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Abstract—The vibrational behavior of a rocket is
critical to characterize, in order to design for structural
stability under hazardous loading conditions. Thus, we
used analytical modeling, finite element analysis, and
real-world in-flight strain gauge data to characterize
our rocket’s transverse vibrational modes. Our flight
data—recorded from launching an Aerotech Barracuda on
a G79 motor—shows two distinct modes, corresponding to
closely matching modes in our analytical and numerical
models. The first indicates resonance with two nodes. This
mode has a frequency of 37411 Hz in the analytical model,
28.319 Hz in the SolidWorks model, and 40.4 + 1.3Hz in
the flight data. The second indicates resonance with the
same two nodes, plus a third one directly between them.
This mode oscillates at 115+ 36 Hz in the analytical model,
106.37 Hz in the SolidWorks model, and 130.5 + 2.4 Hz in
the flight data. Each nodes frequencies fall within the range
predicted by our analytical model.

I. INTRODUCTION

Vibrational analysis plays a crucial role in rocketry.
During flight, external forces excite vibrations in the
rocket. Resonance induced in the rocket can have
devastating effects if amplitudes of vibrations are not
controlled. To prevent such problems, it is necessary to
understand which resonant modes are excited in flight.

In this paper, we attempt to do just this. Using
piezoelectric strain gauges and a pair of accelerometers,
we experimented on an Aerotech Barracuda rocket and
ran additional tests using a secondary, custom-built
rocket (A note will be made anytime this secondary
rocket is being referenced).

In order to predict the rocket’s frequency response,
we start by developing both an analytical and a
numerical model for the rocket’s oscillation. Following
that, we discuss ground-based experimental techniques
to determine the system’s resonant modes and damping
factor. Finally, we report the results from the rocket’s
flight and compare these results to the models. In all,
this allows us to recommend certain design choices to
minimize negative effects of resonant vibrations.

A. Background Info

As the rocket is forced through the air by burning
fuel and buffeted by the passing air, it flexes and
distorts. These forces excite all frequencies in the
rocket, but at certain resonant frequencies, the input
forces constructively interfere with existing vibrations.
The rocket then tends to oscillate with much greater
amplitude at those frequencies. The rocket can exhibit
transverse (side to side), longitudinal (shortening and
lengthening), dilatational (widening and narrowing), and
torsional (twisting) oscillation, but we will focus here on
transverse modes. In general, these vibration patterns are
henceforth referred to as resonant modes.

In order to determine the resonant frequencies of
an object, it is necessary to determine the frequency
response. To do so, a system is stimulated with a
range of frequencies and the resulting amplitude of
oscillation is recorded. Two methods of supplying this
stimulus are the tap test and the sweep test. In a
tap test, the rocket is hit with an impulse hammer,
a device which records the input signal via sensors
in the hammerhead itself. This input approximates a
Dirac Delta function, which has a uniform distribution
of frequency components. In a sweep test, the rocket is
stimulated with vibrations of varying input frequency.
In both tests, the resonant frequencies of the rocket are
excited by the corresponding stimuli, and by observing
the system’s oscillation in the frequency domain, peaks
can be observed for each of those resonant modes.

Through loss of kinetic energy to the surroundings,
the amplitude of these oscillations will decrease over
time in a process known as damping. The higher the
damping factor, the faster oscillations will weaken and
disappear. Because damping can influence and shift
resonant frequencies, changes in damping factor can alter
how the rocket vibrates.



II. EXPERIMENTAL DESIGN

In our experiment, we hoped to characterize the rocket
in terms of the aforementioned parameters of resonant
modes and damping.

A. Goals

The primary goal of this experiment was to determine
the frequencies and shapes of the rocket’s vibrational
modes while in flight.

While identifying resonant frequencies informs
important rocket design decisions, the frequencies and
shapes alone do not give the full picture. The rocket
like all real world systems, has inherent damping. We
hypothesized that the rocket’s damping factor would
relate to its velocity, because as the rocket accelerates,
added strain and pressure on the body might change
system properties.

Our secondary goal was thus to investigate the
relationship between the damping factor of the rocket
and its velocity. More specifically, we wanted to study
the damping factor at transonic velocities because the
drastic difference between subsonic and supersonic flows
would yield more interesting trends.

B. Sensor Selection

1) IMU: In order to determine the velocity of the
rocket during flight, we used data from a Mudd IMU3
board. Of the two accelerometers and two gyroscopes
on the IMU board, we recorded only the high-g
accelerometer and the single low-g accelerometer along
the same axis (board y axis, longitudinal axis of rocket).
As our only independent variable of interest was the
longitudinal velocity of the rocket, and the only part of
our flight during which we anticipated useful data was the
few seconds of acceleration by the rocket motor (during
which the rocket would be approximately vertical), we
chose to neglect the horizontal acceleration data from the
rest of the low-g accelerometer and the rotation data from
the gyroscopes. This also allowed us more datalogger
channels for other sensors.

