

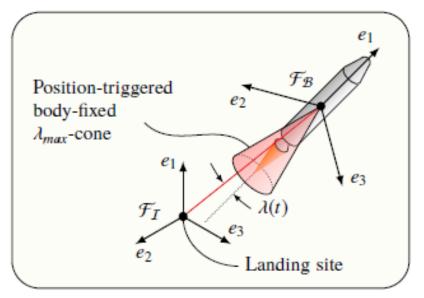
Dynamic Trajectories via Convex Optimization

Skye Mceowen, Ben Chasnov Daniel Sullivan, & Dan Calderone PI: Behcet Acikmese

> Autonomous Controls Lab University of Washington

Problem Overview

Physics-based optimization...



Szmuk, Reynolds, Acikmese. (2020).

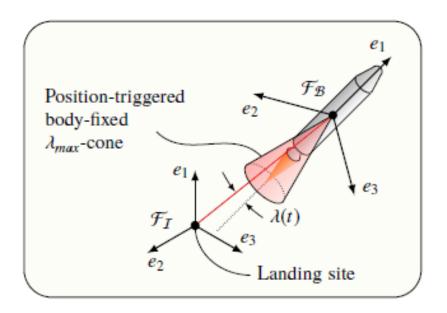
Successive Convexification for Real-Time 6-DOF Powered Descent Guidance with State-Triggered Constraints. JGCD 2020.

...results in dynamically feasible solutions

Scharf, Acikmese, Dueri et al. (2014). ADAPT Demonstrations of Onboard Large-Divert Guidance with a VTVL Rocket. IEEE Aerospace Conference 2014.

Problem Overview

Optimal trajectory generated while satisfying necessary constraints



Szmuk, Reynolds, Acikmese. (2020). Successive Convexification for Real-Time 6-DOF Powered Descent Guidance with State-Triggered Constraints. JGCD 2020. **Reynolds, Szmuk, Malyuta, Mesbahi, Acikmese (2020** Dual Quaternion Based Powered Descent Guidance with State-Triggered Constraints. JGCD 2020.

Szmuk, Acikmese. (2018).

Successive Convexification for 6-DOF Mars Rocket Powered Landing with Free-Final-Time. AIAA GNC Conference 2018.

	fuel rocket-landing problem
Cost Function:	
	$\begin{array}{l} \underset{t_c, t_b, T_{\mathcal{B}}(t)}{\text{minimize}} & -m(t_f) \end{array}$
	s.t. $t_c \in [0, t_{c,max}]$
Boundary Conditions:	
	$m(t_{ig}) = m_{ig}$ $q_{\mathcal{B} \leftarrow I}(t_f) = q_{id}$
	$r_{\mathcal{I}}(t_{ig}) = p_{r,ig}(t_c) \qquad \qquad r_{\mathcal{I}}(t_f) = 0$
	$v_{\mathcal{I}}(t_{ig}) = p_{v,ig}(t_c) \qquad \qquad v_{\mathcal{I}}(t_f) = -v_d e_1$
	$\omega_{\mathcal{B}}(t_{ig}) = 0$ $\omega_{\mathcal{B}}(t_f) = 0$
Dynamics:	
	$\dot{m}(t) = -\alpha_{\dot{m}} \left\ T_{\mathcal{B}}(t) \right\ _2 - \beta_{\dot{m}}$
	$\dot{r}_I(t) = v_I(t)$
	$\dot{v}_{I}(t) = \frac{1}{m(t)} C_{I \leftarrow \mathcal{B}}(t) (T_{\mathcal{B}}(t) + A_{\mathcal{B}}(t)) + g_{I}$
	$\dot{q}_{\mathcal{B}\leftarrow I}(t) = \frac{1}{2}\Omega(\omega_{\mathcal{B}}(t))q_{\mathcal{B}\leftarrow I}(t)$
	$J_{\mathcal{B}}\dot{\omega}_{\mathcal{B}}(t) = r_{T,\mathcal{B}} \times T_{\mathcal{B}}(t) + r_{cp,\mathcal{B}} \times A_{\mathcal{B}}(t) - \omega_{\mathcal{B}}(t) \times J_{\mathcal{B}}\omega_{\mathcal{B}}(t)$
State Constraints:	
	$m_{dry} \le m(t)$
	$\tan \gamma_{gs} \left\ H_{\gamma} r_{I}(t) \right\ _{2} \le e_{1} \cdot r_{I}(t)$
	$\cos \theta_{max} \le 1 - 2 \ H_{\theta} q_{\mathcal{B} \leftarrow I}(t)\ _2$
	$\ \omega_{\mathcal{B}}(t)\ _2 \le \omega_{max}$
Control Constraints:	
	$0 < T_{min} \le T_{\mathcal{B}}(t) _2 \le T_{max}$
	$\cos \delta_{max} \left\ T_{\mathcal{B}}(t) \right\ _2 \le e_3 \cdot T_{\mathcal{B}}(t)$
State-Triggered Constraint	S:
	$-h_{\alpha}(v_{I}(t), q_{\mathcal{B}\leftarrow I}(t)) \leq 0$

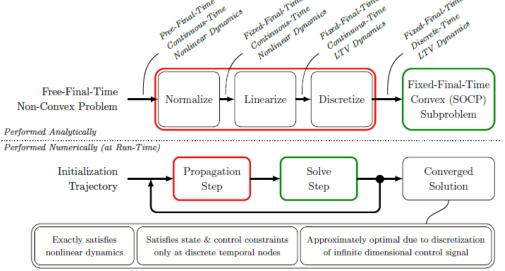
Why is it so fast?

- Harness speed of convex optimization to solve complex, nonlinear problems
 - Take local convex approximation of nonlinear problem to achieve relevant run time
- Convexify an optimal control problem • (lossless convexification)
- Create sequence of convexified subproblems • (successive convexification)
 - In practice, number of iterations shown to be small

4

Successive Convexification for 6-DOF Powered Descent Guidance with Compound State-Triggered Constraints. AIAA SciTech 2019.

