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ABSTRACT
As so�ware systems grow in size and complexity, the task of man-

ual debugging consumes more time in the development cycle, and

opens up to more serious and frequent human error. To address this

problem, researchers have developed systems for automated patch

generation, which a�empt to reduce the manual work required for

diagnosing and addressing faulty code. Machine Learning models,

which can leverage large amounts of information, for example from

large code repositories, promise one possible set of solutions for au-

tomated patch generation. In particular, researchers have recently

used sequential generative adversarial networks (GANs) success-

fully in text-based prediction tasks. We thus propose a model for

sequential generative adversarial networks for automated patch

generation (SeqGAN-APG) which divides the task of patch gen-

eration into a two-part adversarial framework which learns the

distribution of sequential features in non-buggy code while also

learning to generate sequential features which mimic that distribu-

tion. Our approach is novel not only in terms of its application of

GANs to an untested kind of sequential data, but also in terms of

the kinds of sequential features which we implement, going beyond

the typical token-based approach.
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1 INTRODUCTION
As so�ware systems grow in size and complexity, the task of man-

ual debugging consumes more time in the development cycle, and

opens up to more serious and frequent human error. So far in

2017, Mozilla has veri�ed 576 newly reported bugs for the Firefox

web-browser [2], a complex piece of so�ware containing nearly 18

million lines of code [3]. �ough many discovered bugs may only

a�ect the system at a super�cial level, some faults can expose seri-

ous security vulnerabilities, and thus require immediate a�ention

and resolution - an o�en tall order in large and complex so�ware

systems. In the past decade, researchers have thus begun to turn

toward automatic bug-detection and repair in an e�ort to address

the rising di�culties of manual debugging [5]; however, few of the

proposed methods have made use of recent advances in machine
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learning and arti�cial intelligence in order to leverage information

regarding so�ware structure, history, or other relevant data.

As machine learning has been celebrating a wide array of novel

applications, many researchers have applied machine learning mod-

els to problems in so�ware engineering and design, leveraging

large repositories of code as data sets to solve various problems.

For example, one popular line of research has translated solutions

for movie recommender systems to help Integrated Developing

Environments predict API calls while writing programs [7, 9, 33].

Only recently, however, researchers have started to leverage large

code repositories to help in automated patch generation and other

security-related problems. In this paper, we provide a contribution

towards this e�ort in the form of a Sequential Generative Adver-

sarial Network for Automated Patch Generation (SeqGAN-APG).

Our proposed framework utilizes a discriminative model trained in

an adversarial se�ing to learn the underlying distribution of novel

sequential features extracted from buggy and non-buggy programs,

while the associated generative adversarial model a�empts to learn

how to generate the kinds of sequential features characteristic to

non-buggy code. �is represents a novel approach to deep learn-

ing for patch generation, contrasting with the auto-encoder based

method recently implemented in the Deep�x Patch Generation

framework [16].

�ough our implementation currently lacks some �nal details

and su�cient time to learn thorough models, which will establish

SeqGAN-APG as a full pipeline, our implemented discriminative

and generative models do provide sequential predictions for the tar-

get distribution of non-buggy programs. In addition to the standard

approach of utilizing sequences of tokens to represent program

data, our model utilizes a novel application of AST-based sequential

features for generating non-buggy code samples, thus taking an im-

portant step into the application of alternative sequential features

which may be�er capture the rigid syntactical structures at work

in programs.

2 BACKGROUND
In this section, we present some of the background information at

work in our presentation of SeqGAN-APG.

2.1 Automated Bug Repair
We can divide the problem of automatic bug repair into a number of

sub-problems: ”failure detection (something wrong has happened),

bug diagnosis (why this has happened), fault localization (what

the root cause is), [and] repair inference (what should be done to

�x the problem)” [26]. In addition to this taxonomy, ”repair infer-

ence” can be extended to include ”patch generation”
1
if the �nal

1
�ese methods o�en target security-related goals [10, 34]
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product of the model is a full so�ware patch intended to produce

a concrete resolution for a bug or set of bugs within so�ware. In

the past, many researchers have approached each of these sub-

problems individually (see, for example [11, 18, 22, 24, 27]), while

some frameworks a�empt to address multiple problems at once,

o�en performing both localization and repair (e.g. [23]). Histori-

cally, repair inference has perhaps most frequently been addressed

using genetic programs ([6, 14, 17, 20, 21, 36]), although a number

of other approaches utilize other methods such as solving problems

in Satis�ability Modulo �eory [12, 37], or semantic analysis [28].