OpenRocket simulations for our rocket indicated a
max acceleration of 17g’s with a G79 motor and 31
g’s with an H165 motor. For the AD22280 high-G
accelerometer, both of these fall well within its range of
+ 50g’s. The output of this chip is a low-impedance,
analog, DC voltage signal, ranging from 0 to 5V,
centered at 2.5V and exhibiting a linear relationship
to acceleration with slope 38 mV/g. Thus, for the H
motor, the output voltage should range between 2.5V
and 2.5+ 0.038 - 31 = 3.68 V.

v -

Akhil B-’U‘u

909 360 3521

(side)

Fig. 1. Left: Placement of the 13 piezo strain gauges
Middle: Aerotech Barracuda, primary experimental platform
Right: Custom-built rocket, secondary experimental platform

The MMA7331L low-G accelerometer will be maxed
out during this stage of the flight, as it has a maximum
acceleration of 4 g’s. However, it will still allow us to
record the effects of gravity and drag after the rocket
motor burns out. The output signal from this chip is
also a low-impedance analog DC voltage, centered at
1.4 volts and increasing by 308 millivolts for each g of
acceleration. Since negative acceleration due to drag and
gravity shouldn’t exceed two g’s, the output voltage of
this chip should range between 1.4 and 2 volts.



2) Piezoelectric Strain Gauges: In order to track
vibrations along the rocket, we attached piezoelectric
dynamic strain gauges to its surface. These gauges are
cheaper and output at higher voltages than conventional
strain gauges, which put less strain on our budget and
circuitboard space.

Because these gauges are simply pieces of
piezoelectric material, they have no maximum input
value before the mechanical failure point. These devices
each output a low-impedance, analog, AC voltage signal,
proportional to vibrational amplitude and centered on
zero volts.

C. Rocket Design

For our experimentation we constructed two entirely
different rockets. The first was an Aerotech Barracuda,
modified as prescribed for Mudd’s E80 course (with a
longer booster section and different motor retainer), and
designed to fly on a G or H motor [1]. This rocket was
outfitted with thirteen external piezoelectric strain gauges
and painted to be aesthetically pleasing. See Figure 1 for
a picture of this rocket.

The second was a custom rocket built from 54mm
Apogee Blue Tube and intended to fly at subsonic speeds
on an I motor or at transonic speeds on a J motor.
The body material was chosen for its strength, and
was assembled to be the minimum diameter capable of
holding an I or J motor, to enable it to reach and survive
supersonic flight. This rocket was outfitted with a single
external piezoelectric strain gauge and also painted to be
aesthetically pleasing. See Figure 1 for a picture.

From this point in the paper, all instances of the rocket
will refer to the Aerotech Barracuda, unless otherwise
specified.

D. Sensor and Actuator Design

We created a strain gauge array using thirteen MSI
FDT1-028K strain gauges on the body of the rocket,
attached directly to the body of the rocket with the
included adhesive backing. As visible in Figure 2c, ten
were arranged collinearly down the body of the rocket
from tip to tail, four on the payload section and six on the
booster section. We expected that this linear arrangement
would allow us to see transverse oscillations far more
clearly. An eleventh strain gauge, just visible in the same
figure, was placed on the payload section, orthogonal to
the line of ten gauges to give us a view of dilatational
oscillation modes. The twelfth and thirteenth gauges,
shown in Figure 2b, were placed on one of the rocket’s
fins to give us a better view of their oscillation.

(a) Automated tapper with (b) Detail of strain gauges
solenoid head visible. 12 and 13, mounted to a fin

(c) Strain gauges 1, 2, and 3. Gauge 11 (orthogonal gauge)
is partially visible above gauge 2

Fig. 2. Close up photos of important sections of the rocket.

The z-axis accelerometers were mounted on the circuit
board using standard 2.54mm header pins.

Note: Custom Rocket — An automated tapper device
was designed to provide a continuous stream of impulse
taps on the rocket body. These taps excite controlled
transients along the rocket body, which were used to
calculate the rocket’s damping factor during flight. A
small solenoid (ZHO-0420L/S) is momentarily triggered
on by a Sms pulse at 18V. These pulses are generated
every 200ms by an arduino running on 3.3V logic. To
eliminate the possibility of noise interference, the entire
tapper assembly is electrically isolated from the logger
board and encased in an fullbody aluminum and steel
faraday cage. The assembled device is shown in Figure
2a.

E. Circuit Design

We powered our op-amps and the IMU with a single
LM7805 5V regulator and two MCP1702-3302 3.3V
regulators. The 5V regulator powers the IMU’s 5V pin
as well as each op-amp chip. One 3.3V regulator powers
the 3.3V pin on the IMU, while the other provides one
input of the floating ground circuit. The power supply
schematics are shown in Figure 3.

Using just two of the IMU’s outputs, we only needed
to connect to seven of its 20 pins. Pins 2-1 and 1-2 are
grounded, pins 1-10 and 2-8 are connected to the first



3.3V regulator, and pin 1-1 is connected to the 5V rail.
The only outputs of interest come from pins 1-4 and 1-6.

Since both accelerometers and all of the piezos
have low output impedance and the datalogger has a
low input impedance, all signals were routed through
high-impedance op-amps. Otherwise, the sensors may
have formed unintended voltage dividers and given us
incorrect data.

The output of the low-g accelerometer is already
in the same range as the datalogger, but the high-g
accelerometer can go as high as 5V. We scaled this down
to 0-3V with a voltage divider. Both signals are then
stabilized and buffered with unity gain op-amps. The
High-G accel circuit is shown in Figure 4a, while the
Low-G accel circuit is in Figure 4b.

