
CompactRISC
CR16C

Programmer’s Reference Manual

Part Number: 424521772-101

March 2002

TM

ii

REVISION RECORD

VERSION RELEASE DATE SUMMARY OF CHANGES

1.0 December 2000 First release.

1.1 February 2001 Changed BAL/Bcond to ±16 MByte.
Minor clarificatons/corrections.

3.1 March 2002 Product release for CR16B/C.

iii

PREFACE

This Programmer’s Reference Manual presents the programming model
for the CompactRISC CR16C microprocessor core. The key to system
programming, and a full understanding of the characteristics and capa-
bilities of the CompactRISCTM Toolset, is understanding the program-
ming model.

The information contained in this manual is for reference only and is
subject to change without notice.

No part of this document may be reproduced in any form or by any
means without the prior written consent of National Semiconductor Cor-
poration.

National Semiconductor is a registered trademark and CompactRISC is a
trademark of National Semiconductor Corporation. All other brand or prod-
uct names are trademarks or registered trademarks of their respective holders

This page is intentionally blank.

CompactRISC CR16C Programmer’s Reference Manual CONTENTS-v

CONTENTS

Chapter 1 INTRODUCTION

1.1 NATIONAL’S COMPACTRISC TECHNOLOGY .. 1-1

1.2 CR16C 16-BIT COMPACTRISC PROCESSOR CORE 1-1

1.3 THE COMPACTRISC ARCHITECTURE ... 1-2

1.4 REDUCED MEMORY REQUIREMENTS .. 1-3

1.5 SCALABLE ARCHITECTURE FROM 8 TO 64 BITS 1-4

1.6 MODULAR EXTENSIONS ... 1-4

1.7 DEVELOPMENT TOOLS ... 1-5

Chapter 2 PROGRAMMING MODEL

2.1 COMPATIBILITY WITH CR16A AND CR16B .. 2-1

2.2 DATA TYPES ... 2-1

2.3 REGISTER SET ... 2-2

2.3.1 General-Purpose Registers .. 2-3

2.3.2 Dedicated Address Registers ... 2-3

2.3.3 The Processor Status Register .. 2-4

2.3.4 The Configuration Register .. 2-6

2.4 INSTRUCTION SET ... 2-8

2.5 MEMORY ORGANIZATION ... 2-12

2.5.1 Data References .. 2-13

2.5.2 Stacks .. 2-14

2.6 ADDRESSING MODES ... 2-15

Chapter 3 EXCEPTIONS

3.1 INTRODUCTION .. 3-1

3.2 INTERRUPT HANDLING ... 3-2

3.3 TRAPS ... 3-3

3.4 DETAILED EXCEPTION PROCESSING ... 3-4

3.4.1 Instruction Endings ... 3-4

3.4.2 The Dispatch Table .. 3-5

3.4.3 Acknowledging an Exception ... 3-6

CompactRISC CR16C Programmer’s Reference Manual CONTENTS-vi

3.4.4 Exception Service Procedures ... 3-9

3.4.5 Returning from Exception Service Procedures 3-9

3.4.6 Priority Among Exceptions ... 3-10

3.4.7 Nested Interrupts .. 3-12

3.5 RESET ... 3-13

Chapter 4 ADDITIONAL TOPICS

4.1 DEBUGGING SUPPORT ... 4-1

4.1.1 Instruction Tracing .. 4-1

4.1.2 The Breakpoint Instruction ... 4-2

4.1.3 User Programmable Breakpoint Features .. 4-3

4.1.4 Example Breakpoints ... 4-13

4.1.5 In-System Emulator (ISE) .. 4-14

4.1.6 Hardware Debug Mode .. 4-15

4.1.7 Debug Control and Status Registers .. 4-15

4.2 CACHE SUPPORT .. 4-20

4.2.1 Instruction Cache Operation .. 4-20

4.2.2 Instruction Cache Invalidation .. 4-21

4.2.3 Data Cache Operation ... 4-22

4.2.4 Data Write Operation ... 4-23

4.2.5 Data Cache Invalidation and Coherence Support 4-23

4.2.6 Data Cache Monitoring .. 4-24

4.3 INSTRUCTION EXECUTION ORDER ... 4-24

4.3.1 The Instruction Pipeline .. 4-25

4.3.2 Serializing Operations .. 4-26

Chapter 5 INSTRUCTION SET

5.1 INSTRUCTION DEFINITIONS ... 5-1

5.2 DETAILED INSTRUCTION LIST ... 5-3

Appendix A INSTRUCTION EXECUTION TIMING

Appendix B INSTRUCTION SET ENCODING

Appendix C STANDARD CALLING CONVENTIONS

Appendix D COMPARING CR16C WITH CR16A/B

INDEX

CompactRISC CR16C Programmer’s Reference Manual INTRODUCTION 1-1

Chapter 1

INTRODUCTION

1.1 NATIONAL’S CompactRISC TECHNOLOGY

National Semiconductor’s CompactRISC architecture was created from
the ground up as an alternative solution to CISC and other accumulator
based architectures. The CompactRISC architecture is a RISC architec-
ture specifically designed for embedded systems. It features the best of
RISC and CISC with compact code generation, low power consumption,
silicon-efficient implementations, the ability to tightly integrate on-chip
acceleration, I/O and memory functions, and scalability from 8 to 64
bits.

CompactRISC implementations greatly reduce the amount of silicon
required for the CPU, code memory and data memory, without significant-
ly reducing the overall performance advantages of RISC. In addition, be-
cause any processing core is only as good as its peripheral support,
several key architectural decisions were made to optimize bus structures
and I/O control for embedded systems in order to improve flexibility and
reduce costs.

Since its introduction, the CompactRISC architecture has firmly estab-
lished itself by filling a market gap: those embedded applications that re-
quire the performance of RISC, but cannot afford the processing and
cost overheads of 32-bit RISC implementations. The 16-bit members of
the CompactRISC family have been particularly popular with designers
because of their optimal balance of cost and performance, plus the abil-
ity to combine a very small size core with other key on-chip functions.

1.2 CR16C 16-BIT CompactRISC PROCESSOR CORE

The CR16C is a third-generation 16-bit CompactRISC processor core. It
is assembly-level compatible with its predecessors, the CompactRISC
CR16A and CR16B, and provides expanded options for system designers.
The new implementation provides:

1. Address Space

– Expanded linear address space of 16 Mbytes for program code and
data memory

– User, supervisor and interrupt stack pointers covering the full
address range

CompactRISC CR16C Programmer’s Reference Manual INTRODUCTION 1-2

2. Instruction Set Enhancements

– Double-word support for most instructions improve optimizations
for data and code access above the first 64K.
- load and store
- move and movex/z
- arithmetic (compare, add, subtract)
- logic (AND, OR, XOR)
- shifts (arithmetic and logical)

– Expanded push/pop instructions allow up to eight registers with a
separate bit to determine if the return address should also be
pushed/popped to/from the stack

– expanded load/store multiple instructions to allow up to 8 registers.

– optional mac instruction

3. Addressing Modes Enhancements

– Index addressing mode for better support of relocatable code

– Register pair relative addressing mode, with efficient instruction en-
coding for all memory access instructions, improves optimizations
for data and code access above the first 64K.

4. System Features

– User/supervisor mode

– Illegal address trap (address out of range)

– Cache support

– Enhanced debug features, with up to eight hardware breakpoints

5. Speed Improvements

– Enhanced pipelining of data transfers

– Faster/deterministic multiply (single cycle 8*8)

To ensure a seamless transition for existing CompactRISC users, the
CR16C provides a configuration bit, CFG.SR, that permits exclusive use
of only small registers. This mode is backward compatible with the large
programing model of the CR16B. The small programing model of the
CR16B, which is backward compatible with the CR16A, is no longer sup-
ported.

1.3 THE COMPACTRISC ARCHITECTURE

In many ways, the CompactRISC architecture is a traditional RISC
load/store processor architecture, but enhanced for embedded control
functions.

CompactRISC CR16C Programmer’s Reference Manual INTRODUCTION 1-3

For example:

• The CR16C executes an optimized instruction set with up to 33 inter-
nal registers grouped in 16 general-purpose registers, four dedicated
address registers, a processor status register, a configuration register
and up to 11 debug-control registers.

• The CR16C has a three-stage pipeline that is used to obtain a peak
performance of 50 Million Instructions Per Second (MIPS) at a clock
frequency of 50 MHz.

• The CR16C core includes a pipelined integer unit that supports a
peak execution speed of one instruction per each internal cycle, with
a 100 Mbyte/sec pipelined bus.

• The CR16C performs fast multiply operations using a 16-bit by 8-bit
hardware multiplier.

In general, the CompactRISC architecture supports little-endian memory
addressing. This means that the byte order in the CR16C is from the
least significant byte (LSB) to the most significant byte (MSB).

1.4 REDUCED MEMORY REQUIREMENTS

To simplify instruction decoder design, RISC architectures have tradi-
tionally employed fixed-width instructions. For 32-bit RISC systems, ev-
ery instruction is encoded in four or eight bytes. In CISC systems, a
variable instruction length is used, resulting in smaller code sizes for a
given application. The CompactRISC architecture utilizes variable in-
struction widths with fixed coding fields within the instruction itself. For
example, the opcode field is always in the first 16 bits, with additional
bytes as required for immediate values. Instructions for the CR16C may
be encoded in 2, 4 or 6 bytes, but basic instructions are only 2 bytes
long. This permits optimized instruction processing by the instruction
decoder, and results in a smaller code size. Code generated for the
CR16C is comparable to CISC code size, or typically 50 percent smaller
than code generated for leading 32-bit RISC CPUs. Another advantage is
the ability to generate performance with lower pin-counts or lower band-
width buses, again a trait of an embedded system.

32-bit RISC processors store registers and addresses on the stack as 32-
bit entities. The CR16C is a 16-bit processor, thus it uses 16 bits for reg-
ister image storage and for address storage in main memory. In addition,
32-bit RISC processors deliver high performance only when aligned 32-
bit data is used. Non-aligned data significantly hampers performance.
Intermediate results are stored in memory as 32-bit values and registers

CompactRISC CR16C Programmer’s Reference Manual INTRODUCTION 1-4

are saved as 32-bit operands on the stack. CompactRISC instructions
operate on 8-, 16- and 32-bit data. Non-aligned accesses are allowed.
Dedicated data type conversion instructions speed data access to mixed
size data. With smaller code size and variable length instructions and
data, the CompactRISC family provides more efficient use of smaller,
lower cost, lower bandwidth memories.

Smaller memory enables the designer to choose between several poten-
tial advantages:

• Reduced costs
• Many more system elements integrated with on-chip memory
• Fewer pins to access minimum-sized off-chip memory
• Larger amounts of on-chip memory than similar processors, at the

same cost.

1.5 SCALABLE ARCHITECTURE FROM 8 TO 64 BITS

The architectural features described above make the CompactRISC tech-
nology ideal for the next generation of embedded systems. One additional
design decision opened the door for CompactRISC technology to be effec-
tively used from low-end to high-end embedded systems: the Compact-
RISC architecture is flexible enough to accommodate the whole range of
8-bit to 64-bit implementations, thus providing a more attractive up-
grade path for designers of new, low-end embedded systems.

Thus, the designer of embedded controller-based systems can choose the
optimum processor size for a given target application. This is particularly
useful in leveraging the development investment across several classes of
related end products. With a single-processor architecture, a number of
different products can be developed using a single development platform
and using the same HLL-based development and debug tools. Addition-
ally, a design team that is already experienced with a design using one
CompactRISC core can easily migrate to another core, due to the high
similarity in both the architecture and the development tools.

1.6 MODULAR EXTENSIONS

The CompactRISC technology was designed to be easily extended. This
means that specialized functions needed by specific applications can be
easily added to a single-chip design. A modular internal bus provides
predefined processor and I/O interfaces to the core bus and the periph-
eral bus. These buses are designed for maximum flexibility. The core bus
is a high-speed bus and can be used to connect performance-demanding
functions to the CPU such as fast on-chip memory, DMA channels, and

CompactRISC CR16C Programmer’s Reference Manual INTRODUCTION 1-5

additional coprocessor units such as a DSP. The peripheral bus is a sim-
ple, lower speed bus for less demanding peripherals such as counters,
timers, PWM lines and MICROWIRE serial interfaces. Using a “template”
approach, it is easy to create small, cost-effective custom systems. It is
also easy to expand the functionality of CompactRISC core-based sys-
tems to include any number of application specific features.

1.7 DEVELOPMENT TOOLS

High-level development tools are essential to rapid, modern design. The
CompactRISC architecture is well supported with a comprehensive C-
based development and debug environment available from National and
third party vendors. Key software development components include an
optimizing C compiler, a macro assembler, run-time libraries, librarian
and a graphical source-level debugger with enhanced simulation capabil-
ities. In addition, an integrated, multiple core, graphical debugger sup-
ports debugging of multiple CompactRISC/DSP cores on a single die.

On the hardware side, the CompactRISC architecture has modular ISE
(In System Emulator) support from third-party development system ven-
dors, and various development boards for all current product offerings.

The CR16C supports a NEXUS class 1 compliant on-chip debug module.
With this interface, every debugger that uses the industry standard
NEXUS API can be used for CR16C-based System-on-a-Chip (SOC) de-
signs.

The CompactRISC architecture is also well supported with Real-Time
Operating Systems (RTOS) from third party vendors.

As a package, these tools simplify the task of designing and developing
advanced embedded systems in high level languages such as ANSI-C.

This page is intentionally blank.

CompactRISC CR16C Programmer’s Reference Manual PROGRAMMING MODEL 2-1

Chapter 2

PROGRAMMING MODEL

This chapter describes the CR16C register set and the instruction set.
The CR16C supports up to 16 Mbytes of program and data space. Five
addressing modes are supported: register, immediate, absolute, relative
and indexed. Refer to Section 2.5 for an overview of the memory areas
with most efficient data accesses.

2.1 COMPATIBILITY WITH CR16A AND CR16B

The CR16C is backward-compatible with the CR16A and CR16B. The
CR16C maintains assembly level compatibility, not binary compatibility,
with the CR16B large model. Code that was developed for the CR16B
large model runs on the CR16C after being reassembled for the CR16C.
Appendix D provides a summary of the differences between the
CR16A/B and the CR16C programming models.

2.2 DATA TYPES

The CompactRISC family of processors are little-endian machines. As
such, the LSB always resides in the lower address, both for address and
data variables.

Integer data
type

The integer data type is used to represent integers. Integers may be
signed or unsigned. Three integer sizes are supported: 8-bit (1 byte), 16-
bit (1 word) and 32-bit (1 double-word). Signed integers are represented
as binary 2’s complement numbers, with values in the range −27 to 27−
1, −215 to 215−1 and −231 to 231−1, respectively. Unsigned numbers have
values in the range 0 to 28−1, 0 to 216−1 and 0 to 232−1, respectively.

Boolean data
type

The Boolean data type is represented as an integer (either a byte or a
word). The value of its least significant bit represents one of two logical
values: true (integer 1) or false (integer 0). Bits other than the least sig-
nificant bit are not interpreted.

CompactRISC CR16C Programmer’s Reference Manual PROGRAMMING MODEL 2-2

2.3 REGISTER SET

This section describes the register set of the CR16C. The format of each
register is illustrated and described in detail. Bits/Registers specified as
“reserved” must be written as 0, and return undefined results when
read. Non-implemented registers are read as zero.

The internal registers of the CR16C are grouped by function:

• 16 general-purpose registers including four double registers:
– Two available for use in index addressing mode
– One used as a return address pointer
– One used as the stack pointer

• Four dedicated address registers
• One Processor Status Register
• One Configuration Register
• Five debug registers supporting two debug channels.
• Optionally, additional sets of four debug registers for each pair of

auxiliary debug channels.

Figure 2-1 shows the internal registers of the CR16C.

Figure 2-1. CR16C Internal Registers

ISPL

PSR

Dedicated Address Registers

Processor Status Register

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9

R10
R11
R12
R13

RA
SP

General-Purpose Registers

CFG

Configuration Register

15 0

15 0

15 0
PC31

0

ISPH

15

USPL

DCRL
DSR

CAR0L

Debug Registers

15 0

CAR0H

31

31

CAR1H CAR1L

USPH
INTBASELINTBASEH

DCRH
DBS

23

Debug Register Bank 1
Debug Register Bank n

The number of debug registers
depends on the configuration of the chip

CompactRISC CR16C Programmer’s Reference Manual PROGRAMMING MODEL 2-3

2.3.1 General-Purpose Registers

The CompactRISC cores feature 16 general-purpose registers. These reg-
isters are used individually as 16-bit operands or as register pairs for
operations with 32-bit operands or on addresses greater than 16 bits.

• Registers are defined as R0 through R13, RA and SP.

• Register pairs are defined based on the setting of the Short Register
bit in the Configuration Register (CFG.SR). When CFG.SR is set, reg-
ister pairs are defined as in the CR16A/B:
(R1,R0), (R2,R1) ... (R11,R10), (R12_L, R11), (R13_L, R12_L),
(R14_L, R13_L) and SP. (R14_L, R13_L) is the same as (RA,ERA).

• When CFG.SR is not set, register pairs are defined as follows:
(R1,R0), (R2,R1) ... (R11,R10), (R12_L, R11),
R12, R13, RA, SP.
R12, R13, RA and SP are double-word registers for direct storage of
addresses greater than 16 bits.

With the recommended calling convention for the architecture, some of
these registers are assigned special hardware and software functions.
Registers R0 to R13 are used for general purposes, such as holding vari-
ables, addresses or index values. The SP Register is used as a pointer to
the program run-time stack. The RA Register is used as a return address
from subroutines. R12 and R13 are available for use as a base index
address in the index addressing mode.

If a general-purpose register is specified by an operation that is 8 bits
long, only the lower part of the register is used; the higher part is not
referenced, or modified. Similarly, for word operations on register pairs,
only the lower register is used. The upper register is not referenced or
modified.

2.3.2 Dedicated Address Registers

This section describes the four, double-word wide, dedicated address reg-
isters that the CR16C uses to implement specific address functions.

Program
Counter (PC)
Register

The value in the PC Register points to the first byte of the instruction
currently being executed. CR16C instructions are aligned to even
addresses, thus the least significant bit of the PC is always 0. At reset,
the PC is initialized to 0 or an alternative predetermined value. The value
of the PC prior to reset is saved in the (R1,R0) general-purpose register
pair.

CompactRISC CR16C Programmer’s Reference Manual PROGRAMMING MODEL 2-4

Interrupt
Stack Pointer
(ISP)

The ISP points to the lowest address of the last item stored on the inter-
rupt stack. This stack is used by the hardware when interrupts or
exceptions occur. This stack pointer is accessible as the ISP Processor
Register for initialization. The interrupt stack can exist in the entire
address range. The ISP cannot be used for any purpose other than the
automatic storage of registers on the interrupt stack during an excep-
tion, and the restoration of these registers during a RETX. The interrupt
stack grows downward in memory. See Section for additional details.
The most significant 8 bits of ISP and the least significant bit of ISP are
forced to 0.

User Stack
Pointer (USP)

The USP points to the lowest address of the last item stored on the user
stack. This stack is used when the program stack is used for supervisor
and user level processes. This stack also grows downward in memory.
See “The program stack” on page 2-14 for more information. If the USP
points to an illegal address (any address greater than 0x00FF_FFFF) the
execution of a stack modifying instruction (PUSH or POP) an IAD trap.

Interrupt
Base
(INTBASE)
Register

The INTBASE Register holds the address of the dispatch table for inter-
rupts and traps. The dispatch table can be located anywhere in the
supported addresses range. The most significant 8 bits of INTBASE and
the least significant bit of INTBASE are forced to 0. See Chapter 3 for
more information.

2.3.3 The Processor Status Register

The 16-bit wide Processor Status Register (PSR) holds status information
and selects operating modes for the CR16C. See Figure 2-2 for the PSR
bit assignment.

