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Our physical world is dynamic



Our physical world is dynamic
The state of the world, x, follows a set 

of governing differential equations.

Dynamic 
environment

ẋ = f (x, u)



Our physical world is dynamic



Machine control + Human teleoperation



Team control of autonomous systems
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Machine actions:

Human actions:



Team control of autonomous systems
The joint action u drives the state x in the dynamical 

system. Where are the feedback loops?

Dynamic 
environment

ẋ = f (x, u)

u = (uH, uM)



Feedback loops: autonomous controller
The machine controls the system by reacting to state x, 

and choosing control uM.

Dynamic 
environment

ẋ = f (x, u)
uM

x



uM

x

Feedback loops: human operator
Human teleoperates a dynamical system by providing 

control input uH in feedback with observing x.

Dynamic 
environment

ẋ = f (x, u)
uH

x



A model of decision-making
A “rational” agent minimizes a cost cH(u) subject to 

dynamical constraints.

Dynamic 
environment

ẋ = f (x, u)

min
uH
cH(u)
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A model of decision-making
Optimal control guides autonomous controllers to make 

decisions in a dynamic environment.

Dynamic 
environment

ẋ = f (x, u)
uM

x

min
uM
cM(u)

min
uH
cH(u)
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A model of team decision-making
Human and machines play a sensorimotor game.

Dynamic 
environment

ẋ = f (x, u)
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(games are non-cooperative)

min
u

Pn
i=1 ci(u) 6=

u = (u1, . . . , un)

Cooperative Non-cooperative

minu1 c1(u)

...

minun cn(u)

minu1 c1(u)

...

minun cn(u)

minu1 c1(u)

...

minun cn(u)

Stationary conditions:
Pareto optimum Nash equilibrium

Trust and communication



Learning to make decisions by optimization
A “rational” human minimizes its cost cH(u) by descending 

its steepest gradient, DHcH(u).
u+H = uH � �DuHcH(u)

min
uH
cH(u)
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min
uM
cM(u)

Learning as a team: coupled optimization
A group of optimization agents minimize their own cost 

with respect to their own action 

u+H = uH � �DuHcH(u)
u+M = uM � �DuMcM(u)u = (uH, uM)

min
uH
cH(u)
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Learning as a team: coupled optimization
A group of optimization agents minimize their own cost 

with respect to their own action 

u+H = uH � �DuHcH(u)
u+M = uM � �DuMcM(u)u = (uH, uM)

min
uH
cH(u)

Stable attractor:



min
uM
cM(u)

Prediction 1: periodic orbits
A group of optimization agents minimize their own cost 

with respect to their own action 

u+H = uH � �DuHcH(u)
u+M = uM � �DuMcM(u)u = (uH, uM)

min
uH
cH(u)

Periodic orbit:



Prediction 2: Spurious attractors
Gradient learning dynamics do not guarantee convergence 

to (Nash) optimal solution.

k+H = kH � �DHcH(k)
k+M = kM � �DMcM(k)

)Simultaneous learning:
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Team learning for human and machine 
systems

Simulation: How do the coupling 
effects of states and actions make 
learning difficult in team settings?

Experiment: How do humans
effectively learn to control dynamical
systems (individually + team settings)?
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Experiment:
Human 

teleoperation

McRuer, Krendel J Franklin Institute 1959
The Human Operator as a Servo System Element
McRuer Automatica 1980
Human Dynamics in Man-Machine Systems



Human sensorimotor learning

– subjects use 1-dimensional 
input device to control 
cursor motion to track 
specified reference

Roth, Howell, Beckwith, Burden SPIE 2017
Toward experimental validation of a model for human sensorimotor 
learning and control in teleoperation
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human/machine system
feedforward

feedback

McRuer, Krendel J Franklin Institute 1959
The Human Operator as a Servo System Element
McRuer Automatica 1980
Human Dynamics in Man-Machine Systems

Yamagami, Howell, Roth, Burden CPHS 2018
Contributions of feedforward and feedback control in a manual 
trajectory-tracking task



Preliminary results: sensorimotor learning

Prediction
Convergence to stationary policy

Results
Feedback gains of a second order system



Future work: sensorimotor games

min
uH
cH(u)

min
uM
cM(u)

• Coupled dynamic system via haptics
• Full information/limited information games
• When do agents play Nash?



bchasnov@uw.edu
http://students.washington.edu/bchasnov/thank you!



Backup slides



Simulation: learning to control a scalar system
uH

uM m = 1

x

x

+ = x + uH + uM

= x + kHx + kMx

0

ci(x, u) = x
2 + Ri ,Hu

2
H + Ri ,Mu

2
M

First order integrator with two agents:

Discrete time system:

With non-cooperative costs:

k+H = kH � �DHcH(k)
k+M = kM � �DMcM(k)

)Simultaneous learning:



A model of decision-making
A “rational” agent minimizes a cost c(u) subject to 

dynamical constraints

Dynamic 
environment

ẋ = f (x, u)

min
uH
cH(u)

uH

x

A cost can be decomposed into the two components: 
one that encodes the goal/stability, and the other 
effort/energy.

cH(u) ⌘ cH,Q(x)| {z }
state

+ cH,R(u)| {z }
control