The strain gauges output a signal that is centered
on zero, so we needed an offset to center it in the
datalogger’s input range. We used a voltage divider to
halve 3.3V to 1.65V and stabilized it with a unity gain
op-amp, as seen in Figure 4c. Buffering capacitors further
stabilize the output.

To condition the output of each strain gauge, we used
thirteen identical copies of the circuit shown in Figure
4d. The 1.65V floating ground brings the signal into a
readable range. The unity gain op-amp then stabilizes the
signal and gives it a high output impedance before it is
routed to the datalogger.

For the datalogger, we assumed that the frequencies
that would be aliased — those at and above the nyquist
frequency of (100000/16)/2 = 3200hz — wouldn’t
exist in the rocket. Thus, we simply left our signals
unfiltered and selected the maximum possible sampling
frequency. In retrospect, after seeing that our data did
indeed include aliased frequencies, we realized that we
should have included an analog filter.

Note: Custom Rocket — After seeing the aliased
signals in our data from the first flight, we added a
hardware filter to the circuitry for our custom rocket. In
our testing of the rocket, we found that the frequencies
of interest would be between 20 and 600 Hz. Thus,
in order to eliminate frequencies much higher than that
(especially those above 3200 Hz), we built a Sallen-Key
topology, 3rd order Bessel Filter with the specifications
shown in Figure 5, giving a cutoff frequency of about
2000 Hz [2].
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Fig. 3. Power supplies for circuitboard. Buffering capacitors reduce
power supply noise for all three. Third supply leads to floating-ground
circuit.
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Op-Amps

—Vp
)
Ri=|8.2k 2 C1=/0.0068u F
B2=[120k 0 C2=0.0022u F
R3=|33k Q C3=1000p F

prpico, nonano, wmicro, kldlo, Mimega

Fig. 5. Filter Specs. 3rd Order Bessel Filter, Sallen-Key topology.



IIT. ANALYTICAL MODEL OF ROCKET

Before running experiments using the hardware
described above, we developed an analytical model of
the rocket. In this section, we discuss the development
of such an analytical model. We had two goals in mind
while developing this analytical model. First, we wanted
to be able to predict the resonant frequencies of our
rocket with the help of the Euler-Bernoulli Beam Theory
[3]. Second, we wanted to validate the results obtained
from the SolidWorks finite element simulation discussed
in section IV and the results obtained from the conducted
ground tests discussed in sections VI-A and VI-B.

We model our rocket as a free-free beam having
uniform density and no damping. First, we derive
the governing equation that describes the dynamics
of a homogenous, uniform density beam. Then in
subsection III-B, we derive the resonant frequencies and
corresponding mode shapes for a simple free-free beam.
The free-free beam analysis is followed by an analysis
os a more sophisticated model of a free-free beam with a
point mass addition on one end. This section ends with a
list of resonant frequencies and mode shapes as predicted
by such a model in subsection III-C.

A. Derivation of the Dynamic Beam Equation

The model’s physical structure is shown in Figure 6.
Let S denote the energy function associated with a
beam under dynamic loading conditions, defined as:
SEI(GS) +a(w)y(a,1) | da

L1
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where E is the Young’s Modulus, and I is the second
moment of inertia.

@y ey
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In equation 1, the first term represents the kinetic
energy where p is the mass per unit length; the second
term represents the potential energy due to internal forces
and the third term represents the potential energy due to
the external load ¢(z).

The Euler-Lagrange equation is then used to determine
the function that minimizes the energy function .S [4][5].
For a dynamic beam, the Euler-Lagrange equation is

0? 0? 0?

503 (BT55) = —us +a(a)
where, A is the area of cross section, and p is the
(uniform) density of the beam.

We assume that the beam is homogenous, which
implies that £ and I are independent of x. We also
assume free-response vibrations of the beam which
implies that ¢(z) = 0. The governing equation for the

free vibrations of a homogenous beam having uniform
density thus gets reduced to:

oty 0%y
FlI—= A—2 =0
ozt TP

This governing equation may be re-written as

Py(e,t) | BI(x,1)
ot? pA Ozt

The solution of the above governing equation is a
standing wave which may be written as:

y(a,t) = w(z)u(t) 3)

The governing equation also leads to the following
relation for angular frequency:

[ ET
wj = (ﬁiL)2 m “4)

Note that the term 3;L is known as the i normalized
frequency of the system. The rest of this subsection, as
well as the next, is devoted to deriving the normalized
resonant frequencies of the system in question. These
normalized resonant frequencies are independent of the
specific characteristics of the beam (F, I, p, A).

After deriving the general normalized resonant
frequencies, we derive the actual resonant frequencies
for our rocket by plugging in values for E,I,p, and A.

Substituting this standing wave equation (3)) into (2)
yields the following result:

=0 2)

EI 1 d*w
= )

" pAw(x) ozt

Since the left side of (5) is a function of time only
and the right side of the equation is a function of space
only, and the two sides are equal for all = and ¢, both
sides must be equal to a constant. This constant will be
arbitrarily denoted as —w? The spatial portion of (5) can
thus be written as:

Otw(z)  pAw
oot~ w1 Y@
The spatial differential equation has the general
solution:

1 0%u(t)

u(t) Ot?

