{ "cells": [ { "cell_type": "markdown", "id": "233828cd", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "

GEOG 172: INTERMEDIATE GEOGRAPHICAL ANALYSIS

\n", "

Evgeny Noi

\n", "

Lecture 8: Comparing Means (t-tests and ANOVA)

" ] }, { "cell_type": "markdown", "id": "1f2477a3", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "# Last Lecture Review (Distributions) \n", "\n", "* RV can be continuous (PDF) and discrete (PMF)\n", "* Each distribution can be parametrized by their corresponding density functions " ] }, { "cell_type": "markdown", "id": "2c5dbc06", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "# Last Lecture Review ($z$ and $t$) \n", "\n", "* We can convert normally distributed RVs into standard normal distribution ($z$-score) \n", "* We can use the $z$-score to assess probability of observing data at or below the $z$. Use the $z$-table to look up probability values. \n", "* We use $t$ when the population SD is not known (most real-life situations) or when sample size is below 30. Use the $t$-table to look up probability values. " ] }, { "cell_type": "markdown", "id": "7dd6c3ab", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "## $z$-score \n", "\n", "$$\n", "z = \\frac{\\bar{x}-\\mu}{\\frac{\\sigma}{\\sqrt{n}}}\n", "$$\n", "\n", "## $t$-score\n", "\n", "$$\n", "t = \\frac{\\bar{x}-\\mu}{\\frac{s}{\\sqrt{n}}}\n", "$$\n", "\n", "where $s$ is the sample variance, $\\sigma$ is the population variance, $\\bar{x}$ is the sample mean, and $\\mu$ is the population mean. " ] }, { "cell_type": "markdown", "id": "b1b876e6", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "" ] }, { "cell_type": "markdown", "id": "3b2f3abb", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "# Last Lecture Review (CI)\n", "\n", "* We can estimate population mean ($\\mu$) and variance ($\\sigma^2$) from sample mean ($\\bar{x}$) and sample variance ($s^2$)\n", "* We can provide confidence intervals for population mean using formulas $\\bar{x} \\pm t_{\\alpha/2} \\frac{s}{\\sqrt{n}}$ with $df=n-1$\n", "* Interpret the CI: We are $(1-\\alpha)100%$ sure that the population mean, $\\mu$, is between $\\bar{x} - t_{\\alpha/2} \\frac{s}{\\sqrt{n}}$ and $\\bar{x} + t_{\\alpha/2} \\frac{s}{\\sqrt{n}}$ " ] }, { "cell_type": "markdown", "id": "30461a12", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "# Last Lecture Review (QQ-Plot) \n", "\n", "> In statistics, a Q–Q plot (quantile-quantile plot) is a probability plot, a graphical method for comparing two probability distributions by plotting their quantiles against each other. If the two distributions being compared are similar, the points in the Q–Q plot will approximately lie on the identity line $y = x$. \n", "\n", "" ] }, { "cell_type": "markdown", "id": "012353c8", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "# Last Lecture Review (Hypotheses)\n", "\n", "* **Null hypothesis** - is assumed to be true until there is evidence to suggest otherwise. \n", "* **Alternative hypothesis** - research hypotehsis. \n", "\n", "> The goal of hypothesis testing is to see if there is enough evidence against the null hypothesis. If there is not enough evidence, then we fail to reject the null hypothesis" ] }, { "cell_type": "markdown", "id": "35300d1c", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "# Last Lecture Review (Errors) \n", "\n", "* Null is **true**, the mean in the urban area is indeed 3.1 (as demonstrated on the sample). \n", " * Reject **true** null (Type I error): $\\alpha$ (**False positive**, i.e. 'falsely rejecting true null') \n", " * Accept **true** null: $1 - \\alpha$ (**True Positive**) \n", "* Null is **false**, the mean in the urban area is not 3.1 (biased sample, wrong conjecture in the first place, rare event). \n", " * Reject **false** null: $1 - \\beta$ (**True negative**) \n", " * Accept **false** null (Type II error): $\\beta$ (**False negative**, i.e. 'falsely accepting false null') \n", " \n", "> **We can decrease the magnitude of errors by increasing a sample size!**" ] }, { "cell_type": "markdown", "id": "eb3bbca8", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "# Six Steps of Hypothesis Tests\n", "\n", "1. Set up hypothesis and check conditions (normality, independence) \n", "2. Decide on the significance level $\\alpha$ (probability cutoff for making decisions about null hypothesis). The probability we are willing to place on our test for making an incorrect decision rejecting the null hypothesis. \n", "3. Calculate test statistic. " ] }, { "cell_type": "markdown", "id": "dbb9accc", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "# Six Steps of Hypothesis Tests\n", "\n", "4. Calculate probability value ($p$-value) or find the rejection region\n", "5. Make decision about the null (reject of fail to reject) \n", "6. State overall conclusion. " ] }, { "cell_type": "markdown", "id": "b235d963", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "# Setting-up Hypothesis Tests \n", "\n", "* Is the population mean different from $\\mu_0$? (Two-tailed, non-directional)\n", " * $H_0$: $\\mu = \\mu_0$ \n", " * $H_a$: $\\mu \\neq \\mu_0$ \n", "* Is the population mean greater than $\\mu_0$? (Right-tailed, directional)\n", " * $H_0$: $\\mu = \\mu_0$ \n", " * $H_a$: $\\mu > \\mu_0$ \n", "* Is the population mean less than $\\mu_0$? (Left-tailed, directional)\n", " * $H_0$: $\\mu = \\mu_0$ \n", " * $H_a$: $\\mu < \\mu_0$ " ] }, { "cell_type": "markdown", "id": "02f1a728", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "" ] }, { "cell_type": "markdown", "id": "91d9d087", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "# One Sample t-Tests" ] }, { "cell_type": "markdown", "id": "6dc8624b", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "# Steps 1-3 \n", "\n", "* Set up hypothesis (see previous slide) and set $\\mu_0=8.5$ (hypothesized population mean). The data comes from normal distribution of size = 30\n", "* $\\alpha=0.05$ \n", "* Calculate the test statistic" ] }, { "cell_type": "markdown", "id": "25af1f78", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "# Steps 4-6 (Critical Region) \n", "\n", "* Find critical values (tables). Rejection regions: \n", " * left-handed: reject $H_0$ if $t^* \\leq t_{\\alpha}$\n", " * right-handed: reject $H_0$ if $t^* \\geq t_{\\alpha}$\n", " * two-tailed: reject $H_0$ if $|t^*| \\geq |t_{\\alpha/2}|$\n", "* Make decision about the null\n", "* State an overall conclusion" ] }, { "cell_type": "markdown", "id": "25de96d6", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "# Steps 4-6 ($p$-values)\n", "\n", "* Computing p-value\n", " * If $H_a$ is right-tailed, then the p-value is the probability the sample data produces a value equal to or greater than the observed test statistic. $P(t\\leq t^*)$ \n", " * If $H_a$ is left-tailed, then the p-value is the probability the sample data produces a value equal to or less than the observed test statistic. $P(t\\geq t^*)$\n", " * If $H_a$ is two-tailed, then the p-value is two times the probability the sample data produces a value equal to or greater than the absolute value of the observed test statistic. $2 \\times P(t\\geq |t^*|)$\n", "* Make decision about the null. If the p-value is less than the significance level, $\\alpha$, then reject $H_0$ (and conclude $H_a$)\n", "* State an overall conclusion" ] }, { "cell_type": "markdown", "id": "a24acfaa", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "# Example \n", "\n", "> The mean length of the lumber is supposed to be 8.5 feet. A builder wants to check whether the shipment of lumber she receives has a mean length different from 8.5 feet. If the builder observes that the sample mean of 61 pieces of lumber is 8.3 feet with a sample standard deviation of 1.2 feet. What will she conclude? Is 8.3 very different from 8.5?" ] }, { "cell_type": "markdown", "id": "fefcacf1", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "$$\n", "\\begin{align}\n", "t^* &= \\frac{\\bar{x}-\\mu}{\\frac{s}{\\sqrt{n}}} \\\\\n", " &= \\frac{8.3-8.5}{\\frac{1.2}{\\sqrt{61}}} \\\\\n", " &= -1.3\n", "\\end{align}\n", "$$\n", "\n", "Thus, we are asking if $-1.3$ is very far away from zero, since that corresponds to the case when $\\bar{x}$ is equal to $\\mu_0$. If it is far away, then it is unlikely that the null hypothesis is true and one rejects it. Otherwise, one cannot reject the null hypothesis." ] }, { "cell_type": "markdown", "id": "b962e359", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "1. $H_0$: $\\mu = 8.5$; $H_a$: $\\mu \\neq 8.5$\n", "2. $\\alpha=.01$\n", "3. $t^* = -1.3$" ] }, { "cell_type": "markdown", "id": "e783a8d6", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "# Rejection region approach\n", "\n", "4. $df = 61-60 = 60$, the critical value is $t_{\\alpha/2} = 2.660$, thus $t^*$ is not within $\\pm 2.660$\n", "5. $t^*$ is not within rejection region, we fail to reject null hypothesis. \n", "6. With a test statistic of $-1.3$ and critical value of $\\pm 2.660$ at a 1\\% level of significance, we do not have enough statistical evidence to reject the null hypothesis. We conclude that there is not enough statistical evidence that indicates that the mean length of lumber differs from $8.5$ feet." ] }, { "cell_type": "markdown", "id": "ea7f81b9", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "# P-value approach\n", "\n", "4. Without software to find a more exact probability, the best we can do from the t-table is find a range. We do see that the value falls between 1.296 and 1.671. These two t-values correspond to right-tail probabilities of 0.1 and 0.05, respectively. Since 1.3 is between these two t-values, then it stands to reason that the probability to the right of 1.3 would fall between 0.05 and 0.1. Therefore, the p-value would be = 2×(0.05 and 0.1) or from 0.1 to 0.2.\n", "5. Fail to reject the null\n", "6. With a test statistic of - 1.3 and p-value between 0.1 to 0.2, we fail to reject the null hypothesis at a 1% level of significance since the p-value would exceed our significance level. We conclude that there is not enough statistical evidence that indicates that the mean length of lumber differs from 8.5 feet.\n" ] }, { "cell_type": "markdown", "id": "d5bb2572", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "# P-value\n", "\n", "> $p$-value is defined to be the smallest Type I error rate ($\\alpha$) that you have to be willing to tolerate if you want to reject the null hypothesis.\n", "\n", "> $p$-value (or probability value) is the probability that the test statistic equals the observed value or a more extreme value under the assumption that the null hypothesis is true. \n", "\n", "If our p-value is less than or equal to $\\alpha$, then there is enough evidence to reject the null hypothesis.\n", "If our p-value is greater than $\\alpha$, there is not enough evidence to reject the null hypothesis." ] }, { "cell_type": "markdown", "id": "af6123e5", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "# Penguins Data\n", "\n", "|||\n", "|---|---|\n", "|||\n", "\n", "[Source](https://github.com/allisonhorst/palmerpenguins)" ] }, { "cell_type": "code", "execution_count": 1, "id": "f5a3f5e1", "metadata": { "slideshow": { "slide_type": "subslide" } }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
speciesislandbill_length_mmbill_depth_mmflipper_length_mmbody_mass_gsex
0AdelieTorgersen39.118.7181.03750.0MALE
1AdelieTorgersen39.517.4186.03800.0FEMALE
2AdelieTorgersen40.318.0195.03250.0FEMALE
3AdelieTorgersenNaNNaNNaNNaNNaN
4AdelieTorgersen36.719.3193.03450.0FEMALE
........................
339GentooBiscoeNaNNaNNaNNaNNaN
340GentooBiscoe46.814.3215.04850.0FEMALE
341GentooBiscoe50.415.7222.05750.0MALE
342GentooBiscoe45.214.8212.05200.0FEMALE
343GentooBiscoe49.916.1213.05400.0MALE
\n", "

344 rows × 7 columns

\n", "
" ], "text/plain": [ " species island bill_length_mm bill_depth_mm flipper_length_mm \\\n", "0 Adelie Torgersen 39.1 18.7 181.0 \n", "1 Adelie Torgersen 39.5 17.4 186.0 \n", "2 Adelie Torgersen 40.3 18.0 195.0 \n", "3 Adelie Torgersen NaN NaN NaN \n", "4 Adelie Torgersen 36.7 19.3 193.0 \n", ".. ... ... ... ... ... \n", "339 Gentoo Biscoe NaN NaN NaN \n", "340 Gentoo Biscoe 46.8 14.3 215.0 \n", "341 Gentoo Biscoe 50.4 15.7 222.0 \n", "342 Gentoo Biscoe 45.2 14.8 212.0 \n", "343 Gentoo Biscoe 49.9 16.1 213.0 \n", "\n", " body_mass_g sex \n", "0 3750.0 MALE \n", "1 3800.0 FEMALE \n", "2 3250.0 FEMALE \n", "3 NaN NaN \n", "4 3450.0 FEMALE \n", ".. ... ... \n", "339 NaN NaN \n", "340 4850.0 FEMALE \n", "341 5750.0 MALE \n", "342 5200.0 FEMALE \n", "343 5400.0 MALE \n", "\n", "[344 rows x 7 columns]" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import seaborn as sns\n", "penguins = sns.load_dataset(\"penguins\")\n", "penguins" ] }, { "cell_type": "code", "execution_count": 2, "id": "4c7e8ebf", "metadata": { "slideshow": { "slide_type": "subslide" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcoAAAG7CAYAAABD4tW4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3hUZfbHP9MzyaQ3WkgHRHoRElpoLthXxa4UFURAUPe3iO6urruKuuu6lhVREVgr6lrYVVREegi9iob0hJpeZjJ95vfHZIZMMilAJpOE9/M8eXTuvXPvO+9l7plz3nO+R2K32+0IBAKBQCDwiNTXAxAIBAKBoCMjDKVAIBAIBM0gDKVAIBAIBM0gDKVAIBAIBM0gDKVAIBAIBM0gDKVAIBAIBM0gDKVAIBAIBM0gDKVAIBAIBM0gDKVAIBAIBM0gDKVAIBAIBM0gDKVAIBAIBM0g9/UABG1PUXkt/zlwkkA/BbcO70WwWuHrIQkEAkGnRSJE0bsWWedquPnNdGqMFgB6BPvx4YOjiY8I8PHIBAKBoHMiQq9dCLvdzu8+O0yN0ULPEDXRQSpOVxm4593dnK0y+Hp4AoFA0CkRhrILsTmzmMMnq1DJpfzh2it45vor6Rbkx6lKPYs/OYjVJoIHAoFAcKEIQ9mF+DCjEIDJV0QT4q8kxF/J76f1RSWXsjuvnHe35/p4hAKBQND5EIayi1CmNbI5sxiAyf2iXNu7B6uZmRIHwGubsiipMfpieAKBQNBpEYayA1OmNVJUXktr8q1+/OUcNjvERwTQI0Tttm9C30gSIwPQmaysSc/z1nAFAoGgSyIMZQfEbrez/NtfGPHcj4x7aTN3v7ubcp2p2fd8d+wsACPjwhrtk0ok3DC4JwAf7ynCbLW1/aAFAoGgiyIMZQdkbXo+K7fl4nQk03PKuH/tXixNGLhqg5md2WUAXOXBUAIMjw0lWK2gXGdia2aJV8YtEAgEXRFhKDsYVbVmXv7hBAD3jo7l77cOxl8p42BhJSu3eU7G2fxrMSarjZ4hanqGqj0eI5NKGJ0QDsDG4+e8M3iBQCDogghD2cH4eG8hNUYLMaFqpg3oRs/Q88k4r/6YRVF5baP3NBd2rc/QmBAAtp4oadW6p0AgEAiEoexQ2O12PttXBMC0Ad2RSiQAjEuOYEDPYExWGy99n+n2nmqDmZ9+dWS7XhXfvKG8onsQCpmEs9UGckt1XvgEAoFA0PUQhrIDkVOiJadEh0ImYXTCeaMnkUi4e1RvJMB/D5/mcFGla983R85gtNjoFaomLty/2fMr5VISIzUA7M+v8MZHEAgEgi6HMJQdiO1ZpQD07RaEv9Jdrz4uPICxyREAPP/tL67Q6RcHTgIwPjkSSZ0H2hx9ogMB2F8gDKVAIBC0BmEoOxBOQzmwZ7DH/bePiEEhk7A7r5wNx85yoLCCvfkVSCQwJimiVddwepTHz1S3zaAFAoGgiyPabHUQTBYbGbmOEo+mDGW4RsW1A3vw1aFT/O6zwyjljt85E5IjCQtQtuo6MWGOrNgT52qw2uzIpC17oQKBQHA5IzzKDsLhk5XUmqwE+cmJbWat8ZZhPenfPYhak5XKWjMRGiW3j4xp9XWiA/1QyqQYLTYKykRCj0AgELSE8Cg7CM4EnT7Rga5sV0/IZVKemN6PbSdKqDVZGZccQYh/67xJAKlUQs9QNXmlOjLP1pBQF4oVCAQCgWeER9lB+Pm0Y82wNQ2WFTIpk6+I5vrBPS7ISDrpHebwWDPP1VzwewUCgeByQxjKDsLRU1UAxLXCUF4qMaF1hvKsMJQCgUDQEsJQdgBqTRZySrQAJLSHoaxL6BEepUAgELSMMJQdgOOnq7HbIdRfcVGh1AvF2YarqLwWq01I2QkEAkFzCEPZAbiQ9cm2IMxfiVwqwWy1c7pS3y7XFAgEgs6KMJQdgNy6sGuv0OYl6NoKqVRCZKAKwKPIukAgEAjOIwxlByC/zGGsooP82u2azmsVCEMpEAgEzSIMZQfAWfjfLUjVbteMqvMoC8qEoRQIBILmEIbSx5itNk5WONYJfeFRFpYLdR6BQCBoDmEofczpSj0Wmx2FTEJoK/Va2wJX6FV4lAKBQNAswlD6mPrrk81J17U10XVh3sKyWlfLLoFAIBA0RhhKH3N+fbL9wq4AUYGO69UYLVTUmtv12gKBQNCZEIbSx+SXtn/GK4BSLiVErQDgVIWopRQIBIKmEIbSxzg9yvY2lAARdZmvpyrFOqVAIBA0hTCUPibfGXoNbn9DGalxGMqTwqMUCASCJhGG0odYbXYK6wr+27OG0kmExpFlKwylQCAQNI0wlD7kTJUes9WOTCohPMAHhtIVehWGUiAQCJpCGEof4qxhjA5UIZW2X2mIExF6FQgEgpYRhtKH5PswkQcgos5QnqoQyTwCgUDQFMJQ+hCXR+mDRB7A1UGk2mCh2iBqKQUCgcATwlD6EF+JDTjxU8jQqOSAqKUUCASCphCG0ocU+KC9VkOcXqUwlAKBQOAZYSh9hN1uP19D6UtD6UroEeuUAoFA4AlhKH1EcY0Rg9mGVAIRge3XNaQhzlpKUSIiEAgEnhGG0kfklzq8ychAFXKp726DM/QqSkQEAoHAM8JQ+oiOsD4J9UpEhEcpEAgEHhGG0kd0hPVJEMk8AoFA0BLCUPqIjuZRlulM1JosPh2LQCAQdESEofQRHcWjDFDJUStkAJwW4VeBQCBohDCUPsBut/tclac+zvBrkQi/CgQCQSOEofQBZToTWqMFCRAV2P5dQxpyXvNVGEqBQCBoiDCUPsApXReuUaKQ+f4WRIp2WwKBQNAkvn9KX4bklzqbNfs+7AqigbNAIBA0hzCUPqDAx+21GnK+RETI2AkEAkFDhKH0Afl1iTzdOkAiD5xfoxQepUAgEDRGGEof0OE8yjpDWVxjxGix+ng0AoFA0LEQhtIHuDzKDmIoA/3kqOSOfwqnKw0+Ho1AIBB0LIShbGcqa01U6c0ARAX5vjQEQCKRiBIRgUAgaAJhKNsZpzcZFqBEJZf5eDTnOV8iIhJ6BAKBoD7CULYzzvZa0R3Em3QiSkQEAoHAM8JQtjO5JVoAegSrfTwSd0Tmq0AgEHhGGMp2JrfOo+wopSFOnBm4TrF2gUAgEDgQhrKdyaszlN07mEfZI8QxnpxiLXa73cejEQgEgo6DMJTtiN1udxnKHh3Mo+wW5IdEAtUGC6Vak6+HIxAIBB0GYSjbkXPVRmpNVqQSiOxgyTxKudTVySSnbh1VIBAIBMJQtiu5pQ4DFBXoh1za8abemWCUXSwMpUAgEDjpeE/rLsz59cmOFXZ14lqnFB6lQCAQuBCGsh3JOldXGhLSsRJ5nJw3lCLzVSAQCJwIQ9mO/HKmGoDeYf4+HolneoQ4PN2sczU+HolAIBB0HIShbCfsdjuZdQaod3jHNJS9w/yRAGeqDJRqjb4ejkAgEHQIhKFsJ85VG6msNSOVQM8OGnr1V8rpXudVHj1V5ePRCAQCQcdAGMp24pezjrBr92A1ClnHnfaECA0AR4qEoRQIBAIQhrLdyDxbF3btoOuTThIiAwA4eqrStwMRCASCDoIwlO1ER0/kcZIY6fAoD5+sElJ2AoFAgDCU7cahokoA4iMCfDuQFogN90cqgZIao+gkIhAIBAhD2S6U1BgpKKtFAiRHa3w9nGZRyWUkRwUCsC2rxMejEQgEAt8jDGU7cKCwAoBeoWr8lXIfj6ZlBseEALA1UxhKgUAgEIayHThQ4DCUfaIDfTyS1jG4VzAAO7NLMVlsPh6NQCAQ+BZhKNuBfXWGMrmTGMq4iACC1Ap0Jiu788p8PRyBQCDwKcJQepmqWrMrkadft85hKKUSCVfFhQKwbm+Rj0cjEAgEvkUYSi+z5UQxVpudniFqooM6ZtcQT0y+IhqA738+K+TsBALBZY0wlF5m4/FzAIyo89A6C3HhASRGBmC22vl3er6vhyMQCAQ+QxhKL2K0WF2ZoyNiO5ehBLh+UA8AVm7L5WRFrY9HIxAIBL5BGEov8t2xs9QYLYQFKEmI7Nj1k564Kj6MK7oHYrTYWPbFUSxWkQErEAguP4Sh9BJ2u533duYDMLFvFFKJxLcDuggkEgmzU+NRyaVszyrlj18fw2oTsnYCgeDyQhhKL/HjL8UcLqpEKZMy5YooXw/nookJ82dBWhIS4OM9RcxavYeichGGFQgElw8Su1C+bnMqdCaufW07p6sM3DC4B3de1dvXQ7pkMnLLWLElB5PVhlIm5frBPbhndG+GxIQg6YTeskAgELQWYSjbmFOVeuZ/sJ8jJ6voFuTH8psH4qeQ+XpYbcLJilrWpOfz8+lq17ZeoWquHdidawd1Z2DPYGE0BQJBl0MYyovEZrNjsFjRGa1ojRayztWwK7eMz/edpMZoQaOS86fr+hPTwdtqXSh2u52cEi3f/3yOvfnlGOtJ3EVoVKQkhjO8dwhxEQHEhPkT6CdHrZChVsiQSiRIJAhjKhAIOhXCULYSu91OTY2j+fKPv5by2Be/NHlsfLiauWNiiApUtdfwfILRYuPo6Rr2FVRx+FQ1JmvL/5T+99AIeoepXa8DAwOF4RQIBB0aYShbSUlJCVFRnTcpp6NSVVVFUFCQr4chEAgETdLxez51EJRKJQBFRUWd+sFeXV1NTExMh/kcgYGdQ/9WIBBcvghD2Uqc4cGgoKAOYWAula7yOQQCgcDbiDpKgUAgEAiaQRhKgUAgEAiawaehV4PBwOuvv87mzZspLi7GZnPXEj1w4ICPRtYYpVLJE0884Vqr7KyoVCqefvppVKqunZErEAgEbYVPs17vuusuNm7cyK233kp0dHSjMoGnn37aRyNrTHV1NcHBwR06S1NvsiCTSqkxmAn0U2Cx2fBXimVogUAguBR8+hT95ptv+PbbbxkzZowvh9ElMJqtvLU1l9XpeVTrLQSp5cxOjefhtERUXUQZSCAQCHyBTw1lz549RXlAG6A3WXhray6vbspybavWW1yv501IEJ5lB8BqsyOTCnEFgaCz4dNknpdffpmlS5dSUFDgy2F0KPQmCyaLjTKtEZPFht5scdtvMLvvr60Lt65Oz/N4vtXpecilImfLlxSV13Lbyl0kPvktN/1rp2iCLRB0Mnz6BB0xYgQGg4GEhAQCAwMJCwtz++uKNDSEtabzhtAZPp2xMp0DhRVYbDaqas2YLDa0Bsd/K2vNWGw29hdUMGNlOiu35mKz24nU+Hm8XrXeQo3B3F4fT9CAyloTd76TwZ68cgAOFVUyZ81ezKIJtkDQafBpPO7OO+/k1KlTPP/88x6Teboaza0j2u12VmzN5X9HzvDpvNGsSc/n8c8OE6nx47OHUliTnsea9HzX+2amxPHezJHctjIDgCev6cf9a/c1umaQWk6gn6K9P6qgjr9+8wsnK/REB6l4YGwCr/2UxYlzWtbtLeKe0bG+Hp5AIGgFPjWU6enp7Nq1i8GDB/tyGO1CS+uIc8cnsDo9j5dnDGZNej6v/5QNwMsz+rJ6Z57rtfN9ztdLp/Xld58fZs+TUwgLUFKuM7ldd3ZqPBabDaUomW13duWU8fn+k0iAh9OS6BMdyM1De7J2VwFr0/O5e1TvLv/jUCDoCvj06dmvXz/0er0vh9ButLSOqJBJidCoGJMUwdpd+QAkRAYwNjmC9YdPeXzf2l35jE2OQC6VojNaWDIlmSC147dPkFrO4snJPJyWeEGJPM2FhgWtx26387fvfwVg8hXR9Il2JK2N7xOJUiYlq1jr1tdTIBB0XHzqUb7wwgs8/vjjPPfccwwcOBCFwj1E2FHrFS+GGoOZar1no+NcRxzcK5gyrYlIjR8vz+jL2KRItAYLGxaPZ0dWKS9+l0lOidbtfeU6E/ER/gT6Kbh1eC/uGNnbrY6yudKQhnWXJquV/+w/xcsbM0WJySWyLauUA4WVKGVSbhnW07XdXylnSEwIe/LL+e7YWQb0DPbhKAUCQWvwqaGcNm0aAJMnT3bbbrfbkUgkWK1WXwzLKwT6KQhSyz0aS+c64lVxYUQGKvn8oRTe25nH458ddluT/HTeaG5bmeEylkFqOWEBSqZe0c1NXCBc41DdaS7c6mm9dFZqHDNT4vj3rgKq9VpRYnIJrNjiCI1PuSKKEH93NafhsaHsyS9ne3Ypv/tNX18MTyAQXAA+ffJt3rzZl5dvV6w2G7NT493WKJ08PrUvJouVW4bHUK03o/GTM7BnMJEaP5fBqr8mOff9/QDMTImjoKyWu0f35kJWuppaL31tUzZ2u/s1wBEaXjAx6eI++GXIL2eqycgtRyqBawZ2b7T/iu6OSMnPp6rQGS0EqMQPEIGgI+PTb+iECRN8efl2Ra2U83BaIoCbF/f41L7cPjKGFVty3LZ78iDX7spn97IpDOoVxMS+0cxPS2RffjlPfHGEz+altnosza2Xrt2VT8ayyW6JQc7QsNNTFTTP2vR8AEbGhXmcs8hAFREaJaVaEwcLKxmbHNHOIxQIBBeCz3/KGgwGjhw54lEU/YYbbvDRqLyDSiFj3oQEFkxMOr8uaLGyYktOI+/OkwdZrbegM1n4z0NjKNEa+f3nR1h/+DSJkRr0ZkeYujU6ry2tl5brTERqVC5DKUpMWk+FzsSXBx3JV9MGdGvyuL7dgijNLmVPfrkwlAJBB8enhvK7777jvvvuo7S0tNG+rrZG6aThOiLQoneXEBmAQirFYLHgr5Qx5ZUt3DC4J09f358ag4WXbxvMezvyWq3z2tJ6aViAkhKt0bVNlJi0ns/3n8RosREX7k/f6KblGa/oFsjO7FL25JW14+gEAsHF4FNDuXDhQmbMmMGf/vQnoqOjfTkUn9Gcdxep8cNotvHNonGUao1EBqoo1RqRS2Uuj/MvN17JmvQ8XtvkXmfZXBKOyWJlVmqc23uczEqNY1dOGeU6k8h6vUDsdjuf7z8JOEpCmquRdJaLHD1Zhc1mRyo0YAWCDotPXYTi4mIee+yxSzKSy5cvZ+TIkQQGBhIVFcVNN91EZmam2zF2u51nnnmGHj16oFarSUtL4+eff77U4bcJTu+uIYmRmjpFnnxGLf+RcS9t5qrnf+SzfSdZv3AME/tGsf7wKaKC/FhTtybWEE86rwazBaVcxvwJSSye7F53+cS0fixIS2JcciT7/zCFfU9NZd6EBGEkW8nPp6vJPFeDQiYhJSG82WN7hKhRyCToTFYKyoX2q0DQkfGpobz11lvZsmXLJZ1j69atLFiwgIyMDDZu3IjFYuHqq69Gp9O5jnnppZf4xz/+wRtvvMHevXvp1q0bU6dOpaam5hI/waXjzIZ1EhagpG90IH+49grWpOfx6qYsl8fp9BRXbsvhn7cPITkqiGp9y/WZcF5IwKkVe6iogmkDotn31FT2PjWF9KWTmD02jlKtCZvdjp9CilIuFSUhF4DTmxwRG9ZiJqtMKqF3mD8Ax4XwgEDQofFp4+ba2lpmzJhBZGSkR8GBRx555ILPWVJSQlRUFFu3bmX8+PHY7XZ69OjBkiVLWLp0KQBGo5Ho6GhefPFF5s2b16rzerNxs8FsZd3eImLC1IxOCKdCZyIy0I8Rz21sch1xz5NTOFhYzvDY8GaP2/fUVOx2O282yKqdnRrPQ2mJyACDxcZ/DpzklR9PuPY/NrUPtw7vhVImE42gW4HJYmP08k2U60wsndaXITGhLb7n3e25bPq1mIfTEvn9tH7tMEqBQHAx+PSp99FHH/H999+jVqvZsmWL25qORCK5KENZVVUF4Oo+kpeXx9mzZ7n66qtdx6hUKiZMmEB6enqThtJoNGI0nk9oqa723q9+qUTiKhFZsu4Q3YPUvDtzRIuZqcN6h1GqNTIzJc5NC9bJ7NR4TBYr72zP86gxa7PbGRkXSn6ZjhsH9+CDjEKq9VoiNX5cP6gHb2/LdRNiF+uVTbM5s5hynYkQtYKBPUNa9Z7Y8AAAjp8RHqVA0JHxqaH8wx/+wLPPPssTTzyBtA16Jtrtdh577DHGjh3LgAEDADh79ixAo3XQ6OjoZvtgLl++nD//+c+XPKaWcPSXtLNqx3ljJpcaCdcom81MjajLmq0xmLl/jCN0u/7wKfzkcgwWCzcN6cWCtESQSDxm1SZGahjaO4TRCRHER2jwV8lZM3sks1bv5Ynpfd2E2UE0gm6J/9SFXccmR7S6OXNcuCP0KjRfBYKOjU+fdiaTidtvv71NjCQ4smiPHDnCjh07Gu1rmIHolMlrimXLlvHYY4+5XldXVxMTE9Mm43RqrNrsdj7ZU8Rdo2LdjFm5zsTO7NImPcWZKXFsySzmd58fZnZqPPePjeOuq3qzaFIyVXozwWpHfaYdOxU6UyNjmxipcbXyWrLukJvH+PlDKfgpZDz+2WGPYxcqPY2p0JnYnFkMwPjkyFa/LybMHwlQUmOkVGt0/fgRCAQdC58m88ycOZN169a1ybkWLVrE+vXr2bx5M7169XJt79bNUfTt9CydFBcXN5ttq1KpCAoKcvtrC5waqzuyS/jX5mw+3lNEZW1jY/bChkxmpcaxaFKSW2bqoklJzEqNY+W2XLoHqdmRXYpEIuHjvYWMeG4jI5/7kRHPbeSd7XnYkRCsbpxVW99jbJgotP7wqVYJuAvO883RM5itdmLD/YmpS9BpDX4KGVFBDuOYdU7bwtECgcBX+NSjtFqtvPTSS3z//fcMGjSoUTLPP/7xjxbPYbfbWbRoEV9++SVbtmwhPj7ebX98fDzdunVj48aNDB06FHB4slu3buXFF19suw/TCpwaq+9nFDBvwkSWrDuEXCr1KACQU6LltpUZPHlNPxZNmkqNwYxaKWNffgWZZ6t5//6rKNOaCPVX8Pb23CbrKG8d3svNMw0LUDImKaJJj/G9nXnceVVsiwLugvM4lXjGJbXem3TSM0TNuWoj2cU1pCQ2X1IiEAh8g089yqNHjzJ06FCkUinHjh3j4MGDrr9Dhw616hwLFizggw8+4KOPPiIwMJCzZ89y9uxZV59LiUTCkiVLeP755/nyyy85duwYs2bNwt/fn7vuusuLn64xTo3VSI2KMq3JlZSzI7uEWSlxjY7PKdFy5GQVJqsVuUzKgg8PcGWPIHblljN6+SZu/NdOpFJJs3WUERoVs+t5ps5ry6VS+kYHEhbg3tmioEyPzmhhVmrj8cB5lR6Bg8KyWvYXVCCRQGrShRu6niFqALKLhUcpEHRUOkX3kJMnT9KjRw+Pa5krVqwAIC0tzW376tWrmTVrFgC///3v0ev1PPzww1RUVDBq1Ch++OEHAgOblhhrawxmC1qjlWq9pVGyzgsbMlm/cAxIcMsyfXRKH24Z1guFTIrBbOH1O4fy9vZcl3fYNzrQZXA9Ua23UKU384evjnHbiF7sXjYFo9mKQi5lx9KJlGlNhGuUbr0ug9RyAlRyHk5LQoKk1bJ4lytOb3Jgj2BCG7TTag09Qx2h2ixhKAWCDkunSF3s378/hw4dIiEhodG+1pSBSiQSnnnmGZ555hkvjK5ljGYra3YWcF+qI6TZMFmnotaEVAKDe4WQsWwy5ToTEQEq7BJ4q67+US51GLf63mOJtuXs2LAAJcN6h/C7zw+THBXI6lkjeXtbbpOdSq4b1B2TxYrGT9FIwL2lRtCXG3a7na8OOQzlxQqb9wp1eJTCUAoEHZdOYSh9qIlwydTv/ZgYFeAyji9syOTTeaMBSM8ppVRr4v61+xjWO5Q/XdePEH8FX+w/yfsZBVTrLR69x5ayY2elxmGyWpnYL4rZY+IwWx1lKO9nFNA9SI1caqRcZ3K99193DSUuIgDq5vtCGkFfjhworCSvVIdKLmVkXNhFnaNHsMNQltQYqao1E+wv1n8Fgo6GePJ5mfq9H+tnspZoDdy2MoMhMSF8+MBoooP8GBwTzOqZI4gND0ApkzG5XzQ7n5jI6lkj0PjJXd5jfV7YkMn8CYk8Mrlxduzs1HiUUimnK/VIJI4sy8ExwexYOpF3Z45gx9KJvH3vcBIjNazdlU98ZABfHTwFzZTNCM7zYYajDnd0Qjh+F+lpq5UywuvWibNLfC+pKBAIGtMpPMrOTP1SC2cm69JpfclYNhmt0UKwn4JSrZHQAAUfPTAKmVTqJmdXWmMiJTGCYb3DyDlXw+NT+/DqpmxXr8hgtQK5TMrgXiHsXjaFGqOZELUSrdGCWimlUm/m/rX72PjoeHqF+XOwsNKtdrJ+2LWkxsjqnfmcqTIIUYEWKNeZ+N+RMwBM7X9pnW96hqop05nIOqdleOzFeaYCgcB7iCehl2lY+pFTomXu+/tJiAzg20fGYjBbcQi5OLy4dXuLuG5QdzcxgMExwbx48yD6dg+me6g/t4/szc7sUp7/9leWTu9Luc7I89/+ymfzRrPh6Bne25lHQZme2HA13y+ZwLjkcHqEqHlrS04jtR3n6yev6efqQylEBVrmg4wCTFYbiZEBJEZqLulcvULUHDlZJdYpBYIOSqcwlM0p6HR0nN1B6mutAiikUixWG1KphHCNH+U6E2EBSiZfEcX6w6ddBiwxUsN7M0eyJj2ftbvcdVe/eWQsUokEi83GU9f2Y3UD2bkag5WDhRU8/9uBKGTSZhtEL5g4hUNFlS5PtcZgdmsuLThPtcHMu9tzAbhmYPdLPp/IfBUIOjadwlB25mQetVLOw2mJAG6ZpvMmxCOXyXhzS3Yj4fGZqXF8kFFITom2Wd3VcI2Cawb24NipSlITI1iy7hDgMK5PTO/LmKQIKnRmogJVVLWgtqMzWli3twgQogIt8e62XKoNFnqGqBkdf+kiAa5aynNijVIg6Ih0CkN5/PhxevTo4ethXDQqhYwHx8UzPy3RUfqhUVGlN7FiS04jRZ33MwoIC1Dwh2v78fhnR5pV0fl8/0nuHBnLDz+fY0DPEKr1Fjcd18c/O0y13sK45HBWzbyq2TISjZ+crSdKgPOiAiLLtTG/nKlmxdYcAGYM74W0lQLozeE0lKerDOiMlhZ7WQoEgvbFp99InU7HCy+8wKZNmyguLsbWQPElN9cR3morMXJfopTLuH/tHh6b2pcIjYpgtdItFFrfCyzTmogO8mPFPcMob0LU3HlslcHM09dficVmZ3BMMAsnJrl5oImRGv55+1ByS7TNtuPak1eOxWZj8eRkISrQBKVaI4s+PojZamdEbChXxbdN4o3GT06wWkGV3kxOiZZBvULa5LwCgaBt8KmhfOCBB9i6dSv33nsv3bt379RrkS2hM1r45+1DWZOez1+/Oc7rdw5zGUBPXmCQWs5D4xMZOi7UzRNs6tjZqfF8cP8o5FKJmwfqDN1+e/Ssq26z4Vrn/LREagwW9j01FZPVelkbSbvdzi9naigsr0Upl9A9WE24Rsnx09X89ZtfyC7WEhagZM7Y+Db999ozRE2V3kzWOWEoBYKOhk8N5YYNG/jmm28YM2aML4fhdfQmCwq5hJVb8/j26Fme++2VRGhUBKnlyKVSnr3xSo/rkC99n+kQC6iXDNRSr8jZY+JcRrW+AHq13uJWmuJMHrLZHcahxmCmoEzH9qzSy7Y0pEpv5pGPD7pC0J4I9Vfwh2uuuCi5uuboGarm+JlqsktEQo9A0NHw6dMwNDSUsLCuXzcmk0qRYmdbVgmfzhvN2l35AKybm0JsuD9yqZT5H+73+N4nvjjCurkpAHx16GSza5bOso7YcDUFZXo38XU4X5oSFqAkUqOiRGtk46Pj2Z1XxqR+0fzlf7+wv7C8ydIQZx/N+pJ2XcWg2mx2Hnp/P7tyy1DIJMSGB2Cx2ijTmagxWAgLUDI8NpRbhvUiWN32iU5CHF0g6Lj49Cn3l7/8hT/96U+sXbsWf//W9/HrbNSaLGiNFtf64bdHzzI7NZ416fnsyC7hn7cPbTIj9XBRFZW1JkbGhfFQWgI6g7XZ7NVqvZk5Y+J5ev3xJrVgy3UmynUmlwD64F4hfLynkDuvimFzZrHH0hBnH82uKpL+yd4iduWWoZJLefr6K4mPCHDts9rsyNogaac5hKEUCDou7W4ohw4d6ra2k52dTXR0NHFxcY36UR44cKC9h+cV/JVyVHKpyxt8ecZg3tuZx+s/ZRMWoGxR2DxIreCRTw4S4q/gm0Xjmj02QCXnhkGODOH3duaxO7fcYx0nwMyUOHZml5KSGM6a9Dw2LB5PbLi6UWlIfb1aJ/XDvZ09VGu22njjJ8dnuW1EjJuRBLxuJAF61BnKgjIdRosVlbzz//gQCLoK7f50u+mmm9r7kj7HarNRqjWhkEmQS6WMTYp0hU9bEjafmRLHjqxSlxe4I7ukWcNXqjUSoVExfUB37rwqFqPZSkpiODa73S2JZ2ZKHLNS47htZQZr54zET+7oanL/2IRGpSH19Wob0hVUfDb9co7TVQaC1QqmXHFpcnQXS6i/An+ljFqTlbxSHf26BflkHAKBoDHtbiiffvrp9r6kz1Er5UQHSkAiYWxSODqjxc0jrN9JpClj5uSNzdmuNUtnGDQ2XM39YxO4bUQMXx44yecHTpJXWovFZuOh8Yk8MC6BITEhzE9zJPGEB6jYl1/G0v8cxWKzEhagxGCxEKFRcfuImEah1JoWxAo6u4rP5/sdrbIm9IlEKfdN7ahEIqFniJqsYi3ZxVphKAWCDoRP42UJCQns3buX8HB3dZPKykqGDRvmqqPsCigVMmoMZhZNSkbjJ2+k/1o/I1VvshKgcggA3LYyg4paE32jA+nbLZA/XtcfqUTCnDHxLJiYhN5sRa2QUW0wI5VIuH5wD9L6RhHsr3A1ZJ7YL4qTFXr25JUxOiEcvcnKqIQI+nYLIkitoKTGyJwxCVisNjQeFHka6tXWp7Or+OhNVnZkO7JcUxMvXWXnUuhRz1AKBIKOg08NZX5+PlartdF2o9HIyZMnfTAi7xLop0All7Eju8QVaq2fgTr3/f08Ma0fKYlh9A4L4GyVgaeu7cfohHBqjVY0fnKX5F2kxo/PH0phdXqemwSe0wu9850MxidH8um80fxrSza//00/PtlbyKBeoazemefmuc6fkMicMfFNJuU0pVcLnV/FZ2d2KQazjQiNkt5hvk0oE02cBYKOiU8M5fr1613///333xMcHOx6bbVa2bRpE/Hx8b4YmlepNZmpNdl47ptf+c9DKVwzsDux4f6UaU2Ea5QUlNUSHxHAwo8O0D3Yj6eu7c+KLTksWXeIDY+M599bsl2Sdy/P6OtKCHJSvxvI4sl9mLNmL+AwZiu25DCgZxCr670nMVLDH669gtEJ4VTUmgkLkHgs+WhKr/bhCUnMGROHshNnvW769RwAw3qH+lzwwpnQkyMMpUDQofCJoXQm9EgkEmbOnOm2T6FQEBcXx8svv+yDkXkPg9nK2vQCZqbGofGTYQc2HDvTSBB9floiFbVmHhiXwIotOfzvyBlW3D2UyEAVa9LzAXchAU+s3ZXPoknJrJ41gn9uymLRpGQ2Z55j3oQE13sm9o3ijbuG8va2XBavO+ix5KNh3eSD4xzh3lqjBYVcikJWt0/i2cB2dOx2O1syHWHX4bGhPh7N+RKR3FIdFqsNuaxzeukCQVfDJ082p6ZrfHw8e/fuJSIiwhfDaDfql1ckRWl48eZBHr1BZ2hzyZRkhvYOYfmGX/h03mh2ZJdQpT+fUNNQSKAh1XoLxTUGCstreW/mSHRGC92D1K73JEZq+OcdQ1i5rbEo+6ubsggLUHL7yJgm6yb9lTL+tSWn09dUnqzQc6bKgEwioW+3QF8Ph0iNCqVMislio6hC36hMRSAQ+Aaf/mTNy8vr8kYS3MsrVmzJJSFS41Lnacjq9DxGxYdjNNlY+huHXN2rm7IJVjsSagA3IQFPBKnlhAUoeXWTYz1TKZcil0FUkEM274/X9UMll7o81IbEhKlZsSWHVzdluYyx04i+uSWH3FJdk/tqTZ6Nd0dkX0E5APGRAR2iblEqldA9xA+AE6LllkDQYfB5bGfTpk1cd911JCYmkpSUxHXXXcePP/7o62G1KfXLK+QyCdUtlFsU1xj46vAphsWGsS2rhNwSHSU1BmalxgHutZeeqF97uXZXPgqZlBduGUxuiY6HxicyKiGckhqjxzGEBSgZnRDebN1k73B/wgIaa52uTs9DLvX5P6lWsze/AoC+0b73Jp04E4p+PSMMpUDQUfDpU+2NN95g2rRpBAYGsnjxYh555BGCgoK45ppreOONN3w5tDbFWV4BgB2C6r9ugNMb/OePWazYksPvr+7LO/cNJyJAxcNpSTwyOYkgtZwXNmQye0y867XzvYsmJTErNY4Xv8sEHIZXb7by7vY8Fn