Learning Dynamics of Non-cooperative Agents
In Dynamic Environments

Benjamin J. Chasnov

Electrical and Computer Engineering
University of Washington, Seattle WA

Qualifying Exam, May 2019

Advisors: Dr. Samuel Burden, Dr. Lillian Ratliff

Committee: Dr. Maryam Fazel (chair), Dr. Behcet Acikmese, Dr. Kevin Jamieson




Optimization-based agents will power our society
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Coupled optimization-based agents
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Coupled optimization-based agents

Provide analytical guarantees on performance

Towards synthesis of new algorithms



Example 1: ridesharing




Example 2:



Overview

* Intro: Non-cooperative learning agents

* Part I: Learning dynamics in games
* A gradient-based method for solving games
* |ssues (non-Nash attractors, unstable Nash, limit cycles)

* Part 2: Towards games in dynamic environments

» LQ games (feedback policy, open loop control)
* Stochastic games

* Future extensions



Continuous game (2 players)

A 2-player continuous game consists of
a joint action/strategy/choice-variable
U:(Ul,UQ)Eul X U, = U
with agent 1’s cost function
ci(u):U—=R
and agent 2’s cost function
o(u):U—R

€.g. U1 =33 U2 =R




Two different perspectives

Cooperative
min ¢y (u) + (1 —60)c(u), 6 € [0, 1]

Non-cooperative a

min c¢i(u) and min ¢ (u)
U1 U
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Gradient dynamics
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Gradient dynamics

_Dl CQ(U)_

_DQCZ(U)_ ~N




Cooperative dynamics
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Game vector field

(u)
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Non-cooperative perspective
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Definition: differential Nash equilibrium

First order conditions

DlCl(U*) = 0, DQCQ(U*) =0

Second order conditions

D11C1(U*) > (O, DQQCQ(U*) > (
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Part |: Learning dynamics in games

+ [ — -D1C1(LI)_
— Y
Doco(u).
(with appropriate y) Sj
U= —w(u)




Non-asymptotic convergence guarantees

+ Dyci(u)
_DQ CQ(U)_

distance to nash

100 101 102
iterations Ul



Contraction of learning dynamics

B _DlCl(LI)_
T=u—y Dyco(u)
= [ —vJ(u)lu

Fixed points of vector field w(u)

D1C1(U*) = 0, DQCQ(U*) =

Jacobian of vector field w(u)

Diicaa Dio C1]
J=Dw =
[D21 o Do

Proposition: if sup ||/ — yJ|| < 1, then u(k) — u’

IY



Learning dynamics in games

Theorem: With learning rate v = a/3°

where singular values &, (3 are
a= min omin(J(u)+ J(u)")/2

ueB,(u*)
— maxJ
= 33 Tmas (W
and u® s initialized in a region of attraction ~
of a local Nash equilibrium, then the iterates -

u® will be bounded by

|ut — || < exp(— /55 K)u — v

[1] Chasnov, Ratliff, Calderone, Mazumdar, Burden, “Finite-Time Convergence of Gradient-Based Learning in Continuous
Games." AAAl Workshop on Reinforcement Learning in Games (2019).



Spectrum of the Jacobian

U= —w(u)

— J(u) u
—~

If spec(J) C CT at u™, then u™ is stable.  §
If blockdiag;(J) > 0 at u™ Vi, then u* is Nash.




Issue 1: not all stable equilibria are Nash
5 €.g. U1 X U2 = (kl, /(2)

spec(J) C CL.

J(u™) = .

Nash — -

J(u™) =

Non-Nash — -~




Issue 2: not all Nash equilibria are attractors

B — -

Partnership game

Zero-sum game



Part II: Towards application in dynamic games

min ci(x, u), min c(x, u)
U1 u»



Open loop dynamic games




Closed loop dynamic games

Linear feedback policy
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Stochastic games
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Open loop dynamic game

Initialization
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Linear Quadratic games (infinite horizon)

- —

Cl(Xo, Kl, K2) — ZXTQlX —+ UZ—R11U1 —+ U;—R12U2
t=0

CQ(XO, Kl, KQ) — ZXTQQX —+ UZ—R21U1 —+ U;—RQQUQ
t=0



Linear Quadratic game: convergence of gradient method

Kii_ — Kl —'yVchl(xo, Kl, K2)
K;_ — KQ — ’YVKQCQ(XO, Kl, K2)

— |2 distance (mean *10) _
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Extensions and applications

* Stochastic gradients
* For unbiased estimates, we provide concentration bounds

* Non-uniform learning rates (UAI Mar 2019, in submission)
* Scaling of agents’ learning rates