Most recently, some state of the art methods have taken some �rst

steps into data mining [19] and even some basic probabilistic meth-

ods [23]; however, the problem of bug repair via patch generation

has been largely untouched by machine-learning, and thus deserves

further exploration.

Our approach, insofar as it incorporates a discriminative model

in association with a generative model for creating patches sits

at the intersection of failure detection and patch generation, with

additional work remaining in fault localization to apply generated

patches to buggy code.

2.2 Program Representations for Machine
Learning

In cases where researchers use program repositories as data for

machine learning models, the problem presents itself - how do we

represent a program so that a model can successfully leverage the

information included therein?

Following work in natural language processing, one popular set

of approaches encodes program features in terms of sequences and

subsequences of tokens present in the program. A simple bag-of-

words approach, for example, indicates the presence of particular

tokens in a program, without including any sequential information,

while a more sophisticated approached might encode the presence

of n-length grams, i.e. repeated pa�erns of tokens. Researchers

have used these and other highly sparse, token-based features to

successfully encode programs for analysis purposes. For additional

discussion of text representations in machine learning see [4, 32].

Another popular representation of program information is the

program’s abstract syntax tree (AST). �e AST of a program pro-

vides a graph-based representation of relationships between particu-

lar syntactical objects in the program, thus capturing more detailed

information about a program’s underlying structure, such as rela-

tionships between variable types, the scope of certain statements

and structures, etc.

Finally, programs as a data objects o�en contain a number of

additional features not included in text data. One could very well

include program creation or modi�cation timestamps, input-output

evaluations, runtime information, or other program data as features

of P . While a large body of work in machine-learning focuses on

text-representations alone, the frontier of feature engineering and

selection for program data remains wide open for both sequential

and non-sequential feature types.

2.3 Generative Adversarial Networks
�e underlying model which motivates our proposal of SeqGAN-

APG is a Generative Adversarial Network (GAN) [15]. A generative

adversarial network is a joint learning framework involving two

deep neural networks, which trains both models in a joint se�ing to

perform two di�erent, but related tasks: one model, the generative

model, a�empts to emulate the distribution of a given target data

set; the second, discriminative model, a�empts to estimate the

probability that a given sample came from a training data set rather

than from D. �e generative model, a�empts to act as an adversary

for the discriminator, using reinforcement learning techniques to

a�empt to learn how to ’fool’ the discriminator, thus hopefully

increasing the robustness of the discriminator as well as the ability

of the generator to replicate the target distribution.

Researchers have applied GANs to a number of interesting gen-

erative tasks, mostly centered around image generation (e.g. [13])

and other real-valued data. It is only very recently that researchers

have begun to explore the application of generative adversarial

networks to discrete, sequential information, such as text [30, 39].

�e SeqGAN [38] model in particular has illustrated that utilizing

Recurrent Neural Networks along with some tweaks to gradient

computations for the generative task can provide robust sequence

predictions. �e idea behind SeqGAN-APG is to use this sequen-

tial generative adversarial network to generate sequential samples

which mimic the distribution of non-buggy programs, while also

training a discriminator which is a�empting to distinguish between

distributions of buggy and non-buggy programs.

3 METHODOLOGY
In this section we describe the underlying methodology used to

formulate, build, and evaluate SeqGAN-APG.

3.1 Model Formulation
�e problem of automatic patch generation bears closest resem-

blance to structured sequence prediction, insofar as the underlying

generator strives to predict the correct sequence of tokens which

will replace a buggy snippet of code. As mentioned before, we want

to train a Sequential Generative Adversarial Network for Automatic

Patch Generation (SeqGAN-APG), so we split the task of automatic

patch generation into 1) buggy vs. non-buggy discrimination, and

2) sequential feature generation.

Buggy/Non-Buggy Discrimination
Let P be a program or snippet represented by a given set of

features {Fi } such as ordered sequences of tokens, input-output

speci�cations, runtime information, etc. Additionally, associate a

binary label L to each program indicating whether the program

does (L == 1) or does not (L == 0) contain a bug. �e basic task of

automatic patch generation posits a modelM which best emulates

the mapM : {PL==1} → {PL==0}.
�e majority of previous approaches to automatic patch genera-

tion select a ”best” candidate patch from a restricted search-space

generated from restricted transformations on the features of P . �e

model in [23], for example, learns a probabilistic ranking over the

features of successfully patched data in order to rank an automati-

cally generated search space for P , created by permuting speci�c

features of P , such as the structure of the Abstract Syntax Tree, or

sequences of tokens.

