs and n-gram amino acids: As shown

in the first learning curve in Figure 8, when r¼0 and n¼1, i.e.

Fig. 5. The AUC scores of various methods specifically for CPI prediction on

the human dataset. We achieved higher or competitive AUC score

Table 1. Main results on the human dataset: AUC, precision and re-

call of k-NN, random forest (RF), L2 logistic (L2), SVM and the pro-

posed method on the balanced and unbalanced datasets created

by Liu et al. (2015)

Measure Negative ratio k-NN RF L2 SVM Ours

AUC 1 0.860 0.940 0.911 0.910 0.970

3 0.904 0.954 0.920 0.942 0.950

5 0.913 0.967 0.920 0.951 0.970

Precision 1 0.798 0.861 0.891 0.966 0.923

3 0.716 0.847 0.837 0.969 0.949

5 0.684 0.830 0.804 0.969 0.969

Recall 1 0.927 0.897 0.913 0.950 0.918

3 0.882 0.824 0.773 0.883 0.913

5 0.844 0.825 0.666 0.861 0.975

Note: The existing methods use features based on PubChem fingerprints

and Pfam domains. The proposed method uses features obtained by end-to-

end learning of GNNs and CNNs, i.e. data-driven feature representations of

compounds and proteins. The above performance is achieved with the follow-

ing experimental setting: r-radius is 2, n-gram is 3, window size is 11, vector

dimensionality is 10, number of time steps in GNN is 3, and number of layers

in CNN is 3.

Table 2. Main results on the C.elegans dataset

Measure Negative ratio k-NN RF L2 SVM Ours

AUC 1 0.858 0.902 0.892 0.894 0.978

3 0.892 0.926 0.896 0.901 0.971

5 0.897 0.928 0.906 0.907 0.971

Precision 1 0.801 0.821 0.890 0.785 0.938

3 0.787 0.836 0.875 0.837 0.916

5 0.774 0.830 0.863 0.896 0.920

Recall 1 0.827 0.844 0.877 0.818 0.929

3 0.743 0.705 0.681 0.576 0.921

5 0.690 0.639 0.582 0.519 0.836

Note: The experimental setting is the same as that of above human dataset.

Fig. 6. The AUC scores of various methods specifically for CPI prediction on

the C.elegans dataset. We achieved higher or competitive AUC score

Fig. 7. The AUC scores of AutoDock Vina, Smina, AtomNet, 3D-CNN and our

proposed model. The proposed method, which requires only 2D molecular

graphs and 1D protein sequences as inputs, achieved higher AUC score com-

pared to the four methods, which require 3D information of proteins and

compounds, on the DUD-E dataset. Note that the AUC scores of AutoDock

Vina, Smina, AtomNet and 3D-CNN are derived from Wallach et al. (2015) and

Ragoza et al. (2017)
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when we use atoms, chemical bonds and amino acids instead of r-

radius vertices, edges and n-gram amino acids, these vector represen-

tations cannot be learned correctly. Note that the AUC score with

r¼0 and n¼1 is about 0.8; this is lower than the AUC score of 3D-

CNN (see Fig. 7). On the other hand, r¼2 radius vertices, edges

and n¼3 gram amino acids can improve the performance signifi-

cantly; the AUC score is about 0.95 and this is higher than that of

3D-CNN. Interestingly, among the various components of our

GNN and CNN, r and n values are the most important hyperpara-

meters; that is, subgraph- and subsequence-based representation

learning is crucial relative to improving CPI prediction performance.

As shown in the learning curves, high performance is achieved early

in the training process.

Effect of vector dimensionality: As shown in the second learning

curve in Figure 8, high AUC scores were obtained when relatively

low-dimensional vectors for compounds and proteins were used. In

addition, higher dimensional vectors did not yield further improve-

ment. Surprisingly, when we use extremely low-dimensional (five-di-

mensional) vectors, we achieved high AUC scores. These results

show that end-to-end representation learning-based CPI prediction

can be modeled using small dimensional neural networks.

Effect of number of time steps/layers in GNN/CNN: As shown

in the third learning curve in Figure 8, the effect of the number of

time-steps/layers in the GNN/CNN is relatively small, i.e. the depths

of these two neural networks are not crucial to improving perform-

ance. Indeed, in quantum chemistry research, Gilmer et al. (2017)

showed that the number of time steps in a GNN is not significant

for predicting the quantum mechanical properties of molecules. In

addition, Schütt et al. (2017) showed that the performance of a

GNN is saturated at time step 3 when predicting molecular energies.

As shown by the third learning curve in Figure 8, we agree with

these findings and draw the same conclusions. Furthermore, since

we consider the global information of graphs and sequences using r-

radius subgraphs and n-gram subsequences at the point of inputs in

the GNN and CNN, the depths of the neural networks may not be

required.

7.2 Visualization of CPIs with attention weights
The goals of this study were to achieve high performance with deep

learning and demonstrate that deep learning can be analyzed even

with a black-box model (i.e. modeling with real-valued vectors).

