"
]
},
{
"cell_type": "markdown",
"id": "1f2477a3",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"# Last Lecture Review (Distributions) \n",
"\n",
"* RV can be continuous (PDF) and discrete (PMF)\n",
"* Each distribution can be parametrized by their corresponding density functions "
]
},
{
"cell_type": "markdown",
"id": "2c5dbc06",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"# Last Lecture Review ($z$ and $t$) \n",
"\n",
"* We can convert normally distributed RVs into standard normal distribution ($z$-score) \n",
"* We can use the $z$-score to assess probability of observing data at or below the $z$. Use the $z$-table to look up probability values. \n",
"* We use $t$ when the population SD is not known (most real-life situations) or when sample size is below 30. Use the $t$-table to look up probability values. "
]
},
{
"cell_type": "markdown",
"id": "7dd6c3ab",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"## $z$-score \n",
"\n",
"$$\n",
"z = \\frac{\\bar{x}-\\mu}{\\frac{\\sigma}{\\sqrt{n}}}\n",
"$$\n",
"\n",
"## $t$-score\n",
"\n",
"$$\n",
"t = \\frac{\\bar{x}-\\mu}{\\frac{s}{\\sqrt{n}}}\n",
"$$\n",
"\n",
"where $s$ is the sample variance, $\\sigma$ is the population variance, $\\bar{x}$ is the sample mean, and $\\mu$ is the population mean. "
]
},
{
"cell_type": "markdown",
"id": "b1b876e6",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
""
]
},
{
"cell_type": "markdown",
"id": "3b2f3abb",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"# Last Lecture Review (CI)\n",
"\n",
"* We can estimate population mean ($\\mu$) and variance ($\\sigma^2$) from sample mean ($\\bar{x}$) and sample variance ($s^2$)\n",
"* We can provide confidence intervals for population mean using formulas $\\bar{x} \\pm t_{\\alpha/2} \\frac{s}{\\sqrt{n}}$ with $df=n-1$\n",
"* Interpret the CI: We are $(1-\\alpha)100%$ sure that the population mean, $\\mu$, is between $\\bar{x} - t_{\\alpha/2} \\frac{s}{\\sqrt{n}}$ and $\\bar{x} + t_{\\alpha/2} \\frac{s}{\\sqrt{n}}$ "
]
},
{
"cell_type": "markdown",
"id": "30461a12",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"# Last Lecture Review (QQ-Plot) \n",
"\n",
"> In statistics, a Q–Q plot (quantile-quantile plot) is a probability plot, a graphical method for comparing two probability distributions by plotting their quantiles against each other. If the two distributions being compared are similar, the points in the Q–Q plot will approximately lie on the identity line $y = x$. \n",
"\n",
""
]
},
{
"cell_type": "markdown",
"id": "012353c8",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"# Last Lecture Review (Hypotheses)\n",
"\n",
"* **Null hypothesis** - is assumed to be true until there is evidence to suggest otherwise. \n",
"* **Alternative hypothesis** - research hypotehsis. \n",
"\n",
"> The goal of hypothesis testing is to see if there is enough evidence against the null hypothesis. If there is not enough evidence, then we fail to reject the null hypothesis"
]
},
{
"cell_type": "markdown",
"id": "35300d1c",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"# Last Lecture Review (Errors) \n",
"\n",
"* Null is **true**, the mean in the urban area is indeed 3.1 (as demonstrated on the sample). \n",
" * Reject **true** null (Type I error): $\\alpha$ (**False positive**, i.e. 'falsely rejecting true null') \n",
" * Accept **true** null: $1 - \\alpha$ (**True Positive**) \n",
"* Null is **false**, the mean in the urban area is not 3.1 (biased sample, wrong conjecture in the first place, rare event). \n",
" * Reject **false** null: $1 - \\beta$ (**True negative**) \n",
" * Accept **false** null (Type II error): $\\beta$ (**False negative**, i.e. 'falsely accepting false null') \n",
" \n",
"> **We can decrease the magnitude of errors by increasing a sample size!**"
]
},
{
"cell_type": "markdown",
"id": "eb3bbca8",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"# Six Steps of Hypothesis Tests\n",
"\n",
"1. Set up hypothesis and check conditions (normality, independence) \n",
"2. Decide on the significance level $\\alpha$ (probability cutoff for making decisions about null hypothesis). The probability we are willing to place on our test for making an incorrect decision rejecting the null hypothesis. \n",
"3. Calculate test statistic. "
]
},
{
"cell_type": "markdown",
"id": "dbb9accc",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"# Six Steps of Hypothesis Tests\n",
"\n",
"4. Calculate probability value ($p$-value) or find the rejection region\n",
"5. Make decision about the null (reject of fail to reject) \n",
"6. State overall conclusion. "
]
},
{
"cell_type": "markdown",
"id": "b235d963",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"# Setting-up Hypothesis Tests \n",
"\n",
"* Is the population mean different from $\\mu_0$? (Two-tailed, non-directional)\n",
" * $H_0$: $\\mu = \\mu_0$ \n",
" * $H_a$: $\\mu \\neq \\mu_0$ \n",
"* Is the population mean greater than $\\mu_0$? (Right-tailed, directional)\n",
" * $H_0$: $\\mu = \\mu_0$ \n",
" * $H_a$: $\\mu > \\mu_0$ \n",
"* Is the population mean less than $\\mu_0$? (Left-tailed, directional)\n",
" * $H_0$: $\\mu = \\mu_0$ \n",
" * $H_a$: $\\mu < \\mu_0$ "
]
},
{
"cell_type": "markdown",
"id": "02f1a728",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
""
]
},
{
"cell_type": "markdown",
"id": "91d9d087",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"# One Sample t-Tests"
]
},
{
"cell_type": "markdown",
"id": "6dc8624b",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"# Steps 1-3 \n",
"\n",
"* Set up hypothesis (see previous slide) and set $\\mu_0=8.5$ (hypothesized population mean). The data comes from normal distribution of size = 30\n",
"* $\\alpha=0.05$ \n",
"* Calculate the test statistic"
]
},
{
"cell_type": "markdown",
"id": "25af1f78",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"# Steps 4-6 (Critical Region) \n",
"\n",
"* Find critical values (tables). Rejection regions: \n",
" * left-handed: reject $H_0$ if $t^* \\leq t_{\\alpha}$\n",
" * right-handed: reject $H_0$ if $t^* \\geq t_{\\alpha}$\n",
" * two-tailed: reject $H_0$ if $|t^*| \\geq |t_{\\alpha/2}|$\n",
"* Make decision about the null\n",
"* State an overall conclusion"
]
},
{
"cell_type": "markdown",
"id": "25de96d6",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"# Steps 4-6 ($p$-values)\n",
"\n",
"* Computing p-value\n",
" * If $H_a$ is right-tailed, then the p-value is the probability the sample data produces a value equal to or greater than the observed test statistic. $P(t\\leq t^*)$ \n",
" * If $H_a$ is left-tailed, then the p-value is the probability the sample data produces a value equal to or less than the observed test statistic. $P(t\\geq t^*)$\n",
" * If $H_a$ is two-tailed, then the p-value is two times the probability the sample data produces a value equal to or greater than the absolute value of the observed test statistic. $2 \\times P(t\\geq |t^*|)$\n",
"* Make decision about the null. If the p-value is less than the significance level, $\\alpha$, then reject $H_0$ (and conclude $H_a$)\n",
"* State an overall conclusion"
]
},
{
"cell_type": "markdown",
"id": "a24acfaa",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"# Example \n",
"\n",
"> The mean length of the lumber is supposed to be 8.5 feet. A builder wants to check whether the shipment of lumber she receives has a mean length different from 8.5 feet. If the builder observes that the sample mean of 61 pieces of lumber is 8.3 feet with a sample standard deviation of 1.2 feet. What will she conclude? Is 8.3 very different from 8.5?"
]
},
{
"cell_type": "markdown",
"id": "fefcacf1",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"$$\n",
"\\begin{align}\n",
"t^* &= \\frac{\\bar{x}-\\mu}{\\frac{s}{\\sqrt{n}}} \\\\\n",
" &= \\frac{8.3-8.5}{\\frac{1.2}{\\sqrt{61}}} \\\\\n",
" &= -1.3\n",
"\\end{align}\n",
"$$\n",
"\n",
"Thus, we are asking if $-1.3$ is very far away from zero, since that corresponds to the case when $\\bar{x}$ is equal to $\\mu_0$. If it is far away, then it is unlikely that the null hypothesis is true and one rejects it. Otherwise, one cannot reject the null hypothesis."
]
},
{
"cell_type": "markdown",
"id": "b962e359",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"1. $H_0$: $\\mu = 8.5$; $H_a$: $\\mu \\neq 8.5$\n",
"2. $\\alpha=.01$\n",
"3. $t^* = -1.3$"
]
},
{
"cell_type": "markdown",
"id": "e783a8d6",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"# Rejection region approach\n",
"\n",
"4. $df = 61-60 = 60$, the critical value is $t_{\\alpha/2} = 2.660$, thus $t^*$ is not within $\\pm 2.660$\n",
"5. $t^*$ is not within rejection region, we fail to reject null hypothesis. \n",
"6. With a test statistic of $-1.3$ and critical value of $\\pm 2.660$ at a 1\\% level of significance, we do not have enough statistical evidence to reject the null hypothesis. We conclude that there is not enough statistical evidence that indicates that the mean length of lumber differs from $8.5$ feet."
]
},
{
"cell_type": "markdown",
"id": "ea7f81b9",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"# P-value approach\n",
"\n",
"4. Without software to find a more exact probability, the best we can do from the t-table is find a range. We do see that the value falls between 1.296 and 1.671. These two t-values correspond to right-tail probabilities of 0.1 and 0.05, respectively. Since 1.3 is between these two t-values, then it stands to reason that the probability to the right of 1.3 would fall between 0.05 and 0.1. Therefore, the p-value would be = 2×(0.05 and 0.1) or from 0.1 to 0.2.\n",
"5. Fail to reject the null\n",
"6. With a test statistic of - 1.3 and p-value between 0.1 to 0.2, we fail to reject the null hypothesis at a 1% level of significance since the p-value would exceed our significance level. We conclude that there is not enough statistical evidence that indicates that the mean length of lumber differs from 8.5 feet.\n"
]
},
{
"cell_type": "markdown",
"id": "d5bb2572",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"# P-value\n",
"\n",
"> $p$-value is defined to be the smallest Type I error rate ($\\alpha$) that you have to be willing to tolerate if you want to reject the null hypothesis.\n",
"\n",
"> $p$-value (or probability value) is the probability that the test statistic equals the observed value or a more extreme value under the assumption that the null hypothesis is true. \n",
