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Optimization-based agents will power our society









}n agents



choose actions to minimize total cost



minimize
u=(u1,...,un)

cost(u)



choose actions to minimize self-interested cost



minimize
ui

costi(u)



Coupled optimization-based agents

actions and states



Coupled optimization-based agents

Provide analytical guarantees on performance

Towards synthesis of new algorithms 



Example 1: ridesharing



Example 2: 



Overview

• Intro: Non-cooperative learning agents
• Part I: Learning dynamics in games
• A gradient-based method for solving games
• Issues (non-Nash attractors, unstable Nash, limit cycles)

• Part 2: Towards games in dynamic environments 
• LQ games (feedback policy, open loop control)
• Stochastic games

• Future extensions



A 2-player continuous game consists of
a joint action/strategy/choice-variable

with agent 1’s cost function

and agent 2’s cost function

Continuous game (2 players)

u = (u1, u2) 2 U1 ⇥ U2 = U

c2(u) : U ! R

c1(u) : U ! R

e.g. U1 = R, U2 = R



Cooperative

Non-cooperative

Two different perspectives

min
u1
c1(u) and min

u2
c2(u)

min
u
✓c1(u) + (1� ✓)c2(u), ✓ 2 [0, 1]



u+ = u � �

D1c1(u)
D2c1(u)

�

u+ = u � �

D1c2(u)
D2c2(u)

�

u+ = u � �✓Dc1(u) + (1� ✓)Dc2(u)

u+ = u � �

D1c1(u)
D2c2(u)

�

Gradient dynamics

Djci(u) ⌘
@ci(u)

@uj
2 Rdj



Gradient dynamics

u+ = u � �

D1c1(u)
D2c1(u)

�

u+ = u � �

D1c2(u)
D2c2(u)

�

u+ = u � �✓Dc1(u) + (1� ✓)Dc2(u)

u+ = u � �

D1c1(u)
D2c2(u)

�



Gradient dynamics

u+ = u � �

D1c1(u)
D2c1(u)

�

u+ = u � �

D1c2(u)
D2c2(u)

�

u+ = u � �✓Dc1(u) + (1� ✓)Dc2(u)

u+ = u � �

D1c1(u)
D2c2(u)

�



Cooperative dynamics

u+ = u � �

D1c1(u)
D2c1(u)

�

u+ = u � �

D1c2(u)
D2c2(u)

�

u+ = u � �✓Dc1(u) + (1� ✓)Dc2(u)

u+ = u � �

D1c1(u)
D2c2(u)

�



Game vector field

u+ = u � �

D1c1(u)
D2c1(u)

�

u+ = u � �

D1c2(u)
D2c2(u)

�

u+ = u � �✓Dc1(u) + (1� ✓)Dc2(u)

u+ = u � �

D1c1(u)
D2c2(u)

�



Non-cooperative perspectiveu+ = u � �

D1c1(u)
D2c1(u)

�

u+ = u � �

D1c2(u)
D2c2(u)

�

u+ = u � �✓Dc1(u) + (1� ✓)Dc2(u)

u+ = u � �

D1c1(u)
D2c2(u)

�



Definition: differential Nash equilibrium

First order conditions

Second order conditions

D1c1(u
⇤) = 0, D2c2(u

⇤) = 0

D11c1(u
⇤) > 0, D22c2(u

⇤) > 0



Part I: Learning dynamics in games

u̇ = �!(u)

u+ = u � �

D1c1(u)
D2c2(u)

�

(with appropriate !)



Non-asymptotic convergence guarantees 

u+ = u � �

D1c1(u)
D2c2(u)

�



Contraction of learning dynamics

u+ = u � �

D1c1(u)
D2c2(u)

�

= [I � �J(u)]u

Proposition: if                                          ,  thensup
�
kI � �Jk < 1 u(k)! u⇤

J = D! =


D11c1 D12c1
D21c2 D22c2

�Jacobian of vector field ⍵(u)

Fixed points of vector field ⍵(u)
D1c1(u

⇤) = 0, D2c2(u
⇤) = 0



Learning dynamics in games

Theorem: With learning rate  

where singular values            are

and u(1) is initialized in a region of attraction

of a local Nash equilibrium, then the iterates

u(k) will be bounded by

↵ = min
u2Br (u⇤)

�min(J(u) + J(u)
T )/2

� = max
u2Br (u⇤)

�maxJ(u)

� = ↵/�2

ku(k) � u⇤k  exp(�
q
↵
2� k)ku

(1) � u⇤k

↵, �

[1] Chasnov, Ratliff, Calderone, Mazumdar, Burden, "Finite-Time Convergence of Gradient-Based Learning in Continuous 
Games." AAAI Workshop on Reinforcement Learning in Games (2019). 



Spectrum of the Jacobian

u̇ = �!(u)

= � J(u)|{z}
?

u

If spec(J) ⇢ C�+ at u⇤, then u⇤ is stable.
If blockdiagi(J) > 0 at u

⇤ 8i , then u⇤ is Nash.