50kLtG9aZabyZco2R4bEgjg9easG65zkSkh7pJZ01lZ2FfvsOj7NcBwq5OYsMc4dbjZ6p8PBKBQODEp9kXy5cv55VXXmHhwoWubY888ghjxozhueeec9vemalfXpFdosVksbZKiWfLiWLmpyXyr83ZyKQSCspqGdAj2NX9Q62Q8uC4BBZOTKa4xkBYgJKDhZU8+O/95NR1oYgNV6NWyFzriX/8+meW3zwAmVTCG3cNI1h9vt4yp0RLidZIZKCq2brJsAAlJVqjx32dpaayqtbMiXOOOerTgTzK2HCHR/mL8CgFgg6DTw1ldXU106ZNa7T96quvZunSpT4YkXdoWF5x5GQlc8cnIJHgsQbSqcSzcGISK7bk8OHuQuanJbJk3SGq9Ra32sv1C8dgsZqw1iVI9Q7z54MHrnIZv/tSersSgRIjNTxzfX/e3pbLmvR85FIp8RH+TO4XzafzRjNn7V4m9InE0kLdZGFZLeU6k8d9naWm8ufTDo8tKlBFkBe6gVwsvesMZWF5rSvbWCAQ+BafGsobbriBL7/8kv/7v/9z2/71119z/fXX+2hU3kGlkDFvQoKrvEIpk3JfSpybN7g9q5TbVmaQU6J1KwGpn7EK57t/hAUoiQhQYbBYWb0z3y0LdWZKHF8vSAVAKZcRG65m+c0D+HRvEd8cOcvLMwYzJinCVcNZWFbLRw+Owm4HjUrhsW7SmdkqARZPTu7UWa/H6gxlR8ssDfJTEBagpFxnIvNsDSPiun4bOoGgo+NTQ3nFFVfw3HPPsWXLFlJSHPqlGRkZ7Ny5k8cff5zXXnvNdewjjzziq2G2Gc46w1oTPPTBft66dzi780rJLdHx6qZsNy8tUqOius4TlEs9t8uK1KjQm60eS00+3F1IZKCK8cmRqBRSNj6aRrXBzMCeIdwzOpb/HjnN6OWb3AzrgolJ+Ckdhq6+Ya/ff9JpCJvb1xk4dqoagLgOZijBERUo15n45Uy1MJQCQQfAp4Zy1apVhIaGcvz4cY4fP+7aHhISwqpVq1yvJRJJpzaUDQv3FTIpgX5ySmqMPLPeUStZqjW5ycrdOKQHYQGOtcKmOoyYbTYCVHK3UpPESA1PTO/LmKQIqmrNhAYoWbElhy0nilk4MYkxSRHoTBZuHR5DTJg/z6w/Tk6Jltd/ykYqkbi1zHL+1yl4Xj+k2ty+zoDLowzveIYyNtyfQ0WVHBfrlAJBh8CnhjIvz3MJQleiqYbHz/92IEq5jBKtwU0Q3RlS3ZVT5pb046nDSKi/wk2IIDFSw6fzRrMmPd/V9/LIySq+PXrWbbtzHLNS4/h03mhXuNfZMquhYe+MqjvNoTVayCvVAR3To4wNcyb0VPt4JAKBAHxsKJ2YTCby8vJITExELu8QQ2oTmmp4/L8jZ5g+oBsxYf6upJm57+93S9K5e1Rv/ORS5o5PQCqRsDo9j9tWZvDkNf1YMHEKOqMFf6UcqRRXSPaJ6Q6BAqfYev1G0c7t9cfx2qZs7HZYOq0vc9/fT6TGD5vd3qQiT2cKrTbHL2eqsdsdNaPBHSiRx0nvOi/317PVWG32dmkcLRAImsan8bLa2lruv/9+/P39ufLKKyksLAQc65EvvPCCL4fWJnhqeOz0+r45eoa73s3gvpRYFk1KcoVYz1TruXtUb2aPiedEsRapBB4cF8++p6by6bzRjEuOxGa3E6CSIZNKMJhtPDwhiaviwxiTFOEKwzrrIeVSqdv2hqzdlc/Y5AjCApQ8dW2/ZhV5OpPqTnMcO9UxE3mcdA/yQyWXYjDbyC0RAukCga/xqaFctmwZhw8fZsuWLfj5+bm2T5kyhXXr1vlwZG2Dp4bH9b2+w0VV3LYyg4E9HbWRGcsms++pqcweE49aIaVHiJq73t2NUi5DKZcSrlGhlEvxV8rxU8hRyqUoZRLmjI3n9TuGIpdK+futg0mM1Lhk7uIj/FsUEKjQmUmK0pCaGNGsIk9nUt1pDlciTwdcnwSHlJ3TiB8sqvTtYAQCgW9Dr1999RXr1q1j9OjRbi2O+vfvT05Ojg9H1jY4FXnkUimRGhVmm61R14+cEq0r7Bof4c/794/ioff3k12idWXB1hjMrqSZ+nha/5yZcn7dcWd2KZP7RXvMmHUSpJYTGahiVmosWoOlWYPa1Dg6G84ayrgI3/afbI6kKA2/nq3hYGElt42I8fVwBILLGp8aypKSEqKiohpt1+l0Pu8N2BbYbDY+nZtC77qekxF15RyRGj+q9e4hNWdtZLnORJXe7DKSTandNLX+6VyHXDqtLy9syOTz+SkUltU2KSAwMyWO3BItQ3uHEqCSN2tQu0Lxu8FsdTVG7ogZr06SowKBMxwSHqVA4HN8GksbOXIk33zzjeu10zi+8847rrrKzoxEImHDsbOMXr6JcS9tZtTyH1mbns9nD6WQGKlpdLwneTin2k1DPK1/OnGuO1bUmlj88QFiwtXMT0t0rYU6r+XUhV36xRGC1Qp25zUttN7UODobv56twWqzE+Qn9yjs3lFIinL8+8g8W91l1oYFgs6Kz7Vep02bxvHjx7FYLLz66qv8/PPP7Nq1i61bt/pyaJdMUx7fq5uysGN3ZZrWZ1ZqHLtyyijXmVrMNvW0/ln/OnqTlW8fGUuQWkG13oxMKnWthTpLUOorAZXrTHyQUcSLtwwEcKvpnJkSx/y0RPy6QNarM5EnLiKgQ0ctwgKULoWeIyerGJ0Q7ushCQSXLT41lKmpqezcuZO///3vJCYm8sMPPzBs2DB27drFwIEDfTm0S6Y5j29Nej57npxCbLiagjK9yyjOT0tEKpGw/w9TWlS7ca5/NhUmVStlzH/vAKU6I4N6BvPSrYP53eeHXeulJVqjW3g3LEDJgcIKt5rOar2F0ACHaLq0AxuVC8G1PtmBw65O+kRryMgtZ09euTCUAoEP8XnR4sCBA1m7dq2vh9HmtOTx6YwWfnzUISvnNIpOj60ltRuj2Upeqa7ZDiT7Cyp4cHy8S8/VZLG61ikbCprPTo3ndKUei81GTomW331+mIcnJHHnVb258+3djEuOICUxvNOp73jCmfGa0EFLQ+rTv3sQGbnlZOSW8cjkZF8PRyC4bGl3Q1ld3Xq1kaCgoFYdt23bNv72t7+xf/9+zpw5w5dffslNN93k2j9r1qxGxnjUqFFkZGS0eiwXSkseX6CfAkVdyQe0XgLOGdL935EzjZR6nJ7p7DFxYIdVO/NcSjyfzB3FA+PisdntjcKqD4yLRwLsXjaFMp2RCI2Kkhoj963eTVqfqC4jNmCy2Mg865CF64iKPA3p3z0YgP0FFRgtVlTyzn8PBILOSLsbypCQkFavDVmt1lYdp9PpGDx4MLNnz+aWW27xeMy0adNYvXq167VS6d1EDmsLraouth2VM6Rbrbd4lL4DKK0x8tn+ky5vMyxAyaBeIdz5TgYL0pIarVPes2o3nzyYwu1vp3Pr8BhuGxFDoErOZ/NSO53YeXNkFddgstoIUMqICuz4ZS49Qvxca8xHTlYxUgikCwQ+od0N5ebNm13/n5+fzxNPPMGsWbNcWa67du1i7dq1LF++vNXnnD59OtOnT2/2GJVKRbdu3S5u0BdBwx6UbSUHVz+k66zBHB4bymNT+xAWoKTWaKVbsJohMSEkRmrIKdG6VHoOF1U1kspzhmF1Jgv/eWgM5roQsDMM3BXCrU5+rtcxpCMn8jiRSCT07x5IRm45O7NLhaEUCHxEuxvKCRMmuP7/2Wef5R//+Ad33nmna9sNN9zAwIEDefvtt5k5c2abXXfLli1ERUUREhLChAkTeO655zzWcDoxGo0YjefLNC4kZOykpVZVF4reZGkU0k2M1PD2vcNZk57P/A/3exQecKr0ON/nrNd0EqSWE6CUY4cuJX7ekI7ag7I5BvYMISO3nC2ZJSyZ0sfXwxEILkt86i7s2rWLESNGNNo+YsQI9uzZ02bXmT59Oh9++CE//fQTL7/8Mnv37mXSpEluhrAhy5cvJzg42PUXE3Nx6ij+Snkj+bmLwanCsyO7xK3Wsb4kXn191td/ymZNej5Lp/V1a9PliZkpcWzPKqHGYL6osXUWXKUhnSDj1cmQmBAADp+spEzb9L9XgUDgPXxqKGNiYnjrrbcabV+5cuVFGyZP3H777Vx77bUMGDCA66+/ng0bNnDixAk3sYOGLFu2jKqqKtdfUVFRm43nQtGbLLxZJ1b+3De/Mis1jkWTkogNV7da8PyFDZnMSo3jkcmeRQf+tSW7SyjvNIXVZud4XduqzuRRhgUoiQ33x26HbVklvh6OQHBZ4tM42yuvvMItt9zC999/z+jRjgzOjIwMcnJy+M9//uO163bv3p3Y2Fiyshon2jhRqVSoVB0j4aN+TWZOidaVxPPwxES0BmuLgueRGhVnqvWsP3ya+8ckMH9CElV6M6EBCrZklnDbygyuG9T9ohOMOgO5JVoMZht+Cindgv1afkMHYmhMCAVltWz6pZjfDu3l6+EIBJcdPn0qXnPNNWRlZXHjjTdSXl5OWVkZN954IydOnOCaa67x2nXLysooKiqie/fuXrtGW9KwJtOZxHPtazvQ1OmzesIpeP7pvNHsXjaZHiFq7lu9m7Xp+QSp5Rw7Wcnb23KYMbwXD6cldun1SadmamxYQKcTTxge60ji+enXYgzm1mWCCwSCtsPnT8ZevXrx3HPPNXvMww8/zLPPPktERITH/Vqtluzs84X3eXl5HDp0iLCwMMLCwnjmmWe45ZZb6N69O/n5+Tz55JNERETw29/+tk0/i7doqiYzt0THrtzSZgXPt2eVcORkFfPTEhkVF0bavBSKymup1psZ2CuUlfeOIKguyagrc6CwAnCo3XQ2EiMDiNAoKdWa2JJZzLQBneMHnkDQVegUcbYPPvig2azTffv2MXToUIYOHQrAY489xtChQ/nTn/6ETCbj6NGj3HjjjfTp04eZM2fSp08fdu3aRWBgYHt9hEvCWZPZkLAAJdV6M3PHJzQpeP78t786Gi9vzubXczWkLP+Jm1ekE+KvZOorWxjx1x8Z8dxGVm7NxdiFvZX9BQ5DmRzdOe55fSQSiUvC7n9Hzvh4NALB5YfPPcrWYLfbm92flpbW7DHff/99Ww+pXWlYkxmp8eOpa/uRmhiB1mhBJpFw96jeLJqUTHGNoZHgOcCaXfk8VHeOar2FUq0RP7nc9drpkc6bkNDlQrBVerOrtVZyVOfzKAFGJ4TzvyNn+PGXc1TpzQSru27ilUDQ0ehaT8QujEohY+54R02m1Wbnra05LFl3yFU3+fXDY6iQGLl/zT43IQEnzvrJSI0Ki83WqJ0XOIzwgolJ7fmx2oVDRZXY7RAVqCLEv+O21mqOhIgAeoaoOVWpZ/2hU9zbRKmPQCBoezpF6FXgwGy1YTBbWbE1m1c3ZbnWLOVSKdHBfgT6KThTrW9kJMERjg0PcKjxzEyJY0dWqUdj2hVrKffllwOdM+zqRCKRMPkKh0DGx3uKWoyyCASCtkMYyk6A3mTBZLHhr5Tjp5CxJj3fbb9Toq45UYHZqfFYrDYWT05mzph4Xvwus9ExTrH2rsb2rFIABvRonch+R2VcUiQKmYTjZ6o5WieeIBAIvI8wlB0cpyLPo58exG63U+2hfZdTou6NzdnMGRPP4snJjRJ7HhgXj1QKtwzrydYTxa61y/o4xdq7ElW1Zo6crARgYM9g3w7mEtH4ybmqTu/1o92FPh6NQHD50CkM5T333NPqlltdCaciz/+OnOH53w7ibJWeoLpSkfo4JerGJ0fyy5kqpg3oRsayyexYOpGMZZMZ0DOYm/6Vzltbc5FIJEy5IrqRMV08OblL1lKm55Ris0PPELWrpVlnZkr/aAC+OHCK4mqDj0cjEFweSOxeWOwwGAy8/vrrbN68meLiYmz1vBS9Xs+6detadZ5Bgwa19dAumurqaoKDg6mqqmo3o22y2Bjx3EZeu2MIoxMisNnt2Gx23tme16huMjFSw9cLUpHLpFz1/I/IpdJGHUKC1HL2PTUVi82K3Q4KmcxNrL2rGUmAZV8c4eM9RUwb0K3JsHRn45n1P5N5roa54xN48porfD0cgaDL45Un45w5c9i4cSO33norV111lVtLo2eeeYahQ4c2mYwgkUiw2+1IJJJW96PsqtQYzMilUkYlhFNZa8JstVNUruOhCQnYsbMm/XwD5msGdsNmB63R4grNNpWsE6CS4VdnFC+0cXRnwmy18d2xs4BDBq6rcOOQHrz0fSYfZhTwcFpip83kFQg6C14xlN988w3ffvstY8aMabRv1qxZ3rhklyTQT0F8hD/lWhOhdU2ZF358gPdnX8WD4xJYODGZcp2JILWc7VmlzFq9l4/njvKo4gPnk3WU8q5nFD2xPauEilpHzeGVPTr3+mR9hsSEEBvmT0F5Le9sz+X/ftPP10MSCLo0XjGUPXv2bFL1JjY21huX7JJYbTamXtGN0AAlGblldA9WMz45kt+u2MXzv72Sgb1CCPVXsHpnPm9udbTZOlBQ0aSknTNZpyt6j5746uBpAFISw5FJO5e+a3NIJBJuGd6Lf2w8wbvb87hrVCw9Q9S+HpZA0GXxiqF8+eWXWbp0KW+99VYjw7h+/fpWn+eGG25o66F1KtRKObPHxJFXqqOgrJbRCeHMHZ+AVCLhpe8z+eftQ1my7hDPXN+fOWPjXeuNQ3uHAg4BAWdodnZqPA+nJV500+jOxpkqvSvsOjbJs0ZwZ2ZEbChXdA/klzM1PPvfn3nrnuFuSxwCgaDt8IqhHDFiBAaDgYSEBPz9/VEoztfmVVRUtOoLLdYoHagUMmLD/YmLCEACHD5VyYPj4l0KOlnFNVz/xk7CApQM7R1CiJ+CsloT946OZd9TU6moNRHqr8Ris102RhJgxZYcTFYb/boFkhjZOWXrmkMikTAzJY6nvjrG9z+f48uDp7h5mGjBJRB4A68YyjvvvJNTp07x/PPPEx0d3cgwzpw50xuX7bKo6xJvSrVG7nxnN2EBSsYnR/DE9H6uMGu5zsSmX4pd7xncK4RR8WHkleoI7a3skhmtTZFTouWTPY5G27d0YeMRGx7AzUN78tn+k/zhq2MkRwUysFfXWYsVCDoKXnl6pqens2vXLgYPHuyN01+2OGsoy3Umvjp0mqOnqvnsoRRsdjtrd53PgJ2ZEsesMXHMXL2XsUkRDOoVfNmsS1YbzCz86CAmq41BvYK5spOr8bTEjUN68uvZGo6eqmLW6j28O3OEK/QuEAjaBq/UUQ4bNow333yT0aNHN9r32muvMXfuXPz8/HjttdeaPc8jjzzS1kO7aHxRR9kQvcnCW1tz3RJ1EiM1LJ3Wl/F9ItEaLPirZGzPKuXNLdmk9Ym6bNYl7XY7Gbnl/PHrY2QXawlWK3jupgFdQmSgJWpNFv76zS/klepQyqTMGRvP7DFxRAf5+XpoAkGXwCuG8ocffuDPf/4zzz33HAMHDnRboxw4cCAHDhwgPDyc+PjGPRZdA5NIyM3NbeuhXTQdwVCCQ9LuzS05HhN17NiRSqRdXkQAHGuQFbUmagxmynUmjp2q5lSlHoAQtYKl0/sRFx7g41G2HwazlTe3ZLM339F3UyJxdBzpEx1IaICSQJUchUzKyPgwJvSJ9PFoBYLOhVcMpVTqCPM1XJtsTkjAOYyOmrlXVVVFSEgIRUVFPpfTqzVZkEulaA1mNJ3cIAYGBrbqntvtdmpqalyvJ/wzg4pa904nKrmUiX3CmXlVTwL9Oud8XAp2u509BVV8fvAMv5zTeTxm9uhePDrp/A/U1s6/QHA54xVDuXXr1mb3T5gwwfX/q1at4pVXXiEryxFOTE5OZsmSJTzwwANtPaxLIjc3l8TERF8Po8vRWg/d6dEL2hZfR0gEgs6AV3521zeEzfHHP/6RV155hUWLFpGSkgLArl27ePTRR8nPz+evf/2rN4Z3UYSFObo2FBYWduoHdnV1NTExMR3CMwaaFKbwdFxVVfu1lvLlPLXntVs7/wLB5YxXPEpwCKMfOXKkkSg6nBcSiIiI4PXXX+fOO+902//xxx+zaNEiSktLvTG0i6KjrFFeKl3lc3gbX86TuEcCQcfCKx7ld999x3333efR0NVfo7RarYwYMaLRMcOHD8diaaxVKhAIBAJBe+OV4rqFCxcyY8YMzpw5g81mc/urn8hzzz33sGLFikbvf/vtt7n77ru9MbSLxul4e8kBF7SA3W6nurpazL9AIGh3vOJRFhcX89hjjxEdHd1o32OPPeb6f4lEwrvvvssPP/zgqrnMyMigqKiI++67zxtDu2hMJkfLqs6eIRgUFNSssdGbLMikHa/EpKampl3DkfXnqb3npKV7JBAI2hevfNtvvfVWtmzZ4jFL9ODBg26vhw8fDkBOTg4AkZGRREZG8vPPP3tjaBeNStX1C9eNZitvbc1ldXoecqmU+Ah/pl7Rjdlj4i4L0QJP1J+Tar2FQb2CeGBcAr/p3+2ynROB4HLDK8k8tbW1zJgxg8jIyEaCA9CxFHdaS2dNsGjoDZmtNuw2OxKpBIVMSrXBTFDd9nPVBv7yv1+4a1QMY5IiKNOaCNcoKSyrJTbc36U56+m83vayfDH/9ZWQJvaN4i83XUlUoJ9rzvQmK2qlDKPFikouc203Waxo/BQtX0AgEHQKvGIo3333XR566CHUajXh4eFu4cqOprjTWjqjoayv4pMcFcj//aYPQ2NCseNQtqmv7jMzJY6HJiQgk0r51+bsRtqxCyYm4VfnQTWnDuQtL8sX82+22JjyyhYSIgJZcc8w3tySzZp093mZPSae9YdPcePgnjz7v+NU1hoZFR/BrDFxrvkStA1Gi5X1h04jlUi4YUgPFLLLQ79Y4Hu8Yii7devGI488whNPPOFS6ensdDZD6fSG/nfkDH+5sT/DYsNYsSWHwTHBHCys5PWfshu957vF49hw7KzHps+LJyfz4Lh45FIJKxrozdY/Zt6EBK94lu05/05vuVpvxl8lw2SxsXpnvsfPvGhSEgN7BvPz6WrmjIlHrZRhslgprjESHaQiQCU8y7bAbrcz/4MDfPezo8fojUN68OodQ308KsHlglesmMlk4vbbb+8yRrIzIpNK2XKimE/njSY0QMW/NmfzfkYBoxPCWbsrv9HxYQFKeof7szo9z+P5VqfnIZdJQSJhy4nipo/p5PfcuSY54rmNjHjuR6a/ug1/pbzJeVm7K5+xyRF8degkCrmEqa9sYeW2XCIDVcilUkxm0VO1LdieVeoykgBfHzrNrpwyH45IcDnhlafazJkzWbdunTdOLWglNQYzCycmsW5vEbHh/qzdlU+kRkWZ1kS1vnGNanP7AKr1Fkq1Rj7dV8SCtKQmj6kxmD3u6wzoTRbe3JLDq5uyXPMQHaSm2mBudl7KdSb85HLXf1//KZu3t+WSV6qjqEJPrUnUBF8q72cUAHB1/2gm94sC4N8efvAJBN7AK9kXVquVl156ie+//55BgwY1Sub5xz/+4Y3LCuoR6KdgTFIEb23N4frBPajWW5BLjYRrlASp5Y0e/CXapvcBBKnlhAUoWbUjlw2LxxMWoKRcZ2p0TGAnTmKRSaWNPUf7+T6gzc2LwWIhLEBJidYIODzN+WmJSOrOK7h4tEYLWzNLAJhyRTRWu51Nvxaz6ddidEYLASrfly8JujZe+QYfPXqUoUOHIpVKOXbsGAcPHnT9HTp0yBuXFDTAZrdRrTeTV1rrMoDlOhM7s0uZmRLX6PhynYmCslpmp3pufTYzJY4dWaUUlOmp1luI9NDncXZqPJYGcoWdiRoPnmN2iRaTxepxzuD8vNwwuCc7skpdPx6cnmaV3iw8yktk+4kSTFYb3YL86BWqJjbMn6hAFSaLje1ZJb4enuAywCuGcvPmzU3+/fTTT67jTp482UgHtiHLly9n5MiRBAYGEhUVxU033URmZqZrv9lsZunSpQwcOJCAgAB69OjBfffdx+nTp93Ok5aWhkQicfu744472vaDdyD8FHLCAlRYbDY34/jChkxmpcaxaFISQWrHL/EgtZxHJicRG+7P7DFxLJ6c7LZv0aQkZqXG8eJ3mS4P6rdDe7ods3hyMg+nJXYIcYKLJbDOc6xPuc7EkZOVzB2f0GjOFk1KYvaYeE5X6V3z48Q5T0FqRaeek45ARq5jLXJwTIjruzskJqRuX7kPRya4XPDpN7h///4cOnSIhISEJo/ZunUrCxYsYOTIkVgsFp566imuvvpqjh8/TkBAALW1tRw4cIA//vGPDB48mIqKCpYsWcINN9zAvn373M714IMP8uyzz7peq9Vqr322joDVZmN2ajwvbMjk03kO5aO1u/K5bWUGT17TjwUTp7hCV0aLDSlw/9p9rLxnOPPTEinVGgkLULI9q5TbVmaQU6Jl8eRkLDYb96XGMmdsvFsdZWcvwHfOV8Ps1j9+fZz1C1O5ZmB3Hk5LosZoJkStpNZkwV8pJyFC45ofJzNT4igoq0UC9A73R+md36SXBQcKKwHoE61xbevbLZAfjp9jX4EwlALv41ND2ZrKlO+++87t9erVq4mKimL//v2MHz+e4OBgNm7c6HbM66+/zlVXXUVhYSG9e/d2bff396dbt25tM/hOgFopZ36aQx1pztq9LEhLImPZZKr1jvW0/QXlrNqRz4HCCu4e1Zs5Y+K5cUgPgvzk2IGffi1m1Y5cCsr0bl5jfYMYXheC7QqGQAI8MC4em93uVkd6zcBumC12SrVGEiIDkCLBYrORXawlOVLD3vxySrQGAFd95dzxCUgloJBKUXbyHxC+RG+y8suZagCSo863BOsb7fj/X87UiHVKgdfpdP+6nD0Jnf0hmzpGIpEQEhLitv3DDz/kgw8+IDo6munTp/P000832Y/PaDRiNBpdr6urqy998F6kKaUcm93O9AHdeGhCIkaLo1ShoEzHCxt+ZVtWiWtNbe2ufBZNSubW4b1cD/Zbh/fijpG9feI1+mL+pVIpf11/hGXX9GfRpGRqDGbUShnbs0qZs3YfcpmENbNH8n+fH0JnchjKUH8lS6f1JWPZZMp1JqIC/TBZbUgkjnUNYSQvjaOnqrDY7IT4K4jQKF3bwzUqwgOUlOlMHC6qJDUpwoejFHR1OpWhtNvtPPbYY4wdO5YBAwZ4PMZgMPDEE09w1113uRWm33333cTHx9OtWzeOHTvGsmXLOHz4cCNv1Mny5cv585//7JXP0dbU1yON1Pjx1LX9SE2MoFRrJMhPgcZPjkQCdjvYbHaG9A6hZ6ia528ewI6sUl78LpOcEi01BrPLQwRca2u+8Bp9Mf8Gs5W/3DSIcp0RpVyK2Wpj1y+lqBQyPnjgKiprzcilUl6/cxg1BgvB/grX/D3xxVEiNSo+fnAUYR4SnQQXx4HCCgD6RAU2akjQp1sgu3LK2FdQIQylwKt0KkO5cOFCjhw5wo4dOzzuN5vN3HHHHdhsNt588023fQ8++KDr/wcMGEBycjIjRozgwIEDDBs2rNG5li1b5tbpxNl1vqNRX480MVLDp/NGsyY9nyXrDhGp8eOzh1L4dF8RW0+U8N7MkazcltdInu7TeaOZs3YvgX4K17qbr2nv+Tearazakecmy/folD7ceVVv3tySzeOfHXabs1mpcdz5TgbjkyP5dN5obluZwZlqvdB4bWOOnKwEIDFK02hfnyiHoTxcVNm+gxJcdvj0iXghLasWLVrE+vXr2bZtG7169Wq032w2c9ttt5GXl8dPP/3UoszZsGHDUCgUZGVleTSUKpWqU3QMqV/798T0vqxJz3fJ0708oy+rd+bx+k/ZvHPfcLd94ChhcL5+4eZBbM8q4cjJKq9qtraW9pz/+j82nFTrLfQKVfPmlmxe2+R5zhakJTH3/f0ALJ3Wl6OnqjBbbSjlnX+9tqOQU6wDICa0ceJdXLg/gGsNUyDwFj79Rrcmmcdut7Nw4UK++OILfvrpJ+LjG9f5OY1kVlYWP/74I+Hh4S2e9+eff8ZsNtO9e/eLGruv0ZssmC2OWklncs6YpAiXPF391w33NWTtrnwSIzW8v6uA746dZfXO/Mui9s9gsqAzWjwKDSREBjA2KZI16fke3+uUrgsLULJ2Vz7j+0QyOzUOs6Xz1pF2NGw2O3llDkPZI6SxoexdZyhPVxmorDU12i8QtBU+9SiPHz9Ojx49mj1mwYIFfPTRR3z99dcEBgZy9qxD7zE4OBi1Wo3FYuHWW2/lwIED/O9//8NqtbqOCQsLQ6lUkpOTw4cffsg111xDREQEx48f5/HHH2fo0KGMGTPG65+zrXGuSX516CQbFo8nSC1vJEEXqVFRrnO87hsd2KI8XZXexIp7h1Fa42it1dX7BpvMViw2+OJgERP7RrvmJjFSwxPT+zI2OQKtwdKidF2kRkXmuRpqDGb+8r/j/H3GEMq1RjQdqOl1Z+VUpR6TxYZMKiHCw7qvv9Lx775Ea+TXszWMTmj5B7JAcDF4xaPU6XT88Y9/JDU1laSkJBISEtz+nMTExCCTNR/iW7FiBVVVVaSlpdG9e3fXn1NL9uTJk6xfv56TJ08yZMgQt2PS09MBUCqVbNq0id/85jf07duXRx55hKuvvpoff/yxxet3NOrrkdYYrBwuquSh8YluEnQAASo5UYF+BKnljfY1xCk9N+2f2xj30mZGL9/E29tyMXZRQW+9yUJRhZ53tufyzx+zXXPjXOM9crKKaf/cRoBK1uycOSXrgtRyAlRy+ncPZntWCcP++iMjntvIyq1ddw7bg9xShzfZLcgPmdTzMk2sCL8K2gGv/Nx94IEH2Lp1K/feey/du3e/oLXIhrQUno2Li2vxmJiYGLZu3XrRY+hIOLuCvHPfcMYkRVCuMzE8NozpA7rx86kqZqbE8eHuQv7vN33IL9UxMyWO13/KdqnzeGqvNSs1jm0nSigo0wMOb8m5Xuettlm+RCaV0itMzZYTxbx591DAzsMTkkiMCnBbx92ZXcrs1Dhe3dR4zpzSdeU6E4smJVFQVsusMXHc/e5uoOvPYXuQVyfg0D3Yr8ljeof5s6+gQhhKgVfxyrd3w4YNfPPNN50yrNnRqTVaeG/mSNak5/PG5mwWTkwiLECJWiljcEwo/boHsXBiEjVGCxqljPkTHIIDb2zO5r2ZIwHcsl5np8YzMzWOGW/tanSt1el5LJjouVNIZ0Zft/76/pxRqORSSnUm5oyNx2S18sbm80bxw92FvHXPcEDSqMn1rNQ45qzdy+LJycxPS2Rffjmh/gq0BvdQbVedw/bA6VF6Wp900tvlUda0y5gElydeMZShoaHNCgIILh6FXMqqrTl8e/SsqxSkfunCrNQ4ZqXGc/vKDEq0Bh6f2pd5ExJYOCmJqloz8yYkuIrpA/0U6M1WlnxyyE1+zYmzbVZ4F6sL9FfKsdrtrNiS42YAZ6fG897MkfzusyPcNSqGcUmRSIDpA7oxb0ICFTozEYFKzFYbZoudTx5MwWC2suyLo2z69RwZyya7uoc46apz2B7kltSFXlvwKAGyimuw2uxNhmgFgkvBK4byL3/5C3/6059Yu3Yt/v7+3rjEZYtCJmXtrnxenjHYY7nHa5uysdvhD9f244UNmby6KYtSrZHfDu1JzxA1q3bksW5fIX5yOQaLhZuG9OLl2wYz461djYxlZ2+b5QmDyYLFZuft7bluZR9yqZTvjp3FTy7ln7cP4d0ducikEg4WVvL6T9mEBShdiSMAiycnER8RwMi4cLaeKHELxdanK85he5Fb6vj32CO4aY8yOtAPhUyCwWyjqLyWuIiA9hqe4DKizQzl0KFD3dYis7OziY6OJi4urlE/ygMHDrTVZS87qg0OdZgxSRE8/tnhRvsTIzUM7R3CmKRIVs0KJDxAxd78MnqFOozkS99nuh3/6qYs7NhZOq2vqybQibNtVmfXcXXK+2kNZlQKGXKZlK8PnaJvdCAaPzkPTUhgTFIEZVpHxq/NbufoqSrmpyWyZN0hwNFFpL4RfHnjCfY8OQWDycriycncPKwnN/0rvdG1u8octjd6k5XTlQ793O4hTXuUUqmEniFq8stqOXGuRhhKgVdoM0N50003tdWpBA1wPuiNJitBfgriI/w9lns0VOapH1K8Kj68kbfjZE16PnuenEJsuNolgD47Nb5DCA9cKvXl/fpFB/HhA6PQGi1sWDyeqlozoQHKRso7s1PjefWOoVTVNu5P6aRa76jB3JFdym0jY5AB1w3q3iiU2xXm0Bfk1a1PBqhkBLYgeN4r1N9lKK++8vJpeiBoP9rMUD799NNtdSpBPeo/6F+7Ywgj4sKY3C+aCI2KILXc7UHeUJkHzmdf2rGzcFIy+wsq0RktlGiNbk2Gqw1mflgyAa3R0mXaZjVU3OnTTYPVbmdNej6r0/N4ecZgjpys8jhfNrudeeMTGs0xOMQc4iP88VfK+fN/j5NdrOXBcQnMm5DAgolJXar1mK9wGsoeweoWs+adqj0nzjVeZxcI2gKvxIMSEhIoKytrtL2ysrLZ3pMCd+rXTMqlUkbFh6MzWJiZGovJ6uid6MSpvpOeU0pYgLLRubaeKEEmhY/njuLdmSPYsXQib987nMRIDUFqOUF162jhGhVKubRLlDM4FXcSIzW8c99wnpjWjxX15rMptaKwACXpOaUo5TIennA+Y9V5nh1LJ/LGXcOQSuGFmweyLasEP4UMf6UcpVzapebQV+S2ojTESa+6hJ4T50Tmq8A7eOWbnJ+fj9XauNDaaDRy8uRJb1yyS1JfWm1Y7xBAws6cMq4Z2J3P9xcxMzUOm93OtqwSfv+bfsilUv55+1DCNUq3riCJkRremzmSd7blNSpz+HTeaP535AwWq63LCXrXGMxEavz4dN5o1u0tYmxSpGs+GyoZwXlVHud6JcBdo3qjUkj56tApV1lOQ4H092aOpNZoQSlv/AOltTTVJu1yxVka0r2ZRB4nTo8yt0SH2WpDIRPrwYK2pU2/ievXr3f9//fff09wcLDrtdVqZdOmTR61WgWeqTGcXyO7e1Qsb23NYUDPIN7cnM1rP2Xz710FPHtDfxZMTGLFlhzmf7i/kRG8bWVGkyHZ13/KRiKBueMT0Ki6lpEECPRT8NS1/ViTns8PP5/jxiE9XfNZX62oWm9xW99taAgfmpDIjOG9eGd7XpOi8g/V1ateDPXD62J904HLUDaTyOMkXKPCTyHFYLZRUKYjKcpzj1mB4GJpU0PpTOiRSCTMnDnTbZ9CoSAuLo6XX365LS/ZpQn0UxCkljvCrglhPPPfY8ybMN6V7ZpToqXWbOVfm7ObfID/4dp+jEoI95ghC45EnoUTk73/YXyA1WYjNTGCJesOIZdKCQ1QuAxjuc7kplbU3I8JtULG/ePiGwmnO3E2vb4YDGYLa3YWNOpccjmr+tjtdlfotbnSECdSiSPzNadER+ZZrTCUgjanTWMUNpsNm81G7969KS4udr222WwYjUYyMzO57rrr2vKSXRqrzbEOGalRUa0388LNg6g1WV1eUWu6goxODHck6zSTvVljMGO22LpcxxC1Uo7WaHEZxt255W7rui9syGRWahy//03fZudx06/nqGlBIL3GYPa4T2+yYLLYKNMaMdWbY+d2rdHKfamxrvXi+qxOz0MulXp8f1emVGuixmBBAkQHtexRAsSEinVKgffwyk/VvDzPv7wFF4ZaKefhtET6RmsI8VdysPAUg2NCXF6Rp3W2+lTrLeiNVjdPqiFOQW+t0cL6w6e5Y2RMlwr3Bfmd/+wf7i7g9bscvUdXp+eRU6Jlztq9vHLbELcfIA3JK611O0+jazQhKuAppPr41L7cPjKm0fb6oXKn8IPTwC/4aD/7Cyovm5CsM+M1oi4pqjX0EoZS4EW8Yihfe+01j9slEgl+fn4kJSUxfvz4Tte5wxeoFDLG9Yl0NRBOjta4woUN19kaEqSWo/FTYLJYHbWB9cJ7TmamOATRj56qYmDPYN7cktOlwn16s9U1XwcKK8Fu58Fx8cybkEC5zkRUoB8VtUYCVfIm59Fis2GyWJmVGuem5uPEk6hAU82ge4T4NdsMur7wQ5DaMaa80lrXcZdDSNaV8dqK9UknMWHOEhFhKAVtj1e+aa+88golJSXU1tYSGhqK3W6nsrISf39/NBoNxcXFJCQksHnzZmJiYrwxhC6FSi5zNRB+YUMmnz+UglQCq9Pzm+0KMjMljj155bzy4wnevnc4Nru9SUH0Eq2BjGWTee7b411KxFutkDE/LRGpxCFsviO7lJhQfw4UVhAfEUBkoAqZVIrZamvSEM5MieNcjZGH05KQNBBIb8rD89QM2hkqb2q9eO2ufDKWTeaquDCyS7TcOzqWjNzyRkIRXV1o/UIyXp04Pcr8sloMZit+XdjjFrQ/XjGUzz//PG+//TbvvvsuiYmObMDs7GzmzZvH3LlzGTNmDHfccQePPvoon3/+uTeG0GUwm61UN1gfkwDTBnRn3oREqvVmxiVHugxBww4XzlDebSszWDqtLxnLJqM3WesE0S08/ulhV6ivXGfCTy53iXh3hZIFq82GXCJhzpg4FkxMwmi2oJLLiIsI4M0t2cz7wJEpPDgmmA/uH+XREDq7g/xjYyYv3jyI+WmJ6FoQZqifseykVaFyk5XX7hxCiL8Si83Gixt+9XhcVxZad4qh92hFDaWTUH8FAUoZOpOV3BId/XsEeWt4gssQrzz1/vCHP/Cf//zHZSQBkpKS+Pvf/84tt9xCbm4uL730Erfccos3Lt9l0JssrNtbxF2jYl1hwSem92XVzjw3oW6Nn5x54xPY8+QU1wN8c2ax23pXTomWue/vJyxAyY+PjWfTL+cYlxzhCEfiCPNFBqqIClIS6KfoMiULaqWcMq0RlXOtSyLhTLWBLw6ccvMeDxdV8ei6Q/x9xmBXWDYsQMn+ggrufnc3+wsqAFg2/QoeW3eY6wZ359bhvZr84RDoYU2zNaFytVLG1Be3YalL5Hp0al/Sc8rdBOu7utC6Uwy9ezPttRoikUjoFepP5rkasoprhKEUtCleqcw9c+YMFouHtR6LhbNnzwLQo0cPamrEekJzyKRS/vHjCYprDMxKjWuU5VquM5F5rob9BRXMfX8/v/nnVoL8FFhtdv7v88MeW2dZbDb8FDJe+O4XFPUSJWamxJFbomPF3SMwWawuRSDnA925PvbmlpxOl3kZ6KdAIZdislhRyWVEBao8lnocKKxEKZcy/dVt3L9mH2Nf3My9q/a4jGSQWk5YgJLsEi1//yETubTpr48zY7k+zpKUWalxHt9TvwOJc75X78xj6bS+bsc510S7ImarjcIyx5rshXiUAL3qhAcyz7buufLVwVNc9/p2fvvmTraeKLmwgQouK7xiKCdOnMi8efM4ePCga9vBgweZP38+kyZNAuDo0aNCfKAFnOG7P371Mw+nJbFkSnKzobuCMj0VehOnK2uZmRLn8ZhZqY6HcUGZntIaE/ER/iyalMSs1DgWfnSQDzIKUMplTdYMOksWOhM2u40avaMcQ2e0UNrEHDoN2U1DepF5rqbR2mBDQ9ZUSQicz1hePDmZILXD6wxSyzlZoefhtCQWTUpy2+68By9+597dZe2ufMYmRxAW4PBEF09O5uG0xE4XAm8tReW1WGx2lDIpoR6kGJsjxiVl17Lm6yd7Clmy7hDHTlVzsLCSOWv2sj1LGEuBZ7zybVu1ahX33nsvw4cPd7XYslgsTJ48mVWrVgGg0WiE+EALOMN3mzOL+b/Pj7D85gEoZbLmyxRUCpRSKXPHOzR1GybvzEqN49a3drlCre/fP4rtWaWuMO3GX85y64heLdYMdqb1MT+FHKlEisVmQy6VolJIm5zDNzZns25uCkCTa77QuvBn/abPzgzb7VklzP/gAPemxLJoUjKlWiMRGlWjULkT57rlT49PwF8p7/JC63muRB4/pC2IoTfEKWX3y5nqZo87V23gmf/+DMDV/aOp0pvZnVfO0s+P8GPdPAsE9fHKv4hu3bqxceNGfv31V06cOIHdbqdfv3707Xs+hDRx4kRvXLpLUb8kYWd2KYeLqujbLbDZ7MztWSW8+F0mz97Qn3kTElg0KZkagxmNn5z9BRXcWtegedGkJPbklfPIJwfdPKeLrRns6FhtjpBeuEZFmdbYZKZwWp8osotrGBwTwp4np6A1WPBXydx+TEDLfSbrl4c415KXXdOXQ0WVbM4sRmey0K+bhiXrDrNm9kj+7/PDzc631W5DKZd2+b6WzkSeCykNcRIXEYAEOFWpp6TGSGSg5x9zr/+UhcFsIzlKw8zUOCxWO7klhzldZeDTvUXMGiMiXQJ3vPrTqV+/fvTr18+bl+jSKOUy5oyJZ/qA7sSG+1OjNxOkkvNwmqM0YE36eW9xVmocs1LjXaUeu/PLGREXhtlqRaOSU1pjZEhMCE9e04+TFXquH9yDGW/tahRedNYMNmVIOmsjYrVSTkJEABa7jSC/gCY97vlpiRwsrKCgTMdVcWEE+cl5b2c+b27NvqCkJk/lIa9tyuG9mSO4aUgPeoSokUml/Hq2utkSn1kpcZgsVpTyrutF1seVyHMBpSFO/JVyeoSoOVWp53BRJVP6Rzc65mRFLZ/sKQLgjqt6I5VIUMolXDe4O6t35rN2VwH3pcQhlV6YNyvo2njFUFqtVtasWcOmTZtcUnb1+emnn7xx2U5HS+UXtUYLdmB3XhlnqvSMTginymAmQCXjwXEJLJyYTLXBTJCfAmNdosoHD1xFqL8Sq90x52836BjiNAbfHTvrMdlnZkoch4sqXQknDQ1JZ8t6rY9SIcNqsmOz25FKHELmiyYlU64zEaSWsz2rlNvf3kVanygempCATCJBqZBxX2osc8bGX1CfSWfnkpdnOOTxKmvNhGuUju4WdUlUOqOF2anxvLAhk0/njQY8G+4agxmrzX5J3Uk6Cy6P8gITeZwkRWk4VannUBOG8qPdhVhsdvp3D6J/9/OZseOTI1m3t4i8Uh1bT5QwsV/UxX0AQZfEK4Zy8eLFrFmzhmuvvZYBAwa02Hj1cqQ15RcKuZRP9xXx2yE9OVNtAMBitSOVSFmbkccvp6sY2CuEscmRxEcEoDWYiQhQYbbZkCJxZa46qd+U+IGxCSyalNTowXxfSqxrHe7Ja/qxaNLULtWIWF3vh4jeZOG9HXl8efCUWyPrw0VVgEP9RgmuHy/OddnWeNOBfgr+Mz+F93bmuXUjmZ0azwPj4rnjnQy0BiufPZSCHTtz1u5lQVoSGcsmU623EBagJCO3jHV7i7hleE+UMhllWmOnrWdtLU6xgR4XUBpSn6QoDVtPlHCoqLLRPqPFyrq9Dm9y2pXd3Pb5KWSM7xPJd8fO8sXBU8JQCtzwyrftk08+4dNPP+Waa67xxuk7PU3JmzWUJ1PIpFzRPRCZTMK3R8+wdlc+L88YzJGTVa4w3fojZ4FfCQtQsmRKsqu2z2SxNdvt4uG0JIb1DmF+muPBHBqgwGy1s+yLoy5P81BRJb3D/IkN8++S62MyqdQVUm3IparfGC1WVu/MbyRV5/yhsiAtibnv72fGW7tYOq0vD6clUV2XRZtTouXhD09woLCCILWcO6/qzdRXtlBQpu8Snn1T1BjMlNQYgUvzKAEOF1Vis9ndQqjfHTtLWV197LDY0EbvHZMYznfHzrLpl3NC3UfghleefEqlkqSktpHYWr58OSNHjiQwMJCoqChuuukmMjPdU+jtdjvPPPMMPXr0QK1Wk5aWxs8//+x2jNFoZNGiRURERBAQEMANN9zgsybSntavABIiAygs17nKL/RGC1f2CObduj6Icqm0yS4X5TqTW22fJ2UYJ9V6C2U6Iy9syGTsi5tZ8NF+rDY7OqOFO0fGuJUrPPTBAf7VCWsnW0NLc9Rc+UdLqJopsalf8uEUgvjNP7cS6Cfnutd3cPe7uzlQWOEaR6nWiJ9c7nrdWetZW8KZ8RqsVly0xxwT6o9aIaPGaOHn0+7Zr+/vKgBgUr8oZB7WIBMjNURolNSarGzJFKUigvN4xVA+/vjjvPrqq9jt9ks+19atW1mwYAEZGRls3LgRi8XC1VdfjU6ncx3z0ksv8Y9//IM33niDvXv30q1bN6ZOneomaLBkyRK+/PJLPvnkE3bs2IFWq+W6667DarVe8hgvlIYP6Il9o9ixdCLfLR7PU9f0B0BrMKNSylDIzhvV1kigOR/uztISTzgL553hxv0Fla51uhFxYWQsm8yAnsGuLM/OWDvZGlqao+aye51tskrr2l9V1ZpddZrVtWaqWzDC5ToTkfVKbArK9JRpTSgazHOQWk6Iv4ISrdFte1e8J5e6Pgkgk0q4sk6VZ1u9usijJ6vYV1CBTCJhYl/PYVWJRMKo+HAANhw7c9FjEHQ9vBJ63bFjB5s3b2bDhg1ceeWVrlpKJ1988UWrz/Xdd9+5vV69ejVRUVHs37+f8ePHY7fb+ec//8lTTz3FzTffDMDatWuJjo7mo48+Yt68eVRVVbFq1Sref/99pkyZAsAHH3xATEwMP/74I7/5zW8u8RNfGPXlzSb2jWLFPcN4c0u2Wxbrp3NT2JNfzsS+Ua4Hbmsk0AL9FJjMVowtiHwfKKh0e1+ERsWunFL6dQti8bpD7Mkrd+3vjLWTrcGpnuOpq0pz2b2e1pdnpsQxe0w83x87w7WDejRbYhMbrnYk9tRLcqv/46U+ToGIhtnJXfGeuLqGXETGa30Gx4Swr6CC746ddYXP39meC8DoxHDCmhEyGBEbyjdHz7D1RAlWm92j5ym4/PDKT9KQkBB++9vfMmHCBCIiIggODnb7uxSqqhyJFmFhYYCj9+XZs2e5+uqrXceoVComTJhAeno6APv378dsNrsd06NHDwYMGOA6piFGo5Hq6mq3v7ZAb7Jgtp6XN/vLTVe62i45H6pyqZTe4f6s2pHrMoxwXjmmKdWd2anxGMxWckt1fL7/JDNT4hopwCyenMSCiUkkRgawY+lE3r53OI9N7YPJYuO9nXkE+yvILnbPhvVF7aS35r8+TannNKd+ozdZPMr7vf5TNmvT87h+cA90De6xk8RIDe/cN5zvl0ygRm/hf4vGuho2z06Np6Cs1iVN5xzHnDHxjdR6nPs7Yz1rc5xP5Ll4jxLgqvgwZBIJR09VkXm2hsKyWr456vAQrx3Yvdn3JkcH4q+UUVlr5vDJyksah6Dr4BWPcvXq1d44LXa7nccee4yxY8cyYMAAAJd2bHS0eyp4dHQ0BQUFrmOUSiWhoaGNjnG+vyHLly/nz3/+c5uO3+mJbDlRzHszRxKslhMV6OdqoeXEGWItKNM3qrFrqpRgVmocs8fEoZRLiA3357a3d/FBRiFLp/Vl97IpaI0WgtUKckq03P72Lg4XVbne93BaEjUGM+/cN5KSGiOh/ko3D8YXtZPemH9PqBQy5k1IYMHEpFZl9za1vgyOtmfzJiRy7Ws7iAlT88H9o+q25xGp8eOzh1JYk+6eBTszJY6vFqQil0qwYWffU+ezjI0WK18cONVkGU9uiZb4iIAuk9RzPvR6aR5lkJ+C4XGh7Mkr55n1P2O127Ha7AzqGUx8RECz75VJJQzsGczuvHK2ZJYwrHfjpB/B5YfXcswtFgtbtmwhJyeHu+66i8DAQE6fPk1QUBAajeaizrlw4UKOHDnCjh07Gu1rWIJit9tbLEtp7phly5bx2GOPuV5XV1dfUu/Mhpmut63M4OUZg6jWN17Lqh9ibWgYc0q0zFm7lxdvHsSiSclU6c0E+ckprjHiJ5dRa7Jis9up1luo1p/vGPKvu4ZysLCSl74/751U6y28tikbux0G9gzmd58fZlZqHJ89lOISLvBVhmVbz39zXEj5R2vXHg8XVXHTv9L5111DWTAxCb3Zyns78jw2bJZKJDwwLh7sdpDYeea/x9iZXe4ytuU6k8da2P355ezOK2fGiKa7mHQWbDa7m3zdpXLz0J7syy9nV24ZAAqZhHtTYlv13sExIezOK2drZjGPTe1zyWMRdH688u0qKChg2rRpFBYWYjQamTp1KoGBgbz00ksYDAbeeuutCz7nokWLWL9+Pdu2baNXr16u7d26Oeqhzp49S/fu58MqxcXFLi+zW7dumEwmKioq3LzK4uJiUlNTPV5PpVKhUrXd+k9DTySnRMuf/3ecdXNTGB4bQl5prcuLqx9iff2nbLdekuU6ExEaFSU1Rub+ex9v3TuMWpOVT/cVsXZXPhEaFd88MpbYcDUFZXrX9QbHhDDvg/0ex+ZsGCyXSnltUzYSJPxnfopPtUXbev7biqbWHsMClMRH+LutM+aUaLnt7V1kLJuMSt6cJ5rH/LRELFYbZToT/z3siHKU60xuxrZSb0KjkmOz2Xns04MkRgYye0x8l0jqOVttQG+2IpNIiAq69PseGx7AwolJ/HtXAUq5lNlj4l3NnVticK8QAI6cqqJMa+xS68CCi8Mr37DFixczYsQIKioqUKvPh1F++9vfsmnTpgs6l91uZ+HChXzxxRf89NNPjTqOxMfHu7RlnZhMJrZu3eoygk5x9vrHnDlzhmPHjjVpKNua+pmuiZEaPnrgKt6fcxUA/7prmGu9MDHS4W2/sCGTueMTeGRyEiVaA3Pf38/0V7ex6Zdz1BotzFq9lzNVBvQmx9rit0fP8urtQ/lm0Thq9Ba+XzLBdb7WZMvWz8JcnZ6Hqk4yrbN7Km2N3mx1WyN2rjvuWDqRN+4ahkwq4YWbB7ruo8OzN7dq/hUyKYF+crdkE6exBXj+m1/5d3oBJqudv88YwsCewXx96BR6U/tnbrc1WXXr4t2C/drM8KckRrDinuG8esdQhsSEtPp9YQFKYsP8sdvdM2cFly9ey3rduXMnSqV7dllsbCynTp26oHMtWLCAjz76iK+//prAwEDXmmJwcDBqtRqJRMKSJUt4/vnnSU5OJjk5meeffx5/f3/uuusu17H3338/jz/+OOHh4YSFhfG73/2OgQMHurJgvY0z0zVS48d/HkpBJpOwcluu2zrjzJQ4Pp03mjlr9zI+ORKlTMrNQ3uxcGIyFbUmQv2VbM4sZkZd2UZCZAABKjm5pVrWLxzD29tyWbzuoNu65WcPpfDA2n0tZsvW94Sq9RbKa00EKGWXhWxaazGarfjVeSfgeIi+N3Mka9LzG607fjpvNLetzKBEayBIrUCCpNn5j6j7kSKRSJiQHMmXh85/T6r1Fqr0ZtL6RTA+OcoVFndm2qqVnX+N0plA1vMiFXnamsExIRSU17Ils4TfDu3V8hsEXRqvGEqbzeaxPvHkyZMEBgZe0LlWrFgBQFpamtv21atXM2vWLAB+//vfo9frefjhh6moqGDUqFH88MMPbtd65ZVXkMvl3Hbbbej1eiZPnsyaNWuQydrnIeMsRRjQM4gz1Qa+PXrGTQTbuV4VoJTz8QOjyMgr56EPDvC3GYPYcPQM+wsreGJ6P7cuE4o6ndjnfzuIldtyGq1/OcOoq2eNxGa3N1kKUb/PItQZTn8Fsi4Q0msrnGvMA3oGcbJCz6j4cB6akMjb23I93keApdP6cvRUFTuySlErZc3O/5bMYn73+WFmp8bz9A39OXKqypXE48hwlTPtyu48+9/jru3O69w/Nh7sMpSdOKnHaSgvVrqurRkSE8L6w6fZJspEBIDE3haqAA24/fbbCQ4O5u233yYwMJAjR44QGRnJjTfeSO/evb2WFetNqqurCQ4OpqqqiqCgoJbf4AGD2YoEQAIjn/vRzbtIjNTwxHSHgHatydHxo9ZowU8pQy6VusTPC8t1zHv/ADklWsIClGz7vzTkMilXPf9jk97K3ienYLbakMukrNiS02SfRecDePHkZKYP6EbvcP8OE3pti/m/FEwWGyOe20ikxo9P543m60OnuGd0HCOe29jkvO97aipGk4XDp6oYHhsKEglvtWL+F01KYmDPYOa+v9/t9bHTVcwYHsO4lzY3us5Huwu4bWRMh7lfF8ptb+1iT345CycmMSYpwtfDwWKzMfff+9GbrXy1YMwFhW4FXQ+vfKteeeUVJk6cSP/+/TEYDNx1111kZWURERHBxx9/7I1LdniMZis7s0sZmxRRt27lbiQ/nTe6UQjPKaB95zvprnKO2anxfL0glbtX7aaoXI9SLuVctbHJ9a9IjR924O1tuWzNKmkkvF1YrmPO2r3klGjdMiql0Kk9lLbGucZcrddy28oM/n7rwBYzYKv0ZgL95OzOK+fhjw4QqfHjyWv6sefJKeiMFvyVcrZllTRq2Lx2Vz67l00hNlzNDYN7ugxpidbAwonJJEQGuEopqvUWKvUm/nvkNHeNal1WZ0ckq9ihotVRPEq5VMrAnsHsyS9na2aJMJSXOV4xlD169ODQoUN8/PHHHDhwAJvNxv3338/dd9/tltxzueAM26UmhmO22gj0k7utVz0xvS9r0vMbhfAaCmjXF07/8P5RaI0WagyWZtcfn7q2Hyu25PBa3bmd5SKRGhU3DunBDUN6sG5uCjqjBY2fnN255RhMVkKaUS+5HAlskO2aGKnBTylvdt1RrZDy5pZs132t1mu5f+0+l4B9TKiaee83zkSu1luoNVn4bsl4tp1wbxhdYzAzLinCZSiD1HICVQrySms7rVJPmdZIRa0ZCZcuNtCWDI4JYU9+OVtOFLN4SrKvhyPwIV5bhFKr1cyZM4c33niDN998kwceeOCyNJLgKA356tBJruwRxGf7T2K02Fz9HsMClE0KncN5Ae2EyAD6RgcSFqBkdXoeMqmUjNwyAv0UZOSWeVTrCQtQkpoY0agsoVxnIvNcDW9tyyEq0A+jyYpGJWP6q9tZ+PEB/FWdM3znTZxrzAB/ubE/EqmEnBJtkypJD41PRCGXNhKTgPMC9qMSPMupOVV37npnN/Pe3++2VhmgkrNkSh9XVu2s1DhMFhsxYepOq9TjXJ+MDFS5sq07AoN7OVTEDhdVUtFAQlBwedFmT8T169e3+tgbbrihrS7bKag1Wvj7rYNRymXEhvvzxQGHvJzdDuk5pS2WDuhNVv63cAxVegvB/gp2ZJVSa7IwsV80tWYLheW1HhstL5mShNZoafbcNQYzS/9zlGdu6I9CKvWJCk9nwCl3p1bIGNQrhJXbcknPKePdmSOAxipJd43qTUlN0yFxZ/g9UqNqpOM6MyUOndFCrdHaaPu2EyUcPVXFk9f041BRJTNT4vji4ElevHlQp71v2SUdK5HHSbhGRUyomqIKPduzS7lhcA9fD0ngI9rMUN50002tOk4ikfikY4cv8VPKyCnRkRCpYXRCOEvWHeKDjEL+fMOVLJrkCOk0G8JTylizM5/bR8Zw5zsZjE+OZHyfSNbszGfO2HhuGNyTrw+dYkhMCA+nTaHGaCZErcRgsrQYHnRIpTnWK28c0oM5Y+NFH74mUClkzBwTi0wiZWjvEOanJVJVa2be+AQWTkqitMZEaIACm83Ooo8P8q+7h7VYknPjkB68tS2nkbi6v1KGwWJxHVs/6adEa2DRpKlIJLhe3/3UVJTyzmckAbLOdazSkPoMjgmhqELP1swSYSgvY9rsm2Wz2Vr1d7kZSb3Jwpqd+WTklhPkp3B5jzklWh755CAWm40DheVNhvCcpRsvfZ/JmvR8FqQl8fpP2azYksOtw3tSpTcz461d9AxRk5roaBH03bGzTH1lC4Oe3ciO7BKXt+np3DklWp66pj82m52J/aLapDVaV0atkGOz2zlYWMno5ZtIeeEnUl/8iVXb8whQybjn3T1U6s2crjSwM7u0ybmfnRpPYbmOpCgNGcsms2PpRFd7s/8ePo3BYmPD4vFu251rldV6C8U1Bl7ckOl6fSm9M32NM7TcM7QDGso6lZ6tJ0qw2cR343LFp4tRAwcO5Ntvv/WahmdHwGaH+1Jj0Ros2IHQAAWDY4I5XFRFuc7EnrwyKmvNzPYQOq3vRYQFKEnPKWV+WiJDe4dQWK4jSO1Y33Iq96yeNZIDhRVuSUHPffOrSyu2fhsvp+fyzPpj/H3GEL45cpprBnbvMgLbbYXeZEFWV68a6KfAZLHyTl0jbSfVegsvfZ+J3mxlwcREwgNUqBQSTlboeTgtCbvd/b7OTo1nzth47DY7Xx86zXPfHsdPLsdgsXDTkF4OcXuZhGmvbsNPLnf1DXXSUCCis3cSOXHOkfHaET3Kvt0CUcmllGqNHD9TzYCel9b9SNA58UodZWsJDAzk8OHDJCQk+GoIreZi6viMZitvNqibc5Z8PPLxIe4aFcPYpEhXxmmFzkS4RkVxjYGwACXbs0r5ZE8Rd42KYUxSBDqDo65SJZdRrTcTpFZgNFt5d0ce72cUsGPpREYv39Qo1JcYqeHJa/oxLjmS4hoD4QEqSrVGIjRKSrUmooP8MFmtaFQd92HrizrKhvcvNlzN90smNFuzuufJKZjMNvyUMs5VG1ixJYe0vpGMTY6gQmcmIlCJ2WpHazATrFZSqjUSHeRHjcGMxk9OmdbE9z+fpVeomiMnq9wMspOGdZaPTE5i7rgENJ3QWJZpjQz/649IgFUzR3ZIlaG//5DJ/oIKHp/ah0WTRfbr5YhIb/QSDbuFwPmSj7AAJW/ePZQ3t+Q0qpucn5bIS9/9yo7sMkL9la76yq8OneLlGUMaNXh+bGof5qclEq5RNpkUlFPiKEtIf2Ii72zLY/HkJJeIev1r+6JLSEfF0/3zk8tbTNDRGS0s/c9R9uQ7MpEfv7oPt63M4K2tubw3awSrtuc1WpNcMDEJf6WMq1/Zilwq49N5o1l/+LRLKq9hotCs1HhmvLXLrU1aZ11X/uWMw5uMDvLrkEYSYFjvUPYXVPDdz2eFobxMEYbSSzTXtzAmTM1bWxtLnzkfyvPTklh/+Awv3jLQVV+5Y+lEV4Pn+u95Zv1xAG4Z2guVQtZs8kiIv5KJ/SJY3UTNJsC8CQmdVt2lLfF0/+q3P2tqjv2Vcg4UVjSSspNIYNWOxiFbZ5utueMTuGNkb178LtPVLUatkDJnTDyLJiXXhX7laI0O1aZ180YTVBcK7qxGEuD4GUcj9tjw1nX28AUjYkN5dwf8fLqawrJaenfgsQq8Q+dMk+sE1DSh2hIWoGR0QnizLZcSIzU8c31/V31lQmSAxwbPTv6x8QQqhYz9BU0nBc1OjedkuZ6