Szmuk, Pascucci, Dueri, Acikmese (2017). Convexification and Real-Time On-Board Optimization for Agile Quad-Rotor Maneuvering and Obstacle Avoidance. IEEE IROS 2017.



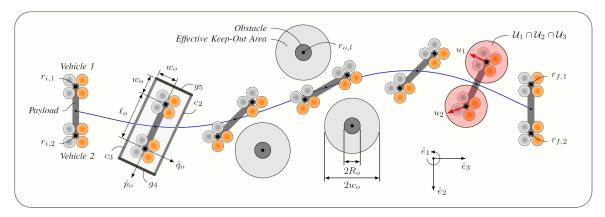
How do we deal with conditional decision making?

- <u>State-Triggered Constraints</u> (STCs) model logical implications
 - Constraints enforced when state-dependent criterion are met
 - Extension to optimization-based trajectory generation methods
- Integrate conditional logic into a continuous optimization framework
 - Embed a subset of discrete decision constraints into continuous problem
 - Formulated using continuous variables of the optimization problem
 - Nonlinear function models implications that trigger constraints
- Composed of trigger function and constraint function
 - g(z) trigger function
 - c(z) constraint function
 - z optimization variable
- Constraint function is conditionally enforced based on the value of the *trigger function*
 - If the trigger function is non-negative, then optimization variable is not subject to the constraint condition
 - If trigger function becomes negative, then constraint is enforced

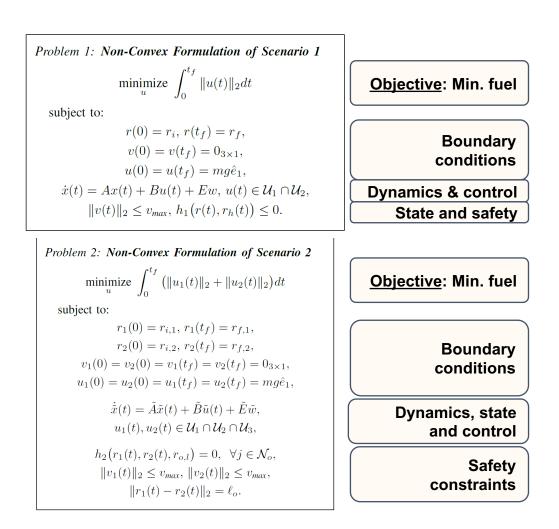
g(z) < 0	$\Rightarrow c(z) \le 0$		
Triggers:	Constraints:		
• speed	angle of attack		
distance	heating level		
battery voltage	 pointing attitude constraint 		

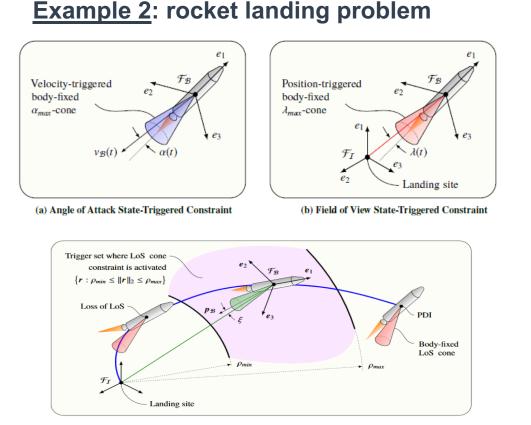
Szmuk, Malyuta, Reynolds, Mceowen, Acikmese. (2019). Real-Time Quad-Rotor Path Planning Using Convex Optimization and Compound State-Triggered Constraints. IEEE IROS 2019.

Example 1: quadrotor with STCs



Szmuk, Malyuta, Reynolds, Mceowen, Acikmese. (2019). Real-Time Quad-Rotor Path Planning Using Convex Optimization and Compound State-Triggered Constraints. IEEE IROS 2019.





Szmuk, Reynolds, Acikmese. (2020). Successive Convexification for Real-Time 6-DOF Powered Descent Guidance with State-Triggered Constraints. JGCD 2020.

Dual Quaternion Based Powered Descent Guidance with State-Triggered Constraints. JGCD 2020.

March. 26th 2020

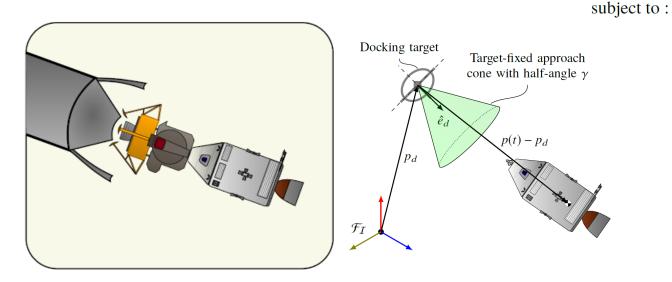
Reynolds, Malyuta, Mesbahi, Acikmese. (2020). A Real-Time Algorithm for Non-Convex Powered Descent Guidance, AIAA SciTech 2020.