J = D! =


D11c1 D12c1
D21c2 D22c2

�



Issue 1: not all stable equilibria are Nash
e.g. U1 ⇥ U2 = (k1, k2)

J(u⇤) =


+
+

�

J(u⇤) =


+
�

�

Non-Nash

Nash

spec(J) ⇢ C�+



Issue 2: not all Nash equilibria are attractors

Zero-sum game Partnership game



Part II: Towards application in dynamic games

x+ = f (x, u1, u2)

min
u1
c1(x, u), min

u2
c2(x, u)



Open loop dynamic games

x+ = f (x, u1, u2)

min c1

min c2

u1

u2

@
@u1
c1(x0, u)

@
@u2
c2(x0, u)



Closed loop dynamic games

x+ = f (x, u1, u2)

min c1

min c2

Linear feedback policy

u2 = K2x

u1 = K1x

x

@
@Ki
ci(x,K)



Stochastic games

min c1

min c2

x+ ⇠ P (x, u1, u2)
u2 ⇠ ⇡2(x)

u1 ⇠ ⇡1(x)

x

\@
@✓i
ci(✓)



Open loop dynamic game

Initialization Nash equilibrium (1) Nash equilibrium (2)



Linear Quadratic games (infinite horizon)

u2 = K2x

u1 = K1x

xx+ = Ax + B1u1 + B2u2
min
K2
c2

min
K1
c1

c1(x0, K1, K2) =
1X

t=0

xTQ1x + u
T
1 R11u1 + u

T
2 R12u2

c2(x0, K1, K2) =
1X

t=0

xTQ2x + u
T
1 R21u1 + u

T
2 R22u2



Linear Quadratic game: convergence of gradient method

K+1 = K1 � �rK1c1(x0, K1, K2)
K+2 = K2 � �rK2c2(x0, K1, K2)



Extensions and applications

• Stochastic gradients
• For unbiased estimates, we provide concentration bounds 

• Non-uniform learning rates (UAI Mar 2019, in submission)
• Scaling of agents’ learning rates

• Reinforcement learning in games (AAAI Feb 2019 RL in games workshop)

• Human-machine sensorimotor games (SPIE Apr 2019)

• Modeling neuron interaction dynamics (NCEC Jan 2019)



Future extensions

• Constrained action space 
• projected descent

• Strategic learning for faster convergence
• recursive model of agents’ learning

• Real world robotic systems
• dynamically coupled quadcopters

• Human/machine games
• teleoperation via optimization



Thank you



Timeline



Spectrum of the Jacobian



Proof: 

kI � �Jk22 = (I � �J)T (I � �J)
= I � �(J + JT ) + �2JT J



Asymmetric Jacobian

J = D! =


D11c1 D12c1
D21c2 D22c2

�

J = S + A, A 6= 0

D12c1 6= D21cT2



Prisoner’s dilemma 



Theorem

S = 1
2(J + J

T )







Conclusion
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• Partial derivatives

• Remarks

Notation (two players)

Djci(u) ⌘
@ci(u)

@uj
2 Rdj

Djkci(u) ⌘
@2ci(u)

@uj@uk
2 Rdj ⇥ Rdk

Dj jci(u)



True multi-agent interactions (i.e. society, 
evolution) has multiple decision-makers with 

multiple objectives.
• Natural formulation is a non-cooperative game 
• Games with discrete actions (Von Neuman 1944, Nash 1951)
• Games with MDP-like state transitions (Shapely 1953)
• Games with linear dynamics and quadratic costs (Basar 1976)



Theorem 

kI � �Jk < 1

[1] Chasnov, Ratliff, Calderone, Mazumdar, Burden, "Finite-Time Convergence of Gradient-Based Learning in Continuous 
Games." AAAI Workshop on Reinforcement Learning in Games (2019). 
Workshop paper and 20 min oral presentation.



Human-machine sensorimotor games

min
uM
cM(u)

u+
H
= uH � �DuHcH(u)

u+
M
= uM � �DuMcM(u)u = (uH, uM)

min
uH

cH(u)

Stable attractor:





• Analysis of coupled optimization problems is crucial for developing 
safe, reliable  connected systems



Current paradigm 

• A single decision-maker (centralized planner)

• Multiple agents carry out actions (distributed agents)
• Trust & communication is fully assumed

• \min_u={u_1, \dots, u_n}\ c(u)



Need for understanding 



Next frontier

• Multiple decision-makers

• Actions carried out affect the decision-making
• Trustless and robust to limited communication
• The decision-making and actions are coupled



“Multi-agent” learning and control under this 
paradigm is similar to single mind with multiple 

bodies
• AlphaGo: two player game, but it is playing a clone of itself
• Multi-agent swarms: achieves a single objective with multiple bodies



Natural formulation of the problem is a 
continuous game

• n agents
• u_i: agent i‘s action
• c_i(u) : agent i’s cost, twice continuously-differentiable, 

maps from joint action u=(u_1, u_n) to R
• Goal: agents at a minimum of its own cost
• Definition: u*=(u_1*, \dots u_n*) differential Nash equilibrium if 

D_ic_i(u^*)=0 and D_{ii}c_i(u^*) > 0 for all i =1… n






