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Resampled inference

Statistical Inference



The jackknife

- The jackknife is a tool for estimating standard errors and the bias of estimators

- As its name suggests, the jackknife is a small, handy tool; in contrast to the bootstrap, which is
then the moral equivalent of a giant workshop full of tools

- Both the jackknife and the bootstrap involve resampling data; that is, repeatedly creating new
data sets from the original data
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The jackknife

- The jackknife deletes each observation and calculates an estimate based on the remaining n — 1
of them

It uses this collection of estimates to do things like estimate the bias and the standard error

- Note that estimating the bias and having a standard error are not needed for things like sample

means, which we know are unbiased estimates of population means and what their standard
errors are
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The jackknife

- Wel'll consider the jackknife for univariate data
- Let Xi,...,X,, be a collection of data used to estimate a parameter 6
- Let § be the estimate based on the full data set

S éz- be the estimate of 6 obtained by deleting observation i

_ 1 n o A
° Let@ = Ezizlei
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Continued

- Then, the jackknife estimate of the bias is
(n—1) (é - é)

(how far the average delete-one estimate is from the actual estimate)

- The jackknife estimate of the standard error is

n

I ) ) 1/2
[ - Z(eiefl

1=1

(the deviance of the delete-one estimates from the average delete-one estimate)
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Example

library(UsingR)

data(father.son)

X <- father.sonS$sheight

n <- length(x)

theta <- median(x)

jk <- sapply(l:n, function(i) median(x[-1]))
thetaBar <- mean(jk)

biasEst <- (n - 1) * (thetaBar - theta)

seEst <- sqgrt((n - 1) * mean((Jjk - thetaBar)”"2))
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Example test

c(biasEst, seEst)
## [1] 0.0000 0.1014

library(bootstrap)
temp <- jackknife(x, median)

c(tempS$jack.bias, tempSjack.se)

## [1] 0.0000 0.1014
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Example

- Both methods (of course) yield an estimated bias of 0 and a se of 0.1014

- Odd little fact: the jackknife estimate of the bias for the median is always 0 when the number of
observations is even

- It has been shown that the jackknife is a linear approximation to the bootstrap

- Generally do not use the jackknife for sample quantiles like the median; as it has been shown to
have some poor properties
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Pseudo observations

- Another interesting way to think about the jackknife uses pseudo observations

- Let
Pseudo Obs = nf — (n — ]-)éz

- Think of these as "whatever observation ¢ contributes to the estimate of 6"
- Note when @ is the sample mean, the pseudo observations are the data themselves

- Then the sample standard error of these observations is the previous jackknife estimated
standard error.

- The mean of these observations is a bias-corrected estimate of
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The bootstrap

- The bootstrap is a tremendously useful tool for constructing confidence intervals and calculating
standard errors for difficult statistics

For example, how would one derive a confidence interval for the median?

- The bootstrap procedure follows from the so called bootstrap principle
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The bootstrap principle

- Suppose that | have a statistic that estimates some population parameter, but | don't know its
sampling distribution

- The bootstrap principle suggests using the distribution defined by the data to approximate its
sampling distribution
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The bootstrap in practice

In practice, the bootstrap principle is always carried out using simulation
- We will cover only a few aspects of bootstrap resampling
- The general procedure follows by first simulating complete data sets from the observed data with
replacement
- This is approximately drawing from the sampling distribution of that statistic, at least as far as
the data is able to approximate the true population distribution
- Calculate the statistic for each simulated data set

Use the simulated statistics to either define a confidence interval or take the standard deviation to
calculate a standard error
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Nonparametric bootstrap algorithm example

- Bootstrap procedure for calculating confidence interval for the median from a data set of n
observations

I. Sample n observations with replacement from the observed data resulting in one simulated
complete data set

ii. Take the median of the simulated data set
iii. Repeat these two steps B times, resulting in B simulated medians

iv. These medians are approximately drawn from the sampling distribution of the median of n
observations; therefore we can

- Draw a histogram of them
- Calculate their standard deviation to estimate the standard error of the median

- Take the 2.5 and 97.5%" percentiles as a confidence interval for the median

13/21



Example code

B <- 1000
resamples <- matrix(sample(x, n * B, replace = TRUE), B, n)
medians <- apply(resamples, 1, median)

sd(medians)
## [1] 0.08834
quantile(medians, c(0.025, 0.975))

## 2.5% 97.5%
## 68.41 68.82
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Histogram of bootstrap resamples

hist(medians)

Histogram of medians
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Notes on the bootstrap

- The bootstrap is non-parametric
- Better percentile bootstrap confidence intervals correct for bias

- There are lots of variations on bootstrap procedures; the book "An Introduction to the Bootstrap™"
by Efron and Tibshirani is a great place to start for both bootstrap and jackknife information
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Group comparisons

Consider comparing two independent groups.

Example, comparing sprays B and C

data(InsectSprays)
boxplot(count ~ spray, data = InsectSprays)
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Permutation tests

-+ Consider the null hypothesis that the distribution of the observations from each group is the same
- Then, the group labels are irrelevant
- We then discard the group levels and permute the combined data

- Split the permuted data into two groups with n4 and ng observations (say by always treating the
first n4 observations as the first group)

- Evaluate the probability of getting a statistic as large or large than the one observed

- An example statistic would be the difference in the averages between the two groups; one could
also use a t-statistic
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Vanations on permutation testing

DATA TYPE STATISTIC TEST NAME

Ranks rank sum rank sum test

Binary hypergeometric prob Fisher's exact test

Raw data ordinary permutation test

Also, so-called randomization tests are exactly permutation tests, with a different motivation.
For matched data, one can randomize the signs

- For ranks, this results in the signed rank test
Permutation strategies work for regression as well

- Permuting a regressor of interest

Permutation tests work very well in multivariate settings
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Permutation test for pesticide data

subdata <- InsectSprays[InsectSprays$spray %$in% c("B", "C"), ]

y <- subdata$count

group <- as.character (subdataSspray)

testStat <- function(w, g) mean(w[g == "B"]) - mean(w[g == "C"])
observedStat <- testStat(y, group)

permutations <- sapply(1:10000, function(i) testStat(y, sample(group)))

observedStat
# [1] 13.25
mean (permutations > observedStat)

# [1]1 O
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Histogram of permutations

Histogram of permutations
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