Cost Function:		
	$\begin{array}{ll} \underset{t_c, t_b, T_{\mathcal{B}}(t)}{\text{minimize}} & -m(t_f) \end{array}$	
	s.t. $t_c \in [0, t_{c,max}]$	
Boundary Conditions:		
	$m(t_{ig}) = m_{ig}$	$q_{\mathcal{B}\leftarrow I}(t_f) = q_{id}$
	$r_I(t_{ig}) = p_{r,ig}(t_c)$	$r_I(t_f) = 0$
	$v_I(t_{ig}) = p_{v,ig}(t_c)$	$v_I(t_f) = -v_d e_1$
	$\omega_{\mathcal{B}}(t_{ig}) = 0$	$\omega_{\mathcal{B}}(t_f) = 0$
Dynamics:		
	$\dot{m}(t) = -\alpha_{\dot{m}} T_{\mathcal{B}}$	$ t _2 - \beta_{\dot{m}}$
	$\dot{r}_{I}(t) = v_{I}(t)$	
	$\dot{v}_I(t) = \frac{1}{m(t)} C_{I \leftarrow}$	$-\mathcal{B}(t)(T_{\mathcal{B}}(t) + A_{\mathcal{B}}(t)) + g_{\mathcal{I}}$
	$\dot{q}_{\mathcal{B}\leftarrow I}(t) = \frac{1}{2}\Omega(\omega_{\mathcal{B}}(t))$	$(t))q_{\mathcal{B}\leftarrow I}(t)$
	$J_{\mathcal{B}}\dot{\omega}_{\mathcal{B}}(t) = r_{T,\mathcal{B}} \times T_{\mathcal{B}}$	$B(t) + r_{cp,\mathcal{B}} \times A_{\mathcal{B}}(t) - \omega_{\mathcal{B}}(t) \times J_{\mathcal{B}}\omega_{\mathcal{B}}(t)$
State Constraints:		
		$\leq m(t)$
	$\tan \gamma_{gs} \left\ H_{\gamma} r_{I}(t) \right\ _{2}$	
		$\leq 1 - 2 \ H_{\theta} q_{\mathcal{B} \leftarrow I}(t)\ _2$
	$\ \omega_{\mathcal{B}}(t)\ _{2}$	$\leq \omega_{max}$
Control Constraints:		
	$0 < T_{min} \leq T_{\mathcal{B}}(t) _2$	
	$\cos \delta_{max} \ T_{\mathcal{B}}(t)\ _2$	$\leq e_3 \cdot T_{\mathcal{B}}(t)$
State-Triggered Constraints		
	$h_{\alpha}(v_{I}(t), q_{\mathcal{B}\leftarrow I}(t))$	≤ 0

7

Objective: min. fuel

Example 3: spacecraft rendezvous



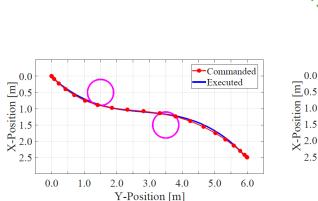
Won: Best AIAA 2020 GNC Graduate Paper at SciTech Video Link: <u>https://www.youtube.com/watch?v=vU1nBL2cg04</u>

Malyuta, Reynolds, Szmuk, Acikmese, Mesbahi. (2020). Fast Trajectory Optimization via Successive Convexification for Spacecraft Rendezvous with Integer Constraints. AIAA SciTech 2020.

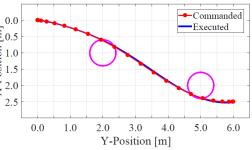
^{<i>J</i>} min Σ (thruster-fire duratio		
(t) = v(t),		
$(t) = \frac{1}{m} \sum_{i=1}^{M} q(t) \otimes f_i(t) \otimes q(t)^*,$		
$(t) = \frac{1}{2}q(t) \otimes \omega(t),$ Dyna	mics	
$\varphi(t) = J^{-1} \left[\sum_{i=1}^{M} r_i \times f_i(t) - \omega(t) \times (J\omega(t)) \right],$		
$\leq \Delta t_k^i \leq \Delta t_{\max}$ for all $i = 1,, M$ and $k \in \mathbb{Z}_{\geq 0}$, Thruster p	Thruster pulse	
$t_k^i < \Delta t_{\min} \Rightarrow \Delta t_k^i = 0 \text{ for all } i = 1, \dots, M \text{ and } k \in \mathbb{Z}_{\geq 0},$	ation	
$p(t) - p_f \ _2 < r_a \Rightarrow e_1^{T}[q_f]_{\otimes} q(t)^* \ge \cos(\Delta \theta_{\max}/2),$		
$p(t) - p_f \ _2 < r_a \Rightarrow \sigma_i(t) = 0 \text{ for all } i \in \mathcal{M},$	afety aints	
$p(t) - p_d \ _2 \cos(\gamma) \le (p(t) - p_d)^{T} \hat{e}_d,$		
$(0) = p_0, \ v(0) = v_0, \ q(0) = q_0, \ \omega(0) = \omega_0,$ Boundary B	darv	
$(t_f) = p_f, v(t_f) = v_f, q(t_f) = q_f, \omega(t_f) = \omega_f.$ condition	-	

 $\underset{\sigma_i(t)}{\text{minimize }} J_f$

Example 4: quadrotor obstacle avoidance



Szmuk, Pascucci, Dueri, Acikmese (2017). Convexification and Real-Time On-Board Optimization for Agile Quad-Rotor Maneuvering and Obstacle Avoidance. IEEE IROS 2017.

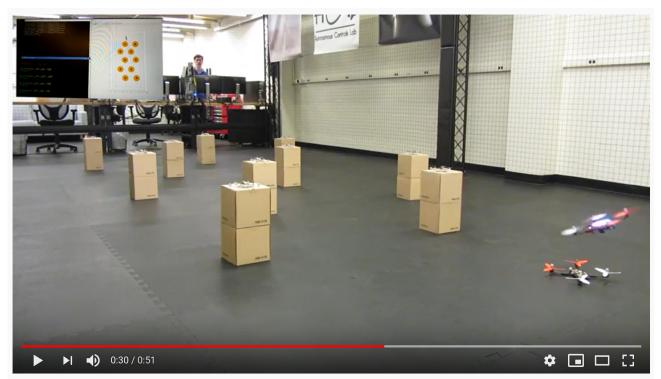


Dueri, Mao, Mian, Ding, Acikmese (2017). Trajectory Optimization with Inter-sample Obstacle Avoidance via Successive Convexification. IEEE CDC 2017.