"\n",
"If our p-value is less than or equal to $\\alpha$, then there is enough evidence to reject the null hypothesis.\n",
"If our p-value is greater than $\\alpha$, there is not enough evidence to reject the null hypothesis."
]
},
{
"cell_type": "markdown",
"id": "af6123e5",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"# Penguins Data\n",
"\n",
"|||\n",
"|---|---|\n",
"|||\n",
"\n",
"[Source](https://github.com/allisonhorst/palmerpenguins)"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "f5a3f5e1",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"outputs": [
{
"data": {
"text/html": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"penguins.body_mass_g.dropna().plot(kind='hist')"
]
},
{
"cell_type": "markdown",
"id": "827ef6a1",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"# One sample test for penguins \n",
"\n",
"* $H_0$: the mean body mass of penguins is 4201 grams\n",
"* $H_a$: the mean body mass of penguins is not 4201\n",
"\n",
"> What kind of t-test is this? "
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "7bb76953",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Ttest_1sampResult(statistic=0.01739630065824133, pvalue=0.9861306342800811)\n",
"Our p-value is not below alpha, thus we cannot reject the null hypothesis.\n",
"We do not have enough statistical evidence to reject the null hypothesis.\n",
"We conclude that there is not enough statistical evidence that indicates that the mean\n",
" mass of penguins differs from 4201 g.\n"
]
}
],
"source": [
"from scipy import stats\n",
"\n",
"print(stats.ttest_1samp(penguins.body_mass_g.dropna(), popmean=4201))\n",
"print('Our p-value is not below alpha, thus we cannot reject the null hypothesis.')\n",
"print(f'We do not have enough statistical evidence to reject the null hypothesis.')\n",
"print('We conclude that there is not enough statistical evidence that indicates that the mean\\n mass of penguins differs from 4201 g.')"
]
},
{
"cell_type": "markdown",
"id": "9290af98",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"# One sample test for penguins (v2)\n",
"\n",
"* $H_0$: the mean body mass of penguins is 4300 grams\n",
"* $H_a$: the mean body mass of penguins is less than 4300\n",
"\n",
"> What kind of t-test is this? "
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "ed75a73d",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Ttest_1sampResult(statistic=-2.265564736887436, pvalue=0.012052359189978712)\n",
"Our p-value is below **alpha**, thus we cannot accept the null hypothesis.\n",
"We do not have enough statistical evidence to accept the null hypothesis.\n",
"We conclude that there is enough statistical evidence that indicates that the mean\n",
" mass of penguins is less than 4300 g.\n"
]
}
],
"source": [
"from scipy import stats\n",
"\n",
"print(stats.ttest_1samp(penguins.body_mass_g.dropna(), popmean=4300, alternative='less'))\n",
"print('Our p-value is below **alpha**, thus we cannot accept the null hypothesis.')\n",
"print(f'We do not have enough statistical evidence to accept the null hypothesis.')\n",
"print('We conclude that there is enough statistical evidence that indicates that the mean\\n mass of penguins is less than 4300 g.')"
]
},
{
"cell_type": "markdown",
"id": "5a885f2e",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"# Independent Samples t-Test\n",
"\n",
"* Let's assume that our *penguins* data is a combination of two independent samples: one for male penguins and another for female penguins. \n",
"* We can use a $t$-test to compare the means between the groups and state whether those are statistically different from one another. \n",
"* Be a good data scientist and check normality assumptions on the data sample. \n",
"\n",
"> BIG QUESTION: Does flipper length vary depending on the sex of the penguin? "
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "2d0f67f5",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAckAAAGHCAYAAADbbaltAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB9cElEQVR4nO3dd3zM9x/A8ddlD5EgRIgRe6/Ye++9965S82dW1aoqVVpUtdSetWJvitrE3puITSQhyLj7/v74ysnJvOSy5P18PO4h9/l+7nufu5Z3Puv90SiKoiCEEEKICMySugFCCCFEciVBUgghhIiCBEkhhBAiChIkhRBCiChIkBRCCCGiIEFSCCGEiIIESSGEECIKEiSFEEKIKEiQFEIIIaIgQVKIRHbixAnatGmDq6srVlZWuLq60rZtW06fPh2n+z18+JABAwaQO3dubGxsSJcuHTVr1mTNmjWxvkfOnDnRaDT6R5o0aShXrhzLli0zqFe9enWqV68ep3b+9NNPbNq0KU6vFSKpSJAUIhH9/vvvVKpUCR8fH6ZNm8a+ffv45ZdfePjwIeXLl2f+/PlG3e/o0aMUK1aMzZs3M3jwYHbt2sWSJUtwdXWlffv2dOvWjdhmnqxUqRLHjx/n+PHjLFmyBI1GQ7du3fjzzz/j8lEjkCApUiRFCJEojhw5opiZmSmNGzdWQkJCDK6FhIQojRs3VszNzZVTp07F6n6vX79WMmXKpOTIkUN5+vRphOtTp05VAOXXX3+N8V45cuRQGjVqFOH+adOmVfLkyaMvq1atmlKtWrVYte9z9vb2Srdu3eL0WiGSivQkhUgkU6ZMQaPR8Oeff2JhYWFwzcLCgrlz5+rrxcaCBQt4/vw5U6dOxcXFJcL1kSNHUqBAAaZMmUJoaKjR7XVyciJ//vw8ePAg2nq+vr588803ZM2aFSsrK3LlysWYMWMICgrS19FoNAQGBrJ06VL9kG5ch22FSEwSJIVIBFqtlgMHDlC6dGnc3NwirZMtWzY8PDzYt28fOp0uxnvu3bsXc3NzmjRpEul1jUZD06ZNefHiBefOnTO6zSEhITx48ICMGTNGWefDhw/UqFGDZcuWMXToULZv307nzp2ZNm0aLVu21Nc7fvw4tra2NGzYUD+kG/ZLgRDJmUXMVYQQ8fXy5UvevXuHu7t7tPXc3d05deoUvr6+ODs7R1vX29ubjBkzYm9vH+39AB48eECZMmWivZ+iKPoep4+PDxMmTOD58+eMGDEiytcsXbqUixcvsnbtWtq0aQNAnTp1SJMmDaNGjWLv3r3UqVOH8uXLY2ZmRsaMGSlfvny07RAiOZGepBDJiPJxkY1GowFAp9MRGhqqf2i12njdLzo7duzA0tISS0tL3N3dWbt2LQMHDuTHH3+M8jX//vsv9vb2tG7d2qC8e/fuAOzfv9+o9gqR3EiQFCIRODs7Y2dnx71796Ktd//+fWxtbcmQIQMAPXv21AcuS0tLatWqpa+bPXt2Xrx4QWBgYLT3A3UoNyaVK1fm9OnTeHl5cfXqVfz8/Jg9ezZWVlZRvubVq1dkzpw5QhDOlCkTFhYWvHr1Ksb3FSI5kyApRCIwNzenZs2aeHl54ePjE2kdHx8fzpw5Q82aNfVlEyZM4PTp0/rHvHnz9Nfq1q2LVqtl69atkd5PURS2bNlChgwZKF68eIxtdHR0pHTp0nh4eFCwYMFog2OYDBky8OzZswjbTJ4/f05oaGiMQ8ZCJHcSJIVIJN9++y2KovDNN99EGDbVarX069cPrVbL4MGD9eU5c+akdOnS+kf+/Pn113r16oWLiwujR4/m+fPnEd5v2rRpXL9+nb59+2JtbZ0gn6lWrVq8ffs2wv7HsCQE4Xu+1tbWvH//PkHaIURCkYU7QiSSSpUqMXPmTAYPHkzlypUZMGAA2bNnx9vbmz/++IPjx48zYcIE6tSpE6v7OTk5sWHDBho3boyHhwcjRoygePHiBAQEsGbNGlauXEmdOnWYMGFCgn2mrl278scff9CtWzfu379P0aJFOXLkCD/99BMNGzakdu3a+rpFixbl4MGDbN26FVdXVxwcHAyCvhDJUlJu0hQiNTp27JjSqlUrxcXFRTEzM1MAxcbGRtm+fXuc7vfgwQPlm2++Udzd3RVLS0sFUADlhx9+UEJDQ2N1j8iSCUQmsmQCr169Uvr27au4uroqFhYWSo4cOZTRo0crHz58MKh3/vx5pVKlSoqdnZ0CxDkpgRCJSaMoscxZJYRIEMuWLaNbt26MHDmSn3/+Od73u3TpElWqVKFEiRLs3LkTW1tbE7RSiNRJ5iSFSGJdu3Zl6tSpTJs2jR9++CHe9ytatCibN2/mxIkTtGzZkuDgYBO0UojUSXqSQgghRBSkJymEEEJEQYKkEEIIEQUJkkIIIUQUJEgKIYQQUUhVyQR0Oh2PHz/GwcEhVgmfhRBCfHkUReHNmzdkyZIFM7Po+4qpKkg+fvw4VomehRBCfPkePnwY5fmuYVJVkHRwcADULyZt2rRJ3BohhBDR8vMDKyuws4vXbUJCQ9m8+z/Onr9K3UO7KXXyP7LxKSZEJ1UFybAh1rRp00qQFEKI5OzVK2jRAjJkgK1bIY5J+l/7v2HZhj343rzNoA3LyHfvFgEfr8Vm2i1VBUkhhBApwLNnUKcOXLoE/fqBpWWcbnP7vg9L1+0g/c1rDFu3FCf/1+oFc3OI5QHmEiSFEEIkH48fQ61acP06/O9/MGMGGLnQUlEUDp+6wOZdhyh/+igtd3liHhYUM2eGJUugfv1Y3UuCpBBCiOTB2xtq1oQ7d2D0aJg82egAGRwSwtpt/3LxzEXabVtH2QunP12sXBnWrgV7+1jfT4KkEEKI5OH8ebh/HyZOhLFjjQ6Qvn4BLFqzjQ9XrzF47WKyPn306eKQITBtmjp0GxAQ5T0+J0FSCCFE8tC0KVy8CIUKGf3SG3e9Wb5+J9kunuUbzxXYvX+nXrCzg4ULoX37ODVJMu4IIYRIOhcuQIcO8OGD+tzIAKkoCv8ePcP8ZZ5U3rmJPqv+/hQg8+aFkyfjHCBBepJCCCGSyrFj0KgR+PtDt26xXkwTJig4hH+27OXm6fP02riSQreufrrYvLm6QMfRMV5NlCAphBAi8e3bB82aQXAwrFqlD5BaLRw+DE+egKsrVKyoxtKw51WqqC/fucePY+e3ke7BBYauXUyG168A0GnMuN97Mjn+GIm5pVmE+4W9PrYkSAohhEhcmzZBu3ZgZqb+3KgRAJ6eMHgw+Ph8qvr5lsYMGSBLjvtUqrOLyjcO02bbOqxCQwB4gTMdlNXs/7s2bjvVUdzVqw3v5+YGU6bEvqkaRVGUuH/SlCUgIABHR0f8/f0l444QQiSFx48hVy51lenWrVC9OqAGyNatIdqIpFEoW+U0lascpsXujVT2Oqq/dIoytGY9D8ke7dtrNKAoAUDsYoH0JIUQQiSeLFlg8WLIkwfKlAHUnuLgwdEHSCvrIOo234tHljN0X7KYnI8e6K/Now+DmUUQNjG+vbHdQgmSQgghEt7KldCyJdjaom3bQZ0nXA2ZMqnbI8MPiX4unbMvTdpto+zbU3SdtxSHd28B+IA1/fiTJfRIsGZLkBRCCJFwFEXNnvPzz9C3L551/oww7xidXPnvUK/Fbuqf2U3jfVsx+9gVvE8OWuLJOUolYONT0D7JKVOmUKZMGRwcHMiUKRPNmzfnxo0bSd0sIYQQUdFq4Ztv1ABZsCA7Sn1P69axDJAahfI1jtOmxXq+3jyPpnu36APkLurhwZkED5CQgoLkoUOH6N+/PydOnGDv3r2EhoZSt25dAgMDk7ppQgghPhcUpC4v/esvKFUK7b+H+PqHrLGaE7S2CaJZhy00LbSF/y34leLXLuqv/cBYGrEdXzIkYOM/SbGrW1+8eEGmTJk4dOgQVatWjbROUFAQQUFB+ucBAQFky5ZNVrcKIYSJhe1HfPQIXjxXaLO0EVkv7MS3ZE3299+It19ahg+P+T4ZMr2kcbttVH96iA6bVmEdEgyAH450ZgXbaRyvdqaa1a3+/v4ApE+fPso6U6ZMYeLEiYnVJCGESJUi7m/UcIrONCcNXc8tI6h3zKtOAfIWukW9prtoeWgjNY4f0JdfoBit2MAd8pDhYwfy1atPr4usLFs2NRtdZPskf/oJunSJ3WdLkT1JRVFo1qwZr1+/5vDhw1HWk56kEEIkrPD7G914yCsy8B67j1cVIOaTPDQaHZVqHaN6iYN0W7eEPA/u6K9pO3bmaJd5PHptZ5AxJ7IsOp+XhSUi+Lw8MDD2e+ZTZJDs378/27dv58iRI7i5ucX6dZJMQAghTEerhZw51Z5aYS6zm3qcoyRN2YISyyUvNrbvadB6F9UsD9Ft3RKc3qijhMFYYjH7N8wGfGP0kVkxMSYWpLjh1oEDB7Jlyxb+++8/owKkEEII0zp8WA2QFTjGNhqTntdM5dtYB8iMmV/QuO1WGt3aQbPdm7DQqfnnHpGFWz+tp/rACgnZ/FhJMUFSURQGDhzIxo0bOXjwIO7u7kndJCGESNWePIEG7GA9rbEkhA6s4h86xOq1+Ytep0GDnXTatYrSF7305cetq+E7dw2NerqYvsGvXsHMmUb1TFNMkOzfvz+rVq1i8+bNODg48PTpUwAcHR2xtbVN4tYJIUTqU+LyCtrQnSCsacw29lAvxteYmWmpXOcIdfPtpfvSxWR99lh/zbvdcMounYK5tYlD08uXMH06/PEHvH2r5o6NpRQzJ6mJIvIvXryY7t27x+oeMicphBCmo/tnLb6dBtBIt5VTlIuxvq39Oxq12UG9oN108lyBbZB60LKSJg2axYvVFUCm9OYN/PorzJih/pw1K4waRUDbtjhmzvxlzUmmkFguhBBfNp0OPnwAOzvM2rflSHB9TnWLudPhkuUpTdpspc259dT9b4++/E2W/Djs2wgFC5q+rffvw8SJaoLYKVOgd2+wtoaAgFjfIsUESSGEEEnswwfo1g38/GDbNjy3WjJ4TMwBslDJKzSusY3um5dQ8M51ffmj8q3IunsRmGpkLzQUliyBYsWgbFkoWhQ2boTatcHePk63lCAphBAiZn5+0Lw5HDoE1auzZc17Wne1jDLN3KBB0Lixlit3D6E9u4MeCxeR3v81AIqZGcqUn8k6YphptncoCmzZAqNGwY0bUL8+7NypXmvWLF63liAphBAiej4+auC5cgXatUO7aCn981tHGSA1Gti5K5BcxbbjsmMjrbevx1Ibql7MmBHNmjVoatQwTdtOnYLhw9X9KBYW0L8/fP+9ae6NBEkhhBDR0F64TEidBti88OFI2aGc9PiFVz+aRXuSR2a3x9RqsJkyfy6n4pnjny6UKwfr16u54Uxh40b1jEpQ/5w6FfLmNc29P5IgKYQQIlKenrCx+x0Wv3nCUGbw26mhcCq6VygULX2JFhU30nPdInI89v506Ztv1JWm1tbxa9SbN2Blpd6nXj1o0QKGDYNKleJ33yhIkBRCCBGB53odrdqYAc04yk3uEf3eQnOLUGo0PEBLx410+XsZad5/PMbQxgbmzYOuXePXIJ0Oli+Hb7+FoUNhxAiws1MjeQKSICmEEMKA7rdZOI/ehiXbCcEqxgCZJu0bmrTdSsd7q2i4dYf+cGQlVy40GzZAiRLxa9DJk+oxIydPqoHR0jJ+9zOCBEkhhBDqaRmHdGSaMYpCO6aTmyy44RNjgMyaw4dWzTbQe/cCit64rC9/WqohmfetgHTp4t6oJ09g9GhYulR93qkT/PyzmhQgkcQuC60QQogvlqcn5MsRxJNanSi0YzpXKEQFjscQIBVKlDvPgAZzGLNisj5A6tBwtd1EMp/eGr8ACXDnjhogPTzg6FFYsSJRAyRIT1IIIVI1T0/o0+oVnrSgKoc5RFWaswk/og5wFpYh1Gr8Lx3NVtJu4RqsQ4IB8CUd3j+tpMToBnFv0K5dam7VfPmgcmX491+oVg3MkqZPJz1JIYRIpbRadaqvBOeoyDFW0pG67Ik2QKZ1CqBDt9WMfvwTXTcs1wfIc5SgqasXRUfGMUA+fKjmbm3QQG1UmBo1kixAgvQkhRAi1Tp4QMHHR4MPtanIMU5TBog6A062XN60r/8PfbfNI5f3XX35ErrxDX+yYo4t5uZGNiIkBGbNggkTIDAQqlZVT+xIJiRICiFEKnRipCea3+ZhzWaCsOE0ZaOpreBR6Qxd8i6nx7IlpH2rJggPxpKB/M5Otz6smKXR7+uPtevX1d7jlStqEvI//4TOnU2Tqs5EJEgKIURqoihc7DmTskuG8ZY0FOIq5ygVZXVLq2DqNNlL78CFNF22GXOdDoA3Tm4cHbKeDtXKMbcKxvcgATJnhtev1VRyP/4ITk5x+0wJSIKkEEKkFlotuiH/o9iS3/EhK43YzkWKR1ndMb0frVuup9+JP/G4fFZfrtSoicM/q6mfKZNx768o6gpVCwvo0EENitevg4NDHD9QwpMgKYQQXyitFg4eVBeIPrsbyFCvjhS6vYXzFKcR23lM1Nspcua9R9fqy/h68zyyPH+iL7/RfBT51/2oBjpj3L4NffvC/v2QPbs6zGppmawDJEiQFEKIL5KnJ/TpA69eqc8rcY687GAn9WnLWt4SRXDSKJStcpqvXOfTadlKbIM+APBG48CV4UsoP83IiceQEHUhzg8/qOdRNm0Kc+Ykatac+JAgKYQQXxhPT2jVyrDsKJWpwQFOUB5tFP/0W1kHUb/pLgY8mUOdNfv05YE5CmG3w5PyhfIb1xA/P3W16qVL4OqqBscWLZLVwpyYyD5JIYT4gmi16oHHANU5wHYaYsN7QA2UUQXIdM6+9O60gGlnRlLnyKcAqWvTFvvLJzE3NkACODpCnjzQrx9cu6YeZ5WCAiRIT1IIIVI0rVY9b/jRI3j2DLy81J+7spS/+QoFDaXx4ghVorxHrvx36FN+Pn3WzyddgB8AoZhztfsvFFs0xLjAtns37N2rDrFqNLBuXRyXviYPEiSFECKF8vRUk9OEPwBZg44fGcsYfuIV6WnOpqgDpEahfLXjDHGYTasV67HQagF4pnHh+sS1VBtbNfaNef1aPddx8WJ1vvHrr9UDkFNwgAQJkkIIkSJ5eqoLRD+eSgWADe9ZRlfasJ4b5KMx27hN3khfb20TRNOmmxl661fKHzypLz9KRXSr11GtXZbYN2bzZnXl6tOnULo0LFqkBsgvgARJIYRIYcJyroYPkABFuUQzNvMvNWjNel6TPtLXZ8j0ku4NljB4zyyyPfnUDf2dgcx0m87N1laxb0yfPvD332BtrR5jNXSo8dtDkrEv55MIIcQXKPxex/v31cD47JnhECsogIbTlKUm/3KKsoQQeaDLW+gWg4rNosfaxdi/fwfAO2z5ir9ZrenE+llGjpCWLAmVKsHChZA/Dot7kjmNonz+u8iXKyAgAEdHR/z9/UmbNm1SN0cIIaL1+V7HyDRgByP4hcZs4x32UdbTmOmoXOMI3+p+pv6BnZih/tN/m9y0xBO/bMWYOZOY868+eQLjx8OMGWoigI9p6pLypA5jGRMLpCcphBDJUGR7HT83gN+ZyRCCsKYE5zlGpUjr2di+p1XT9Yw+9zOFb17Rl98p1ISzg5cxO58TVWLKv6oosHo1DBigLtIpUkTda5KCgmNcSJAUQohkJvxex8iYE8pMhjCAP3iMK03Yylk8Iq2bMfNz+tb8i4E7fyfj65dqoUYDkyaRe/RocscmyL14oe513LAB0qSBefPgq6/i8MlSHgmSQgiRTITNPy5erO51jExa/PmH9jRgF+coQRO28gi3SOsWKHadb3NOocPa1ViFhqiF6dOrPcK6dWPXqP371WTkL15A9epq43LmNPajpVgSJIUQIhmIzfwjQH5uUIMDbKEJHVlFIGki1DEz01Kj9gHG+/1AlS2HP13w8ID1640LcpkzQ2gozJ6tHmn1hQ+vfk6CpBBCJLHYzD9q0KFgxmnKUomjnKcEOiJOItrav6NLw+V8e3wq7j73P13o1UvNnWpjE3ODtm8HFxd1z2PhwuDtrQ6zpkKp61cCIYRIZmKafwRoyxqOUZE0vAHgLB6RBkiXLE+Z0HAC03cM/xQgra3VfYwLFsQcIP391WDauLE65xi2+SGVBkiQnqQQQiSZ4GAYMiTq+UdQ+J4fmcQ4/HCkANfxokykNQuVuMwk53E0W78Zc+Xjtozs2dXFNqVLx9yYffugZ094+FAdll26NMUlI08I0pMUQogkMHIk2NrCn39Gft2G96yiI5MYx13cqcDxSAOkmbmWhvW2sTK4Cy33bfwUIOvUgTNnYg6Q79+rXdk6ddQ9kD/8AMePq8OsQnqSQgiR2EaOhF9+ifq6K4/ZRHPKcppDVKUVG3iFs0GdWrUgs2sg+W3m89Wmn8n88tmni2PGwMSJsU+ds3+/GhSXL1cz6Ag9CZJCCJGIgoPVZDXRycJjinKJBfTiG+ZGSDHn5gbzFjzm9PhJNF+2GJvgIPVC2rRqoGvaNPo30GrVM7XKlVO7s9u3q6tYY7OoJ5WR4VYhhEgEwcHw66/qdF9YJrfPhR2OfIbSlOA8X/F3JDlYFUaPOYt35660X/bXpwBZpIga+GIKkHfvQrVqULUqXLqkluXMKQEyChIkhRAigYXNPw4bBpcvR7yuQccExnOaMjgQAMBN8gOGC2cyZgpl1o/rqPNze2oc3f/pQseOcOJE9MdTKYp6hFXx4nD0KLRpA9mymeDTfdlkuFUIIRJQTPOPtrxjKd1ow3puk5uMvOANhkm3O3WC9h3f8ObwTBr8PAOnN/4AKBYWaH79Vc2nGt1K1Bcv1EwFmzaBkxP88w+0axf/D5cKSJAUQogEEtP8Y1Z82EwzPDjLfmrSlrX4ksGgjpsbjJv4kOsjvqXN5jVY6LTqhcyZ0axbB5Urx9yQadPUAFmrFixZot5UxIoESSGEMJHwZz/evavuwIhq/rE0p9lCU1x5yp/0ZRCzCcXys1oKo0edwL/1EJqeP/WpuEoVWLMGXF2jbsy7d+oYr0YDEyaoZz327Jnq0srFlwRJIYQwgdjmXg0TigV2vKM/c5hL/wjXM7mEMP6rFTSdPBa3p+GyDfzvf/Dzz2D5eUAN59Qp6NwZBg9W863a20Pv3kZ+IgESJIUQIt5ik3sV1AU6zrzkBZk4T0ncucdr0keoN3VaALkf/EjD6XOw+6CueFXs7NAsXAjt20f9BlotTJ2qHoqs08HLl3H9SOIjCZJCCBEPscm9CmDPW5bRlUJcpTwn8Mcp0gDpUfYepfcMpMa+HZjxMXdqvnxoPD2jz4Lz8KHae/zvP3XV6ooV6jYPES8SJIUQIpa0WjU5zdKlcO8efPigPqLOvarKhjdbaEoJLrCHOmjCgp8BhRpl/2XO60EUOnX1U3Hz5upiG0fHqN/g8WMoVgz8/KBtW/jrL0iXzvgPKCJIUTO4//33H02aNCFLlixoNBo2bdqU1E0SQqQSnp7q7ol69WDVKjW96blzcO1a9K8rz3FOU4YSXGA2A2nIDvwwDGCWVsH8r8Ec1t1sR6FbaoBUzMzUoVNPz+gDJECWLOo+kUWL1O0dEiBNJkX1JAMDAylevDg9evSgVWwmAIQQwgRiO+f4uVasZyWdMEPH1/zFfL6OUKdLdz+avxtFY8/FWIWGAKA4O6P55x91y0ZUvLzUaD1jhrqCdc4c4xsoYpSigmSDBg1o0KBBUjdDCJGKaLUwcGDcXnuD/DzBlR4s5iA1IlyvUPY631z/mvIn/vtUWKYMmvXr1WOuIqPTwfTpahJzrVZdyFO2bNwaKGKUooKksYKCgggKCtI/DwgISMLWCCFSGq1Wzbf6+HHsX+PEazLwijvk4TJFycfNiPlXNQqNy27jd5+B5Hz04FP511/DrFnqQcmRefQIunZVN2JmzaomM5cAmaBS1JyksaZMmYKjo6P+kU3yFAohYilsDnLkyNi/pgDXOEk5dlGftKip4z4PkFbWQYyr9ROrLnXUB0jF2lqdT/zrr6gD5Nat6uKcf/+FFi3gwgWoEbF3Kkzri+5Jjh49mqFDh+qfBwQESKAUQsQoLnOQjdjGKjqSljf8yBje4GBwvWZNKFvuFdXPf0OdXeswUz6ucM2ZE82GDVCqVPRv4O+vHpA8bx589VX0uVqFyXzRQdLa2hrrqH4rE0KISBg/B6nwLVOZzBg+YENb1rCOtgY13Nxg5pTzaHr2oMiV858u1K+v7mfMYJivVe/CBXVuMl06dQ9kjRrqMKtINF/0cKsQQhgjLnOQU/mWKXzHQ7JRkWMRAqRGo2NS91VkaljPMECOGwfbtkUeIBUFfv9dnW/s1+9TuQTIRJeiepJv377l9u3b+uf37t3j/PnzpE+fnuxRrQQTQohY8PSEbt3g7VvjXreE7hTiKj1ZxEsyGlxzzfKB2TXH0uTn2ViHBAOgODmhWb4cGjeO/IavXqmJyLdsgUyZ1J9FktEoihJZ6odk6eDBg9SIZKK6W7duLFmyJMbXBwQE4OjoiL+/P2nTpo2xvhAidTB2DrISRwggLZcoBqh7+XPkADs7cHGBnDmhTOmnZJ7dnfIHd396YfHisGED5M4d+Y0PH1YPUPbxgTp1YNkyyJw57h9MRMqYWJCigmR8SZAUQnxOq1Wn/WI7xNqbv/mD/tzDncJcAXML3r0Dq3CLWC8dOopdj+7kvvdp5IsuXdTVq3Z2kd/Y319tyLt3MHkyDB8ux1olEGNiQYoabhVCCFMKDoYhQ2IXIC0I4Tf+xwD+4DkZ+Yq/0WLBiKGfAqRWp+P47HkUGTcapzfqFhDF0hLNzJnq3GJkK1IVRS13dFS3gWTNCuXLm+wziviRICmESJVGjlQzukV1KHJ4zrxgHW2oziHOUYLmbMLHLAcjhsG0aWqdwMB3nO03iIorF2P+8aZKlixq9pwKFSK/8fbtMGkS7N6tBklJt5nsSF9eCJHqjBwJv/wSuwAJsIyuVOcQa2hLZY5QomkO3r//FCAf3bnH3Wq1qLJ8oT5AUr06mrNnIw+QwcEwbJi6eOfCBTh92jQfTJiczEkKIVKV4GCwtY19gATIy02asZnpDMfcXGMwB3lp226ce/fE9Vm4Mdvhw2HKFLCIZLDu9m013+qZM1CwIKxZA0WLxu9DCaMYEwukJymESFXmzo05QGrQMZYfKME5AG6Rj+mMADQM/TgHqdVqOT5hCnlaN9cHSCVNGli3Tu2mRhYgt29XM+ucOaNmzfHykgCZzMmcpBAiVblzJ/rraXjDcrrQnM1U5T/qsA9QF5oO+zgH+SbgDdc796DC1g361ykFCqDx9FR7h1HJnRvSpIG//4Z27UzxcUQCkyAphEhVrlyJ+lou7rCZZhThCrupS3v+AaBpU7WDaGUFPpev8qF1W8rcCHej1q3RLFoEDg4Rb3rxotp1LVECChSAu3fBxsa0H0okGBluFUKkGsHBcPBg5NfqsQsvSlOEK8xgKI3Yjh/pMDf/FCAvrVyLXZUq5PkYIBUzM3Vode3aiAFSUdSx3bJloW1bCFEPVJYAmbJIT1II8cXRatVguG8fnDoFT59CYKB6iEZkSxXN0PIzo7DhA51Zzko6668NHQpm5lpODxpFibmzsNSGAqBkzIhmzZrIj6vy84PevdXsOhkzwuzZYGmZMB9WJCgJkkKIL4qnJ/Tpo6ZAjZmCukzHnFZsIC0BnEM9skqjURepjhnxkms121Pmv/2fXlW+PJp169TjPT53+rQ633jvnhpAV6xQ89aJFEmGW4UQX4ywHKyxCZC5uMMpylIadY/iHfLoA2STJvDhAwxofoq3pUpTNFyApH9/NIcORR4gFQX69oX792HiRNi7VwJkChfvIKnVajl//jyvX782RXuEECJOtFoYNCh2dcPmH8vgRR32GlxT5yAVbs6fR4Y6Ncnq8wAAxdZWTTg+Z45hotawNwe1+7lihTrOO26cejORohkdJIcMGcLChQsBNUBWq1aNUqVKkS1bNg5GNSMuhBAJ7PBhePQoploKo5jKDhrq5x+n8J1BjTatg7neuxeFBvXD/l2g+ip3dzTHj6tJyj8Xttfx7Fn1ecGCULNm/D+QSBaMDpLr16+nePHiAGzdupV79+5x/fp1hgwZwpgxY0zeQCGEiI0ZM6K/bkcga2jHVEbzkGxU4qjBAh2ALA4+jL1UieIrFmP2cYWP0qgRmjNn1GOuwlMUdUFOxYpw/TqcOGHKjyOSCaOD5MuXL8n88XyzHTt20KZNG/Lly0evXr24dOmSyRsohBAxGTkStm2LuV5+bnCA6pTGSz//GKam6z7OmntQ6KoXAIpGAz/8gGbLFkiXzvBGfn7q5OfgwZA+vTq8+s03Jvo0IjkxOki6uLhw9epVtFotu3btonbt2gC8e/cOcxl/F0IksuBgmD496usuPAXgHfbUZQ912cNLMoarofBt7inseNkIF7/nAOicnNDs2AFjx0Y80/HmTTW13MaNUKsWnD8vw6tfMKODZI8ePWjbti1FihRBo9FQp04dAE6ePEmBAgVM3kAhhIiMVgt79kC5cpHvfQybf7xLLsqhDoU+x4VQPu1XtLF4h2fuFky58x3WIcEA6EqUwOzsWahfP/I3dnNTEwdMnKgecfVxZE18mYzeJzlhwgSKFCnCw4cPadOmDdbW1gCYm5vz7bffmryBQgjxOU9P6NYN3r6N/Lo9b1lET9qyjgdkJxirCHXypr3JVrsm5L9zU1+mdO+O2dy56jEh4fn5qXOO9euDnZ2aoeDjv33iyxavo7I+fPiATQpKsSRHZQmR8oXthYyKO3fZRHOKcYkDVKctaw2GV3Pnhnpp1/HTzd44BgYAoLO0wmzO7+rJHBqN4Q3DkgM8eqQOrUaXwFykCAl6VJZWq2XSpElkzZqVNGnScPfuXQDGjh2r3xoihBAJQauFgQOjvl6c83hRmmJc4jeGUIe9BgHSLauO7Q2GMvtC+08BMmtWzI4cVtP0hA+QYatXK1VSkwOMGQP58iXQJxPJldFBcvLkySxZsoRp06ZhFW5DbdGiRVmwYIFJGyeEEOEdPgyPH0d9/Sb5uEZBurCMofyGNtyMkpOlL7sy1SD/nN8w/3igpK5GDczOnVOTkIcXfvVqhgywf78kB0iljA6Sy5YtY/78+XTq1MlgNWuxYsW4fv26SRsnhBDhPXkSscyOQGp/zJrzHjuqcJgVGG76L5vei+vpi1H43H/6MmXUKMz27FETkH9uyhTD1auRJTEXqYLRC3cePXpEnjx5IpTrdDpCwo6CEUKIBHDrluHzsPnHAlynHCc5T0mUz373/8p1HrNfDcEm+AMAujRpMFu2DE2LFoY3C1ueodHA+PGQLRv06ye9x1TO6J5k4cKFOXz4cITydevWUbJkSZM0SgghPqfVwrx5n57XYY9+/nEu33CZIgb1zQhlSbZuzH/SVx8gtQUKYOblBZ8HyIAA9czHv/5Sn9vZwYABEiCF8T3J8ePH06VLFx49eoROp8PT05MbN26wbNkytsUm5YUQQsTBp/lIhVH8zGTGEIIlXVnKcroa1M1i5cP2dI0p8fCCvkzXti3mCxdCmjSGN754EVq3Vrupb9+qp3h8vsJVpFpG9ySbNGnCmjVr2LFjBxqNhnHjxnHt2jW2bt2qTywghBCmFjYf2Y8/mcpofHCjMkciBMhajnu5aFWcEs/UAKmYm8Nvv2H2zz8RA+TixWo2glu34LvvYOtWCZDCQJwOXa5Xrx716tUzdVuEECJKrq7qn4voSX5uMImxvMI5XA2F7zL/xIQXE7DUhgKgzZgR8w0boEoVw5uFhsLXX8OiRWru1Q0boGHDxPkgIkWJU5AUQohEtWEDlZ+9wsysD0E6G4Ywy+CyLYGscW1PkyefpnxCK1TAYv36yA89trBQF+qULQtr10KOHAn9CUQKFasgmS5dOjSxHILw9fWNV4OEEEIvNBS+/x5+/hklbXrS6NoRgKNBlXxWN9iRpiG5n9zVl+kGDsRi+vSIhyOfOKEOr2o08McfavJySS8nohGrIDlz5swEboYQQnzm5Uvo0EE9hqpAAaaX9SRgmWGAbO24lsVBPUnjqx6O/E5jy/lvFlBxdkfDewUHw6hRMHMmzJ2rbu34PD+rEJGIVZDs1q1bQrdDCCE+OXMGWrYEb29o0YItLZfwXZdPOTY16Pg14/8Y9OJ3zFD3N941d6eZdjO/ty5qeK+HD9Xcq8ePQ+HCcqyVMEqsgmRAQIA+CWxAQEC0dSVxuBAi3hYtAh8fmDoV7bCR9MvxabrHSePLtgxNqPTimL5sq3kjumhX4ODmZLhGZ/du6NQJXr2CLl3gzz/B3j4RP4hI6WI9J/nkyRMyZcqEk5NTpPOTiqKg0WjQarUmb6QQIhUICVEX1Gg0MGOGOtRauTKHD37K11rG+iSbrZrj+lI9SFmHhrGaSUzRjkbBjJZ1wu3/P38eGjRQ5yXnz4fevWV7hzBarILkv//+S/r06QE4cOBAgjZICJEKPXqkbuhv1w6GDAEbG6hcGQi3P9JxLr8F/g/rN+rhyK/NnWinXcNepa7+NgadxBIl1EU/LVqAZAMTcRSrIFmtWjX9z+7u7mTLli1Cb1JRFB4+fGja1gkhvnyHDqkp4Z4/hyJF1K0Z4f59yeIczIoMPej0apW+7JxFCZqHbsIbw60blTVHYcg6+O039R4//JBoH0N8mYzOuOPu7s6LFy8ilPv6+uLu7m6SRgkhUgFFUYNZrVrw+rU6Xzh/vkGA1Hp7U2RQKYMAuci8BxVCj38WIBWGa2bQdm41mDMHLlxACFMwOplA2Nzj596+fYuNjY1JGiWE+MKFhqoLaf75R93sv2EDlC9vUOXdzp3QvgMZAvwBCDKzor9uDgu1XxnUc8SPRfSkpbIRXLLAmjXqUKsQJhDrIDl06FAANBoNY8eOxc7OTn9Nq9Vy8uRJSsj/mEKI2LCwACcnqFpVzXjj4vLpmqLgO34iTpMnYfbxcORHFlloFrqZM5Q2uE1xzrOe1uThDtSuDStXQqZMifhBxJcu1kHy3LlzgNqTvHTpElbhMllYWVlRvHhxhg8fbvoWCiG+HKdPQ+nS6pDqrFnqn5aWn66/ecOrFq3IsH+vvuiAZXXahKz7LE+rqgTnycVdGDdOfcjRVsLENIoSdtJo7PTo0YNZs2alyP2QAQEBODo64u/vnyLbL0SKpdPBxInqQpoZM+DjyFR4oVeu8K5+Q9L6eOvLppiP4nvtZHR8Cn62vMMMHYGoJ3oUM7vM6fdFImSgEyIqxsQCoxfuLF68WAKMECL2Xr+GJk3UAJk7N0RypF7gipXoPErrA2SQrT1N2cR32qkGATIXdzhGRRbSCz5m2rmoK8LcuYnySUQqZPTCncDAQKZOncr+/ft5/vw5uo9zBmHu3r0bxSuFEKnOhQtqerm7d6FxY1i+XJ2LDBMait+AQTjN+1Nf9CFfPmZU2MbWpXkNbtWYrSynC074c5gqmKNF+/GfsDt3EuPDiNTI6CDZu3dvDh06RJcuXXB1dY316SBCiFTmwQOoUAE+fFCHWr//Xj114yPl2TMCGjXG6YyXvuxD69bsbrGE7zt9ygpghpYfGMcYfiIQOzqxglV0Mnir3LkT/uOI1MnoOUknJye2b99OpUqVEqpNCUbmJIVIZKNHq5lzGjUyKA49coTg5i2we/USAJ25OdpffsFs4BCy59Do09CBwiaa04wt3CQvrdjAZQwTmJubw7t3EU/FEiIqxsQCo3uS6dKl06eoE0IIA97eakKASZPUlatTphheVxQCf5uJzcgR2H3M8xyUwRmrTRuxrFyZ/fsJFyABNGygFVrM6cHiCGdJgroGSAKkSChGL9yZNGkS48aN4927dwnRnhjNnTsXd3d3bGxs8PDw4PDhw0nSDiHEZ/bsgVKlYPJk2LUr4vV37who3Rb7YUMx/xgg35Upi/XlS2gqV8bTM6zDqdCFZTignji0nK60YkOkAbJxY5g2LQE/kxCKkUqUKKE4ODgoadKkUYoUKaKULFnS4JGQ/vnnH8XS0lL5+++/latXryqDBw9W7O3tlQcPHsTq9f7+/gqg+Pv7J2g7hUhVtFpF+eEHRdFoFMXaWlEWLIhQRXfrlvImbz5FUZPRKQoo777pryjBwYqiKMqGDWqxLYHKMjorCijz+Cp89UgfBw4k8mcVXwRjYoHRc5ITJ06M9vr48ePjEbKjV65cOUqVKsWff35aCVewYEGaN2/OlM+HdSIhc5JCmJivr5pebscOyJlTTS9XqpRBlZDNm9F16ox14Fv1uY0NmgULsOikLr7RaiF7drB7fIsNtKIYlzhKRdqylsdkjfKt3dzg/n3JHyCMl6BzkgkZBKMTHBzMmTNn+Pbbbw3K69aty7FjxyJ9TVBQEEFBQfrnMR0YLYQw0oEDaoBs2FDd3hF+vYJOx7vR32E37Wd90bvsObDdvg1NkSL6ssOHofTjzSyjK44EMItBjOAXQoh+onHWLAmQIuEZPSeZVF6+fIlWq8UlfI5HwMXFhadPn0b6milTpuDo6Kh/ZMuWLTGaKsSXL1g905FWrWDnTti61TBA+vrytmYtgwD5tl597C5dNAiQAPtXP2cVHbEglA6sYgizYgyQQ4ao2y+FSGhGB0mtVsv06dMpW7YsmTNnJn369AaPhBbZOZZR7dUcPXo0/v7++oecdylEPL1/D716qec/hiUSqV/fcP/j2bO8L1KUNIcOAqDTaHg38QfS7NwBnw1teXrCj/Mz0YmVlOUU/9AhVs1o1swkn0aIGBkdJCdOnMivv/5K27Zt8ff3Z+jQobRs2RIzMzMmTJiQAE1UOTs7Y25uHqHX+Pz58wi9yzDW1takTZvW4CGEiKO7d6FSJVi0SN2n4e8foUrIwoVoy1fA9om6j+NDWkd0u3djN26swTmRHD+OUrMWo/urUyCbac5VCseqGW5uUKVK/D+OELFhdJBcuXIlf//9N8OHD8fCwoIOHTqwYMECxo0bx4kTJxKijYB60oiHhwd79+41KN+7dy8VK1ZMsPcVQgDbt4OHB5w7B/36qROJ6dJ9uh4UxPsePbHs3RuLEHUo9k3hIlhfuohF+FytiqIeilytGsqhQ+R/etDopshcpEhUxi6dtbOz02+5yJw5s3LmzBlFURTlzp07Stq0aY29nVHCtoAsXLhQuXr1qjJkyBDF3t5euX//fqxeL1tAhIiDn376uD/DVlGWLYt43dtbCSxW3GBvhn/nLory4YNhvbdvFaVjR0UBJcDORanKwRi3eIR/2NioW0WEiC9jYoHRq1vd3Nx48uQJ2bNnJ0+ePOzZs4dSpUpx+vRprK2tTR/Fw2nXrh2vXr3ihx9+4MmTJxQpUoQdO3aQI0eOBH1fIVK1XLkgTx51e0exYgaXdPv3E9qqNXb+fgCEWloSPPt30vb92vAet26pK20uX+Ze1kpUerSWJ2QxqhnbtkGtWvH5IEIYz+h9kt9++y1p06blu+++Y/369XTo0IGcOXPi7e3N//73P6ZOnZpQbY032ScpRCx5ealZw8OGVD98ABubT9cVhZApUzD/fixmirqAJ9AlM9bbtmJRunTE+12+DOXKoe3VB9vfpxGCZcQ60ZA9kcKUjIkFRgfJz504cYJjx46RJ08emjZtGp9bJTgJkkLEQFHgr79g8GA1R9zGjRHrBATwoWNHbLZv1xf5VayM09bNhttAQkPh6VM1wgHBd31oPcSNrVuNb9aGDbLlQ5hOgiYT+Fz58uUpX758fG8jhEhq795B375qUoBMmWDQoIh1rlwhqHETbO7f0xf5/W8YTtOnGWwD4cULaNcOHj4ELy9GTnZk+nQ3jP2V3NIS/vlHAqRIOkYHyWXLlkV7vWvXrnFujBAiidy6pSYGuHRJPQNy3TrIapgSTrd6NbqevbD+8B6AD3b26JYtw6nVZxHs9Gn1Xg8fQuvWjB1vxi+z4tasqVMlQIqkZfRwa7rwy76BkJAQ3r17h5WVFXZ2dvj6+pq0gaYkw61CRCIoSJ1/fPRIHWadNs3w7KmQEEKGDcPy99/1RX65cuOwcwfm+fIZ3mvhQvjmG3Wo9eefCR44DBtbjdE9SJBzIkXCSdDh1tevX0cou3XrFv369WPEiBHG3k4IkdSsrWH2bDXVXPv2hteePiWoRUusTxzXF71s3BTnNavBzs6w7qRJMG4cODsTsmINsy7VZE5+4hQgQc6JFMlDvBfuhPHy8qJz585cv37dFLdLENKTFOKjR49gxAj44w/DpADhHT1KSIsWWL54AYDW3Jw3k3/CaeQIw+w5Ya5ehQED+CnfEr6fnz3OwRHUpsk5kSKhGBMLTJbg3NzcnMeGR4oLIZKjvXuhRAlYvRoiW2OgKOhmz0ZXrZo+QL5Nl57gfftxGjXSMEAeOAAXL6o/FyrEyNL/MmZe/ALkL79IgBTJh9HDrVu2bDF4rigKT548Yc6cOVSqVMlkDRNCmJhWCz/+CBMnqstG//oL+vQxrBMYSEiv3liu+Udf9LJ4SdLv2oFZ5syf6ikK/PYbjBwJ+fLBpUsEa82ZPj1+TTQ3j3xRrRBJxegg2bx5c4PnGo2GjBkzUrNmTWbMmGGqdgkhTOnFC+jcGfbsAXd3WL8+wuHI3L5NcNOmWF27pi961qMXLvP/Aotw/1QEBqongaxZg5IlC179FuH5vTnr18d9/jGMzEOK5MboIKkLOx5HCJFyvH4Nx49D8+aweDE4ORle37qV0I6dsHr7BoAgaxvezZ2LS88ehvXCpZd7UagqVZ+s5fqgyE/hMYZGA8OHyzCrSH7inUxACJFMKYqa8cbVVR0SPX1a/TP8nKJWi27sWMymTNH/Y/A6ixs227eRrkTxiPfr2hUuX+ZW4yEU2jaNUCPTy0WmSRO1Yys9SJEcGR0khw4dGuu6v/76q7G3F0KYgp8f9OwJZ8+qj/TpIX9+wzqvXhHarh0W+/fri55UrYHL1k2YRbbiT6OBxYvRnTlHjVEdCDVBM83NJUCK5M3oIHnu3DnOnj1LaGgo+T/+pbt58ybm5uaUCjfHoYlsibgQIuGdOwetW6uHJNeurS7Y+dyZM4Q2b46Fjw8AWjMzng8fievUnwx6msHPXnO/zlf8pBnDAb+SQAE+fCjA8+emaarMQYrkzugg2aRJExwcHFi6dKk++87r16/p0aMHVapUYdiwYSZvpBAiFhQF/v5bXR4aHAzjx8PYsRGPzli4EN0332ARrB6OHOiQlqDly3FtZnhAwa89LtF0SQvycYcKZGAp80zWVJmDFCmGsYdVZsmSRbl8+XKE8kuXLimurq7G3i5RyaHL4os2YYJ6OrGzs6Ls3h3x+vv3irZXL4OTjJ/mLaC8v3MnQtWVjVcpb7FTFFAmME7RoDXqgOSoHjlzKsovvyhKUFAifB9CRCFBD10OCAjg2bNnFC5c2KD8+fPnvHnzxkShWwhhtI4d4cQJtTf58XgqvQcPCG3RAotz5/RF3i1a47Z6BWbhD0sPCUE7fBQdt/2GP2lpwha20cQkzTM3hxs3ZHhVpCxGZ9xp0aIFPXr0YP369fj4+ODj48P69evp1asXLSVdvxCJa/VqOHVK/TlvXti5M2KA3LsXbcmS+gAZbGnJo2kzyO65zjBAAgQF8XrNbi5TmNJ4mSxAgsw/ihTK2G5qYGCg0q9fP8Xa2loxMzNTzMzMFCsrK6Vfv37K27dv49T1TSwy3Cq+GB8+KEq/fuoYZrFiiqLTRayj1Sq6H39UdBqNfrzT1zmT8urQfxHrvn6tKIqijBihKNm5r9jzxiTDq6AoGo16XyGSC2NiQZwTnAcGBnLnzh0URSFPnjzY29ubNnonAElwLr4I9+5BmzZw5oyag3XdOsiTx7COnx+6rl0x27pVX/TQoyyZtm/B2uWzzf/z58OIEcxq9i9DlnuYrJmFC0P37uo6IulBiuQkQY/KCmNvb0+xYsXi+nIhRFxs2QLduqn7IL/6CmbNAltbwzqXLqFt3hzzu3cB0Gk03O/1Ne5/zUETfqVrUBAMHAh//42SMSOeK96ZrJlubnDhQsSFtUKkNCY7BUQIkcC0WpgwQQ1uy5apPcDPA+Tq1ejKldMHyHe2djxauIRcf/+pD5DBwfDn2MdcylgD/v6bK7alKaU7w39KFZM1ddYsCZDiyyBp6YRI7t6/V4OhuTmsWaNGuc9WlxMcjDJ8OJrff9f/5vssW06st24mW/FPIz4jR8KOX66wl9q48pQldKPf+z/58P6zYBtHDg6wZIma3lWIL4EESSGSs82b1eOstm6FsmXVFayfe/wYXZs2mB07pi+6XbMu2TeuwyrcfMvIkepZjXbk5DFZ+InvmMMAwPjsWI6O6kOjgTRpoHhxdf6xZk3pQYoviwRJIZKj4GAYNQpmzgQ7O/D2VoPk5w4fVgPks2cAhJqbc3fEd+SdPAGN2afZlOC3wRz75TRQiXfYU46TaOP419/cHJ4/l8U4InWI1d+Szw9ajk7Tpk1jriSEiNr9+9C2rXpqR+HCsHYtFCpkWEdRYNYslOHDMfuYm9XPKR1vFi8lX3PDvY3B3k+5XbI1+zlNBY5zjlJxDpAg+x1F6hKrvymRHbQcfudI+GTm2siSKQshYufsWahV69MpHr//rvYkw3v7FqV3bzRr1ugHSr0LFCHtti1ky+1uUPX3zidpubIlhXjMcjpzjYLxat6IEZJvVaQusVrdqtPp9I89e/ZQokQJdu7ciZ+fH/7+/uzYsYNSpUqxa9euhG6vEF+2ggXVXuPSpbBwYcQAefMmunLl0KxZoy+62qo9rue9cPosQK5tsIg+K6viwjOG8BtdWcYH4r5A55dfJECKVMjYTAWFCxdWDh8+HKH8v//+UwoUKGDs7RKVZNwRydLdu4ryzz+fnkeWPUdRFMXTU9GmcdCnsnlvba1cnfarooukfsjCpYoCygsyKDXYH++sOebmkpRcfDkSNMH5nTt3cHR0jFDu6OjI/fv34x+1hUhNNm6EHj3g3Tt1YY67u8F5jgCEhqpHXk2d+ml7h0sWgtf8Q8FqVdBqYf9+tfN57566Y8TvcWsmso9x/MADcsa7mTIPKVIro5MJlClThiFDhvDkyRN92dOnTxk2bBhlI1t9J4SIKCgIBg9WNxSGhsKiRWqA/NyLFyj168PUqfqiG2UqYHPuLNmqVcHTE5ycoF49uLnqNO7HV3L+PNx/bkc3lsU7QGo0Mg8pUjeje5KLFi2iRYsW5MiRg+zZswPg7e1Nvnz52LRpk6nbJ8SX5+5ddfXqmTNQpIiae7VAgYj1Tp1C17IlZo8eAaA1M+NSr34UmTsTCwsLPD2hVSu1ajeW8Bd90WHGPmrzHJeI94tB2N5HMzPIkgVatJC8q0IYHSTz5MnDxYsX2bt3L9evX0dRFAoVKkTt2rUNVrkKIaIwe7YaIHv3VvO3fb44R1HUfKoDB2IWHAxAQJq0+Mz8nRK9ugJqhrqBA8GCEH5lKAOZwyvS0441cQqQsvdRiMjF+RQQgA8fPmBtbZ1igqOcAiKSTHAwWFqq45fv38OePdCsmUEVrRb+2/0eh2/7U/rSYn357ax5GJFjPU91xfnwQb1VYCC8e/CcdbShGv9xnuK0YCP3iWTINhZkSFWkJsbEAqPnJHU6HZMmTSJr1qykSZOGe/fuATB27FgWLlwYtxYL8SW7fRsqVlR7kKDmYf0sQHp6Qhnnezg2qmQQILcXbEip115sOlacEyfg/Hm4ehUePIBR/Ew1/mM17anE0TgFSJlzFCJ6RgfJH3/8kSVLljBt2jSswo3NFC1alAULFpi0cUKkeKtWQcmS6vDqrVuRVvH0hPmtdrHPz4NSnAMgyNKKH4qNpemNLbx5F3E1OcD3/Eh3FtORVbzD+PNcmzSBDx8kQAoRHaOD5LJly5g/fz6dOnXCPFwm42LFinH9+nWTNk6IFCswUM2Y06mT2l1bvRrmzIlQTRui4073SeygIel5DcDzdBlpk3Md4y/+gE736e+YOaH8xhD6MReAD9iylO7EJUG5uTmsXy9zkELExOiFO48ePSLP56egow7DhoSEmKRRQqRoAQFQrhxcvw5lysA//0CuXAZVtFo4svU1aft3YcSb7frys7lK0ubtOu7eym1QPz2vWEtbavEvXngwnz6Sf1WIRGB0T7Jw4cIcPnw4Qvm6desoWbKkSRolRIqWNi1UrapO9h05EiFAenpCzQwXcGtRmpKP1QCp02hYUaITlR8f5u5zwwBZmMucpgy1+Jd1tKYah+IcIGUOUgjjGP03bfz48XTp0oVHjx6h0+nw9PTkxo0bLFu2jG3btiVEG4VI/nx91Vyrw4erkeivvyJmzkENkBtbLWcnX2PHewDe2trzfYFJzD4/GEUx/L21GZtYThcceMv3TGIyYzBmeDV3brCxURMONG8u+x6FMJbRQbJJkyasWbOGn376CY1Gw7hx4yhVqhRbt26lTp06CdFGIZK3I0egY0d4+FDNmtO6daQBUvs+mICu/2P5xzlFgAeu2emWZgmHztWI9NaNUX/xbM5GNtPcqGa5ucGNG3IIshDxYVSQDA0NZfLkyfTs2ZNDhw4lVJuESBm0WpgyBcaPV4PiTz+paeYiq+r9iGdVWtM98IS+7GDhanR6voLHt9wM6lrzgSCsAQ39+YPpDOcGkWTkicGsWRIghYgvo+YkLSws+OWXX+TMSCEeP4Y6ddTE49myweHDMHq0mtPtM//9cJBXOUuRxVsNkCHmFswp15/6d3bx+IVhgMzBfU5SjkGoeyqDsTY6QGbIABs2RBmvhRBGMHq4tXbt2hw8eJDu3bsnQHOESCGOHIEDB9Sh1b//Vif9PqcoXOo+g4rLvsUC9RdLX8d0DM07g6WnuoNiOCRbjYOspzXOvCIHDwyu5ckDzs7oM+6AOrcYHKx2YjNnVg8RqVULqleXHqQQpmJ0kGzQoAGjR4/m8uXLeHh4YG9vuIm5adOmJmucEMlKUBAEBaG1T8vBDG250yETa59V430jDba2kDGjmnb15UvQvH3D93d7Uu3Fev3Lr7oXpIv5Ms56lY5w6778yWwGoaChFwtYRC/9NTc3dTeJBD4hEp/RuVvNIhlO0t9Mo0nWQ7GSu1XE2e3b0L49jyyyU/zWBl75Rr3CtADX8KQlBfmUXGNz6ab0ureAV68yGtQ1Q8sf9Kcv83iKCy3x5DgVDerI0KkQppXguVujeiRkgJw8eTIVK1bEzs4Op8iGtoRIKCtX6lPLbT/pTIBv1EkzWrGeU5TVB8j31jb8UHksbS+tjRAgAXSYoUHBCw/KcNogQMrcohBJz+ggGd6HDx9M1Y4YBQcH06ZNG/r165do7ylSOX9/6NwZOndGMTOjb7o1fM18Qoi40dCcUKYxgvW0wYG3ADzO5EqnoisYf3QiwUHWBvVzcg9QAA0D+Z2q/IcP2QDo0AH27YNnzyRACpHUjA6SWq3W4BSQu3fvAgl/CsjEiRP53//+R9GiRRPsPYQIow3R8cajGqxcyU3nCnQufJ55r9tGWjcTz9hLHUYwXV92slBZaqfZx0avVhEW6LRhLVcozDBmABCCFe9Rz5R0c4Ply9UFODIHKUTSMzpITp48OcWcAhIUFERAQIDBQ4iYeHqCi6sZfe+MYALjKfTyP1Ydj/wYqnKc4Awe1OAgAFozM5ZW7kq9J7u4dreQQV0NOibxPWtpRwiWXKNghPvJ3kYhkhnFSLlz51b27dunKIqipEmTRrlz546iKIpy7do1xcnJydjbGW3x4sWKo6NjrOqOHz9eQR3TMnj4+/snbCNFynTvnuJdqZ3ihK+irlON7qFT+vGHEoSlvtAvTVplWPVfFEuroAj1HfBXNtNEUUC5QV4lP9cMrmfIoCgbNiT1FyBE6uDv7x/rWGB0T9KUp4BMmDABjUYT7cPLy8vYJuqNHj0af39//ePhw4dxvpf4wq1ejVK8ONmOrqETK6Otass7ltKNufTHCvX/+dvZc9O2wFpmHBxGSLDhnGUa3nCcCjRlK7uoRzlOcoMC2Nio+Qdk/lGI5MvofZJhp4DkyJHDoDwup4AMGDCA9u3bR1snZ86cxjZRz9raGmtr65grilRDq4WDB+Hff8HbG3JlfEOb/wZQ5Mwy3pk78DXLWUmnKF+fiztsoBUluKAv21u6Nl+/+ot7Xrkjfc1bHPiXmuykAaP4GR3qeOrKlRIYhUjukvQUEGdnZ5ydnY1tghBx4ukJffrAq1fq8xKcYwKtyc1djlOeTtqV3CNXlK9vyHZW0Jl0+AEQZGnFvGpfM9brRwL8Iu61qs1e9lEb0HxMM6cu4HFwgCVLJEAKkRKkmFNAvL298fX1xdvbG61Wy/nz5wHIkycPadKkSbD3FV8GT09o1cqw7C1pcOYlExnHJMZGeUajGVrG8QPj+UFf9ixDJsaWmMTiQz0IDbEEoEYNyJQJfJ+H8vW1IbR6+gfLis9gmfNQPnzQkDMndOsGNWvK4hwhUgqjM+4kle7du7N06dII5QcOHKB69eqxuodk3EmdtFrIkQMePYJseJMeXy5QAoD0vMKXDFG+Nh2+rKQTDdilL7tQoBj97f/g6JlKhPUO3dzg/n0wD3gNbduqE40lSsCWLWoCdCFEsmFMLEgxQdIUJEh+2cLmGw8eBJ1OzTnu6wteXmrMassa5vE1r0lHYa7o9yZGpSRn2UAr3LkPgE6jwbNKC4bcn8kjb8PAt2EDtCx8A5o0gVu31LHUZcvgs9zGQoikZ0wsiNVwa7p06dBEcohsZHx9fWNVTwhT+ny+MTxH/FjGQLqwgjekYTwTeY9ttPfrxhL+pB+2qFml3tilYVb1wfx8ZBRvAxz09TJkgPnzoWWFJ1CoPPj5wfffw8SJkR6bJYRIWWIVJGfOnKn/+dWrV/z444/Uq1ePChUqAHD8+HF2797N2LFjE6SRQkQnsvnGMNU4yDK6kp2HHKc8XVjOHSJuYQpjRRCzGExf5unLHmTNzuhCU1i7py3Vq1mQObM6fFuzZvhjqVyhXz8oUgQ6djTp5xNCJB2jh1tbtWpFjRo1GDBggEH5nDlz2LdvH5s2bTJl+0xKhlu/POHnGz+nQccpylKcC0xgAj8zKsrFOQBuPGQDrSjLaX3ZYY/KDNHN5Oy5Uri5adR5x7BFNyEhsHQp9OwpvUYhUpAEPQVk9+7d1K9fP0J5vXr12Ldvn7G3EyJeDh6MGCDTo465KpjRheWU5wQ/MSbaAFmT/ZyllD5ABltYsqh+D9o9W8vZcx6AxjBlnK8v1K8PX30F8+ZFeV8hRMpmdJDMkCEDGzdujFC+adMmMmSIepWgEKbm6QnNm396boaWEUzDm+x4oGZquk5BzuIRzV0URvIze6hLRl4C8MopA2MbTWLgkd954uMa8ciq69ehXDk1I0Hr1tC1a4J8PiFE0jN6n+TEiRPp1asXBw8e1M9Jnjhxgl27diW7BOfiy/X5PGQO7rOMrlTlMI/Igh3vYryHAwEsoTst+fRL39U8Bfm71hRevG3MkEHmn807Anv2qFs8/P1h7FiYMEGGWoX4gsVpC8jJkyeZPXs2165dQ1EUChUqxKBBgyhXrlxCtNFkZE7yy2A4D6nQjaXMZhBpecM/tOMb5vKa9NHeoxBX8KQl+bkJgA4N+2rUx/GXnynnEcVxbDdvQqFCYGmppsxp186kn0sIkThMvgUkTEhICH369GHs2LGsXBl9EmghTE2rhcOHYe/eT/OQ3VnCYnrihyMdWMU/dIjxPm1Zw0J6kYZAAN7Z2LKx81dUmTCa7FkzR/3CfPlg8mR1WWuZMqb4SEKIZM7onqSTkxNnz54lV66oc1wmV9KTTLk8PWHwYPDxCStRAA3WfGAWg/mR7/Eh+sw2FoTwM6MYym/6skcuWdg/9Dta9O+Bg30kyQVevYI//lD3PsqwqhBfhATrSQK0aNGCTZs2MXTo0Dg3UAhjeHqq62MUBdLizwyGcZ0CzGA4QdgY7Gn8XIcO6nxiAaendN3elmz3DuuvnS5ehicTJtGpSW3MI0umeuMGNGoEd+5A3rzqzYQQqYrRQTJPnjxMmjSJY8eO4eHhgf1nabcGDRpkssYJodWqPUhFgVrsYxE9yc5DjlCJXxmKEs0CbTc3WL4czE8chTZt4MkTAELNzNnSuDU5fhhP0+IFI3/xgQPqclY/Pxg/HmI40k0I8WUyerjV3d096ptpNNy9ezfejUooMtyaPITNLT56BC9eqKndXr2K/M+TJ2HpH2+Yxkj68RfBWPID4/iZUYRiGe37bFiv0PLR7zBsGISGAuDn4MiGXgOoP2owWTNnjPyFCxdC377q8OrixZJBR4gvTIIOt967dy/ODRMi4txi9BwI4AIlyMU9zlOcbizlIsWjfU2aNLBiXiDNPPvAqlX68ls583J0+Gja92iPvV0UuVvPn4fevcHZGTZtgkqVYtdQIcQXyeggGebly5doNBpJICBiLfzcYmy9IS07acBLnJnMGEKwivE1u+fcouKUlnD5sr5sf6WavB87lq51qmIW3QKcEiVg7lyoVw9S4OI0IYRpGbVcz8/Pj/79++Ps7IyLiwuZMmXC2dmZAQMG4Ofnl0BNFF+C8HOLManEEebRB3UFKwxgDhOYGKsA2SPDFioMKq0PkB+srFneoTcZ5v1F43rVIw+QT57At9+qjQQ1UbkESCEERvQkfX19qVChAo8ePaJTp04ULFgQRVG4du0aS5YsYf/+/Rw7dox06dIlZHtFMhI2t/jkCWTKpJY9fx75z//+G/MQqw3vmcwYhjATBQ0L6M1pyhJ2sHF0zNAykfF8/2qyvuypswubvh5Ms0Ff4ZrJOfIXXrgAjRurjfPwUBf4CCFEGCWWBg8erBQpUkR5+vRphGtPnjxRihYtqgwZMiS2t0sS/v7+CqD4+/sndVNSvA0bFMXNTVHUvmH8HxU4qlwnn6KAcpUCShlOxvq1GXih/GtZx6DwXKESyqIFq5V37z9E/SG2blUUe3tF0WgUZcYMRdHpEu8LFEIkGWNiQayDZI4cOZRdu3ZFeX3nzp1Kjhw5Ynu7JCFB0jQ2bFDjiqkC5FgmKlo0ihaNMo3hig3vYv3acQ1PK+8yZdcXhGrMlI11myk79h9VtFEFPZ1OUWbOVBQzM0Wxs1OUTZsS9wsUQiQpY2JBrIdbnzx5QuHChaO8XqRIEZ4+fRrvnq1I3oyZW4ytyxThGgXpxUJOUj5Wr9FoYLjTAibs648mOBiAN/ZpWNWhNxWHDaBogdxRv/jcORgyBLJkga1boVQpE3wKIcSXKNYLd5ydnbl//36U1+/duycrXb9wWi38/nvst29ExYnX/M4AMvEMgI20pATnYx0grfnA30pvpr3+Sh8g77nlZMnoSTSfMjb6AAlqUFy0CE6dkgAphIhWrINk/fr1GTNmDMEf/1EKLygoiLFjx0Z6GLP4Mnh6Qs6c8L//xe8+LfDkKoUYwB8MZpa+PKbEAGGy84BTlpXpxUJ92eGyVTg09Ve+Gt4PF+coTv+4fx8GDdInFaBHD8iaNa4fQwiRSsQ6446Pjw+lS5fG2tqa/v37U6BAAQCuXr3K3LlzCQoKwsvLi2zZok8ynZQk407cxGV/4+dceMocBtCaDbzHhu/5kVkMRosF334LLi7RZ9559QqKPt1D1T87YBngC0CwhSXrmrQj05CB1KpSBjNNFKtgT56Epk3V5bYGpycLIVIjo2KBMZOdd+/eVerXr6+YmZkpGo1G0Wg0ipmZmVKvXj3l1q1bcZxCTTyycMd4oaHxX8Vak33KK9IpCigHqKbk5pYC6uKfbNnU94iWVqsoP/5osFroeTpnZdbgMcrVm/eif62np6LY2iqKubmi/PWXqb4WIUQKliALd0DN27pz505ev37NrVu3ADXhefr00R9wKxJf+D2Mrq5QpYp6GkZU1yDyMlPMQd4gP29Jw7dMZQG9DZKSz5z5qV2R8vODbt1gyxZ90ZV8hdnXZyAde7QjY3qnqF87cyYMHQr29rB9u5pFRwghjGB0gvOULLUMt0aWH9XNDWZ9nAL8/FrYeqtXr6Iviy1rPvAtU/GiNNtpDIAlwQYZc7JlU2NYtCOfly6pFW7fBkCHhl01GvCibz/aN6+LtVU0GXguXICSJdUVrNu3Q/Ho870KIVIPY2KBBMkvTFTzhxqNabdtfG7GDDUOaQ78S/klfbF7dIvn+Stz6Q/1/ManT9UTPzJmVNfLhO/ZRmrVKjXR+Pv3AATa2rGidVfy9e1N9Qql0EQ1/xje8uVQo4b6G4IQQnwkQTIKX3qQ1GrVFajxHR41hkajxqB7p15gPnLYxwMczdVlsOPHq0dyGCM4GIYPV8d5P3ro6saarn1p0qcL+XNlj/q1z5/DtGkwZQpYxm61rBAi9UnQo7JE8nX4cOIHSIAFI25gXrgi+PpC2bIwb556moaxHj9Wc6ceO6YvOlGyHMd79qVn55akd4rmf+YbN6BhQ7h7F4oUge7djX9/IYT4jATJL8iTJ4n7fm5ZFWbO0lC3eV7YWU5NFP711zGMo0bhv/+gbVt4piYYCDU3Z0PD1oT26EH/xrWwsozmf9XDh6F5czVIT5qkLvQRQggTkCD5BXF1TZz3SYs/B6uOp3hxBbOWswAzdXFMbOYJP6co6gqeESP0R1W9TuvE0vY9KdWzC1XKFo9+/nHNGujaVb3P8uXQuXOcPpMQQkRGguQXpEoVdX7w0aOEWaSjQUdXlvOL2Ugy/vccXhaCDx/AxiZuAfLtW+jVC9au1RfdyJUPz65f06ZbW/LkjGHBzd270KmTOu+5caO6SEcIIUxIgmQKFdU+yFmz1NWtn69mDf88LitdS3COOQygEscItbKHiT+rScKj24YRnRs31O0dV6/qi/ZWrs2VLj3o174JTmkdYr5HrlywcCGULg3RJN8XQoi4inXuVpF8hOVRrVEDOnZU/8yZUy1v2RLWr4+YltTNTc3ItmFDxGsZMnzaFxlZWTp8OUolKnGMh5U7YHH7BowcGfcAuXEjlCmjD5DvrW1Y2K4nr0aMon/PttEHyLdvYexYCApSn3frJgFSCJFgZAtIChPdPkhQA2TLlibIuFM+BHx8OOzjzpMn4HH6L3I3KoB5repxb3xoKHz/Pfz8s77oScbMLO3Qm6pd2lLBo0j0849Pn6orWM+dg19/jX+2dSFEqiT7JKOQ0oNkTPsg9XsW78VtgSmgRt+tW9WFNObmcPEiWJhgVP7FC2jfHv79V190tkhJdnToRecuLcmZLYZVRzdvQv366ofr1w9mzzZNu4QQqY4xsUCGW1OQmPZBKgo8fKjWi5Pz56FWLWjWTF0UU6fOp2HN+Ag7t/FjgNSameFZvwWHh4xi4MDuMQfIkyehUiU1QP74I/zxhwRIIUSikH9pUpDY7oM0er/kmzfqIpzFi9VI26yZmrkmXz5jm2hIUWD+fPUcx4/nkAakScuSNt3J0qo5/etXxSKmLq+vL9StC4GB6kHJPXrEr01CCGEECZIpSGz3QRq9X9LOTu3tFS+uzvWZYivF+/fwzTewZIm+6G72XKxo35N67ZtTrmQsF9ukT6/uo3RxUecjhRAiEcmcZAoSNicZ1T7IWM9JarWwYoWa3WbkSLXs0SPInDkek5nh3LsHrVqpC2w+OlS+Gv+16kC3js3JnsUl+tcrCixbBu3aqXswhRDChGROMoXSauHgQVi9Wv3zYwIavbB9kBBx737Y82jPZ1QUdftFsWJqbtOpU9UtFaDuCzFFgNy5Ezw89AEyyNKKZa26crnvQIb06xJzgNRqoX9/tX3ffhv/9gghRHwk0MHPyZIxp1Entg0bFMXNTVHUSKY+3NzU8tjUzZYt8rp6e/cqSpkyamVzc0X5+mtF8fEx3QfQahVl4kRF0Wj0jXqWPqMytd8oZeOuQ0qoVhvzPd69U5QWLdTXlyqlKE+fmq59QgjxkTGxQIZbk4HY7n0ML7p9kBE8fAju7qDTQYcOMHEi5Mljug/w+rWaM3XHDn3RpfxFWNemG83aNsajaIGY7+HrC02bwtGj6qraDRvAIRZZd4QQwkiyTzIKyTFIJtjexxMn1BeXK6c+/+svqFhRHWo1pfPn1fnHu3cB0Gk07KjZiHONmtOzQ1OyZs4Y8z1CQ9XUchcuqMF24cK4Z/MRQogYyHmSKYgxex+rV4/lDSdNgr171QB5/LgaLPv2NVWTP1m2TD0a68MHAN7a2rO8dVeoU4ehrepjb2cbu/tYWMDQoXDlinpgsplMlQshkgcJkknMJHsfFUVd6fPDD+qfAPXqqTlO43I6R0yCg9WUcHPn6ou8s2RjcduelGpUm0Y1K2IWm0B39iwULAi2tupxV0IIkcykiF/Z79+/T69evXB3d8fW1pbcuXMzfvx4gj9uUE/JTLL3cdMmqFlTDZCNG6sZanbtUrPUmJqPD1SrZhAgj3lUYF6fYTTr3YkmtSvHLkDu2AGVK0OXLqZvoxBCmEiK6Elev34dnU7HvHnzyJMnD5cvX+arr74iMDCQ6dOnJ3Xz4iWmMyDD5iTDkpADak9u7Vo1l6mzMzRqBL17qzlNS5VKuMYeOKDmX33+HIAQCwvWN2zN3dr1GNCuMa6ZnGN3n5Ur1S0eVlZqu4UQIrlK4JW2CWbatGmKu7u7Ua8x5RaQ0FBFOXBAUVatUv8MDY37vTZsUHdOhNs9ocCnMv3WjhcvFOXHHxXF1VWtMHlyvD9HrOh0ijJtmqKYmekb98oxnTK9zzBl3spNyrv3H2J/r9mz1XukS6cox44lXJuFECIKxsSCFNGTjIy/vz/p06ePtk5QUBBB4RJ0BwQEmOS9PT1h8GDDBTdubupG/8+3asRG2BmQkd1z5kxoWeAq9JkJy5eri2ScnNRTOjp3jucniYU3b9R8qRs26Iuu5S7AilZdqFy/BvWql8cstvOekybBuHGQJQvs2SPnQAohkr9ECNomd/v2bSVt2rTK33//HW298ePHK0CER3x6kmG9vvA9vkh7fXEQZe+0bVv1TfLmVZQ5cxTlzZu4v4kxrl5VlAIFDD7orqp1lW9/nKNcvHbb+PutWqUo+fMryr17Jm+qEELEVopJJjBhwgQmTpwYbZ3Tp09TunRp/fPHjx9TrVo1qlWrxoIFC6J9bWQ9yWzZssV5n2SinOf47p3aY/Tygr//VssuXgRvbzXBd2Jtj1i3Dnr21Kete29jy4oWnXlZqTI92zXGxTn6XrxecLC6D9LOTn0eFATW1gnUaCGEiFmKSSbw8uVLXr58GW2dnDlzYvMxyfXjx4+pUaMG5cqVY8mSJbFbRRlOfJMJHDwYuwMyDhyI5Z7G8G7dgnnz1OOqfH3VQHL7thp1E1NoqJozdcYMfdEjlywsadsD10rl6di8DjaxDXKBgWqiATMz2LwZLC0TqNFCCBF7KSaZgLOzM87OsVsR+ejRI2rUqIGHhweLFy82OkCaQoKc5+jtra7w3LtXfe7iAhMmqJv/XWJIBm5qz56pJ28cOqQv8ipWmnWN21K7fjVqVS4T+/lHX191O8rx42q6Oa1WgqQQIsVJEQt3Hj9+TPXq1cmePTvTp0/nxYsX+muZM2dOtHaY7DzHhw/VvKROTpApk7qpvmZNNTA2b540weT4cTWB7OPHAGjNzNhYvwVnq9Sie6sGFMybM/b3evpUPSj50iV1q8fff6tZdYQQIoVJEf9y7dmzh9u3b3P79m3cPht+TMzR4jjtaQyj06krOv/6C7ZuVY+pGjFCPS/x1i1Ily7B2x8pRVETA/zvfxASAoC/gyNL2nQnqHRphrZrjHN6p9jfz9sbatVSh4qHDoXp0xMm648QQiSCFJFxp3v37iiKEukjMcXpPMcXL+Dnn9VTNxo0UOfmypSBvHk/1UmqAPnunZoObsAAfYC8nSM3M/oMI12Degzu1c64AAnqgqM7d9QhYwmQQogUTk4BiYPI9klmy/ZxT+Pn+yTbtVOz49jbQ6dO6pBqyZJxfm+TuXNHbezFi/qiAxVqsL1OExrVq0r1CqXQxDXAXb4MRYqYqKFCCGFaKWZ1a2Iz5VFZkZ7n+NYfVqxQ5+L++kuteOIEnDmjbvx3dDTBpzCBbdvU9vj7AxBkZc3qZh24Xbo8XVo3IH+u7Mbdz8sLfvsNFi2S7R1CiGRPgmQUEuw8ybNn1aC4apW67cHaGh48SPzVqTHRatUDlydN0hc9d87EorY9sShWlJ7tGpPeycjv5cgRdf9mYCDs2xe7PTJCCJGEUswWkBTv9m11CPXUKfV57tzq+Yo9eqiJx5MTX1+1rbt26YsuFCzO6mYdKFq2BG0a18LK0sj/HfbuhWbN1L2V69ZJgBRCfHEkSMZHlixw9666baNfP6hdO3keGHz2rLqp//59AHQaDdtqN+FQpZo0q1+NKmWLGz//uGmTOt9qZgZbtqgnkgghxBdGgmR82NmpgcfePqlbErXFi9UA/jE931t7B5a27srTIsXo17oheXLGIaOPj48aIK2s1PnNatVM3GghhEgeJEjGV3INkEFBMGgQzJ+vL3rgloPFbXrgWCg/w9o2wimtQ9zu7eYGCxZA/vxQtqyJGiyEEMmPBMkvkbe3mj3n9Gl90ZEyldlUrzllyhSnVcPqWMQlA87WrWomHWtr6NLFhA0WQojkKRlOoIl42b8fPDz0ATLE0pKVzTuyqUlbWjavS7umteMWIGfPVnOwDhhg4gYLIUTyJT3JL4WiqJl9xoxRU+ABvukysLBtD97mzc+Ato3ImS2WyWc/9+uvMGyYulBpxAgTNloIIZI3CZJfAn9/NZH4pk36oqt5C7GiZWcy58tNnzaNcHSI49zptGkwapSaUujff9X0ekIIkUpIkEzprlxR08vdvAmAotGwu1o99lStS6VyJWhWryoWcT0BesoU+O47yJFDPSTT3d2EDRdCiORPgmRK9s8/0KuXmqgceG9rx/IWnblVsCjtG9ekbIlC8bu/q6uaIGH/fjVQCiFEKiNp6VKikBAYOVLNqP7RY1c3FrXpjjZnTnq0a0z2LHFMiacoavq6sMU9Hz6ox3kJIcQXwphYIKtbU5qnT9XzGsMFyFPFyzCz5yDSlSrB0D4d4hcgx4xRt498PDpLAqRIrh4+fEj16tUpVKgQxYoVY926dUndJPEFkuHWlOTIEWjbVj16BNCaW7ChQQuOe1SkWoVSNKlTGfO4psVTFHX+cepUKFAAXr+GTJlM2HghTMvCwoKZM2dSokQJnj9/TqlSpWjYsCH2yTXBh0iRJEimBIoCv/+ubsMIDQUgwCkdC1t340nOPHRuWguPogXi9x4TJqgBsmBBdRWrBEiRzLm6uuLqqm5rypQpE+nTp8fX11eCpDApGW5N7gID1bMfBw/WB8jbufLxS++hvC1SjMG92sY/QE6eDD/8AHnzqot0Mmc2QcOFiJ+qVaui0WjQaDRYWVlRsGBBVq1aFWldLy8vdDod2bJlM3k75s6di7u7OzY2Nnh4eHD48OFo679584YhQ4aQI0cObG1tqVixIqfDZb8CmDBhgv6zhT0yR/P3bsqUKWg0GoYMGWKKjySMIEEyObt1C8qXV8+p/Gh/pVr82elrshQrzNCv2pM1c8b4vcfFizB2LOTKpfYgXeOYcEAIE1IUhfPnzzN9+nSePHnCjRs3qF+/Pl27duXevXsGdV+9ekXXrl2ZHy5PsamsWbOGIUOGMGbMGM6dO0eVKlVo0KAB3t7eUb6md+/e7N27l+XLl3Pp0iXq1q1L7dq1efTokUG9woUL8+TJE/3j0qVLkd7v9OnTzJ8/n2LFipn0s4lYUlIRf39/BVD8/f2Tuikx27RJUdKmVRR1sFUJsrFVFrbtoQyZMFPZuveIotVqTfdeq1Ypyv37prufEPF048YNBVAuX76sL7t06ZICKDt37tSXffjwQalSpYqybNmyBGlH2bJllb59+xqUFShQQPn2228jrf/u3TvF3Nxc2bZtm0F58eLFlTFjxuifjx8/XilevHiM7//mzRslb968yt69e5Vq1aopgwcPNvoziIiMiQXSk0xutFp1hWnz5hAQAMALF1dm9BrCjeKl6damIY1rV8IsvudW7t79aQVrhw6yD1IkK2fOnCFdunQUKqTu9fXx8WHMmDFYW1tTtGhRQO1tdu/enZo1a9IlmoT7P/30E2nSpIn2EdkQanBwMGfOnKFu3boG5XXr1uXYsWORvldoaCharRabz1aF29racuTIEYOyW7dukSVLFtzd3Wnfvj13796NcL/+/fvTqFEjateuHeXnEwlLFu4kJy9fQseOsHevvuhCkZKsatIeR1cXhrRrjGumDPF/n4ULoXdv+Oorg6O0hEguzp49i7+/Pw4ODuh0Ot6/f4+trS1//fUXWbNmBeDo0aOsWbOGYsWKseljSsbly5frg2iYvn370rZt22jfL+ye4b18+RKtVouLi+GWKhcXF54+fRrpfRwcHKhQoQKTJk2iYMGCuLi4sHr1ak6ePEnevHn19cqVK8eyZcvIly8fz54948cff6RixYpcuXKFDBnUv+P//PMPZ8+ejTCfKRKXBMnk4vRpdX/ix7kOnZkZW+o05VD5ahTK507nlvWxtbGO//ssX64Gx4wZQRYBiGTqzJkz9O/fn0GDBuHn58fw4cOpUKEC3bt319epXLkyuo/J/KOTPn160qdPH+e2aDQag+eKokQoC2/58uX07NmTrFmzYm5uTqlSpejYsSNnz57V12nQoIH+56JFi1KhQgVy587N0qVLGTp0KA8fPmTw4MHs2bMnQq9UJC4Zbk0OFiyAypX1AfJdWkfmdv2GQxWqU7daOXp1aGqaALlmjZoIPV062LcPCsUzbZ0QCeTcuXNUrFiRPHnyULp0aebOncu0adMiLNqJjbgOtzo7O2Nubh6h1/j8+fMIvcvwcufOzaFDh3j79i0PHz7k1KlThISE4B5N7mN7e3uKFi3KrVu3APWXhOfPn+Ph4YGFhQUWFhYcOnSI2bNnY2FhgVarNfp7EHEjPcmk9OGDej7jwoX6Iu+cuVnUsgsfnDPRq2U9iuTPZZr38vSETp0gbVp1OFdWyolk6u7du/j5+VGkSBF9WaFChciTJw+rV6/mu+++M+p+cR1utbKywsPDg71799KiRQt9+d69e2nWrFmM72tvb4+9vT2vX79m9+7dTJs2Lcq6QUFBXLt2jSpVqgBQq1atCKtde/ToQYECBRg1ahTmcT20QBhNgmRSuX9fHV49c0ZfdLh8NTbXbkKGzBn5pl0TMjmnM937vXwJadKoC3ZKlTLdfYUwsTNnzmBhYUG+fPkMyuvUqcPGjRuNDpLxGW4dOnQoXbp0oXTp0lSoUIH58+fj7e1N37599XXmzJnDxo0b2b9/PwC7d+9GURTy58/P7du3GTFiBPnz56dHjx761wwfPpwmTZqQPXt2nj9/zo8//khAQADdunUD1LnN8L8kgBp0M2TIEKFcJCwJkklh9251gY6vLwChVtb806gNZ4qXpmiB3HRsXgcbaxMMr4bXp496pJazs2nvK4SJnT17lnz58mFlZWVQXqdOHebOnYuPjw9ubm6J0pZ27drx6tUrfvjhB548eUKRIkXYsWMHOcKtBn/58iV37tzRP/f392f06NH4+PiQPn16WrVqxeTJk7G0tNTX8fHxoUOHDrx8+ZKMGTNSvnx5Tpw4YXBfkTzIKSCJSaeDn36CcePU3Y+AX0YX5rfqxtPMWWhQswK1KpfBLJpFAUb5919YulSd8wz3F1QIIVIzY2KB9CQTi58fdO0KW7fqi64XKsbSJu3RpEvHVy3rUzBvTtO936lT0LSpmspu8GAZYhVCiDiQIJkYLl5Uhzo/DskoGg07azZkX6VaZM6ckZ7tGuOc3sl073f1KjRooC4M8vSUACmEEHEkQTKhrVyp7kt8/x6AIAcHFjfrxI08BShZOB/tmtbG2sqEQ6H37kGdOup857Jlam9SCCFEnEiQTCjBwTB8uHrE1UdPc7gzv3ln/NI707R2JapXKBXtpmSjvX8PdevC48cwezZEk6pLCCFEzCRIJoTHj6FNGwiX39GrTCXW1G2OdVoH+rZuQL5c2U3/vra2MHIkPH0KAwea/v5CCJHKSJA0tUOHoF07ePYMAJ2lJesbtOJ4qfJk/Tj/mN7JxCtr378HKyswN1eHdoUQQpiEBElTURSYORNGjFBP8gDeOmdkfosuPMyandLFC9KmUU2sLE38lQcFqSeGODrCihVqsBRCCGESEiRN4e1b6NUL1q7VF90vWIQFjdvz3iEtLepWoUrZ4qadfwQ1GHfpAnv2qIEyvsdnCSGEMCBBMr5u3IAWLeDaNX3RwRr12VKlLvYO9nzTphG5c0TMCxlvigLffAPr1kHNmrB6NVjIf04hhDAl+Vc1Pjw91VM13rwBINTenqVN2nO5QFGyZ3WhR9tGOKV1SJj3/vFH9SzI0qVh0yaQ43SEEMLkJEjG1Zgxaoq5j15ny8Hc5p15mSEj5UsWplXD6lgkVM/u4kU1tV3u3LB9OzgkUCAWQohUToJkXDk56X+8Uro8y+q2QGtjS5uG1anoUTTq15lCsWLqIp1y5SBTpoR9LyGESMUkwXlcKQr+TZryn8aWfz0qktYhDT3aNiJnNlfTNDYyd+9CjhzqVg8hhBBxIgnOE5hOUdj73yl2la4FGg3u2Vzp1qYRjg72Cfemd+5AhQpQtaq6WMfUK2WFEEJEIEHSSO8/BLFq0x4u37gLGg2VyxSjWb2qWCRk7+75c6hXD168gPr1JUAKIUQikSBphGcvfFm4ZisvXvlhYW5Om8Y1KVuiUMK+aWAgNG6s9iQnTIDevRP2/YQQQuhJkIyli9dus2rTHoKCQ3BKm4Ye7RqTPYtLwr5paCi0bQunT6vBcdy4hH0/IYQQBlJMipamTZuSPXt2bGxscHV1pUuXLjx+/DjB31en07F9/zEWr91OUHAIeXK6MbRPh4QPkAD798OOHdCwIfz5pwyzCiFEIksxq1t/++03KlSogKurK48ePWL48OEAHAt30kZMjF3dGvj+Ays27OL6nQcAVC9fksZ1KmOemOnftm2DGjXAPgEXBQkhRCpiTCxIMUHyc1u2bKF58+YEBQVhaRm7Q4uN+WIeP3vBojXbefXaH0sLC9o1rYVH0QKmaHrMDh9WV7JKmjkhhDC5L34LiK+vLytXrqRixYrRBsigoCCCgoL0zwMCAmJ1/7OXb7Bmyz6CQ0JJ75SWnu0akzVzxni3O1Z27ICmTaFzZ1iyJHHeUwghRKRSzJwkwKhRo7C3tydDhgx4e3uzefPmaOtPmTIFR0dH/SNbtmzR1tfqdGzec5jlG3YRHBJK/tzZGdqnQ+IFSC8v9bBma2vo3z9x3lMIIUSUkjRITpgwAY1GE+3Dy8tLX3/EiBGcO3eOPXv2YG5uTteuXYlutHj06NH4+/vrHw8fPoyy7tt375m3YiMHj58FoFal0vTp2Ax720RKHH7/vrrVIyhITRZQpkzivK8QQogoJemc5MuXL3n58mW0dXLmzIlNJCdc+Pj4kC1bNo4dO0aFChVi9X5RjUM/fPKcxWu28dr/DVaWlnRoXocShfIa92Hiw88PKlWCq1fVVax9+ybeewshRCqTYuYknZ2