r4sObrNlcnZ7XJVo2tQWe7l+5zsT+ggpXPWVDZqbEsT2rxG090VkH21yt7Or0PBQyh1Gs3y1m2qvb+O+RU9jsdtRyKfev3cva9HzsdjsRGhVKubRThlvr4/QoY8Obb6jsS4LUCvp3d4T7v/v5jI9HI/AFwnXwEg2VXJy0puVVZa2Job1DqTVZqdZbSIkPp8pDg+f676k2mFm1I48XbxkENE4Kmp+WCNjRGq0t1lV2RnWXtqap+/fj8XMsu+YKgCY1W+vjUNmxIpNKWpz346ereXBcAgsnJru0fY0WK3a7HZPVzqqZV/msP6i3OH66GujYHiXAVfFh/Hy6mg3HzjJ3fKKvhyNoZ4T74CXqK7nUp0RrJDJQRZDa828UZ4j0lY0n8Fc6QqlZJVqC1Ypm3xPkpyCruIbbVmYwsGewW8nBkJgQJDgycJ2Nh5s6T2fOnmxLmrp/27NLkUokPDgu3jXH+56aypCYkEaarVCnpqOU4yeXtjjvw+JC+PH4OTePMdBPgVopJyRAiVIu7VJhcYPZ6hIbiA3r2IZyZFwYEuBgYSVnqvQtHi/oWrS5oTSbzUycOJETJ060eOzKlSuJjo5u6yF0CJxKLosnJ7sekEFqOfeOjsVk8fwQhvO1jXeN6s3O7FJmpsSRW6KjuMbQZE3erFSHksuNQ3qSU6Jl7vv7GfviZu5fs4+xL27mUFElO7JLkUulTRoAwKXKI2j6/l0/qAdGs5WTFXrW7Mzn/jX7SM8p4VBRZSMjCefDsflltc3Ou8lqpVJn5tFPD/PmlhxqTZ69z67Ez6ersdrsBDVoVt0RCfVX0ifa0bbvf4dF+PVyo81/nioUCo4dO4ZE0nL/Nmdj5a6KSiFj3oQEFkxMcpV8lGlNbDtRzPy0RGx2u8e6yTlr9/Lxg6O5d9Ue3r53OADLN/zCyzOGAO71kM6sxx1ZpW41e+U6ExabzS0k+Om8EMI1Kh5Oc4SOGpatiKxXd+rfv3KdiWC1Ar3ZyvINv/L09f25NyUWvdnKKz9m8d7MkUDjkPfsMfH89/BpRiWEMXtMHHbsbvdvdmo8s8fEoTVYCNeoXFq+CyYm+fjTe59DRZUAJEUFtup54WvGJEWQea6GLw+e4sHxHb+kTdB2eKWO8vHHH0ehUPDCCy+09al9xqXU8ZksNu58Zxd5pbWE+iv5z/wUzFY7BwsrGJscQbnO5KqbfOk7h9rKjqUTuX/NPiw2O0un9WVscgQWiw2JVOKoo6xbwzKYHVmPFpsNuVTK9qwSUhLDG52zRGtgXz2Zs1qTBXm9QnqLzdZiWK9h8X1r3tNW+LIfpcFkwWq3s25vEXdc1ZvRyzcxvHcYz/92AEFqBQqZlFqjBYVcikJ2fn70JgtqpRyT1caxU1Ws3JrLnVfFOGoqa82E+iswmG08s/4YL9wyiMpaE7NX7yPzXA37/zCly68VL/zoAP87cobbR8Rw09Cevh5Oi2gNFh76cD9Wm53vl4ynb7cLa0Iv6Lx45SlnMpl499132bhxIyNGjCAgwD2j7R//+Ic3LtthsdpsjE2KZH9BFuU6E3PW7OPjuaP43eeHkUulRGpUbuor9ZVXynUm5r6/n+d/O4CbhvZkzc58vvv5DN2D1OhMFq6+shu3j3A07NWbLBw5WcX/fX6k0TkXT052E812Gjjnw7glMW2j2cpbW3MvSy9UKpVy+8p0FqQlYbPZmZ0az6ubskh54ScSIgNYec8weoaoWZOez7p9hfjJ5agUEm4Z1ovrB/Vg9tq9jE+O5O8zBnHbygye+OIokRoVBouFDYvH069bELtyykhJDKdEa7xs1orPe5Qa3w6klWj85AyNCWFfQQVfHDzJsulX+HpIgnbCK4by2LFjDBs2DKDRWmVnCLG0NWqlnPlpia6w24HCCpcO6Gubsht1j5iVGseunDLKdSZXePXaQT1YsSXHVYd3BEe24I7sMsq0Jlf9ozfCqs2JJ0DXr72sMZg5XFTF3Pf3Mzw2lHdnjnCFzXNLdJRqTfzvyFm3+QE4cvI4pVqTq58oOGoq576/n3KdiUWTkigoq+X2kTGsP3waq81Ouc7EI5OTMFmsnVbkvDWU1Bg5WaFHAiREdtzSkIaMS45kX0EFXx88ze9/0w+Z9PJ7nl2O+FTCrjPRFqE/rdGMXCqlXGciQqPCZrezwoPE3UMTEpEApTojYQFKbDY7MqmUUcublk671LBqc5gsNkY8t7FV1/YWvgy9Nvz8iZEanrr2CsYmRVCqNRCh8Wt2fjKWTWbsi5ux2GxkLJvM9Fe3cdOQXsxPS+RgYQW/nq3hhsE9mLN2L2l9opg9Jg5/pbxLG8rvjp3hoQ8OEBOq5qVbB/t6OK3GbLUx/4P96ExWPnxgFGOSInw9JEE74NVvYnZ2Nt9//z16vSOd+nK3yRqVApvdTqRGRY3BzPwPDnDnVTHse2oqO5ZOZPeyKQzuFcx1r+8g9cWfXFmrZpsdnanlvpJOnA/Z8LoSg0v19poST/B07a5Iw0zhnBItL274lZIaA39ef5xz1YZm56dcZyJSo3L1Fv3x0TQeHB9Pjd7MsNhQZozohVQi4ZMHU3hwXDz3r93X5ed0Z3YZAFd0b98fPZeKQiZldIKjS89/Dpz08WgE7YVX4mVlZWXcdtttbN68GYlEQlZWFgkJCTzwwAOEhITw8ssve+OyHZaGSTBmm41APwX7C8u55rUd7Fw6icWfHCSvtNYtDOsMvfrVdX1vqa+kt5Jtmiq+r3/trozaQ0jbYHFkqf56rrpFWTvnerNzrjLyyvjnj1loDRZXB5DFk5NISYwgv1RHVnFNl5/TnTmlAJ2yG8f4PpFs+rWYb4+e4enrryRY3bXvlcBLHuWjjz6KQqGgsLAQf//zhcS333473333nTcu2WFxJsGMeG4jw//6IyOe28jKrbnY7HYen9qXcp2JHdklpCZGNFqrBEeN3amKWg6frGi2Z6XJ6vk6RvOl9/8UtZeOUpEHx8ez58kp7Fg6kQ2Lx1OqNXLjkJ6ueldPOPuJlutMrprKPXnlvH3vcCx1a5LlOhMvbzxBXHgAb23N7fJzerbKQG6JDokElzRcZyI5SkPPEDUGs431h075ejiCdsArHuUPP/zA999/T69evdy2JycnU1BQ4I1LdkhaSoJ5cHw85ToTb2zO9liH9+iUPswY0QulzBFGHRITilQiaSSd9tCERD7ff9JryTaePKrLKesVHPfynW2OdmbOjOJQfyX/eSiF8loT45IjPd4bZ13soklJrnpWpzCBM7EHHPerVGvkpqE9uH1ETJee053ZDm8yISKAAFXnSwKTSCRM6hfF+xkFfLyniHtGx16WSYqXE175V6rT6dw8SSelpaWoVF27Nqw+zXUQcRaVzx2fwLwJCVTrzcwbn8DCSUmU1pgIC1Bgs8Pb286XZAyOCeaFmwexYGISJTVGQgMUZOSUIZdKeHljZrPXuVTqF9/XD+125Qd6fZz30rnmCA61Fjvw1aFTbD1RwoK0JDKWTabGYCHUX4nJakNrMPPxg6PZnlXqZiTX7sonY9lkwgKUrhB7hEbFrcN7dfk53Xj8HAADe4b4diCXwLjkCD7eU8jxM9UcPVXFoF4hvh6SwIt4JfQ6fvx4/v3vf7teSyQSbDYbf/vb35g4ceIFnWvbtm1cf/319OjRA4lEwldffeW2XyKRePz729/+5jomLS2t0f477rjjkj5ja2hNEozNbmfNznxmvreX8X/bQsryn5izZi8ZueWs3JbDq5uyXOc4XFTF9Fe38+72XArKdEx/dRsnK/XUGFuf6HMptHWSUGfC0718Ynpf3tuZx2ubsl3lI2Nf3Mx9q/bw5cGT6E0WZr63l7Evbmbe+/vdJO7qJ/nA+RB2V59TndHC5sxiwCE03lkJ9FMwqm78H+8p8vFoBN7GK4byb3/7GytXrmT69OmYTCZ+//vfM2DAALZt28aLL754QefS6XQMHjyYN954w+P+M2fOuP299957SCQSbrnlFrfjHnzwQbfjVq5cedGfr7UEtkKAXCWXccdVvbn6ymgsNhvlOhMGi4WUxPAm22q9tS2HEXFhbHw0jVuH9xJC5+1Aw3sZFqD02DqrXGci81wNb27JJlit5Ey13uPaszPJx2CxsHhyMg+nJXZ5IwmwJbMEo8VGVKCKuA7eMaQlJvWLAmD9oVNdPkv5cscr38z+/ftz5MgRVqxYgUwmQ6fTcfPNN7NgwQK6d+9+QeeaPn0606dPb3J/t27d3F5//fXXTJw4kYQEdy1Gf3//Rsd6G2cSTMNCdDjvQUiA/x4+7er4Ua4zEa5RUt1CWy1nOywlUvQmS4vXaUl5R9A8De9lS+3SCsr01JoszEyJc2vW7GR2ajxmi52Nj6ZdViHs/x4+DcCo+LBOv653RfcgeoT4cbrSwCd7ioT+axfGaz9hu3Xrxp///Gdvnd4j586d45tvvmHt2rWN9n344Yd88MEHREdHM336dJ5++mkCA5vWajQajRiNRtfr6urqCx5Pa5Ngbh8Zw5tbsnnu2+Mu+bNP56W2uiSjKybbtMX8tyUN57hEa2yxLMRfKWdu3cOzfpLW7NR45oyJY8uJYqb2j74sPEmA05V6Nv7iWJ8cmxzp49FcOhKJhOsG9uDt7bms2pHHzNS4Li0ScTnjtW9oRUUFq1at4pdffkEikXDFFVcwe/ZswsK8ty6xdu1aAgMDufnmm92233333cTHx9OtWzeOHTvGsmXLOHz4MBs3bmzyXMuXL28TQ9+aJBipRMLohHAWTExCa7AQWNew90K8xK6WbNNW89+WNJxju50W75FMKmHe+AQWTUp23Red0YJSLkWjkiOXXj4P1o92F2K12bmieyC9O3j/ydYyNjmCT/cXcbbawNeHTjFjRIyvhyTwAl6RsNu6dSs33ngjQUFBjBgxAoD9+/dTWVnJ+vXrmTBhwkWdVyKR8OWXX3LTTTd53N+vXz+mTp3K66+/3ux59u/fz4gRI9i/f79Lk7YhnjyamJgYr0ioVepMru4Um349R15pLTFhaj64fxTvbs/rMl7ihdCe838pGM1W3vQgQ+i8R2VaIw/+ez+rZ41gw7GzrNiaTUGZ3lU+smBiEn5d/F4CVNaamPC3LVTpzSyZksyo+HBfD6nNWH/4NB/vKSQhIoDvHx2PQnb5/Pi5XPCKoRwwYACpqamuNUoAq9XKww8/zM6dOzl27NhFnbc5Q7l9+3bGjx/PoUOHGDy4ee1Iu92OSqXi/fff5/bbb2/Vtb2pNaozWnhra06jtazESA1v3DWUxEiNT1pbdSR8qfXaEs1p65osNnZkl3CwsNLjWuXiycldXlQe4M///ZnVO/OJCVWz/OZBXUpMvNZkYcm6Q9QYLPzxuv7cP9azOIeg8+KVnz45OTk8/vjjLiMJIJPJeOyxx8jJyfHGJVm1ahXDhw9v0UgC/Pzzz5jN5gtOLPIWCpm0UfYkODRFb397F8BlWZLRWWiubMZqs5Ga2Dg71snq9LwuH37dnVvGv3c5hEbuGR3bpYwkOO7/7SMdIdd/bjxBUXmtj0ckaGu88g0dNmwYv/zyS6Ptv/zyC0OGDLmgc2m1Wg4dOsShQ4cAyMvL49ChQxQWFrqOqa6u5rPPPuOBBx5o9P6cnByeffZZ9u3bR35+Pt9++y0zZsxg6NChjBkz5oLG4i0ud9HxroxaKUfbTnWuHZGcEi0LPjqA1WZnTFJEly3Mn9gniuQoDTVGCw9/eABDG0hHCjoOXnFPHnnkERYvXkx2djajR48GICMjg3/961+88MILHDlyxHXsoEGDmj3Xvn373EQKHnvsMQBmzpzJmjVrAPjkk0+w2+3ceeedjd6vVCrZtGkTr776KlqtlpiYGK699lqefvppN4/Xl1zuouNdnaDL8P7a7Xa+PXqWJ788SpXeTGyYPw+O67ohSalUwqJJyTz55VGOnqrinnd3s+Ke4UQGXj5KZF0Zr6xRSlsIJUkkEux2OxKJBKu1c/zy8uYamSdNWCeXyxpWS3TkNcqW6Ir31263Y7M7+jNabXaMFhvFNQbOVBo4crKKb4+eIfNcDeAQEf/d1X0Jugy6bGSereGl73+l1mRFo3KEZMcmR5AQEUC4RkWAUtbp60cvR7xiKC9E+Dw2NratL+8VqqqqCAkJoaioyCsPaqPZyrvb8/hgdz41BiuBfjLuGRXHA+Piu3SGa2BgYKseHN6ef2/TUe9va+cfHMaxpsZh/F7dks+q9Oal25QyCdP6RzK9f+RlVV94stLA6l0nyS/XN9rnr5SR8btUt20Xcg8EvsErhrIrkpubS2Jioq+H0eVorYd48uRJYmJEjVpbcyEeutOrF7QtnTFKcrnhNUOZmZnJ66+/7hIc6NevH4sWLaJv377euJzXqaysJDQ0lMLCwk79sHDWI3YUz6y1v6ZtNhunT59ut1/fvpyn9rz2xXqUl4K3Pl9nO68T4VF2fLyyMPL5559z5513MmLECFJSUgBHMs+AAQP46KOPmDFjhjcu61Wc667BwcEdwsBcKkFBQZ3qc0il0kb9TdsDX85TR7tHEomkTcfjrc/X2c4r6Ph4xVD+/ve/Z9myZTz77LNu259++mmWLl3aKQ2lQCAQCC5PvLLCfvbsWe67775G2++55x7Onj3rjUsKBAKBQOAVvGIo09LS2L59e6PtO3bsYNy4cd64pNdRKpU88cQTKJVKXw/lklCpVDz99NOoVJ2rvstut1NdXU175Z75cp466j1qq3vgrc/X2c4r6Dx4JZnnrbfe4k9/+hO33Xabm+DAZ599xp///Gd69OjhOvaGG25o68t7hc5cxweOWj5ZE3qknYH2nv/OPl/eoLN/B1qLuPeChvhEcMB1cSE40C601OGiM9Ce898V5ssbdObvQGsR917gCa/8TLLZbN44reAi8KQKU623uF53RlUYbyLm6/JF3HtBU1zUXX/ttdc8bpdIJPj5+ZGUlMT48eM7jJbq5YxMKmV1ep7HfavT81gwMamdR9SxEfN1+SLufWNW78zj1U1ZRGhUvHrHEK7s0XlryC+FizKUr7zyCiUlJdTW1hIaGordbqeyshJ/f380Gg3FxcWEh4ezcOFCQkNDG73/kUceueSBC1pHazqThGtEkoITMV+XL+Leu5OeXcqf/3scgMpaM3PW7GXT42loVJefV31Rn/j555/n7f9v7zzDoyjXBnxvT9n0RgIhld4hQBJKQkdFVBRQFEORJtVyRI561GPF8ykqKoLSFBXFjgIKSE9CCb0F0gglkEp6ts73Y9kxm2wKISEk7n1dXJrZ2dl3nmfmbU9bsYLPP/9cTOvWqlUrgoODmT17Ns8++yxZWVm88847eHt7W3xXIpHYBsrbiK0yyc1hk9c/F5vuLTFvOfds7calvBKuFWhYuSeV+UPbNHLLbj91Cg958cUXWbJkiUXu00uXLvHBBx+waNEiLl68yF9//YWzszOpqakW/1JSUuqt8TZqxmA0MjkyCHdHJe18nHB3NIW3uDsqeXZ4O/R1tCeXavVo9UZyijRo9UZKtNZn4k0Ns7ysMTkyyKq8mqss/mlUfFeCvRzFd6a87v8J+k7NLmZ/ai4yiYQp/QLFwtTr9l9Aq//n+aDUaUWZkZGBXl/54dDr9WJCAT8/v1rlhbx8+TILFy5k8+bNlJaW0rZtW1auXEmvXr0AU+zWq6++yooVK8jLy6Nv3758/PHHdOrUSbyGRqPh2Wef5ZtvvqG0tJQhQ4bwySefWKQ8y8vLY968efz666+AKSxl6dKluLq61kUETQZ7pZxpA4OYFR1CVqEGT7WK/FItbg5KCjV65FIpJVr9TTkpaHQGPt2V0iw9A+2Vcp6MNk0AK97f7OgQDIKAVm+koEyHs50CncFIVqGG+d8e4djF/GYli38a5nflyegQSrQGHFVyrpdocbFXoLsRIqLRGVgbe4GtZ66Sml2C/sbg2tz0vflkBgCd/JzxUKvo46DA1V5BVqGGPeezGNLBp5FbeHup00A5aNAgZsyYweeff06PHj0AU9adrVu30qJFC55++mmSk5Oxs7MTCy2X57333gNMg1e/fv0YNGgQmzdvxtvbm+TkZIvB65133uG9995jzZo1tG3bltdff51hw4aRmJiIk5MTAAsWLGDjxo2sX78eDw8PnnnmGUaNGkVCQoLoUDRhwgQuXbrEli1bAJg+fToTJ05k48aNdRHBHUdVsV8anYHPdqdW6vRnRYeQmFHAO38mEt3Wu9Yv+j/BM1ClkDEjKpjZg0JFeRqNRoxgdYIwKzqEdVP6Mm/9UXYkZjYrWfyT0OgM/JBwmXu7+bF6Xypr49Iq6TmzoIzHIwO4p6svHmole89ns3hLItC89L0rMQuAsECTj4lcKqVPkDt/nr7GlpNX/3EDZZ3iKK9evcrEiRPZvn07CoVp316r1eLq6krHjh1RqVTk5uYiCALu7u6WPyiR8NdffwHw/PPPs2/fPqtZfMC0mvTz82PBggUsXLgQMK0efXx8WLx4MTNmzCA/Px8vLy++/PJLxo8fD8CVK1fw9/dn06ZNjBgxgjNnztCxY0fi4+Pp27cvYEqAEBERwdmzZ2tV0eROjiGrKvZr2sAgPtudarVg8NzBodzdxRdvJxXjlsczqqtvrV50rd5I2Btbq7TjHHphWIPUHmxs+RdpdKzYncKH25MqfWaWZWt3B0Z/tI/krKIGlUVj0dg6aEjME8DOLZ05fimfpX9V1vP8IW24q3MLxq2IQy6VEuTpwJD2Pozv7c+UtQfZMCOyWehbZzDS5ZU/KNMZ+d9DXWnl5gDA6Sv5vPb7GVwdFBx6YShyWdO/19pSpztt0aIFW7du5cyZM2zYsIHvvvsOMJXW2rdvH2lpaWzfvp1jx46xY8cOi3/mQRLg119/JSwsjLFjx+Lt7U2PHj347LPPxM9TU1O5evUqw4cPF4+pVCqioqKIjY0FICEhAZ1OZ3GOn58fnTt3Fs+Ji4vDxcVFHCQBwsPDcXFxEc+piEajoaCgwOLfnUipVs8nO5P5YPt5cfAqKNXzZfwF5NW4u6+NSyPAw4FvD15k4ch2rI5NRX4jUUR1NpjaeAbWB40h/6ruu6hMh0IqZU1smtXvmWX5ZdwFXrinA1C/smgsmso7UBfMur5erKVYY9qN+fnoJfqFerI2Ls3qd1bHphLg4ciHD3dn78JBvD++B5P6BZJZqOG54e2avL7NnLpSQJnOiKNKhp+rvXi8XQtnnOzkXC/RsT81txFbePu5pSlBu3btGD16NPfddx/u7u6kppo65bS0NIxGI87OztU676SkpLBs2TLatGnDH3/8wcyZM5k3bx5ffPEFgGjv9PGxXOb7+PiIn129ehWlUlkpDKXiORW9bwG8vb2rTNL+1ltv4eLiIv67U4sGVxX75aVWkVWosTqouTsq8XW253qJlu1nr9G/jafJVqnRi/bHsDe20uv1bYS9sZXlu1LQ6EwZlMyegdaoT8/A2y1/a/e94dAlynQGlDIpRRo9vs72ojNUeQpK9eQWa9l65ioRwR64OyqbhZdkU3kHbhazrscuj8UgCHyfcJFrBWXYyeXkFGnFd6aiA1xBqZ5irZ4LOSWEv7WdAe/sIPyt7Ww6kUGvQPcmr28zh9JMg2Bbbyek5epkyqQSerY29bN/nc1slLY1FvW2of7ggw8ycOBA/Pz8kEgkhIWFUVRURFRUlLg9a8Y8eBqNRsLCwnjzzTcB6NGjB6dOnWLZsmUW1UcqFjUVBKHGQqcVz7F2fnXXWbRokYV91Vy89U6jqhVeVpEGD7XSwt09xEvN83e1o1+oJzlFWjzVdswe1IaCUh1Bng4o5FJxdWqmov1Rgsn709p2rtkzUFkPufZvp/yrsrv6udrxx6kMBrXzwclOwecxYRZ2qeSsIsA0QfBwVJGaXUJOsQYvtYqRnVvUmywai6byDtwM5XX92eO9WBObxlf70xkb5k+ZXo+nWkU3fxfmDAoV3xOzzj/emYRaJeeD7UkWuzdL/0pCKpEwbWBQs9h6TbiQB0C7Fk6VPuvh78quc1nsOpfFS7e7YY1IvQ2UK1asYMyYMSQlJTFv3jymTZvG66+/zqRJk/D09LT6HV9fXzp27GhxrEOHDvzwww+AaYsXTCtCX19f8ZzMzExxldmiRQu0Wi15eXkWq8rMzEwiIyPFc65du1bp97OysiqtVs2oVKomUS2gqtiv3GIt8Sk54qAW4qXmuxnhrIlN45kNx0RbZkxEIJEhHjzWNwCFrObMJEq5tEqv0Pr0/Lud8jdvu7XzcSKrSENusRZ3RyX9Qz0p0xtZudfSGSomIpDvZoQzbnk8yVlFTI4M4tCFXPRGI+6OSh7o0ZLJ/QKbvBdkU3kHbgbzDoy7o5J+oZ7iu7AvKZvR3Vpy/NJ11k3ty4rdKZXek3VT+3IkPY/cYm2l6zanzD1HL14HoK1P5YGyc0sXpBJIyiziUl6JaL9s7tSri9bIkSMBk91w/vz5LF68mMmTJxMcHGz1/H79+pGYmGhx7Ny5cwQEBAAQFBQk2kPN3rVarZZdu3axePFiAHr16oVCoWDr1q2MGzcOMIWvnDx5knfeeQeAiIgI8vPzOXDgAH369AFg//795Ofni4NpU8Uc+2VthXchp4TpA4MBgW7+rqyJTbNwUig/G54+MKjWmUmseYXqjcYmOzCU6gxsnj/QYvWw6UQGGr2R1XtT+dCKzAD+fXd7jl68zqzoEOZ8fZjJkUEYjAIxkQFNVhbNHfMz3s7HSdxm7dnaDS+1itmDQrmcV8rne1KrfE/MXqAVaS6Ze/JLdGTklwEQ4FF5EHRUyWnj7UTitUJ2n8tmQt/Wt7uJjUKD7BOsXr1aDN2ojqeeeor4+HjefPNNkpKS+Prrr1mxYgWzZ88GTNulCxYs4M033+Snn37i5MmTTJo0CQcHByZMmACAi4sLU6dO5ZlnnmH79u0cOXKExx57jC5dujB06FDAtEodOXIk06ZNIz4+nvj4eKZNm8aoUaNq5fF6J2OO+5s/pI1oO3S2lzN/SBtGd/NjztdHiG7rTf9Qr2qdFBQy2U3ZHx2UcpRyKR5qFUq5tMm6xWt0BlbtTRVtTo98Fo+/uwPvPNQNB6WcNVXIbG1cGgPaeNH7RsfZP9STqf2D2Hb6GrIazAI2Gg/zM55VpMFTreSbaX1ZPz0cHxc7BEHA392h2l2VXgFuVu3UzcEmDZB4zRT77qlWVvlOd21lyve669w/x07ZoL1bTXbE3r1789NPP7Fo0SL++9//EhQUxPvvv8+jjz4qnvPcc89RWlrKk08+KSYc+PPPPy0G4iVLliCXyxk3bpyYcGDNmjUWSdm/+uor5s2bJ3rHjh49mo8++qie77hxsLbC0xqMPPp5PEVlBoK8HMkr0da4WrRXSpkUGWg1BGJyZBBavaFZ2GDMVLRNhnipWRXTmzWxaZy8fJ03HuharcwyC8tIyymmR2s3JvQNIL9Uyz1d/UzeshKJrY7hHYh5B+a34xkYBYhLyWHGugQKSvX0CnDlowk9q9V5QakeL7Wq0vZrTEQgOoOxyb8f5oGyui3Vbv6ubEi4xL6kHHQGI4p/QJhIg77FtQnRHDVqFKNGjaryc4lEwiuvvMIrr7xS5Tl2dnYsXbqUpUuXVnmOu7s769atq7E9TRVzh+yhVlGq1ZNxvZQxPVoS6u3IlpMZ3Ne9VY15LLMLS5naLxhBwCLYOiYikJjIQH44fJmHe/s3m23Fih7Dz9/Vjl+PXaFrKxeejA5FJpVUKzNPtYpxYa1ZfzCd97aeE+U1KTKQKf2C+OXolWYlr+aAeQfmrs4t+HRXMkv/ShK9W51UCtFjuSqduzsqub+7H8t2J1vGLA8IBolw01mu7jTOXTUNlK3dqx4ogzwdcbKTU1im5/CFPPoGe9yu5jUa9aJRg8HAiRMnCAgIsHCo2bx5My1btqyPn7BxExgF8Hdz4P4erbBXyGjro8MoCNV6qxZr9Hio7SjRGpgRFczcwW3IKtTg5qhgz/lsxn4aR3JWEbnF2maTgaS8TdbsvKPRG8kt1mIwGjEKkmplptUbsVPICPFS46W2o6C0iIJSPR9uT0KCyZ71yc7kZiOvpkzFzFX+7g6kZBfx2eO96BfqSUHpDVu7obr3JBCt3sCj4QFMHRAspjEs1epRyiTkl+lxta+8LduUSLxqXlHaV3mOVCKhaytX9iVls+tc1j9ioKzTmnnBggWsXLkSMA2SUVFR9OzZE39/f3bu3Cme179//2bnNXeno9EZ+D7hEiU6A5/vMcUF9n5jGxM+j+eJAUE8P7I9vQJcxZnz3MGhxEQG8suxyxRrDTz0aRyRb//F53tScFTJeOzzA8z4MkEMhSifmKCpU94m66VWodUbUcgkeDmpWL47hQmfx/N4RABzB4da2H8XjmzHlH5BTFp9kLA3tnIoLY/vZ0YQ4qUWr706NpU+Qe78fPRSs5FXU8VajOyK3Sm8O7Y7xRo9M748hEIm5dNdyVXqfP6QNkwbEIzeKPDZnhSGLdnJo5/tZ9iSnazal4bGYMRBKWvSSQcEQRC3XqtbUQJ0E+2UWQ3erjuBOk1zv//+ex577DEANm7cSGpqKmfPnuWLL77ghRdeYN++ffXaSBu1o3wartX7LD33isoMHLt4nSn9g3gorBXOdgq0egNHL14XV4s5RVoWjmzH9C8TeOePREp1BmZGBTP9ywTxOs3Fuw8sPYZ1RiNymZT03BI2ncgQZTdueTwLR7YjftEQNDojCrkEhUxKVqGGdU/0EWMqBQRRdmCSU1GZHh9n+2Yjr6aItRhZL7UdnVuaUvBFhnhyVxdfUrKK2XTiKslZRRY6LyjV4+6oJCmriOOXrhOXklspvd0H289jFARmRAWjbsIOPVlFGvJLdUgk4OtS9YoSoGsrV8CUxSezsAxvJ7vb0MLGo05T3ezsbDHGcdOmTYwdO5a2bdsydepUTpw4Ua8NtFF7qkrDZY6h3J+aS9gbWwkzZ9zZnUIH379zdq6NS6N/G0/Rq6/i39B8vPvA0mM4wN0ehUxKgIeDheySs4qY/mUCT351GHuljOW7Uuj9xjb6LzZlZTlxOZ/vZoSz61yWhazMcgr1cmw28mqKVLRDm9+F45fy6fPmNvq8uZ3eb2xj04kMvpsRToiXWtR5/8U7mP21aeLz/A/H6N7arUrP8bVxaShlMgxC0y1BdSGnBABPR1WNTkku9gqCPB0B2HMuu8Hb1tjUaaD08fHh9OnTGAwGtmzZIoZhlJSUWHia2ri9FJbpKqXhApOTijmGsmJGkTWxaSwc2U48llusxevG6qfi31B1TcamiiAIjOnhx7LHelGs1VeSnZlpA4JZtjO5ShnOjg4lr0QnyiomIpCUrCImNTN5NTUqxgbX9l0AU9KOhAvXKSjT4etsX+WzYb5GYZkOe0XTtUWnZRcD4ONSu9Vhtxuryn/C9mudBsrJkyczbtw4OnfujEQiYdiwYYApiL99+/b12kAbtaNUq8fJTkGZXi+mrgPEDCTVzYTNKyGzV19WkQbA4m+znebJ6JBm45hSptVjEMDX1YFijQFHpdxCdmbcHZX0aO1abYL5/m08cXMwyX/u4FAmRQay8MfjBHo6Nht5NUXK26Fv5l0w42wvx9lOQUZBqdVno/x5TX3nID3XtKL0caqdmcBsp9xzPguD8aaLUDUp6jRQvvLKK3z++edMnz6dffv2iQ47MpmM559/vl4baKN6yrR6ynQGvjt0CY3OwNT+QRxIzSEmIhAwOanUNBM2rxpjIgLZez5bjBGbHBmEIMDWpwZy6IVhzIgKbjahDlqdAZ1R4NNdyaKTx96kLNJzSpg5MMQiGXZtZFhQqkenF9g8fyCdW7owbnk8xy7mN2nnjqZOqVZPSlZRnd4FM5Mjg9DoDQxq58O+pGzxWhVpDjst5q3XFrVcUYb6qLFXyMgr0XHicn5DNq3RqfNU96GHHrL4+/r168TExNxyg2zUHo3OQFpOCXEpOQzr6INSLuXuLn44qeT0aO2Ou6OSNbGplZKjl0eMDevhx/jerRn7aVyl3K2OKtNj0pQTfJen9EYFiN/LOe0AfBmXzgcPd+eJAcE80LMlLvYK9p7P5sv4NLycVDXKUKPT89jnBzmcniceb+qrjKaMTCpl4Y/HWRXTG4Bfj13GU12zHs07KJMjg0ye4j8e57+jO/PrsStM7hcEUKmoc33mOW4sLuTc2HqtpWOOXCqlS0sXDqTlsjMxk+7+rg3YusalTgPl4sWLCQwMFAsljxs3jh9++AFfX182bdpE165d67WRNipTqtWzNvYCMZEB+DjbsSY2rVKS8lnRITzaN4BSnaHaeECjUeChXv6oVTLWTumNp1qF3tB0c7fWhEwqpXUFp50QLzX/N7Yrn+1JqdQJfvZ4b8pqkOH+1BwOpOZaeAmb7ZStPRxs26+NQGGZjmMX80Uv1iejQzAYjdVmnzIKAhvn9MfTSUlyVjH3fxxLclYRZzOKWDiyHfYKKVP7BzF3cBvyS7U42ynQNZN35cKNrVdv59p7aHdv7cqBtFw2HrvC/CFtaszG1lSp0xJh+fLlYrmdrVu3snXrVjZv3szIkSN59tln67WBNqwjk0rZeuYqZTojq/alVirc/MH283y8I4mEC7nYy6VM7hdYKR/s3MGhTOoXSMzqgwx5bycCEJuUgwSatJu7NcRCvSVaq047VTl5mOV46nI+kyKty/DxiABe+fW0aOMK8LC3sFPa4igbB7N90uzFGp+Sy4aES8REBFaKk5w3JJTpA4OJWXWQp747isEo8PCKODF+2HyNfot3MHXtQYyCQInWVKO1Obwr+SU6rpeYzAQ+zrUP9egb5I5SJiU5q1isOtIcqdM0NyMjQxwof/vtN8aNG8fw4cMJDAykb9++9dpAG9YpLNPhpFLgqJJX65wwKzqE/Wk5FJUZmNIviBlRwWIZqT3ns3lo2d+dQVGZnlHdfJvF7Lg85oBzc7KEvQsHoSq3HV2+5JI1zHJ84ceTvHRvx0oyNJfbAijRGtiyYCC7z/193BZH2TiUj5N1d1TSN9id+d8eYV18uhgnadZjXHIOUgmkZhdXa8vMLdaSW6wlu0iDn4s9iiae29XMhVzTtqurvQK7m3j/HZRy+gS5szcpmw0Jl+jR2np1laZOnQZKNzc3Ll68iL+/P1u2bOH1118HTK72BoOhXhtowzpOdgpmDQohv7T60lh5JTp+SLjC2w92QSqRMGzJTnyc7UGApBsp6eBve1pTjgOzhrWA831J2bRycyAmIpClfyXVyskjr0RHgUaHnULKXR/sxk4uF2tXmnG2l+OolHPPh3tIySoWj9nslI2DOU4WYG9SlqjjglLT6tDdUYmXWiXqcd/CweLftbFlFpbpcG8mE6C0G448N7OaNBPV1ou9Sdn8dPgyzwxr2ywnhXWaDo0ZM4YJEyYwbNgwcnJyuOuuuwA4evQooaHNo3jpnUypVo/OYKR7K1dc7KsvjeWlVvHWmM7oDUb0RgOfPhbGmsm9eXdcN/YuHMSKib0I8VKL1Q+achyYNSoGnAO8vTkRP2c7ZkYF89yIdpVCaipiluNHj/TgeomOSZFBJF4rtFpBYs/5LHGQhObhDdmUkQB3dW7Bl1P74uNsZ6Hj3GKtqEdnezleTirWTunN8A5eXMwtYXJkkNVrxkQEEpec0yy2XM2kmx15bsI+aaaTnzNBno6U6gys3Gs9hKqpU6eBcsmSJcyZM4eOHTuydetW1GpTjsuMjAyefPLJem2gDUuKNDokEgklGj1leiPpucVVvtCTI4Mo0ugRgGsFGmQSKVtOXhVrL5ozy/w8O5KZUcFIm6EdvqBCwHmIl5rn72qHUiGjWGPgiQHBbJo3UEyGbY2YiECSs4oo1RnZevoaj/RpzaujO1XKBTp9YDAf70yyONac4k6bGqVaPR/vTGbkB3vov3gHJy7nV/uuZBaWseXUVV65rwstXFTMjA5h3pDQynb9yEAu5ZU2qwnQhVtYUUokEsb0MBW/WBubRkZ+ab227U5AItSmFpYNCgoKcHFxIT8/H2dn55q/0ACU6Qx8sjOJXeeyeG5EW3oHenI4PZfOfi58tifVwuvVXOpp6tpDnM8sZHJkIE8MCBa9+Mpj6uSDcFTduTPkusi/VKtHIpHQ581tFJTqxfRla2LTrLr3C8CynckWcoyJCGRSZCDTv0xgdDdfWrs7cDj9OjERgTjbK8RqFHqjEQlYVKhobvUo74R34GbQ6o2EvbFVnCj1CnDjqyf68smOJNZUKCM3tX8Qm09kMKKzL78eu8y9Xf1QySQYkaCUS8ku0oi2zIt5JTzcu/VN2fLudMZ9GseBtFzmDAqlX6jnTX9fEARe/vUU5zOLGNzem5UxYc3KA/aWBsrTp0+Tnp6OVmu5BTV69OhbbtidRmN3EmZb22/HTTkpfzt+hfu6t0QmlaCSyyjVGrC/Ub3A6UbC88IyPS4OCjFx991dWtClpYtFknMwzZQPvTDsji46Wxf5a/VG9iZlcST9Okv/SuKzx3tx/FK+ReykeYU5oI0XpVpTYWq5TEJ2oRY3RwWH0vKQS6F7azdyirT4ONsRn5JN70B3vj14kQd7tsLJ/s6dYNQnjf0O3Cw5RRp6vb4N+FvPUW290egMKORScoq0eDop0emN4ruSnlOCq4MCd0cVWoMBjc6I2k6OwWhEpxNQKKTEJecwoI3XHf2+3Cx939zGtQINr93XmVBvdc1fsMKlvBIW/XgCvVHghbs7MG1gcD23svGo03Q3JSWFBx54gBMnTiCRSMQCzeYZhM2hp/4x29reHduNNbFpXMgpYXzv1nyy05SjsqBUzz1dfHhvXA8+35PCp+UKy8ZEBPLdjHCmrD3IrOgQ3B2VFvY1c55KB5WsWdkoC8t0vPH7Wb6bEY69QlbJs7X8CvOZDcdEec0cGMKEvq15/vsTvDy6I2ti05j51WELefYO9OBweh4T+gY06D1UrKPY3FapDYk5PMRLbcd3M8L59dgVijV6HFQynlh7kKWP9GTlntRK78rsQaEIgsD+lBy6+7sxbnkc0W29mRUdwqIfTvDT0cskvDi02TitlGoNXCswpa1sUYetVzOt3Bx4tG9r1sZd4M3NZwj0dGRYR5/6amajUqcp0fz58wkKCuLatWs4ODhw6tQpdu/eTVhYmEU9Shv1R2GZDrlUKuaqfG5kOz7ZmcSH2/+O+5vQN5BPdibzzh+JVSburpiiC0wrSgeljLX7LqDRNZ9JjpOdgqyiMsYtjyc82IMSraFWsZPv/JHIyr2p/Gtk1Qm0P92VzP09WtU5RZ05rjOnSINWb6REW9m70lodxeW7UpqVjm6V6uRoDg8x67mVmz27zmVSWKrn8YhAVu5NtfquLNuZzKW8UpRymfjefLD9PMt2JnNvd79m58lszvHqqJShtru1SdiITi0Y2sEbQYD5649w9mpBfTSx0anTQBkXF8d///tfvLy8kEqlSKVS+vfvz1tvvcW8efPqu43/eMwJz4M8Hcgr1tI70B1vJ1M2HjO1TdxdPum5mcmRQew5n83bW87yyc5kq512U8TcUSZnFfHs98dwvskE2T7Odvx67LLVz1fHphIe7F6nDrO6AbDsRsefX6rjk53JVhNJNCcd3QpVybFMZ0CrN6LRGZkVHcKANl78euwyA0K9GNTWG2d7RbW6Xx2bip+rHb0C3Pj12GXxvTHr/Mmo0GbmyGPyePW+hdWkGYlEQkxkIJ39nCnRGpj+RQLXS7Q1f/EOp04DpcFgED1dPT09uXLlCgABAQEkJibWX+v+wZhnymU3OoPjl67z1gNd8XKy460HulTy5qxt4u6r+WXiS272zJwUGcjiLSa9mYPymwPl601mF2nIKiwTvR5rJa8bZcuq/LxUbzXutLpVTqlWX+0AmJZTwrAlO1HIJFVOepqTjupKUVl1E4kk4lOymb4uAQkCBWU62ng7oTUYsVPK0OgNFNQQf5xTrKWg1KR/8y6MWedT+gU2q+1vMRl6PQyUYMoBO29IG7ydVKTnlvDUt0dp6j6jddJ2586dOX78OMHBwfTt25d33nkHpVLJihUrCA5uPgbcxkJzoxrIsI4+bD19jb5BbnRu6SJ6ZIZ6OfHN9L4WAdFZRZpaJT+XIBC/aAilWoPo9BOz+qDoCWu2VzYX+4tKIWNGVDCzB4Wi1eqZFR2CgMAvRy/XKC/nG2XLrGGWZ0WHjvJZgKwlzbYW12lmdWwqM6KC8all7cPmoqPy1MYmq9UZUMplVuUY4qWmu78r4cGehHg5IZFIUavkLBnXnZ+OXmbl3hS6tXTj/8Z1q/FdASjT6y0SpVvTeVPHnJWnLjGUVeFkp+DpYW156ZeT7EjM4tdjJufDpkqdNP7iiy9ivLEqef3117lw4QIDBgxg06ZNfPjhh/XawH8apVo9m09e5YEeLfFUq7i3mx9ujio+3pHEB9vP46W2Y2VMGKlZxRYlf3KLtdWWAZoUGcihC7k42Sv47uBF7BRSnv3uGNdLdRSV/d1ZNDf7C5jSbCnlUtQOSqQSCd1aubJlfhRag7HKuLpJkYFkFpYxupv1l9taIoGaVoulOn2lQsLlMZd5auOtxttZ1axrH1qjqq1Urc5AUZkOrd5IdqEGJBJKtHq81JYrILNz1pH064S9sZV+i/9i7PJYSjQmL9dB7bzZMn8gbz3Ypdr445iIQNJzSohPyWV0t5Zi6bnmmjziVmIoqyPAw5H7bwyO/914miJN0zUX1GmgHDFiBGPGjAEgODiY06dPk52dTWZmJoMHD67XBv7TkEmlDOvow89HL1Gs0bP+QDoB5SpdvHrDC3P210eYFGmZ3PmjHUlMHxhsNXF3TEQgL/18ioJSPWPDWnG1QMN9PfwsbJbujkqeHd4Orb55OouUaHQUlOl4c9NZSrV6dp7NrCRDc4Jss7ysfV5VIoGaVosyidSikHBFuvm74Gqv4JV7O1GmNVQbHN/cOuyqJhnHL+VjBFbsMQ2gYW+YBtDV+9LYMDOCEK+/QxkqOmeFeKlZPakPX8ZfoM+b2xjwzg7iUnJYvjuZGV8erjLJ/fSBwQR6OlJQqmVSZCAf70xq1skjGmqgBBjdzY8WznbkFGtZ1YSz9tSb1t3d3evrUv9otHoD6+LT+S7hIg/3DmD72Wvc281PTN7dO8idJ782hSqYyweVT+4sAP1CPawm7s4qKsPNUcETaw+yfGIYLV3tOZKei5uDkv8b25XIEE+KNHoUMilFGh3qOzgBwc1SptUjl8lwlsl44Z72rL7RoYZ4qS1k6O1kx57zWWJC84oy9nayQ2+0XlapqtWiOadoUZmOQo2O1+7rxAfbkyxS3Q1q582Hj3RHLpNytaAMT7WKKf2DcHNU8N7Wc82u9mFFrE0y3B2VvPlAZ9G724x5lS4gsHBkOzFva8Xwn+fvasfqfali3Ky7o5LwYA8WfHuUglI9D30axyujO/LkoBCKykwOc1qDkTMZ+XRr5cbQjj5o9Ea+mRaOTt88SmlVRGcwcvm6KZNOQwyUcpmUsWGtTHHMu1OIiQjExaHp9St1GijLyspYunQpO3bsIDMzU9yGNXP48OF6adw/CbNtpkxvJCYykPt7+FFQpiM1u0S0pYV6qyks04udsbn0T/nkzlufGkhKVjEz1x22SPgMMHdwKLsSs9hzPofcYi1qlZywAA9+mR3JD4cv0+fbbRaZfZ6MDm0W2Uc0OgPZRVrsFDIu5ZUQGeLJgm+PApYy7B3gxn/u7cjUtYfE71aU8TfT+laZCNu8WjTrxxzk3i/UkxKNHqVciq+dA45KBXd19iOzsIyXfj5FbomGTx7twbJdyWJMrDmmb2ZUCI/0bk1+mQ61So5REGg++U7+pvwko7zc5FKphXd3eX45epnZ0aHc08WHaQOCLcJ/rA2cFR24krOKmLjyAO6OSlOQvQDvP9yN01cKKCwz8OrGk2xZMJDxy+P4fma/hhVAI3E5rxSDUUApk+LaQANYeLAHPx+9wsXcEtbEpjF/aJsG+Z2GpE4D5ZQpU9i6dSsPPfQQffr0aVapihqais4KBqMRqURSyQFkVlQIU/sHozcaRdvj/pRcMcSh/MrFXPrHbLt6oEdLtAYjK/emiMfNqdjGLY8XnRKkEglDl+zkvu4tiYkI5Iu4CxSUFlFQqufD7UlIkDAjKrhJbzeVL3Atk0pZ9Vsq/7m3k0WHap5QHLyQh5ujdQef3GIteqOx2kTY5cs6me1lvx67wrmrhbT3da6UHm9SZCDLHuuJwWjk010plVZN5pVQ70A3ege5c8+He9kwI4IywYCzRIJWb2g2ibkrJgdYE5vGp7uSeX98j0q6KD+QFmr0LBlvkqFEIhF1Z82ruSqHt9xiLUmZRQR5OuDuqOLern6MXR7PhZxScoq0PNTLH73RiLJulqo7mvLFmqUN1I9LJRIe6O7Hh38lsTo2lScGBOGoalp9Sp1a+/vvv7Np0yb69Wues6yGwppH5HfTI9h88qpFGaiCUj2LtyQS3c6byZFBvL05Ucwuo9UbxPJQFXlqaFs0egMKmZS7u/jycO/WFGv02Cmk7C5XN3Hu4FDSc0pwspNzIaeUD7cnIQiI21hmVsemMntQ064GI5NKOZ2RD0jIL9UREeKBs52Cbv4uYl7LnCItHmole89nc/zSdXGwq4jZNlhVh1m+rFM3fxd+PXaF0d38yCrU8PGOJAudmScjANMHBlcb/zorOoS8Yi1uDgrslTL6L96B3mhsVqt+8ySjc0tn0c7o7qisNLBZy6a0alIYRy9ep0tLF/HdsDYolnd4M+ui/KBbUKpDKpFwKsMUJO9sL8dTrWJ8mH+z3HaFv2Mo6ys0pCr6BnnQwvkSVwvK+OZAOk8MaFrREXUaKFu2bImTk1N9t6VZY60uolwqpbWHQ5Wd5PM/Hufb6REATFl7kPlD2iKVSph+I4di+cTeTw1tyyN9WltdtUyODOKdLYlkFZWJzgoyqQQJiOns1salEb9oiEV6u+YQhlBYpuOBHq34dFcyWYUaFt3dnkt5Jayb2pcVu1MsUtfFRAQyY2AIPfxNxWerCvGoDnM4iinOMYtvD15kUr/AKoPb18SmMWdQG+RSaaX6iPC3J6yHWsnYXv7sT8kRPxMH2gHBTX5laZ5kCCBul1ob2Mo77ICl3dG8GgXTu1Hxu4A46ZRIYNe5LFbF9K6UwtCc8vG34xnoDdXvIjR1zI489ZFsoDqkUgn3dvPjsz0prNidwsSIAFTypjP5qNNA+e6777Jw4UI+/fRTAgIaNtdlc8Gas0JNQe8Xc0sp0xq4q0sLnhwUQqnWgP6GU8HdXXyZFR0iOuwUawwsu+E1aKb8FuqPsyKxV8rQGgwIRoHZXx3ltfs74aVWkVusFTtk89/QPMIQnOwU9A125/3t51gd0xulTMq1gjJ+OXql0gpv6V9JSCUSJvcLZNqAIGZFh1Cs0YvxfLVdVTgo5eQWaQgP9uDjHUmiM5Y1Ckr1lGj0fPJoD7q2crVY3S6+MbnxdjJ1YkM7+OCokrNiYi8Wb0kkOatIHGibAyqFjOwijYWszAMbwK5zmfQP9arS7lhQ+rfz1f5FQynTGRjQxgupRCJOerKKyvjteAbTBwYzY2AIK3anWH0OJBLTSr85ObRZ48It1KG8WQa08eSHw5fILNTwQ8JlJvRt3eC/WV/UadM9LCyMsrIygoODcXJywt3d3eKfjcpU9Ih0d1TiYq+wWjA4xEvNuql9iFs0GL0gEOypRmcwkl1Yhp1SztMbjqJWyZFLpTje+K+LvaLa0AR7pQxBEDiQmsv9n8SRkJ6Lh6NKDA0x2y3Lp7eLiQgkJauoSecWNQpGCkp1zBkUyu7zWRRp9HTzrzrVn1lWj686yIj3d+Fsp0Apl960ndbJTkFRmd7CGcsa3fxdsFPKiE3OqVQn9LsZ4TwzrB0pWUViaETft7aJn4V4qcUMQs0F5wrhM8lZRbz75zmm9Avih5n9KNboK9kdPdV/x5yana/uWboHR5WM6V8cJCzQjYMvDCXhxaEcemEYD/ZqxdmMAmTSqrMfrYlNQylrOiueulLfWXmqQyGTck8XXwA+3ZWM3tB0QpzqtKJ85JFHuHz5Mm+++SY+Pj42Z55aUN5ZwWwTySnSYjQKFjaxEC8138+MYE1smhgG8ve2YDA6g5FQLycGvLODYC9HerR24437O5NVqKl21VJYpuO5H46z/UwmAPOGhJJdbotvUqSpars1559RXX2brFOPnUKOu6MpmXzCBZMz1NWCsmpllVWooVij5/7urdAajCjqkInFIAg42yssnLGs2ZUXj+nKsp3JVh15JBKYdqOGaMXE3WCyKZtz2DYXyjtEgSls5j/3duSTnUn8cvQym+cPrGR3zC02xTuWl+H1Eh0avZHBHXwo0xkwGAX0BiMGwYhCJuGtzWetOgqZaQ5mh5owGgUxIXpDhIZYY3B7b34+cpn03BJ+P5HRZLL11Knni42NJS4ujm7dutV3e5otBqORZ4a1Y1RXXwubSDd/F9ZPC0dAYE1smin2Kza1Use56cRV7u7iS6iXmlnRIRgFgbVxaRxNv45Ob8TLSVVtSi61nZwj6dfFQXByZBD2SildWzkzqJ2PKbWbILB34SCL2MvkrKIm79RjFIwUlunoFeCORm+oUVbujkru7+HHpMhAjNx8jkqzPbpzS2diIgIttg/L25WfHtqWEC81Px+9ZPU6a2LTmBUVSp6VpNJmm/KTUaFczC2hlZt9s3A4Ke8QtTo2ldfu72QRR1l+0hHipealUe3xclIxKTIIQfhbvt1aOaOSy3j4Rim68jbI76ZHMKxDixpTGDZ1s0NNXCssQ6M3IpNI8LxNEwI7hYyRnVuwIeESn+xI5t6ufkild/5Cq04DZfv27SktLa3vtjRr7JVyHuzVspJN5GKuSY7dWrkSv2gIcqnUwgYDlp5+Jy9f571xPejS0oX4RUPQ6Iz8eOQy9/doWWlWbWZyZBA6vZFf5/TDw1FFTrEGO4WUIo2B72f2o1hrspMNXbK7kjMJNP3ZtZ1CjkwiJadYg4NShs5grFZWRkHgsfAAdHojPx29wtiwVje1mjbbo73UdmyYGYFUImHK2oPMjg5l/7+HotGaUqopZFLyS3Vsnj+QveezWb47BZlEAhJIyiwit1hLTrHGwm5sxpyge2JEa/QGgfUHL950O+9UVAoZU/oFMTMqBJlUYhFH+fX+iyx7rCceaiWju7Vk47HLhHiVMWn1QdE2WajR4WavpERn4PM9lW2Qs78+ws+zI0nPKalypV+Th3NzwLzt6umkRHYbB6vhnVrw2/EMEq8V8ufpq4zs7Hvbfruu1Omtevvtt3nmmWd444036NKlCwqF5cyrKVQ/bwyUMlml4GkvtYrsIi1T1x6iT5A774/vXmmGW97Tz91RiYNKxrPfH8NTreL3uQN4d2siOxOz+GhCDyRIKnlrzooO4fSV63T0c0EQYMOhS1bPiQhx5/fjVyu1uznMrjV6A643cr0+9d0R3nmwWyVZxUQEMis6hJzCMtzUKmZ/c5SE9Fwe6XNzTgdme7SXGtKyi5k+0JSUvUSjRwrIZRI+3ZVssbqcHBnEV0/0RSqRUFCmw8lOTsKFPDyslEUDk07cHBU8smI//dt40K2Va7OqKGKvlKHRGSjWGC3ehwl9/fnmQDrDOviwNjaNL+MvMDbMn6yiMhZvSSQ8yB2ZRIIA2CtkVr2Nk7OKeGzlfr6ZFs7sQaEWzj7NOftRRVKzzY48t2fb1YxaJWdEJx9+PnqFVzeepn8bL9R3eFxlnVo3cuRIAIYMGWJxXBAEJBIJBkPTdf5oSKylOCsf75WUWYSrg2VCgYoZRnKLtRxMzWVyZBBbTl4VvQR3JGYy+qN9vHBPB/YvGkpOsQZ3RyU6vRGdwciJywVcL9VzJP16pRm22R7039GdKw2U7o5KFgxt0+Rn10q5DL3BQJHOyO/Hr3I2o6iSrPacz6ZMa+C/v52hbQsnHunjz47EzJteTTvdiNM0hx5MWnMAuVTKiom9UKvk/H4iw6oOBATCAtx44/ezlOlNNtIe/m64OSgrrShjIgLZlZjF4fQ8krIKiV80hKIyXZVZg5oaWr2B7w9f5NG+geL7YH4X7vpgN+N7+4uDm3k7dnA7L5QKGZ/vTGJfUjbLHu1VpQ3y2MV8ijR63vr9LK/c14mZUSHic3AhpwRjEy8LVRvMA6Wfi/1t/+37e7QkNjmHjPwyXvn1FP97qOsd7etSp55vx44d7Nixg7/++svin/lYXXjrrbeQSCQsWLBAPCYIAq+88gp+fn7Y29sTHR3NqVOnLL6n0WiYO3cunp6eODo6Mnr0aC5dsrT55OXlMXHiRFxcXHBxcWHixIlcv369Tu28FawlxC4fK2b+/8mRgeLn5cM3zCzZdp5Z0SE80KOlhUdlclYRU9YcpN/iv5i65hB3fbAbe6UchUzK2rgLhAd7VFus1slOwX9GdcDZXk6Il5pVk8KIfX4wd3fxRS6VNuliwYVlOl7/7azoVVlRVv0X7+Bf3x/DQSXnfFaRWOg6wMP+plfTBqORxWO6WiToBujk50LrcgnuK7ImNo3wYE9WTQpj8/yBdPJz5rtDF/l4Qo9KibvL1xAtKNVzvUTX5Ff95VHKZSzZdp6sQg2TbrwP5lAQO7ncIqzq7c2JTI4MJNTHSbRnpmaXVJuA3tlejpNKweGLuShlUu5Zukd8DsaviEPWjFbnVWHONezrentXlAAquYzpA4ORSuD7hEus3pd229twM9RpRRkVFVWr85588kn++9//4unpWe15Bw8eZMWKFXTt2tXi+DvvvMN7773HmjVraNu2La+//jrDhg0jMTFRTHiwYMECNm7cyPr16/Hw8OCZZ55h1KhRJCQkILvh3j1hwgQuXbrEli1bAJg+fToTJ05k48aNN3vrt0RFjz4zb29O5OfZkUglEj7akcTayX3gxrago0qOt5OdOKsO8VLz9LC2SCUSxvX2RxCodE2zJ+C8IaEUlOo4duk6Cqm0VjUOB7Tx5LHwQIyCwLKdyWIC6aa+JeVkp+C3k1eYNzTUwj5plhWYPIGvFZSJHUhusVZMI3gzq2l7pZxgL7XFgOilVpFfqkVnEKrVQWZhGVPXHCKjoNTkdNUvCLVKzqEXhpFdpMHVQWHhaAV/OyDpjEYUTXDVX6bTI5WUq0FpMKAxCMilUn5IuMST0SZHMnMN0TK93sIRJzmriC/iL/BkdKho2sgt1nLqSn6VWZZiIgLZcz6L0d1asud8lkWCeqBJ2+RrS2q26fnxbYQVJZgmjo/0ac1X+9N5/ffThHiriWrr1ShtqYkGfavWrVtHQUFBtecUFRXx6KOP8tlnn+Hm5iYeFwSB999/nxdeeIExY8bQuXNn1q5dS0lJCV9//TUA+fn5rFy5knfffZehQ4fSo0cP1q1bx4kTJ9i2bRsAZ86cYcuWLXz++edEREQQERHBZ599xm+//UZiYmLD3bwVzB59FUv7jOrqi0omZXqUyU7loJTzxIAgDr0wjNWTe5OSVURMRKDo1BOfkkPYG1vp+dpW/rvxJLOiQ5g3pHKpqCejQ3G2k/PmprMWW7zWcLaX46iS4+fqgEb3d/ICa3UVm+LK0ux17KCQ8WR0aJXy+s8vp8Rj5vRl1TnIlGr1aPVGcoo0aPVGSrR6tDoDucWW4Tqmwr8KPJ2qrzNpjmU1h4Gs3pdKiVbPz0cu4+ogZ39KDu/cSDZgxux40tQcecyyu16iQ280ciG7mJwiDXKZDINRYN/CQUwdEIQUeKJ/MFufikZnELi/eyv2JWUzc2AI7XycuLebHzOigikotUys3sHXyeq7MXdwKJP7BXH5eqnFytxMc7DJ14TeYBRDQ3xdbv+K0sw9XXyJauuFUYA5Xx3m/LXCRmtLdTTomyXUYp9/9uzZ3HPPPQwdOpTXX39dPJ6amsrVq1cZPny4eEylUhEVFUVsbCwzZswgISEBnU5ncY6fnx+dO3cmNjaWESNGEBcXh4uLC3379hXPCQ8Px8XFhdjYWNq1a2e1XRqNBo3mbyeKmgb82mJOcTZ7UKg4g9YaDOQUa1DbKfjt2BXu6eKLnVLOQ5/u49vpkSz88TirYnpzdxdfi/RdAN8eukxmoY53HurKnEFtKCjT4WynQKM3YBSMSCRSsorKLGw51rz8YiIC2X3ONLOe0j+o2oD82xEqUt/yL+91fOJSAf+9r5OFvPJLdZy+nM+ORFOc6eTIoBrTl1nL3Ts5MognBgThYq+w2AV4/q52yKQSNLqqPW5jIgLFIsFm1salMXdwG9btT2NUN1/OXi1kw8wIxn4aR1ZRmeiI1RD5XhvqHYDKsrunawveHdudT3YmiRVUVk0Kw2gU6N/Gi8/3pvDL0cu08Xbig/HduV6qI6qtN2N6tsLJTs76A+miPVMulfLmA50RgG8OpNPZz0X0hnW1V1Kk0eOolDGqq5/FytzMP8Hj9VJeKTqDgEImwd1R2WjtkEgkTO0fxLWCMs5eLWTK2oNsnNMfV4fGa5M1GnUKun79eg4fPszBgwcrfXb1qsmpxMfHx+K4j48PFy5cEM9RKpUWK1HzOebvX716FW9v70rX9/b2Fs+xxltvvcWrr756czdUSxyUckq1epztFJTpDajkMlwcJFzKK+W+7n4cSc+nna8TGp1AdpGGYxfzmfZFAt9M72vVvrUjMZMh7+0kftEQEtLyiGrnxZ+nrnJXF1/2Jf89OP56LIPFD3bBUSln65mrpGaXoDcaLZILuDrIeSisVaMHYjeE/M1exwWlega8k0mwlyNtvNSczyoiu0hD/KIhBHjYc3/3VjVuMReV6fhsT2qllIEfbD+PURCY0i+IyZFB/HY8g+9mhPPtwYt8vf8Cyx7txYyBIXiqVazcm8KFnNJKCR7KU1Cq53qpFo1OILdYy89HrlCmM/6dklBvaLCk6A31DljLe7zorg4W8ZI9W7vdKE9mEI8PaufN6/d3RiaTsv1sJiv3plBYZmDvwkGsiU3j3q5+/DAzkpZu9iikUgRgybZzoiOQl1pl2p6WSinT69n6VDRje7Xik11JzcK8cDOYHXlauNg3WNWQ2qKQSXlqWFte+vkkF3NL+e/G07w3vnujtqkijTZQXrx4kfnz5/Pnn39iZ1f