Figure 2-2. PSR Register

At reset, bits 0 through 11 of the PSR are cleared to 0, except for the
PSR.E bit, which is set to 1. In addition, the value of each bit prior to
reset is saved in the R2 general-purpose register.

Bits Z, C, L, N, and F in the PSR have a dedicated condition code in con-
ditional branch instructions. Any conditional branch instruction can
cause a branch in program execution, based on the value of one or more
of these PSR bits. For example, one of the Bcond instructions, BEQ
(Branch EQual), causes a branch if the PSR.Z flag is set. Refer to the
Bcond instruction in Section 5.1 on page 5-1 for details.

15 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved I P E res N Z F res U L T C

CompactRISC CR16C Programmer’s Reference Manual PROGRAMMING MODEL 2-5

Bits 4 and 8 have a constant value of 0. Bits 12 through 15 of the PSR
are reserved. The other bits are described below. In general, status bits
are modified only by specific instructions. Otherwise, status bits main-
tain their values throughout instructions which do not implicitly affect
them.

Bit C The Carry bit indicates whether a carry or borrow occurred after addition
or subtraction. It can be used with the ADDC and SUBC instructions to
perform multiple-precision integer arithmetic calculations. It is cleared to
0 if no carry or borrow occurred, and set to 1 if a carry or borrow
occurred.

Bit T The Trace bit causes program tracing. When the T bit is set to 1, a Trace
(TRC) trap is executed after every instruction. Refer to Section 4.1.1 on
page 4-1 for more information on program tracing. The T bit is automat-
ically cleared to 0 when a trap or an interrupt occurs. The T bit is used
in conjunction with the P bit (see below). When a hardware debug mod-
ule is present in the system, the value of the T bit is ignored.

 Bit L The Low flag is set by comparison operations. In integer comparison, the
L flag is set to 1, if the second operand (Rdest) is less than the first oper-
and (Rsrc) when both operands are interpreted as unsigned integers.
Otherwise, it is cleared to 0. Refer to the specific compare instruction in
Section 5.1 on page 5-1 for details.

Bit U The User Mode bit is set to indicate that the User Stack Pointer is being
used as the Stack Pointer. This bit can only be set by the Jump USR
instruction. This bit is cleared before any exception processing, such as
an interrupt or a trap. When this bit is clear, the supervisor stack
pointer is used. The USP Register is accessed as a processor register
when the User Mode bit is not set. When the User Mode bit is set, Load
Processor Register LPR) operations are not permitted. The value of this
bit is output on signal SFUSR from the core.

Bit F The Flag bit is a general condition flag which is set by various instruc-
tions. It may be used to signal exceptional conditions or to distinguish
the results of an instruction (e.g., integer arithmetic instructions use it
to indicate overflow from addition or subtraction). It is also set, or
cleared, as a result of a Test, Set or Clear bit instruction.

Bit Z The Zero bit is set by comparison operations. In integer comparisons, it
is set to 1 if the two operands are equal. Otherwise, it is cleared to 0.
Refer to the specific compare instruction in Section 5.1 on page 5-1 for
details.

Bit N The Negative bit is set by comparison operations. In integer comparison,
it is set to 1 if the second operand (Rdest) is less than the first operand
(Rsrc), when both operands are interpreted as signed integers. Other-
wise, it is cleared to 0. Refer to the specific compare instruction in Sec-
tion 5.1 on page 5-1 for details.

CompactRISC CR16C Programmer’s Reference Manual PROGRAMMING MODEL 2-6

Bit E The local maskable interrupt Enable bit affects the state of maskable
interrupts. When this bit and the PSR.I bits are 1, all maskable inter-
rupts are accepted. When this bit is 0, only the non-maskable interrupt
is accepted. See Section 3.2 on page 3-2.

There are two dedicated instructions that set and clear the E bit: the
Enable Interrupts instruction (EI) sets it to 1; the Disable Interrupts
instruction (DI) clears it to 0. This pair can be used to locally disable
maskable interrupts, regardless of the global state of maskable inter-
rupts which is determined by the value of the PSR.I bit.

See also Section 3.2 on page 3-2.

Bit P The Trace (TRC) trap Pending bit is used together with the T bit to pre-
vent a TRC trap from occurring more than once for any instruction. It is
cleared when no TRC trap is pending. It is set when a TRC trap is pend-
ing. See Sections 3.4.4 on page 3-9 and 4.1.1 on page 4-1 for more infor-
mation. When a hardware debug module is present in the system the
value of the P bit is ignored.

Bit I The global maskable Interrupt enable bit affects the state of maskable
interrupts. This bit is set using the LPR instruction. When this bit and
the PSR.E bits are 1, all maskable interrupts are accepted. When this bit
is 0, only the non-maskable interrupt is accepted. This bit is cleared to
0 on reset. In addition, it is automatically cleared when an interrupt or
DBG trap occurs.

2.3.4 The Configuration Register

The Configuration Register (CFG) is used to enable or disable various
operating modes and to control optional on-chip caches.Figure 2-3
shows the CFG Register bit assignment.

Figure 2-3. Configuration Register

All CFG bits are cleared on reset. The CFG control bits are described in
detail below.

 Bit DC If the Data Cache bit is set to 1, the data cache is accessible for data
read and write operations. If the DC bit is cleared to 0, the data cache is
disabled.

15-10 9 8 7 6 5 4 3 2 1 0

reserved SR ED 0 0 LIC IC LDC DC 0 0

CompactRISC CR16C Programmer’s Reference Manual PROGRAMMING MODEL 2-7

Bit LDC If the Lock Data Cache line bit is set to 1, a missing line, which cannot
be replaced, is locked into the cache after it is placed. If LDC is cleared
to 0, the line can be replaced.

Bit IC If the Instruction Cache bit is set to 1, the instruction cache is accessible
for instruction fetches. If the IC bit is cleared to 0, the instruction cache
is disabled.

Bit LIC If the Lock Instruction Cache line bit is set to 1, a missing instruction is
locked into the instruction cache after it is placed. It is not replaced as
long as LIC remains 1.

Bit ED The Extended Dispatch bit determines the size of an entry in the Inter-
rupt Dispatch Table. Each entry holds the address of the appropriate
exception handler. When ED is set, the Interrupt Dispatch Table con-
tains 32-bit elements, each occupying two adjacent words. When ED is
cleared, the Interrupt Dispatch Table contains 16-bit elements. This
implies that when ED is clear, all exception handlers must start in the
first 128K of the address space. On reset, the bit is cleared. The location
of the Interrupt Dispatch Table is determined by INTBASE, independent
of the setting of the ED bit.

Bit SR The Short Register bit is set to enable the register pairing used to main-
tain compatibility with code developed for the CR16B large model. As
opposed to using the extended versions of R12, R13 and R14, only the
lower 16 bits of these registers are used, and are paired together as reg-
ister pairs for double operations. The (R14, R13) register pair is used as
the extended RA. In addition, when this bit is set, address displacements
relative to a single register are supported with offsets of 0 and 14 bits in
place of the index addressing with these displacements. See “Index
mode” on page 2-16 for additional details.

The Debug RegistersDebug Base Register (DBS)

The Debug Base Register specifies which set of debug registers is
mapped into the debug register space (CAR0/1, DCR and DSR). In addi-
tion, a global debug status is available via the DBS. For more informa-
tion, see Section 4.1.1 on page 4-1.

Compare Address Registers (CAR0/1)

The Compare Address Registers (CAR0 and CAR1) contain the address to
be used to generate a breakpoint on an address or data. For more infor-
mation, see Section 4.1.1 on page 4-1.

CompactRISC CR16C Programmer’s Reference Manual PROGRAMMING MODEL 2-8

Debug Control Register (DCR)

The Debug Control Register (DCR) holds the debug control bits. For more
information, see Section 4.1.1 on page 4-1.

Debug Status Register (DSR)

The Debug Status Register (DSR) holds the debug status bits. For more
information, see Section 4.1.1 on page 4-1.

2.4 INSTRUCTION SET

The following table summarizes the CR16C instruction set. Chapter 5
and Appendix B describe each instruction in detail. Also refer to
“Instructions Table Glossary” on page 2-11.

Mnemonic Operands Description

MOVES

MOVi Rsrc/imm, Rdest Move

MOVXB Rsrc, Rdest Move with sign extension

MOVZB Rsrc, Rdest Move with zero extension

MOVXW Rsrc, RPdest Move with sign extension

MOVZW Rsrc, RPdest Move with zero extension

MOVD
imm, RPdest
RPsrc, RPdest

Move immediate to register-pair
Move between register-pairs

INTEGER ARITHMETIC

ADD[U]i Rsrc/imm, Rdest Add

ADDCi Rsrc/imm, Rdest Add with carry

ADDD RPsrc/Imm,RPdest Add with RP or immediate.

MACQW Rsrc1 Rsrc2, RPdest
Multiply signed Q15:

RPdest := RPdest + Rsrc1 * Rsrc2

MACSW Rsrc1 Rsrc2, RPdest
Multiply signed and add result:

RPdest := RPdest + Rsrc1 * Rsrc2

MACUW Rsrc1 Rsrc2, RPdest
Multiply unsigned and add result:

RPdest := RPdest + Rsrc1 * Rsrc2

MULi Rsrc/imm, Rdest Multiply: Rdest(8) := Rdest(8) * Rsrc(8)/Imm
Rdest(16) := Rdest(16) * Rsrc(16)/Imm

MULSB Rsrc, Rdest Multiply: Rdest(16) := Rdest(8) * Rsrc(8)

MULSW Rsrc, RPdest Multiply: RPdest := RPdest(16) * Rsrc(16)

MULUW Rsrc, RPdest Multiply: RPdest := RPdest(16) * Rsrc(16);

SUBi Rsrc/imm, Rdest Subtract: (Rdest := Rdest − Rsrc)

SUBD RPsrc/imm, RPdest Subtract: (RPdest := RPdest − RPsrc/imm)

SUBCi Rsrc/imm, Rdest Subtract with carry: (Rdest := Rdest − Rsrc)

CompactRISC CR16C Programmer’s Reference Manual PROGRAMMING MODEL 2-9

INTEGER COMPARISON

CMPi Rsrc/imm, Rdest Compare Rdest − Rsrc

CMPD RPsrc/imm, RPdest Compare RPdest-RPsrc

BEQ0i Rsrc, disp Compare Rsrc to 0 and branch if EQUAL

BNE0i Rsrc, disp Compare Rsrc to 0 and branch if NOT-EQUAL

LOGICAL AND BOOLEAN

ANDi Rsrc/imm, Rdest Logical AND: Rdest := Rdest & Rsrc/Imm

ANDD RPsrc/imm, RPdest Logical AND: RPdest := RPsrc & RPsrc/Imm

ORi Rsrc/imm, Rdest Logical OR: Rdest := Rdest | Rsrc/Imm

ORD RPsrc/imm, RPdest Logical OR: Rdest := RPdest | RPsrc/Imm

Scond Rdest Save condition code as boolean

XORi Rsrc/imm, Rdest Logical exclusive OR: Rdest := Rdest ^ Rsrc/Imm

XORD RPsrc/imm, RPdest Logical exclusive OR: Rdest := RPdest ^ RPsrc/Imm

SHIFTS

ASHUi Rsrc/imm, Rdest Arithmetic left/right shift

ASHUD Rsrc/imm, RPdest Arithmetic left/right shift

LSHi Rsrc/imm, Rdest Logical left/right shift

LSHD Rsrc/imm, RPdest Logical left/right shift

BIT OPERATIONS

SBITi Iposition, disp(Rbase)
Iposition, disp(RPbase)
Iposition, (Rindex)disp(RPbasex)
Iposition, abs
Iposition, (Rindex)abs

Set a bit in memory

CBITi Iposition, disp(Rbase)
Iposition, disp(RPbase)
Iposition, (Rindex)disp(RPbasex)
Iposition, abs
Iposition, (Rindex)abs

Clear a bit in memory

TBIT Rposition/imm, Rsrc Test a bit in a register

TBITi Iposition, disp(Rbase)
Iposition, disp(RPbase)
Iposition, (Rindex)disp(RPbasex)
Iposition, abs
Iposition, (Rindex)abs

Test a bit in memory

PROCESSOR REGISTER MANIPULATION

LPR Rsrc, Rproc Load processor register

LPRD RPsrc, Rprocd Load double processor register

SPR Rproc, Rdest Store processor register

SPRD Rprocd, RPdest Store double processor register

Mnemonic Operands Description

CompactRISC CR16C Programmer’s Reference Manual PROGRAMMING MODEL 2-10

JUMPS AND LINKAGE

Bcond disp9
disp17
disp25

Conditional branch

BAL RPlink, disp25 Branch and link

BR disp9
disp17
disp25

Branch

EXCP vector Trap (vector)

Jcond RPtarget Conditional Jump to a large address

JAL RA, RPtarget,

RPlink,RPtarget

Jump and link to a large address

JUMP RPtarget Jump

JUSR RPtarget Jump and set PSR.U

RETX Return from exception

PUSH imm,Rsrc, RA Push “imm” number of registers on user stack, start-
ing with Rsrc and possibly including RA

POP imm, Rdest, RA Restore “imm” number of registers from user stack,
starting with Rdest and possibly including RA

POPRET imm, Rdest, RA Restore registers (similar to POP) and JUMP RA

LOAD AND STORE

LOADi disp(Rbase), Rdest Load (register relative)

abs,Rdest Load (absolute)

(Rindex)abs, Rdest Load (absolute index relative)

(Rindex)disp(RPbasex), Rdest Load (register relative index)

disp(RPbase), Rdest Load (register pair relative)

LOADD disp(Rbase), RPdest Load (register relative)

abs, RPdest Load (absolute)

(Rindex)abs, RPdest Load (absolute index relative)

(Rindex)disp(RPbasex), RPdest Load (register pair index relative)

disp(RPbase), RPdest Load (register pair relative)

STORi Rsrc, disp(Rbase) Store (register relative)

Rsrc, disp(RPbase) Store (register pair relative)

Rsrc, abs Store (absolute)

Rsrc, (Rindex)disp(RPbasex) Store (register pair relative index)

Rsrc, (Rindex)abs Store (absolute index)

STORD RPsrc, disp(Rbase) Store (register relative)

RPsrc, disp(RPbase) Store (register pair relative)

RPsrc, abs Store (absolute)

RPsrc, (Rindex)disp(RPbasex) Store (register pair index relative)

RPsrc, (Rindex)abs Store (absolute index relative)

STOR IMM imm4, disp(Rbase)
imm4, disp(RPbase)
imm4, (Rindex)disp(RPbasex)
imm4, abs
imm4, (Rindex)abs

Store 4 bit immediate value in memory

LOADM imm3 Load 1 to 8 registers (R2-R5, R8-R11) from memory starting
at (R0)

LOADMP imm3 Load 1 to 8 registers (R2-R5, R8-R11) from memory starting
at (R1, R0)

STORM imm3 Store 1 to 8 registers (R2-R5, R8-R11) to memory starting at
(R1)

STORMP imm3 Store 1 to 8 registers (R2-R5, R8-R11) to memory starting at
(R7, R6)

Mnemonic Operands Description

CompactRISC CR16C Programmer’s Reference Manual PROGRAMMING MODEL 2-11

MISCELLANEOUS

CINV [d, i, u] Cache Invalidate

DI Disable maskable interrupts

EI Enable maskable interrupts

EIWAIT Enable maskable interrupts and wait for interrupt

NOP No operation

WAIT Wait for interrupt

Instructions Table Glossary
R??? - Any general-purpose register (R0,R1, R2, R3...R12_L, R13_L, RA_L,SP)
Rsrc - Source register R???
Rdest - Destination register R???
Rbase - Base register for relative addressing R???
Rproc - Processor registers (CAR0/1, DCRL/H. DSRL/H, PSR, ISPL/H, etc.)
Rprocd- Processor registers Double (CAR0/1, DCR. DSR, PSR, ISP, etc.)
Rlink - Link register R??? holding the address of the next sequential address (return address).
Rtarget- Target register R???. The register holds a code address
Rindex- R12 or R13 used as an index register holding a base address.
Rposition- Bit position register R??? - only the lower 4-bits are used as bit position in TBIT
RP???- Any general-purpose register pair

 when SR= 0: ((R1,R0) (R2,R1)...(R11,R10), (R12_L,R11), R12, R13,RA,SP.)
 when SR= 1: ((R1,R0) (R2,R1)...(R11,R10), (R12_L,R11),
 (R13_L,R12_L),(RA_L, R13_L),(SP_L,RA_L),SP.)

RPsrc - Source register pair RP???
RPdest- Destination register pair RP???
RPbase- Base register pair for relative addressing RP???
RPbasex- Base register pair for relative addressing only:

(R1,R0), (R3,R2), (R5,R4), (R7,R6), (R9,R8), (R11,R10), (R4,R3), (R6,R5)
RPlink - Link register pair RP???. The link register holds the address of the next sequential

address (return address).
RPtarget- Target register pair RP???. The register holds a code address.
RA - Return Address Register- used in push and pops to determine if the return address (RA)

should be pushed/popped on/from stack.
i - in this table B = byte; W = word
imm - Immediate value 8 bits for byte, 16 bits for word, 32 bits for double
immn - Immediate value of n bits:
Iposition- Bit number of data stored in memory
(8) - 8-bits e.g. the least significant byte of any R???
(16) - 16-bits e.g. a complete word register (R0..R11) or the least significant word of a double register

(R12_L,R13_L,RA_L,SP_L)
abs - Absolute address - always unsigned

dispn - displacement of n bits - unsigneda for loads, stores and bitops, signed for branches

a. For CR16B compatibility LOAD/STOR (Rbase/RPbase) allow a negative
displacement as well.

Mnemonic Operands Description

CompactRISC CR16C Programmer’s Reference Manual PROGRAMMING MODEL 2-12

2.5 MEMORY ORGANIZATION

The CR16C provides access to 16M ofmemory. The memory is a uniform
linear address space numbered sequentially starting at 0. CR16C data
addressing is always byte-related (i.e., data can be addressed at byte-
resolution). The instructions, by contrast, are always word-aligned, and
therefore instruction addresses are always even.

Memory can be logically divided into the following regions (see Figure
2-4):

• 0 - 1M-64K (0 through 0E_FFFF16)
This region can be accessed efficiently for data-manipulation using all
addressing modes. Therefore, it should be used for RAMs. There are
no restrictions on code in this region.

• 1M-64K - 16M-64K (0F_000016 through 0FE_FFFF16)
This region can be accessed for data-manipulation using all address-
ing modes. However there are some limitations and disadvantages
when accessing data in this region (accessing data in absolute mode
requires a longer instruction, a label in this region cannot be used as
a displacement and moving or adding a data label to a register pair
requires a longer instruction). There are no restrictions on code in
this region. Therefore, use this address range for code and infre-
quently used data.

• 16M-64K - 16M-1K (0FF_000016 through 0FF_FBFF16)
This region is reserved for I/O devices and peripherals. Loads, stores
and bit operations using absolute addressing mode in this range are
as efficient as in the range 0 - 1M-64K. This is because the core
maps absolute addresses 0F_0000 through 0F_FFFF to 0FF_0000
through 0FF_FFFF.

• 16M-1K - 16M-1 (0FF_FC0016 through 0FF_FFFF16)
This region is reserved for the Interrupt Controller Unit and its
acknowledge address, as well as other internal uses.

For more information on the addressing modes see Sections 2.6 and 6.2
as well as Appendix B.

CompactRISC CR16C Programmer’s Reference Manual PROGRAMMING MODEL 2-13

Figure 2-4. Memory Organization

2.5.1 Data References

Data memory is byte-addressable in the CompactRISC architecture and
organized in little-endian format, where the LSB within a word or a dou-
ble-word resides at the lower address.