	Ducklass 2
Objective: Min. fuel	Problem 2: $\min_{\mathbf{u}^{k}(t),\Gamma^{k}(t)} w \int_{0}^{t_{f}} \left(\Gamma^{k}(t)\right)^{2} dt + \sum_{j \in \mathbb{T}} \nu_{j}$
	subject to:
Boundary conditions	$\mathbf{r}^{k}(0) = \mathbf{r}_{i} \qquad \mathbf{v}^{k}(0) = \mathbf{v}_{0} \qquad \mathbf{u}^{k}(0) = g\mathbf{e}_{3}$ $\mathbf{r}^{k}(t_{f}) = \mathbf{r}_{f} \qquad \mathbf{v}^{k}(t_{f}) = \mathbf{v}_{f} \qquad \mathbf{u}^{k}(t_{f}) = g\mathbf{e}_{3}$
Dynamics	$\begin{split} \dot{\mathbf{r}}^k(t) &= \mathbf{v}^k(t) \\ \dot{\mathbf{v}}^k(t) &= \mathbf{u}^k(t) - g \mathbf{e}_3 \end{split}$
Control constraints	$\ \mathbf{u}^{k}(t)\ _{2} \leq \Gamma^{k}(t)$ $0 < u_{min} \leq \Gamma^{k}(t) \leq u_{max}$ $\Gamma^{k}(t) \cos(\theta_{max}) \leq \mathbf{e}_{3}^{T} \mathbf{u}^{k}(t)$
State constraints	$x_{min} \leq \mathbf{e}_1^T \mathbf{x}^k(t) \leq x_{max}$ $y_{min} \leq \mathbf{e}_2^T \mathbf{x}^k(t) \leq y_{max}$ $z_{min} \leq \mathbf{e}_3^T \mathbf{x}^k(t) \leq z_{max}$
	For all $j \in \mathbb{J}$ and for $t \in [0, t_f]$:
	$\nu_j \ge 0$ $H_j \ge 0$ $\Delta \mathbf{r}^{k,j}(t) \triangleq (\mathbf{r}^{k-1}(t) - \mathbf{p}_j)$
Safety	$\delta \mathbf{r}^{k}(t) \triangleq \mathbf{r}^{k}(t) - \mathbf{r}^{k-1}(t)$ $\xi^{k,j}(t) \triangleq H_{j} \Delta \mathbf{r}^{k,j}(t) _{2}$ $H^{T} H \Delta \mathbf{r}^{k,j}(t) = \mathbf{r}^{k,j}(t)$
constraints	$\boldsymbol{\zeta}^{k,j}(t) \triangleq \frac{H_j^T H_j \Delta \mathbf{r}^{k,j}(t)}{\ H_j \Delta \mathbf{r}^{k,j}(t)\ _2}$
	$\xi^{k,j} + \left[\boldsymbol{\zeta}^{k,j}(t)\right]^T \delta \mathbf{r}^k(t) \ge R_j - \nu_j$

Video: Aggressive Obstacle Avoidance

- Optimality based on sufficiently high-fidelity dynamic model allows us to push aggressive performance
- Dynamic feasibility allows us to exploit most of the systems operating envelope
- Links:
 - <u>Aggressive Obstacle Avoidance:</u> <u>https://www.youtube.com/watch?v=EK-X3kiTnn8</u>
 - <u>Mobile Obstacle Avoidance:</u> <u>https://www.youtube.com/watch?v=0fP5kBx_rzE</u>
 - Obstacle Avoidance: https://www.youtube.com/watch?v=ImZDigf91Ss