* Reinforcement learning in games (AAAI Feb 2019 RL in games workshop)
* Human-machine sensorimotor games (SPIE Apr 2019)
* Modeling neuron interaction dynamics (NCEC Jan 2019)



Future extensions

* Constrained action space
e projected descent

e Strategic learning for faster convergence S
* recursive model of agents’ learning

* Real world robotic systems
* dynamically coupled quadcopters

 Human/machine games
* teleoperation via optimization



Thank you



Timeline



Spectrum of the Jacobian



Proof:

1 =J||3 = (I =) (I —~J)
= —y(J+J)+~4°J"J



Asymmetric Jacobian
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Prisoner’s dilemma
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Local convergence analysis: gradient-play vs. gradient descent

Gradient-play Gradient descent
+ — _ D
xl X1 7 lfl(xla xz) X+ = x — }’Df()C)
X5 =x, = yD,y fo(xy, x,)
Main theorem (informal): Classical result:
symmetric part of Dw " | i th
o= min o (Do) + Do) u-strongly conve}j and I-sSmoo
XEB,(x) U = D“f(X) = /68
p= max o, (Do (x)) With learning rate v = 1/L

With learning rate y = a/p*.... x") approaches x* in T iterations:

2 H
D — x*|| < exp (—T) Ix® — x| e = x*|| < exp (=57 Ix® - x*|

L.J. Ratliff, B. Chasnov, D. Calderone, E. Mazumdar, S. Burden. Convergence Guarantees for Gradient-Based Learning in Continuous Games, under review 2018. 19



Non-Nash stable equilibria: saddle point

X =—w(x)

Do = [_ _I_], spec(Dw) C C,
Example:

ﬂ(xl, x2) —_- — X12 + 4xle

] spec(Dw) = {2 = 4i}

Hx,x) = 6x22 — 8x X,

Agent 1 is at a maximum!  Df,f; <0

W




Theorem: (27: stable differential Nash)
suppose rg € B,(xz*), wis Lipschitz, and v; =
Vva/(kp) for each i € [n] with a < k5. Gradient

based learning obtains an e-differential Nash in finite
time 7' > [2k5 log(r /)]

o= min omin(Dw(z) + Dw(z)"),
x€B,(x) N —

symmetric part of Dw

2
B - N éléa%i) Omax (Dw (3:) )




Conclusion
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Notation (two players)

e Partial derivatives

Gc,-(u) .
Dici(u) = o, c RY
@QC,-(U) d. d
D' i — R J R K
JkC (U) anaUk < X
e Remarks

Djjci(u)



True multi-agent interactions (i.e. society,
evolution) has multiple decision-makers with

multiple objectives.

e Natural formulation is a non-cooperative game
 Games with discrete actions (Von Neuman 1944, Nash 1951)
 Games with MDP-like state transitions (Shapely 1953)
 Games with linear dynamics and quadratic costs (Basar 1976)



Theorem

[1] Chasnov, Ratliff, Calderone, Mazumdar, Burden, “Finite-Time Convergence of Gradient-Based Learning in Continuous
Games." AAAl Workshop on Reinforcement Learning in Games (2019).
Workshop paper and 20 min oral presentation.



Human-machine sensorimotor games

uf = uy — YDy, cH(u)

ui, = up — YDy, cm(u)

Stable attractor:

human action trials
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* Analysis of coupled optimization problems is crucial for developing
safe, reliable connected systems



Current paradigm

* A single decision-maker (centralized planner)

4

* Multiple agents carry out actions (distributed agents)

* Trust & communication is fully assumed

 \min_u={u_1, \dots, u_n}\ c(u)



Need for understanding



Next frontier

* Multiple decision-makers

L

e Actions carried out affect the decision-making
* Trustless and robust to limited communication
* The decision-making and actions are coupled



“Multi-agent” learning and control under this
paradigm is similar to single mind with multiple

bodies
* AlphaGo: two player game, but it is playing a clone of itself

* Multi-agent swarms: achieves a single objective with multiple bodies



Natural formulation of the problem is a
continuous game

°* n agents
* U_i:agenti‘s action

* c_i(u) : agent i’s cost, twice continuously-differentiable,
maps from joint action u=(u_1,u n)toR

* Goal: agents at a minimum of its own cost

 Definition: u*=(u_1%*, \dots u_n*) differential Nash equilibrium if
D_ic_i(ur*)=0and D_{iijc_i(ur*)>0foralli=1..n