Figure 2-5. Bits are ordered from least significant to most significant. The
least significant bit is in position zero. The TBIT, SBIT, and CBIT

instructions refer to bits by their ordinal position numbers. Figure 2-5
shows the memory representation for data values. Data Representation

in Memory

~~

Address

00_000016

~~

Far2 Data and Code

0FF_FC0016

16
 M

B
yt

es
 C

o
d

e
+

D
at

a

0FF_000016 I/O and Peripherals

0FF_FFFF16

Interrupt Control

000F_000016

Data1 and Code

1 Efficient data access
2 Less efficient data access (Notation used in National CompactRISC Toolset. For notation used

in other toolsets, see the appropriate documentation)

A+1 A

15 0Bit Number

Byte Address

(b) Word at Address A

A

7 0Bit Number

Byte Address

(a) Byte at Address A

CompactRISC CR16C Programmer’s Reference Manual PROGRAMMING MODEL 2-14

Data
references

The CR16C supports references to memory by the LOAD and STOR
instructions, as well as TBIT, SBIT, CBIT, PUSH, POP, LOADM and STORM.
Bytes, words and double-words can be referenced on any boundary.

2.5.2 Stacks

A stack is a one-dimensional data structure. Values are entered and
removed, one item at a time, at one end of the stack, called the top-of-
stack. The stack consists of a block of memory, and a variable called the
stack pointer. The CR16C supports two types of stacks: the interrupt
stack and the program stack.

The interrupt
stack

The processor uses the interrupt stack to save and restore the program
state during the exception handling. This information is automatically
pushed, by the hardware, onto the interrupt stack before entering an
exception service procedure. On exit from the exception service proce-
dure, the hardware pops this information from the interrupt stack. See
Chapter 3 for more information. The interrupt stack pointer is accessed
via the ISP Register.

The program
stack

The program stack is normally used by programs at runtime, to save
and restore register values upon procedure entry and exit. It is also used
to store local and temporary variables. The program stack is accessed via
the SP general-purpose register. Note that this stack is handled by soft-
ware only, e.g., the CompactRISC C Compiler generates code that pushes
data onto, and pops data from, the program stack. Only PUSH, POP and
POPRET instructions adjust the SP automatically; otherwise, software
must manage the SP during save and restore operations.

The user and
supervisor
stacks

To support multi-tasking operating systems, support is provided for a
two-level program stack: a user stack and a supervisor stack. The user
stack pointer is accessed via the USP Register. The PSR contains a user
mode status bit (PSR.U). When this user mode bit is set, the user stack
pointer is used in place of SP for all operations. In addition, while in
user mode, the PSR.U bit is read only. User mode is entered using the
JUSR instruction, which causes a jump to the user program and
entrance to user mode by setting the PSR.U bit. User mode is exited on
any exception processing. While not in user mode, the user stack pointer
can be accessed using the LPRD and SPRD instructions.

Using the user stack can save memory required for the stack, since
supervisor information can be saved instead on the supervisor stack
each time a task is saved.

An output signal is provided from the core (SFUSR) to indicate if the core
is currently in user or supervisor mode. This may be used by a memory
protection unit for checking accessed addresses in the various modes.

Both stacks expand toward address zero in memory.

CompactRISC CR16C Programmer’s Reference Manual PROGRAMMING MODEL 2-15

2.6 ADDRESSING MODES

The CR16C supports these addressing modes: register/pair, immediate,
relative, absolute, and indexaddressing. Memory is accessed by the
generic load and store instructions, along with bit operations. These
operations are supported with one or more of these modes.

When register pairs are used, the lower bits are in the lower index regis-
ter and the upper bits are in the higher index register. When CFG.SR=0,
the double-word registers R12, R13, RA and SP are also considered reg-
ister pairs. For more details, see Section 2.3.1.

All references to register pairs should use parentheses. With a register
pair, the lower numbered register pair should be on the right. For exam-
ple,

jump (r5, r4)
load $4(r4,r3), (r6,r5)
load $5(r12), (r13)

Register/pair
mode

In register/pair mode, the operand is located in a general-purpose regis-
ter, or in a general-purpose register pair (see Section 2.3.1). For example,
the following instruction adds the contents of the low order byte of reg-
ister r1 to the contents of the low order byte of r2, and places the result
in register r2.

ADDB r1, r2

Immediate
mode

In immediate mode, the operand is a constant value which is specified
within the instruction. For example, the following instruction multiplies
the value of r4 by 4 and places the result in r4:

MULW $4, r4

Relative
mode

In relative mode, the operand is obtained using a relative displacement
value encoded in the instruction. This displacement is relative to the
current Program Counter (PC) or general-purpose register or register
pair.

In branch instructions, the displacement is always relative to the current
value of the PC Register. For example the following instruction causes an
unconditional branch to an address 10 ahead of the current PC.

BR *+10

In load, store and bit operations, the displacement value is relative to the
contents of a general-purpose register or register pair. For example, the
following instruction loads the data contained at an address 12 higher
than the contents of r5 into r6.

LOADW 12(r5), r6

CompactRISC CR16C Programmer’s Reference Manual PROGRAMMING MODEL 2-16

The following example loads the contents of memory at the address of
the register pair (r5, r4) plus 4 into the register pair (r7, r6). r7 receives
the high word and r6 receives the low word.

LOADD 4(r5, r4), (r7, r6)

Absolute
mode

In absolute mode, the operand is located in memory, and its address is
specified explicitly within the instruction (normally 20 or 24 bits). For
example, the following instruction loads the byte at addresses 4000 into
the lower 8 bits of register 6.

LOADB 4000, r6

Index mode In index mode, the operand is located in memory. This mode supports
load, store and bit operations, and is provided in order to handle relocat-
able code. CFG.SR must be 0 to use this addressing mode. Register R12
or R13 is used to hold a base index address to which absolute or relative
mode addresses are added. For example the following instruction loads
the word at address (r12) + (r5,r4) + 4 into r6.

LOADW [r12]4(r5,r4), r6

• For relative mode instructions, the memory address is obtained using
the value of either R12 or R13, and adding the value of a register pair
and a displacement. The displacement can be a 14 or 20-bit unsigned
value, which is encoded in the instruction.

• For absolute mode instructions, the memory address is obtained
using the value of either R12 or R13, and adding a 20-bit absolute
address label which is encoded in the instruction.

For a more detailed explanation, see Section B.2 on page B-2.

For data addressing, Table 2-1 summarizes the size of the instruction
along with the displacement sizes supported. Note that index addressing
mode is not available when CFG.SR is set.

Table 2-1. Instruction Sizes Supported

Instructions Data relative to
Instruction Size

1 Word 2 Words 3 Words

Load/Store
(b/w/d)

register pair disp4 disp16 disp20

register disp0a disp14a disp20

indexb disp0 disp14, abs20 disp20

abs abs20 abs24

CompactRISC CR16C Programmer’s Reference Manual PROGRAMMING MODEL 2-17

The data addressing modes supported for all instructions are identical in
two and three-word formats. The instructions encoded in one word give
priority to addressing relative to a register pair.

(c/s/t)bit(b/w)
Store Imm

register pair disp0 disp16 disp20

register disp14a disp20

indexb disp14, abs20 disp20

abs abs20 abs24

a. when CFG.SR = 1
b. when CFG.SR = 0

Instructions Data relative to
Instruction Size

1 Word 2 Words 3 Words

This page is intentionally blank.

CompactRISC CR16C Programmer’s Reference Manual EXCEPTIONS 3-1

Chapter 3

EXCEPTIONS

This chapter briefly describes exceptions and how they are handled, and
provides detailed information on exception processing.

3.1 INTRODUCTION

Program exceptions are conditions that alter the normal sequence of in-
struction execution, causing the processor to suspend the current pro-
cess and execute a special service procedure, often called a handler.

Exception
types and
handling

An exception resulting from the activity of a source external to the pro-
cessor is known as an interrupt; an exception which is initiated by some
action or condition in the program itself is called a trap. Thus, an inter-
rupt need have no relationship to the executing program, while a trap is
caused by the executing program and recurs each time the program is
executed. The CR16C recognizes twelve exceptions: nine traps and three
types of interrupts.

The exception-handling technique employed by an interrupt-driven pro-
cessor determines how fast the processor can perform input/output
transfers, the speed for transfers between tasks and processes, and the
software overhead required for both these activities. Thus, to a large ex-
tent, it determines the efficiency of a processor’s multi-programming and
multi-tasking (including real-time) capabilities.

Exception-handling in the CR16C uses a dispatch table. This table con-
tains an entry for each exception, which holds the address of the excep-
tion handler. Once an exception is encountered, the processor uses the
exception number to access the table and extract the handler address.

Stack types The CR16C features an interrupt stack, a supervisor stack and a user
stack. The processor uses the interrupt stack solely for saving the PC
and the PSR Register values during exception processing. This process
occurs in hardware, without software intervention. The software uses the
supervisor and user stacks to save register values and to pass parame-
ters upon subroutine entry and subroutine calls. These stacks are man-
aged by software using the PUSH, POP and POPRET instructions.

CompactRISC CR16C Programmer’s Reference Manual EXCEPTIONS 3-2

This stack architecture provides the following benefits:

• The essentials of the processor’s state (PC and PSR) are saved cor-
rectly on the interrupt stack, even during nested, non-maskable in-
terrupts. This process does not need to rely on disabling interrupts to
allow software to save PC and PSR values on the interrupt stack.

• As the processor saves just the PC and PSR when exceptions occur,
interrupt latency is kept at a minimum. During exception handling,
the software need only save the registers it modifies, thus minimizing
interrupt response time, and saving memory.

The
exception
process

When an exception occurs, the CPU automatically preserves the state of
the program immediately prior to the handling of the exception: a copy
of the PC and the PSR is made and pushed onto the interrupt stack.
The contents of the PSR is adjusted for exception processing. The inter-
rupt exception number is then used to obtain the address of the excep-
tion service procedure from the dispatch table, which is then called.

The RETX instruction returns control to the interrupted program, and re-
stores the contents of the PSR and the PC registers to their previous sta-
tus. See “RETX Return from Exception” on page 5-52.

3.2 INTERRUPT HANDLING

The CR16C provides three types of interrupts: non-maskable (NMI),
maskable, and In-System Emulator (ISE).

Non-Maskable
Interrupts
(NMI)

NMI are used for events which require immediate handling to preserve
system integrity (such as an imminent power failure), and cannot be dis-
abled. NMI use vector number 1 in the dispatch table. When an NMI is
detected, the CR16C performs an interrupt-acknowledge bus cycle to ad-
dress 0FF_FF0016, and discards the byte that is read during that bus cy-
cle.

Maskable
interrupts

Maskable interrupts are disabled whenever PSR.E or PSR.I are 0. PSR.I
serves as the global interrupt mask, while PSR.E serves as a local inter-
rupt mask. PSR.E can be easily changed with the EI and DI instructions
(see “EI Enable Maskable Interrupts” on page 5-20 and “DI Disable
Maskable Interrupts” on page 5-19). PSR.E is used when interrupt-dis-
abling is needed for a short period of time (e.g. when a read-modify-write
sequence of instructions, accessing a semaphore, must not be interrupt-
ed by another task).

On receipt of a maskable interrupt, the processor determines the vector
number by performing an interrupt acknowledge bus cycle in which a
byte is read from address 0FF_FE0016. This byte contains a number in
the range 16-127 (the vector), which is used as an index in the dispatch
table to find the address of the appropriate interrupt handler. Control is
then transferred to that interrupt handler.

CompactRISC CR16C Programmer’s Reference Manual EXCEPTIONS 3-3

In-System
Emulator(ISE)
interrupts

ISE interrupts cannot be disabled; they are reserved for system debug
implementation. ISE interrupts use vector number 15 in the dispatch ta-
ble. When an ISE interrupt is detected, the CR16C performs an inter-
rupt-acknowledge bus cycle to address 0FF_FC0016, and discards the
byte that is read during that bus cycle.

3.3 TRAPS

The CR16C recognizes the following traps:

Breakpoint
(BPT)

BPT is used for program debugging. Caused by the EXCP BPT instruc-
tion.

Supervisor
Call (SVC)

SVC temporarily transfers control to supervisor software, typically to ac-
cess facilities provided by the operating system. It is caused by the EXCP
SVC instruction.

Flag (FLG) FLG Indicates various computational exceptional conditions. it is caused
by the EXCP FLG instruction.

Division by
Zero (DVZ)

DVZ indicates an integer division by zero. It is caused by the EXCP DVZ
instruction, which can be used by integer division emulation code to in-
dicate this exception.

Undefined
Instruction
(UND)

UND indicates undefined opcodes. It is caused by an EXCP UND instruc-
tion, or an attempt to execute any of the following:

• any undefined instruction;
• the EXCP instruction when a reserved field is specified in the dispatch

table (i.e., reserved trap number).
• an LPR/LPRD when PSR.U bit is set.

Illegal
Address(IAD)

IAD indicates that an illegal address was detected. For the CR16C, this
trap is generated whenever an address outside the address range of 0 to
16M-1 is detected.

Wraparound can happen either when the 16M boundary is crossed in a
positive direction or when the 00__0000 address is crossed in a negative
direction - and the resulting address yields in the illegal space. Both are
trapped and flagged as illegal operations.

This is done primarily for reasons of future compatilbity so that the ad-
dress range of the CR16C can easily be increased beyond 16M to main-
tain binary compatibility, without any issues of wraparound
compatibility.

CompactRISC CR16C Programmer’s Reference Manual EXCEPTIONS 3-4

The CR16C also provides an optional input for external illegal address
detection, which can be used in the system to protect (unused) memory
areas from being accessed by the core - this is not required in an AHB
system like the CR16CPlus which provides an error response on the bus.

Trace (TRC) TRC occurs before an instruction is executed when the PSR.P bit is 1. It
is used for program debugging and tracing. See Chapter 4.

Debug (DBG) A DBG trap occurs as a result of a breakpoint detected by the hardware-
breakpoint module, or by an external instruction-execute breakpoint us-
ing the tag mechanism through the BRKL line. It is used for instruction-
execution and data-access breakpoints. See Chapter 4.

BPT, TRC and
DBG

DBG, TRC and BPT traps can also generate an interrupt acknowledge
cycle for observability purposes, to alleviate the design of an ISE. This
option can be selected by setting ADBG, ATRC, and ABPT bits respec-
tively in the DCR Register. The addresses driven on the bus during these
cycles are 0FF_FC0216 (DBG), 0FF_FC0C16 (TRC) and 0FF_FC0E16 (BPT)
respectively. See Chapter 4.

3.4 DETAILED EXCEPTION PROCESSING

3.4.1 Instruction Endings

The CR16C checks for exceptions at various points during the execution
of instructions. Some exceptions, such as interrupts, are acknowledged
between instructions, i.e., before the next instruction is executed. Other
exceptions, such as a DVZ trap, are acknowledged during execution of
an instruction. In such a case, the instruction is suspended. See Table
3-2.

If an instruction is suspended, it is not completed although all other pre-
viously issued instructions have been completed. Result operands and
flags (except for the PSR.P bit on some traps) are not affected. When an
instruction is suspended, the PC saved on the interrupt stack contains
the address of the suspended instruction.

CompactRISC CR16C Programmer’s Reference Manual EXCEPTIONS 3-5

3.4.2 The Dispatch Table

The CR16C recognizes eight traps, two non-maskable interrupts (NMI
and ISE) and up to 112 more maskable interrupts. The dispatch table,
pointed to by the concatenated register pair INTBASE == (INTBASEH,
INTBASEL), features an entry matching each such exception that con-
tains the exception handler address. During an exception, the CPU uses
the dispatch table to obtain the relevant exception handler’s start ad-
dress. See Figure 3-1.

The CR16C supports a dispatch table with either 16-bit or 32-bit entries.
The 16-bit version is used when memory is at a premium and exception
handlers can be restricted to the first 128 K of memory. Otherwise, the
24-bit entry dispatch table is used, thus removing all restrictions on the
location of the exception handlers. In 16-bit mode, each entry occupies
one word of memory, containing bits 1 through 16 of the exception han-
dler’s start address; in 24-bit mode, each entry occupies two adjacent
words in memory, the first holding bits 1 through 16, and the second
holding bits 17 through 23 of the exception handler address, right justi-
fied. This mode selection is determined by the CFG.ED configuration bit:

• (CFG.ED = 0) selects the 16-bit entry dispatch table.

• (CFG.ED = 1) selects the 32-bit entry dispatch table. Entries in the
dispatch table are 32 bits wide but only the lower 24 bits are used.

There are no restrictions on the location of the dispatch table in memo-
ry. This is determined by INTBASEH and INTBASEL, which are accessed
as processor registers.

CompactRISC CR16C Programmer’s Reference Manual EXCEPTIONS 3-6

Figure 3-1. Dispatch and Jump Table

3.4.3 Acknowledging an Exception

The CR16C performs the following operations in response to interrupt
and trap exceptions:

1. Decrements the Interrupt Stack Pointer (ISP) Register by 6.

2. Saves the contents of the current PSR on the highest-address word of
the interrupt stack; saves the current value of the PC on the next two
words of the interrupt stack. See Figure 3-2.

3. Alters PSR by clearing the control bits, as shown in Table 3-2.

4. For interrupts, displays information during the interrupt acknowledge
bus cycle to indicate the type of interrupt encountered via a byte read
from the address shown in Table 3-1.

INTBASE

~ ~

~

Non-Maskable Interrupt

reserved

Supervisor Call Trap

Divide by Zero Trap

Flag Trap

Breakpoint Trap

Trace Trap

Undefined Instruction Trap

Maskable Interrupts

NMI

reserved

reserved

SVC

DVZ

FLG

BPT

TRC

UND

IAD

reserved

ISE

INTn

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

n = 16 to 127

In-System Emulator Interrupt

15/31 0

reserved

reserved

DBG Debug Trap

~

Illegal Address Trap

CompactRISC CR16C Programmer’s Reference Manual EXCEPTIONS 3-7

For NMIs or traps, the exception number is set as the vector, to be used
while accessing the dispatch table.

5. When CFG.ED is 1, reads the dispatch table double-word entry at ad-
dress (INTBASE) + vector × 4. When CFG.ED is 0, reads the single-
word entry from (INTBASE) + vector × 2

The dispatch table entry is used to call the exception handler and is
interpreted as a pointer that is loaded into bits 1 through 16. If
CFG.ED = 1, it is also loaded into bits 17 through 23 of the PC.

Bit 0 of the PC is cleared. See Figure 3-3.
The pointer is stored in the dispatch table in little-endian format. For
a double-word entry, the lower address word contains address bits 1
through 16, and the upper address word contains address bits 17
through 23.

Figure 3-2. Saving PC and PSR Contents During Exception Acknowledge

Table 3-1. Interrupt ACK Vector Address

Address Type Description

FF_FE00 INT maskable interrupt - mapped to ICU

FF_FF00 NMI non-maskable interrupt; for observability

FF_FC00 ISE in-system emulation trap

FF_FC02 ADBG alternate debug trap

FF_FC0C ATRC alternate trace trap

FF_FC0E ABPT alternate break point trap

PC (23-17)

~

~

~

~

Lower Addresses

Higher Addresses

Interrupt Stack

(Push)
Return
Address

Saved
Status

(Push)

PC(16-1)

16
ISP After Exception

ISP Before Exception

Return
Address

 PSR(11-0)
(Push)

CompactRISC CR16C Programmer’s Reference Manual EXCEPTIONS 3-8

Figure 3-3. Transfer of Control During an Exception Acknowledge Sequence

Table 3-2 summarizes how each type of exception is acknowledged.