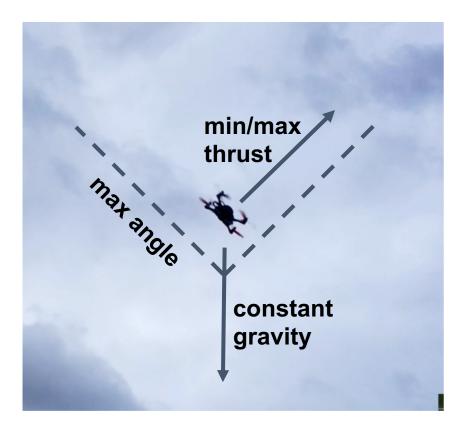


Real-Time Obstacle Avoidance

Tablet Interface Overview & Progress

Optimization Interface

Physics-based vehicle dynamics

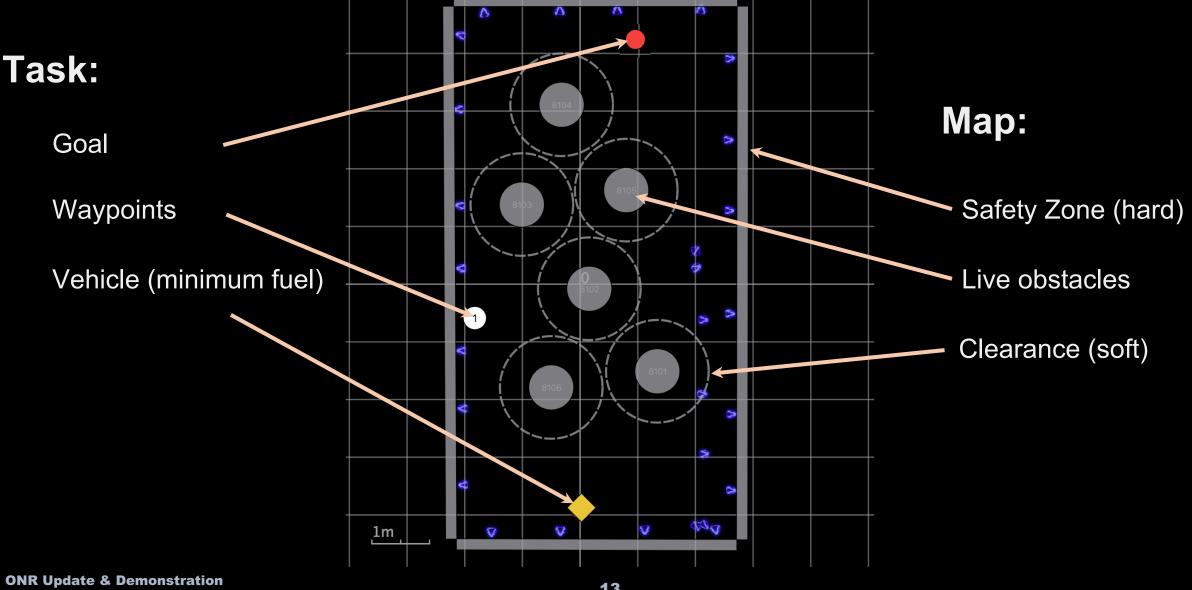


Problem 1: Non-Convex Formulation				
$\underset{\mathbf{T}(t)}{\operatorname{minimize}} \int_{0}^{t_{f}} \ \mathbf{T}(t)\ _{2} dt$				
subject to:				
$\mathbf{r}(0) = \mathbf{r}_i \qquad \mathbf{v}(0) = \mathbf{v}_i \qquad \mathbf{T}(0) = \mathbf{T}_i$				
$\mathbf{r}(t_f) = \mathbf{r}_f$ $\mathbf{v}(t_f) = \mathbf{v}_f$ $\mathbf{T}(t_f) = \mathbf{T}_f$				
$egin{aligned} \dot{\mathbf{r}}(t) &= \mathbf{v}(t) \ \dot{\mathbf{v}}(t) &= rac{1}{m}\mathbf{T}(t) - g\mathbf{e}_1 \end{aligned}$				
$0 < T_{min} \le \ \mathbf{T}(t)\ _2 \le T_{max} \tag{1}$				
$\ \mathbf{T}(t)\ _2 \cos(\theta_{max}) \le \mathbf{e}_1^T \mathbf{T}(t) \tag{2}$				
$\ H_j(t)ig(\mathbf{r}(t)-\mathbf{r}_j(t)ig)\ _2\geq 1 orall j\in \mathbb{J}$				

Szmuk, Pascucci, Acikmese, B. (2018).

Real-Time Quad-Rotor Path Planning for Mobile Obstacle Avoidance Using Convex Optimization. IROS 2018