10r+iJ5TZs7Y6Kp5j7fyarrNo0SKefvpp8e+CggL8/f2r/d3aotEZ+OXoFUZ19eWHhEtIpfBgr1b4udohl8lo5+uEs52CF+5pL6bnKtboySyoPvtOqdZA/zYefHMgnfUHLtInyIM3fj/LDzMjuK+7H63dHSnVGZjSP4iHwlrhbKdAqzdw9OJ1cWbt7qi0WsrLzO3almoI+Vf0Ok7JKrawTZVoDWx7KhpdDXldNToDclnl3L1m1salMWdQKFMiAxnXuxWZhRom9QvkoV6tMAimjmFk5xZidRdHldyiWHR5nO3luNoreeGe9ng7qXBUyVkdm8rMqBAe+nQfg9r5NFjH3lDvQMW8x8Fejng72fHL0cu083Ey3eOkMIq1OtQqJfuSshndzY//PdSVIo1Jf4PaefNQr1acuVKIVm9ky/woirV6/N0dOJKeR1tvNYJEUimDT3kKy3REhLgzpf+wv+2jN5HTtyljfs78GnHbtTzOdgrmDArl5V9P8eORy9zXo+UdZa9stIEyISGBzMxMevXqJR4zGAzs3r2bjz76SLQfXr16FV/fvwNSMzMzxVVmixYt0Gq15OXlWawqMzMziYyMFM+5du1apd/PysqqtFotj0qlQqWq/1VTmVbP5etljOnZihKtngl9Aygo06GQykjOKuL5H49z7GK+WPmju78bkyOD+DL+Qo2ZRNR2ciRIWLLtHHKpFA+1ErWdDAHYl5SDezcVq/elWsTvmVcyZvRGUzhJdaWmSrUG8dyGsos1hPwrFlYuj7O9HGc7hSkRQDVbbqVaPRsSLjGonbfV65hXLuZk6iqljPUHLrL7vKlSRcX4SXNx5vTckkqDJMCkG04nxy5dp3egO6tiwnjw0zhyijVodIKoo4ZIMdhQ70DFCcuAUE9KdQY2zx9IbrEWbyc7tAYDRr1JD6tieiOXmWIjv4i7IG7XdvN3Yd3Uvny+J7VSPGyP1m5IJNT4vsxbf4StT0WLOyTNebu1POYVZWPaJyvSxseJEZ1bsOXkVd7ZcpaBbTzvmJCRRnsqhgwZwokTJzh69Kj4LywsjEcffZSjR48SHBxMixYt2Lp1q/gdrVbLrl27xEGwV69eKBQKi3MyMjI4efKkeE5ERAT5+fkcOHBAPGf//v3k5+eL59xWJBL2JmVTpNGzcm+qKdn169sIe2Mrm05ksCqmt5js+sPtSfx05DIzo4J5tG9r4lNyiIkItHrZyZFBaHWmVG3tWzjTw9+VU5fz+d+D3Vi1LxU/VztW70u1CFcwO4ysiU1j4ch2f19Hb2SWFaejeUNCiYkMZMyyWMLe2MryXSlNKmG62evYGma7VE3IpFJW7k3BQ60kwMOedj5OuDsq6dnajW+m9WXvwkF8HhOG2k5BsVbPsp3JLP0riTmDQiuFi5jl/+muZMb0aMXcwZZOJ/OHtCEmMpA3N53lw+1JfLIzmYyCMv59d3uLBParY1ObVLKB8mEbIV5qFgxty6q9qYS/tZ3+i3eIz5ZREHjplxPIZRKu5pfxyY4kCwezOYNCWbE7pZLT2dK/kli2M4miMn21+j6Qmsv93VvVSu/NjfJbr3cSD/RoiZ1CyqkrBfx5uvICp7Fo0BXlY489VmWWHicnJzp37mxxzNHREQ8PD/H4ggULePPNN2nTpg1t2rThzTffxMHBgQkTJgDg4uLC1KlTeeaZZ/Dw8MDd3Z1nn32WLl26MHToUAA6dOjAyJEjmTZtGsuXLwdM4SGjRo2q0pGnoSifA9Q8aJmpmOzaXED53a2JPNLHn8gQD7r7uxIR7Gk1k8is6BCyC8vwdrbnk0d7muyfWgN2Shm/HrvMrOiQSqnxzJjzhj4/sj0P9/FHJZfy85HLTBsQJDodOark7DqXxdhP48SVT0OuZhqCinlE62KXKizTIZfKyC3W8seCKPKKtTjZyVHKTcckmFKDvb35NO+O68Hq2NRKSSMqsjYujSejQ+nZ2pVZ0UNEm9rZqwUW27HmIs5Bno7EJf/t9NPUUgyWD5N6/q52rLrxLrg7Kmnn40RWkUbMbfzafV0o1erxd3dkTTn7fE0yXR2bxuxBbZh2o0BwRX1P6R/Ez0cu/yPskda4E1eUYNqCHdnJl5+PXubTXcmM6NSisZsE1HGgDAwMZMqUKUyaNInWratO77Vs2bI6Nwzgueeeo7S0lCeffJK8vDz69u3Ln3/+aVE0esmSJcjlcsaNG0dpaSlDhgxhzZo1YgwlwFdffcW8efNE79jRo0fz0Ucf3VLbbpZSrR6ZVMrPRy8xI2pgjYOWuYCyqU6kjg6+zjz3wwkmRwZaDGBmu4oE2JBw2aJDeGZYW+7p6lcpQLsiZvvmQ71a8uCyOL6c2ocNCRcZ07MVSrkUZzsFQ5fs5EJO5fy+TS1hujWv45uxSznZKdgwM4LV+1LF7dTlu1MqpaN7b1wP8m+EK7TzcapR/iVaPT1auyGXSpEgYDQambT6YKWcu7nFWhxVcr7af1E83tTCGcwTFnuFjH6hnny0I4nPHu8lVtTxVCsxCvDdoYv4ONux8dhlBrf3sZBfTbVczVVgMgvKKr0vZTqTA9TYsFb/yEGyRKsnI78MaJysPDUxopMPG49f4Uj6dU5dyaeTn0tjN6luW6/PPPMMv/zyC8HBwQwbNoz169dbuJHXlZ07d/L++++Lf0skEl555RUyMjIoKytj165dlVahdnZ2LF26lJycHEpKSti4cWMlhwN3d3cxprOgoIB169bh6up6y+2tLRqdgQ0Jl8gq1NRq0DIXUIYbtjN7OZtPZPD2mC7sSMwkcvFfhL+1nelfHmLV3lQEQeATq3GPSahVcosAbWuY7TUOKjl6owE3ByWp2SUU3qhzWFCmszpImn/HfF5TwUEpRymX4qFW3XStSY3ewJrY1Gq3Uz/Yfp6Ve1NxdTDJvDYxrGqVHI1Oz4HUbNbtT2d3hTAR83nujkrs5DIOp+eJx2u7bXwnoVLIeCy8NRqdkVUxvTl+KV+sxxmXksPy3cm0crNn9b5UPtieVEl+tZGpm6OCqV8cYl18OgbBKOrb2b5uNUabC+ev3UhUYWd67+80XB2U9Ak01TVeF5/eyK0xUaeBcu7cuSQkJJCQkEDHjh2ZN28evr6+zJkzh8OHD9d3G5s0pVo9n+xM5v1t53FzVNRq0CpvfzLH1vm42ImVR8yDacKF66zYk4JCJrPqgZlbrCU2OVsM0K7OvnnuaiH5JTqm9g8mLiUHvdEorlJqTAXWhFYzt4JGZ0Apk7ImNk3c+qsqHd2nu5PR6g1Migy0SFNojcmRQZTpjLg52uHv5sjMqOBKQfBgehYu5JQQe2Pb1WzHfDI6pEl2+nKZBKVcajHZcHdUEh7swS9HL4vytSa/mmQaE2GqrzoxPIBJ/QKxVzQ9+TQUiVdNQf3+7g6N3JKqGdrR5Gj569HLlN0BfhC35AHQrVs3PvjgAy5fvszLL7/M559/Tu/evenWrRurVq2qVcKB5o7ZFd78Ytc0aJkHRr3RKOb0/HRXCuHBHpUGQ3dHJbOiQ6wmWzfzxu9nmRkVwqW8Uib3C7LqMDIrOgQvJxUeahVjerTky7gLFquU+nCCaeqUavV8e+gimTcKZNdm669Io2dKvyDmD2nDRzuSmBQZWEn+FR2kfjxyGZlUymPhrStlk5k+MJggD0ciQzw49OJQDr0wjBlRwU1u+9CckadYY7iRhzhN/Ky6fK5T+gdZOJh9tCOJ6QODKzmdzR/ShicHhTKgjRdRbb349uDFJplNqqE42wQGyg4tnPBUKynWGvjrbGZjN+fWnHl0Oh0//fQTq1evZuvWrYSHhzN16lSuXLnCCy+8wLZt28R0c/9UzINYiJcaR6WMWdEhbDl5ldmDQpFIEAPgyzvllGkN7F80lN03YuvkUolFp2HO9GIOyHayU7AyJow3N52tFGKQVVQGCIR4OaJWyZnSL4i5g9uQX6rDxV5BclYR41fEWYSkfPhId1QyKcobHXB9OME0dczerg/1alVpO7Wq8AMXewXHL+VblNmaGRUiyt/JzrqDlFEQGN/bn0f6tBbDTLR6Aycu59Pd35XxK+L4YWY/FHJpkwtnKCuXkcfX2Z5Vk3pXSvVXVT7XJ9YeYu3k3syICia3WIu7o5LDF/IIC3RjRlQw10t0eKpVaA1GijWmhB7ZRRp+PHLppkulNWcSr5kyLLV2u3MHSolEQmSIJ78eu8IvRy9zd5fGrVlZp4Hy8OHDrF69mm+++QaZTMbEiRNZsmQJ7du3F88ZPnw4AwcOrLeGNlUqllxa/EciHz/Sk28PXqSzn6n4svml33M+m58OX6JvsAcXcoqZccPz1d1RideNHKFeaju+v+FMUr5q+6TIQL6bEV4paN2U/DmbU1cKaOFiz6Ifj5NXouOtMV04fCHPYovPHJIiQcKMqGDKJ5G6VSeYpk7hDTvt4Qt5osdmdSkBnxraFqMAe5OymfblIeRSKUGeDgzt4MPDvVvjZCdjxPu7rNp+zWnrcorKWLUvlaeHtWf0x/tIySpm78JBPNTLv0kmQC/S6FixO0XMviOXanBztIxtNe+8jO7WspJ8Ey7kEZeSw/lrRfxy9IpFgfGerd34cmpvVu5NYdmuZIuYylUxvSnR6FHK76y0aI1FU9h6BYgM8eDXY1fYkZglTuwbizoNlL1792bYsGEsW7aM+++/v1LhZoCOHTvy8MMP33IDmzoVSy65OypxVyt5d2uiRWot80vvbC8nftEQWrjY4e6oRG808mjf1mj1Rl69txPR7bxZE5vGhxVCS8ydz7/vbs/UtYfETmJyvyA2HrvCrOgQ8oq1rJval7wSLZ5qO6Z9cchqm6vyZDXbwf5pwdnwt51WKoFpA0zb0B/tSGJVTG+ASl6vY8NasXx3ssUgarYrl2gNTO4XVK2DVG6xhvnfHuNAai4xkUEopFKLRO1NbYJSqtUjl0otCpeXtzOWl9PbmxP5cVYEOcVaBrTxsgiH+mhHEuum9kWjN4qmCGd7OW880JkVuyunFDRfd2ZUyO250Tuc7CIN2UWmMKZWbneex2t5Wrs70MrNnkt5pfxx6irjwuonM1pdqNNAmZKSQkBAQLXnODo6snr16jo1qjlRseSSl1rF9RKdxQzaWgiAWiVn07z+ONubyiqt3JvKrHLbn9ZYE5vGoReGcfDFIbjYmZI/q1Vy2vioGb8ijoFtvJjcL4jlu1J4YkBwo+dzbUoYjEaejAqlR2s3NHojIzu3ECtWzIgKZu7gNuSVmGIq41NykEksB4XymFeMAR72VgdLk0OXijWTexOXnIPHDeeu2iRqv1ORS6VcLSir9Mx9uiuFVZN6WwyG7X3VqBQyfj56mV3nspgdHcr+RUMo0RqwV8ostlvNuzEyqaTalIJzB7e5Hbd5x2NeTXo7qxosR3B9Yd5+/e7QRTYeu9L0BsqaBkkblhSUc7apjW3L3VGJXCrlqW+PcOxSgWnmvXAw3x1KZ1A7n2oHuMzCMl7beJrzWUVMigykrY+aCZ/tB0xV3QHu6tICb2dVo+dzbUpIgIkRrdHojazcm8qmE1d5aVR7+gZ7UFSmR24nJTmziP/78xzFGj2fxzhVq6frpVqm9Avi5V9PV/o8JiKQnYmZPPv9MSZFBhIe7MH8IW14uHfTW0maMU28/n7uy9vZ80t0TB8YzJODQsguNO2qlE+QvnhLIkq5hD6B7nwRe4G3t5wF/k4X6OKg4IOHu9smfrXg+CVTHxDo4djILakdkSEefHfoIrHJOeQUaRpNh7XeO3Nzc8Pd3b1W/2xY4lwhvEKnr9qL1BwCoNEb6NzSFTcHJV890RsvJxUr96bWKrTk7LUCRnX1ZVyYP8t3Wc6y18al0bO1OxeyS6oNV/gneLLeDFKplH99fwwHpZzd57P4bkY4CReu0/fN7fR+Yzt93txGXEoOnz3eC0eVvEY9OakU3NvVr5IXrNnTefGWRHFLfcXuFB7s2bLJDpIAajsFCRfyLOqqmmMnI97+i4i3t7NqbypOKhkquUxcjZvPTbhwnUc+38/YsL9T/eUWa8koKCW6rRcejtXX+bRN/Ewcu3gdgFBvdeM2pJb4ONsR5OmIwSiw+WTV1Z4amlqvKMsnAsjJyeH1119nxIgRREREABAXF8cff/zBSy+9VO+NbOqUT9nlpVZRqjUwY2Dl1FoxEYFMHxiMwSCQV6JlZlQw0wcG89fZa+SXmpxJqnMgmRwZhEZnZPP8gew5n803B9J5pI+/WGMR/t7afeePsyx+sCtQ2b72T/FkvRkKy3QkZ5ZwvURrkWjAjKU9LLhaPU2KDCQ2OZs3N53l33e3Z/agoRRr9OIgXNEhq6llP7KGVm+gT6A7YQHu3GOlrmpBqZ7FWxJp6WZHZIiXuDp8/q52FueOWx7PwpHtiF/0d6q/PeezOJCaU+170dzrS9aW45euA6YJSFMhItiD1Oxifjt+hcfCG2c3s9YDZUxMjPj/Dz74IP/973+ZM2eOeGzevHl89NFHbNu2jaeeeqp+W9nEMYdX2CmkxCVn42Sv4JsD6US187Qs4HwjBODs1UIe6NESowCf7Unht+MZ3NXZD2d7OW9vTuS7GeEAlapQxEQG8q/vj3E4/bqFY5A5HR78nenncPp1i07HbOsxCtgGSSs42ylQKSQ42SlqzNsav2gIE1ceYMXEXuKx8nqaMTAEqQTWTumNu6OSA6k5RAR7MuKD3RZlv8w09a1Djc7AZzcqfPRq7cbyiWFVJmr47uAlRnbyEwswV5R1clYR079MwN1RSZCnA99MiyAixIOCUh1hge5WQ65sEz8TmQVlXMkvQyKBIM+msfUKEB7swdcH0tmfmktmQRnezrc/P22dbJR//PEHixcvrnR8xIgRPP/887fcqOaEOcdroUbPlP5BPBYewLcHL/LqRpNtqmdrN56/qx1dWrlQrDXQK8Cddi2cUcmlSKUS8aXPLCwzxThuTxIHuP2LhlKs1eOglLHnfLZFPB5YpsMzD5STI4PYeyM9Wm6xVux0zJ63W58aiFply2Jixqy/gjId38/sh85goLBMX2MKwqIyPeOWx/PxhB7MHdyGgjKdqKfRH+0jr0Rr4e2c8OJQ3Bysbw825a3DikWalTKpmAPXGlqDQKnOQExEIH+eulZlUgfz83u9VMtfZzJZvS8NtZ2cGQODxYmfp1qF3vDPCWGqiWM37JOtXO3veEee8ng5qWjjreZ8ZhGbTmQwqZ91s1VDUqce0cPDg59++ol//etfFsd//vlnPDw86qVhzQFNueDq8jPcmMhAvoi7QHJWEYfT8xi3PB53RyXdWjnz6WNhvPLLCa4Wanl3bDexk3jp51Mse6wnYJoxT/8yga6tnNkwI5LhVcTjlU+HVz6hwfgVcRbnmTudptwhNwTW9Pf2mC4M7dCiRmesMr2e0d1a4u1sx383nuKFUR0Y+f5uCz2VX+Wr7eQMae9DwoXrla7ZlLcOKxZpPp9VhIt91XVBHZVS7BUyJvcLwl4hq9HxzUmlYHhHHy5fL2VtnOm9CPCwZ2r/YMaH+TdJD+GGwpwfOLgJbbuaCQ/24HxmERuPN6GB8tVXX2Xq1Kns3LlTtFHGx8ezZcsWPv/883ptYFOl4kwa/k6YbRQEi1Ja5T0AC8v0/N+4HpRo9Dio5GInsSMxk1nrDvPf+zoxZ5BpheJsp0CjN3B/91ZWiyxPigzEaBTYNG8A7o5KtAYDV66XMrCNl+gBW56m3CHXN1Xp78WfTzGwrVe1ha11eoGtT0WTnFXE5DUHOHYxn8EdvLmve0vRk7Pid05fKeDhPq0p0xua1dZhxfSKKVnFFrsjFekb5InOYOSXo5cJ9VZjNApVyjrmRlHrj3cm8faYrmKIjpuD8h+VDKO2xCbnANDB13rpwzuZ8GAP1sVfIOFCHleul+LnentjQOs0UE6aNIkOHTrw4Ycf8uOPPyIIAh07dmTfvn307du3vtvYJKk4ky5P+VJabg5KvpsRzprYNItMOzERgUwbEGzhoLAjMZMB72QS7OXIgqFtGNzOGyc7RZXp5WZGhyCTSHC5kXxaKZcic5Ewe1Co1ZqWTblDrm+q0l9usZaTl/N5YkAQRkGoZH98YkAQUuDZ744xtncrNsyIJLdYi4u9nL5BHghCZZvlEwOCUMqkSCQSpg8IZs6gNs0m+5E5UUP5wdK8OyJBUsmZbVK/QM5fK+ShXq1YsTuFdfFpfPBIz0qyLp/uMXpGJKU3crk625sqw9gme5bkl+o4ccORp7Nf0xso3R2VtGvhxNmrhfx+PINpN5whbxcSwZa5vFYUFBTg4uJCfn5+lcWoy5NTpKHX69uq/HzvwkFMXXOIZ0e05filfKveei/f25FxYf58uivZaichlUgsHIGUctnffxuMyKVgV0XVhJIbmVLKd8h3cgWKm5X/rVKd/kK81Gya15/U7GJaeziIjlAXckrwc7HjxyOXaelqz/QvE+jZ2o1nh7elZ4AbZVoDcpkEhVxKTpHpOxqdgQXfHqNrK5c7vgB2XXRgbWUO8Pvcfvg42+NsrxC3/RMu5BHqpealX07y0YSepN2Qb0GpDrVKLj7fZu/gFbtTuK+7H2N6tkQhlaCyVQipkq2nrzHti0O0cLZjyfjujd2cOvHn6aus3pdG+xZObJ4/AIlEctt+u85PlsFg4Oeff+bMmTNIJBI6duzI6NGjLQom/5OxNpM2Y05FplJIqvWgXLLtHA/39qdHazdmRYdQqjXcGAQNfHvwopgGr/yKUEwvJ69+Rv1PTkdXG6rTX0tXk8zMM0y5VCL+LQjw89HLfDMtHHdHJUlZhexPzaVHa1fe3XqO309kAIiOPI/2bc0jffx59vtjTT4ExBrWEuoPbONBiLcTH+9IIiWrkPfG9WDl3lS+PZTO5vkD0eoNSPhbvgBSqYTUnGJ8nex49PP9or3tfGYh48P8Mdjm+9WyLykbgM4tm95q0kxksCfr4i9w9mohRy9ep0drt9v223UaKJOSkrj77ru5fPky7dq1QxAEzp07h7+/P7///jshIba8iuVjJysyKTKQrEIN386IoKjMUK0HZU6xlsWbz/JAj5bE9AvAYDTymZWclua/7/RVSVOhOv29fG8nsVB2xVy9cweHMjs6lFKtgT8XDMTZXo5Wb+Thz+It7MJmRx7zNrx5dd9UQ0Cqo2JCfTuFjGU7/86D+2jfXAa192ZSv0A0OiP/vrsjH9/IzGNNvjOjgkX7fkGpnqwiDT5Otz9koKkgCAJbT18DoEtL18ZtzC2gtpMTHuTBnqRsvt6fflsHyjotI+bNm0dISAgXL17k8OHDHDlyhPT0dIKCgpg3b159t7FJYq+UMys6xGrmlSejQ9l25hrjl8ehvuGwYw2zB+V93f3E4rPV2T5Xx6Yil9pWhvWBeSVUsdbhcyPa4e/uWK39uX8bTxxVcpzs5Jy/VkReic6q8xT8HU4S5OnQrD2OHZQm26GHWoVCZvkMv/TLabydVKzZl8b//jhLsJdazMyTW6wl8VqhOLH49dhlBrT1JNjLFAdofkcKy3S3/Z6aCkcuXufy9VJUcind/F0auzm3xOAO3gD8euwKWYWa2/a7dVp67Nq1i/j4eIt0dR4eHrz99tv069ev3hrX1CnTGujSsnIprVnrDvNIH3++n9mPUp2hWg9Ko1EgxFtNmdaAnUJWbZHmglI9JRo9BqPUFLvZROyPdypVlRYrKNPhpbbj3bEmT+WcIi0eaiV7z2eLqefMG4fB3o4IAjWGkwzr0OIf43Fc8RlOzioSY4Mn9w+0yI1sprxneFGZgd/nDmDP+SwuXy8lLjmHAW28bvdtNBl+O2ba7u8V4IZK3rRNY+18nAjxciQ5q5hV+1JZOLJ9zV+qB+rUe6pUKgoLCysdLyoqQqm01Xwz46CS8+z3x5BLpRbbRwAJ6bnELxrC//44y7/v7gBUTmc3qV8gMasPcj6zkEMvDAOqt51183fBTmna1rJ5tNYP5gmGs52CoUt24u6o4ptp4WywUhM0JiKQDTMjUKvkTF17gOUTw8gr1pJ6I6+uNYetmIhA0nNKmNwv8B+jH2vPsDnjTtdWznw/s5/F5+Z8rxU9wydFBvJkdChbTl79x0wybhaN3sDG41cAUyq4po5EIuH+7i15d+s5voy7wBP9g26LuaJOT9aoUaOYPn06+/fvRxAEBEEgPj6emTNnMnr06PpuY5PFbOequH0EptViXHIO6+LTmf3VEab2D+LAv4eyd+Eg4hcNoXNLFx5aFkfCjULB5iTl5mtaY/GYriy7YTszdzJm++UnO5Mp0VpfidqoGb3RyP3dW3Ek/TrZRRrWxKay9K8kCzkv/SuJNbGpZBdp6O7vRlxyDq4OSt7beo5JkYGVtuHnD2nD7EGhBHg4/GMGSaj+GY5q601mQRmTIwPFY+XzvZaX94fbk/hkZxJDO3rbdkyq4KfDl8kq1ODuqKS7v2tjN6de6BngRoCHA0UaPe+UKzzfkNRpoPzwww8JCQkhIiICOzs77OzsiIyMJDQ0lA8++KC+29hkqcrONXdwKDOjQ7iYVwKY4iPnrz+KwSjw19lM7vpgNzO+TCCrqIz5Q9rwZHSI2BFUdc3nR7Yn2Etts182EGa5Pz+yPR6OqiprTa6JTcPdUcnkyEAu5ZWSnlPC+cxCxi2Pp7u/Kwf+PZSEF4dy6IVhzIgKxk4hw/4f1slX9QzPG2KqnPLSL6eYFBnE/CGmmp39Qj2rzA27JjYNpc3T3ip6g5EVu1MAuLuzL3JZ83j/pRKJONH69tBFYpOzG/w3bymOMikpidOnTTlLO3bsSGho83NvN3MrcXwVYxa1BiMYjcjlMj7ZmSRmYunm78L/HuxKoKe6RvtixWsaBCMlGkO1sZsJLw5tsl6VtzuOsipKdXqKNQbCqpHzgReGEJecw8hOLTAKQrOxF9e3Dso/w2qVnDK9kR8PX2LJtnN4qe147f5O9A5wJ79UR9gbzfO5bkiWbj/Pu1vPoVbJ+fDhHtgrm9eEYsXuFHYkZuLhqOTn2f3wd3dosN+q8xu7cuVKlixZwvnzJieUNm3asGDBAp544ol6a1xzoVLMYrkYR3MmFnNKOlPiAGmN8Y0VrwlSZBKprRhzA2OvkNcoZ1d7JcM6+lhsp9riVStT/hku0eqxV8gY06MVj/YNECcWOqMR52pyw9qea+vsOZ8lOgjGRAY2u0ESTGF2KdlFXMgpYdzyOFZP7k37Fg0zia7TW/vSSy8xf/587r33XjZs2MCGDRu49957eeqpp3jxxRfru43NGrWdAqVciqdahVIuvaUkztXZfmzFmOuP2si5qa4aGwtz+IiLg0KcKCrlUhyUcttzfROU6Qys2J3M1DWH0BsFIoI96BfS9J14rKGUS/nX8Hb4udqRkV/GvUv38tpvp0nOKqK+E87VaevV09OTpUuX8sgjj1gc/+abb5g7dy7Z2Q2/Z3y7uVO2/mpCozPwSTP0er3T5N9c5VwdjamDf6K8q+N6iZavD6RTojFQrNVTrNFz+Xophy9cp1RnAKBPkDtzB4U2G9tkVRSU6Vi+K0XM1gTg7aSiXQsnvJ3s8FArUcgkyKWmfNcjOvkQ6u10U79Rp4HSzc2NAwcO0KZNG4vj586do0+fPly/fv1mL3nHk5+fj6urKxcvXrwjOurqMNt+isp0qO9wu5iTk1OtcjbeifJvSnKuitrKHxpfB81B3taorQ4EQRDD8q7klzHy44NWz/NWK3kkzI/B7TyQ3sZ8qI2JIAgkpOez8WQmxy8XojdWPaz93wPtGd7h77jb2si/TgPl3LlzUSgUvPfeexbHn332WUpLS/n4449v9pJ3PCkpKbbUfA1AbVcnly5dwt/f/za06J/FzawObTpoGGqrA/OK3kb9Uhv513o69vTTT4v/L5FI+Pzzz/nzzz8JDw8HTPUoL168yOOPP17H5t7ZmLMQpaenN+mHtaCgAH9//ztmZebkVLstED8/Py5evHhTK6BboTHldDt/u7byh/rTQUPdX1O7rpna6sDJyYn8fOupEKviTnvf77T2QO3kX+uB8siRIxZ/9+rVC4Dk5GQAvLy88PLy4tSpUzfTxiaD9EYMoouLyx2j4FvB2dm5Sd2HVCqlVatWt/13G1NOd5qO6lsHDXV/Te26tUUikdT59xu77RW509pTE7UeKHfs2NGQ7bBhw4YNGzbuSJq3O5QNGzZs2LBxi9gGylqiUql4+eWXUamadgaQ5nIfDU1jyqm566ih7q+pXfd2cKe1/U5rT225pRR2NmzYsGHDRnPHtqK0YcOGDRs2qsE2UNqwYcOGDRvVYBsobdiwYcOGjWqwDZQ2bNiwYcNGNdgGynK89dZb9O7dGycnJ7y9vbn//vtJTLSsoD1p0iQkEonFP3N2ojuFV155pVIbW7RoIX4uCAKvvPIKfn5+2NvbEx0d3WwTRdTE7t27uffee/Hz80MikfDzzz9bfN5Q+q7Ns9bU9FSTLCvK0fzvf//7n3hOdHR0pc/d3d1vWU4ajYa5c+fi6emJo6MjHTp0oFu3blVeV6fTsXDhQrp06YKjoyN+fn48/vjjXLlyxeK61tr78MMP15NE669Pqnj/o0eP5tKlSxbn5OXlMXHiRFxcXHBxcWHixIlW83bXR/9Sn+25HdgGynLs2rWL2bNnEx8fz9atW9Hr9QwfPpzi4mKL80aOHElGRob4b9OmTY3U4qrp1KmTRRtPnDghfvbOO+/w3nvv8dFHH3Hw4EFatGjBsGHDxITL/ySKi4vp1q0bH330UZXnNIS+a/OsNTU91STL8jLMyMhg1apVSCQSHnzwQYvzpk2bJp4THR3N66+/fstyWrBgAT/99BPr169n7969ZGZmkpeXx759+6xet6SkhMOHD/PSSy9x+PBhfvzxR86dO8fo0aMr3Vf59mZkZLB8+fL6ECdQf31SxfsvKipi1KhRGAwG8ZwJEyZw9OhRtmzZwpYtWzh69CgTJ0602q5b7V/quz0NjmCjSjIzMwVA2LVrl3gsJiZGuO+++xqvUbXg5ZdfFrp162b1M6PRKLRo0UJ4++23xWNlZWWCi4uL8Omnn96mFt6ZAMJPP/1kcex26bvis9bU9WRNlhW57777hMGDB1sci4qKEubPn1/ld+oip+vXrwsKhUJYv369eM7ly5cFqVQqbNmyxep1rXHgwAEBEC5cuFDr9tY3demTanP/p0+fFgAhPj5ePCcuLk4AhLNnz1pc71b7l/puz+3AtqKsBnMCYnNCdDM7d+7E29ubtm3bMm3aNDIzMxujedVy/vx5/Pz8CAoK4uGHHyYlJQWA1NRUrl69yvDhw8VzVSoVUVFRxMbGNlZz72huh74rPmvNXU/Xrl3j999/Z+rUqZU+++qrr/D09KRTp048++yzFiuRusgpISEBnU5ncY6fnx+dO3cWz6nqXS9Pfn4+EokEV1fXWre3vqlLn1Sb+4+Li8PFxYW+ffuK54SHh+Pi4mL1ebuV/qUh2tPQNP1ibg2EIAg8/fTT9O/fn86dO4vH77rrLsaOHUtAQACpqam89NJLDB48mISEhDsm20Tfvn354osvaNu2LdeuXeP1118nMjKSU6dOcfXqVQB8fHwsvuPj48OFCxcao7l3NLdD39aeteaup7Vr1+Lk5MSYMWMsjj/66KMEBQXRokULTp48yaJFizh27Bhbt26ts5yuXr2KUqnEzc2t0jlXr16t8l0vT1lZGc8//zwTJkywSOZdXXvrm7r2STXdP5hk5O3tXek3vb29xXPM3Gr/Ut/tuR3YBsoqmDNnDsePH2fv3r0Wx8ePHy/+f+fOnQkLCyMgIIDff/+90kvfWNx1113i/3fp0oWIiAhCQkJYu3ataOSvWCZJEITbUr6qqXE79F3VswbNV0+rVq3i0Ucfxc7OzuL4tGnTxP/v3Lkzbdq0ISwsjMOHD7Ny5cp6lZP5nOrkDybHnocffhij0cgnn3xS6/b27Nmz2t+/Weq7T6ooI2vysibHhupf6tqe24Ft69UKc+fO5ddff2XHjh01lhXy9fUlICCA8+fP36bW3TyOjo506dKF8+fPi95pFWdlmZmZlWaBNipT3/qu6llrznras2cPiYmJPPHEEzWe27NnTxQKBf/+97/rLKcWLVqg1WrJy8urdM7hw4erfdd1Oh3jxo0jNTWVrVu31lgaytze+u4PbqVPqu7+y8vo2rVrla6VlZVV4/N2s/1LQ7enIbANlOUQBIE5c+bw448/8tdffxEUFFTjd3Jycrh48SK+vr63oYV1Q6PRcObMGXx9fcVtovJbQ1qtll27dhEZGdmIrWwa1Je+a3rWmrOeVq5cSa9evejWrVuN5548eRKdTkdCQkKd5dSrVy8UCoXFOVeuXOH48eOkpKRU+a6bB8nz58+zbds2PDw8amzvqVOn0Ol09dYf1EefZO3+MzIyOHnypCijiIgI8vPzOXDggHjO/v37yc/Pr/F5u9n+paHb0yDcdvehO5hZs2YJLi4uws6dO4WMjAzxX0lJiSAIglBYWCg888wzQmxsrJCamirs2LFDiIiIEFq2bCkUFBQ0cuv/5plnnhF27twppKSkCPHx8cKoUaMEJycnIS0tTRAEQXj77bcFFxcX4ccffxROnDghPPLII4Kvr+8ddQ+3i8LCQuHIkSPCkSNHBEB47733hCNHjggXLlxoUH3X9KwJQtPTU3WyNJOfny84ODgIy5Ytq/T9pKQk4dVXXxUOHjwopKamCr///rvg6uoqyGQyYfv27bckp5kzZwqtWrUStm3bJhw+fFho2bKlIJVKq7yuTqcTRo8eLbRq1Uo4evSoxTkajabK9rZv317o0aOHoNfr60Wm9dUnVbz/wYMHC926dbNo58iRI4WuXbsKcXFxQlxcnNClSxdh1KhRldpUH/1LfbbndmAbKMsBWP23evVqQRAEoaSkRBg+fLjg5eUlKBQKoXXr1kJMTIyQnp7euA2vwPjx4wVfX19BoVAIfn5+wpgxY4RTp06JnxuNRuHll18WWrRoIahUKmHgwIHCiRMnGrHFjceOHTus6jwmJqZB9V3TsyYITU9P1cnSzPLlywV7e3vh+vXrlb6fnp4uDBw4UHB3dxeUSqUQEhJSb3IqLS0V5syZI7i7uwv29vY1Xjc1NbXKc3bs2FFle+fNmyfk5OTUm0zrq0+qeP+jRo2qdE5OTo7w6KOPCk5OToKTk5Pw6KOPCnl5eZXaVB/9S32253ZgK7Nlw4YNGzZsVIPNRmnDhg0bNmxUg22gtGHDhg0bNqrBNlDasGHDhg0b1WAbKG3YsGHDho1qsA2UNmzYsGHDRjXYBkobNmzYsGGjGmwDpQ0bNmzYsFENtoHShg0bNmzYqAbbQAlER0ezYMGCKj8PDAzk/fffF/+WSCT8/PPPAKSlpSGRSDh69GiNv7Nz504kEgnXr1+/pfbWFzXdd2Nwu3Rhjdupn1deeYXu3bs32PUFQWD69Om4u7uLNRTLy7WiHO9kyuu4sWlovVWkId7RNWvWVKqpaaN6bANlLTh48CDTp09v7GbUmTttgL4VmqIuGqOj37JlC2vWrOG3334jIyOjUp3FpijH282dNEDbaFxs9ShrgZeXV2M3wcYNbLqoHcnJyfj6+oqVFuRyy1f9TpGjVqtFqVQ2djNs2KgW24ryBnq9njlz5uDq6oqHhwcvvvgi5jS4DblNFRsby8CBA7G3t8ff35958+ZRXFwsfh4YGMibb77JlClTcHJyonXr1qxYsaLSNbp3746dnR1hYWH8/PPP4hZkWloagwYNAsDNzQ2JRMKkSZPE7xqNRp577jnc3d1p0aIFr7zySq3bLpFIWL58OaNGjcLBwYEOHToQFxdHUlIS0dHRODo6EhERQXJysvgd89bVqlWraN26NWq1mlmzZmEwGHjnnXeIjY1l+fLlhIeHN7guNm3aRNu2bbG3t2fQoEGkpaVVOqc2+nnttdeYMGECarUaPz8/li5davE5wAMPPIBEIhH/NvPll18SGBiIi4sLDz/8MIWFhbVqe3R0NHPnzmXBggW4ubnh4+PDihUrKC4uJjQ0lLlz55Kenm7xm5cuXUIikfDHH3+gVCpRKBQMHjyYzMxMJBIJLVq0QC6XI5fLCQwMZMOGDeLvmbe1169fT2RkJHZ2dnTq1ImdO3datOv06dPcfffdqNVqfHx8mDhxItnZ2RbtnjNnDk8//TSenp4MGzasVvdbnsuXLzN+/Hjc3Nzw8PDgvvvus9DdpEmTuP/++/m///s/fH198fDwYPbs2eh0OvGcjIwM7rnnHuzt7QkKCuLrr7+2eLYaQ2+TJ0/GycmJkJAQNm/eLH7nwoULSCQS1Gq1qJ9BgwaRmZnJd999h4uLCxKJBLlczvDhwyvVwlyzZg2tW7fGwcGBBx54gJycHPGztLQ0pFIphw4dsvjO0qVLCQgIoKZU4Obdqj/++IMePXpgb28vPlObN2+mQ4cOODs788gjj1BSUiJ+b8uWLfTv3198x0eNGmXRT2i1WubMmYOvry92dnYEBgby1ltviZ+/8sortG7dGpVKhZ+fH/PmzauV/GvSe5U0Sir2O4yoqChBrVYL8+fPF86ePSusW7dOcHBwEFasWCEIgiAEBAQIS5YsEc8HhJ9++kkQhL+rDBw5cqTG3zFXVzBnwD9+/LigVquFJUuWCOfOnRP27dsn9OjRQ5g0aZL4nYCAAMHd3V34+OOPhfPnzwtvvfWWIJVKhTNnzgiCIAgFBQWCu7u78NhjjwmnTp0SNm3aJLRt21Zsk16vF3744QcBEBITE4WMjAyxckNUVJTg7OwsvPLKK8K5c+eEtWvXChKJRPjzzz9rJTdAaNmypfDtt98KiYmJwv333y8EBgYKgwcPFrZs2SKcPn1aCA8PF0aOHCl+5+WXXxbUarXw0EMPCadOnRJ+/fVXQalUCiNGjBDmzp0r9O7dW1CpVAIgrF+/vsF0kZ6eLqhUKgud+/j41Ek/Tk5OwltvvSUkJiYKH374oSCTyUQZZmZmitUeMjIyhMzMTAs5jBkzRjhx4oSwe/duoUWLFsK///3vWsk+KipKcHJyEl577TXh3LlzwmuvvSZIpVLhrrvuEt5//31h/vz5gqOjo+Dm5iakpaUJUVFRwoMPPigAQnh4uNCiRQvhmWeeEUJDQ4WoqCgBEFxdXYXnnntOcHV1FQYPHizIZDLh9OnTFrJt1aqV8P333wunT58WnnjiCcHJyUnIzs4WBEEQrly5Inh6egqLFi0Szpw5Ixw+fFgYNmyYMGjQIIt2q9Vq4V//+pdw9uxZ8TmujvI6Li4uFtq0aSNMmTJFOH78uHD69GlhwoQJQrt27cTyVzExMYKzs7Mwc+ZM4cyZM8LGjRstniFBEIShQ4cK3bt3F+Lj44WEhAQhKipKsLe3F5+txtDbihUrhHPnzgmzZs0SPDw8hOLiYrFdgNCtWzfhP//5j2BnZyd4eXkJUVFRgpeXlxAUFCQsXbpUcHFxEdq2bSuEhoYKWq1WEARBiI+PFyQSifh8fvDBB4Krq6vg4uIitmnYsGHCk08+adHOHj16CP/5z39qvB9znxYeHi7s3btXOHz4sPhMDR8+XDh8+LCwe/duwcPDQ3j77bfF733//ffCDz/8IJw7d044cuSIcO+99wpdunQRDAaDIAiC8L///U/w9/cXdu/eLaSlpQl79uwRvv76a0EQBGHDhg2Cs7OzsGnTJuHChQvC/v37LXRbHTXpvSpsA6Vgeng7dOggGI1G8djChQuFDh06CILQcAPlxIkThenTp1ucs2fPHkEqlQqlpaXibz/22GPi50ajUfD29hbr+S1btkzw8PAQzxcEQfjss88s2lTxd8vfd//+/S2O9e7dW1i4cGGN9yIIJjm8+OKL4t9xcXECIKxcuVI89s033wh2dnbi3y+//LLg4OBgUZtuxIgRQmBgoGAwGERdtG3bVnjrrbcEQWgYXSxatMiqzuuin/ITAUEwlSG66667rLaxOjn861//Evr27Vtj2wWhsu70er3g6OgoTJw4URAEQViyZInQqlUrARDi4uIsBspt27aJcnzrrbfE0k0zZ84UBEEQZsyYIYwYMULo27evMGvWLEEQ/pZt+c5Op9MJrVq1EhYvXiwIgiC89NJLwvDhwy3aefHiRXGSZm539+7da3WPZsrLb+XKlUK7du0s9KbRaAR7e3vhjz/+EATBNFAGBARY1DYcO3asMH78eEEQBOHMmTMCIBw8eFD8/Pz58wJQ5bNlpqH1JgiCkJGRYaG3gIAAUW+CYHpOvb29Rb3t27dPEAST3gYNGiTY29sL3333nSAIgvDII49YfT7LD5Tffvut4ObmJpSVlQmCIAhHjx4VJBKJkJqaWuP9mPsWc9sEQRCfqeTkZPGY+ZmqCvPExFyOa+7cucLgwYMt9Gzm3XffFdq2bStOBmpLbfVuDdvW6w3Cw8ORSCTi3xEREZw/fx6DwdBgv5mQkMCaNWtQq9XivxEjRmA0GklNTRXP69q1q/j/5i2yzMxMABITE+natSt2dnbiOX369Kl1G8pfG8DX11e89s1+38fHB4AuXbpYHCsrK6OgoEA8FhgYiJOTk8U5HTt2RCo1PY7h4eEW99gQujhz5oxVnZentvqp+L2IiAjOnDlTYxsqyuFWZC+TyfDw8LCQvUwmA6h0zYo6c3BwsLgPHx8fMjMzrd5H+XuVy+WEhYWJ5yQkJLBjxw4LebVv3x7AYlstLCys1vdYkYSEBJKSknBychJ/w93dnbKyMovf6NSpk3j/YCnbxMRE5HI5PXv2FD8PDQ3Fzc2tVm1oaL2Z3yPzNTt06GDxvYiICHJyclAqlcjlcvr27St+7/r167Rr107UyZkzZ6w+n+W5//77kcvl/PTTTwCsWrWKQYMGVdpuru09mZ+p4OBgi2PlZZScnMyECRMIDg7G2dmZoKAgANLT0wHT9vnRo0dp164d8+bN488//xS/O3bsWEpLSwkODmbatGn89NNP6PX6Gtt4K3q3OfM0IkajkRkzZljdX2/durX4/wqFwuIziUSC0WgETGEA5Tt787HaUt21b/b75nZYO1b+mtZ+81bbcbPURka11Y81KurEGvUpe/P3Kx4DKl2zon6qa0dt7qO8ju+9914WL15c6RxfX1/x/x0dHWu8ZlUYjUZ69erFV199Vemz8g5KNb0z1qjte9PQcLWRogAABxNJREFUerP2zlj7nlwuR6vVWm2H+Rq1uSelUsnEiRNZvXo1Y8aM4euvv75pP4CbeaYA7r33Xvz9/fnss8/w8/PDaDTSuXNn8X569uxJamoqmzdvZtu2bYwbN46hQ4fy/fff4+/vT2JiIlu3bmXbtm08+eST/O9//2PXrl1Wn38zt6J320B5g/j4+Ep/t2nTxmJWWt/07NmTU6dOERoaWudrtG/fnq+++gqNRoNKpQKoZJg3exU25Oq4PomPj8fb29vi7/rWRceOHSu5/ld8BmqrH2vPjnklBaZOpCnIPj4+nscff9zi7x49elQ6Z+DAgYDJAS4hIYE5c+YAJnn98MMPBAYGVvKyrS969uzJt99+i7e3N87OznW6Rvv27dHr9Rw5coRevXoBkJSUVCl86k7RW8VVfXx8PD4+PhQUFKDX69m/f7/o3azX60lJSRFXoR07drT6fFbkiSeeoHPnznzyySfodDrGjBnTQHcDOTk5nDlzhuXLlzNgwAAA9u7dW+k8Z2dnxo8fz/jx43nooYcYOXIkubm5uLu7Y29vz+jRoxk9ejSzZ8+mffv2nDhxwmK1WJHa6t0atq3XG1y8eJGnn36axMREvvnmG5YuXcr8+fMb9DcXLlxIXFwcs2fP5ujRo5w/f55ff/2VuXPn1voaEyZMwGg0Mn36dM6cOcMff/zB//3f/wF/zyoDAgKQSCT89ttvZGVlUVRU1CD3U19cvHiRpKQk8vLyGkwXM2fOJDk5WdT5119/zZo1ayzOqa1+9u3bxzvvvMO5c+f4+OOP2bBhg0V7AwMD2b59O1evXiUvL69e76M+2bBhA6tWrSInJ4erV69y4MABcRA08/HHH/PTTz9x9uxZZs+eTV5eHlOmTAFg9uzZ5Obm8sgjj3DgwAFSUlL4888/mTJlSr0NOI8++iienp7cd9997Nmzh9TUVHbt2sX8+fO5dOlSra7Rvn17hg4dyvTp0zlw4ABHjhxh+vTp2NvbW6yg7xS9mbcsz58/L74PQ4cORSaTcd999zFt2jT27t3L1atXSU9Pp2XLltx3330AzJs3jy1btojP50cffcSWLVsq/UaHDh0IDw9n4cKFPPLII9jb2zfY/Zi9lVesWEFSUhJ//fUXTz/9tMU5S5YsYf369Zw9e5Zz586xYcMGWrRogaurK2vWrGHlypWcPHmSlJQUvvzyS+zt7QkICKj2d2urd2vYBsobPP7445SWltKnTx9mz57N3LlzGzwgu2vXruzatYvz588zYMAAevTowUsvvWSxTVUTzs7ObNy4kaNHj9K9e3deeOEF/vOf/wCIdsuWLVvy6quv8vzzz+Pj41Op87vTePzxxzEajaxfv77BdNG6dWt++OEHNm7cSLdu3fj000958803Lc6prX6eeeYZEhIS6NGjB6+99hrvvvsuI0aMED9/99132bp1K/7+/pVWaHcSr776KuvXr2fZsmXk5uby1Vdf0bFjR4tz3n77bRYvXky3bt3Ys2cPv/zyC56engD4+fmxb98+DAYDI0aMoHPnzsyfPx8XFxfR/nyrODg4sHv3blq3bs2YMWPo0KEDU6ZMobS09KZWmF988QU+Pj4MHDiQBx54gGnTpuHk5GRh679T9DZ8+HAAhgwZIr4P0dHRAKxevZpevXoxatQoVq5cCZjCnsxbkOHh4Xz++ecsXbqU7t278+eff/Liiy9a/Z2pU6ei1WrFiU9DIZVKWb9+PQkJCXTu3JmnnnqK//3vfxbnqNVqFi9eTFhYGL179yYtLY1NmzYhlUpxdXXls88+o1+/fnTt2pXt27ezceNGPDw8avzt2ujdKjflNmSjSbBu3TpBoVAIJSUljd2UZk9FL9ymClY8PMtzMx7FTRGzd255781/Gq+//rrQuXPnxm7GbaW2erfZKJsBX3zxBcHBwbRs2ZJjx46xcOFCxo0b16DbJzZsNGX++usvioqK6NKlCxkZGTz33HMEBgaK9td/EkVFRZw5c4alS5fy2muvNXZzGpS66t229VqPzJw508I1vvy/mTNnNtjvXr16lccee4wOHTrw1FNPMXbs2ErZe26Wr776qsp76dSpUz21vOFoLF3UB+np6VW2Xa1Wiy70zYHGes50Oh3//ve/6dSpEw888ABeXl7s3LmzWq/JmmiqepszZw79+/cnKiqq0rZrU3qP9uzZU638oe56lwjCTcQS2KiWzMxMi3jB8jg7O1t4ct7pFBYWcu3aNaufKRSKGg3njU1T1oVer7eaTs9MQ3qV3m6a+nNWnuaot6b0HpWWlnL58uUqP7+V6ALbQGnDhg0bNmxUg23r1YYNGzZs2KgG20Bpw4YNGzZsVINtoLRhw4YNGzaqwTZQ2rBhw4YNG9VgGyht2LBhw4aNarANlDZs2LBhw0Y12AZKGzZs2LBhoxr+Hz2fgtBZYRvCAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import matplotlib.pyplot as plt\n", "g = sns.pairplot(penguins, corner=True, diag_kind='kde')\n", "g.fig.set_size_inches(4,4)" ] }, { "cell_type": "code", "execution_count": 3, "id": "e5c15a59", "metadata": { "slideshow": { "slide_type": "subslide" } }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGdCAYAAADnrPLBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAnzElEQVR4nO3df3CU5b3//9dqwppAsiqS3aTEkGJQMUARemKiNUFMRkCPNWc4WFBAbAcHrKTgoJE5Q+zQBHHMSTuMWKwHw1ik51Ts4RwOmFgwntNICSAV0xapRAiYmIohG/mRKLm+f/jNfljCj2RJuPfaPB8z94x7Xdfe+7561ebVa6/ddRljjAAAACx1hdMFAAAAXArCDAAAsBphBgAAWI0wAwAArEaYAQAAViPMAAAAqxFmAACA1QgzAADAalFOF9DXOjo69OmnnyouLk4ul8vpcgAAQDcYY9Ta2qqkpCRdccWF914iPsx8+umnSk5OdroMAAAQgvr6eg0dOvSCYyI+zMTFxUn65j+M+Ph4h6sBAADd4ff7lZycHPg7fiERH2Y631qKj48nzAAAYJnuHBHhADAAALAaYQYAAFiNMAMAAKxGmAEAAFYjzAAAAKsRZgAAgNUIMwAAwGqEGQAAYDXCDAAAsBphBgAAWI0wAwAArEaYAQAAViPMAAAAqxFmAACA1aKcLgDojmFPb3K6hB77ZPkUp0sAgH7B0Z2ZYcOGyeVydbnmz58vSTLGqKioSElJSYqJiVFOTo5qa2udLBkAAIQZR8NMTU2NGhoaAldlZaUkaerUqZKkFStWqLS0VCtXrlRNTY18Pp9yc3PV2trqZNkAACCMOBpmhgwZIp/PF7j++7//W8OHD1d2draMMSorK9OSJUuUn5+v9PR0lZeX68SJE1q3bp2TZQMAgDASNgeA29vb9dprr2nOnDlyuVyqq6tTY2Oj8vLyAmPcbreys7NVXV193vu0tbXJ7/cHXQAAIHKFTZj53e9+p2PHjmn27NmSpMbGRkmS1+sNGuf1egN951JSUiKPxxO4kpOT+6xmAADgvLAJM6+88oomTZqkpKSkoHaXyxX02BjTpe1MhYWFamlpCVz19fV9Ui8AAAgPYfHR7IMHD+rtt9/Whg0bAm0+n0/SNzs0iYmJgfampqYuuzVncrvdcrvdfVcsAAAIK2GxM7NmzRolJCRoypT/970cqamp8vl8gU84Sd+cq6mqqlJWVpYTZQIAgDDk+M5MR0eH1qxZo1mzZikq6v+V43K5VFBQoOLiYqWlpSktLU3FxcWKjY3V9OnTHawYAACEE8fDzNtvv61Dhw5pzpw5XfoWL16skydPat68eWpublZGRoYqKioUFxfnQKUAACAcuYwxxuki+pLf75fH41FLS4vi4+OdLgch4ucMAKB/6cnf77A4MwMAABAqwgwAALAaYQYAAFiNMAMAAKxGmAEAAFYjzAAAAKsRZgAAgNUIMwAAwGqEGQAAYDXCDAAAsBphBgAAWI0wAwAArEaYAQAAViPMAAAAqxFmAACA1QgzAADAaoQZAABgNcIMAACwGmEGAABYjTADAACsRpgBAABWI8wAAACrEWYAAIDVCDMAAMBqhBkAAGA1wgwAALAaYQYAAFiNMAMAAKxGmAEAAFYjzAAAAKsRZgAAgNUIMwAAwGqEGQAAYDXCDAAAsBphBgAAWI0wAwAArEaYAQAAViPMAAAAqxFmAACA1RwPM0eOHNFDDz2kwYMHKzY2Vt/5zne0a9euQL8xRkVFRUpKSlJMTIxycnJUW1vrYMUAACCcOBpmmpubdfvttys6OlqbN2/Wn//8Z73wwgu6+uqrA2NWrFih0tJSrVy5UjU1NfL5fMrNzVVra6tzhQMAgLAR5eSLP/fcc0pOTtaaNWsCbcOGDQv8szFGZWVlWrJkifLz8yVJ5eXl8nq9WrdunebOnXu5SwYAAGHG0Z2ZjRs3avz48Zo6daoSEhI0duxYvfzyy4H+uro6NTY2Ki8vL9DmdruVnZ2t6urqc96zra1Nfr8/6AIAAJHL0TBz4MABrVq1SmlpaXrrrbf02GOP6YknntDatWslSY2NjZIkr9cb9Dyv1xvoO1tJSYk8Hk/gSk5O7ttJAAAARzkaZjo6OnTrrbequLhYY8eO1dy5c/WjH/1Iq1atChrncrmCHhtjurR1KiwsVEtLS+Cqr6/vs/oBAIDzHA0ziYmJGjlyZFDbzTffrEOHDkmSfD6fJHXZhWlqauqyW9PJ7XYrPj4+6AIAAJHL0TBz++23a9++fUFtH330kVJSUiRJqamp8vl8qqysDPS3t7erqqpKWVlZl7VWAAAQnhz9NNNPfvITZWVlqbi4WP/8z/+sHTt2aPXq1Vq9erWkb95eKigoUHFxsdLS0pSWlqbi4mLFxsZq+vTpTpYOAADChKNh5rvf/a7efPNNFRYW6qc//alSU1NVVlamGTNmBMYsXrxYJ0+e1Lx589Tc3KyMjAxVVFQoLi7OwcoBAEC4cBljjNNF9CW/3y+Px6OWlhbOz1hs2NObnC6hxz5ZPsXpEgDAWj35++34zxkAAABcCsIMAACwGmEGAABYjTADAACsRpgBAABWI8wAAACrEWYAAIDVCDMAAMBqhBkAAGA1wgwAALAaYQYAAFiNMAMAAKxGmAEAAFYjzAAAAKsRZgAAgNUIMwAAwGqEGQAAYDXCDAAAsBphBgAAWI0wAwAArEaYAQAAViPMAAAAqxFmAACA1QgzAADAaoQZAABgNcIMAACwGmEGAABYjTADAACsFuV0AUCkGvb0JqdL6LFPlk9xugQA6DF2ZgAAgNUIMwAAwGqEGQAAYDXCDAAAsBphBgAAWI0wAwAArEaYAQAAViPMAAAAqxFmAACA1RwNM0VFRXK5XEGXz+cL9BtjVFRUpKSkJMXExCgnJ0e1tbUOVgwAAMKN4zszt9xyixoaGgLX3r17A30rVqxQaWmpVq5cqZqaGvl8PuXm5qq1tdXBigEAQDhxPMxERUXJ5/MFriFDhkj6ZlemrKxMS5YsUX5+vtLT01VeXq4TJ05o3bp1DlcNAADCheNhZv/+/UpKSlJqaqoefPBBHThwQJJUV1enxsZG5eXlBca63W5lZ2erurr6vPdra2uT3+8PugAAQORyNMxkZGRo7dq1euutt/Tyyy+rsbFRWVlZOnr0qBobGyVJXq836DlerzfQdy4lJSXyeDyBKzk5uU/nAAAAnOVomJk0aZL+6Z/+SaNGjdLdd9+tTZs2SZLKy8sDY1wuV9BzjDFd2s5UWFiolpaWwFVfX983xQMAgLDg+NtMZxo4cKBGjRql/fv3Bz7VdPYuTFNTU5fdmjO53W7Fx8cHXQAAIHKFVZhpa2vTX/7yFyUmJio1NVU+n0+VlZWB/vb2dlVVVSkrK8vBKgEAQDiJcvLFn3zySd133326/vrr1dTUpGXLlsnv92vWrFlyuVwqKChQcXGx0tLSlJaWpuLiYsXGxmr69OlOlg0AAMKIo2Hm8OHD+sEPfqDPP/9cQ4YM0W233abt27crJSVFkrR48WKdPHlS8+bNU3NzszIyMlRRUaG4uDgnywYAAGHEZYwxThfRl/x+vzwej1paWjg/Y7FhT29yuoR+4ZPlU5wuAQAk9ezvd1idmQEAAOgpwgwAALAaYQYAAFiNMAMAAKxGmAEAAFYjzAAAAKsRZgAAgNUIMwAAwGqEGQAAYDXCDAAAsBphBgAAWI0wAwAArEaYAQAAViPMAAAAqxFmAACA1QgzAADAaoQZAABgNcIMAACwGmEGAABYjTADAACsRpgBAABWI8wAAACrEWYAAIDVCDMAAMBqIYWZurq63q4DAAAgJCGFmRtuuEETJkzQa6+9plOnTvV2TQAAAN0WUpj505/+pLFjx2rRokXy+XyaO3euduzY0du1AQAAXFRIYSY9PV2lpaU6cuSI1qxZo8bGRt1xxx265ZZbVFpaqr///e+9XScAAMA5uYwx5lJv0tbWphdffFGFhYVqb29XdHS0pk2bpueee06JiYm9UWfI/H6/PB6PWlpaFB8f72gt4WLY05ucLgFh6pPlU5wuAQAk9ezv9yV9mmnnzp2aN2+eEhMTVVpaqieffFIff/yxtm7dqiNHjuj++++/lNsDAABcVFQoTyotLdWaNWu0b98+TZ48WWvXrtXkyZN1xRXfZKPU1FT98pe/1E033dSrxQIAAJwtpDCzatUqzZkzR4888oh8Pt85x1x//fV65ZVXLqk4AACAiwkpzOzfv/+iYwYMGKBZs2aFcnsAAIBuCynMrFmzRoMGDdLUqVOD2v/jP/5DJ06cIMQAlrLxcDiHlgGEdAB4+fLluu6667q0JyQkqLi4+JKLAgAA6K6QwszBgweVmprapT0lJUWHDh265KIAAAC6K6Qwk5CQoA8++KBL+5/+9CcNHjz4kosCAADorpDCzIMPPqgnnnhC27Zt0+nTp3X69Glt3bpVCxYs0IMPPtjbNQIAAJxXSAeAly1bpoMHD2rixImKivrmFh0dHZo5cyZnZgBcVhxaBhDSzsyAAQP0m9/8Rn/961/161//Whs2bNDHH3+sf/u3f9OAAQNCKqSkpEQul0sFBQWBNmOMioqKlJSUpJiYGOXk5Ki2tjak+wMAgMgU0s5MpxEjRmjEiBGXXERNTY1Wr16t0aNHB7WvWLFCpaWlevXVVzVixAgtW7ZMubm52rdvn+Li4i75dQEAgP1CCjOnT5/Wq6++qt///vdqampSR0dHUP/WrVu7fa8vv/xSM2bM0Msvv6xly5YF2o0xKisr05IlS5Sfny9JKi8vl9fr1bp16zR37txQSgcAABEmpLeZFixYoAULFuj06dNKT0/XmDFjgq6emD9/vqZMmaK77747qL2urk6NjY3Ky8sLtLndbmVnZ6u6uvq892tra5Pf7w+6AABA5AppZ2b9+vX693//d02ePPmSXnz9+vXavXu3ampquvQ1NjZKkrxeb1C71+vVwYMHz3vPkpISPfvss5dUFwAAsEfIB4BvuOGGS3rh+vp6LViwQK+99pquuuqq845zuVxBj40xXdrOVFhYqJaWlsBVX19/SXUCAIDwFlKYWbRokX7+85/LGBPyC+/atUtNTU0aN26coqKiFBUVpaqqKv3iF79QVFRUYEemc4emU1NTU5fdmjO53W7Fx8cHXQAAIHKF9DbT//3f/2nbtm3avHmzbrnlFkVHRwf1b9iw4aL3mDhxovbu3RvU9sgjj+imm27SU089