INTBASE

Vector
Absolute
Address

Dispatch Table

+
Entry Point
Address× 2

PC(16-1)

16

16-bit Dispatch Table: CFG.ED = 0

INTBASE

Vector
Abs. Address
 (A16 - A1)

Dispatch Table

+
Entry Point
Address× 4 PC(23-1)

16

Abs. Address
 (A23 - A17)

24-bit Dispatch Table : CFG.ED = 1

PC(23-17)=0

Address = 0

Address = 0

Table 3-2. Summary of Exception Processing

Exception
Instruction
Completion

Status

PC
Saved

Cleared PSR Bits

Before
Saving PSR

After
Saving PSR

Interrupt Before start of instruction Next None I P T U

BPT, DVZ, FLG, SVC Suspended Current Nonea P T U

UND Suspended Current Nonea P T U

TRC Before start of instruction Next None, P P T U

IAD Before start of instruction Next None P T U

DBG Before start of instruction Next None I P T U

a. If a TRC trap is used in conjunction with these exceptions, the trap handler may need to clear
the P bit of the PSR, which is saved on stack, to prevent a redundant trace exception. For more
information, refer to Sections 3.4.5 and 4.1.1 on page 4-1.

CompactRISC CR16C Programmer’s Reference Manual EXCEPTIONS 3-9

3.4.4 Exception Service Procedures

After the CR16C acknowledges an exception, control is transferred to the
appropriate exception service procedure. The TRC trap is disabled (the
PSR.P and PSR.T bits are cleared). Maskable interrupts are also disabled
(the PSR.I bit is cleared) for a service procedure called in response to an
interrupt IAD, or a DBG trap.

At the beginning of each instruction, the PSR.T bit is copied into the
PSR.P. If PSR.P is still set at the end of the instruction, a TRC trap is ex-
ecuted before the next instruction.

To complete a suspended instruction, the exception service procedure
must be programmed either to simulate a suspended instruction or to
retry execution of a suspended instruction.

Simulate a
suspended
instruction

The exception service procedure can use software to simulate execution
of the suspended instruction. After it calculates and writes the results of
the suspended instruction, it should modify the flags in the copy of the
PSR which were saved on the interrupt stack, and update the PC saved
on the interrupt stack to point to the next instruction to be executed.

The exception service procedure can then execute the RETX instruction.
The CR16C begins executing the instruction following the suspended in-
struction. For example, when a UND trap occurs, software can be used
to perform the appropriate corrective actions.

Retry
execution of a
suspended
instruction

The suspended instruction can be retried after the exception service pro-
cedure has corrected the trap condition that caused the suspension.

In this case, the exception service procedure should execute the RETX in-
struction at its conclusion; then the CR16C retries the suspended in-
struction. A debugger takes this action when it encounters an EXCP BPT
instruction that was temporarily placed in another instruction’s location
in order to set a breakpoint. In this case, exception service procedures
should clear the PSR.P bit to prevent a TRC trap from occurring again.

3.4.5 Returning from Exception Service Procedures

Exception service procedures perform actions appropriate for the type of
exception detected. At their conclusion, service procedures execute the
RETX instruction to resume executing instructions at the point where the
exception was detected. For more information about the RETX instruc-
tion, see “RETX Return from Exception” on page 5-52.

CompactRISC CR16C Programmer’s Reference Manual EXCEPTIONS 3-10

3.4.6 Priority Among Exceptions

The CR16C checks for specific exceptions at various points while execut-
ing an instruction (see Figure 3-4).

If several exceptions occur simultaneously, the CR16C responds to the
exception with the highest priority.

If several maskable interrupts occur simultaneously, the Interrupt Con-
trol Unit (ICU) determines the highest priority interrupt, and requests
the CR16C to service this interrupt.

CompactRISC CR16C Programmer’s Reference Manual EXCEPTIONS 3-11

Figure 3-4. Exception Processing Flowchart

Initialize

PSR.P := 0

PC Match

Complete
Instruction
Execution

Begin Instruction
Execution

?

UND
?

Address

?
Compare

?

NMI
Pending

IAD

?
Pending

Suspend Instruction
Execution

PSR.P = 1
?

?
or BPT

Reset

Yes

No

No

No

Yes

Yes

No

Yes

Yes

No

Yes

No

Clear IAD
Pending Bit

?

ISE
Pending

No

Yes

Set DBG and/or IAD
Pending Bit

No

Yes

?

Interrupt
Pending

No

Yes

Process Exception

SVC, DVZ, FLG

Yes Clear DBG
Pending Bit

DBG
Pending

?

Update PC

PSR.P := PSR.T

CompactRISC CR16C Programmer’s Reference Manual EXCEPTIONS 3-12

Before
executing an
instruction

Before executing an instruction, the CR16C checks for pending DBG,
IAD, interrupts and TRC traps, in that order. It responds to the inter-
rupts in order of descending priority (i.e., first non-maskable interrupts,
then maskable interrupts and lastly, ISE interrupts).

If no interrupt is pending and PSR.P is 1 (i.e., a TRC trap is pending),
then the CR16C clears PSR.P and processes the TRC trap.

If no TRC trap or interrupt is pending, the CR16C begins executing the
instruction by copying PSR.T to PSR.P. While executing an instruction,
the CR16C may detect a trap.

During
executing an
instruction

First, the CR16C checks for a UND trap or a PCMATCH (if enabled), then
it looks for any of the following mutually exclusive traps: SVC, DVZ, FLG
or BPT. The CR16C responds to the first trap it detects by suspending
the current instruction and executing the trap.

If an undefined instruction is detected, then no data references are per-
formed for the instruction.

If no exception is detected while the instruction is executing, the instruc-
tion is completed (i.e., values are changed in registers and memory, ex-
cept for PSR.P, which was changed earlier) and the PC is updated to
point to the next instruction.

While the CPU executes an instruction, it checks for enabled debug and
address error conditions. If the CPU detects an enabled address-
compare, a DBG trap remains pending until after the instruction is com-
pleted. If an invalid address is detected, the IAD trap becomes pending
and the CPU responds to it before executing the next instruction.

3.4.7 Nested Interrupts

A nested interrupt is an interrupt that occurs while another interrupt is
being serviced. Since the PSR.I bit is automatically cleared before any in-
terrupt is serviced (see Table 3-2), nested maskable interrupts are not
serviced by default. However, the exception service procedure can explic-
itly allow nested maskable interrupts at any point, by setting the PSR.I
bit using a LPR instruction. In this case, pending maskable interrupts
are serviced normally, even in the middle of the currently executing ex-
ception service procedure.

It is possible to enable nesting of specific maskable interrupts inside a
certain exception service procedure. This is done by programming the In-
terrupt Control Unit (ICU) to mask the undesired interrupt sources dur-
ing the execution of the exception service procedure. This should be
done before the PSR.I bit is set.

Nested NMI and nested ISE interrupts are always serviced.

CompactRISC CR16C Programmer’s Reference Manual EXCEPTIONS 3-13

Single-stepping through instructions (TRC) is also subject to interrupt
prioritizing, as the P and T bits are both cleared when exceptions are be-
ing handled. Therefore, exceptions occurring during an instruction are
served before the single-step handler (TRC).

The interrupt nesting level is limited only by the amount of memory that
is available for the interrupt stack.

3.5 RESET

A reset occurs when the appropriate signal is activated. Reset must be
used at power-up to initialize the CR16C.

As a result of a reset operation:

• All instructions currently being executed are terminated.

• Results and flags normally affected by the terminated instruction are
unpredictable.

• The results of instructions, whose execution started but have not yet
ended, may not be written to their destinations.

• Any pending interrupts and traps are eliminated.
For correct operation, maskable interrupts as well as ISE and NMI,
must be inactive by the time the reset signal is deactivated, to avoid
being serviced immediately after the reset period.

Upon reset, the following operations are executed:

• PC(16-1) current values are stored in R0, and PC(23-17) current val-
ues are stored in R1.

• The current value of the PSR is stored in R2.

• The following internal registers are cleared to 0: PC, CFG, and PSR,
except for PSR.E, which is set to 1.

• When no hardware debug module is present in the system, processor reg-
isters DBS and DCR are also cleared to 0. Otherwise, refer to the hard-
ware debug documentation for information on clearing these registers.

After reset, the processor begins normal execution at memory location 0
(or another memory location when set by hardware). The reserved bits in
these registers and the contents of all other registers are unpredictable.

Note that some uncertainty exists as to which PC is saved at reset in R0, R1
and R2. In case of sequential instructions, the address saved may also be
that of the next sequential instruction to be executed, as well as the cur-
rently interrupted instruction. In case of instruction flow change (e.g. BR,
BAL, JAL), the address saved may also be that of the jump or branch target.

This page is intentionally blank.

CompactRISC CR16C Programmer’s Reference Manual ADDITIONAL TOPICS 4-1

Chapter 4

ADDITIONAL TOPICS

This chapter discusses debugging support, the instruction execution or-
der and cache support for the CR16C.

4.1 DEBUGGING SUPPORT

The following CR16C features make program debugging easier:

• Instruction tracing
• Soft break generation by breakpoint instruction (EXCP BPT)
• User programmable breakpoint features:

- Instruction address match
- Instruction address range match
- Data access
- Data access range
- Combination of the above (complex breakpoints)

• External instruction tag during fetch to break before execution
• ISE support signals

The Processor Status Register (PSR), the Debug Base Register (DBS), the
Debug Control Register (DCR), the Debug Status Register (DSR), and the
Compare-Address Registers (CAR) control/s and monitor the debug and
trace features.

4.1.1 Instruction Tracing

The following paragraphs describe the instruction tracing support via
software for a resident monitor program. These features are only avail-
able if no external hardware debug module is present. If it is, tracing is
controlled solely by this module; the respective PSR bits have no effect.

Instruction tracing can be used during debugging to single-step through
selected portions of a program. The CR16C uses two bits in the PSR to
enable and generate TRC traps. Tracing is enabled by setting the T bit in
the PSRl.

During the execution of each instruction, the CR16C copies the PSR.T
bit into the PSR.P (trace pending) bit. Before beginning the next instruc-
tion, the CR16C checks if the PSR.P bit is 1 to determine whether a
TRC trap is pending. If yes, the CR16C generates a TRC trap before ex-
ecuting the instruction.

CompactRISC CR16C Programmer’s Reference Manual ADDITIONAL TOPICS 4-2

For more information on the different exception priorities, see Figure
3-4. on page 3-11.

If any other trap or interrupt is requested during execution of a traced
instruction, its entire service procedure is allowed to complete before the
TRC trap occurs.

For example, if a UND trap is detected while tracing is enabled, the TRC
trap occurs after execution of the RETX instruction that marks the end of
the UND service procedure. The UND service procedure can use the PC
value, saved on top of the interrupt stack, to determine the location of
the instruction. The UND service procedure is not affected, whether in-
struction tracing was enabled or not.

Clearing
PSR.P saved
on interrupt
stack

Trap handlers for exceptions which cause instruction suspension (UND,
BPT, DVZ, FLG and SVC), may need to clear the copy of the PSR.P bit,
saved on the interrupt stack, before resuming execution. This must be
done if the exception service replaces the exception invocation instruc-
tion with code for execution, and attempts to re-execute that location,
according to the saved PC on stack. Otherwise, when attempting to re-
execute that location, the processor performs a redundant trace excep-
tion before executing the said instruction, since the PSR.P bit is set in
the restored PSR.

Note the following:

• LPR (on PSR) and RETX instructions cannot be reliably traced because
they may alter the PSR.P bit during their execution.

• If instruction tracing is enabled while the WAIT or EIWAIT instruction
is executed, a trace trap occurs after the next interrupt, when the in-
terrupt service procedure returns.

4.1.2 The Breakpoint Instruction

Debuggers can use the breakpoint instruction (EXCP BPT) to stop the ex-
ecution of a program at specified instructions in order to examine its
status. The debugger replaces these instructions with the breakpoint in-
struction. It then starts program execution. When such an instruction is
reached, the breakpoint instruction causes a trap, which enables the de-
bugger to examine the status of the program at that point.

When an external hardware debug module is present, the CR16C enters
the hardware debug mode upon execution of the EXCP BPT.

CompactRISC CR16C Programmer’s Reference Manual ADDITIONAL TOPICS 4-3

4.1.3 User Programmable Breakpoint Features

The CR16C provides a set of debug registers which allows the user to en-
able various debug features. These features are controlled by the follow-
ing five core registers: DBS, DCR, DSR, CARn and CARn+1. Loading and
storing these registers is accomplished using the LPR/LPRD and
SPR/SPRD instructions.

The basic debug register set (DCRb, DSRb, CARn and CARn+1, where b
refers to the debug register bank and n refers to the debug channel) al-
lows the control of two debug channels. Depending on the configuration,
additional debug registers can be mapped in the same space to control
an additional two channels each.

When the optional hardware debug module is present, the debug control
and status registers are no longer accessible by the core. Instead, they
are solely controlled by the hardware debug module.

The following functions are available via the debug registers:

• Single Instruction Breakpoint
Breakpoint/Watchpoint on execution of an instruction, fetched from
one specific address. Requires a single debug channel.

• Masked Instruction Breakpoint
Breakpoint/Watchpoint on execution of an instruction, fetched from a
small address range. The address range is defined by one Compare
Address Register (CARn) in conjunction with two mask bits to mask
out up to three of the LSBs of the CARn register. This breakpoint re-
quires a single debug channel.

• Instruction Breakpoint Range
Breakpoint/Watchpoint on execution of an instruction, fetched from a
specific address range. The address range is defined by utilizing an
address compare register pair to specify a start and an end address.
Requires two debug channels.

• Single Data Access Breakpoint
Breakpoint/Watchpoint on a data access (read/write/read-or-write)
to one specific address. Requires a single debug channel.

• Masked Data Access Breakpoint
Breakpoint/Watchpoint on a data access (read/write/read-or-write)
to a small address range (up to 8 bytes). The address range is defined

CompactRISC CR16C Programmer’s Reference Manual ADDITIONAL TOPICS 4-4

by one Compare Address Register (CARn) in conjunction with two
mask bits to mask out up to three of the least significant bits of the
CARn register. Requires a single debug channel.

• Data Access Breakpoint Range
Breakpoint/Watchpoint on a data access (read/write/read-or-write)
to a specific address range. The address range is defined by utilizing
an Compare Address register pair to specify a start and end address.
Requires two debug channels.

• Complex Breakpoint
Breakpoint/Watchpoint upon the detection of a complex break-
point/watchpoint condition. Two CARs are combined to specify the
conditions of a complex breakpoint/watchpoint.

Instruction Breakpoints (PC Match Breakpoints)

The CR16C provides instruction breakpoints by comparing an address
present on the address bus, during an instruction fetch bus cycle, with
a compare address values stored in the internal CARs (CARn, n=0...7).

If the CR16C fetches an instruction from an address and an instruction
breakpoint has been set, this instruction is internally “tagged” along with
the fetch. This tag follows the instruction though the pipeline. When this
instruction reaches the execution stage of the pipeline, the CR16C enters
debug mode before the CR16C starts executing this instruction.

Single
instruction
breakpoint

The breakpoint logic can be set up to generate a breakpoint upon the ex-
ecution of an instruction, fetched from one specified address. This ad-
dress, used for comparison, can be specified by one Compare Address
Register (CARn). In addition, the configuration bits in the corresponding
Debug Control Register (DCRn) must be set up to enable a single in-
struction breakpoint as follows:

• The PC Match enable bit (PCn) must be set to 1 to select an instruc-
tion breakpoint.

• The Address Mask bits (MSKn) must be cleared to 0.
• The Enable Address Range Breakpoint (EARn) bit must be cleared to

0 to disable an address range breakpoint.
• The Data Write and Data Read Address Match Enable bits (DWRn

and DRDn) must be cleared to 0 to disable a data access breakpoint.
• The Debug Enable bit (DEN) must be set to 1 to enable the break-

point logic.

Figure 4-1 shows an example for using the compare logic x and y for the
detection of two single instruction breakpoints.

CompactRISC CR16C Programmer’s Reference Manual ADDITIONAL TOPICS 4-5

Figure 4-1. Single Instruction Breakpoint

Masked
instruction
breakpoint

The breakpoint logic can be set up to generate a breakpoint upon the ex-
ecution of an instruction, fetched from a small address range, specified
by the address value stored in CARn in conjunction with two Address
Mask bits (MSKn). These bits mask out up to three of the least signifi-
cant bits of CARn. The masked-out CARn bits are then treated as “don’t
care” by the address compare logic. This allows the tool to define a break
range of up to 8 bytes by only utilizing one CAR. The DCRn must be
configured as follows to enable a masked instruction breakpoint:

• The PCn bit must be set to 1 to select an instruction breakpoint.
• The MSKn[1:0] bits must be set to select an address range of the de-

sired size.
• The EARn bit must be cleared to 0 to disable an address range

breakpoint.
• The DWRn and DRDn bits must be cleared to 0 to disable a data ac-

cess breakpoint.
• The DEN bit must be set to 1 to enable the breakpoint logic.

Note: The least significant bit of the address bus during instruction
fetches is always 0, as instruction fetches are always performed on
word-aligned addresses.

Figure 4-2 shows an example for using the compare logic n for the de-
tection of a masked instruction breakpoint, covering two one-word in-
structions, occupying 4 bytes of address locations in memory.

DCRy

CARy

Instruction x

Memory

Instruction y

DCRx

CARx

Breakpoint 0

Breakpoint 1

CompactRISC CR16C Programmer’s Reference Manual ADDITIONAL TOPICS 4-6

Figure 4-2. Masked Instruction Breakpoint
(4-Byte Address Range = Two Instruction Word Range)

Instruction
breakpoint
range

The breakpoint logic can be set up to generate a breakpoint upon the ex-
ecution of an instruction fetched from a specified address range. In order
to specify this address range, two CARs (CARn and CARn+1, with n be-
ing an even number) are combined. The configuration bits in (DCRn+1)
are ignored. Only the configuration bits in DCRn must be set up to en-
able the conditions for an instruction breakpoint range, as follows:

• The PCn bit must be set to 1 to select an instruction breakpoint.
• The MSKn[1:0] bits must be cleared to 0.
• The EARn bit must be set to 1 to enable an address range break-

point.
• The DWRn and DRDn bits must be cleared to 0 to disable a data ac-

cess breakpoint.
• The DEN bit must be set to 1 to enable the breakpoint logic.

Figure 4-3 shows an example for using compare logic n and m for the
detection of a range instruction breakpoint between (and including) in-
structions x and y.

DCRn

CARn
Instruction

Memory

Instruction

Break
Range

MSKn[1:0] = 102

Word y

Word x

CompactRISC CR16C Programmer’s Reference Manual ADDITIONAL TOPICS 4-7

Figure 4-3. Instruction Breakpoint Range

Instruction Watchpoints

Note: This feature can only be used with the optional external hardware
debugger SDI+.

The address compare logic can be used for detecting watchpoints instead
of breakpoints. The instruction watchpoint works the same as the in-
struction breakpoint with this exception: when the “tagged” instruction
reaches the execution stage of the pipeline, program execution continues
in real-time, instead of stopping, while the CR16C asserts the respective
SFDBGEVP output.

In addition, the Breakpoint/Watchpoint pending flag in the DSR is set to
1 to indicate a watchpoint hit. The watchpoint hit is flagged by the SFD-
BGEVP output and the Watchpoint pending bit, as soon as the instruc-
tion has been completed.

To specify an instruction watchpoint, the Watchpoint Enable bit (WPEn)
must be set to 1, along with the other configuration bits used to specify
watchpoint conditions (see “WPEn” on page 4-18).

Data Access Breakpoints

The CR16C is capable of detecting data access breakpoints by comparing
an address present on the address bus during a data transfer bus cycle
with a compare address value stored in one of the internal CARs (CARn,
n=0...7).

DCRn

CARm Instruction y

Memory

CARn
Break
Range

Instruction x

CompactRISC CR16C Programmer’s Reference Manual ADDITIONAL TOPICS 4-8

If the CR16C performs a data transfer to/from an address for which a
data access breakpoint has been set, the CR16C enters debug mode af-
ter it has completed execution of this instruction (i.e., after all data for
this instruction has been transferred).

Optionally, the respective SFDBGEVP output can also be utilized to sig-
nal this event to an external hardware debug tool.