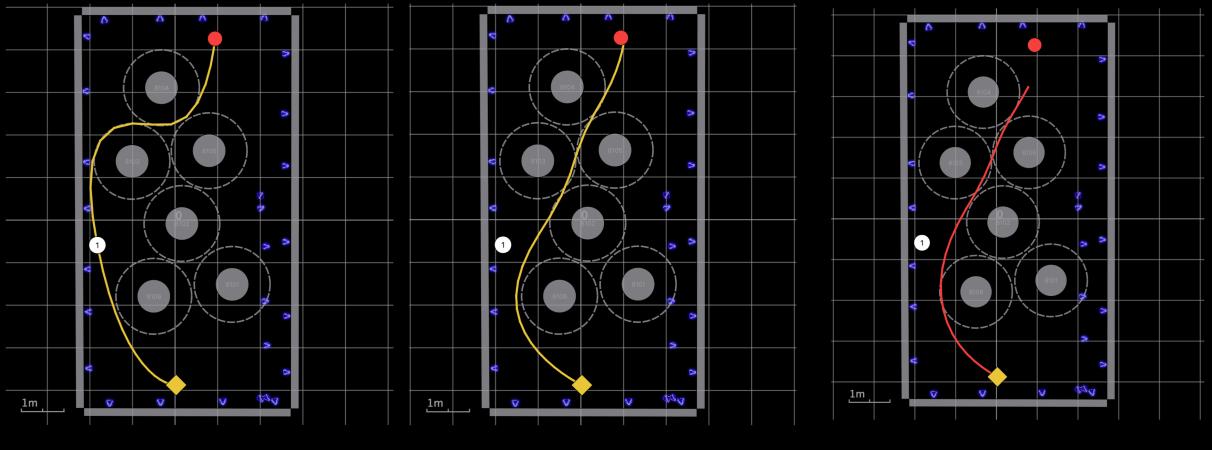
Interface: Task Specification



March, 26th 2020

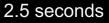
Interface: Constraint Types

Soft and hard constraints

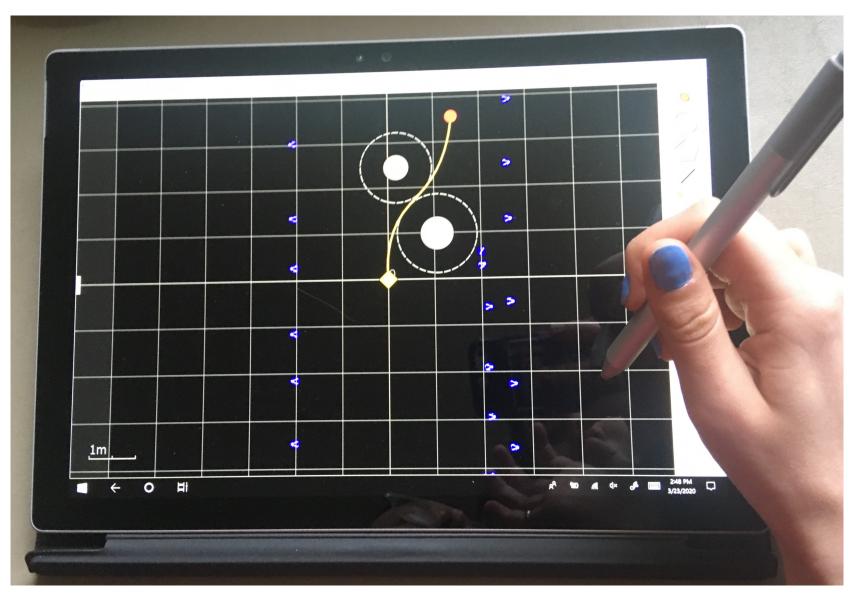


6.0 seconds

3.0 seconds



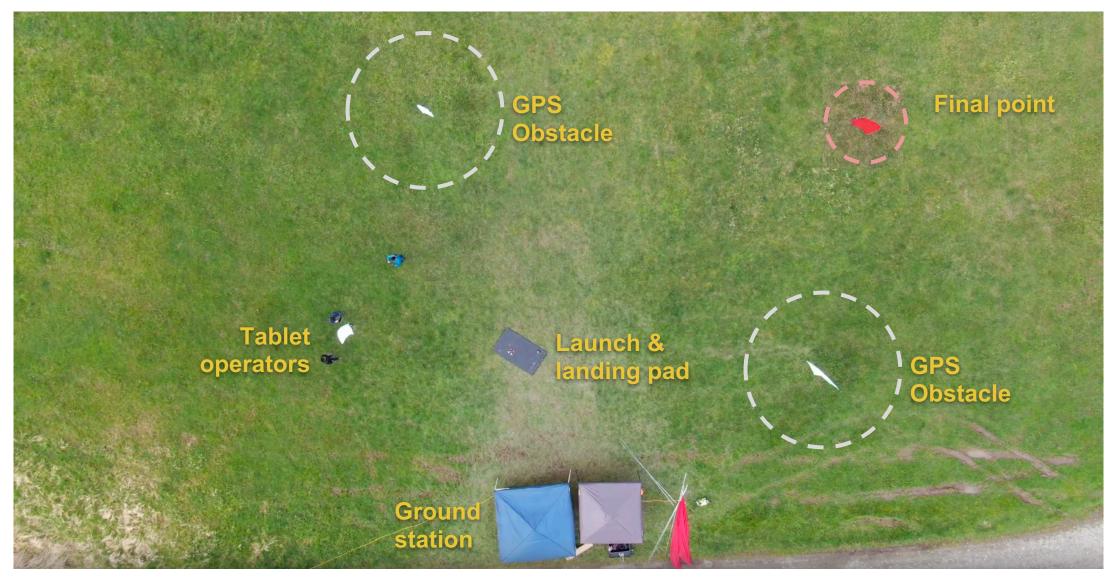
Interface: Handheld Tablet



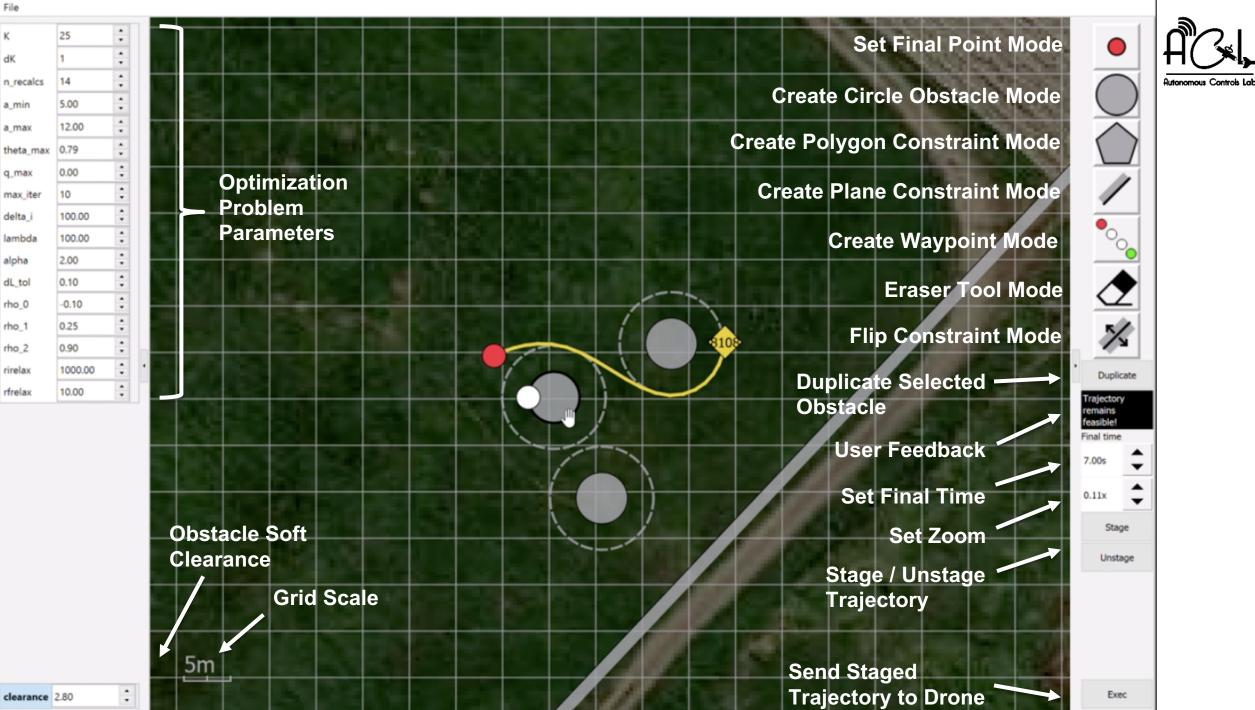
ONR Update & Demonstration March, 26th 2020

Interface: Field Operations

Interface: Field Operations

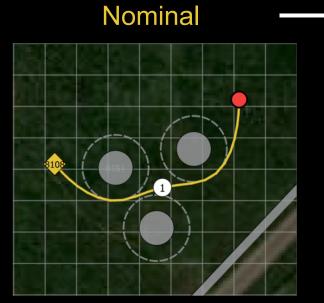


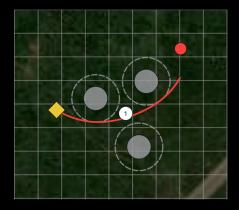
ONR Update & Demonstration March, 26th 2020



