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The jackknifeThe jackknife

The jackknife is a tool for estimating standard errors and the bias of estimators

As its name suggests, the jackknife is a small, handy tool; in contrast to the bootstrap, which is
then the moral equivalent of a giant workshop full of tools

Both the jackknife and the bootstrap involve resampling data; that is, repeatedly creating new
data sets from the original data
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The jackknifeThe jackknife

The jackknife deletes each observation and calculates an estimate based on the remaining 
of them

It uses this collection of estimates to do things like estimate the bias and the standard error

Note that estimating the bias and having a standard error are not needed for things like sample
means, which we know are unbiased estimates of population means and what their standard
errors are
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The jackknifeThe jackknife

We'll consider the jackknife for univariate data

Let  be a collection of data used to estimate a parameter 

Let  be the estimate based on the full data set

Let  be the estimate of  obtained by deleting observation 

Let 
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ContinuedContinued

Then, the jackknife estimate of the bias is

(how far the average delete-one estimate is from the actual estimate)

The jackknife estimate of the standard error is

(the deviance of the delete-one estimates from the average delete-one estimate)
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ExampleExample

We want to estimate the bias and standard error of the median

library(UsingR)

data(father.son)

x <- father.son$sheight

n <- length(x)

theta <- median(x)

jk <- sapply(1:n, function(i) median(x[-i]))

thetaBar <- mean(jk)

biasEst <- (n - 1) * (thetaBar - theta)

seEst <- sqrt((n - 1) * mean((jk - thetaBar)^2))
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Example testExample test

c(biasEst, seEst)

## [1] 0.0000 0.1014

library(bootstrap)

temp <- jackknife(x, median)

c(temp$jack.bias, temp$jack.se)

## [1] 0.0000 0.1014
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ExampleExample

Both methods (of course) yield an estimated bias of 0 and a se of 0.1014

Odd little fact: the jackknife estimate of the bias for the median is always  when the number of
observations is even

It has been shown that the jackknife is a linear approximation to the bootstrap

Generally do not use the jackknife for sample quantiles like the median; as it has been shown to
have some poor properties
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Pseudo observationsPseudo observations

Another interesting way to think about the jackknife uses pseudo observations

Let

Think of these as ``whatever observation  contributes to the estimate of ''

Note when  is the sample mean, the pseudo observations are the data themselves

Then the sample standard error of these observations is the previous jackknife estimated
standard error.

The mean of these observations is a bias-corrected estimate of 
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The bootstrapThe bootstrap

The bootstrap is a tremendously useful tool for constructing confidence intervals and calculating
standard errors for difficult statistics

For example, how would one derive a confidence interval for the median?

The bootstrap procedure follows from the so called bootstrap principle
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The bootstrap principleThe bootstrap principle

Suppose that I have a statistic that estimates some population parameter, but I don't know its
sampling distribution

The bootstrap principle suggests using the distribution defined by the data to approximate its
sampling distribution
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The bootstrap in practiceThe bootstrap in practice

In practice, the bootstrap principle is always carried out using simulation

We will cover only a few aspects of bootstrap resampling

The general procedure follows by first simulating complete data sets from the observed data with
replacement

Calculate the statistic for each simulated data set

Use the simulated statistics to either define a confidence interval or take the standard deviation to
calculate a standard error
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This is approximately drawing from the sampling distribution of that statistic, at least as far as
the data is able to approximate the true population distribution
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Nonparametric bootstrap algorithm exampleNonparametric bootstrap algorithm example

Bootstrap procedure for calculating confidence interval for the median from a data set of 
observations

i. Sample  observations with replacement from the observed data resulting in one simulated
complete data set

ii. Take the median of the simulated data set

iii. Repeat these two steps  times, resulting in  simulated medians

iv. These medians are approximately drawn from the sampling distribution of the median of 
observations; therefore we can
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Draw a histogram of them

Calculate their standard deviation to estimate the standard error of the median

Take the  and  percentiles as a confidence interval for the median
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Example codeExample code

B <- 1000

resamples <- matrix(sample(x, n * B, replace = TRUE), B, n)

medians <- apply(resamples, 1, median)

sd(medians)

## [1] 0.08834

quantile(medians, c(0.025, 0.975))

##  2.5% 97.5% 

## 68.41 68.82
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Histogram of bootstrap resamplesHistogram of bootstrap resamples

hist(medians)
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Notes on the bootstrapNotes on the bootstrap

The bootstrap is non-parametric

Better percentile bootstrap confidence intervals correct for bias

There are lots of variations on bootstrap procedures; the book "An Introduction to the Bootstrap""
by Efron and Tibshirani is a great place to start for both bootstrap and jackknife information
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Group comparisonsGroup comparisons

Consider comparing two independent groups.

Example, comparing sprays B and C

·

·

data(InsectSprays)

boxplot(count ~ spray, data = InsectSprays)
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Permutation testsPermutation tests

Consider the null hypothesis that the distribution of the observations from each group is the same

Then, the group labels are irrelevant

We then discard the group levels and permute the combined data

Split the permuted data into two groups with  and  observations (say by always treating the
first  observations as the first group)

Evaluate the probability of getting a statistic as large or large than the one observed

An example statistic would be the difference in the averages between the two groups; one could
also use a t-statistic
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Variations on permutation testingVariations on permutation testing

DATA TYPE STATISTIC TEST NAME

Ranks rank sum rank sum test

Binary hypergeometric prob Fisher's exact test

Raw data ordinary permutation test

Also, so-called randomization tests are exactly permutation tests, with a different motivation.

For matched data, one can randomize the signs

Permutation strategies work for regression as well

Permutation tests work very well in multivariate settings
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For ranks, this results in the signed rank test-
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Permutation test for pesticide dataPermutation test for pesticide data

subdata <- InsectSprays[InsectSprays$spray %in% c("B", "C"), ]

y <- subdata$count

group <- as.character(subdata$spray)

testStat <- function(w, g) mean(w[g == "B"]) - mean(w[g == "C"])

observedStat <- testStat(y, group)

permutations <- sapply(1:10000, function(i) testStat(y, sample(group)))

observedStat

## [1] 13.25

mean(permutations > observedStat)

## [1] 0
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Histogram of permutationsHistogram of permutations
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