2

w(x) =C1 sin Bz + Cq cos Bz
+C5sinh Sx + Cy cosh Sz (6)



B. Free-Free Beam Model

Now, we apply boundary conditions to the left side of
the free-free beam.
The no moment boundary condition implies

w”(0) =0
— (O +Cy=0 @)
The no shear boundary condition implies
w”(0) =0
— -1 +0C3=0 ®)

Now we apply boundary conditions to the right side
of the beam. The no force boundary condition implies
that

w’(L) =0
—Cisin L — Cycos BL ©
+Cssinh BL 4+ Cycosh L =0

The no moment boundary condition implies that
w”(L)=0

—Chcos BL — Cycos BL

. (10)
+Cssinh BL + Cqcosh 5L =0

Using 7 and 8 and writing 9 and 10 in matrix form,

[A]C =0

where C is l c

1 .
Cy 1 and [A] is as follows

cosh(BL) — cos(BL)

sinh(BL) — sin(SL)
sin(BL) + sinh(8L)

cosh(BL) — cos(ﬁL)]

For a non trivial solution, the determinant of the matrix
must be zero.
This leads to the following transcendental equation:

cosh(BL)cos(BL) =1 (11)

Solving this transcendental equation yields values of ;L
or the normalized frequencies, which can then be plugged
back into equation 6 to get mode shapes defined by the
following equation:

wp () =sinh B,x + sin B,z +
sin 8, L — sinh 8, L
cosh B, L — cos B, L

[cosh Bz + cos B,x]
(12)

The shapes described in equation 12 can be seen
graphically in Figure 7c.
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Fig. 6. Plot of Equation 19 to evaluate the roots SL. The
transcendental function is plotted on the y-axis.
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(c) First four Mode Shapes for a Free-Free Beam Model
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(d) First four mode shapes of free free beam with point mass addition

Fig. 7. Analytical results of a free-free beam and free-free with mass
beam, where a-b show the models used, and c—d show the shape of
the first four vibrational modes.



C. Point mass free free beam

One limitation of the analytical model discussed above
is that it assumes that the mass of the rocket is uniformly
distributed. However, in the case of our rocket, the motor
and the motor mount make the tail end heavier. In order
to model this, we refined the model in the previous
section to include a point mass in the left end of the
beam — as shown in Figure 7b.

The governing equation for this system, the expression
for resonant frequencies and the spatial component
function of the standing wave solution may be written
in the same way as in the previous section (refer to
equations 2, 3 and 4).

This model however, has different boundary
conditions. These boundary conditions are applied
as follows:

Applying the no-moment boundary condition on the
left end

y"(0)=0
= (3 =0} (13)

Let us assume that the temporal function in Equation 3
is given by

u(t) = Acoswt (14)
where A is an arbitrary constant and w is the natural

frequency of the beam. Applying the shear boundary

TABLE 1. MODE NUMBER AND FREQUENCIES (HZ)

Mode # | Normalized freq. | Resonant freq. | Uncertainty
0 0 0 0
4.04183 36.84363 11.42561
7.13384 114.7765 35.59344
10.2556 237.2538 73.57496
13.3878 404.2265 125.355
16.5227 615.6989 190.9349
19.6598 871.695 270.322
22.798 1172.195 363.5103
25.937 1517.211 470.5033
29.0766 1906.749 591.3035

Ol bW —

TABLE 1I. RELAVANT ROCKET SPECIFIC PARAMETERS AND

THEIR VALUES

Parameter Value
Tin 4.56 cm
Tout 4.56 cm

A 5.259708 cm?
3 GPa

E
P 156 kg/m?
L
I

Uncertainty
0.2 cm
0.2 cm

0.226224 cm?
500 MPa
25 kg/m3

0.1 m
8.188907 m*

144 m
56.88532 m*

condition on the left side of the beam:

23y 0%y
Plows = " oe
Substituting y(z,t) = w(z)u(t),
Pw(z)ut) O*w(z)u(t)
B =" ¢

— FIB3(Cy — Cy) —2mCiw?* =0 (15)

Now that we have applied boundary conditions on the
left side of the beam, we will apply boundary conditions
to the right end of the beam.

Since the right side is free and has no point mass
addition, we apply the no moment and no shear boundary
conditions.

0%w(x)

Z -\ -0
0x% |,
which leads to the following equation:

Ci(cosh BL — cos L) (16)
—Cysin L + Cysin L =0

The no shear boundary condition implies that at x = L

Pw(x)
S A B 17
o |,_, 0 (17)
—Cycos BL
+C (sin fL + sinh L) (18)

+CycoshBL =0

Writing Equations 13, 15, 16, 18 in matrix form, we get
the following:

[A]C =0
.| Ch .
where C is [ C ] and [A] is as follows
2
-1 0 1 0

—2mw? —EIg* 0  EIf®
cosh(LB) — cos(LB) —sin(LB) 0 sinh(Lp)
sin(LB) +sinh(LS) —cos(LB) 0 cosh(LfS)

But, m = apL and w = (BL)?%, /%. This implies that
mw? = a(BL)BEI

Substituting this expression for mw? into [A], reduces
[A] to:



-1 0 1 0
—2EILaB* —EIg* 0  EIp®
cosh(LB) —cos(LB) —sin(LB) 0 sinh(Lp)
sin(LpB) + sinh(LB) —cos(LB) 0 cosh(Lp)

For the non-trivial solution, the determinant of the 4x4
matrix must be equal to zero.