One of the most interesting aspects of the neural attention mechan-

ism (Section 5.1) is that the obtained attention weights allow us to

gain greater insight into the output and interpret what the model has

learned from the data. In other words, the neural attention mechan-

ism can provide a helpful clue to considering which regions in a pro-

tein are important for interactions between a drug compound and a

protein by highlighting high-value attention weights.

To exemplify this, we visualize such regions with high weight

values calculated from the neural attention mechanism by mapping

them onto a known 3D protein structure. Here, Figure 9 shows

examples of interactions between a drug compound and a protein,

which are highlighted with the weights obtained by the neural atten-

tion mechanism. Figure 9(a) shows the complex of imatinib and Syk

(spleen tyrosine kinase) (PDB ID: 1XBB (Atwell et al., 2004)), and

Figure 9(b) shows the complex of aspirin and group II phospholipase

A2 (PDB ID: 1TGM). Note that hyperparameters used to describe

these figures are as follows: r-radius: 2; n-gram: 3; window size: 11;

vector dimensionality: 10; number of time steps in GNN: 3; and

number of layers in CNN: 3. In both cases, regions with weights

higher than 0.8 overlap substantially with the interaction sites

Fig. 8. Learning curves with various hyperparameters on the DUD-E dataset. In all learning curves, unless otherwise noted, we use the following hyperpara-

meters: r-radius is 2, n-gram is 3, window size is 11, vector dimensionality is 10, number of time steps in GNN is 3 and number of layers in CNN is 3

Fig. 9. Examples for visualization of CPIs with attention weights. Two CPIs,

imatinib-Syk (a; PDB ID 1XBB) and aspirin-phospholipase A2 (b; PDB ID

1TGM), whose complex structures have already known, are shown. Drug

compounds are highlighted in green, and the regions in proteins, which have

high weight values obtained by the neural attention mechanism, are high-

lighted in red. The secondary structures, a-helix and b-strand are displayed in

yellow and blue, respectively. (Directly) contacted residues with compounds

are depicted as stick models
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between a drug compound and a protein. In the case of 1XBB

(Fig. 9(a)), there are four such regions. Among them, two regions

are located in the binding sites including residues which form hydro-

gen bonds and van der Waals interactions with imatinib. Another

one contains two phosphorylation sites, S579 and T582, although

the role of those residues is not obvious. In the case of 1TGM

(Fig. 9(b)), there are two such regions which almost correspond to

the part of ligand-recognition site (Singh et al., 2007), i.e. subsites 1

and 2 including L2, A18 and I19 that form van der Waals interac-

tions with aspirin.

In addition, we also examined whether the neural attention

mechanism could capture the promiscuous domain using the human

urokinase-type plasminogen activator (u-PA) catalytic domain. We

found that the neural attention mechanism could highlight unique

binding sites for each compound, when we used the two different

compounds and u-PA as inputs for the proposed model trained with

the human dataset (Supplementary Fig. S1). This result suggests that

the neural attention mechanism in the proposed model is helpful for

finding promiscuous domains and recognizing the unique binding

sites for each compound. Again, we emphasize that the model high-

lights these 3D structural interaction sites between the compounds

and proteins, obtained from 2D-graph and 1D-sequence informa-

tion and the proposed end-to-end representation learning.

7.3 Conclusion and future work
In this paper, we have proposed end-to-end representation learning

of a GNN and CNN to predict CPIs. The experimental results have

demonstrated that a relatively low-dimensional and shallow neural

network has the potential to outperform various existing methods

on both balanced and unbalanced datasets. In addition, our atten-

tion mechanism has provided clear visualizations that make real-

valued vectors easier to analyze. We believe that our study will pro-

vide new insights into end-to-end representation learning to con-

struct a general machine learning in bioinformatics rather than using

feature engineering.

It is also worth noting that we can also apply the GNN to pro-

teins represented as 3D structured data in the DUDE dataset, where-

as we have applied the CNN to proteins represented as 1D

sequential data in this work. The reason is that, in practice (i) the

number of 3D structured data is smaller than that of 1D sequential

data, (ii) deep learning requires relatively large number of training

data samples and (iii) the model based on only protein sequences is

attractive as a practical application such as a large-scale CPI predic-

tion and screening. In addition, chemical compounds are often pro-

vided as SMILES, which can be easily transformed to 2D molecular

graphs using RDKit. Based on these observations, in this paper we

have proposed the use of CNN for protein sequences and GNN for

molecular graphs, and achieved high prediction performance.

However, the development of GNN for 3D structured proteins is an

important challenge; in particular, we believe that such a ‘3D GNN’

will allow us to achieve higher performance, provide more detailed

analysis, and obtain more useful information for 3D interaction sites

between compounds and proteins derived from the perspective of

data-driven machine learning approach. We leave the exploration of

GNN extension to future work.
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