Κ

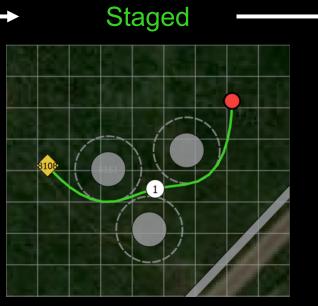
Interface: Field Operations



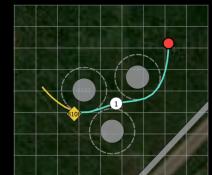


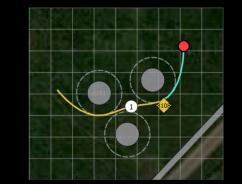
Constraint violated

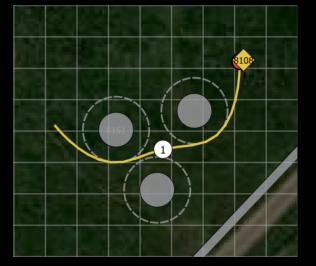
ONR Update & Demonstration March, 26th 2020







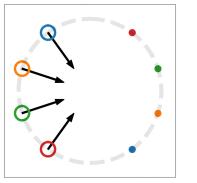


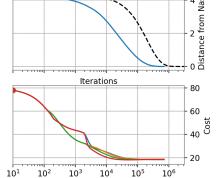


Current Work

Higher Fidelity Dynamics

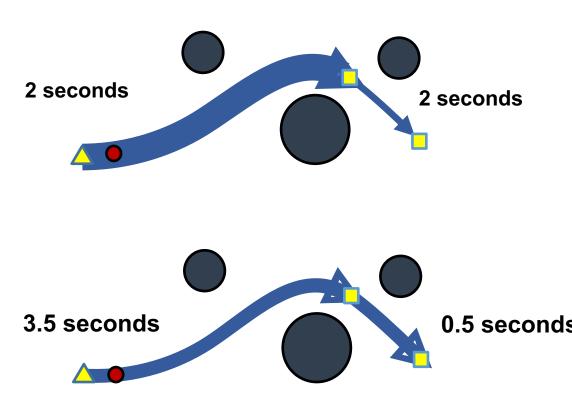
Game Theory Methods for Collision Avoidance





Variable Way Point Times

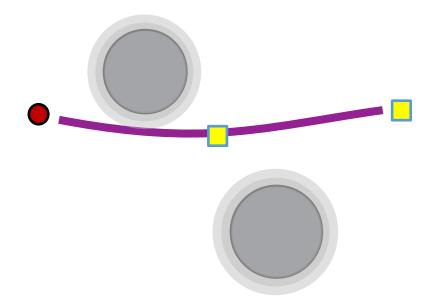
(In collaboration w/ P.S. Lysandrou)



Future work:

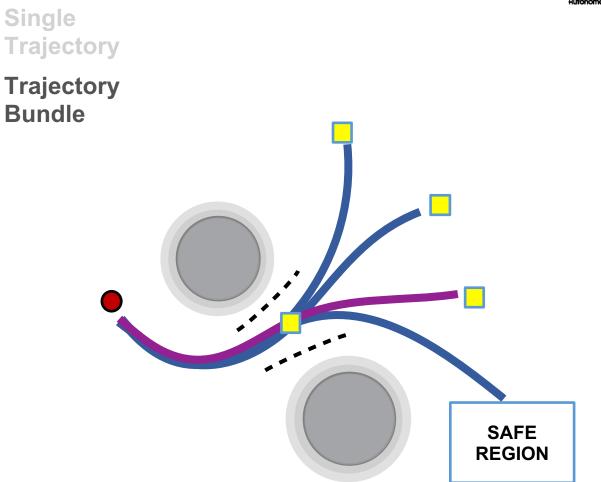
Single Trajectory

- Turn potential targets into constraints for other trajectories to maintain feasibility
- Warm-start capabilities for replanning after task change
- User interface with tablet for quick online reassignment



Trajectory Bundles

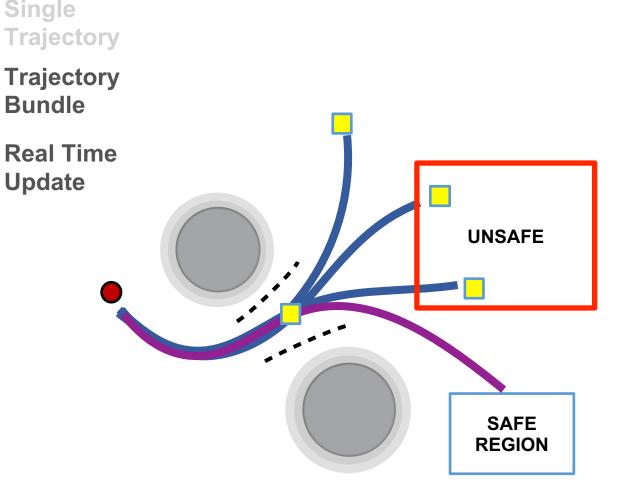
- Turn potential targets into Bundle constraints for other trajectories to maintain feasibility
- Warm-start capabilities for replanning after task change
- User interface with tablet for quick online reassignment



Single

Trajectory Bundles

- Turn potential targets into constraints for other trajectories to maintain feasibility
- Warm-start capabilities for replanning after task change
- User interface with tablet for quick online reassignment

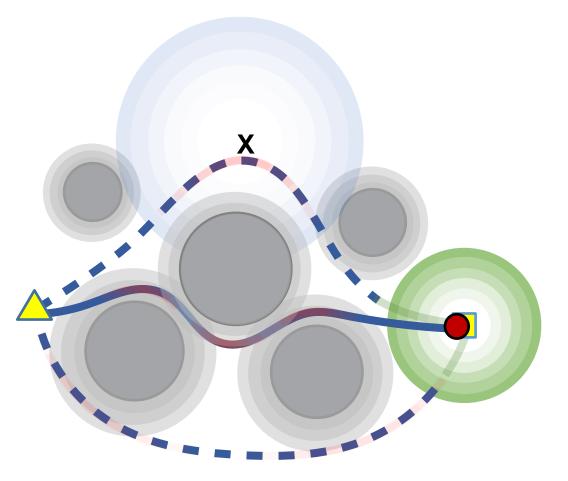


Trade-offs in objective determine solution:

 $\min_{x} \qquad w_{f}F(x) + \underbrace{\mathsf{Time}}_{w_{T}T(x)} \mathsf{Way Pts. Perform Boundary}_{w_{w}W(x) + w_{p}P(x) + w_{b}B(x)} \mathsf{S.t.} \qquad x \in \mathcal{X}$

- Multi-objective optimization
 - Sampling based techniques
 - Hierarchical optimization

- Clearly display tradeoffs on tablet
- User changes weights/enforces
 constraints/selects trajectories on screen



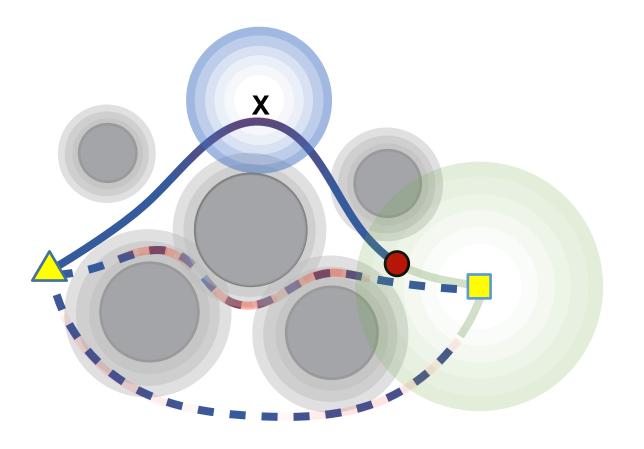
• Trade-offs in objective determine solution:

 $\min_{\substack{x \\ x \\ s.t.}} Fuel Time \\ w_{T}F(x) + w_{T}T(x) + w_{w}W(x) + w_{p}P(x) + w_{b}B(x)$

Multi-objective optimization

- Sampling based techniques
- Hierarchical optimization

- Clearly display tradeoffs on tablet
- User changes weights/enforces
 constraints/selects trajectories on screen



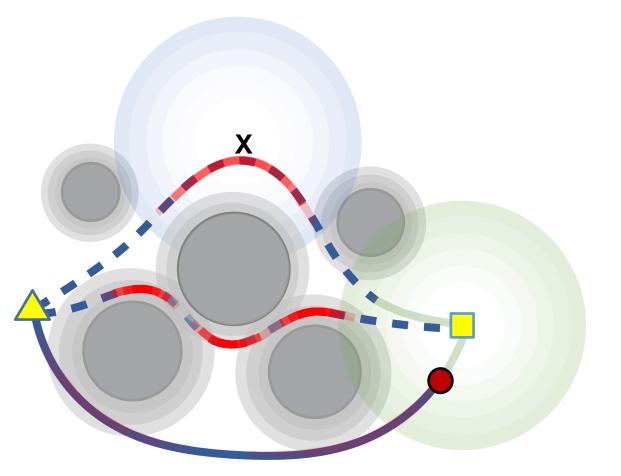
• Trade-offs in objective determine solution:

 $\begin{array}{cccc} & & & & & & \\ \underset{x}{\min} & & & & \\ \underset{x}{\min} & & & \\ & & \\ \text{s.t.} & & & \\ & & x \in \mathcal{X} \end{array} \end{array} \begin{array}{c} & & & & & \\ & & & & \\ & & & \\ & & & & \\$

Multi-objective optimization

- Sampling based techniques
- Hierarchical optimization

- Clearly display tradeoffs on tablet
- User changes weights/enforces
 constraints/selects trajectories on screen

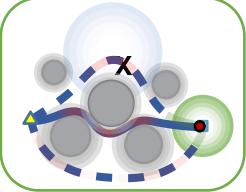


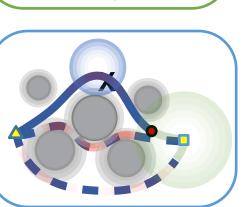
Trade-offs in objective determine solution:

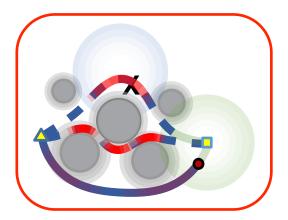
 $\begin{array}{ccc} & & & & & & \\ \min_{x} & & & & \\ x & & \\ \text{s.t.} & & & x \in \mathcal{X} \end{array} \end{array} \begin{array}{c} \text{Time} & & & & & \\ \text{Way Pts.} & & & & \\ \text{Way Pts.} & & & & \\ \text{Perform} & & & & \\ \text{Boundary} & & & \\ w_{p}P(x) + & & & \\ w_{b}B(x) & & \\ \text{Way Pts.} & & & \\ \text{Way Pts.} & & & \\ \text{Perform} & & & \\ \text{Boundary} & & \\ \text{Way Pts.} & & & \\ \text{Way Pts.} & & & \\ \text{Way Pts.} & & & \\ \text{Perform} & & & \\ \text{Boundary} & & \\ \text{Way Pts.} & & \\ \\ \text{Way Pts.} & & \\ \text{Way Pts.} & & \\ \\ \ \text{Way$

- Multi-objective optimization
 - Sampling based techniques
 - Hierarchical optimization

- Clearly display tradeoffs on tablet
- User changes weights/enforces
 constraints/selects trajectories on screen





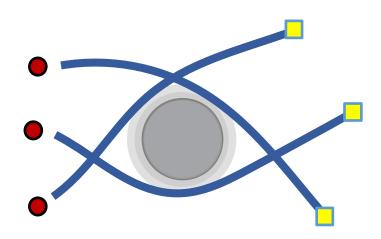


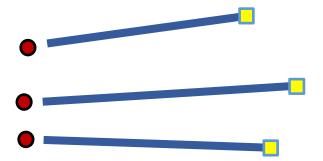
Multi-Agent Optimization

Multi-agent SCVX

- Primal-dual methods for decentralization of trajectory planning - ADMM
- Task matching using trajectories
 - Assignment Algorithms
 - Optimal transport shortest path
 - Extensions
 - Obstacle/collision avoidance
 - User assignment

28





Thank you!

Q&A