Simplifying the determinant, we get the following
transcendental equation:

—233EI(aBL cos BLsinh SL
+cosh fLcos BL — afLsin L) =1

The above transcendental equation reduces to equation
11 when the point mass or « is set to O.
The transcendental equation was solved numerically
using Mathematica’s FindRoots command. Since the
FindRoots command solves for the solution in the
region of a provided guess, the guesses were provided
according to a graphical plot of the function, shown in
Figure 6.

This yielded the normalized frequencies (3;L) shown
in Table I. These normalized frequencies are independent
of the particular characteristics of the rocket. By plugging
values of E, I, p, L and A into equation 4, we can
determine values for the resonant angular frequencies of
the rocket. Table II shows the relevant constants and the
values used for those constants in order to determine the
resonant frequencies of the rocket.

In order to determine the values listed in Table II, we
used the following formulas [6]:

A= 7(r? 2 )

(19)

out — "in
1
I= ZW(T;lut - Tzln)
OA =27 (Tout — Tin)OT
ol = 71'(’/“3“,5 — rfn)(?r

o= (88)" (1) ()" ()" ()

IV. FINITE ELEMENT MODELING OF THE ROCKET

Having developed a simplified analytical model of
the rocket, we used SolidWorks to create more complex
numerical model, using finite element analysis.

In this section, we discuss the results of a finite
element analysis of our rocket model in software. For
this purpose, we used SolidWorks’ Frequency Analysis
feature. The SolidWorks assembly of the rocket included
a nosecone made of PP homopolymer material. The
rest of the body was made using balsa wood. We

- e A

(a) 1°* mode at 28.319 Hz (b) 2% mode at 106.37 Hz

e

(c) 3"% mode at 192.32 Hz (d) 4" mode at 347.88 Hz

Fig. 8. First four Mode Shapes obtained from FEM Analysis

would have used the corrugated paper material available
in SolidWorks, but corrugated paper has a non-linear
stress-strain curve (non-isotropic material). Thus it does
not have a constant Young’s modulus of elasticity, which
is necessary for a SolidWorks finite element analysis.
Therefore, we used balsa wood — which has material
properties similar to those of corrugated paper — as the
rocket material.
The results of this model are shown in Figure 8.

V. FLIGHT MODEL SIMULATION OF THE ROCKET

In order to determine the velocities which the rocket
reaches, we ran an OpenRocket simulation with our
Barracuda rocket. After updating the stock *“.ork’’
file to include our modifications, we ran simulated flights
on both a G79 and an H165 motor. We used these results
only as guide for the flights’ velocity profile as well as to
determine the length of the delay grain when assembling
the motors.



VI. GROUND TESTING

Prior to launching the rocket, we performed a range
of tests on the rocket to determine what vibrational
frequencies, shapes, and damping factors to expect.
This section documents the procedure and results of
the following tests: a tap test and sweep test for the
vibrational modes of the rocket, and a continuous tap
test for effective damping.

A. Tap test

A tap test can help determine the natural vibrational
modes of the rocket by analyzing the frequency response
to a hammer impulse. We performed the tap test with
two methods. The first method was to attach a small
accelerometer to the rocket body at an arbitrarily chosen
location, then tap the rocket with a hammer to excite
all the resonant modes. From the frequency response,
we determined that the interesting frequencies are in the
range of 20 Hz-600 Hz.

For the second method, instead of using an
accelerometer, we recorded the output of the strain gauge
array. The benefits of this method was to capture resonant
frequencies as well as the shape of each vibrational
mode.

We wanted to make a bode plot of the frequency
response of our rocket. The development of this bode
plot relies on all frequencies in the range of interest to
be excited with equal amplitude. This is possible to attain
with a tap test if and only if the tap is a perfect impulse
that can be approximated as a dirac-delta function. Since
our hammer taps are not perfect impulses, we wanted to
employ a more sophisticated experimental procedure to
excite all frequencies and develop a bode plot of the
rocket’s frequency response. Hence, we resorted to the
sweep test.

B. Sweep test

In a sweep test, the rocket is continuously excited by
a vibrating shake-table. The shake-table vibrations cover
a range of frequencies, and the ratio of the sensor output
amplitude and vibrational input can be used to analyze
the frequency response.

The motor was excited by the shake table from the
base of the rocket. In flight, the bottom of the rocket
is not attached to anything, but the rocket on the shake
table is attached. Since the bottom of the rocket is being
excited, the rocket is no longer a free-free beam as
assumed in the analytical model. However, even if the
bottom is not free, it is not fixed either, instead it has a
prescribed motion. This is close enough to being a free
end [7].

Sensor

100 200 300 400 500 600 700
Frequency (Hz)

(a) Spatial variation in frequency response. Color corresponds to
intensity of vibrations, red being the most intense.

82427 Hz

Sensor

(b) Mode shape of apparent resonant frequencies

Fig. 9. The results of a sweep test with a vibrating table mounted
to the rocket motor retainer. Several frequencies showed signs of
resonance as illustrated by the red and orange colors in plot (a). The
mode shape of those frequencies are plotted in (b). The sensors are
numbered and evenly spaced from the nose to the fins of the rocket.