The breakpoint logic can be set up to trigger a breakpoint either on a
data read access, a data write access, or both.

Single data
access
breakpoint

The breakpoint logic can be set up to generate a breakpoint upon execu-
tion of a data transfer from/to one specified address. This address, used
for comparison, can be specified by one CARn. In addition, the configu-
ration bits in the corresponding DCRn must be set up to enable the de-
sired data access breakpoint, as follows:

• The DWRn and/or DRDn bits must be set to 1 to disable a data ac-
cess breakpoint on a data read access, a data write access or both.

• The PCn bit must be cleared to 0 to disable an instruction break-
point.

• The MSKn[1:0] bits must be cleared to 0.
• The EARn bit must be cleared to 0 to disable an address range

breakpoint.
• The DEN bit must be set to 1 to enable the breakpoint logic.

Figure 4-4 shows an example for using the compare logic n and m for
the detection of two, independent data access breakpoints at the address
of breakpoint x and y respectively.

Figure 4-4. Single Data Access Breakpoints

Data transfers include all transfers but instruction fetches.

DCRm

CARm

Data Byte x

Memory

Data Byte y

DCRn

CARn

Breakpoint y

Breakpoint x

CompactRISC CR16C Programmer’s Reference Manual ADDITIONAL TOPICS 4-9

Masked data
access
breakpoint

The breakpoint logic can be set up to generate a breakpoint on the data
transfer from or to a small address range, specified by the address value
stored in the CARn in conjunction with two address mask bits (MSKn).
These mask bits mask out up to three least significant bits of CARn. The
masked-out CARn bits are then treated as “don’t care” by the address
compare logic. This allows definition of a breakpoint range of up to 8
bytes by only utilizing one CAR. This can be useful to set up a data ac-
cess breakpoint to a data structure which occupies up to 8 bytes in
memory. DCRn must be configured as follows to enable a masked data
access breakpoint:

• The DWRn and DRDn bits must be set to enable the desired type of
data access breakpoint.

• The MSKn[1:0] bits must be set to select an address range of the de-
sired size.

• The EARn bit must be cleared to 0 to disable an address range
breakpoint.

• The PCn bit must be cleared to 0 to disable an instruction break-
point.

• The DEN bit must be set to 1 to enable the breakpoint logic.

Figure 4-5 shows an example for using the compare logic n for the de-
tection of a masked instruction breakpoint, covering 4 bytes of data in
memory.

Figure 4-5. Masked Data Access Breakpoint (e.g for Double Data Type)

Data access
breakpoint
range

The breakpoint logic can be set up to generate a breakpoint upon the ex-
ecution of a data transfer from/to one specified address range. In order
to specify this address range, two CARs (CARn and CARn+1 with n being
an even number) are combined. The configuration bits in the (DCRn+1)
are ignored. Only the configuration bits in the DCRn must be set up to
enable the conditions for the data access breakpoint range, as follows:

• The DWRn and/or DRDn bits must be set to 1 to disable a data ac-
cess breakpoint on a data read access, a data write access or both.

DCRn

CARn

Data x.0 (LSB)

Memory

Data x.3 (MSB)

Break
Range

MSKn[1:0] = 102

Data x.1

Data x.2

CompactRISC CR16C Programmer’s Reference Manual ADDITIONAL TOPICS 4-10

• The EARn bit must be cleared to 0 to disable an address range
breakpoint.

• The PPCn bit must be cleared to 0 to disable an instruction break-
point.

• All three MSKn bits must be cleared to 0.
• The DEN bit must be set to 1 to enable the breakpoint logic.

Figure 4-6 shows an example for using the compare logic n and m for
the detection of an access to data within a range between (and including)
address x and y.

Figure 4-6. Data Access Breakpoint Range

Data Access Watchpoints

Note: This feature can only be used with the optional external hardware
debugger SDI+.

The address compare logic can be used for detecting watchpoints instead
of breakpoints. The data access watchpoint works the same as the data
access breakpoint with this exception: when the specified location is ac-
cessed, program execution continues in real-time, instead of stopping,
while the CR16C asserts the respective SFDBGEVP output.

In addition, the Breakpoint/Watchpoint pending flag in the Debug Base
register (DBS) is set to 1 to indicate a watchpoint hit. The watchpoint hit
is flagged by the SFDBGEVP output and/or the Watchpoint pending bit
as soon as the instruction, which performs the data access(es), has been
completed.

DCRn

CARm Data Byte y

Memory

CARn
Break
Range

Data Byte x

CompactRISC CR16C Programmer’s Reference Manual ADDITIONAL TOPICS 4-11

To specify a data access watchpoint, the Watchpoint Enable bit (WPn)
must be set to 1, along with the other configuration bits used to specify
the watchpoint conditions (see “Data Access Watchpoints” on page 4-10).

Complex Breakpoints

Two CARs can also be combined to form a complex breakpoint. A com-
plex breakpoint hit is a sequence of two successive breakpoints. When
the first breakpoint condition is confirmed as true, this event is held
pending while the CR16C continues operation without interference.
When, subsequently, the second breakpoint condition occurs, the CR16C
is stopped and enters debug mode if an external debug module is
present. When no external debug module is present, a DBG trap is trig-
gered.

In order to define both breakpoint conditions, the same pair of CARs is
used as for breakpoint ranges. However, both DCRs are used to define
the two breakpoint conditions. Thus, a complex breakpoint can be de-
fined as:

• A sequence of two instruction breakpoints (single and masked)
• A sequence of two data access breakpoints (single and masked)
• A sequence of an instruction breakpoint followed by a data access

breakpoint (single and masked).
This type of breakpoint can be used, for example, to break on a data
access, performed by a specified task (instruction).

• A sequence of a data access breakpoint followed by an instruction
breakpoint (single and masked).

To specify a complex breakpoint, the address compare logic for both
breakpoints should be set up as follows:.

• The PCn, DWRn and/or DRDn bits must be set to enable the desired
type of breakpoints.

• The WPn bit must be cleared to 0
• The MSKn[1:0] bits must be set to specify the desired range.
• The Complex Breakpoint Enable bit (ESQ) must be set to 1.
• The EARn bit must be cleared to 0.

(Note: When the ESQ bit is set to 1, it overrides the EAR bit if also
set to 1. This enables a complex breakpoint and disables a break-
point range.

• The DEN bit must be set to 1 to enable the watchpoint logic.

Figure 4-7 shows the sequence logic for complex breakpoints.

CompactRISC CR16C Programmer’s Reference Manual ADDITIONAL TOPICS 4-12

Figure 4-7. Complex Breakpoint Detection Flow

External Tag on Fetch

The CR16C provides an input (BRKL) which allows an external device to
detect a breakpoint condition, and tag an incoming instruction during
the fetch stage.

This line is sampled during the first word fetch of each instruction, dur-
ing the last cycle of the data transfer, in parallel to data_rd sampling by
the core.

The tag is transferred into the decode unit, and just before the instruc-
tion is due for execution, the external break conditions are evaluated. If
DCR.EFB is set and the tag bit for the instruction is set, the DBG trap
is inserted before the core starts the original instruction. The cause of
the DBG trap is indicated by clearing the DCR.EFB bit, and setting the
DSR.EXF bit.

The DBG exception takes precedence over other exceptions. Since DBG
execution masks all the maskable exceptions, the trace exception (TRC)
and any regular pending interrupt (INTP) which occurred during the pre-
vious instruction, are delayed until after the DBG handler has ended.

The exception saves a PC which matches that of the tagged instruction,
thus ensuring correct identification of the breakpoint by the exception
handler.

Condition 1

Condition 2

false

true

true

false

CR16C enters
Debug Mode

CompactRISC CR16C Programmer’s Reference Manual ADDITIONAL TOPICS 4-13

If the pin count on a part is limited, it is recommended that its line be
multiplexed with the PLI line in the system interface.

When an external hardware debug module is present, the CR16C enters
the hardware debug mode before the tagged instruction is executed.

4.1.4 Example Breakpoints

To improve external hardware debug support, the CR16C on-chip debug
capabilities are slightly different from previous CR16 cores.

The following summarizes the possible breakpoint options and shows the
recommend software actions:

1. Exit the DBG-handler and continue at the same address
(retain Breakpoint configuration)
-> set DCR.DEN = 1 (DCR = 0x90)

2. Exit the DBG-handler and continue at another address
(retain Breakpoint configuration)
-> clear DCR.PC
-> set DCR.PC = 1 and DCR.DEN = 1 (DCR = 0x90)

3. Exit the DBG-handler and disable Breakpoint
-> clear DCR.PC

4. Exit the DBG-Handler and enable TRACE at the same address
(retain Breakpoint configuration)
-> set DCR.DEN = 1 (DCR = 0x90)

5. Exit the DBG-Handler and enable TRACE at another address
(retain Breakpoint configuration)
-> clear DCR.PC
-> set DCR.DEN = 1 (DCR = 0x90)

6. Exit the DBG-Handler and enable TRACE and disable Breakpoint
-> clear DCR.PC

Note the difference between examples 1 and 2, and between 4 and 5.
This is a result of the break-before-execution logic that makes it neces-
sary for the CR16C to remember if a breakpoint has occurred so that the
instruction can be executed on resuming operation. A register, called the
breakpoint mask, is used for this purpose. If execution continues with-
out a RETX, i.e., the instruction does not get executed, the breakpoint
mask remains set and prevents a breakpoint on the next occurrence.

To clear the breakpoint mask, reset the PC bit. To keep the breakpoint,
set the DEN bit. To clear the breakpoint, clear both the PC and DEN
bits.

CompactRISC CR16C Programmer’s Reference Manual ADDITIONAL TOPICS 4-14

The CR16C core works with the following sequence:

Execute until a hardware break occurs:

• Option 1 (same address):

– Set DCR.PC = 1; DCR.DEN = 1 (i.e., set DEN again)

– Go (RETX - same address - the instruction where the Breakpoint oc-
curred is executed)

• Option 2 (different address):

– Clear DCR.PC = 0; DCR.DEN = don't care (clear breakpoint mask)

– Set DCR.PC = 1; DCR.DEN = 1 (i.e., set PC/DEN again)

– Modify PC on stack

– Go (RETX - different address)

4.1.5 In-System Emulator (ISE)

The CR16C core supports the development of real-time ISE equipment
and Application Development Boards (ADBs) with the following features:

• Status signals that indicate when an instruction in the execution
pipeline is completed

• Status signals that indicate the type of each bus cycle, e.g., fetch

• Status signals that indicate when there is a non-sequential fetch

• An ISE interrupt signal

• An interrupt acknowledge cycle for ISE interrupt

• An interrupt acknowledge cycle for the DBG, TRC and BPT excep-
tions, programmable by the DCR

• A BRKL line for accurate external breakpoints on instruction execu-
tion, by tagging instructions during the fetch cycle

• Forcing INTBASE to 0 for the ISE, DBG, TRC and BPT exceptions,
programmable by the DCR

• A set-only Lock bit in DCR to protect the ABPT, ADBG, ATRC, AISE
bits in DCR and DBGCFG.ON from erroneous clearing by user soft-
ware

• A special bus status signal during exception handling that indicates
that the dispatch table is being read

• A special, early bus status signal (available only on some system in-
terfaces indicating that either a core code fetch or a core dispatch-ta-
ble read is being executed

CompactRISC CR16C Programmer’s Reference Manual ADDITIONAL TOPICS 4-15

• On reset, the CR16C stores the contents of the PSR in R2, bits 23
through 17 of the PC in R1, and bits 16 through 1 of the PC in R0.

4.1.6 Hardware Debug Mode

The CR16C provides support for an external hardware debug interface.
In this hardware debug mode, the on-chip debug registers and external
debug signals allow the external debug module to set watchpoints or
stall the processor and access all of the processor registers.

If the hardware debug mode is enabled, the core cannot access the de-
bug control registers. The contents of the PSR.T and PSR.P bits is ig-
nored, i.e., writes to these bits are allowed and reads return an
undefined result.

4.1.7 Debug Control and Status Registers

The debug control and status registers can be modified and read via
LPR/SPR and LPRD/SPRD instructions. If hardware debug mode is en-
abled, a read from these registers results in 0x0000 and a write to these
registers is ignored.

Note: If no Hardware Debug Module is present, the Debug Control and
Status registers are reset on CR16C reset. Otherwise, the Debug
Control and Status Registers are reset on a debug reset; refer to
the description of the Hardware Debug module.

Debug Base Register (DBS)

The DBS Register selects the debug register pair and holds the status of
all debug channels. The DBS Register is always accessible, independent
of the DBS.BANK settings. The format of the DBS is shown in Figure
4-8.

Figure 4-8. Debug Base Register (DBS)

15 8 7 2 1 0

EVT[7:0] reserved BANK[1:0]

CompactRISC CR16C Programmer’s Reference Manual ADDITIONAL TOPICS 4-16

BANK Debug BANK Select. This bit selects the currently accessible Debug
Register Bank. A pair of debug channels consisting of CARn, CARn+1
DCR and DSR is mapped into the core debug register space, accessible
via LPR/SPR instructions. The debug registers selected are calculated by
n = BANK * 2.

EVT Debug EVenT. There is one EVT bit for every debug channel. This bit is
a logic OR of the bits DSRb.BRDn, DSRb.BWRn and DSRb.BPCn bits.
For debug channel 0, the DSR0.EXF bit is also part of the equation. The
EVT bits are cleared when all corresponding source bits are cleared.

Compare Address Registers (CARn)

The CARn holds the compare address value for debug channel n. The
format of the CARn is shown in Figure 4-9.

Figure 4-9. Compare Address Register (CARn)

Debug Control Register (DCRb)

The DCR controls the compare-address match, external tag on fetch, PC
match debug for a set of two debug channels. The DCR of debug channel
0 also controls the alternate behavior of the BPT, TRC, ISE and DEBG
breakpoints. When a bit is set to 1, the condition it controls is enabled;
otherwise, it is disabled. A DBG trap may be triggered by a PC match, by
an external tag on fetch reaching execution, or by a compare-address
match. The cause of a DBG trap is indicated in the DSR.

Exception
addressing
for ISEs

When address range matching is enabled (DCR0.EAR), the configuration
of the address range matching is provided in the configuration bits for
comparator 0: PC, CWR, CRD, and DEN. The CAR mask bits are inde-
pendent of the address range match enable.

Address-
match with
bit-
manipulation
instructions

Using the compare-address match for memory locations accessed by the
CBIT, SBIT, and TBIT instructions requires special care. If both read and
write breakpoints are enabled (both DCR.CRD and DCR.CWR are set), only
the read breakpoint is acknowledged, setting just the DSR.BRD status bit.

31 24 23 0

reserved CARn

31 0

CARn

CompactRISC CR16C Programmer’s Reference Manual ADDITIONAL TOPICS 4-17

If an unaligned transaction is used to access a word variable (i.e., Addr0
= 1), only the byte containing the relevant bit to be tested and modified
is read and/or written. DCR should be programmed to match the appro-
priate byte for a match breakpoint to occur.

The DCR is cleared on reset (SFDBGRSTP goes active high). The format
of DCRL and DCRH is shown in Figures 4-10 and 4-11.

Figure 4-10. Debug Control Register L (DCRL)

Figure 4-11. Debug Control Register H (DCRH)

MSKn Address Mask debug channel n. The MSKn[1:0] bits select a mask for
the CARn registers, according to Table 4-1.

These are valid for both compare-address matching and during PC-
match. In addition, the masks are functional when the EAR bit is set.

EAR Enable Address Range Breakpoint. Enables breaking on a PC or ad-
dress match in the range between CARn and CARn+1 within the same
debug register block (b). CARn+1 >= range >= CARn. When set, configu-
ration parameters for CARn are used for the range breakpoint.

ESQ Enable Complex (Sequential) Breakpoint. Enables a complex break-
point using the CARn and CARn+1 of the same debug block in sequence.
A breakpoint is executed if the condition for breakpoint n+1 occurs after
the condition for breakpoint n.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DEN1 CRD1 CWR1 PC1 WPE1 ESQ MSK1 DEN0 CRD0 CWR0 PC0 WPE0 EAR MSK0

31 24 23 22 21 20 19 18 17 16

reserved DBGL res AISE ADBG ATRC ABPT res EFB

Table 4-1. Address Mask Bit Function

MSKn
Function

Bit 1 Bit 0

0 0 no mask

0 1 mask CARn[0]

1 0 mask CARn[1:0]

1 1 mask CARn[2:0]

CompactRISC CR16C Programmer’s Reference Manual ADDITIONAL TOPICS 4-18

WPEn Watchpoint Enable debug channel n. This bit is only available in hard-
ware debug mode. When set, enables generation debug event outputs on
detection of a debug event.

PCn PC Match or Compare-Address Match channel n. When set, enables
generation of a DBG trap on a PC match on the corresponding CAR.
When clear, enables generation of a DBG trap on a compare-address
match.

CWRn Compare-Address on Write channel n. When set, enables address com-
parison for write operations.

CRDn Compare-Address on Read channel n. When set, enables address com-
parison for read operation.

DENn Debug Condition Enable channel n. Enables either the compare-ad-
dress match or PC match condition, depending on the value of the PC bit
for the corresponding CAR. Both DEN0 and DEN1 are cleared when a PC
match occurs and DSR.BPC is set, or when address-match is achieved,
and either DSR.BRD or DSR.BWR is set. These bits are also cleared
when an externally tagged instruction reaches execution and DSR.EXF is
set.

EFB Enable Tag-at-Fetch Breakpoint. Enables breaking by an external de-
vice on an instruction tagged during the fetch phase. EFB is cleared
when the tagged instruction reaches execution, and DSR.EXF is set. This
bit is also cleared when a PC match occurs and DSR.BPC is set, or when
address-match is achieved, and either DSR.BRD or DSR.BWR is set.

This bit is only available in DCR0.

ABPT Alternate behavior on BPT. Performs an Interrupt-Acknowledge cycle
for BPT, and calculates the dispatch table entry based on INTBASE = 0,
and 32-bit entries.

This bit is only available in DCR0.

ATRC Alternate behavior on TRC. Performs an Interrupt-Acknowledge cycle
for TRC and calculates the dispatch table entry based on INTBASE = 0,
and 32-bit entries.

This bit is only available in DCR0.

ADBG Alternate behavior on DBG. Performs an Interrupt-Acknowledge cycle
for DBG and calculates the dispatch table entry based on INTBASE = 0,
and 32-bit entries.

This bit is only available in DCR0.

CompactRISC CR16C Programmer’s Reference Manual ADDITIONAL TOPICS 4-19

AISE Alternate behavior on ISE. Calculates dispatch table for ISE based on
INTBASE = 0, and 32-bit entries. ISE always performs an Interrupt-Ac-
knowledge cycle.

This bit is only available in DCR0.

DBGL Debug-In-System-Emulation Support Lock. A set-once bit (cleared only
by reset) that locks the ABPT, ATRC, ADBG, AISE bits in DCR, and the
ON bit in DBGCFG.

Note: DBGCFG is a chip-level debug-configuration register, used to con-
trol the behavior of the whole part, for debugging purposes. This register
resides outside the core, and is described in each part-specific specifica-
tion or user manual.

This bit is only available in DCR0.

Debug Status Register (DSRb)

The DSRb indicates debug and breakpoint conditions that have been de-
tected for the breakpoint controlled by debug block b. When the CPU de-
tects an enabled debug condition, it sets the appropriate bits in the
DSRb to 1. Bits 0 through 23 of the DSR are cleared to 0 at reset. In ad-
dition, software must clear all the bits in the DSR when appropri-
ate.When address range matching is enabled (DCRb.EAR), the status of
the address range matching is given in the status bits for comparator n
- BPCn, BWRn and BRDn (not by the status of comparator n+1).

The DSR is cleared on reset. The format of the DSR is shown in Figure 4-12.

Figure 4-12. Debug Status Register (DSRb)

BPCn Program Counter channel n. Set when a PC match is detected for the
corresponding CARn.