pW9/+9vy+XyqrKzU2LFjJUnt7e2qqqrSc889F0rZAAAgAoUUZq6++mo98MADl/TCcXFxSk9PD2obOHCgBg8eHGgvKChQcXGx0tLSlJaWpuLiYsXGxmr69OmX9NoAACByhBRm1qxZ09t1nNPixYt18uRJzZs3T83NzcrIyFBFRQXfMQMAAAJcJsSDL19//bXeeecdffzxx5o+fbri4uL06aefKj4+XoMGDertOkPm9/vl8XjU0tLC+Zn/n41f/w5EEn7OALi4nvz9Dmln5uDBg7rnnnt06NAhtbW1KTc3V3FxcVqxYoVOnTqll156KaTCAQAAeirkL80bP368mpubFRMTE2h/4IEH9Pvf/77XigMAALiYkD/N9Ic//KHLj0qmpKToyJEjvVIYAABAd4S0M9PR0aHTp093aT98+DCHcwEAwGUVUpjJzc1VWVlZ4LHL5dKXX36ppUuXXvJPHAAAAPRESG8z/eu//qsmTJigkSNH6tSpU5o+fbr279+v6667Tq+//npv1wgAAHBeIYWZpKQk7dmzR6+//rp2796tjo4OPfroo5oxY0bQgWAAAIC+FlKYkaSYmBjNmTNHc+bM6c16AAAAeiSkMLN27doL9s+cOTOkYgAAAHoqpDCzYMGCoMdfffWVTpw4oQEDBig2NpYwAwAALpuQPs3U3NwcdH355Zfat2+f7rjjDg4AAwCAyyqkMHMuaWlpWr58eZddGwAAgL7Ua2FGkq688kp9+umnvXlLAACACwrpzMzGjRuDHhtj1NDQoJUrV+r222/vlcIAAAC6I6Qw8/3vfz/oscvl0pAhQ3TXXXfphRde6I26AAAAuiWkMNPR0dHbdQAAAISkV8/MAAAAXG4h7cwsXLiw22NLS0tDeQkAAIBuCSnMvP/++9q9e7e+/vpr3XjjjZKkjz76SFdeeaVuvfXWwDiXy9U7VQIAAJxHSGHmvvvuU1xcnMrLy3XNNddI+uaL9B555BF973vf06JFi3q1SAAAgPMJ6czMCy+8oJKSkkCQkaRrrrlGy5Yt49NMAADgsgopzPj9fn322Wdd2puamtTa2nrJRQEAAHRXSGHmgQce0COPPKLf/va3Onz4sA4fPqzf/va3evTRR5Wfn9/bNQIAAJxXSGdmXnrpJT355JN66KGH9NVXX31zo6goPfroo3r++ed7tUAAAIALCSnMxMbG6sUXX9Tzzz+vjz/+WMYY3XDDDRo4cGBv1wcAAHBBl/SleQ0NDWpoaNCIESM0cOBAGWN6qy4AAIBuCSnMHD16VBMnTtSIESM0efJkNTQ0SJJ++MMf8rFsAABwWYUUZn7yk58oOjpahw4dUmxsbKB92rRp2rJlS68VBwAAcDEhnZmpqKjQW2+9paFDhwa1p6Wl6eDBg71SGAAAQHeEtDNz/PjxoB2ZTp9//rncbvclFwUAANBdIYWZO++8U2vXrg08drlc6ujo0PPPP68JEyb0WnEAAAAXE9LbTM8//7xycnK0c+dOtbe3a/HixaqtrdUXX3yhP/zhD71dIwAAwHmFtDMzcuRIffDBB/qHf/gH5ebm6vjx48rPz9f777+v4cOH93aNAAAA59XjnZmvvvpKeXl5+uUvf6lnn322L2oCAADoth7vzERHR+vDDz+Uy+Xqi3oAAAB6JKS3mWbOnKlXXnmlt2sBAADosZAOALe3t+tXv/qVKisrNX78+C6/yVRaWtorxQEAAFxMj8LMgQMHNGzYMH344Ye69dZbJUkfffRR0BjefgIAAJdTj95mSktL0+eff65t27Zp27ZtSkhI0Pr16wOPt23bpq1bt3b7fqtWrdLo0aMVHx+v+Ph4ZWZmavPmzYF+Y4yKioqUlJSkmJgY5eTkqLa2ticlAwCACNejMHP2r2Jv3rxZx48fD/nFhw4dquXLl2vnzp3auXOn7rrrLt1///2BwLJixQqVlpZq5cqVqqmpkc/nU25urlpbW0N+TQAAEFlCOgDc6exw01P33XefJk+erBEjRmjEiBH62c9+pkGDBmn79u0yxqisrExLlixRfn6+0tPTVV5erhMnTmjdunWX9LoAACBy9CjMuFyuLmdieuuMzOnTp7V+/XodP35cmZmZqqurU2Njo/Ly8gJj3G63srOzVV1d3SuvCQAA7NejA8DGGM2ePTvwY5KnTp3SY4891uXTTBs2bOj2Pffu3avMzEydOnVKgwYN0ptvvqmRI0cGAovX6w0a7/V6L/jL3G1tbWpraws89vv93a4FAADYp0dhZtasWUGPH3rooUsu4MYbb9SePXt07NgxvfHGG5o1a5aqqqoC/Wfv/BhjLrgbVFJSwjcTAwDQj7jMpR586WV33323hg8frqeeekrDhw/X7t27NXbs2ED//fffr6uvvlrl5eXnfP65dmaSk5PV0tKi+Pj4Pq/fBsOe3uR0CUC/9snyKU6XAIQ9v98vj8fTrb/fl3QAuC8YY9TW1qbU1FT5fD5VVlYG+trb21VVVaWsrKzzPt/tdgc+6t15AQCAyBXSNwD3lmeeeUaTJk1ScnKyWltbtX79er3zzjvasmWLXC6XCgoKVFxcrLS0NKWlpam4uFixsbGaPn26k2UDAIAw4miY+eyzz/Twww+roaFBHo9Ho0eP1pYtW5SbmytJWrx4sU6ePKl58+apublZGRkZqqioUFxcnJNlAwCAMBJ2Z2Z6W0/ec+svODMDOIszM8DFWX1mBgAAoCcIMwAAwGqEGQAAYDVHDwADQH9k47k1zvkgnLEzAwAArEaYAQAAViPMAAAAqxFmAACA1TgADAC4KA4tI5yxMwMAAKxGmAEAAFYjzAAAAKsRZgAAgNUIMwAAwGqEGQAAYDXCDAAAsBphBgAAWI0wAwAArEaYAQAAViPMAAAAqxFmAACA1QgzAADAaoQZAABgNcIMAACwGmEGAABYjTADAACsRpgBAABWI8wAAACrEWYAAIDVCDMAAMBqhBkAAGA1wgwAALAaYQYAAFiNMAMAAKxGmAEAAFYjzAAAAKsRZgAAgNUIMwAAwGqEGQAAYDVHw0xJSYm++93vKi4uTgkJCfr+97+vffv2BY0xxqioqEhJSUmKiYlRTk6OamtrHaoYAACEG0fDTFVVlebPn6/t27ersrJSX3/9tfLy8nT8+PHAmBUrVqi0tFQrV65UTU2NfD6fcnNz1dra6mDlAAAgXEQ5+eJbtmwJerxmzRolJCRo165duvPOO2WMUVlZmZYsWaL8/HxJUnl5ubxer9atW6e5c+c6UTYAAAgjYXVmpqWlRZJ07bXXSpLq6urU2NiovLy8wBi3263s7GxVV1ef8x5tbW3y+/1BFwAAiFxhE2aMMVq4cKHuuOMOpaenS5IaGxslSV6vN2is1+sN9J2tpKREHo8ncCUnJ/dt4QAAwFFhE2Yef/xxffDBB3r99de79LlcrqDHxpgubZ0KCwvV0tISuOrr6/ukXgAAEB4cPTPT6cc//rE2btyod999V0OHDg20+3w+Sd/s0CQmJgbam5qauuzWdHK73XK73X1bMAAACBuO7swYY/T4449rw4YN2rp1q1JTU4P6U1NT5fP5VFlZGWhrb29XVVWVsrKyLne5AAAgDDm6MzN//nytW7dO//mf/6m4uLjAORiPx6OYmBi5XC4VFBSouLhYaWlpSktLU3FxsWJjYzV9+nQnSwcAAGHC0TCzatUqSVJOTk5Q+5o1azR79mxJ0uLFi3Xy5EnNmzdPzc3NysjIUEVFheLi4i5ztQAAIBw5GmaMMRcd43K5VFRUpKKior4vCAAAWCdsPs0EAAAQCsIMAACwGmEGAABYjTADAACsRpgBAABWI8wAAACrEWYAAIDVCDMAAMBqhBkAAGA1wgwAALAaYQYAAFiNMAMAAKxGmAEAAFZz9FezAQDoK8Oe3uR0CT32yfIpTpdgJXZmAACA1QgzAADAaoQZAABgNcIMAACwGgeAL5GNB8wAAIgk7MwAAACrEWYAAIDVCDMAAMBqhBkAAGA1wgwAALAaYQYAAFiNMAMAAKxGmAEAAFYjzAAAAKsRZgAAgNUIMwAAwGqEGQAAYDXCDAAAsBphBgAAWI0wAwAArEaYAQAAViPMAAAAqxFmAACA1QgzAADAaoQZAABgNUfDzLvvvqv77rtPSUlJcrlc+t3vfhfUb4xRUVGRkpKSFBMTo5ycHNXW1jpTLAAACEuOhpnjx49rzJgxWrly5Tn7V6xYodLSUq1cuVI1NTXy+XzKzc1Va2vrZa4UAACEqygnX3zSpEmaNGnSOfuMMSorK9OSJUuUn58vSSovL5fX69W6des0d+7cy1kqAAAIU2F7Zqaurk6NjY3Ky8sLtLndbmVnZ6u6uvq8z2tra5Pf7w+6AABA5ArbMNPY2ChJ8nq9Qe1erzfQdy4lJSXyeDyBKzk5uU/rBAAAzgrbMNPJ5XIFPTbGdGk7U2FhoVpaWgJXfX19X5cIAAAc5OiZmQvx+XySvtmhSUxMDLQ3NTV12a05k9vtltvt7vP6AABAeAjbnZnU1FT5fD5VVlYG2trb21VVVaWsrCwHKwMAAOHE0Z2ZL7/8Un/7298Cj+vq6rRnzx5de+21uv7661VQUKDi4mKlpaUpLS1NxcXFio2N1fTp0x2sGgAAhBNHw8zOnTs1YcKEwOOFCxdKkmbNmqVXX31Vixcv1smTJzVv3jw1NzcrIyNDFRUViouLc6pkAAAQZlzGGON0EX3J7/fL4/GopaVF8fHxvX7/YU9v6vV7AgD6p0+WT3G6hLDRk7/fYXtmBgAAoDsIMwAAwGqEGQAAYDXCDAAAsBphBgAAWI0wAwAArEaYAQAAViPMAAAAqxFmAACA1QgzAADAaoQZAABgNcIMAACwGmEGAABYLcrpAgAAwDeGPb3J6RJ6LBx+6ZudGQAAYDXCDAAAsBphBgAAWI0wAwAArEaYAQAAViPMAAAAqxFmAACA1QgzAADAaoQZAABgNcIMAACwGmEGAABYjTADAACsRpgBAABWI8wAAACrEWYAAIDVCDMAAMBqhBkAAGA1wgwAALAaYQYAAFiNMAMAAKxGmAEAAFYjzAAAAKsRZgAAgNUIMwAAwGpWhJkXX3xRqampuuqqqzRu3Dj97//+r9MlAQCAMBH2YeY3v/mNCgoKtGTJEr3//vv63ve+p0mTJunQoUNOlwYAAMJA2IeZ0tJSPfroo/rhD3+om2++WWVlZUpOTtaqVaucLg0AAISBKKcLuJD29nbt2rVLTz/9dFB7Xl6eqqurz/mctrY2tbW1BR63tLRIkvx+f5/U2NF2ok/uCwCADfrq72vnfY0xFx0b1mHm888/1+nTp+X1eoPavV6vGhsbz/mckpISPfvss13ak5OT+6RGAAD6M09Z396/tbVVHo/ngmPCOsx0crlcQY+NMV3aOhUWFmrhwoWBxx0dHfriiy80ePDg8z4nkvj9fiUnJ6u+vl7x8fFOl3NZ9de599d5S8y9P869v85b6n9zN8aotbVVSUlJFx0b1mHmuuuu05VXXtllF6apqanLbk0nt9stt9sd1Hb11Vf3VYlhKz4+vl/8l/1c+uvc++u8JebeH+feX+ct9a+5X2xHplNYHwAeMGCAxo0bp8rKyqD2yspKZWVlOVQVAAAIJ2G9MyNJCxcu1MMPP6zx48crMzNTq1ev1qFDh/TYY485XRoAAAgDYR9mpk2bpqNHj+qnP/2pGhoalJ6erv/5n/9RSkqK06WFJbfbraVLl3Z5q60/6K9z76/zlph7f5x7f5231L/nfjEu053PPAEAAISpsD4zAwAAcDGEGQAAYDXCDAAAsBphBgAAWI0wE2ZWrVql0aNHB74UKTMzU5s3bw70G2NUVFSkpKQkxcTEKCcnR7W1tUH3aGtr049//GNdd911GjhwoP7xH/9Rhw8fDhrT3Nyshx9+WB6PRx6PRw8//LCOHTt2OaZ4Xheb++zZs+VyuYKu2267Legets79TCUlJXK5XCooKAi0RfK6n+lcc4/UdS8qKuoyL5/PF+iP5DW/2Nwjdc0l6ciRI3rooYc0ePBgxcbG6jvf+Y527doV6I/kde9TBmFl48aNZtOmTWbfvn1m37595plnnjHR0dHmww8/NMYYs3z5chMXF2feeOMNs3fvXjNt2jSTmJho/H5/4B6PPfaY+da3vmUqKyvN7t27zYQJE8yYMWPM119/HRhzzz33mPT0dFNdXW2qq6tNenq6uffeey/7fM90sbnPmjXL3HPPPaahoSFwHT16NOgets69044dO8ywYcPM6NGjzYIFCwLtkbzunc4390hd96VLl5pbbrklaF5NTU2B/khe84vNPVLX/IsvvjApKSlm9uzZ5o9//KOpq6szb7/9tvnb3/4WGBPJ696XCDMWuOaaa8yvfvUr09HRYXw+n1m+fHmg79SpU8bj8ZiXXnrJGGPMsWPHTHR0tFm/fn1gzJEjR8wVV1xhtmzZYowx5s9//rORZLZv3x4Y89577xlJ5q9//etlmlX3dM7dmG/+B+7+++8/71jb597a2mrS0tJMZWWlyc7ODvxB7w/rfr65GxO567506VIzZsyYc/ZF+ppfaO7GRO6aP/XUU+aOO+44b3+kr3tf4m2mMHb69GmtX79ex48fV2Zmpurq6tTY2Ki8vLzAGLfbrezsbFVXV0uSdu3apa+++ipoTFJSktLT0wNj3nvvPXk8HmVkZATG3HbbbfJ4PIExTjt77p3eeecdJSQkaMSIEfrRj36kpqamQJ/tc58/f76mTJmiu+++O6i9P6z7+ebeKVLXff/+/UpKSlJqaqoefPBBHThwQFL/WPPzzb1TJK75xo0bNX78eE2dOlUJCQkaO3asXn755UB/f1j3vhL23wDcH+3du1eZmZk6deqUBg0apDfffFMjR44M/Jfw7B/Z9Hq9OnjwoCSpsbFRAwYM0DXXXNNlTOcPdjY2NiohIaHL6yYkJHT5Uc/L7Xxzl6RJkyZp6tSpSklJUV1dnf7lX/5Fd911l3bt2iW322313NevX6/du3erpqamS19nXZG67heauxS5656RkaG1a9dqxIgR+uyzz7Rs2TJlZWWptrY24tf8QnMfPHhwxK75gQMHtGrVKi1cuFDPPPOMduzYoSeeeEJut1szZ86M+HXvS4SZMHTjjTdqz549OnbsmN544w3NmjVLVVVVgX6XyxU03hjTpe1sZ4851/ju3KevnW/uI0eO1LRp0wLj0tPTNX78eKWkpGjTpk3Kz88/7z3Dfe719fVasGCBKioqdNVVV513XCSue3fmHqnrPmnSpMA/jxo1SpmZmRo+fLjKy8sDh10jcc2lC8994cKFEbvmHR0dGj9+vIqLiyVJY8eOVW1trVatWqWZM2cGxkXquvcl3mYKQwMGDNANN9yg8ePHq6SkRGPGjNHPf/7zwGn/s5N1U1NTIMn7fD61t7erubn5gmM+++yzLq/797//vcv/I7jczjf3c0lMTFRKSor2798vyd6579q1S01NTRo3bpyioqIUFRWlqqoq/eIXv1BUVFSgrkhc94vN/fTp012eEynrfraBAwdq1KhR2r9/f7/4d/1MZ879XCJlzRMTEwM7zZ1uvvlmHTp0SJL63br3JsKMBYwxamtrU2pqqnw+nyorKwN97e3tqqqqUlZWliRp3Lhxio6ODhrT0NCgDz/8MDAmMzNTLS0t2rFjR2DMH//4R7W0tATGhIvOuZ/L0aNHVV9fr8TEREn2zn3ixInau3ev9uzZE7jGjx+vGTNmaM+ePfr2t78dset+sblfeeWVXZ4TKet+tra2Nv3lL39RYmJiv/t3/cy5n0ukrPntt9+uffv2BbV99NFHgR9O7m/r3qsu73ljXExhYaF59913TV1dnfnggw/MM888Y6644gpTUVFhjPnmY3sej8ds2LDB7N271/zgBz8458f2hg4dat5++22ze/duc9ddd53zY3ujR4827733nnnvvffMqFGjHP/Y3oXm3traahYtWmSqq6tNXV2d2bZtm8nMzDTf+ta3ImLuZzv7Ez2RvO5nO3PukbzuixYtMu+88445cOCA2b59u7n33ntNXFyc+eSTT4wxkb3mF5p7JK/5jh07TFRUlPnZz35m9u/fb37961+b2NhY89prrwXGRPK69yXCTJiZM2eOSUlJMQMGDDBDhgwxEydODAQZY7756N7SpUuNz+czbrfb3HnnnWbv3r1B9zh58qR5/PHHzbXXXmtiYmLMvffeaw4dOhQ05ujRo2bGjBkmLi7OxMXFmRkzZpjm5ubLMcXzutDcT5w4YfLy8syQIUNMdHS0uf76682sWbO6zMvWuZ/t7DATyet+tjPnHsnr3vn9IdHR0SYpKcnk5+eb2traQH8kr/mF5h7Ja26MMf/1X/9l0tPTjdvtNjfddJNZvXp1UH8kr3tfchljjNO7QwAAAKHizAwAALAaYQYAAFiNMAMAAKxGmAEAAFYjzAAAAKsRZgAAgNUIMwAAwGqEGQAAYDXCDAAAsBphBgAAWI0wAwAArEaYAQAAVvv/AJZWLmEz99tUAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "penguins.body_mass_g.dropna().plot(kind='hist')" ] }, { "cell_type": "markdown", "id": "827ef6a1", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "# One sample test for penguins \n", "\n", "* $H_0$: the mean body mass of penguins is 4201 grams\n", "* $H_a$: the mean body mass of penguins is not 4201\n", "\n", "> What kind of t-test is this? " ] }, { "cell_type": "code", "execution_count": 4, "id": "7bb76953", "metadata": { "slideshow": { "slide_type": "subslide" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Ttest_1sampResult(statistic=0.01739630065824133, pvalue=0.9861306342800811)\n", "Our p-value is not below alpha, thus we cannot reject the null hypothesis.\n", "We do not have enough statistical evidence to reject the null hypothesis.\n", "We conclude that there is not enough statistical evidence that indicates that the mean\n", " mass of penguins differs from 4201 g.\n" ] } ], "source": [ "from scipy import stats\n", "\n", "print(stats.ttest_1samp(penguins.body_mass_g.dropna(), popmean=4201))\n", "print('Our p-value is not below alpha, thus we cannot reject the null hypothesis.')\n", "print(f'We do not have enough statistical evidence to reject the null hypothesis.')\n", "print('We conclude that there is not enough statistical evidence that indicates that the mean\\n mass of penguins differs from 4201 g.')" ] }, { "cell_type": "markdown", "id": "9290af98", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "# One sample test for penguins (v2)\n", "\n", "* $H_0$: the mean body mass of penguins is 4300 grams\n", "* $H_a$: the mean body mass of penguins is less than 4300\n", "\n", "> What kind of t-test is this? " ] }, { "cell_type": "code", "execution_count": 5, "id": "ed75a73d", "metadata": { "slideshow": { "slide_type": "subslide" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Ttest_1sampResult(statistic=-2.265564736887436, pvalue=0.012052359189978712)\n", "Our p-value is below **alpha**, thus we cannot accept the null hypothesis.\n", "We do not have enough statistical evidence to accept the null hypothesis.\n", "We conclude that there is enough statistical evidence that indicates that the mean\n", " mass of penguins is less than 4300 g.\n" ] } ], "source": [ "from scipy import stats\n", "\n", "print(stats.ttest_1samp(penguins.body_mass_g.dropna(), popmean=4300, alternative='less'))\n", "print('Our p-value is below **alpha**, thus we cannot accept the null hypothesis.')\n", "print(f'We do not have enough statistical evidence to accept the null hypothesis.')\n", "print('We conclude that there is enough statistical evidence that indicates that the mean\\n mass of penguins is less than 4300 g.')" ] }, { "cell_type": "markdown", "id": "5a885f2e", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "# Independent Samples t-Test\n", "\n", "* Let's assume that our *penguins* data is a combination of two independent samples: one for male penguins and another for female penguins. \n", "* We can use a $t$-test to compare the means between the groups and state whether those are statistically different from one another. \n", "* Be a good data scientist and check normality assumptions on the data sample. \n", "\n", "> BIG QUESTION: Does flipper length vary depending on the sex of the penguin? " ] }, { "cell_type": "code", "execution_count": 6, "id": "2d0f67f5", "metadata": { "slideshow": { "slide_type": "subslide" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAckAAAGHCAYAAADbbaltAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB9cElEQVR4nO3dd3zM9x/A8ddlD5EgRIgRe6/Ye++9965S82dW1aoqVVpUtdSetWJvitrE3puITSQhyLj7/v74ysnJvOSy5P18PO4h9/l+7nufu5Z3Puv90SiKoiCEEEKICMySugFCCCFEciVBUgghhIiCBEkhhBAiChIkhRBCiChIkBRCCCGiIEFSCCGEiIIESSGEECIKEiSFEEKIKEiQFEIIIaIgQVKIRHbixAnatGmDq6srVlZWuLq60rZtW06fPh2n+z18+JABAwaQO3dubGxsSJcuHTVr1mTNmjWxvkfOnDnRaDT6R5o0aShXrhzLli0zqFe9enWqV68ep3b+9NNPbNq0KU6vFSKpSJAUIhH9/vvvVKpUCR8fH6ZNm8a+ffv45ZdfePjwIeXLl2f+/PlG3e/o0aMUK1aMzZs3M3jwYHbt2sWSJUtwdXWlffv2dOvWjdhmnqxUqRLHjx/n+PHjLFmyBI1GQ7du3fjzzz/j8lEjkCApUiRFCJEojhw5opiZmSmNGzdWQkJCDK6FhIQojRs3VszNzZVTp07F6n6vX79WMmXKpOTIkUN5+vRphOtTp05VAOXXX3+N8V45cuRQGjVqFOH+adOmVfLkyaMvq1atmlKtWrVYte9z9vb2Srdu3eL0WiGSivQkhUgkU6ZMQaPR8Oeff2JhYWFwzcLCgrlz5+rrxcaCBQt4/vw5U6dOxcXFJcL1kSNHUqBAAaZMmUJoaKjR7XVyciJ//vw8ePAg2nq+vr588803ZM2aFSsrK3LlysWYMWMICgrS19FoNAQGBrJ06VL9kG5ch22FSEwSJIVIBFqtlgMHDlC6dGnc3NwirZMtWzY8PDzYt28fOp0uxnvu3bsXc3NzmjRpEul1jUZD06ZNefHiBefOnTO6zSEhITx48ICMGTNGWefDhw/UqFGDZcuWMXToULZv307nzp2ZNm0aLVu21Nc7fvw4tra2NGzYUD+kG/ZLgRDJmUXMVYQQ8fXy5UvevXuHu7t7tPXc3d05deoUvr6+ODs7R1vX29ubjBkzYm9vH+39AB48eECZMmWivZ+iKPoep4+PDxMmTOD58+eMGDEiytcsXbqUixcvsnbtWtq0aQNAnTp1SJMmDaNGjWLv3r3UqVOH8uXLY2ZmRsaMGSlfvny07RAiOZGepBDJiPJxkY1GowFAp9MRGhqqf2i12njdLzo7duzA0tISS0tL3N3dWbt2LQMHDuTHH3+M8jX//vsv9vb2tG7d2qC8e/fuAOzfv9+o9gqR3EiQFCIRODs7Y2dnx71796Ktd//+fWxtbcmQIQMAPXv21AcuS0tLatWqpa+bPXt2Xrx4QWBgYLT3A3UoNyaVK1fm9OnTeHl5cfXqVfz8/Jg9ezZWVlZRvubVq1dkzpw5QhDOlCkTFhYWvHr1Ksb3FSI5kyApRCIwNzenZs2aeHl54ePjE2kdHx8fzpw5Q82aNfVlEyZM4PTp0/rHvHnz9Nfq1q2LVqtl69atkd5PURS2bNlChgwZKF68eIxtdHR0pHTp0nh4eFCwYMFog2OYDBky8OzZswjbTJ4/f05oaGiMQ8ZCJHcSJIVIJN9++y2KovDNN99EGDbVarX069cPrVbL4MGD9eU5c+akdOnS+kf+/Pn113r16oWLiwujR4/m+fPnEd5v2rRpXL9+nb59+2JtbZ0gn6lWrVq8ffs2wv7HsCQE4Xu+1tbWvH//PkHaIURCkYU7QiSSSpUqMXPmTAYPHkzlypUZMGAA2bNnx9vbmz/++IPjx48zYcIE6tSpE6v7OTk5sWHDBho3boyHhwcjRoygePHiBAQEsGbNGlauXEmdOnWYMGFCgn2mrl278scff9CtWzfu379P0aJFOXLkCD/99BMNGzakdu3a+rpFixbl4MGDbN26FVdXVxwcHAyCvhDJUlJu0hQiNTp27JjSqlUrxcXFRTEzM1MAxcbGRtm+fXuc7vfgwQPlm2++Udzd3RVLS0sFUADlhx9+UEJDQ2N1j8iSCUQmsmQCr169Uvr27au4uroqFhYWSo4cOZTRo0crHz58MKh3/vx5pVKlSoqdnZ0CxDkpgRCJSaMoscxZJYRIEMuWLaNbt26MHDmSn3/+Od73u3TpElWqVKFEiRLs3LkTW1tbE7RSiNRJ5iSFSGJdu3Zl6tSpTJs2jR9++CHe9ytatCibN2/mxIkTtGzZkuDgYBO0UojUSXqSQgghRBSkJymEEEJEQYKkEEIIEQUJkkIIIUQUJEgKIYQQUUhVyQR0Oh2PHz/GwcEhVgmfhRBCfHkUReHNmzdkyZIFM7Po+4qpKkg+fvw4VomehRBCfPkePnwY5fmuYVJVkHRwcADULyZt2rRJ3BohhBDR8vMDKyuws4vXbUJCQ9m8+z/Onr9K3UO7KXXyP7LxKSZEJ1UFybAh1rRp00qQFEKI5OzVK2jRAjJkgK1bIY5J+l/7v2HZhj343rzNoA3LyHfvFgEfr8Vm2i1VBUkhhBApwLNnUKcOXLoE/fqBpWWcbnP7vg9L1+0g/c1rDFu3FCf/1+oFc3OI5QHmEiSFEEIkH48fQ61acP06/O9/MGMGGLnQUlEUDp+6wOZdhyh/+igtd3liHhYUM2eGJUugfv1Y3UuCpBBCiOTB2xtq1oQ7d2D0aJg82egAGRwSwtpt/3LxzEXabVtH2QunP12sXBnWrgV7+1jfT4KkEEKI5OH8ebh/HyZOhLFjjQ6Qvn4BLFqzjQ9XrzF47WKyPn306eKQITBtmjp0GxAQ5T0+J0FSCCFE8tC0KVy8CIUKGf3SG3e9Wb5+J9kunuUbzxXYvX+nXrCzg4ULoX37ODVJMu4IIYRIOhcuQIcO8OGD+tzIAKkoCv8ePcP8ZZ5U3rmJPqv+/hQg8+aFkyfjHCBBepJCCCGSyrFj0KgR+PtDt26xXkwTJig4hH+27OXm6fP02riSQreufrrYvLm6QMfRMV5NlCAphBAi8e3bB82aQXAwrFqlD5BaLRw+DE+egKsrVKyoxtKw51WqqC/fucePY+e3ke7BBYauXUyG168A0GnMuN97Mjn+GIm5pVmE+4W9PrYkSAohhEhcmzZBu3ZgZqb+3KgRAJ6eMHgw+Ph8qvr5lsYMGSBLjvtUqrOLyjcO02bbOqxCQwB4gTMdlNXs/7s2bjvVUdzVqw3v5+YGU6bEvqkaRVGUuH/SlCUgIABHR0f8/f0l444QQiSFx48hVy51lenWrVC9OqAGyNatIdqIpFEoW+U0lascpsXujVT2Oqq/dIoytGY9D8ke7dtrNKAoAUDsYoH0JIUQQiSeLFlg8WLIkwfKlAHUnuLgwdEHSCvrIOo234tHljN0X7KYnI8e6K/Now+DmUUQNjG+vbHdQgmSQgghEt7KldCyJdjaom3bQZ0nXA2ZMqnbI8MPiX4unbMvTdpto+zbU3SdtxSHd28B+IA1/fiTJfRIsGZLkBRCCJFwFEXNnvPzz9C3L551/oww7xidXPnvUK/Fbuqf2U3jfVsx+9gVvE8OWuLJOUolYONT0D7JKVOmUKZMGRwcHMiUKRPNmzfnxo0bSd0sIYQQUdFq4Ztv1ABZsCA7Sn1P69axDJAahfI1jtOmxXq+3jyPpnu36APkLurhwZkED5CQgoLkoUOH6N+/PydOnGDv3r2EhoZSt25dAgMDk7ppQgghPhcUpC4v/esvKFUK7b+H+PqHrLGaE7S2CaJZhy00LbSF/y34leLXLuqv/cBYGrEdXzIkYOM/SbGrW1+8eEGmTJk4dOgQVatWjbROUFAQQUFB+ucBAQFky5ZNVrcKIYSJhe1HfPQIXjxXaLO0EVkv7MS3ZE3299+It19ahg+P+T4ZMr2kcbttVH96iA6bVmEdEgyAH450ZgXbaRyvdqaa1a3+/v4ApE+fPso6U6ZMYeLEiYnVJCGESJUi7m/UcIrONCcNXc8tI6h3zKtOAfIWukW9prtoeWgjNY4f0JdfoBit2MAd8pDhYwfy1atPr4usLFs2NRtdZPskf/oJunSJ3WdLkT1JRVFo1qwZr1+/5vDhw1HWk56kEEIkrPD7G914yCsy8B67j1cVIOaTPDQaHZVqHaN6iYN0W7eEPA/u6K9pO3bmaJd5PHptZ5AxJ7IsOp+XhSUi+Lw8MDD2e+ZTZJDs378/27dv58iRI7i5ucX6dZJMQAghTEerhZw51Z5aYS6zm3qcoyRN2YISyyUvNrbvadB6F9UsD9Ft3RKc3qijhMFYYjH7N8wGfGP0kVkxMSYWpLjh1oEDB7Jlyxb+++8/owKkEEII0zp8WA2QFTjGNhqTntdM5dtYB8iMmV/QuO1WGt3aQbPdm7DQqfnnHpGFWz+tp/rACgnZ/FhJMUFSURQGDhzIxo0bOXjwIO7u7kndJCGESNWePIEG7GA9rbEkhA6s4h86xOq1+Ytep0GDnXTatYrSF7305cetq+E7dw2NerqYvsGvXsHMmUb1TFNMkOzfvz+rVq1i8+bNODg48PTpUwAcHR2xtbVN4tYJIUTqU+LyCtrQnSCsacw29lAvxteYmWmpXOcIdfPtpfvSxWR99lh/zbvdcMounYK5tYlD08uXMH06/PEHvH2r5o6NpRQzJ6mJIvIvXryY7t27x+oeMicphBCmo/tnLb6dBtBIt5VTlIuxvq39Oxq12UG9oN108lyBbZB60LKSJg2axYvVFUCm9OYN/PorzJih/pw1K4waRUDbtjhmzvxlzUmmkFguhBBfNp0OPnwAOzvM2rflSHB9TnWLudPhkuUpTdpspc259dT9b4++/E2W/Djs2wgFC5q+rffvw8SJaoLYKVOgd2+wtoaAgFjfIsUESSGEEEnswwfo1g38/GDbNjy3WjJ4TMwBslDJKzSusY3um5dQ8M51ffmj8q3IunsRmGpkLzQUliyBYsWgbFkoWhQ2boTatcHePk63lCAphBAiZn5+0Lw5HDoE1auzZc17Wne1jDLN3KBB0Lixlit3D6E9u4MeCxeR3v81AIqZGcqUn8k6YphptncoCmzZAqNGwY0bUL8+7NypXmvWLF63liAphBAiej4+auC5cgXatUO7aCn981tHGSA1Gti5K5BcxbbjsmMjrbevx1Ibql7MmBHNmjVoatQwTdtOnYLhw9X9KBYW0L8/fP+9ae6NBEkhhBDR0F64TEidBti88OFI2aGc9PiFVz+aRXuSR2a3x9RqsJkyfy6n4pnjny6UKwfr16u54Uxh40b1jEpQ/5w6FfLmNc29P5IgKYQQIlKenrCx+x0Wv3nCUGbw26mhcCq6VygULX2JFhU30nPdInI89v506Ztv1JWm1tbxa9SbN2Blpd6nXj1o0QKGDYNKleJ33yhIkBRCCBGB53odrdqYAc04yk3uEf3eQnOLUGo0PEBLx410+XsZad5/PMbQxgbmzYOuXePXIJ0Oli+Hb7+FoUNhxAiws1MjeQKSICmEEMKA7rdZOI/ehiXbCcEqxgCZJu0bmrTdSsd7q2i4dYf+cGQlVy40GzZAiRLxa9DJk+oxIydPqoHR0jJ+9zOCBEkhhBDqaRmHdGSaMYpCO6aTmyy44RNjgMyaw4dWzTbQe/cCit64rC9/WqohmfetgHTp4t6oJ09g9GhYulR93qkT/PyzmhQgkcQuC60QQogvlqcn5MsRxJNanSi0YzpXKEQFjscQIBVKlDvPgAZzGLNisj5A6tBwtd1EMp/eGr8ACXDnjhogPTzg6FFYsSJRAyRIT1IIIVI1T0/o0+oVnrSgKoc5RFWaswk/og5wFpYh1Gr8Lx3NVtJu4RqsQ4IB8CUd3j+tpMToBnFv0K5dam7VfPmgcmX491+oVg3MkqZPJz1JIYRIpbRadaqvBOeoyDFW0pG67Ik2QKZ1CqBDt9WMfvwTXTcs1wfIc5SgqasXRUfGMUA+fKjmbm3QQG1UmBo1kixAgvQkhRAi1Tp4QMHHR4MPtanIMU5TBog6A062XN60r/8PfbfNI5f3XX35ErrxDX+yYo4t5uZGNiIkBGbNggkTIDAQqlZVT+xIJiRICiFEKnRipCea3+ZhzWaCsOE0ZaOpreBR6Qxd8i6nx7IlpH2rJggPxpKB/M5Otz6smKXR7+uPtevX1d7jlStqEvI//4TOnU2Tqs5EJEgKIURqoihc7DmTskuG8ZY0FOIq5ygVZXVLq2DqNNlL78CFNF22GXOdDoA3Tm4cHbKeDtXKMbcKxvcgATJnhtev1VRyP/4ITk5x+0wJSIKkEEKkFlotuiH/o9iS3/EhK43YzkWKR1ndMb0frVuup9+JP/G4fFZfrtSoicM/q6mfKZNx768o6gpVCwvo0EENitevg4NDHD9QwpMgKYQQXyitFg4eVBeIPrsbyFCvjhS6vYXzFKcR23lM1Nspcua9R9fqy/h68zyyPH+iL7/RfBT51/2oBjpj3L4NffvC/v2QPbs6zGppmawDJEiQFEKIL5KnJ/TpA69eqc8rcY687GAn9WnLWt4SRXDSKJStcpqvXOfTadlKbIM+APBG48CV4UsoP83IiceQEHUhzg8/qOdRNm0Kc+Ykatac+JAgKYQQXxhPT2jVyrDsKJWpwQFOUB5tFP/0W1kHUb/pLgY8mUOdNfv05YE5CmG3w5PyhfIb1xA/P3W16qVL4OqqBscWLZLVwpyYyD5JIYT4gmi16oHHANU5wHYaYsN7QA2UUQXIdM6+9O60gGlnRlLnyKcAqWvTFvvLJzE3NkACODpCnjzQrx9cu6YeZ5WCAiRIT1IIIVI0rVY9b/jRI3j2DLy81J+7spS/+QoFDaXx4ghVorxHrvx36FN+Pn3WzyddgB8AoZhztfsvFFs0xLjAtns37N2rDrFqNLBuXRyXviYPEiSFECKF8vRUk9OEPwBZg44fGcsYfuIV6WnOpqgDpEahfLXjDHGYTasV67HQagF4pnHh+sS1VBtbNfaNef1aPddx8WJ1vvHrr9UDkFNwgAQJkkIIkSJ5eqoLRD+eSgWADe9ZRlfasJ4b5KMx27hN3khfb20TRNOmmxl661fKHzypLz9KRXSr11GtXZbYN2bzZnXl6tOnULo0LFqkBsgvgARJIYRIYcJyroYPkABFuUQzNvMvNWjNel6TPtLXZ8j0ku4NljB4zyyyPfnUDf2dgcx0m87N1laxb0yfPvD332BtrR5jNXSo8dtDkrEv55MIIcQXKPxex/v31cD47JnhECsogIbTlKUm/3KKsoQQeaDLW+gWg4rNosfaxdi/fwfAO2z5ir9ZrenE+llGjpCWLAmVKsHChZA/Dot7kjmNonz+u8iXKyAgAEdHR/z9/UmbNm1SN0cIIaL1+V7HyDRgByP4hcZs4x32UdbTmOmoXOMI3+p+pv6BnZih/tN/m9y0xBO/bMWYOZOY868+eQLjx8OMGWoigI9p6pLypA5jGRMLpCcphBDJUGR7HT83gN+ZyRCCsKYE5zlGpUjr2di+p1XT9Yw+9zOFb17Rl98p1ISzg5cxO58TVWLKv6oosHo1DBigLtIpUkTda5KCgmNcSJAUQohkJvxex8iYE8pMhjCAP3iMK03Yylk8Iq2bMfNz+tb8i4E7fyfj65dqoUYDkyaRe/RocscmyL14oe513LAB0qSBefPgq6/i8MlSHgmSQgiRTITNPy5erO51jExa/PmH9jRgF+coQRO28gi3SOsWKHadb3NOocPa1ViFhqiF6dOrPcK6dWPXqP371WTkL15A9epq43LmNPajpVgSJIUQIhmIzfwjQH5uUIMDbKEJHVlFIGki1DEz01Kj9gHG+/1AlS2HP13w8ID1640LcpkzQ2gozJ6tHmn1hQ+vfk6CpBBCJLHYzD9q0KFgxmnKUomjnKcEOiJOItrav6NLw+V8e3wq7j73P13o1UvNnWpjE3ODtm8HFxd1z2PhwuDtrQ6zpkKp61cCIYRIZmKafwRoyxqOUZE0vAHgLB6RBkiXLE+Z0HAC03cM/xQgra3VfYwLFsQcIP391WDauLE65xi2+SGVBkiQnqQQQiSZ4GAYMiTq+UdQ+J4fmcQ4/HCkANfxokykNQuVuMwk53E0W78Zc+Xjtozs2dXFNqVLx9yYffugZ094+FAdll26NMUlI08I0pMUQogkMHIk2NrCn39Gft2G96yiI5MYx13cqcDxSAOkmbmWhvW2sTK4Cy33bfwUIOvUgTNnYg6Q79+rXdk6ddQ9kD/8AMePq8OsQnqSQgiR2EaOhF9+ifq6K4/ZRHPKcppDVKUVG3iFs0GdWrUgs2sg+W3m89Wmn8n88tmni2PGwMSJsU+ds3+/GhSXL1cz6Ag9CZJCCJGIgoPVZDXRycJjinKJBfTiG+ZGSDHn5gbzFjzm9PhJNF+2GJvgIPVC2rRqoGvaNPo30GrVM7XKlVO7s9u3q6tYY7OoJ5WR4VYhhEgEwcHw66/qdF9YJrfPhR2OfIbSlOA8X/F3JDlYFUaPOYt35660X/bXpwBZpIga+GIKkHfvQrVqULUqXLqkluXMKQEyChIkhRAigYXNPw4bBpcvR7yuQccExnOaMjgQAMBN8gOGC2cyZgpl1o/rqPNze2oc3f/pQseOcOJE9MdTKYp6hFXx4nD0KLRpA9mymeDTfdlkuFUIIRJQTPOPtrxjKd1ow3puk5uMvOANhkm3O3WC9h3f8ObwTBr8PAOnN/4AKBYWaH79Vc2nGt1K1Bcv1EwFmzaBkxP88w+0axf/D5cKSJAUQogEEtP8Y1Z82EwzPDjLfmrSlrX4ksGgjpsbjJv4kOsjvqXN5jVY6LTqhcyZ0axbB5Urx9yQadPUAFmrFixZot5UxIoESSGEMJHwZz/evavuwIhq/rE0p9lCU1x5yp/0ZRCzCcXys1oKo0edwL/1EJqeP/WpuEoVWLMGXF2jbsy7d+oYr0YDEyaoZz327Jnq0srFlwRJIYQwgdjmXg0TigV2vKM/c5hL/wjXM7mEMP6rFTSdPBa3p+GyDfzvf/Dzz2D5eUAN59Qp6NwZBg9W863a20Pv3kZ+IgESJIUQIt5ik3sV1AU6zrzkBZk4T0ncucdr0keoN3VaALkf/EjD6XOw+6CueFXs7NAsXAjt20f9BlotTJ2qHoqs08HLl3H9SOIjCZJCCBEPscm9CmDPW5bRlUJcpTwn8Mcp0gDpUfYepfcMpMa+HZjxMXdqvnxoPD2jz4Lz8KHae/zvP3XV6ooV6jYPES8SJIUQIpa0WjU5zdKlcO8efPigPqLOvarKhjdbaEoJLrCHOmjCgp8BhRpl/2XO60EUOnX1U3Hz5upiG0fHqN/g8WMoVgz8/KBtW/jrL0iXzvgPKCJIUTO4//33H02aNCFLlixoNBo2bdqU1E0SQqQSnp7q7ol69WDVKjW96blzcO1a9K8rz3FOU4YSXGA2A2nIDvwwDGCWVsH8r8Ec1t1sR6FbaoBUzMzUoVNPz+gDJECWLOo+kUWL1O0dEiBNJkX1JAMDAylevDg9evSgVWwmAIQQwgRiO+f4uVasZyWdMEPH1/zFfL6OUKdLdz+avxtFY8/FWIWGAKA4O6P55x91y0ZUvLzUaD1jhrqCdc4c4xsoYpSigmSDBg1o0KBBUjdDCJGKaLUwcGDcXnuD/DzBlR4s5iA1IlyvUPY631z/mvIn/vtUWKYMmvXr1WOuIqPTwfTpahJzrVZdyFO2bNwaKGKUooKksYKCgggKCtI/DwgISMLWCCFSGq1Wzbf6+HHsX+PEazLwijvk4TJFycfNiPlXNQqNy27jd5+B5Hz04FP511/DrFnqQcmRefQIunZVN2JmzaomM5cAmaBS1JyksaZMmYKjo6P+kU3yFAohYilsDnLkyNi/pgDXOEk5dlGftKip4z4PkFbWQYyr9ROrLnXUB0jF2lqdT/zrr6gD5Nat6uKcf/+FFi3gwgWoEbF3Kkzri+5Jjh49mqFDh+qfBwQESKAUQsQoLnOQjdjGKjqSljf8yBje4GBwvWZNKFvuFdXPf0OdXeswUz6ucM2ZE82GDVCqVPRv4O+vHpA8bx589VX0uVqFyXzRQdLa2hrrqH4rE0KISBg/B6nwLVOZzBg+YENb1rCOtgY13Nxg5pTzaHr2oMiV858u1K+v7mfMYJivVe/CBXVuMl06dQ9kjRrqMKtINF/0cKsQQhgjLnOQU/mWKXzHQ7JRkWMRAqRGo2NS91VkaljPMECOGwfbtkUeIBUFfv9dnW/s1+9TuQTIRJeiepJv377l9u3b+uf37t3j/PnzpE+fnuxRrQQTQohY8PSEbt3g7VvjXreE7hTiKj1ZxEsyGlxzzfKB2TXH0uTn2ViHBAOgODmhWb4cGjeO/IavXqmJyLdsgUyZ1J9FktEoihJZ6odk6eDBg9SIZKK6W7duLFmyJMbXBwQE4OjoiL+/P2nTpo2xvhAidTB2DrISRwggLZcoBqh7+XPkADs7cHGBnDmhTOmnZJ7dnfIHd396YfHisGED5M4d+Y0PH1YPUPbxgTp1YNkyyJw57h9MRMqYWJCigmR8SZAUQnxOq1Wn/WI7xNqbv/mD/tzDncJcAXML3r0Dq3CLWC8dOopdj+7kvvdp5IsuXdTVq3Z2kd/Y319tyLt3MHkyDB8ux1olEGNiQYoabhVCCFMKDoYhQ2IXIC0I4Tf+xwD+4DkZ+Yq/0WLBiKGfAqRWp+P47HkUGTcapzfqFhDF0hLNzJnq3GJkK1IVRS13dFS3gWTNCuXLm+wziviRICmESJVGjlQzukV1KHJ4zrxgHW2oziHOUYLmbMLHLAcjhsG0aWqdwMB3nO03iIorF2P+8aZKlixq9pwKFSK/8fbtMGkS7N6tBklJt5nsSF9eCJHqjBwJv/wSuwAJsIyuVOcQa2hLZY5QomkO3r//FCAf3bnH3Wq1qLJ8oT5AUr06mrNnIw+QwcEwbJi6eOfCBTh92jQfTJiczEkKIVKV4GCwtY19gATIy02asZnpDMfcXGMwB3lp226ce/fE9Vm4Mdvhw2HKFLCIZLDu9m013+qZM1CwIKxZA0WLxu9DCaMYEwukJymESFXmzo05QGrQMZYfKME5AG6Rj+mMADQM/TgHqdVqOT5hCnlaN9cHSCVNGli3Tu2mRhYgt29XM+ucOaNmzfHykgCZzMmcpBAiVblzJ/rraXjDcrrQnM1U5T/qsA9QF5oO+zgH+SbgDdc796DC1g361ykFCqDx9FR7h1HJnRvSpIG//4Z27UzxcUQCkyAphEhVrlyJ+lou7rCZZhThCrupS3v+AaBpU7WDaGUFPpev8qF1W8rcCHej1q3RLFoEDg4Rb3rxotp1LVECChSAu3fBxsa0H0okGBluFUKkGsHBcPBg5NfqsQsvSlOEK8xgKI3Yjh/pMDf/FCAvrVyLXZUq5PkYIBUzM3Vode3aiAFSUdSx3bJloW1bCFEPVJYAmbJIT1II8cXRatVguG8fnDoFT59CYKB6iEZkSxXN0PIzo7DhA51Zzko6668NHQpm5lpODxpFibmzsNSGAqBkzIhmzZrIj6vy84PevdXsOhkzwuzZYGmZMB9WJCgJkkKIL4qnJ/Tpo6ZAjZmCukzHnFZsIC0BnEM9skqjURepjhnxkms121Pmv/2fXlW+PJp169TjPT53+rQ633jvnhpAV6xQ89aJFEmGW4UQX4ywHKyxCZC5uMMpylIadY/iHfLoA2STJvDhAwxofoq3pUpTNFyApH9/NIcORR4gFQX69oX792HiRNi7VwJkChfvIKnVajl//jyvX782RXuEECJOtFoYNCh2dcPmH8vgRR32GlxT5yAVbs6fR4Y6Ncnq8wAAxdZWTTg+Z45hotawNwe1+7lihTrOO26cejORohkdJIcMGcLChQsBNUBWq1aNUqVKkS1bNg5GNSMuhBAJ7PBhePQoploKo5jKDhrq5x+n8J1BjTatg7neuxeFBvXD/l2g+ip3dzTHj6tJyj8Xttfx7Fn1ecGCULNm/D+QSBaMDpLr16+nePHiAGzdupV79+5x/fp1hgwZwpgxY0zeQCGEiI0ZM6K/bkcga2jHVEbzkGxU4qjBAh2ALA4+jL1UieIrFmP2cYWP0qgRmjNn1GOuwlMUdUFOxYpw/TqcOGHKjyOSCaOD5MuXL8n88XyzHTt20KZNG/Lly0evXr24dOmSyRsohBAxGTkStm2LuV5+bnCA6pTGSz//GKam6z7OmntQ6KoXAIpGAz/8gGbLFkiXzvBGfn7q5OfgwZA+vTq8+s03Jvo0IjkxOki6uLhw9epVtFotu3btonbt2gC8e/cOcxl/F0IksuBgmD496usuPAXgHfbUZQ912cNLMoarofBt7inseNkIF7/nAOicnNDs2AFjx0Y80/HmTTW13MaNUKsWnD8vw6tfMKODZI8ePWjbti1FihRBo9FQp04dAE6ePEmBAgVM3kAhhIiMVgt79kC5cpHvfQybf7xLLsqhDoU+x4VQPu1XtLF4h2fuFky58x3WIcEA6EqUwOzsWahfP/I3dnNTEwdMnKgecfVxZE18mYzeJzlhwgSKFCnCw4cPadOmDdbW1gCYm5vz7bffmryBQgjxOU9P6NYN3r6N/Lo9b1lET9qyjgdkJxirCHXypr3JVrsm5L9zU1+mdO+O2dy56jEh4fn5qXOO9euDnZ2aoeDjv33iyxavo7I+fPiATQpKsSRHZQmR8oXthYyKO3fZRHOKcYkDVKctaw2GV3Pnhnpp1/HTzd44BgYAoLO0wmzO7+rJHBqN4Q3DkgM8eqQOrUaXwFykCAl6VJZWq2XSpElkzZqVNGnScPfuXQDGjh2r3xoihBAJQauFgQOjvl6c83hRmmJc4jeGUIe9BgHSLauO7Q2GMvtC+08BMmtWzI4cVtP0hA+QYatXK1VSkwOMGQP58iXQJxPJldFBcvLkySxZsoRp06ZhFW5DbdGiRVmwYIFJGyeEEOEdPgyPH0d9/Sb5uEZBurCMofyGNtyMkpOlL7sy1SD/nN8w/3igpK5GDczOnVOTkIcXfvVqhgywf78kB0iljA6Sy5YtY/78+XTq1MlgNWuxYsW4fv26SRsnhBDhPXkSscyOQGp/zJrzHjuqcJgVGG76L5vei+vpi1H43H/6MmXUKMz27FETkH9uyhTD1auRJTEXqYLRC3cePXpEnjx5IpTrdDpCwo6CEUKIBHDrluHzsPnHAlynHCc5T0mUz373/8p1HrNfDcEm+AMAujRpMFu2DE2LFoY3C1ueodHA+PGQLRv06ye9x1TO6J5k4cKFOXz4cITydevWUbJkSZM0SgghPqfVwrx5n57XYY9+/nEu33CZIgb1zQhlSbZuzH/SVx8gtQUKYOblBZ8HyIAA9czHv/5Sn9vZwYABEiCF8T3J8ePH06VLFx49eoROp8PT05MbN26wbNkytsUm5YUQQsTBp/lIhVH8zGTGEIIlXVnKcroa1M1i5cP2dI0p8fCCvkzXti3mCxdCmjSGN754EVq3Vrupb9+qp3h8vsJVpFpG9ySbNGnCmjVr2LFjBxqNhnHjxnHt2jW2bt2qTywghBCmFjYf2Y8/mcpofHCjMkciBMhajnu5aFWcEs/UAKmYm8Nvv2H2zz8RA+TixWo2glu34LvvYOtWCZDCQJwOXa5Xrx716tUzdVuEECJKrq7qn4voSX5uMImxvMI5XA2F7zL/xIQXE7DUhgKgzZgR8w0boEoVw5uFhsLXX8OiRWru1Q0boGHDxPkgIkWJU5AUQohEtWEDlZ+9wsysD0E6G4Ywy+CyLYGscW1PkyefpnxCK1TAYv36yA89trBQF+qULQtr10KOHAn9CUQKFasgmS5dOjSxHILw9fWNV4OEEEIvNBS+/x5+/hklbXrS6NoRgKNBlXxWN9iRpiG5n9zVl+kGDsRi+vSIhyOfOKEOr2o08McfavJySS8nohGrIDlz5swEboYQQnzm5Uvo0EE9hqpAAaaX9SRgmWGAbO24lsVBPUnjqx6O/E5jy/lvFlBxdkfDewUHw6hRMHMmzJ2rbu34PD+rEJGIVZDs1q1bQrdDCCE+OXMGWrYEb29o0YItLZfwXZdPOTY16Pg14/8Y9OJ3zFD3N941d6eZdjO/ty5qeK+HD9Xcq8ePQ+HCcqyVMEqsgmRAQIA+CWxAQEC0dSVxuBAi3hYtAh8fmDoV7bCR9MvxabrHSePLtgxNqPTimL5sq3kjumhX4ODmZLhGZ/du6NQJXr2CLl3gzz/B3j4RP4hI6WI9J/nkyRMyZcqEk5NTpPOTiqKg0WjQarUmb6QQIhUICVEX1Gg0MGOGOtRauTKHD37K11rG+iSbrZrj+lI9SFmHhrGaSUzRjkbBjJZ1wu3/P38eGjRQ5yXnz4fevWV7hzBarILkv//+S/r06QE4cOBAgjZICJEKPXqkbuhv1w6GDAEbG6hcGQi3P9JxLr8F/g/rN+rhyK/NnWinXcNepa7+NgadxBIl1EU/LVqAZAMTcRSrIFmtWjX9z+7u7mTLli1Cb1JRFB4+fGja1gkhvnyHDqkp4Z4/hyJF1K0Z4f59yeIczIoMPej0apW+7JxFCZqHbsIbw60blTVHYcg6+O039R4//JBoH0N8mYzOuOPu7s6LFy8ilPv6+uLu7m6SRgkhUgFFUYNZrVrw+rU6Xzh/vkGA1Hp7U2RQKYMAuci8BxVCj38WIBWGa2bQdm41mDMHLlxACFMwOplA2Nzj596+fYuNjY1JGiWE+MKFhqoLaf75R93sv2EDlC9vUOXdzp3QvgMZAvwBCDKzor9uDgu1XxnUc8SPRfSkpbIRXLLAmjXqUKsQJhDrIDl06FAANBoNY8eOxc7OTn9Nq9Vy8uRJSsj/mEKI2LCwACcnqFpVzXjj4vLpmqLgO34iTpMnYfbxcORHFlloFrqZM5Q2uE1xzrOe1uThDtSuDStXQqZMifhBxJcu1kHy3LlzgNqTvHTpElbhMllYWVlRvHhxhg8fbvoWCiG+HKdPQ+nS6pDqrFnqn5aWn66/ecOrFq3IsH+vvuiAZXXahKz7LE+rqgTnycVdGDdOfcjRVsLENIoSdtJo7PTo0YNZs2alyP2QAQEBODo64u/vnyLbL