We performed a sweep test from 1 Hz to 750 Hz on
the rocket. The RMS output of each sensor determines
the response of the section to each frequency.

Figure 9 shows the results of the sweep test on the
body of the rocket at all 10 collinear strain gauges.
Each sensor has a different response to the range of
frequencies, and those differences can be seen in 9a.

Further analysis of the sweep test is discussed in
Section .

C. Rocket tube damping

Note: Custom Rocket — In addition to finding the
vibrational modes, we sought to determine whether the
damping factor is affected by the flight of the rocket. The
material of the rocket is underdamped, so we can use the
log-decrement method to determine the damping factor.

To monitor the damping in the rocket, we designed
an automated tapper device that provides an impulse
to the rocket up to 15 times a second. Each tap will
give us a transient response, from which we can apply
log-decrement in the time domain to find the damping
factor of the underdamped system. Given successive
peaks’ amplitudes A;, and A;,, we can find ¢ by

¢= ! (20)

\/1+ (rea)

Since there are lots of frequencies being excited, we
need to filter out all but a particular frequency before
performing the log-decrement analysis. A software-based
Butterworth bandpass filter of order 3 was used to find a
frequency for which the peaks closely aligned with the
initial impulse.

Figure 11a-b shows an example of a transient that was
passed through a bandpass filtered to extract a frequency.
The peaks of the filtered transient is marked by the
triangles.

D. Fin damping

The damping of fin vibrations was determined by
log-decrement on a impulse transient. Since the fin is
fixed on one side, it is a cantilever structure, so the
damping factor can be readily obtained. The damping

factor of a fin stationary fin was determined to be
¢ = 0.020 £ 0.005 at 385 Hz.

E. Wind tunnel experiment

We measured the structural damping of the rocket at
varying velocities in the Harvey Mudd College Wind
Tunnel. The maximum wind speeds achieved in the wind

Fin Frequency Response —— Sweep Test
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Fig. 10. The frequency response of two sensors on the fin. The
amplitude is the natural log of the rms of each sensor. The solid line
is the sensor furtherest from the rocket, and the dotted line is closest.
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(c) Damping factor of the rocket at different wind velocities

Fig. 11. Wind velocity has a slight effect on the structural damping
of the rocket. The vibrational transient of each tap (a) is filtered at
2500 Hz, and the decaying peaks of the filtered signal (b) is used to
calculate the damping factor (. The damping factor appears to have
a slight positive relation with wind velocity. The slope of the line is
1.22 x 107* £ 0.35 x 10™*s/m within 95% confidence interval.



tunnel is significantly less than the velocities the rocket
will undergo during flight. Our rocket is expected to
achieve 1.4 mach (476 m/s) whereas the HMC wind
tunnel only reaches a maximum of 50 m/s. Hence, we
will not be able to fully predict what will happen in flight.

To eliminate external damping factors, no clamps
or tape were used to mount the rocket in the wind
tunnel. Instead, the rocket was hung on two free-moving
suspending supports. The entire rocket was too large to
fit in the wind tunnel, so only the payload section was
utilized. The automated tapper was set to tap at 8 times
a second. The velocity of the wind was estimated by
the fan RPM, and the RPM was assumed to be throttled
linearly.

The goal of this experiment is not to seek the exact
relation between velocity and damping, but instead try to
see if velocity of the rocket can affect its damping factor.
Hence, the true velocity is not as crucial as the trend of
increasing velocity.

From Figure 11c, we can notice a positive correlation
between the damping factor and wind velocity. Over
a range of 0-40 m/s, the damping factor increases
from 0.033 to 0.038. The 95% confidence interval
of the positive linear slope is +0.35 x 10~%, which
corresponds to a £30% difference. Further investigation
at higher velocities would give important insights about
this relationship.

VII. LAUNCH PROCEDURE

Having discussed our ground based testing and
modeling, we now move to discussing our flight
procedure, from the overall design to the specifics of
rocket preparation and launching.

A. Flight Goals

Our experimental goal was to observe which
vibrational modes of the rocket were excited during
flight. Thus, our goal for each flight the same: to obtain
data from the piezoelectric strain sensors on the rocket
during its flight.

B. Rocket Preparation

To ensure this data could be collected in safe and
repeatable manner, we followed the following procedure
to prepare the rocket for flight. Prior to the launch day,
we assembled the rocket motor, taking care to trim the
delay charge to eject at a time in accordance with the
predicted apogee time. On launch day, we assembled
the rocket, ensuring all the sensor wires running along
the rocket were connected and secured onto the rocket

body with tape. Next, we inserted the SD card into the
datalogger, and secured it in the slot such that when
the pressure from the tape was released, the SD card
would click back to its in position. This prevents the
SD card from being ejected during flight. Just before
setting up the rocket on the launch pad, we started the
data collection on the logger, inserted into the payload
section, and plugged in the piezoelectric sensor cables.
Next, we inserted the pnut altimeter into the nose cose,
securing it with tape, and finally secured the nose cone
on the rocket. Lastly, we inserted the ignition charge into
the rocket motor, and attached it to the ignition wires. At
this point, the rocket was ready to launch.