BWRn Write channel n. Set when a compare-address match is detected for a data
write for the corresponding CARn.

BRDn Read channel n. Set when a compare-address match is detected for a data
read for the corresponding CARn.

EXF Fetch-tagged Execution breakpoint. Set when an instruction which
was tagged during the fetch stage reaches the execution phase.

This bit is only available in DSR0.

15 7 6 5 4 3 2 1 0

reserved BRD1 BWR1 BPC1 EXF BRD0 BWR0 BPC0

CompactRISC CR16C Programmer’s Reference Manual ADDITIONAL TOPICS 4-20

4.2 CACHE SUPPORT

The CR16C supports integration of an Instruction Cache (IC) and a Data
Cache (DC), although the cache itself is not provided as part of the core.

The contents of the IC and DC are automatically loaded by the CR16C to
maintain copies of recently used instructions and data values. The con-
tents of the IC and DC can also be locked to hold copies of selected
memory locations. This section describes the organization and operation
of the IC and DC support.

The configuration register contains configuration bits to enable an IC
and a DC. In addition, lines within the cache may be locked.

Instructions are provided to invalidate either or both caches, and to de-
termine if the entire cache or only unlocked lines should be invalidated.

4.2.1 Instruction Cache Operation

The IC is enabled for an instruction fetch whenever the CFG.IC bit is 1.
IC operation under various conditions is described below.

IC disabled If the IC is disabled, then the instruction fetch bypasses the IC, and the
contents of the IC are unaffected. Instructions are read directly from ex-
ternal memory, and are transferred to the instruction queue through the
IC. If the IC is not present, the main data bus is connected to the in-
struction cache data bus directly. If an IC is present but is currently dis-
abled, these signals are connected together through the cache.

IC enabled If the IC is enabled for an instruction fetch, then bits of the address of
the instruction in the PC are decoded to select the set of cache lines
where the instruction may be stored. The selected set is read, and the
tags and validity bits are compared with the relevant bits of the address
of the instruction. The lower bits of the address in the PC identify the
word and the corresponding validity bit in each line of the selected set.

IC hit If one of the tags matches and the selected word is valid, then the in-
struction is transferred directly to the instruction queue for execution.
Otherwise, the missing data is read from external memory, as described
below.

IC miss,
lines locked

If the instruction is not in the IC and if the contents of all lines in the
set are locked, the IC is considered disabled and data from the main bus
is used.

CompactRISC CR16C Programmer’s Reference Manual ADDITIONAL TOPICS 4-21

IC miss,
at least one
line not
locked

If the instruction is not in the IC, and if at least one of the lines in the
set is not locked, then:

• If the tag of either line in the set matches the address in the PC, then
that line is selected for updating.

• If neither tag matches, and

– at least one of the lines in the set is not locked, then the unlocked
line is selected for replacement.

– both lines are unlocked, then the least recently used line is selected
for replacement.

Any missing data is read from external memory and transferred to the
instruction queue for execution, regardless of whether the selected line is
replaced or merely updated.

Instruction
prefetching

After the CR16C has completed fetching a missing instruction from ex-
ternal memory, the IC may continue to prefetch sequential words in the
same line. The memory from which the data is fetched can limit the
number of words that can be prefetched.

The IC stops prefetching under any of the following conditions:

• When memory indicates that the maximum number of words has
been prefetched

• When the end of the IC line is reached
• When a non-sequential fetch is issued or
• When a cache invalidation request is issued.

Whenever the cache is invalidated by a CINV instruction, the SFICIVP
signal is asserted. In addition, the SFSELINVP signal is asserted if only
the unlocked lines need to be invalidated.

4.2.2 Instruction Cache Invalidation

During execution of self-modifying code, it may be necessary to invali-
date the IC. When a locked line is invalidated, it also becomes unlocked.

The contents of the IC can be invalidated by software or hardware.

Software invalidates the cache as follows:

• Clearing the CFG.IC bit invalidates the entire IC contents, including
locked lines, and initializes a LRU selection bit to 0.

• Executing the CINV instruction invalidates either the entire IC, or if
the U option is used, only unlocked lines.

The IC module may also provide support for invalidation via direct input.

CompactRISC CR16C Programmer’s Reference Manual ADDITIONAL TOPICS 4-22

4.2.3 Data Cache Operation

A Data Cache (DC) may be present on the core bus to provide faster ac-
cess for more frequently used data. The DC is enabled for a data read if
CFG.DC is 1 and the DC access attempt was not caused by an interrupt-
acknowledge bus cycle.

DC disabled If the DC is disabled, then the data read bypasses the DC, and the con-
tents of the DC are unaffected. The data that is read from external mem-
ory is used to execute the instruction.

DC enabled If the DC is enabled for a data read, then bits of the address of the data
are decoded to select the set of lines where the instruction may be
stored. The selected set is read and the tags are compared with the most
significant bits of the address; the lower bits are used to determine the
corresponding validity bit in each line of the selected set.

DC hit If one of the tags matches and the word is valid, then the data is used
to execute the instruction. Otherwise, the missing data is read from ex-
ternal memory, as described below.

DC miss,
lines locked

If the data is not in the DC, and if the contents of both lines in the set
are locked to fixed locations that do not match the address of the data,
then the DC is considered disabled and data is read from an external
memory.

DC miss,
at least one
line not
locked

If the data is not in the DC, and if at least one of the lines in the set is
not locked, then:

• If the tag of a line in the set matches the address in the data, then
that line is selected for updating.

• If no tag matches, and

– At least one of the lines in the set is not locked, then the unlocked
line is selected for replacement.

– All lines are unlocked, then the least recently used line is selected
for replacement.

Any missing data is read from external memory and used to execute the
instruction, regardless of whether the selected line is being replaced or
merely updated.

CompactRISC CR16C Programmer’s Reference Manual ADDITIONAL TOPICS 4-23

4.2.4 Data Write Operation

The DC is enabled for a data write whenever CFG.DC is 1.

The lower address bits of the data address are decoded to determine the
set of lines where the data may be written. The lines of the selected set
are read and both tags are compared with the most significant bits of the
data’s address.

Several bytes may be written to the cache, depending on the operand’s
length. Some of the least significant bits of the data’s address select the
appropriate word and the corresponding validity bit in each line of the
selected set.

If the data is not located in the DC, then the contents of the DC are un-
affected. In addition, the data may be written into the cache in a new
line, if available. The data is always written to external memory whether
the DC is updated or not.

4.2.5 Data Cache Invalidation and Coherence Support

To maintain coherence between the DC and external memory, a request
can be issued to invalidate the whole DC whenever a location in memory
is modified by a bus master other than the CR16C itself. This technique
is appropriate, for example, for a single processor system with a low rate
of I/O transfers to memory. When a locked line is invalidated, it also be-
comes unlocked.

The contents of the DC can be invalidated by software or hardware.

Software invalidates the DC as follows:

• Clearing the CFG.DC bit invalidates the entire contents of the DC, in-
cluding locked lines, and initializes the LRU selection bit to 0.

• Executing the CINV instruction invalidates either the entire DC, or if
the U option is used, only unlocked lines.

The DC module may also provide support for invalidation via direct in-
put.

CompactRISC CR16C Programmer’s Reference Manual ADDITIONAL TOPICS 4-24

4.2.6 Data Cache Monitoring

Bus status codes and some data cache signals can be used to maintain
an external copy of the valid contents of the on-chip DC.

When the data cache is disabled (SFDCENP is low), all its entries are in-
valid and all locked bits are cleared.

Bus status codes indicate when a data read operation from external
memory is being executed (see Section 7.8.1 on page 7-9).

Whenever the cache is invalidated by a CINV instruction, the SFDCIVP
signal is asserted. In addition, the SFSELINVP signal is asserted if only
the unlocked lines need to be invalidated.

4.3 INSTRUCTION EXECUTION ORDER

The CR16C has four operating states in which instructions may be exe-
cuted and exceptions may be processed. They are:

• Reset
• Executing instructions
• processing exception
• Waiting for interrupt

Figure 4-13 shows these states and the transitions between them.

Figure 4-13. CR16C Operating States

Reset

Processing
Exception

Reset

No Reset

Interrupt or Trap

Service Call Complete

InterruptWAIT or EIWAIT
Instruction Executed

Executing
Instructions

Waiting
for

Interrupt

CompactRISC CR16C Programmer’s Reference Manual ADDITIONAL TOPICS 4-25

Reset When the reset input signal is activated, the CR16C enters the reset
state. In this state, the contents of certain dedicated registers are initial-
ized, as detailed in Section 3.5 on page 3-13.

Executing
instructions

When the reset signal is deactivated, the CR16C enters the executing-
instructions state. In this state, the CR16C executes instructions repeat-
edly until an exception is recognized, a WAIT instruction is executed or
an EIWAIT instruction is executed.

Processing
exception

When an exception is recognized, the CR16C enters the processing ex-
ception state in which it saves the PC and the PSR contents. The proces-
sor then reads an absolute code-address from the interrupt dispatch
table and branches to the appropriate exception service procedure. Refer
to Section 3.4 on page 3-4 for more information.

To process maskable interrupts, the CR16C also reads a vector value
from an Interrupt Control Unit (ICU).

After successfully completing all data references required to process an
exception, the CR16C reverts to the executing instructions state.

Waiting for
interrupt

When a WAIT or an EIWAIT instruction is executed, the CR16C enters
the waiting for interrupt state and becomes idle. When an interrupt is
detected, the processor enters the processing exception state.

4.3.1 The Instruction Pipeline

The CR16C can overlap operations for several instructions, using a pipe-
lined technique to enhance its performance. While the CR16C is fetching
one instruction, it can simultaneously be decoding a second instruction
and calculating results for a third instruction. See Figure 4-14.

In most cases, pipelined instruction execution improves performance
while producing the same results as strict, sequential instruction execu-
tion. Under certain circumstances, the effects of this performance en-
hancement are visible to system software and hardware as differences in
the order of memory references performed by the CR16C.

Instruction
fetches

The CR16C fetches an instruction only after all previous instructions
have been completely fetched. It may, however, begin fetching the in-
struction before all of the source operands have been read, and before
the results have been written for previous instructions.

Operands
and memory
references

The source operands for an instruction are read only after all data reads
and data writes from previous instructions have been completed. Figure
4-14 shows this process, and the order of precedence of memory refer-
ence for two consecutive instructions. The arrows indicate the order of
precedence between operations in and between instructions.

CompactRISC CR16C Programmer’s Reference Manual ADDITIONAL TOPICS 4-26

Figure 4-14. Memory References for Consecutive Instructions

Overlapping
operations

As a consequence of overlapping operations for several instructions, the
CR16C may fetch an instruction but not execute it (e.g., if the previous
instruction causes a trap). The CR16C reads source operands and writes
destination operands for executed instructions only.

Dependencies The CR16C does not check for dependencies between fetching the next
instruction and writing the results of the previous instructions. Special
care is therefore required when executing self-modifying code.

4.3.2 Serializing Operations

The CR16C serializes instruction execution after processing an excep-
tion. The results of all preceding instructions are written to a destination
before the first instruction of the exception service procedure is fetched.
This fetch is considered non-sequential.

The CR16C also serializes instruction execution after executing the fol-
lowing instructions: LPR, RETX, and EXCP.

Whenever the core serializes execution, the instruction pipeline is
flushed and the processor restarts filling it by fetching new instructions
from the next memory location. This location is pointed to by the updat-
ed program counter (PC). Instruction execution begins only when the
first fetched instruction rolls through the pipeline and reaches the exe-
cution stage. For more information, see Appendix A.

Instruction n Instruction n+1

Data Read or Write

Instruction Fetch

Instruction Fetch

Data Read or Write

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET 5-1

Chapter 5

INSTRUCTION SET

This chapter describes in details each of the CR16C instructions.

5.1 INSTRUCTION DEFINITIONS

The name of each operand appears in bold italics, and indicates its use.
In addition, the valid addressing modes, access class and length are
specified for each operand.

The addressing mode may be: reg (register), procreg (processor register),
imm (immediate), abs (absolute) rel (relative), or idx (index relative)The
reg and rel addressing modes are followed by a specifier rp (register pair)
or r (register). The imm addressing mode is followed by a maximum bit
size specifier. Many instructions support multiple imm sizes for efficient
code memory usage. For more details, see Section “ADDRESSING
MODES” on page 2-15 and Appendix B.2.1 on page B-3 for definitions of
the imm formats.

The access class may be read, write, rmw (read-modify-write), addr
(address) or disp (displacement). The access class is followed by a data
length attribute specifier. See Figure 5-1.

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET 5-2

Figure 5-1. Instruction Header Format

The data length attribute specifier specifies how the operands are inter-
preted, and represents a character that is incorporated into the name of
the actual instruction. The i specifier stands for B (byte), or W (word) in
the actual instruction name. In the access class, the L (long) specifier
stands for the long, 24-bit address/displacement.Each instruction defini-
tion is followed by a detailed example of one or more typical forms of the
instruction. In each example, all the operands of the instruction are
identified, both those explicitly stated in Assembly language and those
that are implicitly affected by the instruction.

For each example, the values of operands before and after execution of
the instruction are shown. Often the value of an operand is not changed
by the instruction. When the value of an operand changes, its field is
highlighted in gray. See Figure 5-2.

ADDi
ADDUi Add Integer

ADDB, ADDW, ADDD, ADDUB, ADDUW

ADDi src, dest
reg/imm reg
read.i rmw.i

ADDUi src, dest
reg/imm reg
read.i rmw.i

Name

Syntax

Valid

Forms

Addressing

Access

Operands

Data Length Attribute Specifiers

Short
Description

Data Length Attribute Specifiers in Generic Instruction Name

Mnemonic

Mode

Classes

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET 5-3

Figure 5-2. Instruction Example Format

The least significant digit of the least significant byte is the right-most
digit. Values are expressed in terms of a radix in a subscript to the
value.

An x represents a binary digit or a hexadecimal digit (4 bits) that is
either ignored or unchanged.

5.2 DETAILED INSTRUCTION LIST

The instruction set is described in detail in the following pages.

This example adds the low-order byte of register R0 to
the low-order byte of register R3, and places the result
in the low-order byte of register R3. The remaining bytes
of R3 are not affected.

r0
xx9F16
(-9710)

addb r0, r3

r0
xx9F16
(-9710)

r3
xx6216
(+9810)

r3
xx0116
(+110)

PSR enzfltc PSR enz0lt1

Operand Values
Before Execution

Operand Values
After Execution

Description
of Example Instruction Name

Changed by

by Execution
Unchanged

Execution

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET 5-4

ADDi
ADDUi Add Integer

ADDi, ADDUi (Add Integer)ADDB, ADDW, ADDD, ADDUB, ADDUW

ADDi src, dest
reg.r/imm4/16 reg.r
read.i rmw.i

ADDD src, dest
reg.rp/imm4/16/20/32 reg.rp
read.D rmw.D

ADDUi src, dest
reg.r/imm4/16 reg.r
read.i rmw.i

The ADDi, ADDD and ADDUi instructions add the src and dest oper-
ands, and place the result in the dest operand.

Flag During execution of an ADDi or ADDD instruction, PSR.C is set to 1 on
a carry from addition, and cleared to 0 if there is no carry. PSR.F is set
to 1 on an overflow from addition, and cleared to 0 if there is no over-
flow. PSR flags are not affected by the ADDUi instruction.

Trap None

Example Adds the low-order byte of register R0 to the low-order byte of register
R3, and places the result in the low-order byte of register R3. The
remaining bytes of R3 are not affected.

r0
xx9F16
(-9710)

addb r0, r3

r0
xx9F16
(-9710)

r3
xx6216
(+9810)

r3
xx0116
(+110)

PSR enzfltc PSR enz0lt1

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET 5-5

ADDCi Add Integer with Carry

ADDCi (Add Integer with Carry) ADDCB, ADDCW

ADDCi src, dest
reg/imm4/16 reg
read.i rmw.i

The ADDCi instructions add the src operand, dest operand and the
PSR.C flag, and place the sum in the dest operand.

Flag PSR.C is set to 1 if a carry occurs, and cleared to 0 if there is no carry.
PSR.F is set to 1 if an overflow occurs, and cleared to 0 if there is no
overflow.

Trap None

Example 1. Adds 32, the low-order byte of register R0, and the PSR.C flag con-
tents, and places the result in the low-order byte of register R0. The
remaining bytes of register R0 are unaffected.

2. Adds the contents of registers R5 and R0, and the contents of the
PSR.C flag, and places the result in register R0.

r0
xx0F16
(+1510)

addcb $32, r0
r0

xx3016
(+4810)

PSR enzflt1 PSR enz0lt0

r5
FFFF16
(-110)

addcw r5, r0

r5
FFFF16
(-110)

r0
003016
(+4810)

r0
003016
(+4810)

PSR enzflt1 PSR enz0lt1

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET 5-6

ANDi Bitwise Logical AND

ANDi (Bitwise Logical AND) ANDB, ANDW, ANDD

ANDi src, dest
reg.r/imm4/16 reg.r
read.i rmw.i

ANDD src, dest
reg.rp/imm32 reg.rp
read.D rmw.D

The ANDi/ANDD instruction performs a bitwise logical AND operation on
the src and dest operands, and places the result in the dest operand.

Flag None

Trap None

Example ANDs the low-order bytes of registers R0 and R11 and places the result
in the low-order byte of register R11. The remaining byte of register R11
is unaffected.

r0 xx16 100100102 andb r0, r11 r0 xx16 100100102

r11 xx16 011101112 r11 xx16 000100102

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET 5-7

ASHUi Arithmetic Shift

ASHUi (Arithmetic Shift) ASHUB, ASHUW, ASHUD

ASHUi count, dest
reg.r/imm4/5 reg.r
read.B rmw.i

ASHUD count, dest
reg.r/imm6 reg.rp
read.B rmw.D

The ASHUi instruction performs an arithmetic shift on the dest operand
as specified by the count operand. Both operands are interpreted as
signed integers.

The sign of count determines the direction of the shift. A positive count
specifies a shift to the left; a negative count specifies a shift to the right.
The absolute value of the count specifies the number of bit positions to
shift the dest operand. The count operand value must be in the range
−7 to +7 if ASHUB is used; in the range −15 to +15 if ASHUW is used; and
in the range −31 to +31 if ASHUD is used. Otherwise, the result is unpre-
dictable.

If the shift is to the left, high-order bits (including the sign bit) shifted
out of dest are lost, and low-order bits emptied by the shift are filled
with zeros. If the shift is to the right, low-order bits shifted out of dest
are lost, and high-order bits emptied by the shift are filled from the orig-
inal sign bit of dest.

Note that for ASHUD, if the dest operand consists of two registers
(dest+1,dest), then in addition to what is described above for all ASHUi
instructions, shifts have the following effects:

• A shift to the left causes high-order bits to be shifted out of dest reg-
ister to dest+1 register.

• A shift to the right causes low-order bits of dest+1 register to be
shifted out to dest register.

Flag None

Trap None

Example 1. Shifts the low-order byte of register R5 two bit positions to the left.
The remaining byte of register R5 is unaffected.

r5 xx16 000111112
ashub $2, r5

r5 xx16 011111002

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET 5-8

2. Reads a byte from register R4. Based on this value, it shifts the low-
order byte of register R6 accordingly. The remaining byte of register
R6 is unaffected.

r4 xx16
111111102
(-210) ashub r4, r6 r4 xx16

111111102
(-210)

r6 xx16 111110002 r6 xx16 111111102

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET 5-9

BAL Branch and Link

BAL (Branch and Link) BAL

BAL link, dest
reg.rp disp25
write.L disp

The address (bits 23 to 1) of the next sequential instruction is first
stored in the link operand. Then, program execution continues at the
address specified by dest, sign extended to 25 bits, plus the current
contents of the PC register. as follows: PC <- (PC+ sext_25(disp)). The
result is stored in PC before being used.

