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Our physical world is dynamic




Our physical world is dynamic

The state of the world, x, follows a set
of governing differential equations.

Dynamic
environment

x = f(x,u)
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Our physical world is dynamic




Machine control + Human teleoperation




Team control of autonomous systems

Machine actions:
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Team control of autonomous systems

The joint action u drives the state x in the dynamical
system. Where are the feedback loops?

Dynamic
environment

x = f(x,u)

U= (Uy, Upn)



Feedback loops: autonomous controller

The machine controls the system by reacting to state x,
and choosing control u,,

Dynamic
environment

x = f(x, u)




Feedback loops: human operator

Human teleoperates a dynamical system by providing
control input u, in feedback with observing x.

Dynamic
environment

x = f(x, u)



A model of decision-making

|I)

A “rationa

agent minimizes a cost ¢,(u) subject to
dynamical constraints.

Dynamic
environment

x = f(x, u)



A model of decision-making

Optimal control guides autonomous controllers to make
decisions in a dynamic environment.

Dynamic
environment

x = f(x,u)



A model of team decision-making

Human and machines play a sensorimotor game.

Dynamic
environment

« = f(x, u)



(games are non-cooperative)

Cooperative Non-cooperative

min,, ci(u)

muin > iy Ci(u) #

min, c,(u)

Trust and communication

Stationary conditions:
Pareto optimum Nash equilibrium




Learning to make decisions by optimization

A “rational” human minimizes its cost ¢,(u) by descending
its steepest gradient, D,c,(u).

uf = uy — YDy, ch(u)




Learning to make decisions by optimization

A “rationa

|II

human minimizes its cost c,(u) by descending
its steepest gradient, D,c,(u).
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Learning as a team: coupled optimization

A group of optimization agents minimize their own cost
with respect to their own action

uf = uy — YDy, ch(u)




Learning as a team: coupled optimization

A group of optimization agents minimize their own cost
with respect to their own action

+
ul = uy — YDy, cr(u)
+
uy; = tpg — YDy, cni(U)
Stable attractor:
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Prediction 1: periodic orbits

A group of optimization agents minimize their own cost
with respect to their own action

+
Uy = Up — rYDuHCH(U)
+
uny = up — YDy, cm(u)
Periodic orbit:
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Prediction 2: Spurious attractors

Gradient learning dynamics do not guarantee convergence
to (Nash) optimal solution.
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Simultaneous learning:

kit = ky — YDpcr(k) \>
k= km —YDmem(k)
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Prediction 2: Spurious attractors

Gradient learning dynamics do not guarantee convergence
to (Nash) optimal solution.
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Simultaneous learning:

ki = ki — yDpc(k)

Ky = knt — YDwcu(K). \ .
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Prediction 2: Spurious attractors

Gradient learning dynamics do not guarantee convergence
to (Nash) optimal solution.

Simultaneous learning: 3

ki = ky — yDpcu(k)
k= km —YDmem(k)
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Team learning for human and machine
systems

Experiment: How do humans 751
effectively learn to control dynamical

human

systems (individually + team settings)? ——————
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Human sensorimotor learning

— subjects use 1-dimensional
input device to control
cursor motion to track
specified reference

Roth, Howell, Beckwith, Burden SPIE 2017
Toward experimental validation of a model for human sensorimotor
=88 learning and control in teleoperation
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Preliminary results: sensorimotor learning

Prediction i -
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Results

Feedback gains of a second order system
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Future work: sensorimotor games

e Coupled dynamic system via haptics
e Full information/limited information games
e \When do agents play Nash?
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Backup slides



Simulation: learning to control a scalar system

First order integrator with two agents:

UL» Simultaneous learning:
UL; i /(IZIL = ky — ")’D/_/C/-/(/()
MG kiy = km — yDmem(k)

Discrete time system:
xt = x4 uy + upy
= X + kpyx + kyx

1

With non-cooperative costs:
2 2 2
C,'(X, U) = X —FR/,HUH—FR,',MUM



A model of decision-making

A “rational” agent minimizes a cost c(u) subject to
dynamical constraints

A cost can be decomposed into the two components:
one that encodes the goal/stability, and the other

effort/energy.

C/-/(U) — C/_/,Q(X)—FC/—/,R(U)
—_—— N —

state control