0SKpdPBxInqQpoZM+DjyFR4oVeu8K5+Q9L6eOvLppiP4nvtZHR8Cn62vMMMHYGoJ3oUM7vM6fdFImSgEyIqxsQCoxfuLF68WAKMECL2Xr+GJk3UAJk7N0RypF7gipXoPErrA2SQrT1N2cR32qkGATIXdzhGRRbSCz5m2rmoK8LcuYnySUQqZPTCncDAQKZOncr+/ft5/vw5uo9zBmHu3r0bxSuFEKnOhQtqerm7d6FxY1i+XJ2LDBMait+AQTjN+1Nf9CFfPmZU2MbWpXkNbtWYrSynC074c5gqmKNF+/GfsDt3EuPDiNTI6CDZu3dvDh06RJcuXXB1dY316SBCiFTmwQOoUAE+fFCHWr//Xj114yPl2TMCGjXG6YyXvuxD69bsbrGE7zt9ygpghpYfGMcYfiIQOzqxglV0Mnir3LkT/uOI1MnoOUknJye2b99OpUqVEqpNCUbmJIVIZKNHq5lzGjUyKA49coTg5i2we/USAJ25OdpffsFs4BCy59Do09CBwiaa04wt3CQvrdjAZQwTmJubw7t3EU/FEiIqxsQCo3uS6dKl06eoE0IIA97eakKASZPUlatTphheVxQCf5uJzcgR2H3M8xyUwRmrTRuxrFyZ/fsJFyABNGygFVrM6cHiCGdJgroGSAKkSChGL9yZNGkS48aN4927dwnRnhjNnTsXd3d3bGxs8PDw4PDhw0nSDiHEZ/bsgVKlYPJk2LUr4vV37who3Rb7YUMx/xgg35Upi/XlS2gqV8bTM6zDqdCFZTignji0nK60YkOkAbJxY5g2LQE/kxCKkUqUKKE4ODgoadKkUYoUKaKULFnS4JGQ/vnnH8XS0lL5+++/latXryqDBw9W7O3tlQcPHsTq9f7+/gqg+Pv7J2g7hUhVtFpF+eEHRdFoFMXaWlEWLIhQRXfrlvImbz5FUZPRKQoo777pryjBwYqiKMqGDWqxLYHKMjorCijz+Cp89UgfBw4k8mcVXwRjYoHRc5ITJ06M9vr48ePjEbKjV65cOUqVKsWff35aCVewYEGaN2/OlM+HdSIhc5JCmJivr5pebscOyJlTTS9XqpRBlZDNm9F16ox14Fv1uY0NmgULsOikLr7RaiF7drB7fIsNtKIYlzhKRdqylsdkjfKt3dzg/n3JHyCMl6BzkgkZBKMTHBzMmTNn+Pbbbw3K69aty7FjxyJ9TVBQEEFBQfrnMR0YLYQw0oEDaoBs2FDd3hF+vYJOx7vR32E37Wd90bvsObDdvg1NkSL6ssOHofTjzSyjK44EMItBjOAXQoh+onHWLAmQIuEZPSeZVF6+fIlWq8UlfI5HwMXFhadPn0b6milTpuDo6Kh/ZMuWLTGaKsSXL1g905FWrWDnTti61TBA+vrytmYtgwD5tl597C5dNAiQAPtXP2cVHbEglA6sYgizYgyQQ4ao2y+FSGhGB0mtVsv06dMpW7YsmTNnJn369AaPhBbZOZZR7dUcPXo0/v7++oecdylEPL1/D716qec/hiUSqV/fcP/j2bO8L1KUNIcOAqDTaHg38QfS7NwBnw1teXrCj/Mz0YmVlOUU/9AhVs1o1swkn0aIGBkdJCdOnMivv/5K27Zt8ff3Z+jQobRs2RIzMzMmTJiQAE1UOTs7Y25uHqHX+Pz58wi9yzDW1takTZvW4CGEiKO7d6FSJVi0SN2n4e8foUrIwoVoy1fA9om6j+NDWkd0u3djN26swTmRHD+OUrMWo/urUyCbac5VCseqGW5uUKVK/D+OELFhdJBcuXIlf//9N8OHD8fCwoIOHTqwYMECxo0bx4kTJxKijYB60oiHhwd79+41KN+7dy8VK1ZMsPcVQgDbt4OHB5w7B/36qROJ6dJ9uh4UxPsePbHs3RuLEHUo9k3hIlhfuohF+FytiqIeilytGsqhQ+R/etDopshcpEhUxi6dtbOz02+5yJw5s3LmzBlFURTlzp07Stq0aY29nVHCtoAsXLhQuXr1qjJkyBDF3t5euX//fqxeL1tAhIiDn376uD/DVlGWLYt43dtbCSxW3GBvhn/nLory4YNhvbdvFaVjR0UBJcDORanKwRi3eIR/2NioW0WEiC9jYoHRq1vd3Nx48uQJ2bNnJ0+ePOzZs4dSpUpx+vRprK2tTR/Fw2nXrh2vXr3ihx9+4MmTJxQpUoQdO3aQI0eOBH1fIVK1XLkgTx51e0exYgaXdPv3E9qqNXb+fgCEWloSPPt30vb92vAet26pK20uX+Ze1kpUerSWJ2QxqhnbtkGtWvH5IEIYz+h9kt9++y1p06blu+++Y/369XTo0IGcOXPi7e3N//73P6ZOnZpQbY032ScpRCx5ealZw8OGVD98ABubT9cVhZApUzD/fixmirqAJ9AlM9bbtmJRunTE+12+DOXKoe3VB9vfpxGCZcQ60ZA9kcKUjIkFRgfJz504cYJjx46RJ08emjZtGp9bJTgJkkLEQFHgr79g8GA1R9zGjRHrBATwoWNHbLZv1xf5VayM09bNhttAQkPh6VM1wgHBd31oPcSNrVuNb9aGDbLlQ5hOgiYT+Fz58uUpX758fG8jhEhq795B375qUoBMmWDQoIh1rlwhqHETbO7f0xf5/W8YTtOnGWwD4cULaNcOHj4ELy9GTnZk+nQ3jP2V3NIS/vlHAqRIOkYHyWXLlkV7vWvXrnFujBAiidy6pSYGuHRJPQNy3TrIapgSTrd6NbqevbD+8B6AD3b26JYtw6nVZxHs9Gn1Xg8fQuvWjB1vxi+z4tasqVMlQIqkZfRwa7rwy76BkJAQ3r17h5WVFXZ2dvj6+pq0gaYkw61CRCIoSJ1/fPRIHWadNs3w7KmQEEKGDcPy99/1RX65cuOwcwfm+fIZ3mvhQvjmG3Wo9eefCR44DBtbjdE9SJBzIkXCSdDh1tevX0cou3XrFv369WPEiBHG3k4IkdSsrWH2bDXVXPv2hteePiWoRUusTxzXF71s3BTnNavBzs6w7qRJMG4cODsTsmINsy7VZE5+4hQgQc6JFMlDvBfuhPHy8qJz585cv37dFLdLENKTFOKjR49gxAj44w/DpADhHT1KSIsWWL54AYDW3Jw3k3/CaeQIw+w5Ya5ehQED+CnfEr6fnz3OwRHUpsk5kSKhGBMLTJbg3NzcnMeGR4oLIZKjvXuhRAlYvRoiW2OgKOhmz0ZXrZo+QL5Nl57gfftxGjXSMEAeOAAXL6o/FyrEyNL/MmZe/ALkL79IgBTJh9HDrVu2bDF4rigKT548Yc6cOVSqVMlkDRNCmJhWCz/+CBMnqstG//oL+vQxrBMYSEiv3liu+Udf9LJ4SdLv2oFZ5syf6ikK/PYbjBwJ+fLBpUsEa82ZPj1+TTQ3j3xRrRBJxegg2bx5c4PnGo2GjBkzUrNmTWbMmGGqdgkhTOnFC+jcGfbsAXd3WL8+wuHI3L5NcNOmWF27pi961qMXLvP/Aotw/1QEBqongaxZg5IlC179FuH5vTnr18d9/jGMzEOK5MboIKkLOx5HCJFyvH4Nx49D8+aweDE4ORle37qV0I6dsHr7BoAgaxvezZ2LS88ehvXCpZd7UagqVZ+s5fqgyE/hMYZGA8OHyzCrSH7inUxACJFMKYqa8cbVVR0SPX1a/TP8nKJWi27sWMymTNH/Y/A6ixs227eRrkTxiPfr2hUuX+ZW4yEU2jaNUCPTy0WmSRO1Yys9SJEcGR0khw4dGuu6v/76q7G3F0KYgp8f9OwJZ8+qj/TpIX9+wzqvXhHarh0W+/fri55UrYHL1k2YRbbiT6OBxYvRnTlHjVEdCDVBM83NJUCK5M3oIHnu3DnOnj1LaGgo+T/+pbt58ybm5uaUCjfHoYlsibgQIuGdOwetW6uHJNeurS7Y+dyZM4Q2b46Fjw8AWjMzng8fievUnwx6msHPXnO/zlf8pBnDAb+SQAE+fCjA8+emaarMQYrkzugg2aRJExwcHFi6dKk++87r16/p0aMHVapUYdiwYSZvpBAiFhQF/v5bXR4aHAzjx8PYsRGPzli4EN0332ARrB6OHOiQlqDly3FtZnhAwa89LtF0SQvycYcKZGAp80zWVJmDFCmGsYdVZsmSRbl8+XKE8kuXLimurq7G3i5RyaHL4os2YYJ6OrGzs6Ls3h3x+vv3irZXL4OTjJ/mLaC8v3MnQtWVjVcpb7FTFFAmME7RoDXqgOSoHjlzKsovvyhKUFAifB9CRCFBD10OCAjg2bNnFC5c2KD8+fPnvHnzxkShWwhhtI4d4cQJtTf58XgqvQcPCG3RAotz5/RF3i1a47Z6BWbhD0sPCUE7fBQdt/2GP2lpwha20cQkzTM3hxs3ZHhVpCxGZ9xp0aIFPXr0YP369fj4+ODj48P69evp1asXLSVdvxCJa/VqOHVK/TlvXti5M2KA3LsXbcmS+gAZbGnJo2kzyO65zjBAAgQF8XrNbi5TmNJ4mSxAgsw/ihTK2G5qYGCg0q9fP8Xa2loxMzNTzMzMFCsrK6Vfv37K27dv49T1TSwy3Cq+GB8+KEq/fuoYZrFiiqLTRayj1Sq6H39UdBqNfrzT1zmT8urQfxHrvn6tKIqijBihKNm5r9jzxiTDq6AoGo16XyGSC2NiQZwTnAcGBnLnzh0URSFPnjzY29ubNnonAElwLr4I9+5BmzZw5oyag3XdOsiTx7COnx+6rl0x27pVX/TQoyyZtm/B2uWzzf/z58OIEcxq9i9DlnuYrJmFC0P37uo6IulBiuQkQY/KCmNvb0+xYsXi+nIhRFxs2QLduqn7IL/6CmbNAltbwzqXLqFt3hzzu3cB0Gk03O/1Ne5/zUETfqVrUBAMHAh//42SMSOeK96ZrJlubnDhQsSFtUKkNCY7BUQIkcC0WpgwQQ1uy5apPcDPA+Tq1ejKldMHyHe2djxauIRcf/+pD5DBwfDn2MdcylgD/v6bK7alKaU7w39KFZM1ddYsCZDiyyBp6YRI7t6/V4OhuTmsWaNGuc9WlxMcjDJ8OJrff9f/5vssW06st24mW/FPIz4jR8KOX66wl9q48pQldKPf+z/58P6zYBtHDg6wZIma3lWIL4EESSGSs82b1eOstm6FsmXVFayfe/wYXZs2mB07pi+6XbMu2TeuwyrcfMvIkepZjXbk5DFZ+InvmMMAwPjsWI6O6kOjgTRpoHhxdf6xZk3pQYoviwRJIZKj4GAYNQpmzgQ7O/D2VoPk5w4fVgPks2cAhJqbc3fEd+SdPAGN2afZlOC3wRz75TRQiXfYU46TaOP419/cHJ4/l8U4InWI1d+Szw9ajk7Tpk1jriSEiNr9+9C2rXpqR+HCsHYtFCpkWEdRYNYslOHDMfuYm9XPKR1vFi8lX3PDvY3B3k+5XbI1+zlNBY5zjlJxDpAg+x1F6hKrvymRHbQcfudI+GTm2siSKQshYufsWahV69MpHr//rvYkw3v7FqV3bzRr1ugHSr0LFCHtti1ky+1uUPX3zidpubIlhXjMcjpzjYLxat6IEZJvVaQusVrdqtPp9I89e/ZQokQJdu7ciZ+fH/7+/uzYsYNSpUqxa9euhG6vEF+2ggXVXuPSpbBwYcQAefMmunLl0KxZoy+62qo9rue9cPosQK5tsIg+K6viwjOG8BtdWcYH4r5A55dfJECKVMjYTAWFCxdWDh8+HKH8v//+UwoUKGDs7RKVZNwRydLdu4ryzz+fnkeWPUdRFMXTU9GmcdCnsnlvba1cnfarooukfsjCpYoCygsyKDXYH++sOebmkpRcfDkSNMH5nTt3cHR0jFDu6OjI/fv34x+1hUhNNm6EHj3g3Tt1YY67u8F5jgCEhqpHXk2d+ml7h0sWgtf8Q8FqVdBqYf9+tfN57566Y8TvcWsmso9x/MADcsa7mTIPKVIro5MJlClThiFDhvDkyRN92dOnTxk2bBhlI1t9J4SIKCgIBg9WNxSGhsKiRWqA/NyLFyj168PUqfqiG2UqYHPuLNmqVcHTE5ycoF49uLnqNO7HV3L+PNx/bkc3lsU7QGo0Mg8pUjeje5KLFi2iRYsW5MiRg+zZswPg7e1Nvnz52LRpk6nbJ8SX5+5ddfXqmTNQpIiae7VAgYj1Tp1C17IlZo8eAaA1M+NSr34UmTsTCwsLPD2hVSu1ajeW8Bd90WHGPmrzHJeI94tB2N5HMzPIkgVatJC8q0IYHSTz5MnDxYsX2bt3L9evX0dRFAoVKkTt2rUNVrkKIaIwe7YaIHv3VvO3fb44R1HUfKoDB2IWHAxAQJq0+Mz8nRK9ugJqhrqBA8GCEH5lKAOZwyvS0441cQqQsvdRiMjF+RQQgA8fPmBtbZ1igqOcAiKSTHAwWFqq45fv38OePdCsmUEVrRb+2/0eh2/7U/rSYn357ax5GJFjPU91xfnwQb1VYCC8e/CcdbShGv9xnuK0YCP3iWTINhZkSFWkJsbEAqPnJHU6HZMmTSJr1qykSZOGe/fuATB27FgWLlwYtxYL8SW7fRsqVlR7kKDmYf0sQHp6Qhnnezg2qmQQILcXbEip115sOlacEyfg/Hm4ehUePIBR/Ew1/mM17anE0TgFSJlzFCJ6RgfJH3/8kSVLljBt2jSswo3NFC1alAULFpi0cUKkeKtWQcmS6vDqrVuRVvH0hPmtdrHPz4NSnAMgyNKKH4qNpemNLbx5F3E1OcD3/Eh3FtORVbzD+PNcmzSBDx8kQAoRHaOD5LJly5g/fz6dOnXCPFwm42LFinH9+nWTNk6IFCswUM2Y06mT2l1bvRrmzIlQTRui4073SeygIel5DcDzdBlpk3Md4y/+gE736e+YOaH8xhD6MReAD9iylO7EJUG5uTmsXy9zkELExOiFO48ePSLP56egow7DhoSEmKRRQqRoAQFQrhxcvw5lysA//0CuXAZVtFo4svU1aft3YcSb7frys7lK0ubtOu7eym1QPz2vWEtbavEvXngwnz6Sf1WIRGB0T7Jw4cIcPnw4Qvm6desoWbKkSRolRIqWNi1UrapO9h05EiFAenpCzQwXcGtRmpKP1QCp02hYUaITlR8f5u5zwwBZmMucpgy1+Jd1tKYah+IcIGUOUgjjGP03bfz48XTp0oVHjx6h0+nw9PTkxo0bLFu2jG3btiVEG4VI/nx91Vyrw4erkeivvyJmzkENkBtbLWcnX2PHewDe2trzfYFJzD4/GEUx/L21GZtYThcceMv3TGIyYzBmeDV3brCxURMONG8u+x6FMJbRQbJJkyasWbOGn376CY1Gw7hx4yhVqhRbt26lTp06CdFGIZK3I0egY0d4+FDNmtO6daQBUvs+mICu/2P5xzlFgAeu2emWZgmHztWI9NaNUX/xbM5GNtPcqGa5ucGNG3IIshDxYVSQDA0NZfLkyfTs2ZNDhw4lVJuESBm0WpgyBcaPV4PiTz+paeYiq+r9iGdVWtM98IS+7GDhanR6voLHt9wM6lrzgSCsAQ39+YPpDOcGkWTkicGsWRIghYgvo+YkLSws+OWXX+TMSCEeP4Y6ddTE49myweHDMHq0mtPtM//9cJBXOUuRxVsNkCHmFswp15/6d3bx+IVhgMzBfU5SjkGoeyqDsTY6QGbIABs2RBmvhRBGMHq4tXbt2hw8eJDu3bsnQHOESCGOHIEDB9Sh1b//Vif9PqcoXOo+g4rLvsUC9RdLX8d0DM07g6WnuoNiOCRbjYOspzXOvCIHDwyu5ckDzs7oM+6AOrcYHKx2YjNnVg8RqVULqleXHqQQpmJ0kGzQoAGjR4/m8uXLeHh4YG9vuIm5adOmJmucEMlKUBAEBaG1T8vBDG250yETa59V430jDba2kDGjmnb15UvQvH3D93d7Uu3Fev3Lr7oXpIv5Ms56lY5w6778yWwGoaChFwtYRC/9NTc3dTeJBD4hEp/RuVvNIhlO0t9Mo0nWQ7GSu1XE2e3b0L49jyyyU/zWBl75Rr3CtADX8KQlBfmUXGNz6ab0ureAV68yGtQ1Q8sf9Kcv83iKCy3x5DgVDerI0KkQppXguVujeiRkgJw8eTIVK1bEzs4Op8iGtoRIKCtX6lPLbT/pTIBv1EkzWrGeU5TVB8j31jb8UHksbS+tjRAgAXSYoUHBCw/KcNogQMrcohBJz+ggGd6HDx9M1Y4YBQcH06ZNG/r165do7ylSOX9/6NwZOndGMTOjb7o1fM18Qoi40dCcUKYxgvW0wYG3ADzO5EqnoisYf3QiwUHWBvVzcg9QAA0D+Z2q/IcP2QDo0AH27YNnzyRACpHUjA6SWq3W4BSQu3fvAgl/CsjEiRP53//+R9GiRRPsPYQIow3R8cajGqxcyU3nCnQufJ55r9tGWjcTz9hLHUYwXV92slBZaqfZx0avVhEW6LRhLVcozDBmABCCFe9Rz5R0c4Ply9UFODIHKUTSMzpITp48OcWcAhIUFERAQIDBQ4iYeHqCi6sZfe+MYALjKfTyP1Ydj/wYqnKc4Awe1OAgAFozM5ZW7kq9J7u4dreQQV0NOibxPWtpRwiWXKNghPvJ3kYhkhnFSLlz51b27dunKIqipEmTRrlz546iKIpy7do1xcnJydjbGW3x4sWKo6NjrOqOHz9eQR3TMnj4+/snbCNFynTvnuJdqZ3ihK+irlON7qFT+vGHEoSlvtAvTVplWPVfFEuroAj1HfBXNtNEUUC5QV4lP9cMrmfIoCgbNiT1FyBE6uDv7x/rWGB0T9KUp4BMmDABjUYT7cPLy8vYJuqNHj0af39//ePhw4dxvpf4wq1ejVK8ONmOrqETK6Otass7ltKNufTHCvX/+dvZc9O2wFpmHBxGSLDhnGUa3nCcCjRlK7uoRzlOcoMC2Nio+Qdk/lGI5MvofZJhp4DkyJHDoDwup4AMGDCA9u3bR1snZ86cxjZRz9raGmtr65grilRDq4WDB+Hff8HbG3JlfEOb/wZQ5Mwy3pk78DXLWUmnKF+fiztsoBUluKAv21u6Nl+/+ot7Xrkjfc1bHPiXmuykAaP4GR3qeOrKlRIYhUjukvQUEGdnZ5ydnY1tghBx4ukJffrAq1fq8xKcYwKtyc1djlOeTtqV3CNXlK9vyHZW0Jl0+AEQZGnFvGpfM9brRwL8Iu61qs1e9lEb0HxMM6cu4HFwgCVLJEAKkRKkmFNAvL298fX1xdvbG61Wy/nz5wHIkycPadKkSbD3FV8GT09o1cqw7C1pcOYlExnHJMZGeUajGVrG8QPj+UFf9ixDJsaWmMTiQz0IDbEEoEYNyJQJfJ+H8vW1IbR6+gfLis9gmfNQPnzQkDMndOsGNWvK4hwhUgqjM+4kle7du7N06dII5QcOHKB69eqxuodk3EmdtFrIkQMePYJseJMeXy5QAoD0vMKXDFG+Nh2+rKQTDdilL7tQoBj97f/g6JlKhPUO3dzg/n0wD3gNbduqE40lSsCWLWoCdCFEsmFMLEgxQdIUJEh+2cLmGw8eBJ1OzTnu6wteXmrMassa5vE1r0lHYa7o9yZGpSRn2UAr3LkPgE6jwbNKC4bcn8kjb8PAt2EDtCx8A5o0gVu31LHUZcvgs9zGQoikZ0wsiNVwa7p06dBEcohsZHx9fWNVTwhT+ny+MTxH/FjGQLqwgjekYTwTeY9ttPfrxhL+pB+2qFml3tilYVb1wfx8ZBRvAxz09TJkgPnzoWWFJ1CoPPj5wfffw8SJkR6bJYRIWWIVJGfOnKn/+dWrV/z444/Uq1ePChUqAHD8+HF2797N2LFjE6SRQkQnsvnGMNU4yDK6kp2HHKc8XVjOHSJuYQpjRRCzGExf5unLHmTNzuhCU1i7py3Vq1mQObM6fFuzZvhjqVyhXz8oUgQ6djTp5xNCJB2jh1tbtWpFjRo1GDBggEH5nDlz2LdvH5s2bTJl+0xKhlu/POHnGz+nQccpylKcC0xgAj8zKsrFOQBuPGQDrSjLaX3ZYY/KDNHN5Oy5Uri5adR5x7BFNyEhsHQp9OwpvUYhUpAEPQVk9+7d1K9fP0J5vXr12Ldvn7G3EyJeDh6MGCDTo465KpjRheWU5wQ/MSbaAFmT/ZyllD5ABltYsqh+D9o9W8vZcx6AxjBlnK8v1K8PX30F8+ZFeV8hRMpmdJDMkCEDGzdujFC+adMmMmSIepWgEKbm6QnNm396boaWEUzDm+x4oGZquk5BzuIRzV0URvIze6hLRl4C8MopA2MbTWLgkd954uMa8ciq69ehXDk1I0Hr1tC1a4J8PiFE0jN6n+TEiRPp1asXBw8e1M9Jnjhxgl27diW7BOfiy/X5PGQO7rOMrlTlMI/Igh3vYryHAwEsoTst+fRL39U8Bfm71hRevG3MkEHmn807Anv2qFs8/P1h7FiYMEGGWoX4gsVpC8jJkyeZPXs2165dQ1EUChUqxKBBgyhXrlxCtNFkZE7yy2A4D6nQjaXMZhBpecM/tOMb5vKa9NHeoxBX8KQl+bkJgA4N+2rUx/GXnynnEcVxbDdvQqFCYGmppsxp186kn0sIkThMvgUkTEhICH369GHs2LGsXBl9EmghTE2rhcOHYe/eT/OQ3VnCYnrihyMdWMU/dIjxPm1Zw0J6kYZAAN7Z2LKx81dUmTCa7FkzR/3CfPlg8mR1WWuZMqb4SEKIZM7onqSTkxNnz54lV66oc1wmV9KTTLk8PWHwYPDxCStRAA3WfGAWg/mR7/Eh+sw2FoTwM6MYym/6skcuWdg/9Dta9O+Bg30kyQVevYI//lD3PsqwqhBfhATrSQK0aNGCTZs2MXTo0Dg3UAhjeHqq62MUBdLizwyGcZ0CzGA4QdgY7Gn8XIcO6nxiAaendN3elmz3DuuvnS5ehicTJtGpSW3MI0umeuMGNGoEd+5A3rzqzYQQqYrRQTJPnjxMmjSJY8eO4eHhgf1nabcGDRpkssYJodWqPUhFgVrsYxE9yc5DjlCJXxmKEs0CbTc3WL4czE8chTZt4MkTAELNzNnSuDU5fhhP0+IFI3/xgQPqclY/Pxg/HmI40k0I8WUyerjV3d096ptpNNy9ezfejUooMtyaPITNLT56BC9eqKndXr2K/M+TJ2HpH2+Yxkj68RfBWPID4/iZUYRiGe37bFiv0PLR7zBsGISGAuDn4MiGXgOoP2owWTNnjPyFCxdC377q8OrixZJBR4gvTIIOt967dy/ODRMi4txi9BwI4AIlyMU9zlOcbizlIsWjfU2aNLBiXiDNPPvAqlX68ls583J0+Gja92iPvV0UuVvPn4fevcHZGTZtgkqVYtdQIcQXyeggGebly5doNBpJICBiLfzcYmy9IS07acBLnJnMGEKwivE1u+fcouKUlnD5sr5sf6WavB87lq51qmIW3QKcEiVg7lyoVw9S4OI0IYRpGbVcz8/Pj/79++Ps7IyLiwuZMmXC2dmZAQMG4Ofnl0BNFF+C8HOLManEEebRB3UFKwxgDhOYGKsA2SPDFioMKq0PkB+srFneoTcZ5v1F43rVIw+QT57At9+qjQQ1UbkESCEERvQkfX19qVChAo8ePaJTp04ULFgQRVG4du0aS5YsYf/+/Rw7dox06dIlZHtFMhI2t/jkCWTKpJY9fx75z//+G/MQqw3vmcwYhjATBQ0L6M1pyhJ2sHF0zNAykfF8/2qyvuypswubvh5Ms0Ff4ZrJOfIXXrgAjRurjfPwUBf4CCFEGCWWBg8erBQpUkR5+vRphGtPnjxRihYtqgwZMiS2t0sS/v7+CqD4+/sndVNSvA0bFMXNTVHUvmH8HxU4qlwnn6KAcpUCShlOxvq1GXih/GtZx6DwXKESyqIFq5V37z9E/SG2blUUe3tF0WgUZcYMRdHpEu8LFEIkGWNiQayDZI4cOZRdu3ZFeX3nzp1Kjhw5Ynu7JCFB0jQ2bFDjiqkC5FgmKlo0ihaNMo3hig3vYv3acQ1PK+8yZdcXhGrMlI11myk79h9VtFEFPZ1OUWbOVBQzM0Wxs1OUTZsS9wsUQiQpY2JBrIdbnzx5QuHChaO8XqRIEZ4+fRrvnq1I3oyZW4ytyxThGgXpxUJOUj5Wr9FoYLjTAibs648mOBiAN/ZpWNWhNxWHDaBogdxRv/jcORgyBLJkga1boVQpE3wKIcSXKNYLd5ydnbl//36U1+/duycrXb9wWi38/nvst29ExYnX/M4AMvEMgI20pATnYx0grfnA30pvpr3+Sh8g77nlZMnoSTSfMjb6AAlqUFy0CE6dkgAphIhWrINk/fr1GTNmDMEf/1EKLygoiLFjx0Z6GLP4Mnh6Qs6c8L//xe8+LfDkKoUYwB8MZpa+PKbEAGGy84BTlpXpxUJ92eGyVTg09Ve+Gt4PF+coTv+4fx8GDdInFaBHD8iaNa4fQwiRSsQ6446Pjw+lS5fG2tqa/v37U6BAAQCuXr3K3LlzCQoKwsvLi2zZok8ynZQk407cxGV/4+dceMocBtCaDbzHhu/5kVkMRosF334LLi7RZ9559QqKPt1D1T87YBngC0CwhSXrmrQj05CB1KpSBjNNFKtgT56Epk3V5bYGpycLIVIjo2KBMZOdd+/eVerXr6+YmZkpGo1G0Wg0ipmZmVKvXj3l1q1bcZxCTTyycMd4oaHxX8Vak33KK9IpCigHqKbk5pYC6uKfbNnU94iWVqsoP/5osFroeTpnZdbgMcrVm/eif62np6LY2iqKubmi/PWXqb4WIUQKliALd0DN27pz505ev37NrVu3ADXhefr00R9wKxJf+D2Mrq5QpYp6GkZU1yDyMlPMQd4gP29Jw7dMZQG9DZKSz5z5qV2R8vODbt1gyxZ90ZV8hdnXZyAde7QjY3qnqF87cyYMHQr29rB9u5pFRwghjGB0gvOULLUMt0aWH9XNDWZ9nAL8/FrYeqtXr6Iviy1rPvAtU/GiNNtpDIAlwQYZc7JlU2NYtCOfly6pFW7fBkCHhl01GvCibz/aN6+LtVU0GXguXICSJdUVrNu3Q/Ho870KIVIPY2KBBMkvTFTzhxqNabdtfG7GDDUOaQ78S/klfbF7dIvn+Stz6Q/1/ManT9UTPzJmVNfLhO/ZRmrVKjXR+Pv3AATa2rGidVfy9e1N9Qql0EQ1/xje8uVQo4b6G4IQQnwkQTIKX3qQ1GrVFajxHR41hkajxqB7p15gPnLYxwMczdVlsOPHq0dyGCM4GIYPV8d5P3ro6saarn1p0qcL+XNlj/q1z5/DtGkwZQpYxm61rBAi9UnQo7JE8nX4cOIHSIAFI25gXrgi+PpC2bIwb556moaxHj9Wc6ceO6YvOlGyHMd79qVn55akd4rmf+YbN6BhQ7h7F4oUge7djX9/IYT4jATJL8iTJ4n7fm5ZFWbO0lC3eV7YWU5NFP711zGMo0bhv/+gbVt4piYYCDU3Z0PD1oT26EH/xrWwsozmf9XDh6F5czVIT5qkLvQRQggTkCD5BXF1TZz3SYs/B6uOp3hxBbOWswAzdXFMbOYJP6co6gqeESP0R1W9TuvE0vY9KdWzC1XKFo9+/nHNGujaVb3P8uXQuXOcPpMQQkRGguQXpEoVdX7w0aOEWaSjQUdXlvOL2Ugy/vccXhaCDx/AxiZuAfLtW+jVC9au1RfdyJUPz65f06ZbW/LkjGHBzd270KmTOu+5caO6SEcIIUxIgmQKFdU+yFmz1NWtn69mDf88LitdS3COOQygEscItbKHiT+rScKj24YRnRs31O0dV6/qi/ZWrs2VLj3o174JTmkdYr5HrlywcCGULg3RJN8XQoi4inXuVpF8hOVRrVEDOnZU/8yZUy1v2RLWr4+YltTNTc3ItmFDxGsZMnzaFxlZWTp8OUolKnGMh5U7YHH7BowcGfcAuXEjlCmjD5DvrW1Y2K4nr0aMon/PttEHyLdvYexYCApSn3frJgFSCJFgZAtIChPdPkhQA2TLlibIuFM+BHx8OOzjzpMn4HH6L3I3KoB5repxb3xoKHz/Pfz8s77oScbMLO3Qm6pd2lLBo0j0849Pn6orWM+dg19/jX+2dSFEqiT7JKOQ0oNkTPsg9XsW78VtgSmgRt+tW9WFNObmcPEiWJhgVP7FC2jfHv79V190tkhJdnToRecuLcmZLYZVRzdvQv366ofr1w9mzzZNu4QQqY4xsUCGW1OQmPZBKgo8fKjWi5Pz56FWLWjWTF0UU6fOp2HN+Ag7t/FjgNSameFZvwWHh4xi4MDuMQfIkyehUiU1QP74I/zxhwRIIUSikH9pUpDY7oM0er/kmzfqIpzFi9VI26yZmrkmXz5jm2hIUWD+fPUcx4/nkAakScuSNt3J0qo5/etXxSKmLq+vL9StC4GB6kHJPXrEr01CCGEECZIpSGz3QRq9X9LOTu3tFS+uzvWZYivF+/fwzTewZIm+6G72XKxo35N67ZtTrmQsF9ukT6/uo3RxUecjhRAiEcmcZAoSNicZ1T7IWM9JarWwYoWa3WbkSLXs0SPInDkek5nh3LsHrVqpC2w+OlS+Gv+16kC3js3JnsUl+tcrCixbBu3aqXswhRDChGROMoXSauHgQVi9Wv3zYwIavbB9kBBx737Y82jPZ1QUdftFsWJqbtOpU9UtFaDuCzFFgNy5Ezw89AEyyNKKZa26crnvQIb06xJzgNRqoX9/tX3ffhv/9gghRHwk0MHPyZIxp1Entg0bFMXNTVHUSKY+3NzU8tjUzZYt8rp6e/cqSpkyamVzc0X5+mtF8fEx3QfQahVl4kRF0Wj0jXqWPqMytd8oZeOuQ0qoVhvzPd69U5QWLdTXlyqlKE+fmq59QgjxkTGxQIZbk4HY7n0ML7p9kBE8fAju7qDTQYcOMHEi5Mljug/w+rWaM3XHDn3RpfxFWNemG83aNsajaIGY7+HrC02bwtGj6qraDRvAIRZZd4QQwkiyTzIKyTFIJtjexxMn1BeXK6c+/+svqFhRHWo1pfPn1fnHu3cB0Gk07KjZiHONmtOzQ1OyZs4Y8z1CQ9XUchcuqMF24cK4Z/MRQogYyHmSKYgxex+rV4/lDSdNgr171QB5/LgaLPv2NVWTP1m2TD0a68MHAN7a2rO8dVeoU4ehrepjb2cbu/tYWMDQoXDlinpgsplMlQshkgcJkknMJHsfFUVd6fPDD+qfAPXqqTlO43I6R0yCg9WUcHPn6ou8s2RjcduelGpUm0Y1K2IWm0B39iwULAi2tupxV0IIkcykiF/Z79+/T69evXB3d8fW1pbcuXMzfvx4gj9uUE/JTLL3cdMmqFlTDZCNG6sZanbtUrPUmJqPD1SrZhAgj3lUYF6fYTTr3YkmtSvHLkDu2AGVK0OXLqZvoxBCmEiK6Elev34dnU7HvHnzyJMnD5cvX+arr74iMDCQ6dOnJ3Xz4iWmMyDD5iTDkpADak9u7Vo1l6mzMzRqBL17qzlNS5VKuMYeOKDmX33+HIAQCwvWN2zN3dr1GNCuMa6ZnGN3n5Ur1S0eVlZqu4UQIrlK4JW2CWbatGmKu7u7Ua8x5RaQ0FBFOXBAUVatUv8MDY37vTZsUHdOhNs9ocCnMv3WjhcvFOXHHxXF1VWtMHlyvD9HrOh0ijJtmqKYmekb98oxnTK9zzBl3spNyrv3H2J/r9mz1XukS6cox44lXJuFECIKxsSCFNGTjIy/vz/p06ePtk5QUBBB4RJ0BwQEmOS9PT1h8GDDBTdubupG/8+3asRG2BmQkd1z5kxoWeAq9JkJy5eri2ScnNRTOjp3jucniYU3b9R8qRs26Iuu5S7AilZdqFy/BvWql8cstvOekybBuHGQJQvs2SPnQAohkr9ECNomd/v2bSVt2rTK33//HW298ePHK0CER3x6kmG9vvA9vkh7fXEQZe+0bVv1TfLmVZQ5cxTlzZu4v4kxrl5VlAIFDD7orqp1lW9/nKNcvHbb+PutWqUo+fMryr17Jm+qEELEVopJJjBhwgQmTpwYbZ3Tp09TunRp/fPHjx9TrVo1qlWrxoIFC6J9bWQ9yWzZssV5n2SinOf47p3aY/Tygr//VssuXgRvbzXBd2Jtj1i3Dnr21Kete29jy4oWnXlZqTI92zXGxTn6XrxecLC6D9LOTn0eFATW1gnUaCGEiFmKSSbw8uVLXr58GW2dnDlzYvMxyfXjx4+pUaMG5cqVY8mSJbFbRRlOfJMJHDwYuwMyDhyI5Z7G8G7dgnnz1OOqfH3VQHL7thp1E1NoqJozdcYMfdEjlywsadsD10rl6di8DjaxDXKBgWqiATMz2LwZLC0TqNFCCBF7KSaZgLOzM87OsVsR+ejRI2rUqIGHhweLFy82OkCaQoKc5+jtra7w3LtXfe7iAhMmqJv/XWJIBm5qz56pJ28cOqQv8ipWmnWN21K7fjVqVS4T+/lHX191O8rx42q6Oa1WgqQQIsVJEQt3Hj9+TPXq1cmePTvTp0/nxYsX+muZM2dOtHaY7DzHhw/VvKROTpApk7qpvmZNNTA2b540weT4cTWB7OPHAGjNzNhYvwVnq9Sie6sGFMybM/b3evpUPSj50iV1q8fff6tZdYQQIoVJEf9y7dmzh9u3b3P79m3cPht+TMzR4jjtaQyj06krOv/6C7ZuVY+pGjFCPS/x1i1Ily7B2x8pRVETA/zvfxASAoC/gyNL2nQnqHRphrZrjHN6p9jfz9sbatVSh4qHDoXp0xMm648QQiSCFJFxp3v37iiKEukjMcXpPMcXL+Dnn9VTNxo0UOfmypSBvHk/1UmqAPnunZoObsAAfYC8nSM3M/oMI12Degzu1c64AAnqgqM7d9QhYwmQQogUTk4BiYPI9klmy/ZxT+Pn+yTbtVOz49jbQ6dO6pBqyZJxfm+TuXNHbezFi/qiAxVqsL1OExrVq0r1CqXQxDXAXb4MRYqYqKFCCGFaKWZ1a2Iz5VFZkZ7n+NYfVqxQ5+L++kuteOIEnDmjbvx3dDTBpzCBbdvU9vj7AxBkZc3qZh24Xbo8XVo3IH+u7Mbdz8sLfvsNFi2S7R1CiGRPgmQUEuw8ybNn1aC4apW67cHaGh48SPzVqTHRatUDlydN0hc9d87EorY9sShWlJ7tGpPeycjv5cgRdf9mYCDs2xe7PTJCCJGEUswWkBTv9m11CPXUKfV57tzq+Yo9eqiJx5MTX1+1rbt26YsuFCzO6mYdKFq2BG0a18LK0sj/HfbuhWbN1L2V69ZJgBRCfHEkSMZHlixw9666baNfP6hdO3keGHz2rLqp//59AHQaDdtqN+FQpZo0q1+NKmWLGz//uGmTOt9qZgZbtqgnkgghxBdGgmR82NmpgcfePqlbErXFi9UA/jE931t7B5a27srTIsXo17oheXLGIaOPj48aIK2s1PnNatVM3GghhEgeJEjGV3INkEFBMGgQzJ+vL3rgloPFbXrgWCg/w9o2wimtQ9zu7eYGCxZA/vxQtqyJGiyEEMmPBMkvkbe3mj3n9Gl90ZEyldlUrzllyhSnVcPqWMQlA87WrWomHWtr6NLFhA0WQojkKRlOoIl42b8fPDz0ATLE0pKVzTuyqUlbWjavS7umteMWIGfPVnOwDhhg4gYLIUTyJT3JL4WiqJl9xoxRU+ABvukysLBtD97mzc+Ato3ImS2WyWc/9+uvMGyYulBpxAgTNloIIZI3CZJfAn9/NZH4pk36oqt5C7GiZWcy58tNnzaNcHSI49zptGkwapSaUujff9X0ekIIkUpIkEzprlxR08vdvAmAotGwu1o99lStS6VyJWhWryoWcT0BesoU+O47yJFDPSTT3d2EDRdCiORPgmRK9s8/0KuXmqgceG9rx/IWnblVsCjtG9ekbIlC8bu/q6uaIGH/fjVQCiFEKiNp6VKikBAYOVLNqP7RY1c3FrXpjjZnTnq0a0z2LHFMiacoavq6sMU9Hz6ox3kJIcQXwphYIKtbU5qnT9XzGsMFyFPFyzCz5yDSlSrB0D4d4hcgx4xRt498PDpLAqRIrh4+fEj16tUpVKgQxYoVY926dUndJPEFkuHWlOTIEWjbVj16BNCaW7ChQQuOe1SkWoVSNKlTGfO4psVTFHX+cepUKFAAXr+GTJlM2HghTMvCwoKZM2dSokQJnj9/TqlSpWjYsCH2yTXBh0iRJEimBIoCv/+ubsMIDQUgwCkdC1t340nOPHRuWguPogXi9x4TJqgBsmBBdRWrBEiRzLm6uuLqqm5rypQpE+nTp8fX11eCpDApGW5N7gID1bMfBw/WB8jbufLxS++hvC1SjMG92sY/QE6eDD/8AHnzqot0Mmc2QcOFiJ+qVaui0WjQaDRYWVlRsGBBVq1aFWldLy8vdDod2bJlM3k75s6di7u7OzY2Nnh4eHD48OFo679584YhQ4aQI0cObG1tqVixIqfDZb8CmDBhgv6zhT0yR/P3bsqUKWg0GoYMGWKKjySMIEEyObt1C8qXV8+p/Gh/pVr82elrshQrzNCv2pM1c8b4vcfFizB2LOTKpfYgXeOYcEAIE1IUhfPnzzN9+nSePHnCjRs3qF+/Pl27duXevXsGdV+9ekXXrl2ZHy5PsamsWbOGIUOGMGbMGM6dO0eVKlVo0KAB3t7eUb6md+/e7N27l+XLl3Pp0iXq1q1L7dq1efTokUG9woUL8+TJE/3j0qVLkd7v9OnTzJ8/n2LFipn0s4lYUlIRf39/BVD8/f2Tuikx27RJUdKmVRR1sFUJsrFVFrbtoQyZMFPZuveIotVqTfdeq1Ypyv37prufEPF048YNBVAuX76sL7t06ZICKDt37tSXffjwQalSpYqybNmyBGlH2bJllb59+xqUFShQQPn2228jrf/u3TvF3Nxc2bZtm0F58eLFlTFjxuifjx8/XilevHiM7//mzRslb968yt69e5Vq1aopgwcPNvoziIiMiQXSk0xutFp1hWnz5hAQAMALF1dm9BrCjeKl6damIY1rV8IsvudW7t79aQVrhw6yD1IkK2fOnCFdunQUKqTu9fXx8WHMmDFYW1tTtGhRQO1tdu/enZo1a9IlmoT7P/30E2nSpIn2EdkQanBwMGfOnKFu3boG5XXr1uXYsWORvldoaCharRabz1aF29racuTIEYOyW7dukSVLFtzd3Wnfvj13796NcL/+/fvTqFEjateuHeXnEwlLFu4kJy9fQseOsHevvuhCkZKsatIeR1cXhrRrjGumDPF/n4ULoXdv+Oorg6O0hEguzp49i7+/Pw4ODuh0Ot6/f4+trS1//fUXWbNmBeDo0aOsWbOGYsWKseljSsbly5frg2iYvn370rZt22jfL+ye4b18+RKtVouLi+GWKhcXF54+fRrpfRwcHKhQoQKTJk2iYMGCuLi4sHr1ak6ePEnevHn19cqVK8eyZcvIly8fz54948cff6RixYpcuXKFDBnUv+P//PMPZ8+ejTCfKRKXBMnk4vRpdX/ix7kOnZkZW+o05VD5ahTK507nlvWxtbGO//ssX64Gx4wZQRYBiGTqzJkz9O/fn0GDBuHn58fw4cOpUKEC3bt319epXLkyuo/J/KOTPn160qdPH+e2aDQag+eKokQoC2/58uX07NmTrFmzYm5uTqlSpejYsSNnz57V12nQoIH+56JFi1KhQgVy587N0qVLGTp0KA8fPmTw4MHs2bMnQq9UJC4Zbk0OFiyAypX1AfJdWkfmdv2GQxWqU7daOXp1aGqaALlmjZoIPV062LcPCsUzbZ0QCeTcuXNUrFiRPHnyULp0aebOncu0adMiLNqJjbgOtzo7O2Nubh6h1/j8+fMIvcvwcufOzaFDh3j79i0PHz7k1KlThISE4B5N7mN7e3uKFi3KrVu3APWXhOfPn+Ph4YGFhQUWFhYcOnSI2bNnY2FhgVarNfp7EHEjPcmk9OGDej7jwoX6Iu+cuVnUsgsfnDPRq2U9iuTPZZr38vSETp0gbVp1OFdWyolk6u7du/j5+VGkSBF9WaFChciTJw+rV6/mu+++M+p+cR1utbKywsPDg71799KiRQt9+d69e2nWrFmM72tvb4+9vT2vX79m9+7dTJs2Lcq6QUFBXLt2jSpVqgBQq1atCKtde/ToQYECBRg1ahTmcT20QBhNgmRSuX9fHV49c0ZfdLh8NTbXbkKGzBn5pl0TMjmnM937vXwJadKoC3ZKlTLdfYUwsTNnzmBhYUG+fPkMyuvUqcPGjRuNDpLxGW4dOnQoXbp0oXTp0lSoUIH58+fj7e1N37599XXmzJnDxo0b2b9/PwC7d+9GURTy58/P7du3GTFiBPnz56dHjx761wwfPpwmTZqQPXt2nj9/zo8//khAQADdunUD1LnN8L8kgBp0M2TIEKFcJCwJkklh9251gY6vLwChVtb806gNZ4qXpmiB3HRsXgcbaxMMr4bXp496pJazs2nvK4SJnT17lnz58mFlZWVQXqdOHebOnYuPjw9ubm6J0pZ27drx6tUrfvjhB548eUKRIkXYsWMHOcKtBn/58iV37tzRP/f392f06NH4+PiQPn16WrVqxeTJk7G0tNTX8fHxoUOHDrx8+ZKMGTNSvnx5Tpw4YXBfkTzIKSCJSaeDn36CcePU3Y+AX0YX5rfqxtPMWWhQswK1KpfBLJpFAUb5919YulSd8wz3F1QIIVIzY2KB9CQTi58fdO0KW7fqi64XKsbSJu3RpEvHVy3rUzBvTtO936lT0LSpmspu8GAZYhVCiDiQIJkYLl5Uhzo/DskoGg07azZkX6VaZM6ckZ7tGuOc3sl073f1KjRooC4M8vSUACmEEHEkQTKhrVyp7kt8/x6AIAcHFjfrxI08BShZOB/tmtbG2sqEQ6H37kGdOup857Jlam9SCCFEnEiQTCjBwTB8uHrE1UdPc7gzv3ln/NI707R2JapXKBXtpmSjvX8PdevC48cwezZEk6pLCCFEzCRIJoTHj6FNGwiX39GrTCXW1G2OdVoH+rZuQL5c2U3/vra2MHIkPH0KAwea/v5CCJHKSJA0tUOHoF07ePYMAJ2lJesbtOJ4qfJk/Tj/mN7JxCtr378HKyswN1eHdoUQQpiEBElTURSYORNGjFBP8gDeOmdkfosuPMyandLFC9KmUU2sLE38lQcFqSeGODrCihVqsBRCCGESEiRN4e1b6NUL1q7VF90vWIQFjdvz3iEtLepWoUrZ4qadfwQ1GHfpAnv2qIEyvsdnCSGEMCBBMr5u3IAWLeDaNX3RwRr12VKlLvYO9nzTphG5c0TMCxlvigLffAPr1kHNmrB6NVjIf04hhDAl+Vc1Pjw91VM13rwBINTenqVN2nO5QFGyZ3WhR9tGOKV1SJj3/vFH9SzI0qVh0yaQ43SEEMLkJEjG1Zgxaoq5j15ny8Hc5p15mSEj5UsWplXD6lgkVM/u4kU1tV3u3LB9OzgkUCAWQohUToJkXDk56X+8Uro8y+q2QGtjS5uG1anoUTTq15lCsWLqIp1y5SBTpoR9LyGESMUkwXlcKQr+TZryn8aWfz0qktYhDT3aNiJnNlfTNDYyd+9CjhzqVg8hhBBxIgnOE5hOUdj73yl2la4FGg3u2Vzp1qYRjg72Cfemd+5AhQpQtaq6WMfUK2WFEEJEIEHSSO8/BLFq0x4u37gLGg2VyxSjWb2qWCRk7+75c6hXD168gPr1JUAKIUQikSBphGcvfFm4ZisvXvlhYW5Om8Y1KVuiUMK+aWAgNG6s9iQnTIDevRP2/YQQQuhJkIyli9dus2rTHoKCQ3BKm4Ye7RqTPYtLwr5paCi0bQunT6vBcdy4hH0/IYQQBlJMipamTZuSPXt2bGxscHV1pUuXLjx+/DjB31en07F9/zEWr91OUHAIeXK6MbRPh4QPkAD798OOHdCwIfz5pwyzCiFEIksxq1t/++03KlSogKurK48ePWL48OEAHAt30kZMjF3dGvj+Ays27OL6nQcAVC9fksZ1KmOemOnftm2DGjXAPgEXBQkhRCpiTCxIMUHyc1u2bKF58+YEBQVhaRm7Q4uN+WIeP3vBojXbefXaH0sLC9o1rYVH0QKmaHrMDh9WV7JKmjkhhDC5L34LiK+vLytXrqRixYrRBsigoCCCgoL0zwMCAmJ1/7OXb7Bmyz6CQ0JJ75SWnu0akzVzxni3O1Z27ICmTaFzZ1iyJHHeUwghRKRSzJwkwKhRo7C3tydDhgx4e3uzefPmaOtPmTIFR0dH/SNbtmzR1tfqdGzec5jlG3YRHBJK/tzZGdqnQ+IFSC8v9bBma2vo3z9x3lMIIUSUkjRITpgwAY1GE+3Dy8tLX3/EiBGcO3eOPXv2YG5uTteuXYlutHj06NH4+/vrHw8fPoyy7tt375m3YiMHj58FoFal0vTp2Ax720RKHH7/vrrVIyhITRZQpkzivK8QQogoJemc5MuXL3n58mW0dXLmzIlNJCdc+Pj4kC1bNo4dO0aFChVi9X5RjUM/fPKcxWu28dr/DVaWlnRoXocShfIa92Hiw88PKlWCq1fVVax9+ybeewshRCqTYuYknZ2dcXZ2jtNrw2J7+DnHuDh94Rrrtu0nJFRLxvRO9GjXGNdMGeJ1T6Pt26eeRzlihARIIYRIRlLEwp1Tp05x6tQpKleuTLp06bh79y7jxo0jd+7cse5Ffk6r1bJ5z2EOn7oAQKG8Oencsj62NtambHrstG4NR45A+fKJ/95CCCGilCKCpK2tLZ6enowfP57AwEBcXV2pX78+//zzD9bWxge1N28DWbphN3e91WQEdauWpV718pgl9mb9bdvUnKyWllCxYuK+txBCiBil2H2ScRE2Dv3t5N/5EKLF2sqKzi3rUSR/rsRvzIoV0KWLmm7u778T//2FECKVSjFzkknF/00g2dxc6dWuCZmc0yV+Aw4ehJ49IV06+Jg5SAghRPKTqoJkWKc5VzYXurZpgI2VeawTDJjMzZvQvLn688qV4OoKid0GIYRIxcL+3Y/NQGqqGm4N2zYihBBCPHz4EDc3t2jrpKogqdPpePz4MQ4ODmhiWKQTEBBAtmzZePjwYaySoacW8r1ETb6byMn3Ejn5XiKXGN+Loii8efOGLFmyYBbDgRWparjVzMwsxt8aPpc2bVr5HzgS8r1ETb6byMn3Ejn5XiKX0N+Lo6NjrOqlqNytQgghRGKSICmEEEJEQYJkFKytrRk/fnyckhV8yeR7iZp8N5GT7yVy8r1ELrl9L6lq4Y4QQghhDOlJCiGEEFGQICmEEEJEQYKkEEIIEQUJkkIIIUQUJEjGQtOmTcmePTs2Nja4urrSpUsXHj9+nNTNSnL379+nV69euLu7Y2trS+7cuRk/fjzBwcFJ3bQkN3nyZCpWrIidnR1OTk5J3ZwkM3fuXNzd3bGxscHDw4PDhw8ndZOS3H///UeTJk3IkiULGo2GTZs2JXWTkoUpU6ZQpkwZHBwcyJQpE82bN+fGjRtJ3SwJkrFRo0YN1q5dy40bN9iwYQN37tyhdevWSd2sJHf9+nV0Oh3z5s3jypUr/Pbbb/z111989913Sd20JBccHEybNm3o169fUjclyaxZs4YhQ4YwZswYzp07R5UqVWjQoAHe3t5J3bQkFRgYSPHixZkzZ05SNyVZOXToEP379+fEiRPs3buX0NBQ6tatS2BgYNI2TBFG27x5s6LRaJTg4OCkbkqyM23aNMXd3T2pm5FsLF68WHF0dEzqZiSJsmXLKn379jUoK1CggPLtt98mUYuSH0DZuHFjUjcjWXr+/LkCKIcOHUrSdkhP0ki+vr6sXLmSihUrYmlpmdTNSXb8/f1Jnz59UjdDJLHg4GDOnDlD3bp1Dcrr1q3LsWPHkqhVIiXx9/cHSPJ/TyRIxtKoUaOwt7cnQ4YMeHt7s3nz5qRuUrJz584dfv/9d/r27ZvUTRFJ7OXLl2i1WlxcXAzKXVxcePr0aRK1SqQUiqIwdOhQKleuTJEiRZK0Lak2SE6YMAGNRhPtw8vLS19/xIgRnDt3jj179mBubk7Xrl1jdWBnSmTsdwPw+PFj6tevT5s2bejdu3cStTxhxeV7Se0+P5JOUZQYj6kTYsCAAVy8eJHVq1cndVNS11FZ4Q0YMID27dtHWydnzpz6n52dnXF2diZfvnwULFiQbNmyceLECSpUqJDALU18xn43jx8/pkaNGlSoUIH58+cncOuSjrHfS2rm7OyMubl5hF7j8+fPI/QuhQhv4MCBbNmyhf/++8/oow0TQqoNkmFBLy7CepBBQUGmbFKyYcx38+jRI2rUqIGHhweLFy+O8QDTlCw+/8+kNlZWVnh4eLB3715atGihL9+7dy/NmjVLwpaJ5EpRFAYOHMjGjRs5ePAg7u7uSd0kIBUHydg6deoUp06donLlyqRLl467d+8ybtw4cufO/UX2Io3x+PFjqlevTvbs2Zk+fTovXrzQX8ucOXMStizpeXt74+vri7e3N1qtlvPnzwOQJ08e0qRJk7SNSyRDhw6lS5culC5dWj/K4O3tnernrN++fcvt27f1z+/du8f58+dJnz492bNnT8KWJa3+/fuzatUqNm/ejIODg34UwtHREVtb26RrWJKurU0BLl68qNSoUUNJnz69Ym1treTMmVPp27ev4uPjk9RNS3KLFy9WgEgfqV23bt0i/V4OHDiQ1E1LVH/88YeSI0cOxcrKSilVqlSSL+dPDg4cOBDp/xvdunVL6qYlqaj+LVm8eHGStkuOyhJCCCGi8OVOIAkhhBDxJEFSCCGEiIIESSGEECIKEiSFEEKIKEiQFEIIIaIgQVIIIYSIggRJIYQQIgoSJIUQQogoSJAUqc79+/fRaDT6VHEpRc6cOZk5c6bJ7le9enWGDBlisvslBY1Gw6ZNm4CU+99VJG8SJMUXJaajrLp3757UTYzRkiVLcHJyilB++vRp+vTpk/gNSgYmTJhAiRIlIpQ/efKEBg0aJH6DRKohCc7FF+XJkyf6n9esWcO4ceO4ceOGvszW1pbXr18nRdPQarVoNJo4n5SSMWNGE7co5UvtifRFwpOepPiiZM6cWf9wdHREo9FEKAtz9+5datSogZ2dHcWLF+f48eMG9zp27BhVq1bF1taWbNmyMWjQIAIDA/XXX79+TdeuXUmXLh12dnY0aNCAW7du6a+H9Qi3bdtGoUKFsLa25sGDBwQHBzNy5EiyZs2Kvb095cqV4+DBgwAcPHiQHj164O/vr+/9TpgwAYg43Orn50efPn1wcXHBxsaGIkWKsG3bNgBevXpFhw4dcHNzw87OjqJFi8bpANupU6fi4uKCg4MDvXr14ttvvzXo0UU2ZNu8eXODHvuKFSsoXbo0Dg4OZM6cmY4dO/L8+XP99YMHD6LRaNi/fz+lS5fGzs6OihUr6n+5WbJkCRMnTuTChQv672TJkiWA4XBrZK5evUrDhg1JkyYNLi4udOnShZcvX+qvr1+/nqJFi2Jra0uGDBmoXbu2wX9jISRIilRrzJgxDB8+nPPnz5MvXz46dOhAaGgoAJcuXaJevXq0bNmSixcvsmbNGo4cOcKAAQP0r+/evTteXl5s2bKF48ePoygKDRs2JCQkRF/n3bt3TJkyhQULFnDlyhUyZcpEjx49OHr0KP/88w8XL16kTZs21K9fn1u3blGxYkVmzpxJ2rRpefLkCU+ePGH48OER2q7T6WjQoAHHjh1jxYoVXL16lalTp2Jubg7Ahw8f8PDwYNu2bVy+fJk+ffrQpUsXTp48GevvZ+3atYwfP57Jkyfj5eWFq6src+fONfp7Dg4OZtKkSVy4cIFNmzZx7969SIe9x4wZw4wZM/Dy8sLCwoKePXsC0K5dO4YNG0bhwoX130m7du1ifN8nT55QrVo1SpQogZeXF7t27eLZs2e0bdtWf71Dhw707NmTa9eucfDgQVq2bImc+SAMJOkZJEIkoMWLFyuOjo4Ryu/du6cAyoIFC/RlV65cUQDl2rVriqIoSpcuXZQ+ffoYvO7w4cOKmZmZ8v79e+XmzZsKoBw9elR//eXLl4qtra2ydu1a/fsDyvnz5/V1bt++rWg0GuXRo0cG965Vq5YyevToaNudI0cO5bffflMURVF2796tmJmZKTdu3Ij199GwYUNl2LBh+ufVqlVTBg8eHGX9ChUqKH379jUoK1eunFK8ePFo79GsWbNoj306deqUAihv3rxRFOXT0VH79u3T19m+fbsCKO/fv1cURVHGjx9v8L5hAGXjxo2Konz673ru3DlFURRl7NixSt26dQ3qP3z4UAGUGzduKGfOnFEA5f79+1G2VQjpSYpUq1ixYvqfXV1dAfTDgGfOnGHJkiWkSZNG/6hXrx46nY579+5x7do1LCwsKFeunP4eGTJkIH/+/Fy7dk1fZmVlZfA+Z8+eRVEU8uXLZ3DvQ4cOcefOnVi3/fz587i5uZEvX75Ir2u1WiZPnkyxYsXIkCEDadKkYc+ePXh7e8f6Pa5duxbhYPG4HDR+7tw5mjVrRo4cOXBwcKB69eoAEdoS3X+PuDhz5gwHDhww+J4LFCgAwJ07dyhevDi1atWiaNGitGnThr///jvJ5qtF8iULd0SqZWlpqf9Zo9EA6jBm2J9ff/01gwYNivC67Nmzc/PmzUjvqSiK/l6gLhQK/1yn02Fubs6ZM2f0Q6Nh0qRJE+u2x3RS+4wZM/jtt9+YOXMmRYsWxd7eniFDhhAcHBzr94gNMzOzCMOT4YebAwMDqVu3LnXr1mXFihVkzJgRb29v6tWrF6Et0f33iAudTkeTJk34+eefI1xzdXXF3NycvXv3cuzYMfbs2cPvv//OmDFjOHnyJO7u7nF+X/FlkSApRCRKlSrFlStXyJMnT6TXCxUqRGhoKCdPnqRixYqAuljm5s2bFCxYMMr7lixZEq1Wy/Pnz6lSpUqkdaysrNBqtdG2r1ixYvj4+HDz5s1Ie5OHDx+mWbNmdO7cGVADxq1bt6Jt2+cKFizIiRMn6Nq1q77sxIkTBnUyZsxosKJYq9Vy+fJlatSoAcD169d5+fIlU6dOJVu2bAB4eXnFug1hYvOdfK5UqVJs2LCBnDlzYmER+T91Go2GSpUqUalSJcaNG0eOHDnYuHEjQ4cONbqN4sskw61CRGLUqFEcP36c/v37c/78eW7dusWWLVsYOHAgAHnz5qVZs2Z89dVXHDlyhAsXLtC5c2eyZs1Ks2bNorxvvnz56NSpE127dsXT05N79+5x+vRpfv75Z3bs2AGoq1jfvn3L/v37efnyJe/evYtwn2rVqlG1alVatWrF3r17uXfvHjt37mTXrl0A5MmTR99LunbtGl9//TVPnz416jsYPHgwixYtYtGiRdy8eZPx48dz5coVgzo1a9Zk+/btbN++nevXr/PNN9/g5+env549e3asrKz4/fffuXv3Llu2bGHSpElGtSPsO7l37x7nz5/n5cuXBAUFxfia/v374+vrS4cOHTh16hR3795lz5499OzZE61Wy8mTJ/npp5/w8vLC29sbT09PXrx4YdQvEuLLJ0FSiEgUK1aMQ4cOcevWLapUqULJkiUZO3asfq4MYPHixXh4eNC4cWMqVKiAoijs2LHDYNgwMosXL6Zr164MGzaM/Pnz07RpU06ePKnvaVWsWJG+ffvSrl07MmbMyLRp0yK9z4YNGyhTpgwdOnSgUKFCjBw5Ut/bGjt2LKVKlaJevXpUr16dzJkz07x5c6O+g3bt2jFu3DhGjRqFh4cHDx48oF+/fgZ1evbsSbdu3ejatSvVqlXD3d1d34sEtae5ZMkS1q1bR6FChZg6dSrTp083qh0ArVq1on79+tSoUYOMGTPGajtLlixZOHr0KFqtlnr16lGkSBEGDx6Mo6MjZmZmpE2blv/++4+GDRuSL18+vv/+e2bMmCHJCYQBjfL5hIIQQkRhwoQJbNq0SVK/iVRDepJCCCFEFCRICiGEEFGQ4VYhhBAiCtKTFEIIIaIgQVIIIYSIggRJIYQQIgoSJIUQQogoSJAUQgghoiBBUgghhIiCBEkhhBAiChIkhRBCiCj8H6RbhqRymDMyAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# QQPLOT \n", "import pingouin as pg\n", "ax = pg.qqplot(penguins.flipper_length_mm, dist='norm')" ] }, { "cell_type": "code", "execution_count": 7, "id": "59b48922", "metadata": { "slideshow": { "slide_type": "subslide" } }, "outputs": [ { "data": { "text/plain": [ "ShapiroResult(statistic=0.9515460133552551, pvalue=3.541138271501154e-09)" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Shapiro-Wilk test\n", "from scipy.stats import shapiro\n", "shapiro(penguins.flipper_length_mm.dropna()) # p-val<0.05 - departure from normality" ] }, { "cell_type": "markdown", "id": "d81bc153", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "# Our data is not normal, but we will still proceed with the outlined tests to demonstrate Python functionality. \n", "\n", "## We will see later what tests to use when we see non-normal data " ] }, { "cell_type": "code", "execution_count": 8, "id": "533a9f0c", "metadata": { "slideshow": { "slide_type": "subslide" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAGwCAYAAACtlb+kAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAABFn0lEQVR4nO3dd3QVdf7/8ddNLySBQAqBEEKRFggdDS5FJYI1NBEVRSxIFdivCqsrqLsUXdFViuhCgoUiCMLaESQshBJKpDepQkKoSUglyf39wc8rl4CGS5JJJs/HOfcc857J3Pec4w2v+5nPzMditVqtAgAAMDEnoxsAAAAobQQeAABgegQeAABgegQeAABgegQeAABgegQeAABgegQeAABgegQeSVarVenp6eKRRAAAmBOBR1JGRob8/PyUkZFhdCsAAKAUEHgAAIDpEXgAAIDpEXgAAIDpEXgAAIDpEXgAAIDpEXgAAIDpEXgAAIDpEXgAAIDpEXgAAIDpEXgAAIDpEXgAAIDpEXgAAIDpEXgAAIDpEXgAAIDpuRjdAFCW+sxMUHJajiSppp+HFg+JMrgjAEBZIPCgUklOy9GJC9lGtwEAKGNc0gIAAKZH4AEAAKZH4AEAAKZH4AEAAKZH4AEAAKZH4AEAAKZH4AEAAKZH4AEAAKZH4AEAAKZH4AEAAKZH4AEAAKZH4AEAAKZH4AEAAKZH4AEAAKZH4AEAAKZH4AEAAKZH4AEAAKZH4AEAAKZH4AEAAKZnaOCZNGmS2rVrJx8fHwUGBiomJkb79u2z28dqtWrChAkKCQmRp6enunTpol27dhU51vr163XHHXfI29tbVatWVZcuXZSdnV1WpwIAAMoxQwNPfHy8hg0bpg0bNmjFihXKz89XdHS0MjMzbfu8+eabmjp1qqZNm6bExEQFBwerW7duysjIsO2zfv16de/eXdHR0dq0aZMSExM1fPhwOTkxgAUAACSL1Wq1Gt3Eb06fPq3AwEDFx8erU6dOslqtCgkJ0ahRo/TSSy9JknJzcxUUFKQpU6Zo8ODBkqRbb71V3bp10xtvvOHQ+6anp8vPz09paWny9fUtsfNB+dNx8iqduHB55K9WVU+tG3uHwR0BAMpCuRoCSUtLkyT5+/tLkg4fPqyUlBRFR0fb9nF3d1fnzp2VkJAgSUpNTdXGjRsVGBioqKgoBQUFqXPnzlq7du113yc3N1fp6el2LwAAYF7lJvBYrVaNGTNGt99+uyIiIiRJKSkpkqSgoCC7fYOCgmzbDh06JEmaMGGCnnnmGX333Xdq3bq17rzzTh04cOCa7zVp0iT5+fnZXqGhoaV1WgAAoBwoN4Fn+PDh2r59u+bPn19km8VisfvZarXaaoWFhZKkwYMH68knn1SrVq30zjvvqFGjRpozZ84132vcuHFKS0uzvY4fP17CZwMAAMoTF6MbkKQRI0Zo+fLlWrNmjWrXrm2rBwcHS7o80lOzZk1bPTU11Tbq81u9adOmdsds0qSJjh07ds33c3d3l7u7e4meAwAAKL8MHeGxWq0aPny4lixZolWrVik8PNxue3h4uIKDg7VixQpbLS8vT/Hx8YqKipIk1a1bVyEhIUVuZ9+/f7/CwsJK/yQAAEC5Z+gIz7BhwzRv3jwtW7ZMPj4+tnk5fn5+8vT0lMVi0ahRozRx4kQ1bNhQDRs21MSJE+Xl5aVHHnlE0uXLXS+88ILGjx+vyMhItWzZUnPnztXevXu1ePFiI08PAACUE4YGnpkzZ0qSunTpYlePjY3VwIEDJUkvvviisrOzNXToUJ0/f14dOnTQDz/8IB8fH9v+o0aNUk5OjkaPHq1z584pMjJSK1asUP369cvqVAAAQDlWrp7DYxSew1N58BweAKicys1dWgAAAKWFwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwINKo6DQqpxLBbafsy8VKC+/0MCOAABlhcCDSuGLLb+q05s/6Wxmnq12LjNPUZNXKW7dYVmtVgO7AwCUNhejGwBK2wfxv2jyt3uvue3MxVxN+O9unUzL0d/uaVLGnQEAygojPDC17b9euG7YudKHaw7pp32pZdARAMAIBB6YWty6I6WyLwCgYiHwwLQKC636ZmdysfeP339a6TmXSrEjAIBRCDwwraxLBcq5dGN3YV3IJPAAgBkReGBanq7Ocnay3NDveLs7l1I3AAAjEXhgWs5OFnVsUKPY+4fX8FL1Ku6l2BEAwCgEHpjaE7eFFXvf4+ey9e2O4s/5AQBUHAQemNodjQMV0zKkWPvmF1o1dN5WfbjmFx5ECAAmQ+CBqVksFr3VN1IDo+pedz6Pm/PvHwOrVZr4zV69/OVO5Rew7AQAmIXFyldZpaeny8/PT2lpafL19TW6HZSS5LRs3f3OGqXn5EuSfDxc9NWI22W1SoPiEnXoTKbd/p1vCdC0R1rJx8PViHYBACWIER5UGjX9PO3Ci6+Hq8Kqe6tuDW99MSRK7cP97faP339afT9Yr5MXssu6VQBACSPwAJKqebvpk6faq2erWnb1vSkZipm+TjtPpBnUGQCgJBB4gP/P3cVZUx+K1PN3NrSrp2bk6qFZ67VyzymDOgMA3CwCD3AFi8Wi0d1u0dt9I+Xq/Psk56y8Aj3z8WbFrTtsYHcAAEcReIBr6N2mtj4e1EG+Hi62WqFVmvDf3ZqwfJcKCiv9XH8AqFAMDTyTJk1Su3bt5OPjo8DAQMXExGjfvn12+1itVk2YMEEhISHy9PRUly5dtGvXrmsez2q1qkePHrJYLPryyy/L4AxgZrfVr64lQzuqjr+XXT0u4YgGf7JFWXn5BnUGALhRhgae+Ph4DRs2TBs2bNCKFSuUn5+v6OhoZWb+fnvwm2++qalTp2ratGlKTExUcHCwunXrpoyMjCLHe/fdd2Wx3NjaScAfaRBYRUuHRqlVnap29R/3nNJDs9YrNT3HmMYAADfE0MDz3XffaeDAgWrWrJkiIyMVGxurY8eOacuWLZIuj9i8++67evnll9WrVy9FRERo7ty5ysrK0rx58+yO9fPPP2vq1KmaM2eOEacCE6texV3zn7lV9zavaVffeSJdMdPXaW9KukGdAQCKq1zN4UlLu3zrr7//5eehHD58WCkpKYqOjrbt4+7urs6dOyshIcFWy8rKUv/+/TVt2jQFBwf/6fvk5uYqPT3d7gX8EQ9XZ73fv5WGdKlvVz+ZlqM+M9crfv9pgzoDABRHuQk8VqtVY8aM0e23366IiAhJUkpKiiQpKCjIbt+goCDbNkkaPXq0oqKi9OCDDxbrvSZNmiQ/Pz/bKzQ0tITOAmbm5GTRS90ba1Kv5nbLVFzMzdeguETN23jMwO4AAH+k3ASe4cOHa/v27Zo/f36RbVfPy7Farbba8uXLtWrVKr377rvFfq9x48YpLS3N9jp+/PhN9Y7KpX/7Oop7sp183H+/g6ug0Kq/Ld2hSd/uUSF3cAFAuVMuAs+IESO0fPly/fTTT6pdu7at/tvlqStHcyQpNTXVNuqzatUq/fLLL6patapcXFzk4nL5H6HevXurS5cu13w/d3d3+fr62r2AG/GXhgFaPCRKIX4edvVZ8Yc0fP5W5VwqMKgzAMC1GBp4rFarhg8friVLlmjVqlUKDw+32x4eHq7g4GCtWLHCVsvLy1N8fLyioqIkSWPHjtX27duVlJRke0nSO++8o9jY2DI7F1Q+jYJ99OWwjmpey8+u/s2OFPX/aIPOXMw1qDMAwNVc/nyX0jNs2DDNmzdPy5Ytk4+Pj20kx8/PT56enrJYLBo1apQmTpyohg0bqmHDhpo4caK8vLz0yCOPSLo8CnSticp16tQpEqCAkhbo66GFg2/V8wuStGL370tPbDt2QT1nrFPswHZqEOhjYIcAAMngEZ6ZM2cqLS1NXbp0Uc2aNW2vhQsX2vZ58cUXNWrUKA0dOlRt27bViRMn9MMPP8jHh39EUD54ubnog8faaFBH+4B9/Fy2es1IUMIvZwzqDADwG4vVaq30MyzT09Pl5+entLQ05vOYXMfJq3TiQrYkqVZVT60be0eJHn9uwhG99t9dunLesquzRZN6tVCfNrWv/4sAgFJVLiYtA2bxRFRdffR4W3m5Odtqlwqs+r9FP2vqiv3i+wUAGIPAA5SwO5sE6fPBtynI192u/t7KAxq1MEm5+dzBBQBljcADlIKIWn76clhHNQ62n2u2LOmkBvxnk85n5hnUGQBUTgQeoJTU9PPU4iFR6nxLgF1905Fz6jUzQUfOZF7nNwEAJY3AA5SiKu4umv1EWz3aoY5d/fCZTPWcsU6bj5wzqDMAqFwIPEApc3F20j9iIvTKvU105Sop57Mu6ZGPNmr5zyeNaw4AKgkCD1AGLBaLnv5LPc18tLU8XH//2OUVFGrk/G2a/tNB7uACgFJE4AHKUPeImlrw7G2qUcXNrv7W9/v00hfbdamg0KDOAMDcCDxAGWsZWlVLh3ZUw8AqdvXPN/+qgbGblJZ9yaDOAMC8CDyAAUL9vbR4SJQ6NqhuV1938Kx6z0zQ8XNZBnUGAOZE4AEM4ufpqtiB7dX3qiUnDqZeVM8Z65R0/IIxjQGACRF4AAO5uTjpzT4t9MLdjezqZy7m6eEP1+u7nSkGdQYA5kLgAQxmsVg0rGsDvde/ldxcfv9I5lwq1JDPtuijNYe4gwsAbhKBBygnHogM0bynO6ial6utZrVK//xmj175cqfyuYMLABxG4AHKkbZ1/bV0aEeF1/C2q3+28Zie/nizLubmG9QZAFRsBB6gnKlbw1tLhkSpfV1/u/rqfafVZ2aCktOyDeoMACouAg9QDlXzdtMnT7dXTMsQu/relAzFTF+nnSfSDOoMAComF0d+KScnR++//75++uknpaamqrDQfm7B1q1bS6Q5oDJzd3HWO/1aqk51b7238oCtfio9Vw/NWq/3+7fSnU2CDOwQACoOhwLPoEGDtGLFCvXp00ft27eX5coVEQGUGIvFojHdblEdfy+NW7Jdlwou362VlVegZz7erPH3N9MTUXWNbRIAKgCHAs/XX3+tb775Rh07dizpfgBcQ582tRVS1UPPfbJF6TmXJy4XWqXxy3fp6NksvXxvEzk78cUDAK7HoTk8tWrVko+PT0n3AuAPRNWvoSVDOyrU39OuPmfdYT336RZl5XEHFwBcj0OB5+2339ZLL72ko0ePlnQ/AP5Ag8AqWjq0o1rVqWpXX7H7lPrN2qDU9BxjGgOAcs6hwNO2bVvl5OSoXr168vHxkb+/v90LQOmpUcVd85+5Vfc0D7ar7ziRpp4zErQvJcOgzgCg/HJoDk///v114sQJTZw4UUFBQUxaBsqYh6uzpvVvrTf99+mD+F9s9RMXstVnZoKmP9panW4JMLBDAChfHAo8CQkJWr9+vSIjI0u6HwDF5ORk0dgejRVW3UuvfLlTBYWX7+DKyM3Xk3GJ+kdMhPq3r2NwlwBQPjh0Satx48bKzuZpr0B50L99HcUObKcq7r9/fykotGrckh2a/O1eFRay8CgAOBR4Jk+erL/+9a9avXq1zp49q/T0dLsXgLLV6ZYALR5ym0L8POzqH8T/ohHztynnUoFBnQFA+WCxWq03/PXPyelyTrp67o7VapXFYlFBQcX645qeni4/Pz+lpaXJ19fX6HZQijpOXqUTFy6PTtaq6ql1Y+8wuKOSlZqeo6fmbtaOq5aeaF2nqj56vK2qV3E3qDMAMJZDc3h++umnku4DQAkI9PXQwsG3auT8JP2455StvvXYBfWckaA5A9upQWAVAzsEAGM4FHg6d+5c0n0AKCFebi6aNaCN/vH1bsWuO2KrHzuXpV4z1mnWgLa6rX514xoEAAM4FHikywuIbt++/ZqLhz7wwAM33RgAxzk7WTT+/mYK8/fS61/t1m/zltNz8vX4nI2a3KuFerepbWyTAFCGHAo83333nR5//HGdOXOmyLaKOIcHMKuBHcMV6u+lEfO3KSvv8ufyUoFVf130s46dy9KouxryHC0AlYJDd2kNHz5cffv2VXJysgoLC+1ehB2gfLmzSZA+H3ybAn3sJyz/e+UBjfn8Z+Xm85kFYH4OBZ7U1FSNGTNGQUFBJd0PgFIQUctPXw7rqMbB9ov+Lt12QgNmb9KFrDyDOgOAsuFQ4OnTp49Wr15dwq0AKE0hVT216Lnb1PmqJSc2HT6nXjMSdORMpkGdAUDpc+g5PFlZWerbt68CAgLUvHlzubq62m0fOXJkiTVYFngOT+Vh9ufwFEd+QaFeXb5L8zYes6v7e7vpo8fbqE0YCwADMB+HJi3PmzdP33//vTw9PbV69Wq7SY8Wi6XCBR6gMnFxdtI/YyIUXt1bE7/do9++8pzLzFP/jzbq7b6Ruj8yxNgmAaCEORR4XnnlFb3++usaO3as7anLACoOi8WiZzrVU+1qnhq1MEm5+ZcfLZGXX6gR87fp2LksDe1Snzu4AJiGQ2klLy9P/fr1I+wAFVyP5jW14NlbVaOKm139re/3aewXO3SpoPA6vwkAFYtDieWJJ57QwoULS7oXAAZoVaealg7tWGTJiYWbj2tg7CalZV8yqDMAKDkOXdIqKCjQm2++qe+//14tWrQoMml56tSpJdIcgLIR6u+lL4ZEacinW5Twy1lbfd3Bs+oz8/IaXKH+XgZ2CAA3x6HAs2PHDrVq1UqStHPnTrttXPMHKiY/T1fFPdlef1u6Q4u3/GqrH0i9qJ4zEjT7ibaKDK1qXIMAcBNKdbX0X3/9VSEhIcz1QblR08/jmv+Ny9xcnPRWnxYKr+Gtt77fZ6ufuZirfh+u17v9Wql7RLCBHQKAYxx6Dk9x+fr6KikpSfXq1SuttygRPIcHKGpZ0gm9sGi78q6YuGyxSC/f00RP3R7OaC6ACqVUh15KMUsBKGUPtqylz57poGpev8/Rs1qlf3y9R68u26V87uACUIFwrQnAdbWr668lQzsqvIa3Xf2TDUf19MebdTE336DOAODGEHgA/KHwGt5aMiRK7epWs6uv3ndafT9Yr+S0bIM6A4DiI/AA+FPVvN306dMd9GBL+yUn9iSnK2b6Ou06mWZQZwBQPKUaeJjUCJiHu4uz3u3XUiPvaGBXP5Weq74frNeqvacM6gwA/pyhk5YnTZqkdu3aycfHR4GBgYqJidG+ffvs9rFarZowYYJCQkLk6empLl26aNeuXbbt586d04gRI9SoUSN5eXmpTp06GjlypNLS+MYJlDSLxaIx0Y30Vp8WcnH6/QtNVl6Bnp67WR+vP2JccwDwB0o18OzevVthYWHX3R4fH69hw4Zpw4YNWrFihfLz8xUdHa3MzEzbPm+++aamTp2qadOmKTExUcHBwerWrZsyMjIkSSdPntTJkyf1r3/9Szt27FBcXJy+++47PfXUU6V5akCl1rdtqD4e1F6+Hr8/yqvQKr26bJfe+Gq3Cgq5QxNA+eLQc3gyMzM1efJkrVy5UqmpqSostL899dChQw41c/r0aQUGBio+Pl6dOnWS1WpVSEiIRo0apZdeekmSlJubq6CgIE2ZMkWDBw++5nEWLVqkxx57TJmZmXJx+fNnK/IcHsAxB1Mz9GRcoo6fs5+4HN00SO8+3FJebg492xQASpxDf42efvppxcfHa8CAAapZs2aJzdX57TKUv7+/JOnw4cNKSUlRdHS0bR93d3d17txZCQkJ1w08vwWX64Wd3Nxc5ebm2n5OT08vkf6ByqZBoI+WDu2op+duVtLxC7b6D7tP6eEPN+g/T7RVoA9PtAZgPIcCz7fffquvv/5aHTt2LLFGrFarxowZo9tvv10RERGSpJSUFElSUFCQ3b5BQUE6evToNY9z9uxZvfHGG9cNQ9LluUOvvfZaCXUOVG41qrhrwbO3avTCJH27M8VW3/5rmnpOv7zwaKNgHwM7BAAH5/BUq1bNNgpTUoYPH67t27dr/vz5RbZdPYJktVqvOaqUnp6ue++9V02bNtX48eOv+17jxo1TWlqa7XX8+PGbPwGgEvNwddb0R1prcGf7ZWROXMhWn5kJ+t+B0wZ1BgCXORR43njjDb366qvKysoqkSZGjBih5cuX66efflLt2rVt9eDgy4sU/jbS85vU1NQioz4ZGRnq3r27qlSpoqVLl8rV1VXX4+7uLl9fX7sXgJvj5GTRuB5NNLFnczlfcQdXRm6+noxN1MLEYwZ2B6CyK/YlrVatWtmNqhw8eFBBQUGqW7dukXCxdevWYh3TarVqxIgRWrp0qVavXq3w8HC77eHh4QoODtaKFSvUqlUrSVJeXp7i4+M1ZcoU237p6em6++675e7uruXLl8vDgzkDgFEe6VBHtap5athnW21LT+QXWvXSFzt05GyWXohuJCcnntEFoGwVO/DExMSU+JsPGzZM8+bN07Jly+Tj42MbyfHz85Onp6csFotGjRqliRMnqmHDhmrYsKEmTpwoLy8vPfLII5Iuj+xER0crKytLn376qdLT022TkAMCAuTs7FzifQP4Y51vCdCi527ToLhEJafl2OozV/+iY+ey9HbfSHm48tkEUHYcui29xN78Ond3xcbGauDAgZIujwK99tprmjVrls6fP68OHTpo+vTptonNq1evVteuXa95nMOHD6tu3bp/2ge3pQOl41R6jp6am6idJ+zvhGxdp6o+erytqldxN6gzAJWNQ4GnXr16SkxMVPXq1e3qFy5cUOvWrR1+Do9RCDxA6cnKy9fI+dv0455Uu3odfy/FPtlO9QOqGNQZgMrEoUnLR44cUUFBQZF6bm6ufv3115tuCoB5eLm5aNaAthoYVdeufuxclnrNSNCGQ2eNaQxApXJDz+FZvny57b+///57+fn52X4uKCjQypUri0w8BgBnJ4smPNBMYdW99MZXu/XbyhNp2Zc0YPZGTendQr1a1/7jgwDATbihS1pOTpcHhCwWS5GFQV1dXVW3bl29/fbbuu+++0q2y1LGJS2g7Py4+5RGzN+m7Ev2o8TP39lQo+5qWGJPbgeAKzk0hyc8PFyJiYmqUaNGafRU5gg8QNnaeSJNg+ISlZqRa1fv1aqWJvVuLncX7uACULIMvUurvCDwAGXv5IVsDYpL1N6UDLt6h3B/zRrQRlW93AzqDIAZORR43nvvvWsfzGKRh4eHGjRooE6dOlWYZ+AQeABjZORc0rB527Rmv/3SE/VqeCv2yXYKq+5tUGcAzMbhS1qnT59WVlaWqlWrJqvVqgsXLsjLy0tVqlRRamqq6tWrp59++kmhoaGl0XeJIvAAxrlUUKjxy3dp3kb7pSf8vd300eNt1CasZNftA1A5OXRb+sSJE9WuXTsdOHBAZ8+e1blz57R//3516NBB//73v3Xs2DEFBwdr9OjRJd0vAJNxdXbSP2Mi9Ld7GtvVz2Xmqf9HG/XV9pMGdQbATBwa4alfv76++OILtWzZ0q6+bds29e7dW4cOHVJCQoJ69+6t5OTkkuq11DDCA5QP3+5I1qiFScrNL7Srv9i9kYZ0rs8dXAAc5tAIT3JysvLz84vU8/PzbethhYSEKCMjo8g+AHA9PZrX1IJnb1WNKvYTlt/8bp/GfrFDlwoKr/ObAPDHHAo8Xbt21eDBg7Vt2zZbbdu2bRoyZIjuuOMOSdKOHTt4CCGAG9aqTjUtHdpRDQLtl5xYuPm4noxNVHrOJYM6A1CRORR4Zs+eLX9/f7Vp00bu7u5yd3dX27Zt5e/vr9mzZ0uSqlSporfffrtEmwVQOYT6e+mL56J0Wz379frWHjyjPjMT9Ov5LIM6A1BR3dRzePbu3av9+/fLarWqcePGatSoUUn2VmaYwwOUT3n5hfrb0h1avMV+jb4aVdw1+4m2igytakxjACocHjwoAg9QnlmtVk3/6aD+9cN+u7qHq5P+/XAr3d0s2KDOAFQkDgWegoICxcXFaeXKlUpNTVVhof1EwlWrVpVYg2WBwAOUf8uSTuiFRduVd8XEZYtFevmeJnrq9nDu4ALwh25otfTfPP/884qLi9O9996riIgI/tAAKHUPtqylkKqeeubjzbqQdXnistUq/ePrPTp2Lkuv3tdULs4OTUsEUAk4NMJTo0YNffzxx7rnnntKo6cyxwgPUHEcPpOpJ2M36chZ+4nLXRsF6P1HWquKu0Pf4wCYnENfh9zc3NSgQYOS7gUA/lR4DW8tGdpR7epWs6v/tO+0HvpgvVLScgzqDEB55lDg+etf/6p///vfYr4zACP4e7vpk6c66IHIELv67uR0xUxfp90n0w3qDEB55dAlrZ49e+qnn36Sv7+/mjVrJldXV7vtS5YsKbEGywKXtICKyWq1auqK/Xp/1UG7urebs6Y90lpdGwca1BmA8sahi91Vq1ZVz549S7oXALghFotFf41upFB/L/1tyQ7lF17+/paZV6Cn5ibqtQcjNODWMIO7BFAe8BweMcIDmEHCwTMa/OkWZeTYr/P39O3hGndPEzk7cTcpUJk5fA9nfn6+fvzxR82aNcu2SOjJkyd18eLFEmsOAIorqkENLR0apdrVPO3q/1l7WEM/26LsvAKDOgNQHjg0wnP06FF1795dx44dU25urvbv36969epp1KhRysnJ0QcffFAavZYaRngA8zidkaunP96sn49fsKtH1vbTR0+0VaCPhzGNATCUQyM8zz//vNq2bavz58/L0/P3b1M9e/bUypUrS6w5ALhRAT7uWvDMreoRYb/kxM+/pqnn9ATtP5VhUGcAjORQ4Fm7dq1eeeUVubm52dXDwsJ04sSJEmkMABzl6eas6Y+01uBO9ezqJy5kq/eMBK09cMagzgAYxaHAU1hYqIKCotfDf/31V/n4+Nx0UwBws5ycLBp3TxP9s2eE3YTljNx8DYzdpM8TjxvYHYCy5lDg6datm959913bzxaLRRcvXtT48eNNs9wEAHN4tEOYZj/R1m7JifxCq178Yrve/G6vCgsr/Y2qQKXg0KTlkydPqmvXrnJ2dtaBAwfUtm1bHThwQDVq1NCaNWsUGFixHvbFpGXA/PYkp2tQXKKSr1p64r4WNfWvvpHycHU2qDMAZcHh5/BkZ2dr/vz52rp1qwoLC9W6dWs9+uijdpOYKwoCD1A5nErP0aC4RO26aumJNmHV9OGANqpexd2gzgCUNh48KAIPUJlk5ubr+QXb9OOeVLt6WHUvzRnYTvUDqhjUGYDSVOzAs3z58mIf9IEHHnC4ISMQeIDKpaDQqje+2q24hCN2dT9PV304oI061KtuTGMASk2xA4+TU/HmN1sslmvewVWeEXiAyil23WG9/tVuXflX0NXZojf7tFDPVrWNawxAiSv2XVqFhYXFelW0sAOg8nqyY7g+HNBWnldMWL5UYNXohT/r3R/3iyv+gHk4vJZWcTRv3lzHj/OsCwDlV7emQfp88G0K8LGfsPzujwf010U/Ky+/0KDOAJSkUg08R44c0aVLl0rzLQDgpjWv7acvh3VU42D7B6cu2XpCj8/ZqLQs/o4BFV2pBh4AqChqVfXUoudu018a1rCrbzh0Tj1nrtOxs1kGdQagJBB4AOD/8/Fw1ZyB7dS/fR27+qHTmYqZsU5bjp43qDMAN4vAAwBXcHV20sSeERrXo7Fd/Vxmnvp/tEFfb082qDMAN4PAAwBXsVgsGty5vmY82lruLr//mczLL9SweVs1c/Uv3MEFVDAEHgC4jnua19T8Z29VdW83u/qU7/bqb0t36FIBd3ABFcUNB55Lly6pa9eu2r9//5/uO2vWLAUFBTnUGACUB63rVNOXwzqqfoC3XX3+puMaFJeo9Bzu4AIqghsOPK6urtq5c6csFsuf7vvII4/I29v7T/cDgPIs1N9LS4Z01G1XLTnxvwNn1Hfmep24kG1QZwCKy6FLWo8//rhmz55d0r0AQLnl5+WquYPaq3dr+yUn9p3KUMz0ddrxa5pBnQEoDodWSx8xYoQ+/vhjNWjQQG3bti0yijN16tQSa7AssJYWgOKyWq2atuqg3l5hf1nf09VZ/364paKbBRvUGYA/4lDg6dq16/UPaLFo1apVN9VUWSPwALhRy5JO6IVF25V3xcRli0V65d6mGtSxbrEu+wMoOw4FHrMh8ABwxKbD5/TsJ5t14aqlJ564LUx/v6+pXJy5ERYoL27q03jw4EF9//33ys6+PGGP7ASgMmkf7q8lQ6JUt7qXXX3u+qN69pMtyszNN6gzAFdzKPCcPXtWd955p2655Rbdc889Sk6+/OTRp59+Wn/9619LtEEAKM/qBVTRkqEd1Tasml191d5UPTRrvVLScgzqDMCVHAo8o0ePlqurq44dOyYvr9+/2fTr10/fffddsY8zadIktWvXTj4+PgoMDFRMTIz27dtnt4/VatWECRMUEhIiT09PdenSRbt27bLbJzc3VyNGjFCNGjXk7e2tBx54QL/++qsjpwYAN8zf202fPt1BD0SG2NV3nUxXzPR12n0y3aDOAPzGocDzww8/aMqUKapd2/72zIYNG+ro0aPFPk58fLyGDRumDRs2aMWKFcrPz1d0dLQyMzNt+7z55puaOnWqpk2bpsTERAUHB6tbt27KyMiw7TNq1CgtXbpUCxYs0Nq1a3Xx4kXdd999KigocOT0AOCGebg6691+LTW8awO7ekp6jvp+kKCf9qUa1BkAycFJyz4+Ptq6dasaNmwoHx8f/fzzz6pXr54SExPVvXt3nT171qFmTp8+rcDAQMXHx6tTp06yWq0KCQnRqFGj9NJLL0m6PJoTFBSkKVOmaPDgwUpLS1NAQIA++eQT9evXT5J08uRJhYaG6ptvvtHdd99d5H1yc3OVm5tr+zk9PV2hoaFMWgZQIj7ffFx/W7JD+YW//3l1drLotQea6bFbwwzsDKi8HBrh6dSpkz7++GPbzxaLRYWFhXrrrbf+8Jb1P5OWdvnBXf7+/pKkw4cPKyUlRdHR0bZ93N3d1blzZyUkJEiStmzZokuXLtntExISooiICNs+V5s0aZL8/Pxsr9DQUId7BoCrPdQ2VHMHtZePh4utVlBo1Stf7tQ/v96twkJu8ADKmkOB56233tKsWbPUo0cP5eXl6cUXX1RERITWrFmjKVOmONSI1WrVmDFjdPvttysiIkKSlJKSIklF1uMKCgqybUtJSZGbm5uqVat23X2uNm7cOKWlpdlex48fd6hnALiejg1qaMmQKNWu5mlX/+h/hzXksy3KzuOSO1CWHAo8TZs21fbt29W+fXt169ZNmZmZ6tWrl7Zt26b69es71Mjw4cO1fft2zZ8/v8i2qx/gZbVa//ShXn+0j7u7u3x9fe1eAFDSGgb5aOnQjooMrWpX/37XKT380Qadzsi99i8CKHEuf77LtQUHB+u1114rkSZGjBih5cuXa82aNXYToYODLz+iPSUlRTVr1rTVU1NTbaM+wcHBysvL0/nz5+1GeVJTUxUVFVUi/QGAowJ83LXgmVs1emGSvtv1+6jzz8cvKGb6OsU92U4Ng3wM7BCoHBx+8OD58+f1r3/9S0899ZSefvppvf322zp37twNHcNqtWr48OFasmSJVq1apfDwcLvt4eHhCg4O1ooVK2y1vLw8xcfH28JMmzZt5OrqardPcnKydu7cSeABUC54ujlrxqOt9Wynenb1Exey1WtmgtYdPGNQZ0Dl4dBdWvHx8XrwwQfl6+urtm3bSro8efjChQtavny5OnfuXKzjDB06VPPmzdOyZcvUqFEjW93Pz0+enpeve0+ZMkWTJk1SbGysGjZsqIkTJ2r16tXat2+ffHwufysaMmSIvvrqK8XFxcnf31//93//p7Nnz2rLli1ydnb+0z5YWgJAWfl0w1GNX75LBVdMXHZxsmhiz+Z6qB03UAClxaHAExERoaioKM2cOdMWKAoKCjR06FCtW7dOO3fuLN6bX2eOTWxsrAYOHCjp8ijQa6+9plmzZun8+fPq0KGDpk+fbpvYLEk5OTl64YUXNG/ePGVnZ+vOO+/UjBkzin33FYEHQFlavS9Vwz7bqsyrJi4P61pff+3WSE5OLDwKlDSHAo+np6eSkpLsRmUkad++fWrZsqVtba2KgsADoKztPpmuQXGJSkm3X3ri/sgQvdWnhTxc/3x0GkDxOTSHp3Xr1tqzZ0+R+p49e9SyZcub7QkATK9piK++HNZRzULsv2T99+eTeuw/G3UuM8+gzgBzcmiEZ+HChXrxxRc1YsQI3XrrrZKkDRs2aPr06Zo8ebKaNGli27dFixYl120pYYQHgFEyc/M1cv42rdxrv/REWHUvxQ5sp3oBVQzqDDAXhwKPk9MfDwxZLBbbc3AqwnpWBB4ARiootOr1/+7S3PX2axFW9XLVhwPaqn24v0GdAebhUOC5kQVCw8LK/7oxBB4A5cGctYf1xte7deVfZTdnJ73Zp4ViWtUyrjHABBwKPGZD4AFQXvywK0XPL0hS9iX70fEx3W7RiDsa/OlT5gFcm8OBZ9++fXr//fe1Z88eWSwWNW7cWCNGjChy51ZFQOABUJ7s+DVNg+YmFll6onfr2prUq7ncXBx+ZixQaTn0qVm8eLEiIiK0ZcsWRUZGqkWLFtq6dasiIiK0aNGiku4RACqV5rX99OWwjmp01ZITX2z9VY/P2ai0rEsGdQZUXA6N8NSrV0+PPfaYXn/9dbv6+PHj9cknn+jQoUMl1mBZYIQHQHmUnnNJwz7bqv8dsF96on6At2IHtled6l4GdQZUPA4FHi8vL23fvl0NGjSwqx84cECRkZHKysoqsQbLAoEHQHl1qaBQry7bqfmbjtvVq3u76aMn2qp1nWrX+U0AV3LoklaXLl30v//9r0h97dq1+stf/nLTTQEALnN1dtLEns01tkdju/rZzDz1/3CDvt6ebFBnQMXi0AjPBx98oFdffVUPPfSQ3YMHFy1apNdee00hISG2fR944IGS67aUMMIDoCL4enuyRn+epLz8Qrv62B6NNbhTPe7gAv5AqTx40HZwHjwIACVqy9HzevbjzTp71dIT/dvX0esPNpOrM3dwAdfi0CejsLCwWK+KEHYAoCJpE1ZNS4d2VP0Ab7v6/E3HNCguUek53MEFXAtfBQCggqlT3UtLhnTUrfXsl5z434Ez6jtzvU5cyDaoM6D8KvYlrffee0/PPvusPDw89N577/3hviNHjiyR5soKl7QAVER5+YUau2S7lmw9YVcP8HHXnCfaqXltP4M6A8qfYgee8PBwbd68WdWrV1d4ePj1D2ix8BweACgjVqtV7686qKkr9tvVPV2d9V7/VurWNMigzspen5kJSk7LkSTV9PPQ4iFRBneE8sSluDsePnz4mv8NADCOxWLRyDsbqo6/l15cvF15BZfv4Mq+VKBnP9msV+9rqic7Xv9Lqpkkp+VwOQ/XxRweADCBmFa19MlT7VXVy9VWs1ql1/67WxOW71JBYaVfJxqVXLFHeMaMGVPsg06dOtWhZgAAjutQr7qWDInSk3GJOnr29yfexyUc0fFzWXqvfyt5uxf7zz5gKsX+Pz82NlYRERFycXGRxWLR9ab+8OArADBOvYAqWjq0o579eLM2Hz1vq6/cm6qHZq3XnIHtFOTrYWCHgDGKHXjS0tL0xRdfKDAwUPXq1VNiYqKqV69emr0BABzg7+2mT5/uoBcWb9d/fz5pq+86ma6Y6es0Z2A7NanJDRqoXIo9h6datWq2ycpHjhxRYWHhn/wGAMAoHq7O+ne/lhrWtb5dPTktR31mJmj1vlSDOgOMUewRnt69e6tTp04KCQmRxWJR27Zt5ezsfM19K9pt6QBgRk5OFr1wd2OF+Xvrb0t3KP//T1zOzCvQU3M36/UHm+nRDmEGdwmUjWIHng8//FC9evXSwYMHNXLkSD3zzDPy8fEpzd4AACXgoXahqlXNU899ukUZOfmSpIJCq15eulNHz2ZpbPfGcnJi/iXM7Yam63fv3l2StGXLFj3//PMEHgCoIDo2qKElQ6I0MDbR7lk1H645pOPnsjT1oZbydLv2qD1gBg49hyc2NpawAwAVTMMgH305rKMir1py4tudKXr4ow06nZFrUGdA6ePBgwBQiQT4uGvBs7fp7mb2S078fPyCes5YpwOnMgzqDChdBB4AqGQ83Zw149E2euYv9ktO/Ho+W71mJijh4BmDOgNKD4EHACohZyeLXr63qd6IidCV85UzcvL1+JxN+nzzceOaA0oBgQcAKrEBt4Zp9sB28r5iwnJ+oVUvLt6uf32/77pP1QcqGgIPAFRyXRsFatFzUQq+asmJaT8d1PMLkpRzqcCgzoCSQ+ABAKhpiK++HNZRTa9acmL5zyc1YPZGncvMM6gzoGQQeAAAkqRgPw8teu423dE40K6eeOS8es1Yp8NnMg3qDLh5BB4AgI23u4s+HNBGj99mv+TEkbNZ6jljnTYdPmdQZ8DNIfAAAOy4ODvptQea6dX7mspyxR1cF7Iu6bH/bNSypBPGNQc4iMADACjCYrFo0O3hmvVYG3m6/n4HV15BoZ5fkKT3Vx7gDi5UKAQeAMB1RTcL1sLBtyrAx92u/vaK/Xph8Xbl5Rca1BlwYwg8AIA/1KJ2VS0dGqVbgqrY1Rdv+VVPzNmktKxLBnUGFB+BBwDwp2pX89LiIVH6S8MadvX1h86q18x1On4uy6DOgOIh8AAAisXXw1VzBrZT//ahdvVfTmcqZvo6bTt23qDOgD9H4AEAFJurs5Mm9myul7o3tqufzczTwx9u0Lc7kg3qDPhjBB4AwA2xWCwa0qW+pj/SWm4uv/8zkptfqCGfbdWs+F+4gwvlDoEHAOCQe1vU1PxnbpW/t5tdfdK3e/XylzuVX8AdXCg/CDwAAIe1CaumL4d2VL0Ab7v6vI3HNGjuZmXkcAcXygcCDwDgptSp7qUlQ6LUIdzfrr5m/2n1/WC9Tl7INqgz4HcEHgDATavq5aZPnuqgXq1q2dX3pmQoZvo67fg1zaDOgMsIPACAEuHm4qS3H4rU6LtusaunZuTqoVnr9ePuUwZ1BhB4AAAlyGKx6Pm7GuqdfpFyc/79n5jsSwV69pPNilt32MDuUJkReAAAJa5nq9r65Kn28vN0tdUKrdKE/+7WhOW7VFDIbesoW4YGnjVr1uj+++9XSEiILBaLvvzyS7vtp06d0sCBAxUSEiIvLy91795dBw4csNsnJSVFAwYMUHBwsLy9vdW6dWstXry4DM8CAHAtHepV15KhUarj72VXj0s4osGfbFZmbr5BnaEyMjTwZGZmKjIyUtOmTSuyzWq1KiYmRocOHdKyZcu0bds2hYWF6a677lJmZqZtvwEDBmjfvn1avny5duzYoV69eqlfv37atm1bWZ4KAOAa6gdU0dKhUWoTVs2u/uOeVPX7cL1OpecY1BkqG0MDT48ePfSPf/xDvXr1KrLtwIED2rBhg2bOnKl27dqpUaNGmjFjhi5evKj58+fb9lu/fr1GjBih9u3bq169enrllVdUtWpVbd269brvm5ubq/T0dLsXAKB0VK/irs+e7qD7WtS0q+88ka6e09dpbwp/g1H6yu0cntzcXEmSh4eHrebs7Cw3NzetXbvWVrv99tu1cOFCnTt3ToWFhVqwYIFyc3PVpUuX6x570qRJ8vPzs71CQ0Ovuy8A4OZ5uDrrvYdbaVjX+nb1k2k56jNzveL3nzaoM1QW5TbwNG7cWGFhYRo3bpzOnz+vvLw8TZ48WSkpKUpO/n1xuoULFyo/P1/Vq1eXu7u7Bg8erKVLl6p+/frXPfa4ceOUlpZmex0/frwsTgkAKjUnJ4teuLuxpvRuLhcni61+MTdfg+IS9dnGowZ2B7Mrt4HH1dVVX3zxhfbv3y9/f395eXlp9erV6tGjh5ydnW37vfLKKzp//rx+/PFHbd68WWPGjFHfvn21Y8eO6x7b3d1dvr6+di8AQNno166O4p5sLx93F1utoNCql5fu1KRv9qiQO7hQClz+fBfjtGnTRklJSUpLS1NeXp4CAgLUoUMHtW3bVpL0yy+/aNq0adq5c6eaNWsmSYqMjNT//vc/TZ8+XR988IGR7QMAruP2hjX0xdAoPRmbqBNXLD0xa80hHTuXpXf6tZSHq/MfHAG4MeV2hOdKfn5+CggI0IEDB7R582Y9+OCDkqSsrCxJkpOT/Wk4OzursJBVegGgPLslyEdLh0UpsrafXf3bnSl6+MMNOnMx16DOYEaGBp6LFy8qKSlJSUlJkqTDhw8rKSlJx44dkyQtWrRIq1evtt2a3q1bN8XExCg6OlrS5Xk+DRo00ODBg7Vp0yb98ssvevvtt7VixQrFxMQYdFYAgOIK9PHQgmdvU3TTILt60vELipm+TgdTMwzqDGZjaODZvHmzWrVqpVatWkmSxowZo1atWunVV1+VJCUnJ2vAgAFq3LixRo4cqQEDBtjdku7q6qpvvvlGAQEBuv/++9WiRQt9/PHHmjt3ru655x5DzgkAcGM83Zw187E2euYv4Xb1X89nq9eMBCX8csagzmAmFqvVWulnh6Wnp8vPz09paWlMYAYAA32y4ajGL9upK+ctuzhZNLl3C/VpU/sPf7fj5FW2+UC1qnpq3dg7SrNVVDAVYg4PAKByGHBrmGY/0U7ebr9PWM4vtOr/Fv2sqT/sE9/R4SgCDwCgXOnaOFCfP3ebgn097OrvrTqoUQuTlJtfYFBnqMgIPACAcqdZiJ+WDotS05r20wyWJZ3UY//ZqPOZeQZ1hoqKwAMAKJdq+nnq8+duU9dGAXb1xCPn1Wtmgo6cybzObwJFEXgAAOVWFXcXffR4Wz1+W5hd/fCZTPWcsU6JR84Z1BkqGgIPAKBcc3F20msPNNPf72sqy+9LcOl81iU9+tFGLd12Qj/sStHZKx5UeOZirpYlnVBePg+hxWXcli5uSweAiuL7XSl6fsE25VwqXpBpHOyj2QPbqVZVz1LuDOUdIzwAgArj7mbB+nzwbapRxb1Y++9NydCA/2xUes6lUu4M5R2BBwBQobSoXVVfDotSkG/xQs+hM5n6ZP3RUu4K5R2BBwBQ4dSu5iV/b7di7z9v4zEVFlb6GRyVGoEHAFDh5OUXak9y8RcWPXEhW6kZrL5emRF4AAAVTn7hjd99damAO7YqMwIPAKDC8XR1vqFLWm4uTgrwKd6cH5gTgQcAUOFYLBb1bl2r2Pvf16KmPFyd/3xHmBaBBwBQIT0RVVeexQgxLk4WPX17vTLoCOUZgQcAUCHVrualGY+1lrvL9f8pc3ay6F99I9U0hIfKVnYEHgBAhdW1UaCWDI1Sj4jga2wL0MJnb1VMq+Jf+oJ5sbSEWFoCAMzgtkkrlZyWI0kK9vXQhr/daXBHKE8Y4QEAmILTFSuLOjtZ/mBPVEYEHgAAYHoEHgAAYHoEHgAAYHoEHgAAYHoEHgAAYHoEHgAAYHoEHgAAYHoEHgAAYHoEHgAAYHoEHgAAYHoEHgAAYHoEHgAAYHoEHgAAYHoEHgAAYHoEHgAAYHoEHgAAYHoEHgAAYHoEHgAAYHoEHgAAYHoEHgAAYHoEHgAAYHoEHgAAYHoEHgAAYHoEHgAAYHoEHgAAYHoEHgAAYHoEHgAAYHoEHgAAYHoEHgAAYHqGBp41a9bo/vvvV0hIiCwWi7788ku77adOndLAgQMVEhIiLy8vde/eXQcOHChynPXr1+uOO+6Qt7e3qlatqi5duig7O7uMzgIAAJR3hgaezMxMRUZGatq0aUW2Wa1WxcTE6NChQ1q2bJm2bdumsLAw3XXXXcrMzLTtt379enXv3l3R0dHatGmTEhMTNXz4cDk5MXgFAAAuczHyzXv06KEePXpcc9uBAwe0YcMG7dy5U82aNZMkzZgxQ4GBgZo/f76efvppSdLo0aM1cuRIjR071va7DRs2LP3mAQBAhVFuh0Fyc3MlSR4eHraas7Oz3NzctHbtWklSamqqNm7cqMDAQEVFRSkoKEidO3e2bf+jY6enp9u9AACAeZXbwNO4cWOFhYVp3LhxOn/+vPLy8jR58mSlpKQoOTlZknTo0CFJ0oQJE/TMM8/ou+++U+vWrXXnnXdec67PbyZNmiQ/Pz/bKzQ0tEzOCQAAGKPcBh5XV1d98cUX2r9/v/z9/eXl5aXVq1erR48ecnZ2liQVFhZKkgYPHqwnn3xSrVq10jvvvKNGjRppzpw51z32uHHjlJaWZnsdP368TM4JAAAYw9A5PH+mTZs2SkpKUlpamvLy8hQQEKAOHTqobdu2kqSaNWtKkpo2bWr3e02aNNGxY8eue1x3d3e5u7uXXuMAAKBcKbcjPFfy8/NTQECADhw4oM2bN+vBBx+UJNWtW1chISHat2+f3f779+9XWFiYEa0CAIByyNARnosXL+rgwYO2nw8fPqykpCT5+/urTp06WrRokQICAlSnTh3t2LFDzz//vGJiYhQdHS1JslgseuGFFzR+/HhFRkaqZcuWmjt3rvbu3avFixcbdVoAAKCcMTTwbN68WV27drX9PGbMGEnSE088obi4OCUnJ2vMmDE6deqUatasqccff1x///vf7Y4xatQo5eTkaPTo0Tp37pwiIyO1YsUK1a9fv0zPBQAAlF8Wq9VqNboJo6Wnp8vPz09paWny9fU1uh0AgAM6Tl6lExcuP2W/VlVPrRt7h8EdoTypEHN4AAAAbgaBBwAAmB6BBwAAmB6BBwAAmB6BBwAAmB6BBwAAmB6BBwAAmB6BBwAAmF65XjwUAIDiqunncc3/BiSetCyJJy0DAGB2XNICAACmR+ABAACmR+ABAACmR+ABAACmR+ABAACmR+ABAACmR+ABAACmR+ABAACmR+ABAACmR+ABAACmR+ABAACmR+ABAACmR+ABAACm52J0A+XBbwvGp6enG9wJAAC4UT4+PrJYLH+4D4FHUkZGhiQpNDTU4E4AAMCNSktLk6+v7x/uY7H+NrxRiRUWFurkyZPFSoio+NLT0xUaGqrjx4//6QcEQMXC57tyYoSnmJycnFS7dm2j20AZ8/X15Q8iYFJ8vnE1Ji0DAADTI/AAAADTI/Cg0nF3d9f48ePl7u5udCsAShifb1wPk5YBAIDpMcIDAABMj8ADAABMj8ADAABMj8ADAABMj8CDCmXgwIGyWCx67rnnimwbOnSoLBaLBg4caFdPSEiQs7OzunfvXuR3jhw5IovFoqSkpGu+X1xcnCwWS5GXh4dHSZwOUKn89vm9+nXw4MHrbrvyc1u3bl1ZLBYtWLCgyLGbNWsmi8WiuLi4ItsmTpwoZ2dnTZ48uci2uLg4Va1a9YZ7vtbfE5RvBB5UOKGhoVqwYIGys7NttZycHM2fP1916tQpsv+cOXM0YsQIrV27VseOHbvh9/P19VVycrLd6+jRozd1DkBl1b179yKfp/Dw8Otumz9/vt3vh4aGKjY21q62YcMGpaSkyNvb+5rvGRsbqxdffFFz5swpsZ6v7gvlH4EHFU7r1q1Vp04dLVmyxFZbsmSJQkND1apVK7t9MzMz9fnnn2vIkCG67777rvnt789YLBYFBwfbvYKCgm72NIBKyd3dvcjnydnZ+brbqlWrZvf7jz76qOLj43X8+HFbbc6cOXr00Ufl4lJ0taT4+HhlZ2fr9ddfV2ZmptasWVMiPV/dF8o/Ag8qpCeffNLuW96cOXM0aNCgIvstXLhQjRo1UqNGjfTYY48pNjZWPHoKqLiCgoJ09913a+7cuZKkrKwsLVy48Jqff0maPXu2+vfvL1dXV/Xv31+zZ88uy3ZRjhB4UCENGDBAa9eu1ZEjR3T06FGtW7dOjz32WJH9Zs+ebat3795dFy9e1MqVK2/ovdLS0lSlShW7V3R0dImcB1DZfPXVV3afpb59+153W5UqVfTGG28UOcagQYMUFxcnq9WqxYsXq379+mrZsmWR/dLT0/XFF1/Y/gY89thjWrx4sdLT02+q5+v1hfKN1dJRIdWoUUP33nuv5s6dK6vVqnvvvVc1atSw22ffvn3atGmT7dKXi4uL+vXrpzlz5uiuu+4q9nv5+Pho69atdjVPT8+bPwmgEuratatmzpxp+/nKeTdXb5Mkf3//Ise49957NXjwYK1Zs+a6o7uSNG/ePNWrV0+RkZGSpJYtW6pevXpasGCBnn32WYd7vl5fKN8IPKiwBg0apOHDh0uSpk+fXmT77NmzlZ+fr1q1atlqVqtVrq6uOn/+fLGvwTs5OalBgwYl0zRQyXl7e1/38/RH267k4uKiAQMGaPz48dq4caOWLl16zf3mzJmjXbt22c3tKSws1OzZs28o8BS3L5RvBB5UWN27d1deXp4k6e6777bblp+fr48//lhvv/12kctPvXv31meffWYLSwAqnkGDBulf//qX+vXrd80vLzt27NDmzZu1evVqu9GYCxcuqFOnTtq5c6ciIiLKsmUYjMCDCsvZ2Vl79uyx/feVvvrqK50/f15PPfWU/Pz87Lb16dNHs2fPtgs8+/btK3L8pk2bSro8KpSSklJke2BgoJycmAYHlJTc3NwinzUXF5cil6slqUmTJjpz5oy8vLyueazZs2erffv26tSpU5Ftt912m2bPnq133nlHklRQUFDkWVxubm62vwE30hfKLwIPKjRfX99r1mfPnq277rqrSNiRLo/wTJw4UVu3brV983v44YeL7Hf48GFJlyc+1qxZs8j25ORkBQcH30z7AK7w3XffFfmsNWrUSHv37r3m/tWrV79mPS8vT59++qleeumla27v3bu3Jk2apClTpkiSLl68WOSRFmFhYTpy5IhDfaF8sli5RxcAAJgc4/EAAMD0CDwAAMD0CDwAAMD0CDwAAMD0CDwAAMD0CDwAAMD0CDwAAMD0CDwAAMD0CDwAAMD0CDwAAMD0CDwAAMD0CDwAKqzFixerefPm8vT0VPXq1XXXXXcpMzNTkhQbG6smTZrIw8NDjRs31owZM2y/N2jQILVo0UK5ubmSpEuXLqlNmzZ69NFHDTkPAKWPwAOgQkpOTlb//v01aNAg7dmzR6tXr1avXr1ktVr10Ucf6eWXX9Y///lP7dmzRxMnTtTf//53zZ07V5L03nvvKTMzU2PHjpUk/f3vf9eZM2fsQhEAc2G1dAAV0tatW9WmTRsdOXJEYWFhdtvq1KmjKVOmqH///rbaP/7xD33zzTdKSEiQJK1fv16dO3fW2LFjNWnSJK1cuVKdOnUq03MAUHYIPAAqpIKCAt19993atGmT7r77bkVHR6tPnz7Kz89XYGCgPD095eT0+yB2fn6+/Pz8dOrUKVvtb3/7myZNmqSXXnpJkydPNuI0AJQRF6MbAABHODs7a8WKFUpISNAPP/yg999/Xy+//LL++9//SpI++ugjdejQocjv/KawsFDr1q2Ts7OzDhw4UKa9Ayh7zOEBUGFZLBZ17NhRr732mrZt2yY3NzetW7dOtWrV0qFDh9SgQQO7V3h4uO1333rrLe3Zs0fx8fH6/vvvFRsba+CZAChtjPAAqJA2btyolStXKjo6WoGBgdq4caNOnz6tJk2aaMKECRo5cqR8fX3Vo0cP5ebmavPmzTp//rzGjBmjpKQkvfrqq1q8eLE6duyof//733r++efVuXNn1atXz+hTA1AKmMMDoELas2ePRo8era1btyo9PV1hYWEaMWKEhg8fLkmaN2+e3nrrLe3evVve3t5q3ry5Ro0apR49eqhNmza6/fbbNWvWLNvxevXqpVOnTmnNmjV2l74AmAOBBwAAmB5zeAAAgOkReAAAgOkReAAAgOkReAAAgOkReAAAgOkReAAAgOkReAAAgOkReAAAgOkReAAAgOkReAAAgOkReAAAgOn9P9AREw914DZLAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# visualize difference with a plot\n", "sns.pointplot(x = 'sex', y = 'flipper_length_mm', data = penguins)\n", "sns.despine()" ] }, { "cell_type": "markdown", "id": "a8eb63f2", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "# Comparing means between independendent samples \n", "\n", "> **SAMPLES ARE NOT PAIRED AND NOT RELATED IN ANY WAY TO ANOTHER!**\n", "\n", "Pooled standard deviation: \n", "\n", "$$\n", "s_p = \\sqrt{\\frac{(n_1-1)s_1^2 + (n_2-1)s_2^2}{n1+n2-2}}\n", "$$" ] }, { "cell_type": "markdown", "id": "5201facb", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "### Sample stastistic (Unpooled Variance)\n", "\n", "$$\n", "t = \\frac{\\bar{x_1} - \\bar{x_2} - 0}{s_p \\sqrt{\\frac{1}{n_1} + \\frac{1}{n_2}}}\n", "$$\n", "\n", "### Confidence intervals\n", "\n", "$$\n", "\\bar{x}_1-\\bar{x}_2\\pm t_{\\alpha/2}s_p\\sqrt{\\frac{1}{n_1}+\\frac{1}{n_2}}\n", "$$" ] }, { "cell_type": "markdown", "id": "26f0733d", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "# Hypothesis tests \n", "\n", "* $H_0$: $\\mu_1 - \\mu_2 = 0$; $H_a$: $\\mu_1 - \\mu_2 \\neq 0$, with $df=n_1+n_2 - 2$ " ] }, { "cell_type": "code", "execution_count": 12, "id": "b6e37b3c", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
speciesislandbill_length_mmbill_depth_mmflipper_length_mmbody_mass_gsex
0AdelieTorgersen39.118.7181.03750.0MALE
1AdelieTorgersen39.517.4186.03800.0FEMALE
2AdelieTorgersen40.318.0195.03250.0FEMALE
4AdelieTorgersen36.719.3193.03450.0FEMALE
5AdelieTorgersen39.320.6190.03650.0MALE
........................
