
Influences of Node

Benevolent Dictator Emeritus

July 2, 2012



Node was a long progression of attempts to build websites. It
was influenced by a lot of software:

CouchDB, Ebb, Flow, FUSE, libebb, libeio, libev, libircclient,
Merb, Mongrel, NGINX, nginx-ey-balancer, Ragel, Ruby on
Rails, SqueezeBox, timber lang, XUpload

And probably others. This is a story of what I was doing before
Node was first released in June 2009.



2004-11-10. Rochester, New York.





http://tinyclouds.org/topology.pdf

http://tinyclouds.org/topology.pdf






2006-08-20. Valparaiso, Chile.



2006-08-10. Valparaiso, Chile. Each night I’ve been working
until the cold winter morning in order to discover a method of
communicating via clouds. As of yet, I am unsuccessful.



2006-08-15. Valparaiso, Chile. One project is almost done and I
can put it online soon. It’s a theorem database and automated
proof thingy for topological spaces. I made it so that I could
learn Ruby on Rails - which is hot.



2006-12-09. Buenos Aires. I just got a contract to do a big
website. $ + work = travels to tierra del fuego in January.

2006-12-18. Buenos Aires. HTTP upload progress bars are
rather obfuscated- they typically involve a process running on
the server keeping track of the size of the tempfile that the HTTP
server is writing to, then on the client side an AJAX call is made
every couple seconds to the server during the upload to ask for
the progress of the upload. This is pretty ridiculous.
http://four.livejournal.com/730831.html

http://four.livejournal.com/730831.html




Ebb web server. Like Thin but using libev instead of
EventMachine

http://ebb.rubyforge.org/

http://ebb.rubyforge.org/


http://squeezebox.rubyforge.org/

http://squeezebox.rubyforge.org/


Precursor to libuv–the just the C parts of Ebb. Unix only.

http://tinyclouds.org/libebb

http://tinyclouds.org/libebb


2007-12-06. Cologne. I’m working on a new HTML templating
language using javascript. The language uses indention white
space to build a XML hierarchy, the Haml syntax. In and around
the XML one may use javascript for loops, conditionals, and
subrutines. The attributes of a XML node are javascript objects.
[...] I’ve written a proof of concept in Ruby using Ragel and
SpiderMonkey. [...] It will allow front-end developers to more
work independently of server-side programmers.

http://four.livejournal.com/820601.html

http://four.livejournal.com/820601.html


EngineYard contracted me to make NGINX load balance in a
similiar way to haproxy. Before I began I demonstrated the need
for this:

2009-01-26. Cologne. The result is what every system admin
knows intuitively: Rails gets worse over time if loaded down with
connections. The culprit is most likely MRI’s crappy thread
implementation. While Rails serves 1 request, 29 threads are
there sitting idle sucking up resources. http://four.livejournal.com/955817.html

http://four.livejournal.com/955817.html




2009-01-30. Cologne. i’m making a file system with only one
thread!

2009-02-19. Cologne. i’m listening an album which is stored on
the file system i wrote.

EngineYard had contracted me to build a FUSE file system on
top of a nascent (and now dead) DynamoDB clone. It was killed
after only a few weeks.

However the origin of the JavaScript “comma-first style” began
with how I styled the C in this project. http://four.livejournal.com/964924.html

http://four.livejournal.com/964924.html




2009-02-09. Cologne. I’m going to

I write a special thin web server tied to the V8 javascript
interpreter (Mongrel for V8 if you will)

I write a special evented TCP library for V8 (probably by wrapping
liboi). Does this exist in public already? Certainly google has
such a thing

I bundle them with a HTTP API for modifying server-side
documents

[...] I think this design will be extremely efficient and support
very high loads. http://four.livejournal.com/963421.html

http://four.livejournal.com/963421.html


Ryan (painfully hungover) and Tim at Curucamp 2009 in Vienna.



Date: Sun, 1 Mar 2009 02:46:33 +0100
Subject: solution
From: Ryan Dahl
To: Tim Becker

okay. going to do it in javascript. main thing
is tcp. all will follow from there. maybe we’ll
just use databases instead of file systems. (we
can cache image data inside javascript if need be)

So. TCP API:

TCP.connect(host, port, onConnect ,
onRead , onDrain , onClose);



Example:

function myOnConnect () {
this.write(’GET /index.html HTTP/1.1’);
this.write(’\r\n\r\n’);

}

TCP.connect("google.com", 80,
myOnConnect);

I will implement DOM’s timer thing setTimeout() so
that it uses libev timers.

thoughts? i think this is extremely simple and
will solve the world’s problems.



Date: Sun, 1 Mar 2009 09:40:29 +0100
Subject: Re: solution
To: Ryan Dahl
From: Tim Becker

It is extremely simple, feels like it’s missing
something, but I can’t think of what at the moment
apart from ‘close‘.

Anyway need to pack, see you! -tim



Date: Sun, 1 Mar 2009 14:49:06 +0100
Subject: Re: solution
From: Ryan Dahl
To: Tim Becker

So. The idea is shifting in my head. Instead of
presenting this primarily as a web server with
some extension libraries for TCP lets present it
as a set of evented libraries.

Initially we will provide

TCP.connect() // described above
HTTP.serve(’localhost’, 80, onRequest)



But later we’ll provide

TCP.serve, HTTP.connect, MySql.connect ?

This will be the framework that we eventually
build our HTTP-only web server (where you upload
javascript to change the behavior through HTTP).
But we’ll release this set of libraries initially.
Maybe call it netv8?

./netv8 myscript.js

Would be nice to have some way of loading external
js files (perhaps through TCP?)



Date: Sun, 1 Mar 2009 14:58:05 +0100
Subject: Re: solution
From: Ryan Dahl
To: Tim Becker

> Maybe call it netv8?
> ./netv8 myscript.js

better name: "node" ?

./node irc_client.js



WHEREAS, The usage of threads has complicated computer
programming; and

WHEREAS, V8 javascript comes free of I/O and threads; and

WHEREAS, Most operating systems do not provide
asynchonous file system access.

Now, therefore:

This set server and client libraries were made to build simple but
fast servers. They are provided free of charge under a
permissive simple license.

Submitted by Ryah Dahl, Tim Becker, March 1, 2009







Initial Announcemnet:

2009-05-31. Cologne. Node is a new server-side javascript
project. It provides a purely event-based interface to I/O:

I TCP server and client
I Standard setTimeout() setInterval() timers
I Asynchronous file I/O
I HTTP server and client

Node’s main focus is on performance and efficiency.
http://four.livejournal.com/1003191.html

 http://four.livejournal.com/1003191.html 