dcXZ2jtNrw2J7+DnHuDh94Rrrtu0nJFRLxvRO9GjXGNdMGeJ1T6Pt26eeRzlihARIIYRIRlLEwp1Tp05x6tQpKleuTLp06bh79y7jxo0jd+7cse5Ffk6r1bJ5z2EOn7oAQKG8Oencsj62NtambHrstG4NR45A+fKJ/95CCCGilCKCpK2tLZ6enowfP57AwEBcXV2pX78+//zzD9bWxge1N28DWbphN3e91WQEdauWpV718pgl9mb9bdvUnKyWllCxYuK+txBCiBil2H2ScRE2Dv3t5N/5EKLF2sqKzi3rUSR/rsRvzIoV0KWLmm7u778T//2FECKVSjFzkknF/00g2dxc6dWuCZmc0yV+Aw4ehJ49IV06+Jg5SAghRPKTqoJkWKc5VzYXurZpgI2VeawTDJjMzZvQvLn688qV4OoKid0GIYRIxcL+3Y/NQGqqGm4N2zYihBBCPHz4EDc3t2jrpKogqdPpePz4MQ4ODmhiWKQTEBBAtmzZePjwYaySoacW8r1ETb6byMn3Ejn5XiKXGN+Loii8efOGLFmyYBbDgRWparjVzMwsxt8aPpc2bVr5HzgS8r1ETb6byMn3Ejn5XiKX0N+Lo6NjrOqlqNytQgghRGKSICmEEEJEQYJkFKytrRk/fnyckhV8yeR7iZp8N5GT7yVy8r1ELrl9L6lq4Y4QQghhDOlJCiGEEFGQICmEEEJEQYKkEEIIEQUJkkIIIUQUJEjGQtOmTcmePTs2Nja4urrSpUsXHj9+nNTNSnL379+nV69euLu7Y2trS+7cuRk/fjzBwcFJ3bQkN3nyZCpWrIidnR1OTk5J3ZwkM3fuXNzd3bGxscHDw4PDhw8ndZOS3H///UeTJk3IkiULGo2GTZs2JXWTkoUpU6ZQpkwZHBwcyJQpE82bN+fGjRtJ3SwJkrFRo0YN1q5dy40bN9iwYQN37tyhdevWSd2sJHf9+nV0Oh3z5s3jypUr/Pbbb/z111989913Sd20JBccHEybNm3o169fUjclyaxZs4YhQ4YwZswYzp07R5UqVWjQoAHe3t5J3bQkFRgYSPHixZkzZ05SNyVZOXToEP379+fEiRPs3buX0NBQ6tatS2BgYNI2TBFG27x5s6LRaJTg4OCkbkqyM23aNMXd3T2pm5FsLF68WHF0dEzqZiSJsmXLKn379jUoK1CggPLtt98mUYuSH0DZuHFjUjcjWXr+/LkCKIcOHUrSdkhP0ki+vr6sXLmSihUrYmlpmdTNSXb8/f1Jnz59UjdDJLHg4GDOnDlD3bp1Dcrr1q3LsWPHkqhVIiXx9/cHSPJ/TyRIxtKoUaOwt7cnQ4YMeHt7s3nz5qRuUrJz584dfv/9d/r27ZvUTRFJ7OXLl2i1WlxcXAzKXVxcePr0aRK1SqQUiqIwdOhQKleuTJEiRZK0Lak2SE6YMAGNRhPtw8vLS19/xIgRnDt3jj179mBubk7Xrl1jdWBnSmTsdwPw+PFj6tevT5s2bejdu3cStTxhxeV7Se0+P5JOUZQYj6kTYsCAAVy8eJHVq1cndVNS11FZ4Q0YMID27dtHWydnzpz6n52dnXF2diZfvnwULFiQbNmyceLECSpUqJDALU18xn43jx8/pkaNGlSoUIH58+cncOuSjrHfS2rm7OyMubl5hF7j8+fPI/QuhQhv4MCBbNmyhf/++8/oow0TQqoNkmFBLy7CepBBQUGmbFKyYcx38+jRI2rUqIGHhweLFy+O8QDTlCw+/8+kNlZWVnh4eLB3715atGihL9+7dy/NmjVLwpaJ5EpRFAYOHMjGjRs5ePAg7u7uSd0kIBUHydg6deoUp06donLlyqRLl467d+8ybtw4cufO/UX2Io3x+PFjqlevTvbs2Zk+fTovXrzQX8ucOXMStizpeXt74+vri7e3N1qtlvPnzwOQJ08e0qRJk7SNSyRDhw6lS5culC5dWj/K4O3tnernrN++fcvt27f1z+/du8f58+dJnz492bNnT8KWJa3+/fuzatUqNm/ejIODg34UwtHREVtb26RrWJKurU0BLl68qNSoUUNJnz69Ym1treTMmVPp27ev4uPjk9RNS3KLFy9WgEgfqV23bt0i/V4OHDiQ1E1LVH/88YeSI0cOxcrKSilVqlSSL+dPDg4cOBDp/xvdunVL6qYlqaj+LVm8eHGStkuOyhJCCCGi8OVOIAkhhBDxJEFSCCGEiIIESSGEECIKEiSFEEKIKEiQFEIIIaIgQVIIIYSIggRJIYQQIgoSJIUQQogoSJAUqc79+/fRaDT6VHEpRc6cOZk5c6bJ7le9enWGDBlisvslBY1Gw6ZNm4CU+99VJG8SJMUXJaajrLp3757UTYzRkiVLcHJyilB++vRp+vTpk/gNSgYmTJhAiRIlIpQ/efKEBg0aJH6DRKohCc7FF+XJkyf6n9esWcO4ceO4ceOGvszW1pbXr18nRdPQarVoNJo4n5SSMWNGE7co5UvtifRFwpOepPiiZM6cWf9wdHREo9FEKAtz9+5datSogZ2dHcWLF+f48eMG9zp27BhVq1bF1taWbNmyMWjQIAIDA/XXX79+TdeuXUmXLh12dnY0aNCAW7du6a+H9Qi3bdtGoUKFsLa25sGDBwQHBzNy5EiyZs2Kvb095cqV4+DBgwAcPHiQHj164O/vr+/9TpgwAYg43Orn50efPn1wcXHBxsaGIkWKsG3bNgBevXpFhw4dcHNzw87OjqJFi8bpANupU6fi4uKCg4MDvXr14ttvvzXo0UU2ZNu8eXODHvuKFSsoXbo0Dg4OZM6cmY4dO/L8+XP99YMHD6LRaNi/fz+lS5fGzs6OihUr6n+5WbJkCRMnTuTChQv672TJkiWA4XBrZK5evUrDhg1JkyYNLi4udOnShZcvX+qvr1+/nqJFi2Jra0uGDBmoXbu2wX9jISRIilRrzJgxDB8+nPPnz5MvXz46dOhAaGgoAJcuXaJevXq0bNmSixcvsmbNGo4cOcKAAQP0r+/evTteXl5s2bKF48ePoygKDRs2JCQkRF/n3bt3TJkyhQULFnDlyhUyZcpEjx49OHr0KP/88w8XL16kTZs21K9fn1u3blGxYkVmzpxJ2rRpefLkCU+ePGH48OER2q7T6WjQoAHHjh1jxYoVXL16lalTp2Jubg7Ahw8f8PDwYNu2bVy+fJk+ffrQpUsXTp48GevvZ+3atYwfP57Jkyfj5eWFq6src+fONfp7Dg4OZtKkSVy4cIFNmzZx7969SIe9x4wZw4wZM/Dy8sLCwoKePXsC0K5dO4YNG0bhwoX130m7du1ifN8nT55QrVo1SpQogZeXF7t27eLZs2e0bdtWf71Dhw707NmTa9eucfDgQVq2bImc+SAMJOkZJEIkoMWLFyuOjo4Ryu/du6cAyoIFC/RlV65cUQDl2rVriqIoSpcuXZQ+ffoYvO7w4cOKmZmZ8v79e+XmzZsKoBw9elR//eXLl4qtra2ydu1a/fsDyvnz5/V1bt++rWg0GuXRo0cG965Vq5YyevToaNudI0cO5bffflMURVF2796tmJmZKTdu3Ij199GwYUNl2LBh+ufVqlVTBg8eHGX9ChUqKH379jUoK1eunFK8ePFo79GsWbNoj306deqUAihv3rxRFOXT0VH79u3T19m+fbsCKO/fv1cURVHGjx9v8L5hAGXjxo2Konz673ru3DlFURRl7NixSt26dQ3qP3z4UAGUGzduKGfOnFEA5f79+1G2VQjpSYpUq1ixYvqfXV1dAfTDgGfOnGHJkiWkSZNG/6hXrx46nY579+5x7do1LCwsKFeunP4eGTJkIH/+/Fy7dk1fZmVlZfA+Z8+eRVEU8uXLZ3DvQ4cOcefOnVi3/fz587i5uZEvX75Ir2u1WiZPnkyxYsXIkCEDadKkYc+ePXh7e8f6Pa5duxbhYPG4HDR+7tw5mjVrRo4cOXBwcKB69eoAEdoS3X+PuDhz5gwHDhww+J4LFCgAwJ07dyhevDi1atWiaNGitGnThr///jvJ5qtF8iULd0SqZWlpqf9Zo9EA6jBm2J9ff/01gwYNivC67Nmzc/PmzUjvqSiK/l6gLhQK/1yn02Fubs6ZM2f0Q6Nh0qRJE+u2x3RS+4wZM/jtt9+YOXMmRYsWxd7eniFDhhAcHBzr94gNMzOzCMOT4YebAwMDqVu3LnXr1mXFihVkzJgRb29v6tWrF6Et0f33iAudTkeTJk34+eefI1xzdXXF3NycvXv3cuzYMfbs2cPvv//OmDFjOHnyJO7u7nF+X/FlkSApRCRKlSrFlStXyJMnT6TXCxUqRGhoKCdPnqRixYqAuljm5s2bFCxYMMr7lixZEq1Wy/Pnz6lSpUqkdaysrNBqtdG2r1ixYvj4+HDz5s1Ie5OHDx+mWbNmdO7cGVADxq1bt6Jt2+cKFizIiRMn6Nq1q77sxIkTBnUyZsxosKJYq9Vy+fJlatSoAcD169d5+fIlU6dOJVu2bAB4eXnFug1hYvOdfK5UqVJs2LCBnDlzYmER+T91Go2GSpUqUalSJcaNG0eOHDnYuHEjQ4cONbqN4sskw61CRGLUqFEcP36c/v37c/78eW7dusWWLVsYOHAgAHnz5qVZs2Z89dVXHDlyhAsXLtC5c2eyZs1Ks2bNorxvvnz56NSpE127dsXT05N79+5x+vRpfv75Z3bs2AGoq1jfvn3L/v37efnyJe/evYtwn2rVqlG1alVatWrF3r17uXfvHjt37mTXrl0A5MmTR99LunbtGl9//TVPnz416jsYPHgwixYtYtGiRdy8eZPx48dz5coVgzo1a9Zk+/btbN++nevXr/PNN9/g5+env549e3asrKz4/fffuXv3Llu2bGHSpElGtSPsO7l37x7nz5/n5cuXBAUFxfia/v374+vrS4cOHTh16hR3795lz5499OzZE61Wy8mTJ/npp5/w8vLC29sbT09PXrx4YdQvEuLLJ0FSiEgUK1aMQ4cOcevWLapUqULJkiUZO3asfq4MYPHixXh4eNC4cWMqVKiAoijs2LHDYNgwMosXL6Zr164MGzaM/Pnz07RpU06ePKnvaVWsWJG+ffvSrl07MmbMyLRp0yK9z4YNGyhTpgwdOnSgUKFCjBw5Ut/bGjt2LKVKlaJevXpUr16dzJkz07x5c6O+g3bt2jFu3DhGjRqFh4cHDx48oF+/fgZ1evbsSbdu3ejatSvVqlXD3d1d34sEtae5ZMkS1q1bR6FChZg6dSrTp083qh0ArVq1on79+tSoUYOMGTPGajtLlixZOHr0KFqtlnr16lGkSBEGDx6Mo6MjZmZmpE2blv/++4+GDRuSL18+vv/+e2bMmCHJCYQBjfL5hIIQQkRhwoQJbNq0SVK/iVRDepJCCCFEFCRICiGEEFGQ4VYhhBAiCtKTFEIIIaIgQVIIIYSIggRJIYQQIgoSJIUQQogoSJAUQgghoiBBUgghhIiCBEkhhBAiChIkhRBCiCj8H6RbhqRymDMyAAAAAElFTkSuQmCC\n",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# QQPLOT \n",
"import pingouin as pg\n",
"ax = pg.qqplot(penguins.flipper_length_mm, dist='norm')"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "59b48922",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"outputs": [
{
"data": {
"text/plain": [
"ShapiroResult(statistic=0.9515460133552551, pvalue=3.541138271501154e-09)"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Shapiro-Wilk test\n",
"from scipy.stats import shapiro\n",
"shapiro(penguins.flipper_length_mm.dropna()) # p-val<0.05 - departure from normality"
]
},
{
"cell_type": "markdown",
"id": "d81bc153",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"# Our data is not normal, but we will still proceed with the outlined tests to demonstrate Python functionality. \n",
"\n",
"## We will see later what tests to use when we see non-normal data "
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "533a9f0c",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAGwCAYAAACtlb+kAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAABFn0lEQVR4nO3dd3QVdf7/8ddNLySBQAqBEEKRFggdDS5FJYI1NBEVRSxIFdivCqsrqLsUXdFViuhCgoUiCMLaESQshBJKpDepQkKoSUglyf39wc8rl4CGS5JJJs/HOfcc857J3Pec4w2v+5nPzMditVqtAgAAMDEnoxsAAAAobQQeAABgegQeAABgegQeAABgegQeAABgegQeAABgegQeAABgegQeSVarVenp6eKRRAAAmBOBR1JGRob8/PyUkZFhdCsAAKAUEHgAAIDpEXgAAIDpEXgAAIDpEXgAAIDpEXgAAIDpEXgAAIDpEXgAAIDpEXgAAIDpEXgAAIDpEXgAAIDpEXgAAIDpEXgAAIDpEXgAAIDpEXgAAIDpuRjdAFCW+sxMUHJajiSppp+HFg+JMrgjAEBZIPCgUklOy9GJC9lGtwEAKGNc0gIAAKZH4AEAAKZH4AEAAKZH4AEAAKZH4AEAAKZH4AEAAKZH4AEAAKZH4AEAAKZH4AEAAKZH4AEAAKZH4AEAAKZH4AEAAKZH4AEAAKZH4AEAAKZH4AEAAKZH4AEAAKZH4AEAAKZH4AEAAKZH4AEAAKZnaOCZNGmS2rVrJx8fHwUGBiomJkb79u2z28dqtWrChAkKCQmRp6enunTpol27dhU51vr163XHHXfI29tbVatWVZcuXZSdnV1WpwIAAMoxQwNPfHy8hg0bpg0bNmjFihXKz89XdHS0MjMzbfu8+eabmjp1qqZNm6bExEQFBwerW7duysjIsO2zfv16de/eXdHR0dq0aZMSExM1fPhwOTkxgAUAACSL1Wq1Gt3Eb06fPq3AwEDFx8erU6dOslqtCgkJ0ahRo/TSSy9JknJzcxUUFKQpU6Zo8ODBkqRbb71V3bp10xtvvOHQ+6anp8vPz09paWny9fUtsfNB+dNx8iqduHB55K9WVU+tG3uHwR0BAMpCuRoCSUtLkyT5+/tLkg4fPqyUlBRFR0fb9nF3d1fnzp2VkJAgSUpNTdXGjRsVGBioqKgoBQUFqXPnzlq7du113yc3N1fp6el2LwAAYF7lJvBYrVaNGTNGt99+uyIiIiRJKSkpkqSgoCC7fYOCgmzbDh06JEmaMGGCnnnmGX333Xdq3bq17rzzTh04cOCa7zVp0iT5+fnZXqGhoaV1WgAAoBwoN4Fn+PDh2r59u+bPn19km8VisfvZarXaaoWFhZKkwYMH68knn1SrVq30zjvvqFGjRpozZ84132vcuHFKS0uzvY4fP17CZwMAAMoTF6MbkKQRI0Zo+fLlWrNmjWrXrm2rBwcHS7o80lOzZk1bPTU11Tbq81u9adOmdsds0qSJjh07ds33c3d3l7u7e4meAwAAKL8MHeGxWq0aPny4lixZolWrVik8PNxue3h4uIKDg7VixQpbLS8vT/Hx8YqKipIk1a1bVyEhIUVuZ9+/f7/CwsJK/yQAAEC5Z+gIz7BhwzRv3jwtW7ZMPj4+tnk5fn5+8vT0lMVi0ahRozRx4kQ1bNhQDRs21MSJE+Xl5aVHHnlE0uXLXS+88ILGjx+vyMhItWzZUnPnztXevXu1ePFiI08PAACUE4YGnpkzZ0qSunTpYlePjY3VwIEDJUkvvviisrOzNXToUJ0/f14dOnTQDz/8IB8fH9v+o0aNUk5OjkaPHq1z584pMjJSK1asUP369cvqVAAAQDlWrp7DYxSew1N58BweAKicys1dWgAAAKWFwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwINKo6DQqpxLBbafsy8VKC+/0MCOAABlhcCDSuGLLb+q05s/6Wxmnq12LjNPUZNXKW7dYVmtVgO7AwCUNhejGwBK2wfxv2jyt3uvue3MxVxN+O9unUzL0d/uaVLGnQEAygojPDC17b9euG7YudKHaw7pp32pZdARAMAIBB6YWty6I6WyLwCgYiHwwLQKC636ZmdysfeP339a6TmXSrEjAIBRCDwwraxLBcq5dGN3YV3IJPAAgBkReGBanq7Ocnay3NDveLs7l1I3AAAjEXhgWs5OFnVsUKPY+4fX8FL1Ku6l2BEAwCgEHpjaE7eFFXvf4+ey9e2O4s/5AQBUHAQemNodjQMV0zKkWPvmF1o1dN5WfbjmFx5ECAAmQ+CBqVksFr3VN1IDo+pedz6Pm/PvHwOrVZr4zV69/OVO5Rew7AQAmIXFyldZpaeny8/PT2lpafL19TW6HZSS5LRs3f3OGqXn5EuSfDxc9NWI22W1SoPiEnXoTKbd/p1vCdC0R1rJx8PViHYBACWIER5UGjX9PO3Ci6+Hq8Kqe6tuDW99MSRK7cP97faP339afT9Yr5MXssu6VQBACSPwAJKqebvpk6faq2erWnb1vSkZipm+TjtPpBnUGQCgJBB4gP/P3cVZUx+K1PN3NrSrp2bk6qFZ67VyzymDOgMA3CwCD3AFi8Wi0d1u0dt9I+Xq/Psk56y8Aj3z8WbFrTtsYHcAAEcReIBr6N2mtj4e1EG+Hi62WqFVmvDf3ZqwfJcKCiv9XH8AqFAMDTyTJk1Su3bt5OPjo8DAQMXExGjfvn12+1itVk2YMEEhISHy9PRUly5dtGvXrmsez2q1qkePHrJYLPryyy/L4AxgZrfVr64lQzuqjr+XXT0u4YgGf7JFWXn5BnUGALhRhgae+Ph4DRs2TBs2bNCKFSuUn5+v6OhoZWb+fnvwm2++qalTp2ratGlKTExUcHCwunXrpoyMjCLHe/fdd2Wx3NjaScAfaRBYRUuHRqlVnap29R/3nNJDs9YrNT3HmMYAADfE0MDz3XffaeDAgWrWrJkiIyMVGxurY8eOacuWLZIuj9i8++67evnll9WrVy9FRERo7ty5ysrK0rx58+yO9fPPP2vq1KmaM2eOEacCE6texV3zn7lV9zavaVffeSJdMdPXaW9KukGdAQCKq1zN4UlLu3zrr7//5eehHD58WCkpKYqOjrbt4+7urs6dOyshIcFWy8rKUv/+/TVt2jQFBwf/6fvk5uYqPT3d7gX8EQ9XZ73fv5WGdKlvVz+ZlqM+M9crfv9pgzoDABRHuQk8VqtVY8aM0e23366IiAhJUkpKiiQpKCjIbt+goCDbNkkaPXq0oqKi9OCDDxbrvSZNmiQ/Pz/bKzQ0tITOAmbm5GTRS90ba1Kv5nbLVFzMzdeguETN23jMwO4AAH+k3ASe4cOHa/v27Zo/f36RbVfPy7Farbba8uXLtWrVKr377rvFfq9x48YpLS3N9jp+/PhN9Y7KpX/7Oop7sp183H+/g6ug0Kq/Ld2hSd/uUSF3cAFAuVMuAs+IESO0fPly/fTTT6pdu7at/tvlqStHcyQpNTXVNuqzatUq/fLLL6patapcXFzk4nL5H6HevXurS5cu13w/d3d3+fr62r2AG/GXhgFaPCRKIX4edvVZ8Yc0fP5W5VwqMKgzAMC1GBp4rFarhg8friVLlmjVqlUKDw+32x4eHq7g4GCtWLHCVsvLy1N8fLyioqIkSWPHjtX27duVlJRke0nSO++8o9jY2DI7F1Q+jYJ99OWwjmpey8+u/s2OFPX/aIPOXMw1qDMAwNVc/nyX0jNs2DDNmzdPy5Ytk4+Pj20kx8/PT56enrJYLBo1apQmTpyohg0bqmHDhpo4caK8vLz0yCOPSLo8CnSticp16tQpEqCAkhbo66GFg2/V8wuStGL370tPbDt2QT1nrFPswHZqEOhjYIcAAMngEZ6ZM2cqLS1NXbp0Uc2aNW2vhQsX2vZ58cUXNWrUKA0dOlRt27bViRMn9MMPP8jHh39EUD54ubnog8faaFBH+4B9/Fy2es1IUMIvZwzqDADwG4vVaq30MyzT09Pl5+entLQ05vOYXMfJq3TiQrYkqVZVT60be0eJHn9uwhG99t9dunLesquzRZN6tVCfNrWv/4sAgFJVLiYtA2bxRFRdffR4W3m5Odtqlwqs+r9FP2vqiv3i+wUAGIPAA5SwO5sE6fPBtynI192u/t7KAxq1MEm5+dzBBQBljcADlIKIWn76clhHNQ62n2u2LOmkBvxnk85n5hnUGQBUTgQeoJTU9PPU4iFR6nxLgF1905Fz6jUzQUfOZF7nNwEAJY3AA5SiKu4umv1EWz3aoY5d/fCZTPWcsU6bj5wzqDMAqFwIPEApc3F20j9iIvTKvU105Sop57Mu6ZGPNmr5zyeNaw4AKgkCD1AGLBaLnv5LPc18tLU8XH//2OUVFGrk/G2a/tNB7uACgFJE4AHKUPeImlrw7G2qUcXNrv7W9/v00hfbdamg0KDOAMDcCDxAGWsZWlVLh3ZUw8AqdvXPN/+qgbGblJZ9yaDOAMC8CDyAAUL9vbR4SJQ6NqhuV1938Kx6z0zQ8XNZBnUGAOZE4AEM4ufpqtiB7dX3qiUnDqZeVM8Z65R0/IIxjQGACRF4AAO5uTjpzT4t9MLdjezqZy7m6eEP1+u7nSkGdQYA5kLgAQxmsVg0rGsDvde/ldxcfv9I5lwq1JDPtuijNYe4gwsAbhKBBygnHogM0bynO6ial6utZrVK//xmj175cqfyuYMLABxG4AHKkbZ1/bV0aEeF1/C2q3+28Zie/nizLubmG9QZAFRsBB6gnKlbw1tLhkSpfV1/u/rqfafVZ2aCktOyDeoMACouAg9QDlXzdtMnT7dXTMsQu/relAzFTF+nnSfSDOoMAComF0d+KScnR++//75++uknpaamqrDQfm7B1q1bS6Q5oDJzd3HWO/1aqk51b7238oCtfio9Vw/NWq/3+7fSnU2CDOwQACoOhwLPoEGDtGLFCvXp00ft27eX5coVEQGUGIvFojHdblEdfy+NW7Jdlwou362VlVegZz7erPH3N9MTUXWNbRIAKgCHAs/XX3+tb775Rh07dizpfgBcQ582tRVS1UPPfbJF6TmXJy4XWqXxy3fp6NksvXxvEzk78cUDAK7HoTk8tWrVko+PT0n3AuAPRNWvoSVDOyrU39OuPmfdYT336RZl5XEHFwBcj0OB5+2339ZLL72ko0ePlnQ/AP5Ag8AqWjq0o1rVqWpXX7H7lPrN2qDU9BxjGgOAcs6hwNO2bVvl5OSoXr168vHxkb+/v90LQOmpUcVd85+5Vfc0D7ar7ziRpp4zErQvJcOgzgCg/HJoDk///v114sQJTZw4UUFBQUxaBsqYh6uzpvVvrTf99+mD+F9s9RMXstVnZoKmP9panW4JMLBDAChfHAo8CQkJWr9+vSIjI0u6HwDF5ORk0dgejRVW3UuvfLlTBYWX7+DKyM3Xk3GJ+kdMhPq3r2NwlwBQPjh0Satx48bKzuZpr0B50L99HcUObKcq7r9/fykotGrckh2a/O1eFRay8CgAOBR4Jk+erL/+9a9avXq1zp49q/T0dLsXgLLV6ZYALR5ym0L8POzqH8T/ohHztynnUoFBnQFA+WCxWq03/PXPyelyTrp67o7VapXFYlFBQcX645qeni4/Pz+lpaXJ19fX6HZQijpOXqUTFy6PTtaq6ql1Y+8wuKOSlZqeo6fmbtaOq5aeaF2nqj56vK2qV3E3qDMAMJZDc3h++umnku4DQAkI9PXQwsG3auT8JP2455StvvXYBfWckaA5A9upQWAVAzsEAGM4FHg6d+5c0n0AKCFebi6aNaCN/vH1bsWuO2KrHzuXpV4z1mnWgLa6rX514xoEAAM4FHikywuIbt++/ZqLhz7wwAM33RgAxzk7WTT+/mYK8/fS61/t1m/zltNz8vX4nI2a3KuFerepbWyTAFCGHAo83333nR5//HGdOXOmyLaKOIcHMKuBHcMV6u+lEfO3KSvv8ufyUoFVf130s46dy9KouxryHC0AlYJDd2kNHz5cffv2VXJysgoLC+1ehB2gfLmzSZA+H3ybAn3sJyz/e+UBjfn8Z+Xm85kFYH4OBZ7U1FSNGTNGQUFBJd0PgFIQUctPXw7rqMbB9ov+Lt12QgNmb9KFrDyDOgOAsuFQ4OnTp49Wr15dwq0AKE0hVT216Lnb1PmqJSc2HT6nXjMSdORMpkGdAUDpc+g5PFlZWerbt68CAgLUvHlzubq62m0fOXJkiTVYFngOT+Vh9ufwFEd+QaFeXb5L8zYes6v7e7vpo8fbqE0YCwADMB+HJi3PmzdP33//vTw9PbV69Wq7SY8Wi6XCBR6gMnFxdtI/YyIUXt1bE7/do9++8pzLzFP/jzbq7b6Ruj8yxNgmAaCEORR4XnnlFb3++usaO3as7anLACoOi8WiZzrVU+1qnhq1MEm5+ZcfLZGXX6gR87fp2LksDe1Snzu4AJiGQ2klLy9P/fr1I+wAFVyP5jW14NlbVaOKm139re/3aewXO3SpoPA6vwkAFYtDieWJJ57QwoULS7oXAAZoVaealg7tWGTJiYWbj2tg7CalZV8yqDMAKDkOXdIqKCjQm2++qe+//14tWrQoMml56tSpJdIcgLIR6u+lL4ZEacinW5Twy1lbfd3Bs+oz8/IaXKH+XgZ2CAA3x6HAs2PHDrVq1UqStHPnTrttXPMHKiY/T1fFPdlef1u6Q4u3/GqrH0i9qJ4zEjT7ibaKDK1qXIMAcBNKdbX0X3/9VSEhIcz1QblR08/jmv+Ny9xcnPRWnxYKr+Gtt77fZ6ufuZirfh+u17v9Wql7RLCBHQKAYxx6Dk9x+fr6KikpSfXq1SuttygRPIcHKGpZ0gm9sGi78q6YuGyxSC/f00RP3R7OaC6ACqVUh15KMUsBKGUPtqylz57poGpev8/Rs1qlf3y9R68u26V87uACUIFwrQnAdbWr668lQzsqvIa3Xf2TDUf19MebdTE336DOAODGEHgA/KHwGt5aMiRK7epWs6uv3ndafT9Yr+S0bIM6A4DiI/AA+FPVvN306dMd9GBL+yUn9iSnK2b6Ou06mWZQZwBQPKUaeJjUCJiHu4uz3u3XUiPvaGBXP5Weq74frNeqvacM6gwA/pyhk5YnTZqkdu3aycfHR4GBgYqJidG+ffvs9rFarZowYYJCQkLk6empLl26aNeuXbbt586d04gRI9SoUSN5eXmpTp06GjlypNLS+MYJlDSLxaIx0Y30Vp8WcnH6/QtNVl6Bnp67WR+vP2JccwDwB0o18OzevVthYWHX3R4fH69hw4Zpw4YNWrFihfLz8xUdHa3MzEzbPm+++aamTp2qadOmKTExUcHBwerWrZsyMjIkSSdPntTJkyf1r3/9Szt27FBcXJy+++47PfXUU6V5akCl1rdtqD4e1F6+Hr8/yqvQKr26bJfe+Gq3Cgq5QxNA+eLQc3gyMzM1efJkrVy5UqmpqSostL899dChQw41c/r0aQUGBio+Pl6dOnWS1WpVSEiIRo0apZdeekmSlJubq6CgIE2ZMkWDBw++5nEWLVqkxx57TJmZmXJx+fNnK/IcHsAxB1Mz9GRcoo6fs5+4HN00SO8+3FJebg492xQASpxDf42efvppxcfHa8CAAapZs2aJzdX57TKUv7+/JOnw4cNKSUlRdHS0bR93d3d17txZCQkJ1w08vwWX64Wd3Nxc5ebm2n5OT08vkf6ByqZBoI+WDu2op+duVtLxC7b6D7tP6eEPN+g/T7RVoA9PtAZgPIcCz7fffquvv/5aHTt2LLFGrFarxowZo9tvv10RERGSpJSUFElSUFCQ3b5BQUE6evToNY9z9uxZvfHGG9cNQ9LluUOvvfZaCXUOVG41qrhrwbO3avTCJH27M8VW3/5rmnpOv7zwaKNgHwM7BAAH5/BUq1bNNgpTUoYPH67t27dr/vz5RbZdPYJktVqvOaqUnp6ue++9V02bNtX48eOv+17jxo1TWlqa7XX8+PGbPwGgEvNwddb0R1prcGf7ZWROXMhWn5kJ+t+B0wZ1BgCXORR43njjDb366qvKysoqkSZGjBih5cuX66efflLt2rVt9eDgy4sU/jbS85vU1NQioz4ZGRnq3r27qlSpoqVLl8rV1VXX4+7uLl9fX7sXgJvj5GTRuB5NNLFnczlfcQdXRm6+noxN1MLEYwZ2B6CyK/YlrVatWtmNqhw8eFBBQUGqW7dukXCxdevWYh3TarVqxIgRWrp0qVavXq3w8HC77eHh4QoODtaKFSvUqlUrSVJeXp7i4+M1ZcoU237p6em6++675e7uruXLl8vDgzkDgFEe6VBHtap5athnW21LT+QXWvXSFzt05GyWXohuJCcnntEFoGwVO/DExMSU+JsPGzZM8+bN07Jly+Tj42MbyfHz85Onp6csFotGjRqliRMnqmHDhmrYsKEmTpwoLy8vPfLII5Iuj+xER0crKytLn376qdLT022TkAMCAuTs7FzifQP4Y51vCdCi527ToLhEJafl2OozV/+iY+ey9HbfSHm48tkEUHYcui29xN78Ond3xcbGauDAgZIujwK99tprmjVrls6fP68OHTpo+vTptonNq1evVteuXa95nMOHD6tu3bp/2ge3pQOl41R6jp6am6idJ+zvhGxdp6o+erytqldxN6gzAJWNQ4GnXr16SkxMVPXq1e3qFy5cUOvWrR1+Do9RCDxA6cnKy9fI+dv0455Uu3odfy/FPtlO9QOqGNQZgMrEoUnLR44cUUFBQZF6bm6ufv3115tuCoB5eLm5aNaAthoYVdeufuxclnrNSNCGQ2eNaQxApXJDz+FZvny57b+///57+fn52X4uKCjQypUri0w8BgBnJ4smPNBMYdW99MZXu/XbyhNp2Zc0YPZGTendQr1a1/7jgwDATbihS1pOTpcHhCwWS5GFQV1dXVW3bl29/fbbuu+++0q2y1LGJS2g7Py4+5RGzN+m7Ev2o8TP39lQo+5qWGJPbgeAKzk0hyc8PFyJiYmqUaNGafRU5gg8QNnaeSJNg+ISlZqRa1fv1aqWJvVuLncX7uACULIMvUurvCDwAGXv5IVsDYpL1N6UDLt6h3B/zRrQRlW93AzqDIAZORR43nvvvWsfzGKRh4eHGjRooE6dOlWYZ+AQeABjZORc0rB527Rmv/3SE/VqeCv2yXYKq+5tUGcAzMbhS1qnT59WVlaWqlWrJqvVqgsXLsjLy0tVqlRRamqq6tWrp59++kmhoaGl0XeJIvAAxrlUUKjxy3dp3kb7pSf8vd300eNt1CasZNftA1A5OXRb+sSJE9WuXTsdOHBAZ8+e1blz57R//3516NBB//73v3Xs2DEFBwdr9OjRJd0vAJNxdXbSP2Mi9Ld7GtvVz2Xmqf9HG/XV9pMGdQbATBwa4alfv76++OILtWzZ0q6+bds29e7dW4cOHVJCQoJ69+6t5OTkkuq11DDCA5QP3+5I1qiFScrNL7Srv9i9kYZ0rs8dXAAc5tAIT3JysvLz84vU8/PzbethhYSEKCMjo8g+AHA9PZrX1IJnb1WNKvYTlt/8bp/GfrFDlwoKr/ObAPDHHAo8Xbt21eDBg7Vt2zZbbdu2bRoyZIjuuOMOSdKOHTt4CCGAG9aqTjUtHdpRDQLtl5xYuPm4noxNVHrOJYM6A1CRORR4Zs+eLX9/f7Vp00bu7u5yd3dX27Zt5e/vr9mzZ0uSqlSporfffrtEmwVQOYT6e+mL56J0Wz379frWHjyjPjMT9Ov5LIM6A1BR3dRzePbu3av9+/fLarWqcePGatSoUUn2VmaYwwOUT3n5hfrb0h1avMV+jb4aVdw1+4m2igytakxjACocHjwoAg9QnlmtVk3/6aD+9cN+u7qHq5P+/XAr3d0s2KDOAFQkDgWegoICxcXFaeXKlUpNTVVhof1EwlWrVpVYg2WBwAOUf8uSTuiFRduVd8XEZYtFevmeJnrq9nDu4ALwh25otfTfPP/884qLi9O9996riIgI/tAAKHUPtqylkKqeeubjzbqQdXnistUq/ePrPTp2Lkuv3tdULs4OTUsEUAk4NMJTo0YNffzxx7rnnntKo6cyxwgPUHEcPpOpJ2M36chZ+4nLXRsF6P1HWquKu0Pf4wCYnENfh9zc3NSgQYOS7gUA/lR4DW8tGdpR7epWs6v/tO+0HvpgvVLScgzqDEB55lDg+etf/6p///vfYr4zACP4e7vpk6c66IHIELv67uR0xUxfp90n0w3qDEB55dAlrZ49e+qnn36Sv7+/mjVrJldXV7vtS5YsKbEGywKXtICKyWq1auqK/Xp/1UG7urebs6Y90lpdGwca1BmA8sahi91Vq1ZVz549S7oXALghFotFf41upFB/L/1tyQ7lF17+/paZV6Cn5ibqtQcjNODWMIO7BFAe8BweMcIDmEHCwTMa/OkWZeTYr/P39O3hGndPEzk7cTcpUJk5fA9nfn6+fvzxR82aNcu2SOjJkyd18eLFEmsOAIorqkENLR0apdrVPO3q/1l7WEM/26LsvAKDOgNQHjg0wnP06FF1795dx44dU25urvbv36969epp1KhRysnJ0QcffFAavZYaRngA8zidkaunP96sn49fsKtH1vbTR0+0VaCPhzGNATCUQyM8zz//vNq2bavz58/L0/P3b1M9e/bUypUrS6w5ALhRAT7uWvDMreoRYb/kxM+/pqnn9ATtP5VhUGcAjORQ4Fm7dq1eeeUVubm52dXDwsJ04sSJEmkMABzl6eas6Y+01uBO9ezqJy5kq/eMBK09cMagzgAYxaHAU1hYqIKCotfDf/31V/n4+Nx0UwBws5ycLBp3TxP9s2eE3YTljNx8DYzdpM8TjxvYHYCy5lDg6datm959913bzxaLRRcvXtT48eNNs9wEAHN4tEOYZj/R1m7JifxCq178Yrve/G6vCgsr/Y2qQKXg0KTlkydPqmvXrnJ2dtaBAwfUtm1bHThwQDVq1NCaNWsUGFixHvbFpGXA/PYkp2tQXKKSr1p64r4WNfWvvpHycHU2qDMAZcHh5/BkZ2dr/vz52rp1qwoLC9W6dWs9+uijdpOYKwoCD1A5nErP0aC4RO26aumJNmHV9OGANqpexd2gzgCUNh48KAIPUJlk5ubr+QXb9OOeVLt6WHUvzRnYTvUDqhjUGYDSVOzAs3z58mIf9IEHHnC4ISMQeIDKpaDQqje+2q24hCN2dT9PV304oI061KtuTGMASk2xA4+TU/HmN1sslmvewVWeEXiAyil23WG9/tVuXflX0NXZojf7tFDPVrWNawxAiSv2XVqFhYXFelW0sAOg8nqyY7g+HNBWnldMWL5UYNXohT/r3R/3iyv+gHk4vJZWcTRv3lzHj/OsCwDlV7emQfp88G0K8LGfsPzujwf010U/Ky+/0KDOAJSkUg08R44c0aVLl0rzLQDgpjWv7acvh3VU42D7B6cu2XpCj8/ZqLQs/o4BFV2pBh4AqChqVfXUoudu018a1rCrbzh0Tj1nrtOxs1kGdQagJBB4AOD/8/Fw1ZyB7dS/fR27+qHTmYqZsU5bjp43qDMAN4vAAwBXcHV20sSeERrXo7Fd/Vxmnvp/tEFfb082qDMAN4PAAwBXsVgsGty5vmY82lruLr//mczLL9SweVs1c/Uv3MEFVDAEHgC4jnua19T8Z29VdW83u/qU7/bqb0t36FIBd3ABFcUNB55Lly6pa9eu2r9//5/uO2vWLAUFBTnUGACUB63rVNOXwzqqfoC3XX3+puMaFJeo9Bzu4AIqghsOPK6urtq5c6csFsuf7vvII4/I29v7T/cDgPIs1N9LS4Z01G1XLTnxvwNn1Hfmep24kG1QZwCKy6FLWo8//rhmz55d0r0AQLnl5+WquYPaq3dr+yUn9p3KUMz0ddrxa5pBnQEoDodWSx8xYoQ+/vhjNWjQQG3bti0yijN16tQSa7AssJYWgOKyWq2atuqg3l5hf1nf09VZ/364paKbBRvUGYA/4lDg6dq16/UPaLFo1apVN9VUWSPwALhRy5JO6IVF25V3xcRli0V65d6mGtSxbrEu+wMoOw4FHrMh8ABwxKbD5/TsJ5t14aqlJ564LUx/v6+pXJy5ERYoL27q03jw4EF9//33ys6+PGGP7ASgMmkf7q8lQ6JUt7qXXX3u+qN69pMtyszNN6gzAFdzKPCcPXtWd955p2655Rbdc889Sk6+/OTRp59+Wn/9619LtEEAKM/qBVTRkqEd1Tasml191d5UPTRrvVLScgzqDMCVHAo8o0ePlqurq44dOyYvr9+/2fTr10/fffddsY8zadIktWvXTj4+PgoMDFRMTIz27dtnt4/VatWECRMUEhIiT09PdenSRbt27bLbJzc3VyNGjFCNGjXk7e2tBx54QL/++qsjpwYAN8zf202fPt1BD0SG2NV3nUxXzPR12n0y3aDOAPzGocDzww8/aMqUKapd2/72zIYNG+ro0aPFPk58fLyGDRumDRs2aMWKFcrPz1d0dLQyMzNt+7z55puaOnWqpk2bpsTERAUHB6tbt27KyMiw7TNq1CgtXbpUCxYs0Nq1a3Xx4kXdd999KigocOT0AOCGebg6691+LTW8awO7ekp6jvp+kKCf9qUa1BkAycFJyz4+Ptq6dasaNmwoHx8f/fzzz6pXr54SExPVvXt3nT171qFmTp8+rcDAQMXHx6tTp06yWq0KCQnRqFGj9NJLL0m6PJoTFBSkKVOmaPDgwUpLS1NAQIA++eQT9evXT5J08uRJhYaG6ptvvtHdd99d5H1yc3OVm5tr+zk9PV2hoaFMWgZQIj7ffFx/W7JD+YW//3l1drLotQea6bFbwwzsDKi8HBrh6dSpkz7++GPbzxaLRYWFhXrrrbf+8Jb1P5OWdvnBXf7+/pKkw4cPKyUlRdHR0bZ93N3d1blzZyUkJEiStmzZokuXLtntExISooiICNs+V5s0aZL8/Pxsr9DQUId7BoCrPdQ2VHMHtZePh4utVlBo1Stf7tQ/v96twkJu8ADKmkOB56233tKsWbPUo0cP5eXl6cUXX1RERITWrFmjKVOmONSI1WrVmDFjdPvttysiIkKSlJKSIklF1uMKCgqybUtJSZGbm5uqVat23X2uNm7cOKWlpdlex48fd6hnALiejg1qaMmQKNWu5mlX/+h/hzXksy3KzuOSO1CWHAo8TZs21fbt29W+fXt169ZNmZmZ6tWrl7Zt26b69es71Mjw4cO1fft2zZ8/v8i2qx/gZbVa//ShXn+0j7u7u3x9fe1eAFDSGgb5aOnQjooMrWpX/37XKT380Qadzsi99i8CKHEuf77LtQUHB+u1114rkSZGjBih5cuXa82aNXYToYODLz+iPSUlRTVr1rTVU1NTbaM+wcHBysvL0/nz5+1GeVJTUxUVFVUi/QGAowJ83LXgmVs1emGSvtv1+6jzz8cvKGb6OsU92U4Ng3wM7BCoHBx+8OD58+f1r3/9S0899ZSefvppvf322zp37twNHcNqtWr48OFasmSJVq1apfDwcLvt4eHhCg4O1ooVK2y1vLw8xcfH28JMmzZt5OrqardPcnKydu7cSeABUC54ujlrxqOt9Wynenb1Exey1WtmgtYdPGNQZ0Dl4dBdWvHx8XrwwQfl6+urtm3bSro8efjChQtavny5OnfuXKzjDB06VPPmzdOyZcvUqFEjW93Pz0+enpeve0+ZMkWTJk1SbGysGjZsqIkTJ2r16tXat2+ffHwufysaMmSIvvrqK8XFxcnf31//93//p7Nnz2rLli1ydnb+0z5YWgJAWfl0w1GNX75LBVdMXHZxsmhiz+Z6qB03UAClxaHAExERoaioKM2cOdMWKAoKCjR06FCtW7dOO3fuLN6bX2eOTWxsrAYOHCjp8ijQa6+9plmzZun8+fPq0KGDpk+fbpvYLEk5OTl64YUXNG/ePGVnZ+vOO+/UjBkzin33FYEHQFlavS9Vwz7bqsyrJi4P61pff+3WSE5OLDwKlDSHAo+np6eSkpLsRmUkad++fWrZsqVtba2KgsADoKztPpmuQXGJSkm3X3ri/sgQvdWnhTxc/3x0GkDxOTSHp3Xr1tqzZ0+R+p49e9SyZcub7QkATK9piK++HNZRzULsv2T99+eTeuw/G3UuM8+gzgBzcmiEZ+HChXrxxRc1YsQI3XrrrZKkDRs2aPr06Zo8ebKaNGli27dFixYl120pYYQHgFEyc/M1cv42rdxrv/REWHUvxQ5sp3oBVQzqDDAXhwKPk9MfDwxZLBbbc3AqwnpWBB4ARiootOr1/+7S3PX2axFW9XLVhwPaqn24v0GdAebhUOC5kQVCw8LK/7oxBB4A5cGctYf1xte7deVfZTdnJ73Zp4ViWtUyrjHABBwKPGZD4AFQXvywK0XPL0hS9iX70fEx3W7RiDsa/OlT5gFcm8OBZ9++fXr//fe1Z88eWSwWNW7cWCNGjChy51ZFQOABUJ7s+DVNg+YmFll6onfr2prUq7ncXBx+ZixQaTn0qVm8eLEiIiK0ZcsWRUZGqkWLFtq6dasiIiK0aNGiku4RACqV5rX99OWwjmp01ZITX2z9VY/P2ai0rEsGdQZUXA6N8NSrV0+PPfaYXn/9dbv6+PHj9cknn+jQoUMl1mBZYIQHQHmUnnNJwz7bqv8dsF96on6At2IHtled6l4GdQZUPA4FHi8vL23fvl0NGjSwqx84cECRkZHKysoqsQbLAoEHQHl1qaBQry7bqfmbjtvVq3u76aMn2qp1nWrX+U0AV3LoklaXLl30v//9r0h97dq1+stf/nLTTQEALnN1dtLEns01tkdju/rZzDz1/3CDvt6ebFBnQMXi0AjPBx98oFdffVUPPfSQ3YMHFy1apNdee00hISG2fR944IGS67aUMMIDoCL4enuyRn+epLz8Qrv62B6NNbhTPe7gAv5AqTx40HZwHjwIACVqy9HzevbjzTp71dIT/dvX0esPNpOrM3dwAdfi0CejsLCwWK+KEHYAoCJpE1ZNS4d2VP0Ab7v6/E3HNCguUek53MEFXAtfBQCggqlT3UtLhnTUrfXsl5z434Ez6jtzvU5cyDaoM6D8KvYlrffee0/PPvusPDw89N577/3hviNHjiyR5soKl7QAVER5+YUau2S7lmw9YVcP8HHXnCfaqXltP4M6A8qfYgee8PBwbd68WdWrV1d4ePj1D2ix8BweACgjVqtV7686qKkr9tvVPV2d9V7/VurWNMigzspen5kJSk7LkSTV9PPQ4iFRBneE8sSluDsePnz4mv8NADCOxWLRyDsbqo6/l15cvF15BZfv4Mq+VKBnP9msV+9rqic7Xv9Lqpkkp+VwOQ/XxRweADCBmFa19MlT7VXVy9VWs1ql1/67WxOW71JBYaVfJxqVXLFHeMaMGVPsg06dOtWhZgAAjutQr7qWDInSk3GJOnr29yfexyUc0fFzWXqvfyt5uxf7zz5gKsX+Pz82NlYRERFycXGRxWLR9ab+8OArADBOvYAqWjq0o579eLM2Hz1vq6/cm6qHZq3XnIHtFOTrYWCHgDGKHXjS0tL0xRdfKDAwUPXq1VNiYqKqV69emr0BABzg7+2mT5/uoBcWb9d/fz5pq+86ma6Y6es0Z2A7NanJDRqoXIo9h6datWq2ycpHjhxRYWHhn/wGAMAoHq7O+ne/lhrWtb5dPTktR31mJmj1vlSDOgOMUewRnt69e6tTp04KCQmRxWJR27Zt5ezsfM19K9pt6QBgRk5OFr1wd2OF+Xvrb0t3KP//T1zOzCvQU3M36/UHm+nRDmEGdwmUjWIHng8//FC9evXSwYMHNXLkSD3zzDPy8fEpzd4AACXgoXahqlXNU899ukUZOfmSpIJCq15eulNHz2ZpbPfGcnJi/iXM7Yam63fv3l2StGXLFj3//PMEHgCoIDo2qKElQ6I0MDbR7lk1H645pOPnsjT1oZbydLv2qD1gBg49hyc2NpawAwAVTMMgH305rKMir1py4tudKXr4ow06nZFrUGdA6ePBgwBQiQT4uGvBs7fp7mb2S078fPyCes5YpwOnMgzqDChdBB4AqGQ83Zw149E2euYv9ktO/Ho+W71mJijh4BmDOgNKD4EHACohZyeLXr63qd6IidCV85UzcvL1+JxN+nzzceOaA0oBgQcAKrEBt4Zp9sB28r5iwnJ+oVUvLt6uf32/77pP1QcqGgIPAFRyXRsFatFzUQq+asmJaT8d1PMLkpRzqcCgzoCSQ+ABAKhpiK++HNZRTa9acmL5zyc1YPZGncvMM6gzoGQQeAAAkqRgPw8teu423dE40K6eeOS8es1Yp8NnMg3qDLh5BB4AgI23u4s+HNBGj99mv+TEkbNZ6jljnTYdPmdQZ8DNIfAAAOy4ODvptQea6dX7mspyxR1cF7Iu6bH/bNSypBPGNQc4iMADACjCYrFo0O3hmvVYG3m6/n4HV15BoZ5fkKT3Vx7gDi5UKAQeAMB1RTcL1sLBtyrAx92u/vaK/Xph8Xbl5Rca1BlwYwg8AIA/1KJ2VS0dGqVbgqrY1Rdv+VVPzNmktKxLBnUGFB+BBwDwp2pX89LiIVH6S8MadvX1h86q18x1On4uy6DOgOIh8AAAisXXw1VzBrZT//ahdvVfTmcqZvo6bTt23qDOgD9H4AEAFJurs5Mm9myul7o3tqufzczTwx9u0Lc7kg3qDPhjBB4AwA2xWCwa0qW+pj/SWm4uv/8zkptfqCGfbdWs+F+4gwvlDoEHAOCQe1vU1PxnbpW/t5tdfdK3e/XylzuVX8AdXCg/CDwAAIe1CaumL4d2VL0Ab7v6vI3HNGjuZmXkcAcXygcCDwDgptSp7qUlQ6LUIdzfrr5m/2n1/WC9Tl7INqgz4HcEHgDATavq5aZPnuqgXq1q2dX3pmQoZvo67fg1zaDOgMsIPACAEuHm4qS3H4rU6LtusaunZuTqoVnr9ePuUwZ1BhB4AAAlyGKx6Pm7GuqdfpFyc/79n5jsSwV69pPNilt32MDuUJkReAAAJa5nq9r65Kn28vN0tdUKrdKE/+7WhOW7VFDIbesoW4YGnjVr1uj+++9XSEiILBaLvvzyS7vtp06d0sCBAxUSEiIvLy91795dBw4csNsnJSVFAwYMUHBwsLy9vdW6dWstXry4DM8CAHAtHepV15KhUarj72VXj0s4osGfbFZmbr5BnaEyMjTwZGZmKjIyUtOmTSuyzWq1KiYmRocOHdKyZcu0bds2hYWF6a677lJmZqZtvwEDBmjfvn1avny5duzYoV69eqlfv37atm1bWZ4KAOAa6gdU0dKhUWoTVs2u/uOeVPX7cL1OpecY1BkqG0MDT48ePfSPf/xDvXr1KrLtwIED2rBhg2bOnKl27dqpUaNGmjFjhi5evKj58+fb9lu/fr1GjBih9u3bq169enrllVdUtWpVbd269brvm5ubq/T0dLsXAKB0VK/irs+e7qD7WtS0q+88ka6e09dpbwp/g1H6yu0cntzcXEmSh4eHrebs7Cw3NzetXbvWVrv99tu1cOFCnTt3ToWFhVqwYIFyc3PVpUuX6x570qRJ8vPzs71CQ0Ovuy8A4OZ5uDrrvYdbaVjX+nb1k2k56jNzveL3nzaoM1QW5TbwNG7cWGFhYRo3bpzOnz+vvLw8TZ48WSkpKUpO/n1xuoULFyo/P1/Vq1eXu7u7Bg8erKVLl6p+/frXPfa4ceOUlpZmex0/frwsTgkAKjUnJ4teuLuxpvRuLhcni61+MTdfg+IS9dnGowZ2B7Mrt4HH1dVVX3zxhfbv3y9/f395eXlp9erV6tGjh5ydnW37vfLKKzp//rx+/PFHbd68WWPGjFHfvn21Y8eO6x7b3d1dvr6+di8AQNno166O4p5sLx93F1utoNCql5fu1KRv9qiQO7hQClz+fBfjtGnTRklJSUpLS1NeXp4CAgLUoUMHtW3bVpL0yy+/aNq0adq5c6eaNWsmSYqMjNT//vc/TZ8+XR988IGR7QMAruP2hjX0xdAoPRmbqBNXLD0xa80hHTuXpXf6tZSHq/MfHAG4MeV2hOdKfn5+CggI0IEDB7R582Y9+OCDkqSsrCxJkpOT/Wk4OzursJBVegGgPLslyEdLh0UpsrafXf3bnSl6+MMNOnMx16DOYEaGBp6LFy8qKSlJSUlJkqTDhw8rKSlJx44dkyQtWrRIq1evtt2a3q1bN8XExCg6OlrS5Xk+DRo00ODBg7Vp0yb98ssvevvtt7VixQrFxMQYdFYAgOIK9PHQgmdvU3TTILt60vELipm+TgdTMwzqDGZjaODZvHmzWrVqpVatWkmSxowZo1atWunVV1+VJCUnJ2vAgAFq3LixRo4cqQEDBtjdku7q6qpvvvlGAQEBuv/++9WiRQt9/PHHmjt3ru655x5DzgkAcGM83Zw187E2euYv4Xb1X89nq9eMBCX8csagzmAmFqvVWulnh6Wnp8vPz09paWlMYAYAA32y4ajGL9upK+ctuzhZNLl3C/VpU/sPf7fj5FW2+UC1qnpq3dg7SrNVVDAVYg4PAKByGHBrmGY/0U7ebr9PWM4vtOr/Fv2sqT/sE9/R4SgCDwCgXOnaOFCfP3ebgn097OrvrTqoUQuTlJtfYFBnqMgIPACAcqdZiJ+WDotS05r20wyWJZ3UY//ZqPOZeQZ1hoqKwAMAKJdq+nnq8+duU9dGAXb1xCPn1Wtmgo6cybzObwJFEXgAAOVWFXcXffR4Wz1+W5hd/fCZTPWcsU6JR84Z1BkqGgIPAKBcc3F20msPNNPf72sqy+9LcOl81iU9+tFGLd12Qj/sStHZKx5UeOZirpYlnVBePg+hxWXcli5uSweAiuL7XSl6fsE25VwqXpBpHOyj2QPbqVZVz1LuDOUdIzwAgArj7mbB+nzwbapRxb1Y++9NydCA/2xUes6lUu4M5R2BBwBQobSoXVVfDotSkG/xQs+hM5n6ZP3RUu4K5R2BBwBQ4dSu5iV/b7di7z9v4zEVFlb6GRyVGoEHAFDh5OUXak9y8RcWPXEhW6kZrL5emRF4AAAVTn7hjd99damAO7YqMwIPAKDC8XR1vqFLWm4uTgrwKd6cH5gTgQcAUOFYLBb1bl2r2Pvf16KmPFyd/3xHmBaBBwBQIT0RVVeexQgxLk4WPX17vTLoCOUZgQcAUCHVrualGY+1lrvL9f8pc3ay6F99I9U0hIfKVnYEHgBAhdW1UaCWDI1Sj4jga2wL0MJnb1VMq+Jf+oJ5sbSEWFoCAMzgtkkrlZyWI0kK9vXQhr/daXBHKE8Y4QEAmILTFSuLOjtZ/mBPVEYEHgAAYHoEHgAAYHoEHgAAYHoEHgAAYHoEHgAAYHoEHgAAYHoEHgAAYHoEHgAAYHoEHgAAYHoEHgAAYHoEHgAAYHoEHgAAYHoEHgAAYHoEHgAAYHoEHgAAYHoEHgAAYHoEHgAAYHoEHgAAYHoEHgAAYHoEHgAAYHoEHgAAYHoEHgAAYHoEHgAAYHoEHgAAYHoEHgAAYHoEHgAAYHoEHgAAYHoEHgAAYHoEHgAAYHqGBp41a9bo/vvvV0hIiCwWi7788ku77adOndLAgQMVEhIiLy8vde/eXQcOHChynPXr1+uOO+6Qt7e3qlatqi5duig7O7uMzgIAAJR3hgaezMxMRUZGatq0aUW2Wa1WxcTE6NChQ1q2bJm2bdumsLAw3XXXXcrMzLTtt379enXv3l3R0dHatGmTEhMTNXz4cDk5MXgFAAAuczHyzXv06KEePXpcc9uBAwe0YcMG7dy5U82aNZMkzZgxQ4GBgZo/f76efvppSdLo0aM1cuRIjR071va7DRs2LP3mAQBAhVFuh0Fyc3MlSR4eHraas7Oz3NzctHbtWklSamqqNm7cqMDAQEVFRSkoKEidO3e2bf+jY6enp9u9AACAeZXbwNO4cWOFhYVp3LhxOn/+vPLy8jR58mSlpKQoOTlZknTo0CFJ0oQJE/TMM8/ou+++U+vWrXXnnXdec67PbyZNmiQ/Pz/bKzQ0tEzOCQAAGKPcBh5XV1d98cUX2r9/v/z9/eXl5aXVq1erR48ecnZ2liQVFhZKkgYPHqwnn3xSrVq10jvvvKNGjRppzpw51z32uHHjlJaWZnsdP368TM4JAAAYw9A5PH+mTZs2SkpKUlpamvLy8hQQEKAOHTqobdu2kqSaNWtKkpo2bWr3e02aNNGxY8eue1x3d3e5u7uXXuMAAKBcKbcjPFfy8/NTQECADhw4oM2bN+vBBx+UJNWtW1chISHat2+f3f779+9XWFiYEa0CAIByyNARnosXL+rgwYO2nw8fPqykpCT5+/urTp06WrRokQICAlSnTh3t2LFDzz//vGJiYhQdHS1JslgseuGFFzR+/HhFRkaqZcuWmjt3rvbu3avFixcbdVoAAKCcMTTwbN68WV27drX9PGbMGEnSE088obi4OCUnJ2vMmDE6deqUatasqccff1x///vf7Y4xatQo5eTkaPTo0Tp37pwiIyO1YsUK1a9fv0zPBQAAlF8Wq9VqNboJo6Wnp8vPz09paWny9fU1uh0AgAM6Tl6lExcuP2W/VlVPrRt7h8EdoTypEHN4AAAAbgaBBwAAmB6BBwAAmB6BBwAAmB6BBwAAmB6BBwAAmB6BBwAAmB6BBwAAmF65XjwUAIDiqunncc3/BiSetCyJJy0DAGB2XNICAACmR+ABAACmR+ABAACmR+ABAACmR+ABAACmR+ABAACmR+ABAACmR+ABAACmR+ABAACmR+ABAACmR+ABAACmR+ABAACmR+ABAACm52J0A+XBbwvGp6enG9wJAAC4UT4+PrJYLH+4D4FHUkZGhiQpNDTU4E4AAMCNSktLk6+v7x/uY7H+NrxRiRUWFurkyZPFSoio+NLT0xUaGqrjx4//6QcEQMXC57tyYoSnmJycnFS7dm2j20AZ8/X15Q8iYFJ8vnE1Ji0DAADTI/AAAADTI/Cg0nF3d9f48ePl7u5udCsAShifb1wPk5YBAIDpMcIDAABMj8ADAABMj8ADAABMj8ADAABMj8CDCmXgwIGyWCx67rnnimwbOnSoLBaLBg4caFdPSEiQs7OzunfvXuR3jhw5IovFoqSkpGu+X1xcnCwWS5GXh4dHSZwOUKn89vm9+nXw4MHrbrvyc1u3bl1ZLBYtWLCgyLGbNWsmi8WiuLi4ItsmTpwoZ2dnTZ48uci2uLg4Va1a9YZ7vtbfE5RvBB5UOKGhoVqwYIGys7NttZycHM2fP1916tQpsv+cOXM0YsQIrV27VseOHbvh9/P19VVycrLd6+jRozd1DkBl1b179yKfp/Dw8Otumz9/vt3vh4aGKjY21q62YcMGpaSkyNvb+5rvGRsbqxdffFFz5swpsZ6v7gvlH4EHFU7r1q1Vp04dLVmyxFZbsmSJQkND1apVK7t9MzMz9fnnn2vIkCG67777rvnt789YLBYFBwfbvYKCgm72NIBKyd3dvcjnydnZ+brbqlWrZvf7jz76qOLj43X8+HFbbc6cOXr00Ufl4lJ0taT4+HhlZ2fr9ddfV2ZmptasWVMiPV/dF8o/Ag8qpCeffNLuW96cOXM0aNCgIvstXLhQjRo1UqNGjfTYY48pNjZWPHoKqLiCgoJ09913a+7cuZKkrKwsLVy48Jqff0maPXu2+vfvL1dXV/Xv31+zZ88uy3ZRjhB4UCENGDBAa9eu1ZEjR3T06FGtW7dOjz32WJH9Zs+ebat3795dFy9e1MqVK2/ovdLS0lSlShW7V3R0dImcB1DZfPXVV3afpb59+153W5UqVfTGG28UOcagQYMUFxcnq9WqxYsXq379+mrZsmWR/dLT0/XFF1/Y/gY89thjWrx4sdLT02+q5+v1hfKN1dJRIdWoUUP33nuv5s6dK6vVqnvvvVc1atSw22ffvn3atGmT7dKXi4uL+vXrpzlz5uiuu+4q9nv5+Pho69atdjVPT8+bPwmgEuratatmzpxp+/nKeTdXb5Mkf3//Ise49957NXjwYK1Zs+a6o7uSNG/ePNWrV0+RkZGSpJYtW6pevXpasGCBnn32WYd7vl5fKN8IPKiwBg0apOHDh0uSpk+fXmT77NmzlZ+fr1q1atlqVqtVrq6uOn/+fLGvwTs5OalBgwYl0zRQyXl7e1/38/RH267k4uKiAQMGaPz48dq4caOWLl16zf3mzJmjXbt22c3tKSws1OzZs28o8BS3L5RvBB5UWN27d1deXp4k6e6777bblp+fr48//lhvv/12kctPvXv31meffWYLSwAqnkGDBulf//qX+vXrd80vLzt27NDmzZu1evVqu9GYCxcuqFOnTtq5c6ciIiLKsmUYjMCDCsvZ2Vl79uyx/feVvvrqK50/f15PPfWU/Pz87Lb16dNHs2fPtgs8+/btK3L8pk2bSro8KpSSklJke2BgoJycmAYHlJTc3NwinzUXF5cil6slqUmTJjpz5oy8vLyueazZs2erffv26tSpU5Ftt912m2bPnq133nlHklRQUFDkWVxubm62vwE30hfKLwIPKjRfX99r1mfPnq277rqrSNiRLo/wTJw4UVu3brV983v44YeL7Hf48GFJlyc+1qxZs8j25ORkBQcH30z7AK7w3XffFfmsNWrUSHv37r3m/tWrV79mPS8vT59++qleeumla27v3bu3Jk2apClTpkiSLl68WOSRFmFhYTpy5IhDfaF8sli5RxcAAJgc4/EAAMD0CDwAAMD0CDwAAMD0CDwAAMD0CDwAAMD0CDwAAMD0CDwAAMD0CDwAAMD0CDwAAMD0CDwAAMD0CDwAAMD0CDwAKqzFixerefPm8vT0VPXq1XXXXXcpMzNTkhQbG6smTZrIw8NDjRs31owZM2y/N2jQILVo0UK5ubmSpEuXLqlNmzZ69NFHDTkPAKWPwAOgQkpOTlb//v01aNAg7dmzR6tXr1avXr1ktVr10Ucf6eWXX9Y///lP7dmzRxMnTtTf//53zZ07V5L03nvvKTMzU2PHjpUk/f3vf9eZM2fsQhEAc2G1dAAV0tatW9WmTRsdOXJEYWFhdtvq1KmjKVOmqH///rbaP/7xD33zzTdKSEiQJK1fv16dO3fW2LFjNWnSJK1cuVKdOnUq03MAUHYIPAAqpIKCAt19993atGmT7r77bkVHR6tPnz7Kz89XYGCgPD095eT0+yB2fn6+/Pz8dOrUKVvtb3/7myZNmqSXXnpJkydPNuI0AJQRF6MbAABHODs7a8WKFUpISNAPP/yg999/Xy+//LL++9//SpI++ugjdejQocjv/KawsFDr1q2Ts7OzDhw4UKa9Ayh7zOEBUGFZLBZ17NhRr732mrZt2yY3NzetW7dOtWrV0qFDh9SgQQO7V3h4uO1333rrLe3Zs0fx8fH6/vvvFRsba+CZAChtjPAAqJA2btyolStXKjo6WoGBgdq4caNOnz6tJk2aaMKECRo5cqR8fX3Vo0cP5ebmavPmzTp//rzGjBmjpKQkvfrqq1q8eLE6duyof//733r++efVuXNn1atXz+hTA1AKmMMDoELas2ePRo8era1btyo9PV1hYWEaMWKEhg8fLkmaN2+e3nrrLe3evVve3t5q3ry5Ro0apR49eqhNmza6/fbbNWvWLNvxevXqpVOnTmnNmjV2l74AmAOBBwAAmB5zeAAAgOkReAAAgOkReAAAgOkReAAAgOkReAAAgOkReAAAgOkReAAAgOkReAAAgOkReAAAgOkReAAAgOkReAAAgOn9P9AREw914DZLAAAAAElFTkSuQmCC\n",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"sns.boxplot(data=penguins, x='species', y='body_mass_g', hue='sex')"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "29800dff",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"C:\\Users\\barguzin\\Anaconda3\\envs\\geo_env\\lib\\site-packages\\pingouin\\parametric.py:992: FutureWarning: Not prepending group keys to the result index of transform-like apply. In the future, the group keys will be included in the index, regardless of whether the applied function returns a like-indexed object.\n",
"To preserve the previous behavior, use\n",
"\n",
"\t>>> .groupby(..., group_keys=False)\n",
"\n",
"To adopt the future behavior and silence this warning, use \n",
"\n",
"\t>>> .groupby(..., group_keys=True)\n",
" sserror = grp.apply(lambda x: (x - x.mean()) ** 2).sum()\n"
]
},
{
"data": {
"text/html": [
"