C. Flight

We launched the rocket following standard rocket
launch procedure, remaining at a safe distance. Our
rocket did not have a GPS transmitter on it, so we
made sure to carefully watch the rocket during descent.
Upon seeing it hit the ground, we walked toward the
landing point and retrieved the rocket. Immediately upon
finding the rocket, we took out the data logger and
stopped the logging process. Upon reaching our launch
site, we promptly copied the data file from the SD card
to our computer. We also copied the altimeter data to
our computer using the USB cable and the PerfectFlite
DataCap software.

We were able to launch the rocket twice - first with a
G79 motor and then with an H165 motor.

On the H165 flight, the SD card became disengaged
from its holder at some point between closing the rocket
and reopening it post-flight. This kept the datalogger
from completing the data files header, and so we were
unable to retrieve the flight data for that launch.



VIII. DATA ANALYSIS

As mentioned earlier, we were only able to get data
from one flight. We chose to analyze this data from just
after motor ignition to just before parachute ejection.
This region could be identified in the data from the
accelerometer results as well as large impulses seen in
the vibration data. After parachute ejection, vibrations
had much lower amplitude. Furthermore, the sensors on
the lower half of the rocket detached from the circuit
board upon parachute ejection. For this reason, data after
the parachute deployment was not analyzed.

The 8th strain gauge was not functional during flight.
To allow for better visualizations of the shape, we
interpolated the values for this sensor from the values of
the 7th and 9th sensors, both of which were functional.

We observed this data in the frequency domain, since
for our experimental goal of determining which vibration
modes were excited during flight, the frequency data
was most relevant. From our models, we knew not to
expect resonant modes below 5 Hz, so we filtered the
data with a Sth-order Butterworth high-pass filter with a
cutoff at SHz to focus our analysis on the frequencies
we were most interested in. After filtering, we used the
Burg method of power spectral density approximation via
MATLAB’s pburg command to obtain polynomial PSD
estimates for all the strain gauges. Using this data, were
were able to analyze the vibrations of both the rocket
body and the fins.

A. Rocket Body Vibrations

1) Results: To visualize the vibration of the rocket as
a function of both frequency and position, we created
a 2-dimensional plot with frequency and position axes,
using color to denote amplitude of vibration. Figure
12 shows this plot. From this data, we can clearly see
resonant regions in red.

For each resonant area, we extracted a numerical
frequency by taking the average of the relevant peaks
in each of the sensors. While the differences in resonant
frequencies might be due to the rocket actually being
a multipart system, our models treated the rocket as a
single system, so we used the mean as a statistic for
comparison. The standard deviation of the frequencies
of these peaks was used as a measure of the uncertainty
in this statistic. Table III shows these results.

At each of these frequencies, we took a cross section
of Figure 12a along the spatial axis to visualize the shape
of each resonant mode. These shapes are shown in Figure
12b.
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(a) Spatial variation in frequency response.
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(b) Mode shape of apparent resonant frequencies.

Fig. 12. Red and orange segments in (a) indicate excited resonant
modes in flight. The shapes of these modes is plotted in (b).



2) Comparison to Models: To get a better
understanding of these results as well as to ensure
that they were reasonable, we can compare them to
the models and ground testing discussed previously. In
this section, we will consider each resonant mode of
vibration observed in flight and compare it individually
to our models and ground tests.

The first observed mode of vibration in flight has
a frequency of 40.4 + 1.3Hz. Our analytical model
predicted a frequency of 37 4+ 11Hz. Our observed
frequency is well within the error bounds of this result.
The SolidWorks simulation predicted a fundamental
frequency of 28.319 Hz. This is 8¢ from our observed
result, but the discrepancy can be attributed to a variety
of factors, including:

e Inaccuracy of Elastic Modulus: The chosen
modulus of elasticity for the simulation was likely
different from that of the paper.

e Simplifications of Model: The SolidWorks model
treated the rocket body as a single contiguous
piece of balsa wood. The actual rocket had several
different coupled components.

The models agree with the model regarding the shape of
this mode very well. The SolidWorks model shown in
Figure 8 shows nodes just before the nose cone and at
the fins, with an antinode in the middle. The analytical
model also predicted this same shape, seen in Figure 7.
This corresponds to the observed nodes at sensor 1 and
10, and the observed antinode near sensor 5. The sweep
test showed the first mode at 8.2427 Hz, and another
similarly shaped mode at 21.2297 Hz. The latter shape,
graph B in Figure 9b, aligns better with observed mode
in terms of shape and frequency, but the comparison is far
from perfect. These differences can be explained by the
fact that the sweep test made the rocket a prescribed-free
system rather than the free-free system it is in flight.
The second observed mode of vibration has a
frequency of 130.5 = 2.4Hz. The analytical model
predicts the frequency for the second mode to be 115 +
36 Hz. Once again, this agrees well with our observed

TABLE IIL HIGH POWER FREQUENCIES OBSERVED DURING

FLIGHT.

Resonant Frequencies (Hz)

404 + 1.3
130.5 + 2.4
232 +£5
277 £ 9
346 + 9
534 £ 11
666 + 11

frequency. The SolidWorks simulation predicted a second
resonant mode at a frequency of 106.37 Hz. This, like
for the first mode, is well below the observed in-flight
frequency. The error can be attributed to the same causes
as in the first mode. The SolidWorks simulation and
Analytical Model both agree well with our observed
results in terms of the shape of vibration. The sweep
test showed a mode similar to the observed mode at
96.1547 Hz. This shape, shown as shape C' in Figure
Ob, is quite different from the observed shape, showing
2 nodes in the middle, while the observed mode had only
one node in the middle of the shape. Once again, this is
likely because the sweep test modeled a different system
geometry than the flight.