If the resulting PC value is less than 0x00_0000 or greater than
0xFF_FFFF, this instruction causes an IAD trap.

If the link operand is (ra), with CFG.SR=0, or (era,ra), with CFG.SR=1,
the instruction size is 4 bytes; otherwise, it is 6 bytes.

Flag None

Trap None

Example Saves bits 23 through 1 of the PC register of the next sequential instruc-
tion in register RA, and passes execution control to the instruction
labeled L by adding 00F6C16 to the current PC register.

PC
00909816
(3701610)

bal (ra,era),_L

PC
00A00416
(4096410)

L
(A00416)

xxxx16
L

(A00416)
xxxx16

era,ra xxxxxxxx16 era,ra
0000484E16
(3702010 ÷ 2)

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET 5-10

Bcond Conditional Branch

Bcond (Conditional Branch)BEQ, BNE, BCS, BCC, BHI, BLS, BGT,
BLE, BFS, BFC, BLO, BHS, BLT, BGE

Bcond dest
disp
disp

Table 5-1. If the condition specified by cond is true, the Bcond instruction
causes a branch in program execution. Program execution continues at the
location specified by dest, sign extended to 25 bits, plus the current con-
tents of the Program Counter. If the condition is false, execution continues
with the next sequential instruction. Table 5-1 summarizes the different

addressing calculations.BR/BRcond Target Addressing Methodology

cond is a two-character condition code that describes the state of a flag,
or flags, in the PSR register. If the flag(s) is/are set as required by the
specified cond, the condition is true; otherwise, the condition is false.
Table 5-2 describes the possible cond codes and the related PSR flag set-
tings.

Flag None

Trap None

Table 5-2. cond Codes and PSR Settings

The assembler encodes the displacement by dividing it by two. The CR16C expands this encoding
by multiplying the value by two. The least significant bit of the displacement is always 0.

Displacement
Size (Signed) Inst Size Address

Range Address Calculation

9 bits 2 0 - 16M PC <- (PC + sign extend to 25(disp))

17 bits 4 0 - 16M PC <- (PC + sign extend to 25(disp))

25 bits 6 0 - 16M PC <- (PC + disp)

cond Code Condition True State

EQ Equal Z flag is 1

NE Not Equal Z flag is 0

CS Carry Set C flag is 1

CC Carry Clear C flag is 0

HI Higher L flag is 1

LS Lower or Same L flag is 0

GT Greater Than N flag is 1

LE Less Than or Equal To N flag is 0

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET 5-11

Examples 1. Passes execution control to the instruction labeled LOOP by adding
FFFF6816 to the PC register, if the PSR.Z and PSR.L flags are 0.

2. Passes execution control to a non-sequential instruction if the PSR.Z
flag is 0. The instruction passes execution control by adding 16 to the
PC register.

3. Passes execution control to a non-sequential instruction if the PSR.Z
flag is 0. The instruction passes execution control by adding 4090 to
the PC register.

FS Flag Set F flag is 1

FC Flag Clear F flag is 0

LO Lower Z and L flags are 0

HS Higher or Same Z or L flag is 1

LT Less Than Z and N flags are 0

GE Greater Than or Equal To Z or N flag is 1

cond Code Condition True State

PC 00909816

blo LOOP

PC 00900016

LOOP
(900016)

xxxx16
LOOP

(900016)
xxxx16

PSR en0f0tc PSR en0f0tc

PC
009FF016
(4094410)

bne *+16

PC
00A00016
(4096010)

*+16
(A00016)

xxxx16
*+16

(A00016)
xxxx16

PSR en0fltc PSR en0fltc

PC
01F22016

(12752010)

bne *+4090

PC
02021A16
(58810)

*+4090
(02021A16)

xxxx16
*+4090

(02021A16)
xxxx16

PSR en0fltc PSR en0fltc

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET 5-12

4. Passes execution control to a non-sequential instruction if the PSR.Z
flag is 0. The instruction passes execution control by adding 1507344
to the PC register.

PC
009FF016
(4094410)

bne *+1507344

PC
17A00016

(154828810)

*+1507344
(17A00016)

xxxx16
*+1507344
(17A00016)

xxxx16

PSR en0fltc PSR en0fltc

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET 5-13

BCond0i Compare Register to 0 and Conditional Branch

BEQ0B, BEQ0W, BNE0B, BNE0W

BCond0i src, dest
reg.r disp5
read.i disp

The BCond0i instruction compares the signed contents of src to ’0’, and
branches upon equality or non-equality (according to cond) as shown in
Table 5-3. The target address is determined by adding the 5-bit displace-
ment (unsigned even 2-32) to the current value of the program counter.
Only forward branching is supported.

The instruction performs byte or word compares according to the i indi-
cator.

Table 5-3. Conditional Branch

Flag None

Trap None

Example Compares the low-order byte in register R0 to 0 and since the lower byte
of R0 is 0, branches to the instruction at address *+16 by adding 16 to
the PC register.

The assembler encodes the displacement by dividing it by two and subtracting one. The CR16C
reverts this encoding by adding one and the multiplying the value by two, the least significant
bit of the displacement is always 0

Cond Code Condition True State

EQ Equal Rn is equal to 0

NE Not Equal Rn is not equal to 0

PC
009FF016
(4094410)

beq0b r0, *+16

PC
00A00016
(4096010)

r0 xx0016 r0 xx0016

*+16
(A00016)

xxxx16
*+16

(A00016)
xxxx16

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET 5-14

.BR Unconditional Branch

BR (Unconditional Branch) BR

BR dest
disp 9/17/25
disp

dest is an even integer, sign extended to 25 bits and added to the cur-
rent contents of the PC register. The result is loaded into the PC register.
Program execution continues at the location specified by the updated PC
register. Table 5-1 describes the detailed address calculation performed
for the BR instruction.

Flag None

Trap None

Examples 1. Passes execution control to the instruction at address *+16 by adding
+16 to the PC register.

2. Passes execution control to a non-sequential instruction. The instruc-
tion passes execution control by adding 1507344 to the PC register.

For further examples, see the description of the BCond instruction. The
Branch command executes the same way as BCond, since the condition
is effectively always true.

PC
009FF016
(4094410) br *+16

PC
00A00016
(4096010)

LOOP
(A00016)

xxxx16
LOOP

(A00016)
xxxx16

PC
009FF016
(4094410) br *+1507344

PC
17A00016

(154828810)

*+1507344
(17A00016)

xxxx16
*+1507344
(17A00016)

xxxx16

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET 5-15

CBITi Clear Bit in Integer

CBITB, CBITW

CBITi position, dest
imm4 abs/rel.r/rel.rp/idx
read.i rmw.i

The CBITi instruction loads the dest operand from memory, clears the
bit specified by position, and stores it back into memory location dest,
in an uninterruptable manner. The position operand value must be in
the range 0 to +7 if CBITB is used, and 0 to +15 if CBITW is used; other-
wise, the result is unpredictable.

As there is no native support for clearing a bit in a double-length core
register when CFG.SR=0, the ANDD instruction should be used.

See Table 5-4 for addressing modes.

Flag Before the specified bit is modified, its value is stored in PSR.F.

Trap None

Examples 1. Clears bit in position 5 in a byte operand at address 9 (R1).

2. Clears bit in position 8 in a word operand in address 0 (R8).

r1 200016

cbitb $5,9(r1)

r1 200016

200916
(memory)

7F16
200916

(memory)
5F16

PSR enzfltc PSR enz11tc

r8 200416
cbitw $8,0(r8)

r8 200416

200416
(memory)

F5E716
200416

(memory)
F4E716

PSR enzfltc PSR enz11tc

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET 5-16

3. Clears bit in position 3 in a byte operand in address 3000216.

Table 5-4. CBIT/SBIT/TBIT and STOR Imm Addressing Methodology

3000216
(memory)

009F16
cbitb $3,0x30002 3000216

(memory)
009716

PSR enzfltc PSR enz11tc

Addressing Format Mode Displace-
ment Range

Instr
Length
(Byte)

Address
range Address Calculation

0(RPbase) rel.rp 0 2 16M Rpbase

disp16(RPbase) rel.rp 0 to 64K − 1 4 16M Rbase + zext24(disp16)

disp20(RPbase) rel.rp 0 to 1M − 1 6 16M Rbase + zext24(disp20)

[Rindex]disp14(RPbasexa)b idx 0 to 16K − 1 4 16M
Rindex + (RPbasex) +
zext24(disp14)

disp14(Rbase)c rel 0 to 16K − 1 4 64K+16K Rbase + zext24(disp14)

[Rindex]disp20(RPbasexa)b idx 0 to 1M − 1 6 16M
Rindex + (RPbasex) +
zext24(disp20)

disp20(Rbase) rel 0 to 1M − 1 6 1M Rbase + zext24(disp20)

[Rindex]abs20b idx 0 to 1M - 1 4 16M Rindex + zext24(disp20)

abs20 abs 0 to 1M - 1d 4 1M zext24(abs20) | remape

abs24 abs 0 to 16M -1 6 16M abs24

a. RPbasex - Base register pair for relative addressing only: (R1,R0), (R3,R2), (R5,R4), (R7,R6), (R9,R8),
(R11,R10), (R4,R3), (R6,R5)

b. when CFG.SR = 0
c. when CFG.SR = 1
d. The 1M addressable range is split into (0x0 to 1M-64k) and (16M-64k to 16M)
e. If (abs20 > 0xEFFFF) the resulting address is logically ORed with 0xF00000 i.e. addresses from 1M-64k to 1M

are re-mapped by the core to 16M-64k to 16M.

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET 5-17

CINV Cache Invalidate

CINV

CINV options

The CINV instruction invalidates the contents of the on-chip instruction
cache and/or data cache. CINV can invalidate either the entire contents,
or only the unlocked entries, of the on-chip caches.

options are specified by listing the letters I, D, and/or U. These options
are independent of one another. The I option invalidates the instruction
cache; the D option invalidates the data cache. If both I and D are spec-
ified, then both caches are invalidated. The U option invalidates only the
unlocked lines in the listed cache(s). If the U option is not specified, the
entire cache/caches is/are invalidated.

Flag None

Trap None

Examples 1. Invalidates the unlocked lines in the instruction cache.

cinv [i,u]

2. Invalidates all lines in both the instruction cache and the data cache.

cinv [i,d]

3. Invalidates all unlocked lines in both the instruction cache and the
data cache.

cinv [i,d,u]

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET 5-18

CMPi Compare Integer

CMPi (Compare Integer) CMPB, CMPW, CMPD

CMPi src1, src2
reg.r/imm4/16 reg.r
read.i read.i

CMPD src1, src2
reg.rp/imm4/16/32 reg.rp
read.D read.D

The CMPi/D instruction subtracts the src1 operand from the src2 oper-
and, and sets the PSR.Z, PSR.N, and PSR.L flags to indicate the compar-
ison result. The PSR.N flag indicates the result of a signed integer
comparison; the PSR.L flag indicates the result of an unsigned compari-
son. Both types of comparison are performed.

Flag PSR.Z is set to 1 if src1 equals src2; otherwise it is cleared to 0. PSR.N
is set to 1 if src1 is greater than src2 (signed comparison); otherwise it
is cleared to 0. PSR.L is set to 1 if src1 is greater than src2 (unsigned
comparison); otherwise it is cleared to 0.

Trap None

Example Compares low-order bytes in registers R0 and R3.

r0
xxFF16

(signed: -110)
(unsigned: +25510)

cmpb r0, r3

r0
xxFF16

(signed: -110)
(unsigned: +25510)

r3
xx7E16

(+12610)
r3

xx7E16
(+12610)

PSR enzfltc PSR e00f1tc

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET 5-19

DI Disable Maskable Interrupts

DI (Disable Maskable Interrupts) DI

DI

The DI instruction clears PSR.E to 0. Maskable interrupts are disabled
regardless of the value of PSR.I.

Note: The E flag in the PSR takes two cycles to update as a result of an
EI, EIWAIT or DI instruction. Therefore, an exception occurring immedi-
ately after the DI instruction might still be recognized, and an exception
immediately following EI/EIWAIT might be recognized only the next
cycle, if it still is asserted.

In order to avoid any ambiguity it is advisable to have a
disable_interrupt function which consists of a DI followed by a NOP.

Flag PSR.E is cleared to 0.

Trap None

Example Clears the PSR.E bit to 0.

PSR enzfltc di PSR 0nzfltc

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET 5-20

EI Enable Maskable Interrupts

EI (Enable Maskable Interrupts) EI

EI

The EI instruction sets PSR.E to 1. If PSR.I is also 1, maskable inter-
rupts are enabled.

Note: The E flag in the PSR takes two cycles to update, as a result of an
EI, EIWAIT or DI instructions Therefore, an exception occurring immedi-
ately after DI instruction might still be recognized, and an exception
immediately following EI/EIWAIT might be recognized only the next
cycle, if it still is asserted.

In order to avoid any ambiguity it is advisable to have a enable_interrupt
function which consists of a EI followed by a NOP.

Flag PSR.E is set to 1.

Trap None

Example Sets the PSR.E bit to 1.

PSR enzfltc ei PSR 1nzfltc

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET 5-21

EIWAIT Enable Interrupt and Wait for Interrupt

EIWAIT

EIWAIT

The EIWAIT instruction suspends program execution until an interrupt
occurs. This instruction also sets the PSR.E bit, enabling an interrupt to
occur. An interrupt restores program execution by passing it to an inter-
rupt service procedure. When the EIWAIT instruction is interrupted, the
return address saved on the stack is the address of the instruction fol-
lowing the EIWAIT instruction.

Note: The E flag in the PSR takes two cycles to update, as a result of
either an EI, EIWAIT or DI instruction. An exception occurring immedi-
ately after a DI instruction might still be recognized, and an exception
immediately following EI/EIWAIT might be recognized only the next
cycle, if it still is asserted.

Flag Sets the PSR.E bit to 1

Trap None

Example eiwait

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET 5-22

EXCP Exception

EXCP (Exception) EXCP

EXCP vector

The EXCP instruction activates the trap specified by the vector operand.
The return address pushed onto the interrupt stack is the address of the
EXCP instruction itself. Specifying an EXCP with a reserved vector oper-
and results in an Undefined (UND) exception.

Flag None

Trap The traps that occur are determined by the value of the vector operand,
as shown in Table 5-5.

Table 5-5. Exception Traps

Example Activates the Supervisor Call Trap.

excp svc

Vector Trap Name

SVC Supervisor Call

DVZ Division by Zero

FLG Flag

BPT Breakpoint

UND Undefined Instruction

otherwisea

a. If any other vector is encoded, a UND trap is called;
this includes DBG/ISE/IAD/TRC

reserved

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET 5-23

Jcond Conditional Jump

JEQ, JNE, JCS, JCC, JHI, JLS, JGT,
JLE, JFS, JFC, JLO, JHS, JLT, JGE

Jcond dest
reg.rp
addr.L

If the condition specified by cond is true, the Jcond instruction causes a
jump in program execution. Program execution continues at the address
specified in the dest register by loading register bits 22 through 0 into
bits 23 through 1 of the PC register. Bit 0 of the PC is cleared to 0. If the
condition is false, execution continues with the next sequential instruc-
tion.

cond is a two-character condition code that describes the state of a flag
or flags in the PSR. If the flag/s is/are set as required by the specified
cond, the condition is true; otherwise, the condition is false. Table 5-6
describes the possible cond codes and the related PSR flag settings:

Table 5-6. cond Codes and Related Flags

Flag None

Trap None

cond Code Condition True State

EQ Equal Z flag is 1

NE Not Equal Z flag is 0

CS Carry Set C flag is 1

CC Carry Clear C flag is 0

HI Higher L flag is 1

LS Lower or Same L flag is 0

GT Greater Than N flag is 1

LE Less Than or Equal To N flag is 0

FS Flag Set F flag is 1

FC Flag Clear F flag is 0

LO Lower Z and L flags are 0

HS Higher or Same Z or L flag is 1

LT Less Than Z and N flags are 0

GE Greater Than or Equal To Z or N flag is 1

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET 5-24

Example Loads the address held in R3, R4 into the bits 1 through 23 of the PC
register. Program execution continues at that address, if the PSR.Z and
PSR.L flags are 0.

r3 100416

jlo (r4,r3)

r3 100416

r4 000c16 000c16

PC 0A909816 PC
18200816

(C100416 × 2)

PSR en0f0tc PSR en0f0tc

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET 5-25

JAL Jump and Link

JAL (Jump and Link) JAL

JAL link, dest
reg.rp reg.rp
write.L addr.L

Program execution continues at the address specified in the dest regis-
ter, by loading register bits 22 through 0 into bits 23 through 1 of the
PC register. Bit 0 of the PC register is cleared to 0. Bits 23 through 1
of the address of the next sequential instruction are stored in the link
operand. If the link operand is (ra) when CFG.SR=0, or (era,ra) when
CFG.SR=1, the instruction size is 2 bytes; otherwise, it is 6 bytes.

Flag None

Trap None

Example loads the address held in R3 into the PC register. Program execution
continues at that address. The address of the next sequential instruction
is stored in register RA.

r3 000216

jal (ra, era),
(r4,r3) r3 000216

r4 100416 r4 100416

PC 08909816 PC 04200816

ra,era xxxx16 ra,era 04484016 (89098÷2

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET 5-26

JUMP Jump

JUMP (Jump) JUMP, JUSR

JUMP dest
reg.rp
addr.L

JUSR dest
reg.rp
addr.L

Program execution continues at the address specified in the dest oper-
and , by loading the operand’s bits 22 through 0 into bits 23 through 1
of the PC register. Bit 0 of the PC register is cleared to 0.

JUSR continues program execution in user mode. This is indicated by
setting the PSR.U bit in addition to the JUMP.

Flag None for JUMP, but PSR.U is set for JUSR instruction.

Trap None

Example loads the address held in R4, R3 into bits 23 through 1 of the PC regis-
ter. Program execution continues at that address.

r3 100416

jump (r4,r3)

r3 100416

r4 000c16 000c16

PC 0A909816 PC
18200816

(C100416 × 2)

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET 5-27

LOADi Load Integer

LOADi (Load Integer) LOADB, LOADW, LOADD

LOADi src, dest
abs/rel.r/rel.rp/idx reg
read.i write.i

LOADD src, dest
abs/rel.r/rel.rp/idx reg.rp
read.D write.D

The LOADi/LOADD instruction loads the src operand from memory, and
places it in the dest operand. Table 5-7 describes the addressing meth-
odology for the instruction.

Table 5-7. LOAD/STOR Memory Addressing Methodology

Addressing Modes Data
Length

Mode
Displacement

Range

Instr.
Length
(Byte)

Addr.
Range Address Calculation

disp4(RPbase) b rel.rp 0 to 13 2 16M RPbase + zext24(disp4)

disp4(RPbase) w/d rel.rp
even numbers
from 0 to 26

2 16M RPbase + zext24(disp4)

disp16(RPbase) b/w/d rel.rp 0 to 64K - 1 4 16M
RPbase +
zext24(disp16)

disp20(RPbase) b/w/d rel.rp 0 to 1M - 1 6 16M
RPbase +
zext24(disp20)

-disp20(RPbase)a b/w/d rel.rp -(1M - 1) to -1 6 16M
zext24(Rbase) +
sext24(-disp20)

[Rindex]disp0(RPbasexb)c b/w/d idx 0 2 16M Rpbasex + Rindex

[Rindex]disp14(RPbasexb)c b/w/d idx 0 to 16k−1 4 16M
RPbasex + Rindex +
zext24(disp14)

[Rindex]disp20(RPbasexb)c b/w/d idx 0 to 1M−1 6 16M
RPbasex + Rindex +
zext24(disp20)

disp0(Rbase)d b/w/d rel.r 0 2 64K zext24(Rbase)

disp14(Rbase)d b/w/d rel.r 0 to 16k−1 4
64K

+16K
zext24(Rbase) +
zext24(disp14)

disp20(Rbase) b/w/d rel.r 0 to 1M−1 6
1M

+64K
zext24(Rbase) +
zext24(disp20)

-disp20(Rbase)a b/w/d rel.r -(1M - 1) to -1 6 1M
zext24(Rbase) +
sext24(-disp20)

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET 5-28

Flag None

Trap None

Examples 1. Loads a byte operand in address 9 (R5) to the low-order byte of regis-
ter R7. The remaining byte of register R7 is unaffected.