While restricting models to predictions on restricted search-

spaces can help to retain certain structures on candidate patches, it
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does so at the expense of excluding possibly successful candidates

not available in the search space. Our approach, in contrast, strives

to learn the underlying distribution of features in buggy and non-

buggy programs, and to use this discriminatory power to drive an

underlying generative process for generating a non-buggy program

given a set of features for a buggy program. �us, our approach

generalizes from learning a particular map on a known or assumed

set of distributions to learning a model which learns estimates of

the underlying distributions in order to predict whether or not a

given program sample represents a buggy or non-buggy problem.

�is �rst task is thus allocated to the discriminative part of the

Sequential Generative Adversarial Network.

Sequential Feature Generation
We choose to adopt the intuition that many program features

include sequential information which may prove important in char-

acterizing the distribution of buggy and non-buggy programs, and

to treat the problem of patch generation as a kind of structured

sequence generation. �is idea follows the example of Deep�x’s

sequence-to-sequence patch generation [16], which posits a model

for translating sequences of buggy tokens to sequences of non-

buggy tokens using the Seq2Seq deep auto-encoder [25]. �ough

the underlying network structure of SeqGAN-APG is fundamentally

di�erent than Deep�x, we approach patch generation in fundamen-

tally the same way. Given a buggy program or snippet P , with a

set of sequential features X1, ...,Xn , and a set of non-sequential

features {Fi }, our model a�empts to predict the best sequence of tar-

get features Y1, ...,Yn such that the resulting patched program best

resembles the learned distribution of non-buggy programs. Doing

this in a joint se�ing allows the generative model to generate these

sequential features (such as sequences of tokens or AST-nodes) to

best create non-buggy programs or snippets a�er being given a set

of buggy programs as input. Additionally, the sequential nature of

the features mean that if a fault is localized, the trained generative

model should be able to start at a location prior to the localized fault

and generate a set of sequential features, such as correct tokens,

which represent a �x to that localized issue.

Model Implementation Details
Due to space constraints we have assembled the parameters and

architectural details used to build the SeqGAN-AST network in

appendix A.

3.2 Data Processing
Our chosen data set for evaluation is the CodeFlaws data set [35],

a recently released set of labeled, buggy and non-buggy programs

wri�en in the C programming language. Each �le in the CodeFlaws

data has a label of either buggy or non-buggy, includes a set of nine

input-output evaluations, and matches with a dual �le of the oppo-

site label wri�en for the same program functionality. Additionally,

each buggy �le contains a label identifying the particular kind of

bug under the code�aws proposed taxonomy of bugs [35], which

means we could possibly extend learning the binary discriminative

task of buggy and non-buggy programs to learn the distributions

of features characterizing certain kinds of bugs.
Prior to analysis, we remove include statements and comments

from each �le, assuming that bugs are not located in the usage of

particular headers, and aren’t in�uenced by information in com-

ments. �is also restricts the vocabulary to only statements which

are parsed on compilation, and which do not require the linking

of external libraries or header �les. We then format the C �les so

that the contents of each �le are all located on a single line, and

assemble positive and negative �les into separate data sets, where

each row in the data set represents one �le, i.e. one instance of a

bug. �us, we do not perform any kind of bug localization, treating

the entire program as a positive or negative instance of the bug,

rather than extracting snippets or labeling lines separately.

�is initial approach to data representation requires the length

of input and output sequences to be quite long (between 100 and

400 tokens on average), which makes the generation task di�cult.

�is lack of bug localization means we cannot currently associate

generated samples with particular fault locations. �is major short-

coming short-circuits the �nal step of the patching pipeline, and

represents a major point of remaining work.

Token-Sequence Representation
A�er assembling C �les into the separated data sets as described

above, we �rst generate a data set which encodes programs as

sequences of tokens. In each line of the positive and negative �les,

we �rst convert all recognized C operators into unique tokens,

using the intuition that each operator has a semantic meaning in a

similar fashion to C keywords. We then use a pre-built vocabulary

of C keywords and operators (based on [1]) to convert tokens into

unique hashes, and then extend this vocabulary to hash variable

names, constants, literals, and other unique values which appear

throughout the program repositories. �e resulting sequence of

unique hashes, along with the vocabulary for the entire repository,

constitute the tokenized data set.