All observed resonances beyond the second were
insufficiently consistent in shape with those predicted by
our models to warrant further comparisons. Most likely,
the forces exciting the rocket during flight did not excite
the higher frequencies.

Nevertheless, there are several notable features in
Figure 12a after the frequency of the second mode.
First, there is a distinctly quieter response from 300 Hz
to 450Hz. From 500Hz to 750Hz, large resonant
peaks reappear. The frequencies and shapes of these
peaks do not correspond to any of the predictions
from the model, suggesting that these are not transverse
vibrational modes of the rocket, but perhaps vibrational
modes of components in the rocket. The resonance at
524.7Hz, plotted as shape F' on Figure 12b, shows
a localized region of high amplitude around sensors
1 — 3. This corresponds to the region of the rocket
near the circuit board, and could have arisen from
resonant vibrations of the circuitboard. Some of the

Fin Frequency Response —- Flight
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Fig. 13. The frequency response measured by both sensors that we
placed on one fin of the rocket.



other shapes shown in Figure 12b could be resonant
modes in other axes of the rocket — either longitudinal,
dilatational, or torsional modes of vibration, modes
which our lengthwise positioned strain gauges would not
pick up as well.

B. Fin Vibrations

1) Results: The data from the strain gauges on the fin
of our rocket were processed the same way as for the
sensors on the rocket body. The frequency response of
both sensors is shown in Figure 13.

2) Comparison to Models: 1deally, the data collected
for fin vibrations during flight should match the data
collected with the sweep test — unlike the rocket body,
the fin was a fixed-free system in the sweep test as well
as in flight. Indeed, when comparing the results seen in
Figure 13 to the sweep test results shown in Figure 10,
we see that both show a clear peaks near 110 Hz, 280 Hz,
and 440 Hz. However, there are discrepancies for the high
amplitude peaks near 520 Hz and 680 Hz. Both of these
peaks on the sweep test are approximately 40 Hz off from
the peaks observed in flight. This error could be due to

C. Damping
Due to harsh weather conditions on the scheduled

launch date, we were unable to fly our custom rocket
and get data regarding damping in flight.

IX. CONCLUSION

The bending vibrations of a rocket are critical to
characterize. Knowing how the characteristics of the
rockets oscillation change throughout its flight can
inform design choices about major stress points, resonant
frequencies of various internal components, and possible
additional damping. This paper outlined methods to
determine such resonant frequencies and resonant mode
shapes associated with the rocket.

In order to characterize the rocket system, an analytical
model was developed. This analytical model used the
Euler-Bernoulli Beam Theory to approximate the rocket
as a free-free beam with a point mass attached to one
of its ends. This model yielded values for resonant
frequencies which fell within one o of the resonant
frequencies obtained from the SolidWorks FEM study,
the ground tests (tap test and sweep test) and the
final E80 flight. Moreover, the mode shapes describing
the transverse bending vibrations of the rocket during
flight closely tracked those obtained from the analytical,
numerical models.

In addition to the resonant frequencies and the mode
shapes, the damping factor of the rocket provides key

insight required to accurately describe the bending
vibrations of the rocket. In order to complete this
characterization, this paper also examined the relation
between damping factor and velocity of flight.

In order to find the relation between the effective
damping during flight and the velocity of the rocket,
an automatic impulse hammer was designed to conduct
in-flight tap tests at transonic and supersonic speeds. The
log-decrement method was then used in order to process
the data and obtain values for the damping factor of the
rocket.

It should be highlighted that although many
experiments have been conducted to study the
pitch-damping of the rocket in transonic and supersonic
flight, very few or no experimental studies have been
conducted to examine the relationship between the
damping associated with the bending vibrations of
a rocket and its velocity at transonic and supersonic
speeds. Moreover, very few or no experimental studies
have employed an automatic impulse hammer to provide
clear transients during flight to determine the effective
damping of a rocket.

Our experimental results did not perfectly match the
predictions of our models. The modal frequencies past
the first two did not match as well as the first two.
Second, the sweep-test did not prove to be as effective
as we had hoped since the shake table forced one
end of the rocket to undergo prescribed motion and
hence changed the rocket from a free-free system to
a prescribed-free system. Third, the analytical model
yielded error bars which were 16% of the reported values
for natural frequencies. The error bars were so large
primarily because of the uncertainty associated with the
modulus of elasticity of the non-isotropic material used
for the rocket’s body. Lastly, not being able to fly our
custom rocket to obtain data at transonic and supersonic
speeds was a major drawback in our experiment. We
hope to obtain this data in the future.

Another potential future direction for this work could
be towards experimentally determining the modulus of
elasticity of the material in the rocket’s body. Yet another
direction of improvement would be conduct a sweep test
which does not alter the rocket’s in-flight characteristic
of undergoing free-free motion. One way of doing this
would be to use a speaker whose frequency of vibration
could be varied over the frequency range of interest.
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