338GentooBiscoe47.213.7214.04925.0FEMALE
340GentooBiscoe46.814.3215.04850.0FEMALE
341GentooBiscoe50.415.7222.05750.0MALE
342GentooBiscoe45.214.8212.05200.0FEMALE
343GentooBiscoe49.916.1213.05400.0MALE
\n", "

333 rows × 7 columns

\n", "
" ], "text/plain": [ " species island bill_length_mm bill_depth_mm flipper_length_mm \\\n", "0 Adelie Torgersen 39.1 18.7 181.0 \n", "1 Adelie Torgersen 39.5 17.4 186.0 \n", "2 Adelie Torgersen 40.3 18.0 195.0 \n", "4 Adelie Torgersen 36.7 19.3 193.0 \n", "5 Adelie Torgersen 39.3 20.6 190.0 \n", ".. ... ... ... ... ... \n", "338 Gentoo Biscoe 47.2 13.7 214.0 \n", "340 Gentoo Biscoe 46.8 14.3 215.0 \n", "341 Gentoo Biscoe 50.4 15.7 222.0 \n", "342 Gentoo Biscoe 45.2 14.8 212.0 \n", "343 Gentoo Biscoe 49.9 16.1 213.0 \n", "\n", " body_mass_g sex \n", "0 3750.0 MALE \n", "1 3800.0 FEMALE \n", "2 3250.0 FEMALE \n", "4 3450.0 FEMALE \n", "5 3650.0 MALE \n", ".. ... ... \n", "338 4925.0 FEMALE \n", "340 4850.0 FEMALE \n", "341 5750.0 MALE \n", "342 5200.0 FEMALE \n", "343 5400.0 MALE \n", "\n", "[333 rows x 7 columns]" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "penguins" ] }, { "cell_type": "code", "execution_count": 13, "id": "775a22f6", "metadata": { "slideshow": { "slide_type": "subslide" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(168,) (165,)\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Tdofalternativep-valCI95%cohen-dBF10power
T-test4.807866325.278352two-sided0.000002[4.22, 10.06]0.5262445880.7110.997654
\n", "
" ], "text/plain": [ " T dof alternative p-val CI95% cohen-d \\\n", "T-test 4.807866 325.278352 two-sided 0.000002 [4.22, 10.06] 0.526244 \n", "\n", " BF10 power \n", "T-test 5880.711 0.997654 " ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from pingouin import ttest, mwu\n", "penguins.dropna(inplace=True) # drop null values \n", "males = penguins.loc[penguins.sex=='MALE', 'flipper_length_mm']\n", "females = penguins.loc[penguins.sex=='FEMALE', 'flipper_length_mm'] \n", "print(males.shape, females.shape)\n", "ttest(males, females) " ] }, { "cell_type": "code", "execution_count": 14, "id": "c4588467", "metadata": { "slideshow": { "slide_type": "subslide" } }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
U-valalternativep-valRBCCLES
MWU18173.0two-sided9.011341e-07-0.3111830.655592
\n", "
" ], "text/plain": [ " U-val alternative p-val RBC CLES\n", "MWU 18173.0 two-sided 9.011341e-07 -0.311183 0.655592" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# use Mann-Whitney non-parametric test (to account for non-normal data)\n", "mwu(males, females, alternative='two-sided')" ] }, { "cell_type": "markdown", "id": "e3bf1b65", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "# Interpreting \n", "\n", "##### With a $p$-value of 9.011e-07 we have enough evidence to reject null hypothesis. The average flipper length between male and female penguins is different. " ] }, { "cell_type": "markdown", "id": "4e862505", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "# Comparing two population variances \n", "\n", "* $H_0$: $\\frac{\\sigma_1^2}{\\sigma_2^2}=1$; $H_a$: $\\frac{\\sigma_1^2}{\\sigma_2^2} \\neq 1$\n", "* F-test: assumes two samples come from populations that are normally distributed \n", "* Bartlett's test\n", "* Levene's test" ] }, { "cell_type": "code", "execution_count": 15, "id": "058312c9", "metadata": { "slideshow": { "slide_type": "subslide" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "the p-value: 0.05197230787956047\n", "populations have equal variances at alpha=0.05\n" ] } ], "source": [ "from scipy.stats import bartlett\n", "stat, p = bartlett(males, females)\n", "print(f'the p-value: {p}')\n", "print('populations have equal variances at alpha=0.05')" ] }, { "cell_type": "markdown", "id": "9ff9196c", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "# ANOVA \n", "\n", "> Analysis of Variance " ] }, { "cell_type": "markdown", "id": "396e9b87", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "# Hypothesis Testing \n", "\n", "* We are ONCE AGAIN comparing **MEANS** from $t$ different samples\n", "* $H_0$: $\\mu_1 = \\mu_2 = ... = \\mu_k$ \n", "* at least one mean is different OR not all the means are equal " ] }, { "cell_type": "markdown", "id": "85a5b882", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "# Test statistic for a One-Way ANOVA \n", "\n", "$$\n", "F = \\frac{\\text{between group variance}}{\\text{within group variance}} = \\frac{MS_{\\text{effect}}}{MS_{\\text{error}}}\n", "$$\n", "\n", "Under the null, the $F$ should be close to 1, if the ratio is large, we have evidence against teh null. " ] }, { "cell_type": "markdown", "id": "b44b54de", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "# Variance \n", "\n", "$$\n", "\\mbox{Var}(Y) = \\frac{1}{N} \\sum_{k=1}^G \\sum_{i=1}^{N_k} \\left(Y_{ik} - \\bar{Y} \\right)^2\n", "$$\n", "\n", "where $G$ is the number of groups, $N$ is the number of observations (penguins), Y_{ik} is the total body mass of k-group (species) of an $i$th individual" ] }, { "cell_type": "markdown", "id": "c9199deb", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "# Sum of Squares \n", "\n", "$$\n", "\\mbox{SS}_{tot} = \\sum_{k=1}^G \\sum_{i=1}^{N_k} \\left(Y_{ik} - \\bar{Y} \\right)^2 \\quad \\text{- total sum of squares}\n", "$$\n", "\n", "$$\n", "\\mbox{SS}_w = \\sum_{k=1}^G \\sum_{i=1}^{N_k} \\left( Y_{ik} - \\bar{Y}_k \\right)^2 \\quad \\text{- within-group SS}\n", "$$\n", "\n", "$$\n", "{SS}_{b} = \\sum_{k=1}^{G} \\sum_{k=1}^G N_k \\left( \\bar{Y}_k - \\bar{Y} \\right)^2\n", "$$" ] }, { "cell_type": "markdown", "id": "05a54cb7", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "$$\n", "\\mbox{SS}_w + \\mbox{SS}_{b} = \\mbox{SS}_{tot}\n", "$$\n", "\n", "" ] }, { "cell_type": "markdown", "id": "9c517605", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "# From SS to an F-test\n", "\n", "* $df_b = G-1$, $df_w = N-G$\n", "* $MS_b = \\frac{SS_b}{df_b}$, $MS_w = \\frac{SS_w}{df_w}$\n", "* $F=\\frac{MS_b}{MS_w}$" ] }, { "cell_type": "markdown", "id": "5b46b2e4", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "# ANOVA assumptions \n", "\n", "* Responses for each factor level have normal population distribution \n", "* the distributions have the same variance \n", "* **the data are independent**!" ] }, { "cell_type": "code", "execution_count": 16, "id": "9a20a463", "metadata": { "slideshow": { "slide_type": "subslide" } }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
meanstdsize
species
Adelie3706.164384458.620135146
Chinstrap3733.088235384.33508168
Gentoo5092.436975501.476154119
\n", "
" ], "text/plain": [ " mean std size\n", "species \n", "Adelie 3706.164384 458.620135 146\n", "Chinstrap 3733.088235 384.335081 68\n", "Gentoo 5092.436975 501.476154 119" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "penguins.groupby('species')['body_mass_g'].agg(['mean', 'std', 'size'])" ] }, { "cell_type": "code", "execution_count": 17, "id": "5f55f89e", "metadata": { "slideshow": { "slide_type": "subslide" } }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAGwCAYAAABIC3rIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAABQUUlEQVR4nO3de1xUdf4/8Ndwm+E6cpGbIl5wFQPNNBGsrLwg35BNLTWUlWTVzRRJLVcrtZu07npLNlJC1NRw12R3ywUvlbqGKGG0XkgtNTFB1GAQZYbb5/eHP88ygorDMAc8r+fjweMxc87nnPM+OMKLz/mcz1EJIQSIiIiIFMxK7gKIiIiI5MZARERERIrHQERERESKx0BEREREisdARERERIrHQERERESKx0BEREREimcjdwFtRV1dHS5evAhnZ2eoVCq5yyEiIqImEELg2rVr8PX1hZXVnfuBGIia6OLFi/Dz85O7DCIiIjJBYWEhOnbseMf1DERN5OzsDODmN9TFxUXmaoiIiKgpysvL4efnJ/0evxMGoia6dZnMxcWFgYiIiKiNuddwFw6qJiIiIsVjICIiIiLFYyAiIiIixeMYIjOrra1FdXW13GVQPba2trC2tpa7DCIiasUYiMxECIHi4mKUlZXJXQo1ol27dvD29uYcUkRE1CgGIjO5FYY8PT3h4ODAX7ythBACN27cQElJCQDAx8dH5oqIiKg1YiAyg9raWikMubu7y10O3cbe3h4AUFJSAk9PT14+IyKiBjio2gxujRlycHCQuRK6k1v/NhzfRUREjWEgMiNeJmu9+G9DRER3w0BEREREisdARERERIrHQERERESKx7vMiIjogSGEgF6vb9b2BoMBAKBWq5s1/lCj0XD8YhvCQERERA8MvV6PiIgIucsAAGRmZkrTflDrx0tmCrNt2zYEBwfD3t4e7u7uGDp0KK5fvw4ASEtLQ2BgIDQaDXr27IkPP/xQ2m7y5Mno3bu39JdTdXU1+vXrhwkTJshyHkRERObEHiIFKSoqwgsvvIClS5di1KhRuHbtGv7zn/9ACIGUlBQsWrQISUlJ6Nu3L7777jtMmTIFjo6OmDRpEj744AP06dMHf/zjH7FixQq8+eabuHLlilFoIiKSm0ajQWZmpsnb6/V6jBo1CgCQkZEBjUbTrFqo7WAgUpCioiLU1NRg9OjR8Pf3BwAEBwcDAN555x0sW7YMo0ePBgB06dIFJ06cwJo1azBp0iQ4OTlh06ZNGDx4MJydnbFs2TJ8+eWX0Gq1sp0PEdHtVCqV2S5TaTQaXvJSEAYiBenTpw+GDBmC4OBghIeHY/jw4XjuuedQU1ODwsJCxMXFYcqUKVL7mpoao8ATGhqKuXPn4p133sG8efPwxBNPyHEaREREZsdApCDW1tbYvXs3srOzsWvXLqxevRqvv/46Pv/8cwBASkoKQkJCGmxzS11dHb755htYW1vj9OnTFq2diIioJXFQtcKoVCoMGjQIb731Fr777jvY2dnhm2++QYcOHXDmzBkEBAQYfXXp0kXa9s9//jMKCgqwb98+7Ny5E2lpaTKeCRERkfmwh0hBDh06hC+//BLDhw+Hp6cnDh06hMuXLyMwMBCLFy9GfHw8XFxcEBERAYPBgG+//RalpaWYPXs28vPzsXDhQmzbtg2DBg3CqlWrMGvWLAwePBhdu3aV+9SIiIiahYFIQVxcXLB//36sXLkS5eXl8Pf3x7Jly6Q5OxwcHPDnP/8Zr732GhwdHREcHIyEhATo9XpMmDABsbGxGDlyJAAgLi4OO3bsQExMDPbv3290aY2IiKitYSBSkMDAQGRlZd1xfXR0NKKjoxtdd/z48QbLtm/fbrbaiIiI5MQxRERERKR4DERERESkeAxEREREpHgMRERERKR4DERERESkeAxEREREpHgMRERERKR4DERERESkeJyYsQXV1tZCCGGx46lUKs4YTUREZAIGohZSW1uL0c89D13prxY7ptbVDdu3/f2+QlFsbCw2bNiAadOm4aOPPjJaN336dCQnJ2PSpElYv369tDw7OxuPP/44hg0b1mDm63PnzqFLly747rvv8PDDDzc43vr16/Hiiy82WK5Wq6HX65tcNxERkTkxELUQIQR0pb/i2iO/A1QWuDIp6oAjG03qkfLz80N6ejpWrFgBe3t7AIBer8enn36KTp06NWi/bt06zJw5Ex9//DHOnz/faJu7cXFxwcmTJ42WqVSq+66biIjIXBiIWprKCrCyQCCqM33TRx55BGfOnMH27dsxYcIEADefU+bn59fgSfbXr1/H3/72N+Tm5qK4uBjr16/HwoUL7+t4KpUK3t7ephdMRERkZhxUTQCAF198EWlpadL7devWYfLkyQ3abd26FT169ECPHj0wceJEpKWlWXScFBERUUtgICIAQExMDA4cOIBz587h559/xjfffIOJEyc2aJeamiotHzFiBCoqKvDll1/e17F0Oh2cnJyMvoYPH26W8yAiIjIFL5kRAMDDwwPPPPMMNmzYACEEnnnmGXh4eBi1OXnyJA4fPozt27cDAGxsbDBu3DisW7cOQ4cObfKxnJ2dceTIEaNlt8YuERERyUH2HqJffvkFEydOhLu7OxwcHPDwww8jLy9PWi+EwOLFi+Hr6wt7e3s8+eSTOH78uNE+DAYDZs6cCQ8PDzg6OiIqKgoXLlwwalNaWoqYmBhotVpotVrExMSgrKzMEqfYZkyePBnr16/Hhg0bGr1clpqaipqaGnTo0AE2NjawsbFBcnIytm/fjtLS0iYfx8rKCgEBAUZfHTp0MOepEBER3RdZA1FpaSkGDRoEW1tbZGZm4sSJE1i2bBnatWsntVm6dCmWL1+OpKQk5ObmwtvbG8OGDcO1a9ekNgkJCcjIyEB6ejoOHDiAiooKREZGora2VmoTHR2N/Px8ZGVlISsrC/n5+YiJibHk6bZ6I0aMQFVVFaqqqhAeHm60rqamBhs3bsSyZcuQn58vfX3//ffw9/fH5s2bZaqaiIio+WS9ZPanP/0Jfn5+RoN5O3fuLL0WQmDlypV4/fXXMXr0aADAhg0b4OXlhS1btmDatGnQ6XRITU3FJ598Il222bRpE/z8/LBnzx6Eh4ejoKAAWVlZyMnJQUhICAAgJSUFoaGhOHnyJHr06GG5k27FrK2tUVBQIL2u74svvkBpaSni4uKg1WqN1j333HNITU3FjBkzpGW331YPAL169QJw89+1uLi4wXpPT09YWeKOPCIiotvI+tvnX//6F/r374/nn38enp6e6Nu3L1JSUqT1Z8+eRXFxsdGAW7VajcGDByM7OxsAkJeXh+rqaqM2vr6+CAoKktocPHgQWq1WCkMAMHDgQGi1WqnN7QwGA8rLy42+TCLqgDoLfIlm3Hdfj4uLC1xcXBosT01NxdChQxuEIQAYM2YM8vPzjcYFjR8/Hn379jX6unjxIgCgvLwcPj4+Db5KSkrMcg5ERET3S9YeojNnziA5ORmzZ8/GggULcPjwYcTHx0OtVuN3v/ud1Ivg5eVltJ2Xlxd+/vlnAEBxcTHs7Ozg6uraoM2t7YuLi+Hp6dng+J6eno32VABAYmIi3nrrLZPPTaVSQevqBhzZaPI+7pfW1e2+JzisPwN1Y/7xj3/ccx+PPPKI0a33d7sNPzY2FrGxsU2sjoiIyDJkDUR1dXXo378/lixZAgDo27cvjh8/juTkZPzud7+T2t3+S14Icc9f/Le3aaz93fYzf/58zJ49W3pfXl4OPz+/e5/U/2dtbY3t2/7OZ5kRERG1AbIGIh8fH2lcyS2BgYH47LPPAECazbi4uBg+Pj5Sm5KSEqnXyNvbG1VVVSgtLTXqJSopKUFYWJjU5tKlSw2Of/ny5Qa9T7eo1Wqo1epmnF3DcThERETUOsk6hmjQoEENBt+eOnUK/v7+AIAuXbrA29sbu3fvltZXVVVh3759Utjp168fbG1tjdoUFRXh2LFjUpvQ0FDodDocPnxYanPo0CHodDqpDRERESmXrD1Er7zyCsLCwrBkyRKMHTsWhw8fxtq1a7F27VoANy8BJSQkYMmSJejevTu6d++OJUuWwMHBAdHR0QAArVaLuLg4zJkzB+7u7nBzc8PcuXMRHBws3XUWGBiIESNGYMqUKVizZg0AYOrUqYiMjOQdZkRERCRvIHr00UeRkZGB+fPn4+2330aXLl2wcuVK6QGjAPDaa6+hsrIS06dPR2lpKUJCQrBr1y44OztLbVasWAEbGxuMHTsWlZWVGDJkCNavX290yWrz5s2Ij4+X7kaLiopCUlKS5U6WiIiIWi2V4JM5m6S8vBxarRY6na7Bbel6vR5nz55Fly5doNFoZKqQ7ob/RkTUFJWVlYiIiAAAZGZm8rFCD4C7/f6uj7PgERERkeIxEBEREZHiMRARERGR4sk6qPpBV1tby4kZiYiI2gAGohZSW1uLcc+PxpVfdRY7poebFlv/vv2+QlFsbCw2bNjQYPnp06fx7rvvNrouPDwcWVlZAG4+jPfnn3/Gp59+ivHjxxu1e+ihh3DixAmkpaU1eFzHkiVL8Oabb+K9997DH//4R6N169evR0JCAsrKyu6r5vp1ERER3Q8GohYihMCVX3VIGXwV1vf3eDGT1Apgyr67P0fsTkaMGIG0tDSjZe3bt7/juttn8Pbz80NaWppRIMrJyUFxcTEcHR0bPWZaWhpee+01rFu3rkEgMrXm5s4sTkREysUxRC3MWgXYWLX8V3NCl1qthre3t9HXrV6mxtbd/iDdCRMmYN++fSgsLJSWrVu3DhMmTICNTcPMvW/fPlRWVuLtt9/G9evXsX//frPUfHtdRERETcVARM3m5eWF8PBw6TLWjRs3sHXrVkyePLnR9qmpqXjhhRdga2uLF154AampqZYsl4iIqAEGIsIXX3wBJycn6ev555+/4zonJye88847DfYxefJkrF+/HkIIbNu2Dd26dcPDDz/coF15eTk+++wzTJw4EQAwceJEbNu2DeXl5c2q+U51ERERNQXHEBGeeuopJCcnS+/rj/u5fR0AuLm5NdjHM888g2nTpmH//v1Yt27dHXuHtmzZgq5du6JPnz4AgIcffhhdu3ZFeno6pk6danLNd6qLiIioKRiICI6OjggICLjvdfXZ2NggJiYGixYtwqFDh5CRkdFou3Xr1uH48eNGY4vq6uqQmpp6X4GoqXURERE1BQMRmc3kyZPxl7/8BePGjWt0gPPRo0fx7bffYu/evUa9OWVlZXjiiSdw7NgxBAUFWbJkIiIiAAxEdA8GgwHFxcVGy2xsbODh4dGgbWBgIK5cuQIHB4dG95WamooBAwbgiSeeaLAuNDQUqampWLFiBYCb8zjl5+cbtbGzs0OvXr3uuy4iIqJ7YSBqYbUCQJ2FjtMCsrKy4OPjY7SsR48e+OGHHxpt7+7u3ujyqqoqbNq0CfPmzWt0/ZgxY5CYmIg//elPAICKigr07dvXqI2/vz/OnTtnUl1ERER3oxKWfLZEG1ZeXg6tVgudTgcXFxejdXq9HmfPnkWXLl2g0WgAtJ2ZqpWisX8jIqLbVVZWIiIiAgCQmZkJe3t7mSui5rrb7+/62EPUQqytrbH179v5LDMiIqI2gIGoBTGcEBERtQ2cmJGIiIgUj4GIiIiIFI+XzMyI49NbL/7bELUNQgjo9XrZjl//2HLWcYtGo4FK1Yynd1OTMRCZga2tLYCbDzXlHQmt040bNwD879+KiFonvV4v3eUlt1GjRsldAu90syAGIjOwtrZGu3btUFJSAgBwcHBgom8lhBC4ceMGSkpK0K5dOw50JyKiRjEQmYm3tzcASKGIWpd27dpJ/0ZE1DZUPPwChJWFf00JAdTV3HxtZQPI8Metqq4GTvmfWvy4SsdAZCYqlQo+Pj7w9PREdXW13OVQPba2tuwZImqDhJUNYC3HZW47GY75PxzxKA8GIjOztrbmL18iIqI2hrfdExERkeIxEBEREZHiMRARERGR4jEQERERkeIxEBEREZHiMRARERGR4jEQERERkeIxEBEREZHiMRARERGR4jEQERERkeIxEBEREZHiyRqIFi9eDJVKZfRV/4nksbGxDdYPHDjQaB8GgwEzZ86Eh4cHHB0dERUVhQsXLhi1KS0tRUxMDLRaLbRaLWJiYlBWVmaJUyQiIqI2QPYeooceeghFRUXS19GjR43Wjxgxwmj9v//9b6P1CQkJyMjIQHp6Og4cOICKigpERkaitrZWahMdHY38/HxkZWUhKysL+fn5iImJscj5ERERUesn+9PubWxsjHqFbqdWq++4XqfTITU1FZ988gmGDh0KANi0aRP8/PywZ88ehIeHo6CgAFlZWcjJyUFISAgAICUlBaGhoTh58iR69Ohh/pMiIiKTCCH+96a2Wr5C5FTvvI2+H9SiZA9Ep0+fhq+vL9RqNUJCQrBkyRJ07dpVWr937154enqiXbt2GDx4MN577z14enoCAPLy8lBdXY3hw4dL7X19fREUFITs7GyEh4fj4MGD0Gq1UhgCgIEDB0Kr1SI7O/uOgchgMMBgMEjvy8vLzX3qRER0m/o/d52/T5exktbBYDDAwcFB7jIUQdZLZiEhIdi4cSN27tyJlJQUFBcXIywsDFevXgUAREREYPPmzfjqq6+wbNky5Obm4umnn5b+wxQXF8POzg6urq5G+/Xy8kJxcbHU5laAqs/T01Nq05jExERpzJFWq4Wfn5+5TpuIiIhaGVl7iCIiIqTXwcHBCA0NRbdu3bBhwwbMnj0b48aNk9YHBQWhf//+8Pf3x44dOzB69Og77lcIAZVKJb2v//pObW43f/58zJ49W3pfXl7OUERE1MLUarX0+lqf8YC1rYzVyKS2Wuodq//9oJYl+yWz+hwdHREcHIzTp083ut7Hxwf+/v7Sem9vb1RVVaG0tNSol6ikpARhYWFSm0uXLjXY1+XLl+Hl5XXHWtRqNT+IREQWZvSHqrWtMgNRPXf7w53MS/a7zOozGAwoKCiAj49Po+uvXr2KwsJCaX2/fv1ga2uL3bt3S22Kiopw7NgxKRCFhoZCp9Ph8OHDUptDhw5Bp9NJbYiIiEjZZO0hmjt3LkaOHIlOnTqhpKQE7777LsrLyzFp0iRUVFRg8eLFGDNmDHx8fHDu3DksWLAAHh4eGDVqFABAq9UiLi4Oc+bMgbu7O9zc3DB37lwEBwdLd50FBgZixIgRmDJlCtasWQMAmDp1KiIjI3mHGREREQGQORBduHABL7zwAq5cuYL27dtj4MCByMnJgb+/PyorK3H06FFs3LgRZWVl8PHxwVNPPYWtW7fC2dlZ2seKFStgY2ODsWPHorKyEkOGDMH69ethbW0ttdm8eTPi4+Olu9GioqKQlJRk8fMlIiKi1kklOMlBk5SXl0Or1UKn08HFxUXucoiIHkiVlZXSDTfXHolR5hii2mo4H/kEAJCZmQl7e3uZC2rbmvr7u1WNISIiIiKSAwMRERERKR4DERERESkeAxEREREpHgMRERERKR4DERERESkeAxEREREpHgMRERERKR4DERERESleq3raPRER0S2quhpY/FEKQgB1NTdfW9kAMjxtXnXr+GRRDERERNQqOeV/KncJpCC8ZEZERESKxx4iIiJqNTQaDTIzM2U7vl6vx6hRowAAGRkZ0Gg0stUCQPbjKwkDERERtRoqlarVPN1do9G0mlqo5fGSGRERESkeAxEREREpHgMRERERKR4DERERESkeAxEREREpHu8yIyIiesAIIaDX65u1vcFgAACo1Wqomjljt0ajafY+WhoDERER0QNGr9cjIiJC7jIkmZmZrX4KA14yIyIiIsVjDxEREdEDprkzfpt7xu62MOM2AxEREdEDxpwzfitlxm5eMiMiIiLFYyAiIiIixWMgIiIiIsVjICIiIiLFYyAiIiIixWMgIiIiIsVjICIiIiLFYyAiIiIixWMgIiIiIsVjICIiIiLFYyAiIiIixWMgIiIiIsWTNRAtXrwYKpXK6Mvb21taL4TA4sWL4evrC3t7ezz55JM4fvy40T4MBgNmzpwJDw8PODo6IioqChcuXDBqU1paipiYGGi1Wmi1WsTExKCsrMwSp0hERERtgOw9RA899BCKioqkr6NHj0rrli5diuXLlyMpKQm5ubnw9vbGsGHDcO3aNalNQkICMjIykJ6ejgMHDqCiogKRkZGora2V2kRHRyM/Px9ZWVnIyspCfn4+YmJiLHqeRERE1HrZyF6AjY1Rr9AtQgisXLkSr7/+OkaPHg0A2LBhA7y8vLBlyxZMmzYNOp0Oqamp+OSTTzB06FAAwKZNm+Dn54c9e/YgPDwcBQUFyMrKQk5ODkJCQgAAKSkpCA0NxcmTJ9GjR49G6zIYDDAYDNL78vJyc586ERERtRKy9xCdPn0avr6+6NKlC8aPH48zZ84AAM6ePYvi4mIMHz5caqtWqzF48GBkZ2cDAPLy8lBdXW3UxtfXF0FBQVKbgwcPQqvVSmEIAAYOHAitViu1aUxiYqJ0iU2r1cLPz8+s501ERESth6yBKCQkBBs3bsTOnTuRkpKC4uJihIWF4erVqyguLgYAeHl5GW3j5eUlrSsuLoadnR1cXV3v2sbT07PBsT09PaU2jZk/fz50Op30VVhY2KxzJSIiotZL1ktmERER0uvg4GCEhoaiW7du2LBhAwYOHAgAUKlURtsIIRosu93tbRprf6/9qNVqqNXqJp0HERERtW2yXzKrz9HREcHBwTh9+rQ0ruj2XpySkhKp18jb2xtVVVUoLS29a5tLly41ONbly5cb9D4RERGRMrWqQGQwGFBQUAAfHx906dIF3t7e2L17t7S+qqoK+/btQ1hYGACgX79+sLW1NWpTVFSEY8eOSW1CQ0Oh0+lw+PBhqc2hQ4eg0+mkNkRERKRsJl0y++CDDxpdrlKpoNFoEBAQgCeeeALW1tZ33c/cuXMxcuRIdOrUCSUlJXj33XdRXl6OSZMmQaVSISEhAUuWLEH37t3RvXt3LFmyBA4ODoiOjgYAaLVaxMXFYc6cOXB3d4ebmxvmzp2L4OBg6a6zwMBAjBgxAlOmTMGaNWsAAFOnTkVkZOQd7zAjIiIiZTEpEK1YsQKXL1/GjRs34OrqCiEEysrK4ODgACcnJ5SUlKBr1674+uuv73p31oULF/DCCy/gypUraN++PQYOHIicnBz4+/sDAF577TVUVlZi+vTpKC0tRUhICHbt2gVnZ2ejWmxsbDB27FhUVlZiyJAhWL9+vVEY27x5M+Lj46W70aKiopCUlGTKqRMREdEDSCWEEPe70aeffoq1a9fi448/Rrdu3QAAP/74I6ZNm4apU6di0KBBGD9+PLy9vbFt2zazFy2H8vJyaLVa6HQ6uLi4yF0OERG1gMrKSumGn8zMTNjb28tckTwepO9DU39/m9RD9MYbb+Czzz6TwhAABAQE4C9/+QvGjBmDM2fOYOnSpRgzZowpuyciIiKyKJMGVRcVFaGmpqbB8pqaGumuMF9fX6NHbBARERG1Vib1ED311FOYNm0aPv74Y/Tt2xcA8N133+Gll17C008/DQA4evQounTpYr5KiYiIFEIIAb1eL9vx6x9bzjpu0Wg095yDsLlMCkSpqamIiYmRbnsHbvYODRkyBKmpqQAAJycnLFu2zHyVEhERKYRerzeavFhOo0aNkrsEi4xjMikQ3Zof6OTJkzh58iSEEOjZs6fRbexPPfWU2YokIiIiaknNenRHjx497jqXj4uLC/Lz89G1a9fmHIaIiEixkh77FWrr+74hvFmEAKrqbr62swJa+GpVowy1Ksw44Gax47Xos8xMuKOfiBQmOzsbq1atwqxZszh7PFEj1NYC6rvPc9wiNJY/5G0smyFa1aM7iEhZ9Ho9li9fjkuXLmH58uWtYvAmESkTAxERyWbz5s24evUqAODq1avYsmWLzBURkVIxEBGRLC5cuIAtW7ZIl9aFENiyZQsuXLggc2VEpEQtGohaes4AImqbhBBYtWrVHZdz/CERWRoHVbcR5pikSwgBg8EAAFCr1c0KrJaYJIseXOfPn0dubm6D5bW1tcjNzcX58+elhzwTEVmCWQJRbW0tjh49Cn9/f7i6ukrLMzMz0aFDB3McQvFa0yRdQNt/2B/Jq1OnTnj00Udx5MgR1NbWSsutra3Rr18/dOrUScbqiEiJTLpklpCQIM1IXVtbi8GDB+ORRx6Bn58f9u7dK7V77LHHoFarzVIoET04VCoVZs2adcfl7H0kIkszqYdo27ZtmDhxIgDg888/x9mzZ/HDDz9g48aNeP311/HNN9+YtUi6eYkqMzOzWfvQ6/XSFOwZGRnQaEyfZaI52xIBQMeOHREdHY1NmzZBCAGVSoXo6Gj2KlOzNHd4gTmf4cWhBW2LSYHoypUr8Pb2BgD8+9//xvPPP4/f/OY3iIuLwwcffGDWAukmlUpl1ktUGo2Gl7xIdhMmTEBmZiauXLkCDw8PREdHy10StXHmHF7Q3Gd4cWhB22LSJTMvLy+cOHECtbW1yMrKwtChQwEAN27cgLW1DNNpElGbpNFoMHv2bHh5eeGVV15hzyMRycakHqIXX3wRY8eOhY+PD1QqFYYNGwYAOHToEHr27GnWAonowRYWFsZHdpDZNHd4gbnvxqW2w6RAtHjxYgQFBaGwsBDPP/+8NHDa2toaf/zjH81aIBERUVOZY3iBg4ODmaoxXf1pawy1d2n4AKt/3paYxsfk2+6fe+45o/dlZWWYNGlSswsiIiJSulu9VAAw44C7jJW0DgaDocWDqkljiP70pz9h69at0vuxY8fC3d0dHTt2xH//+1+zFUdERERkCSb1EK1ZswabNm0CAOzevRu7d+9GZmYm/va3v2Hu3LnYtWuXWYskIiJSkvpz+CU9dhVqBd6vZKj9X++YJeY0NCkQFRUVwc/PDwDwxRdfYOzYsRg+fDg6d+6MkJAQsxZIRESkNPUHc6utochAVJ8l5nMy6ZKZq6srCgsLAcDotnshhNE0/ERERERtgUk9RKNHj0Z0dDS6d++Oq1evSpNg5efnIyAgwKwFEhEREbU0kwLRihUr0LlzZxQWFmLp0qVwcnICcPNS2vTp081aIBEREVFLMykQ2draYu7cuQ2WJyQkNLceIiIiIoszeR4iADhx4gTOnz+Pqqoqo+VRUVHNKoqIiIjIkkwKRGfOnMGoUaNw9OhRqFQqaQbJW6PAObCaiIiI2hKT7jKbNWsWunTpgkuXLsHBwQHHjx/H/v370b9/f+zdu9fMJRIRERG1LJN6iA4ePIivvvoK7du3h5WVFaysrPDYY48hMTER8fHx+O6778xdJxEREVGLMamHqLa2VrqzzMPDAxcvXgQA+Pv74+TJk+arjoiIiMgCTOohCgoKwn//+1907doVISEhWLp0Kezs7LB27Vp07drV3DUSUSslhIBer2/W9rceYqlWq5s1G61Go7HIbLZE9GAyKRC98cYbuH79OgDg3XffRWRkJB5//HG4u7sbPfSViB5ser1emphVbpmZmbC3t5e7DCJqo0wKROHh4dLrrl274sSJE/j111/h6urKv9CIiIiozWnWPET1ubm5NWv7xMRELFiwALNmzcLKlSsBALGxsdiwYYNRu5CQEOTk5EjvDQYD5s6di08//RSVlZUYMmQIPvzwQ3Ts2FFqU1paivj4ePzrX/8CcHOepNWrV6Ndu3bNqplI6TQaDTIzM03eXq/XY9SoUQCAjIwMaDSaZtVCRGQqkwKRXq/H6tWr8fXXX6OkpAR1dXVG648cOXJf+8vNzcXatWvRu3fvButGjBiBtLQ06b2dnZ3R+oSEBHz++edIT0+Hu7s75syZg8jISOTl5cHa+ubjgaOjo3HhwgVkZWUBAKZOnYqYmBh8/vnn91UnERlTqVRmu0yl0Wh4yYuIZGNSIJo8eTJ2796N5557DgMGDGjWZbKKigpMmDABKSkpePfddxusV6vV8Pb2bnRbnU6H1NRUfPLJJxg6dCgAYNOmTfDz88OePXsQHh6OgoICZGVlIScnByEhIQCAlJQUhIaG4uTJk+jRo4fJtRMREdGDwaRAtGPHDvz73//GoEGDml3Ayy+/jGeeeQZDhw5tNBDt3bsXnp6eaNeuHQYPHoz33nsPnp6eAIC8vDxUV1dj+PDhUntfX18EBQUhOzsb4eHhOHjwILRarRSGAGDgwIHQarXIzs6+YyAyGAzS3S8AUF5e3uxzJSIiotbJpEDUoUMHODs7N/vg6enpOHLkCHJzcxtdHxERgeeffx7+/v44e/Ys3nzzTTz99NPIy8uDWq1GcXEx7Ozs4OrqarSdl5cXiouLAQDFxcVSgKrP09NTatOYxMREvPXWW804OyIiImorTApEy5Ytw7x58/DRRx/B39/fpAMXFhZi1qxZ2LVr1x0HQ44bN056HRQUhP79+8Pf3x87duzA6NGj77hvIYTRZbzGLund3uZ28+fPx+zZs6X35eXl8PPzu+s5ERERmZuhVgVAWPSYQgBV/394sJ0VIMcN5DfP23JMCkT9+/eHXq9H165d4eDgAFtbW6P1v/766z33kZeXh5KSEvTr109aVltbi/379yMpKQkGg0EaFH2Lj48P/P39cfr0aQCAt7c3qqqqUFpaatRLVFJSgrCwMKnNpUuXGhz/8uXL8PLyumN9arUaarX6nudBRETUkmYcaN5d3NQ0JgWiF154Ab/88guWLFkCLy8vkwZVDxkyBEePHjVa9uKLL6Jnz56YN29egzAEAFevXkVhYSF8fHwAAP369YOtrS12796NsWPHAgCKiopw7NgxLF26FAAQGhoKnU6Hw4cPY8CAAQCAQ4cOQafTSaGJiIiIlM2kQJSdnY2DBw+iT58+Jh/Y2dkZQUFBRsscHR3h7u6OoKAgVFRUYPHixRgzZgx8fHxw7tw5LFiwAB4eHtK8JVqtFnFxcZgzZw7c3d3h5uaGuXPnIjg4WLrrLDAwECNGjMCUKVOwZs0aADdvu4+MjOQdZkRE1Co1d46v5jLnHGHmYInjmxSIevbsicrKSnPXYsTa2hpHjx7Fxo0bUVZWBh8fHzz11FPYunWr0YDuFStWwMbGBmPHjpUmZly/fr1RD9PmzZsRHx8v3Y0WFRWFpKSkFq2fiIjIVOac46u5lDJHmEmB6P3338ecOXPw3nvvITg4uMEYIhcXF5OK2bt3r/Ta3t4eO3fuvOc2Go0Gq1evxurVq+/Yxs3NDZs2bTKpJiIiInrwmRSIRowYAeDmOKD6bt25VVtb2/zKiIiIiCzEpED09ddfm7sOIiIiItmYFIgGDx7cpHbTp0/H22+/DQ8PD1MOQ0RERGQRVi25802bNvGRF0RERNTqtWggEsKyM2sSERERmaJFAxERERFRW8BARERERIrHQERERESKx0BEREREiteigWjixIkmz1pNREREZCkmzUPUuXNnTJ48GbGxsejUqdMd2yUnJ5tc2INGCAG9Xi9rDfWPL3ctGo0GKpVK1hqIiIhuMSkQzZkzB+vXr8fbb7+Np556CnFxcRg1ahTUarW563tg6PV6REREyF2G5NZTjOWSmZmpiIcFEhFR22DSJbOZM2ciLy8PeXl56NWrF+Lj4+Hj44MZM2bgyJEj5q6RiIiIqEWZ1EN0S58+fbBq1Sr85S9/wYcffoh58+YhOTkZQUFBmDVrFl588UVeFmlExcMvQFg161tvGiGAupqbr61sAAv/26jqauCU/6lFj0lERNQUzfqtXF1djYyMDKSlpWH37t0YOHAg4uLicPHiRbz++uvYs2cPtmzZYq5aHxjCygawtpXp6HYyHRfgvOVERNRamRSIjhw5grS0NHz66aewtrZGTEwMVqxYgZ49e0pthg8fjieeeMJshRIRERG1FJMC0aOPPophw4YhOTkZzz77LGxtG/Z29OrVC+PHj292gUREREQtzaRAdObMGfj7+9+1jaOjI9LS0kwqioiIiMiSTLrL7F5hiIiIiKgtaXIPkaura5PvGPv1119NLoiIiIjI0pociFauXCm9vnr1Kt59912Eh4cjNDQUAHDw4EHs3LkTb775ptmLJCIiImpJTQ5EkyZNkl6PGTMGb7/9NmbMmCEti4+PR1JSEvbs2YNXXnnFvFUSERERtSCTxhDt3LkTI0aMaLA8PDwce/bsaXZRRERERJZkUiByd3dHRkZGg+X/+Mc/4O7u3uyiiIiIiCzJpNvu33rrLcTFxWHv3r3SGKKcnBxkZWXh448/NmuBREStnRACer2+WdsbDAYAgFqtbtYjjzQaDR+ZRGQCkwJRbGwsAgMD8cEHH2D79u0QQqBXr1745ptvEBISYu4aiYhaNb1ej4iICLnLAABkZmbC3t5e7jKI2hyTn2UWEhKCzZs3m7MWIiIiIlmYHIhqa2vxj3/8AwUFBVCpVOjVqxeioqJgbW1tzvqIiFo9jUaDzMxMk7fX6/UYNWoUACAjIwMajaZZtRDR/TMpEP3444/4v//7P/zyyy/o0aMHhBA4deoU/Pz8sGPHDnTr1s3cdRKRmTV33Is51D++3LU0Z+yNSqUy22UqjUbDS15EMjApEMXHx6Nbt27IycmBm5sbgJuTNU6cOBHx8fHYsWOHWYskIvNrTeNeAEg9JHLh2BsiZTMpEO3bt88oDAE3b8V///33MWjQILMVR0RERGQJJgUitVqNa9euNVheUVEBOzu7ZhdFRJZV8fALEFYmDyk0nRBAXc3N11Y2gIVvF1fV1cAp/1OLHpOIWieTfgJGRkZi6tSpSE1NxYABAwAAhw4dwh/+8AdERUWZtUAiannCygawtpXp6PL9ESVkOzIRtTYmzVT9wQcfoFu3bggNDYVGo4FGo0FYWBgCAgKwatUqc9dIRERE1KJM6iFq164d/vnPf+LHH3/EiRMnAAC9evVCQECAWYsjIiIisgSTBw2kpqZixYoVOH36NACge/fuSEhIwO9//3uzFUdERERkCSZdMnvzzTcxa9YsjBw5En//+9/x97//HSNHjsQrr7yCN954w6RCEhMToVKpkJCQIC0TQmDx4sXw9fWFvb09nnzySRw/ftxoO4PBgJkzZ8LDwwOOjo6IiorChQsXjNqUlpYiJiYGWq0WWq0WMTExKCsrM6lOIiIievCYFIiSk5ORkpKCxMREREVFISoqComJiVi7di0++uij+95fbm4u1q5di969exstX7p0KZYvX46kpCTk5ubC29sbw4YNM7rDLSEhARkZGUhPT8eBAwdQUVGByMhI1NbWSm2io6ORn5+PrKwsZGVlIT8/HzExMaacOhERET2ATLpkVltbi/79+zdY3q9fP9TU1NzXvioqKjBhwgSkpKTg3XfflZYLIbBy5Uq8/vrrGD16NABgw4YN8PLywpYtWzBt2jTodDqkpqbik08+wdChQwEAmzZtgp+fH/bs2YPw8HAUFBQgKysLOTk50oNnU1JSEBoaipMnT6JHjx6mfAvumxD17meprbbIMVudeudt9P0gIiKSmUmBaOLEiUhOTsby5cuNlq9duxYTJky4r329/PLLeOaZZzB06FCjQHT27FkUFxdj+PDh0jK1Wo3BgwcjOzsb06ZNQ15eHqqrq43a+Pr6IigoCNnZ2QgPD8fBgweh1WqlMAQAAwcOhFarRXZ29h0DkcFggMFgkN6Xl5ff13k1tr9bnL9Pb9a+HgQGgwEODg5yl0FERATgPgLR7NmzpdcqlQoff/wxdu3ahYEDBwIAcnJyUFhYiN/97ndNPnh6ejqOHDmC3NzcBuuKi4sBAF5eXkbLvby88PPPP0tt7Ozs4Orq2qDNre2Li4vh6enZYP+enp5Sm8YkJibirbfeavK5EBERUdvV5ED03XffGb3v168fAOCnn34CALRv3x7t27dvMOj5TgoLCzFr1izs2rXrrk9nvv1hi0KIez6A8fY2jbW/137mz59vFALLy8vh5+d31+PejVqtll5f6zNexknwZFRbLfWO1f9+EBERya3Jgejrr78264Hz8vJQUlIiBSvg5tik/fv3IykpCSdPngRws4fHx8dHalNSUiL1Gnl7e6OqqgqlpaVGvUQlJSUICwuT2ly6dKnB8S9fvtyg96k+tVpt1l/aRuHL2laZgageU58qTubDcW3guDZ6YAkhoNfrTd6+/rbN2c8tGo2m1f/cl+HhRTcNGTIER48eNVr24osvomfPnpg3bx66du0Kb29v7N69G3379gUAVFVVYd++ffjTn/4E4GYvla2tLXbv3o2xY8cCAIqKinDs2DEsXboUABAaGgqdTofDhw8bPWZEp9NJoYlIiTiuzRjHtdGDRK/XIyIiwiz7GjVqVLP3kZmZCXt7ezNU03JkC0TOzs4ICgoyWubo6Ah3d3dpeUJCApYsWYLu3buje/fuWLJkCRwcHBAdHQ0A0Gq1iIuLw5w5c+Du7g43NzfMnTsXwcHB0l1ngYGBGDFiBKZMmYI1a9YAAKZOnYrIyEiL3WFGRERErZtsgagpXnvtNVRWVmL69OkoLS1FSEgIdu3aBWdnZ6nNihUrYGNjg7Fjx6KyshJDhgzB+vXrYW1tLbXZvHkz4uPjpbvRoqKikJSUZPHzIWpNOK4NHNdGDyyNRoPMzEyTtxdCSL3IarW62Ze77jZWuLVoVYFo7969Ru9VKhUWL16MxYsX33EbjUaD1atXY/Xq1Xds4+bmhk2bNpmpSqIHA8e1GWvt4xuI7odKpWr2JSqlXUJuVYGI6F6aO1Dw1j7M9ZdPWxgoSERE98ZARG2KOQcKmkNbGChIRET3ZtKzzIiIiIgeJOwhojaluQMFgZu9TLduI83IyGjWYL+2MFCQiIjujYGI2hRzDBSsT6PR8JIXERHxkhkRERERAxEREREpHgMRERERKR4DERERESkeB1XLQFVXA1meqy0EUFdz87WVDWDhCQVVt45NRETUyjAQycAp/1O5SyAiIqJ6eMmMiIiIFI89RBZijgkFm8ucExI2Fyc0JCKi1oSByELMPaFgc3FCQiIiov/hJTMiIiJSPAYiIiIiUjxeMiMiTgVBRIrHQEREnAqCiBSPl8yIiIhI8dhDRKRQnArif4QQEEKgsrJSluPr9fpGX8tBo9FAZeFLl0StAQMRkUJxKoj/qaysREREhCzHvt2tgCiXzMzMVvW5ILIUXjIjIiIixWMPERFRPUmP/Qq1tWXvuRMCqKq7+drOyuI328FQq8KMA26WPShRK8NARERUj9paQG1t+ePK+zAbWSZdIGpVeMmMiIiIFI+BiIiIiBSPgYiIiIgUj4GIiIiIFI+BiIiIiBSPgYiIiIgUj4GIiIiIFI+BiIiIiBSPgYiIiIgUjzNVk0UJIWR/mjefLE63E+J/MzUbamUsRCb1z7n+94JISRiIyKL0en2reao4wCeL000Gg0F6PeOAu4yVyM9gMMDBwUHuMogsjpfMiIiISPFk7SFKTk5GcnIyzp07BwB46KGHsHDhQqkHITY2Fhs2bDDaJiQkBDk5OdJ7g8GAuXPn4tNPP0VlZSWGDBmCDz/8EB07dpTalJaWIj4+Hv/6178AAFFRUVi9ejXatWvXsidIdyXHU8UBPlmcGlKr1dLrpMeuyvJwVzkZav/XM1b/e0GkJLIGoo4dO+L9999HQEAAAGDDhg347W9/i++++w4PPfQQAGDEiBFIS0uTtrGzszPaR0JCAj7//HOkp6fD3d0dc+bMQWRkJPLy8mBtffOnWnR0NC5cuICsrCwAwNSpUxETE4PPP//cEqdJdyDXU8UBPlmcjNUfx6W2huICUX0c00ZKJWsgGjlypNH79957D8nJycjJyZECkVqthre3d6Pb63Q6pKam4pNPPsHQoUMBAJs2bYKfnx/27NmD8PBwFBQUICsrCzk5OQgJCQEApKSkIDQ0FCdPnkSPHj0a3bfBYDAaV1BeXt7s8yUiIqLWqdWMIaqtrUV6ejquX7+O0NBQafnevXvh6emJ3/zmN5gyZQpKSkqkdXl5eaiursbw4cOlZb6+vggKCkJ2djYA4ODBg9BqtVIYAoCBAwdCq9VKbRqTmJgIrVYrffn5+ZnzdImIiKgVkT0QHT16FE5OTlCr1fjDH/6AjIwM9OrVCwAQERGBzZs346uvvsKyZcuQm5uLp59+Wuq5KS4uhp2dHVxdXY326eXlheLiYqmNp6dng+N6enpKbRozf/586HQ66auwsNBcp0xEREStjOy33ffo0QP5+fkoKyvDZ599hkmTJmHfvn3o1asXxo0bJ7ULCgpC//794e/vjx07dmD06NF33KcQwug6eGPXxG9vczu1Ws3BhURERAohew+RnZ0dAgIC0L9/fyQmJqJPnz5YtWpVo219fHzg7++P06dPAwC8vb1RVVWF0tJSo3YlJSXw8vKS2ly6dKnBvi5fviy1ISIiImWTPRDdTghhNJi5vqtXr6KwsBA+Pj4AgH79+sHW1ha7d++W2hQVFeHYsWMICwsDAISGhkKn0+Hw4cNSm0OHDkGn00ltiIiISNlkvWS2YMECREREwM/PD9euXUN6ejr27t2LrKwsVFRUYPHixRgzZgx8fHxw7tw5LFiwAB4eHtLswlqtFnFxcZgzZw7c3d3h5uaGuXPnIjg4WLrrLDAwECNGjMCUKVOwZs0aADdvu4+MjLzjHWZERESkLLIGokuXLiEmJgZFRUXQarXo3bs3srKyMGzYMFRWVuLo0aPYuHEjysrK4OPjg6eeegpbt26Fs7OztI8VK1bAxsYGY8eOlSZmXL9+vTQHEQBs3rwZ8fHx0t1oUVFRSEpKsvj5EhERUeskayBKTU294zp7e3vs3LnznvvQaDRYvXo1Vq9efcc2bm5u2LRpk0k1EhER0YNP9rvMSFmU/lRxgE8WJyJqjRiIyKL4VHFjfLI4EVHr0OruMiMiIiKyNPYQkUUp/aniAJ8s3toZalWw9AN4hQCq6m6+trMCLP181ZvnTKRsDERkUXyquDE+Wbz1mXHATe4SiEgGvGRGREREisceIiJSPI1Gg8zMTNmOr9frpQlnMzIyoNFoZKtFzmMTyYmBqI0QQkCv1zdrH/W3b+6+NBoNL/fQA0OlUsHe3l7uMgDc/L/VWmohUhIGojZCr9cjIiLCbPu79deoqTIzM/lDm4iIHhgcQ0RERESKxx6iNsIcYxyEENLEiGq1ulmXvDjOgIiIHiQMRG2EucY4cFZkIiKihnjJjIiIiBSPgYiIiIgUj5fMiMhkzZ0OglNBEFFrwUBERCYz53QQnAqCiOTES2ZERESkeOwhIiKTNXc6CE4FQUStBQMREZnMHNNBcCoIImoNeMmMiIiIFI+BiIiIiBSPl8xINoZaFQBh8eMKAVTV3XxtZwVY+k7tm+dNREStCQMRyWbGATe5SyAiIgLAS2ZERERE7CEiy2rubdrmoNfrpUkAMzIyZL1dm7eKExG1DgxEZFHmuE3bnDQaTauqh4iI5MFLZkRERKR4DERERESkeAxEREREpHgMRERERKR4DERERESkeAxEREREpHgMRERERKR4DERERESkeAxEREREpHiyBqLk5GT07t0bLi4ucHFxQWhoqNFjHYQQWLx4MXx9fWFvb48nn3wSx48fN9qHwWDAzJkz4eHhAUdHR0RFReHChQtGbUpLSxETEwOtVgutVouYmBiUlZVZ4hSJiIioDZA1EHXs2BHvv/8+vv32W3z77bd4+umn8dvf/lYKPUuXLsXy5cuRlJSE3NxceHt7Y9iwYbh27Zq0j4SEBGRkZCA9PR0HDhxARUUFIiMjUVtbK7WJjo5Gfn4+srKykJWVhfz8fMTExFj8fImIiKiVEq2Mq6ur+Pjjj0VdXZ3w9vYW77//vrROr9cLrVYrPvroIyGEEGVlZcLW1lakp6dLbX755RdhZWUlsrKyhBBCnDhxQgAQOTk5UpuDBw8KAOKHH35ocl06nU4AEDqdrrmnSDK7ceOGGDx4sBg8eLC4ceOG3OUQ8TNJ1IKa+vu71Ywhqq2tRXp6Oq5fv47Q0FCcPXsWxcXFGD58uNRGrVZj8ODByM7OBgDk5eWhurraqI2vry+CgoKkNgcPHoRWq0VISIjUZuDAgdBqtVKbxhgMBpSXlxt9ERER0YNJ9kB09OhRODk5Qa1W4w9/+AMyMjLQq1cvFBcXAwC8vLyM2nt5eUnriouLYWdnB1dX17u28fT0bHBcT09PqU1jEhMTpTFHWq0Wfn5+zTpPIiIiar1kD0Q9evRAfn4+cnJy8NJLL2HSpEk4ceKEtF6lUhm1F0I0WHa729s01v5e+5k/fz50Op30VVhY2NRTIiIiojZG9kBkZ2eHgIAA9O/fH4mJiejTpw9WrVoFb29vAGjQi1NSUiL1Gnl7e6OqqgqlpaV3bXPp0qUGx718+XKD3qf61Gq1dPfbrS8iIiJ6MMkeiG4nhIDBYECXLl3g7e2N3bt3S+uqqqqwb98+hIWFAQD69esHW1tbozZFRUU4duyY1CY0NBQ6nQ6HDx+W2hw6dAg6nU5qQ0RERMpmI+fBFyxYgIiICPj5+eHatWtIT0/H3r17kZWVBZVKhYSEBCxZsgTdu3dH9+7dsWTJEjg4OCA6OhoAoNVqERcXhzlz5sDd3R1ubm6YO3cugoODMXToUABAYGAgRowYgSlTpmDNmjUAgKlTpyIyMhI9evSQ7dyJiIio9ZA1EF26dAkxMTEoKiqCVqtF7969kZWVhWHDhgEAXnvtNVRWVmL69OkoLS1FSEgIdu3aBWdnZ2kfK1asgI2NDcaOHYvKykoMGTIE69evh7W1tdRm8+bNiI+Pl+5Gi4qKQlJSkmVPloiIiFotlRBCyF1EW1BeXg6tVgudTsfxRG1cZWUlIiIiAACZmZmwt7eXuSJSOn4miVpOU39/y9pDRET0IBBCQK/Xm7x9/W2bsx8A0Gg097wTl4gaYiAiImomvV4v9fA016hRo5q1PXuYiEzT6u4yIyIiIrI09hARETWTRqNBZmamydvfmm4EuDkHWnMueWk0GpO3JVIyBiIiomZSqVTNvkzl4OBgpmqIyBQMRNSmNHfwKsABrERE1BADEbUp5hy8CnAAKxER3cRB1URERKR47CGiNqW5g1cBDmAlIqKGGIioTTHH4FWAA1iJiMgYL5kRERGR4jEQERERkeIxEBEREZHiMRARERGR4jEQERERkeIxEBEREZHiMRAREbUC2dnZGDduHLKzs+UuhUiRGIiIiGSm1+uxfPlyXLp0CcuXL2/2M/aI6P4xEBERyWzz5s24evUqAODq1avYsmWLzBURKQ8DERGRjC5cuIAtW7ZACAHg5qNltmzZggsXLshcGZGyMBAREclECIFVq1bdcfmtkERELY+BiIhIJufPn0dubi5qa2uNltfW1iI3Nxfnz5+XqTIi5WEgIiKSSadOnfDoo4/C2traaLm1tTUGDBiATp06yVQZkfIwEBERyUSlUmHWrFl3XK5SqWSoikiZGIiIiGTUsWNHREdHS+FHpVIhOjoaHTp0kLkyImVhICIiktmECRPg7u4OAPDw8EB0dLTMFREpDwMREZHMNBoNZs+eDS8vL7zyyivQaDRyl0SkODZyF0BEREBYWBjCwsLkLoNIsdhDRERERIrHQERERESKx0BEREREisdARERERIrHQERERESKx0BEREREisdARERERIrHQERERESKx0BEREREiseZqptICAEAKC8vl7kSIiIiaqpbv7dv/R6/EwaiJrp27RoAwM/PT+ZKiIiI6H5du3YNWq32jutV4l6RiQAAdXV1uHjxIpydnaFSqeQup00rLy+Hn58fCgsL4eLiInc5RPxMUqvDz6T5CCFw7do1+Pr6wsrqziOF2EPURFZWVujYsaPcZTxQXFxc+B+dWhV+Jqm14WfSPO7WM3QLB1UTERGR4jEQERERkeIxEJHFqdVqLFq0CGq1Wu5SiADwM0mtDz+TlsdB1URERKR47CEiIiIixWMgIiIiIsVjICIiIiLFYyCiFrF48WI8/PDDTW5/7tw5qFQq5OfnAwD27t0LlUqFsrKyFqmP2iaVSoV//OMfd1zPzw0RmYqBiJosOzsb1tbWGDFiRIsfKywsDEVFRU2aTIseHMXFxZg5cya6du0KtVoNPz8/jBw5El9++WWTtjf35+Z+gz0pU3FxMWbNmoWAgABoNBp4eXnhsccew0cffYQbN26Y7ThPPvkkEhISzLY/MsaZqqnJ1q1bh5kzZ+Ljjz/G+fPn0alTpxY7lp2dHby9vVts/9T6nDt3DoMGDUK7du2wdOlS9O7dG9XV1di5cydefvll/PDDD/fch1yfm+rqatja2lr8uCS/M2fOSJ/bJUuWIDg4GDU1NTh16hTWrVsHX19fREVFyV0mNYUgaoKKigrh7OwsfvjhBzFu3Djx1ltvGa1PTEwUnp6ewsnJSUyePFnMmzdP9OnTx6jNunXrRM+ePYVarRY9evQQf/3rX6V1Z8+eFQDEd999J4QQ4uuvvxYARGlpqdTmm2++EY8//rjQaDSiY8eOYubMmaKioqKlTpksLCIiQnTo0KHRf9NbnwMAIiUlRTz77LPC3t5eBAQEiH/+859Su9s/N2lpaUKr1YqsrCzRs2dP4ejoKMLDw8XFixeNtnn00UeFg4OD0Gq1IiwsTJw7d06kpaUJAEZfaWlpUh3JyckiKipKODg4iIULF4qamhoxefJk0blzZ6HRaMRvfvMbsXLlSqPzmDRpkvjtb38rFi9eLNq3by+cnZ3F1KlThcFgMO83kywmPDxcdOzY8Y4/i+rq6oQQQpSVlYkpU6ZI/+5PPfWUyM/Pl9otWrRI9OnTR2zcuFH4+/sLFxcXMW7cOFFeXi6EuPnZuf3zePbsWSGEEHv37hWPPvqosLOzE97e3mLevHmiurpa2rderxczZ84U7du3F2q1WgwaNEgcPny4hb4jbRcDETVJamqq6N+/vxBCiM8//1x07txZ+o++detWYWdnJ1JSUsQPP/wgXn/9deHs7GwUiNauXSt8fHzEZ599Js6cOSM+++wz4ebmJtavXy+EuHcg+u9//yucnJzEihUrxKlTp8Q333wj+vbtK2JjYy32PaCWc/XqVaFSqcSSJUvu2g6A6Nixo9iyZYs4ffq0iI+PF05OTuLq1atCiMYDka2trRg6dKjIzc0VeXl5IjAwUERHRwshhKiurhZarVbMnTtX/Pjjj+LEiRNi/fr14ueffxY3btwQc+bMEQ899JAoKioSRUVF4saNG1Idnp6eIjU1Vfz000/i3LlzoqqqSixcuFAcPnxYnDlzRmzatEk4ODiIrVu3SvVPmjRJODk5iXHjxoljx46JL774QrRv314sWLCgBb6r1NKuXLkiVCqVSExMvGu7uro6MWjQIDFy5EiRm5srTp06JebMmSPc3d2lz+6iRYuEk5OTGD16tDh69KjYv3+/8Pb2lj4bZWVlIjQ0VEyZMkX6PNbU1IgLFy4IBwcHMX36dFFQUCAyMjKEh4eHWLRokXT8+Ph44evrK/7973+L48ePi0mTJglXV1fp2HQTAxE1SVhYmPTXbnV1tfDw8BC7d+8WQggRGhoq/vCHPxi1DwkJMQpEfn5+YsuWLUZt3nnnHREaGiqEuHcgiomJEVOnTjXa/j//+Y+wsrISlZWV5jpNksmhQ4cEALF9+/a7tgMg3njjDel9RUWFUKlUIjMzUwjReCACIH788Udpm7/+9a/Cy8tLCHEziAEQe/fubfR4t/5qb6yOhISEe57X9OnTxZgxY6T3kyZNEm5ubuL69evSsuTkZOHk5CRqa2vvuT9qXXJychr93Lq7uwtHR0fh6OgoXnvtNfHll18KFxcXodfrjdp169ZNrFmzRghx87Pm4OAg9QgJIcSrr74qQkJCpPeDBw8Ws2bNMtrHggULRI8ePaQ/UIW4+Rm/9ZmqqKgQtra2YvPmzdL6qqoq4evrK5YuXdrs78GDhIOq6Z5OnjyJw4cPY/z48QAAGxsbjBs3DuvWrQMAFBQUIDQ01Gib+u8vX76MwsJCxMXFwcnJSfp699138dNPPzWphry8PKxfv95o+/DwcNTV1eHs2bNmOlOSi/j/E+arVKp7tu3du7f02tHREc7OzigpKbljewcHB3Tr1k167+PjI7V3c3NDbGwswsPDMXLkSKxatQpFRUVNqrl///4Nln300Ufo378/2rdvDycnJ6SkpOD8+fNGbfr06QMHBwfpfWhoKCoqKlBYWNik41Lrc/vn9vDhw8jPz8dDDz0Eg8GAvLw8VFRUwN3d3ehn2NmzZ41+Bnbu3BnOzs7S+/qf1Tu59fO3fg2DBg1CRUUFLly4gJ9++gnV1dUYNGiQtN7W1hYDBgxAQUFBc0/9gcJB1XRPqampqKmpQYcOHaRlQgjY2tqitLT0ntvX1dUBAFJSUhASEmK0ztraukk11NXVYdq0aYiPj2+wriUHd5NldO/eHSqVCgUFBXj22Wfv2vb2wcsqlUr6jDW1vaj3xKK0tDTEx8cjKysLW7duxRtvvIHdu3dj4MCBd63D0dHR6P3f/vY3vPLKK1i2bBlCQ0Ph7OyMP//5zzh06NBd91O/LmpbAgICoFKpGgz479q1KwDA3t4ewM2fXz4+Pti7d2+DfbRr1056fb+fbeDmz+LbPzv1/8C40x8bjW2ndOwhoruqqanBxo0bsWzZMuTn50tf33//Pfz9/bF582YEBgYiJyfHaLv67728vNChQwecOXMGAQEBRl9dunRpUh2PPPIIjh8/3mD7gIAA2NnZmfWcyfLc3NwQHh6Ov/71r7h+/XqD9S09r1Dfvn0xf/58ZGdnIygoCFu2bAFw86612traJu3jP//5D8LCwjB9+nT07dsXAQEBjfaAfv/996isrJTe5+TkwMnJCR07djTPyZDFuLu7Y9iwYUhKSmr0c3vLI488guLiYtjY2DT4+eXh4dHk4zX2eezVqxeys7ONQn52djacnZ3RoUMH6WfkgQMHpPXV1dX49ttvERgYeB9n++BjIKK7+uKLL1BaWoq4uDgEBQUZfT333HNITU3FrFmzsG7dOqxbtw6nTp3CokWLcPz4caP9LF68GImJiVi1ahVOnTqFo0ePIi0tDcuXL29SHfPmzcPBgwfx8ssvIz8/H6dPn8a//vUvzJw5syVOm2Tw4Ycfora2FgMGDMBnn32G06dPo6CgAB988EGDS7LmcvbsWcyfPx8HDx7Ezz//jF27duHUqVPSL4rOnTvj7NmzyM/Px5UrV2AwGO64r4CAAHz77bfYuXMnTp06hTfffBO5ubkN2lVVVSEuLg4nTpxAZmYmFi1ahBkzZsDKij+O26IPP/wQNTU16N+/P7Zu3YqCggKcPHkSmzZtwg8//ABra2sMHToUoaGhePbZZ7Fz506cO3cO2dnZeOONN/Dtt982+VidO3fGoUOHcO7cOVy5cgV1dXWYPn06CgsLMXPmTPzwww/45z//iUWLFmH27NmwsrKCo6MjXnrpJbz66qvIysrCiRMnMGXKFNy4cQNxcXEt+J1pg+QbvkRtQWRkpPi///u/Rtfl5eUJACIvL0+89957wsPDQzg5OYlJkyaJ1157rcFg1M2bN4uHH35Y2NnZCVdXV/HEE09IgxGbctv94cOHxbBhw4STk5NwdHQUvXv3Fu+9915LnDbJ5OLFi+Lll18W/v7+ws7OTnTo0EFERUWJr7/+WghxczBzRkaG0TZarVa6Hf5Ot93Xl5GRIW796CsuLhbPPvus8PHxEXZ2dsLf318sXLhQGuCs1+vFmDFjRLt27Rrcdn97HXq9XsTGxgqtVivatWsnXnrpJfHHP/7R6P/BrdvuFy5cKNzd3YWTk5P4/e9/32CwLbUtFy9eFDNmzBBdunQRtra2wsnJSQwYMED8+c9/lgbQl5eXi5kzZwpfX19ha2sr/Pz8xIQJE8T58+eFEI0P4F+xYoXw9/eX3p88eVIMHDhQ2Nvb39dt95WVlWLmzJnCw8ODt93fhUqIev1sRETUYmJjY1FWVnbXx48QkTzYR0tERESKx0BEREREisdLZkRERKR47CEiIiIixWMgIiIiIsVjICIiIiLFYyAiIiIixWMgIiIiIsVjICIiuofY2Nh7PnSWiNo23nZPRHQPOp0OQgijJ5MT0YOFgYiIiIgUj5fMiKhN2LZtG4KDg2Fvbw93d3cMHToU169fly5nvfXWW/D09ISLiwumTZuGqqoqaVshBJYuXYquXbvC3t4effr0wbZt24z2f/z4cTzzzDNwcXGBs7MzHn/8cfz0008AGl4yu9f+SktLMWHCBLRv3x729vbo3r070tLSWvYbRETNYiN3AURE91JUVIQXXngBS5cuxahRo3Dt2jX85z//wa0O7i+//BIajQZff/01zp07hxdffBEeHh547733AABvvPEGtm/fjuTkZHTv3h379+/HxIkT0b59ewwePBi//PILnnjiCTz55JP46quv4OLigm+++QY1NTWN1nOv/b355ps4ceIEMjMz4eHhgR9//BGVlZUW+34R0f3jJTMiavWOHDmCfv364dy5c/D39zdaFxsbi88//xyFhYVwcHAAAHz00Ud49dVXodPpUFlZCQ8PD3z11VcIDQ2Vtvv973+PGzduYMuWLViwYAHS09Nx8uRJ2NraNjh+/afUX79+/Z77i4qKgoeHB9atW9dC3xEiMjf2EBFRq9enTx8MGTIEwcHBCA8Px/Dhw/Hcc8/B1dVVWn8rDAFAaGgoKioqUFhYiJKSEuj1egwbNsxon1VVVejbty8AID8/H48//nijYeh2J06cuOf+XnrpJYwZMwZHjhzB8OHD8eyzzyIsLKxZ3wMialkMRETU6llbW2P37t3Izs7Grl27sHr1arz++us4dOjQXbdTqVSoq6sDAOzYsQMdOnQwWq9WqwEA9vb2Ta6lKfuLiIjAzz//jB07dmDPnj0YMmQIXn75ZfzlL39p8nGIyLIYiIioTVCpVBg0aBAGDRqEhQsXwt/fHxkZGQCA77//HpWVlVKwycnJgZOTEzp27AhXV1eo1WqcP38egwcPbnTfvXv3xoYNG1BdXX3PXqJevXrdc38A0L59e8TGxiI2NhaPP/44Xn31VQYiolaMgYiIWr1Dhw7hyy+/xPDhw+Hp6YlDhw7h8uXLCAwMxH//+19UVVUhLi4Ob7zxBn7++WcsWrQIM2bMgJWVFZydnTF37ly88sorqKurw2OPPYby8nJkZ2fDyckJkyZNwowZM7B69WqMHz8e8+fPh1arRU5ODgYMGIAePXoY1dKU/S1cuBD9+vXDQw89BIPBgC+++AKBgYEyffeIqCkYiIio1XNxccH+/fuxcuVKlJeXw9/fH8uWLUNERAS2bt2KIUOGoHv37njiiSdgMBgwfvx4LF68WNr+nXfegaenJxITE3HmzBm0a9cOjzzyCBYsWAAAcHd3x1dffYVXX30VgwcPhrW1NR5++GEMGjSo0XrutT87OzvMnz8f586dg729PR5//HGkp6e3+PeJiEzHu8yIqE2rfwcYEZGpODEjERERKR4DERERESkeL5kRERGR4rGHiIiIiBSPgYiIiIgUj4GIiIiIFI+BiIiIiBSPgYiIiIgUj4GIiIiIFI+BiIiIiBSPgYiIiIgU7/8BGcsdKZVO8lgAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sns.boxplot(data=penguins, x='species', y='body_mass_g', hue='sex')" ] }, { "cell_type": "code", "execution_count": 18, "id": "29800dff", "metadata": { "slideshow": { "slide_type": "subslide" } }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "C:\\Users\\barguzin\\Anaconda3\\envs\\geo_env\\lib\\site-packages\\pingouin\\parametric.py:992: FutureWarning: Not prepending group keys to the result index of transform-like apply. In the future, the group keys will be included in the index, regardless of whether the applied function returns a like-indexed object.\n", "To preserve the previous behavior, use\n", "\n", "\t>>> .groupby(..., group_keys=False)\n", "\n", "To adopt the future behavior and silence this warning, use \n", "\n", "\t>>> .groupby(..., group_keys=True)\n", " sserror = grp.apply(lambda x: (x - x.mean()) ** 2).sum()\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Sourceddof1ddof2Fp-uncnp2
0species2330341.8948953.744505e-810.674489
\n", "
" ], "text/plain": [ " Source ddof1 ddof2 F p-unc np2\n", "0 species 2 330 341.894895 3.744505e-81 0.674489" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#ANOVA \n", "import pingouin as pg\n", "penguins.anova(dv='body_mass_g', between='species', detailed=False)" ] }, { "cell_type": "code", "execution_count": 19, "id": "512a4fcb", "metadata": { "slideshow": { "slide_type": "subslide" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "341.8948949481461 3.74450512630046e-81\n" ] } ], "source": [ "# ANOVA VIA SCIPY \n", "import scipy.stats as stats\n", "# stats f_oneway functions takes the groups as input and returns ANOVA F and p value\n", "fvalue, pvalue = stats.f_oneway(penguins.loc[penguins.species=='Adelie', 'body_mass_g'], \n", " penguins.loc[penguins.species=='Chinstrap', 'body_mass_g'], \n", " penguins.loc[penguins.species=='Gentoo', 'body_mass_g'])\n", "print(fvalue, pvalue)" ] }, { "cell_type": "code", "execution_count": 20, "id": "4caa3598", "metadata": { "slideshow": { "slide_type": "subslide" } }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
sum_sqdfFPR(>F)
C(species)1.451902e+082.0341.8948953.744505e-81
Residual7.006945e+07330.0NaNNaN
\n", "
" ], "text/plain": [ " sum_sq df F PR(>F)\n", "C(species) 1.451902e+08 2.0 341.894895 3.744505e-81\n", "Residual 7.006945e+07 330.0 NaN NaN" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import statsmodels.api as sm\n", "from statsmodels.formula.api import ols\n", "\n", "model = ols('body_mass_g ~ C(species)', data=penguins).fit()\n", "anova_table = sm.stats.anova_lm(model, typ=2)\n", "anova_table" ] }, { "cell_type": "markdown", "id": "c5d57020", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "# Questions? " ] }, { "cell_type": "markdown", "id": "6ac96a07", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "# References\n", "\n", "[Banerjee, A., Chitnis, U. B., Jadhav, S. L., Bhawalkar, J. S., & Chaudhury, S. (2009). Hypothesis testing, type I and type II errors. Industrial psychiatry journal, 18(2), 127.](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2996198/)\n", "\n", "\n", "[Rogerson, P. A. (2019). Statistical methods for geography: a student’s guide. Sage.](https://search.library.ucsb.edu/permalink/01UCSB_INST/1aqck9j/alma990022376840203776) \n", "\n", "[Penn State STAT 500: Applied Statistics Course Materials](https://online.stat.psu.edu/stat500/)\n", "\n", "[Learning Statistics with Python](https://ethanweed.github.io/pythonbook/landingpage.html)" ] } ], "metadata": { "celltoolbar": "Slideshow", "kernelspec": { "display_name": "Python (geo_env)", "language": "python", "name": "geo_env" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.6" } }, "nbformat": 4, "nbformat_minor": 5 }