AST-Node-Sequence Representation
In addition to the tokenized representation of program data,

we also assemble a data set based on parsing the Abstract Syntax

Trees for each program. For each program, we run the Python

C-AST Parser [8] in order to generate the associated AST. Once

we’ve generated each AST, we then �a�en the AST into an ordered

sequence of AST nodes. To do this, we recursively parse through

the entire AST in a depth �rst fashion, adding each encountered

node to the sequence and re-encoding edges to children as sparse

features in the node itself. We then use the Sklearn vectorizor [29]

to convert each node to a set of hashes which encode the unique,

nominal features of the given, such as the node’s type, its links to

other nodes in the AST, or its particular syntactical a�ributes such

as expression or data type. �e resulting data set is a tensor with a

number of data instances equal to the number of �les, with each

instance encoding a sequence of feature vectors corresponding to

the node located at the given point in the sequence.

�is approach to AST-to-Sequence conversion is inspired by the

approach outlined in [31], with the essential di�erence being that

we do not convert nodes to program actions prior to parsing.

3.3 Evaluation Protocol + Baselines
Due to the lack of a mechanism for bug localization and patch

insertion, to evaluate the success of the generative model, we quali-

tatively compare the kinds of sequences generated from each model

respectively. We compare SeqGAN with an implementation of the
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Seq2Seq deep learning library [25], which is the underlying net-

work at work in the Deep�x Automatic Patch Generation suite [16].

We evaluated both SeqGAN-APG and Seq2Seq on both Tokenized

and AST-based data sets, and used the same preprocessing steps

for both models, except for vocabulary hashing, which Seq2Seq

handles internally. We have outlined the detailed parameters for

running the Seq2Seq baseline have been outlined in appendix A. In

the future, we would like to implement the full Deep�x Automatic

Patch Generation suite [16], in addition to other smaller suites used

for automatic patch generation; however, since we have not cur-

rently resolved the localization sub-problem for our model, this

comparison is currently not possible.

In addition to the Generator Baselines, we also wanted to com-

pare the discriminative model with a suite of text classi�ers imple-

mented from the sklearn library [29]. We implemented Logistic

Regression without normalization and with Elastic Net Regulariza-

tion, Ridge Regression, a Linear Support Vector Machine with and

without feature selection, a simple perceptron classi�er, a linear

passive-aggressive classi�er, bernoulli and multinomial naive-bayes

classi�ers, a k-nearest-neighbors classi�er, a nearest centroid clas-

si�er, and a random forest classi�er. We performed 10-fold cross

validation on all models, and record the accuracy for the binary clas-

si�cation task. We did not perform any hyper-parameter searches

for the models, with the chosen hyper-parameters for each model

are speci�ed in appendix A. We evaluated the suite of classi�ers

�rst on the hashed tokenized text data, and then subsequently on

the hashed AST sequences. Unfortunately, due to unresolved issues

in the SeqGAN library, and lack of time to invent patches for the

so�ware, it was not possible to also output accuracy for the Seq-

GAN model. Nonetheless, the results indicate di�erences between

the two data processing methodologies, and remain interesting

for future analysis. Regardless, without su�cient time to train the

networks, or run hyperparameters, it is not likely the more complex

models would compare well with the simpler models which we

could implement and evaluate within a shorter time-frame.

All tests were run in a 64-bit Ubuntu 17.04 environment with

8 GB of RAM and an Intel(R) i7-4790 core clocked at 3.60GHz.

SeqGAN-APG and Seq2Seq were trained using CUDA on an Nvidia

GeForce GTX 980 Ti GPU with 6 GB of memory.

4 RESULTS AND DISCUSSION
In this section, we present the initial results for SeqGAN, with

the hope of comparing with the various baselines discussed in the

previous section.

How does SeqGAN perform in the discriminative task?
Figure 1 compares the accuracy measure for a suite of classi�ers

tested on both tokenized and AST data sets. All classi�ers perform

be�er when utilizing the AST-based data. Unfortunately imple-

mentation issues in the SeqAST library, which does not by default

support accuracy evaluation, prevented direct comparison with the

discriminator at this time.

What kinds of sequences do the generative models out-
put?

�e localization issue is not the only obstacle preventing the

output of currently viable patches for both generators: both deep

networks require signi�cant training time (on the order of days),
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Figure 1: Comparison of Discrimination Accuracy on Di�er-
ent Data Processing Methodologies

as well as robust parameter tuning in order to generate viable

patches, or even just viable sequences. �us, the complexity of the

models is itself a barrier to generating robust output a�er a short

training timeframe (only 1000 or 2000 iterations, for example, is not

su�cient), which is a common characteristic of most deep-learning

frameworks. Access to more robust machines with more GPUs, in

addition to a longer timeframe is required to generate the sequences

in a more robust ways. Both models, a�er 1000-2000 iterations, only

output sequences of operators. �us, though the full pipelines do

’work’, desirable results would require a longer time-frame.

5 CONCLUSION
In this paper, we proposed a novel Sequential Generative Adversar-

ial Network approach to Automated Patch Generation (SeqGAN).

In contrast to recent approaches in automated patch-generation,

our approach utilizes an adversarial se�ing to learn how sequential

features characterize buggy and non-buggy programs, and then

use these features to build sequences of features which represent

non-buggy.

In addition to the standard representation of programs as se-

quences of tokens, we implemented a novel approach to model the

sequential features of a program’s AST nodes. Current results indi-

cate that AST-based features help simple sequence-based classi�ers

to be�er predict whether a given program is buggy or non-buggy.

Future work will also implement these features on the fully-trained,

optimized generative models.

Beyond insu�cient time and infrastructure to fully train and

optimize the more complex models, the major missing piece of our

framework is a principled strategy for localizing bugs to particular

snippets of code in a fashion which would reduce the input and

output sequence length, and which would aid in actually applying

candidate patches to buggy code. To address this, we would adopt

a similar strategy as it utilized in the DeepFix framework [16].

Altogether our framework represents an important �rst step

toward the exploration both of utilizing di�erent sophisticated

models with di�erent kinds of features for addressing the problem

of automated patch generation. More room remains to a�empt

di�erent network con�gurations, and to compare against various

other baselines; however, the framework in its primal form is there,

requiring only further polishing and few missing pieces before we

can apply it in full, generative form.
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A MODEL PARAMETERS
In this appendix we provide the hyperparameters used to test the

SeqGAN-APG model, as well as the various baselines which we

implemented for comparison. If a parameter is not speci�ed, it

means the parameter was not speci�cally con�gured using the

implemented API.

A.1 Generative Models
SeqGAN Table 1 outlines the parameters for the SeqGAN network

utilized in SeqGAN-APG.

Seq2Seq In order to assure results prior to submission, we uti-

lized a ”small” con�guration of Seq2Seq with 128 units in each

a�ention cell. In the encoding layer, we used a 0.8 input keep proba-

bility and a 1.0 output keep probability in the RNN. In the decoding

layer we used a 0.8 input keep probability and a 1.0 output keep

probability. We used the Adam optimizer for back-propogation,

with an ϵ tolerance of 8e−7 and a learning rate of 0.0001. We capped

the max sequence length at 100. See [25] for more details on pa-

rameter con�guration for Seq2Seq.

A.2 Discriminative Baselines
Table 2 summarizes the parameters used for the sklearn v. 0.1.2

implementation of various classi�ers.
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Network Part Parameter value
Generator Embedding Dimension 32

Generator Hidden Dimension 32

Generator Sequence Length 100

Generator Number of Generated Samples 500

Discriminator Embedding Dimension 64

Discriminator Filter Sizes 1 - 20

Discriminator Num Filters 100 - 200

Discriminator Dropout Keep Probability 0.75

Discriminator L2 Regularizer λ 0.2

Both Batch Size 64

Both Pre-Training Epochs 10

Both Training Epochs 50

Table 1: Baseline Parameters for Discrimination Task

Model Maximum Iterations Learning Rate Tolerance Number Neighbors Number Estimators NB-α
Ridge Regression 1e−2

Linear SVM 1e−3

Linear SVM L1-Features 1e−3

Linear SVM L2-Features 1e−3

Logistic Regression 1000 1e−4

Logistic Regression (EN) 1000 1e−4

Perceptron 10000

Passive Aggressive 1000

K-Nearest-Neighbors 10

Nearest Centroids

Random Forest 1000

Multinomial Naive Bayes 0.01

Bernoulli Naive Bayes 0.01

Table 2: Baseline Parameters for Discrimination Task
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