2. Loads a word operand in address 632 to register R9.

[Rindex]abs20c b/w/d idx 0 to 1M − 1 4 16M Rindex + zext24(abs20)

abs20 b/w/d abs 0 to 1M −1e 4 1M zext24(abs20) | remapf

abs24 b/w/d abs 0 to 16M - 1 6 16M abs24

a. This displacement format may not be supported in future versions of the CPU. It is included for assembly level,
backward compatibility with CR16B.

b. RPbasex - Base register pair for relative addressing only: (R1,R0), (R3,R2), (R5,R4), (R7,R6), (R9,R8),
(R11,R10), (R4,R3), (R6,R5)

c. Supported when CFG.SR= 0
d. Supported when CFG.SR= 1
e. “The 1M addressable range is split into (0x0 to 1M-64k) and (16M-64k to 16M)”.
f. “If (abs20 > 0xEFFFF) the resulting address is logically ORed with 0xF00000 i.e. addresses from 1M-64k to 1M

are re-mapped by the core to 16M-64k to 16M.”

Addressing Modes Data
Length

Mode
Displacement

Range

Instr.
Length
(Byte)

Addr.
Range Address Calculation

r5 200016

loadb 9(r5), r7

r5 200016

200916
(memory)

1716
200916

(memory)
1716

r7 xxxx16 r7 xx1716

63216
(memory)

009816 loadw 0x632, r9
63216

(memory)
009816

r9 xxxx16 r9 009816

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET 5-29

3. Loads a word operand in address 1A000216 to register R7. The ad-
dress is formed by adding 1000016 to the value in R4, concatenated
with the value in R5.

4. Loads a word operand in address 3000216 to register R7. The address
is formed by adding 3000016 to the value in R4.

r4 000216

loadw
0x10000(r5,r4),r7

r4 000216

r5 001916 r5 001916

1A000216

(memory)
AA5516

1A000216
(memory)

AA5516

r7 xxxx16 r7 AA5516

r4 000216

loadw
0x30000(r4),r7

r4 000216

3000216

(memory)
AA5516

3000216
(memory)

AA5516

r7 xxxx16 r7 AA5516

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET 5-30

LOADM Load Multiple Registers from Memory

LOADM, LOADMP

LOADM count

imm3
read

LOADMP count

imm3
read

The LOADM and LOADMP instructions load adjacent registers from memory.
count reflects the total number of words to be loaded in the range 1 to 8.
LOADM operates over the first 64K of memory and LOADMP operates over
the entire memory range. The instruction always operates on a fixed set of
registers as described below.

For LOADM:

• R0 contains the address of the first word in memory to be loaded;
• R2 is loaded with the lowest address word;
• R3 through R5 and then R8 through R11 are loaded from the next count-

1 consecutive addresses.

R0 is adjusted (incremented) by 2 for each word loaded, and therefore
points to lower 16-bits of the next unread word in memory at the
transfer-end. The address does not wrap around i.e., if R0 points to the
end of the 64k addressable range LOADM overflows to addresses
0x010000 and following.

For LOADMP:

• (R1, R0) contains the address of the first word in memory to be load-
ed;

• R2 is loaded with the lowest address word;
• R3 through R5 and then R8 through R11 are loaded from the next count-

1 consecutive addresses.

(R1, R0) is adjusted (incremented) by 2 for each word loaded, and there-
fore points to the next unread word in memory at the transfer-end.

This instruction is not interruptible.

Flag None

Trap None

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET 5-31

LPR Load Processor Register

LPR (Load Processor Register) LPR, LPRD

LPR src, dest
reg.r procreg
read.W write.W

LPRD src, dest
reg.rp procreg
read.D write.D

The LPR/LPRD instruction copies the src operand to the processor reg-
ister specified by dest.

For the LPR instruction, if dest is ISPL or INTBASEL the least significant
bit (bit 0) of the address is 0. If dest is INTBASEH, ISPH, USPH, CAR0H,
or CAR1H bits 8 through 15 are always written as 0.

For the LPRD instruction, if dest is ISP or INTBASE the least significant
bit (bit 0) of the address is 0. If dest is INTBASE, ISP, USP, CAR0, or
CAR1 bits 24 through 31 are always written as 0.

On a LPRD of a 16-bit register, the upper 16 bits of the src are
ignored.The processor registers in Table 5-8 may be loaded:

Table 5-8. Loadable Processor Registers

Register LPR LPRD

Processor Status Register PSR PSR

Configuration Register CFG CFG

Interrupt Base Register INTBASE

Interrupt Base Low Register INTBASEL

Interrupt Base High Register INTBASEH

Interrupt Stack Pointer Register ISP

Interrupt Stack Pointer Low Register ISPL

Interrupt Stack Pointer High Register ISPH

User Stack Pointer Register USP

User Stack Pointer Low Register USPL

User Stack Pointer High Register USPH

Debug Status Register DSR DSR

Debug Condition Register DCR

Debug Condition Low Register DCRL

Debug Condition High Register DCRH

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET 5-32

Refer to “REGISTER SET” on page 3-1 and to “INSTRUCTION SET” on
page 6-1 for more information on these registers.

Flag PSR flags are affected by loaded values except for the U bit.

Trap When PSR.U is set, this instruction causes an UND trap.

Example Loads register PSR from register R1.

Compare Address 0 Register CAR0

Compare Address 0 Register Low CAR0L

Compare Address 0 Register High CAR0H

Compare Address 1 Register CAR1

Compare Address 1 Register Low CAR1L

Compare Address 1 Register High CAR1H

Register LPR LPRD

r1 000016 lpr r1, psr r1 000016

PSR enzfltc PSR 00000002

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET 5-33

LSHi Logical Shift Integer

LSHi (Logical Shift Integer) LSHB, LSHW, LSHD

LSHi count, dest
reg.r/imm4/5 reg.r
read.B write.i

LSHD count, dest
reg.r/imm6 reg.rp
read.B write.D

The LSHi/LSHD instruction performs a logical shift on the dest operand
as specified by the count operand.

The count operand is interpreted as a signed integer; the dest operand
is interpreted as an unsigned integer. The sign of count determines the
direction of the shift. A positive count specifies a left shift; a negative
count specifies a right shift. The absolute value of count gives the num-
ber of bit positions to shift the dest operand. The count operand value
must be in the range −7 to +7 if LSHB is used, −15 to +15 if LSHW is used
and −31 to +31 if LSHD is used; otherwise, the result is unpredictable. All
bits shifted out of dest are lost, and bit positions emptied by the shift
are filled with zeros.

For LSHD, if the dest operand consists of two actual registers
(dest+1,dest), in addition to what is described regarding all LSHi
instructions, a shift to the left causes high-order bits to be shifted out of
dest register to dest+1 register, and a shift to the right causes low-order
bits of dest+1 register to be shifted out to dest register.

Note: The LSHi or LSHD instruction with a positive count is not natively
supported by the core. It is mapped by the assembler to the corre-
sponding ASHUi or ASHUD instruction, respectively.

Flag None

Trap None

Examples 1. Shifts the low-order byte of register R1 four bit positions to the left.
The remaining byte of register R1 is unaffected.

r1 xx16 111111102
lshb $4, r1

r1 xx16 111000002

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET 5-34

2. Reads a byte from register R5. Based on this value, it shifts the low-
order byte of register R7. The remaining byte of register R7 is unaf-
fected.

r5 xx16 111111112 lshb r5, r7 r5 xx16 111111112

r7 xx16 111111102 r7 xx16 011111112

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET 5-35

MACSW Signed Multiply Word and Add Long Result

MACSW

MACSW src1, src2 dest
reg.r, reg.r reg.rp
read.W rmw.D

The MACSW instruction multiplies the src1 operand by the src2 operand
and adds the result to the dest operand. The two src operands are inter-
preted as signed 16-bit integers. The result is viewed as a signed 32-bit
integer.

During the addition, the result may overflow or underflow. In this case,
the result is set (saturated) to the largest positive (+231-1) or largest neg-
ative (-231) number.

Flag None

Trap None

Example Multiplies register R4 by register R5, and adds the result to the register
pair (R1,R0).

r4
DFFB16

(-200516)
(-819710)

macsw r4,r5,(r1,r0)
r4

DFFB16
(-200510)
(-819710)

r5
400A16

(+1639210)
r5

400A16
(+1639210)

r0 001016 r0 7FDE16

r1
100016

(+26843547210)
r1

07FD16
(+13405385410)

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET 5-36

MACUW Unsigned Multiply Word and Accumulate Long Result

MACUW

MACUW src1, src2 dest
reg.r, reg.r reg.rp
read.W rmw.D

The MACUW instruction multiplies the src1 operand by the src2 operand
and adds the result to the dest operand. The two src operands are inter-
preted as unsigned 16-bit integers. The result is viewed as unsigned 32-
bit integer.

During the addition the result may overflow. In this case, the result is
set (saturated) to the largest positive (+232-1) number.

Flag None

Trap None

Example Multiplies register R4 by register R5, and adds the result to the register
pair (R1,R0).

r4
200516
(819710)

macsw r4,r5,(r1,r0)
r4

200510
(819710)

r5
400A16

(+1639210)
r5

400A16
(+1639210)

r0 001016 r0 804216

r1
100016

(26843547210)
r1

180216
(40281709010)

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET 5-37

MACQW Multiply Signed Q15 Word and Accumulate Long Result

MACQW

MACQW src1, src2 dest
reg.r, reg.r reg.rp
read.W rmw.D

The MACQW instruction multiplies the src1 operand by the src2 operand
and adds the result to the dest operand. The two src operands are inter-
preted as 16-bit signed fractional numbers (Q15 format). The result is
viewed as a 32-bit fractional number.

During the multiplication or addition, the result may overflow or under-
flow. In either case, the result is set (saturated) to the largest positive (1)
or largest negative (-1) number.

Flag None

Trap None

Example Multiplies register R4 by register R5, and adds the result to the register
pair (R1,R0).

r4
C00016

(-400016)
(-0.510)

macqw r4,r5,(r1,r0)
r4

C00016
(-400010)
(-0.510)

r5
200016

(+0.2510)
r5

200016
(+0.2510)

r0 800016 r0 800016

r1
400016

(+0.500015258810)
r1

300016
(+0.375015258810)

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET 5-38

MOVi Move Integer

MOVB, MOVW, MOVD

MOVi src, dest
reg.r/imm4/16reg.r
read.i write.i

MOVD src, dest
reg.rp/imm4/16/20/32reg.rp
read.D write.D

The MOVi instruction copies the src operand to the dest operand.

Flag None

Trap None

Examples 1. Copies the contents of register R0 to register R6.

2. Sets R8 to the value 1716.

3. Sets register pair (R9, R8) to the value $0x1700A716.

r0 123416 movw r0, r6 r0 123416

r6 xxxx16 r6 123416

r8 xxxx16
movw $0x17, r8

r8 001716

r8 xxxx16 movd $0x1700A7,
(r9,r8)

r8 00A716

r9 xxxx16 r9 001716

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET 5-39

MOVXi Move with Sign Extension

MOVXi (Move with Sign-Extension) MOVXB, MOVXW

MOVXB src, dest
reg.r reg.r
read.B write.W

MOVXW src, dest
reg.r reg.rp
read.W write.D

The MOVXB instruction converts the signed integer src operand to the
word dest operand. The MOVXW instruction converts the signed integer
src operand to the double-word dest operand. The sign is preserved
through sign extension.

Flag None

Trap None

Examples These examples copy the low-order byte of register R8 to the low-order
byte of register R0, and extend the sign bit of the byte through the high-
order bits of register R0.

1. Illustrates negative sign extension.

2. Illustrates positive sign extension.

r8
xxF016

(low byte: −1610) movxb r8, r0
r8

xxF016
(low byte: −1610)

r0 xxxx16 r0
FFF016
(−1610)

r8
7016

(low byte:
+11210) movxb r8, r0

r8
7016

(low byte: +11210)

r0 xxxx16 r0
007016

(+11210)

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET 5-40

MOVZi Move with Zero Extension

MOVZi (Move with Zero Extension) MOVZB, MOVZW

MOVZB src, dest
reg.r reg.r
read.B write.W

MOVZW src, dest
reg.r reg.rp
read.W write.DThe MOVZB instruction converts the

unsigned integer src operand to the unsigned word dest operand. The
MOVZW instruction converts the unsigned integer src operand to the
unsigned double-word dest operand. The high-order bits are filled with
zeros.

Flag None

Trap None

Example Copies the low-order byte of register R8 to the low-order byte of register
R0, and sets the high-order bits of register R0 to zero.

r8
xxFF16

(low byte: +25510) movzb r8, r0
r8

xxFF16
(low byte: +25510)

r0 xxxx16 r0
00FF16

(+25510)

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET 5-41

MULi Multiply Integer

MULi (Multiply Integer) MULB, MULW

MULi src, dest
reg.r/imm4/16reg.r
read.i rmw.i

The MULi instruction multiplies the src operand by the dest operand
and places the result in the dest operand. Both operands are inter-
preted as signed integers. If the resulting product cannot be represented
completely in the dest operand, the high-order bits are truncated.

Flag None

Trap None

Example Multiplies register R5 by R0, and places the result in register R0.

r5
000516
(+510) mulw r5, r0

r5
000516
(+510)

r0
000A16
(+1010)

r0
003216
(+5010)

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET 5-42

MULSB Signed Multiply Byte, Word Result

MULSB

MULSB src, dest
reg.r reg.r
read.B rmw.W

The MULSB instruction multiplies the 8-bit src operand by the 8-bit dest
operand, and places the 16-bit result in the dest register.

Both source and destination operands are viewed as signed 8-bit inte-
gers, and the result is a signed 16-bit integer.

Flag None

Trap None

Example Multiplies signed register R8 by R0, and places the result in register R0.

r8
BB16

(-4510) mulsb r8, r0
r8

BB16
(-4510)

r0
3A16

(-5810)
r0

F05E16
(-261010)

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET 5-43

MULSW Signed Multiply Word, Long Result

MULSW

MULSW src, dest
reg reg.rp
read.W rmw.D

The MULSW instruction multiplies the 16-bit src operand by the 16-bit
dest operand, and places the 32-bit result in the dest operand.

Both source and destination operands are viewed as signed 16-bit inte-
gers, and the result is a signed 32-bit integer.

Flag None

Trap None

Example Multiplies signed register R8 by R0, and places the result in registers
(R1, R0).

r8
DFFB16

(-200516) mulsw r8,
(r1,r0)

r8
DFFB16

(-200516)

r0
400A16 r0

7FCE16

r1
xxxx16 r1

F7FD16
(-802803216)

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET 5-44

MULUW Unsigned Multiply Word, Long Result

MULUW

MULUW src, dest
reg reg.rp
read.W rmw.D

The MULUW instruction multiplies the 16-bit src operand by the 16-bit
dest operand, and places the 32-bit result in the dest operand.

Both source and destination operands are viewed as unsigned 16-bit
integers, and the result is an unsigned 32-bit integer.

Flag None

Trap None

Example Multiplies unsigned register R8 by R2, and places the result in registers
(R3, R2).

r8
200516

(+819710) muluw r8,
(r3,r2)

r8
200516

(+819710)

r2
400A16

(+1639410)
r2

803216

r3
xxxx16
(+x10)

r3
080216

(+13438161910)

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET 5-45

NOP No Operation

NOP (No Operation) NOP

NOP

The NOP instruction passes control to the next sequential instruction. No
operation is performed.

Note: The NOP instruction is not natively supported by the core. It is
mapped by the assembler to ADDUB $0x0, r0 (single word instruc-
tion).

Flag None

Trap None

Example nop

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET 5-46

ORi Bitwise Logical OR

ORi (Bitwise Logical OR) ORB, ORW, ORD

ORi src, dest
reg.r/imm4/16reg.r
read.i rmw.i

ORD src, dest
reg.rp/imm32 reg.rp
read.D rmw.D

The ORi/ORD instruction performs a bitwise logical OR operation on the
src and dest operands, and places the result in the dest operand.

Flag None

Trap None

Example ORs the low-order bytes of registers R5 and R7, and places the result in
the low-order byte of register R7. The remaining byte of register R7 is
unaffected.

r5 xx16 110110002 orb r5, r7 r5 xx16 110110002

r7 xx16 000010112 r7 xx16 110110112

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET 5-47

POPrt Pop Multiple Registers from Stack

POP, POPrt

POPrt count, src RA
imm3 reg.r
read write.W write.L

POPrt count, src
imm3, reg.r
read, write.W

POPrt RA

write.LThe POPrt instruction can restore up to eight
adjacent registers plus the RA from the program stack. The registers are
defined by src register, with up to seven more adjacent registers (e.g.,
src, src+1, src+2, src+3, src+4, src+5, src+6, src+7) and the RA.
count reflects the total number of words to restore, excluding the RA.
The count operand is in the range 1 to 8.

src is loaded with the value residing at the lowest address (top of stack)
and the RA register, if loaded, at the highest address. The stack pointer
(SP) is adjusted (incremented) accordingly. Note that a double-word reg-
ister is considered 2 words long. This instruction is not interruptible.

After the POP operation has ended, the processor can return control to
a calling routine, according to the rt switch in the instruction.

Depending on the format, the following registers are saved:

• In the three operand format, the instruction restores up to eight ad-
jacent registers and the RA register.

• In the two operand format, the instruction restores up to eight adja-
cent registers.

• In the one operand format, the instruction restores only the RA reg-
ister from the stack.

Note: The parameters to POPrt should not indicate a restore of registers
R15 (SP) and beyond. This constrains the permitted count values
as shown below:

 RA is part of the instruction it refers to (ra) if CFG.SR = 0 and to (ra, era) otherwise

rt Switch Operation Implied Instruction

none no-return --

RET Return JUMP RA

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET 5-48

When CFG.SR = 1, parameters meeting the following condition are
invalid:
if cnt + starting register number > 15

When CFG.SR = 0, parameters meeting the following conditions are
invalid:

The POPrt instruction does not change the contents of memory locations
indicated by an asterisk (*). However, information that is outside the
stack should be considered unpredictable for other reasons.

Flag None

Trap None

Examples 1. Pops three registers, starting with R3, from the stack:

Starting
register Illegal cnt

0 -10 none

11 >7

12 >6

13 >4

14 >2

15 all

PC 00F03416

pop $3,R3

PC 00F03616

SP 0000100016 SP 0000100616

r3 XXXX16 r3 2F5016

r4 XXXX16 r4 107E16

r5 XXXX16 r5 35EC16

001000
(stack)

2F5016
001000
(stack)

xxxx16 ∗

001002
(stack)

107E16
001002
(stack)

xxxx16 ∗

001004
(stack)

35EC16
001004
(stack)

xxxx16 ∗

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET 5-49

2. Pops eight words from the stack starting with R8, pops RA, and exe-
cutes a JUMP RA:

PC 00F03416

popret
$8,R8,RA

PC
866BD816
(ra x 2}

SP 000309f816 SP 0003100A16

r8 XXXX16 r8 000016

r9 XXXX16 r9 000116

r10 XXXX16 r10 000216

r11 XXXX16 r11 000316

r12 XXXXXXXX16 r12 107E2F5016

r13 XXXXXXXX16 r13 000335EC16

ra XXXXXXXX16 ra 004335EC16

0309f8
(stack)

000016
309f8

(stack)
xxxx16 ∗

0309FA
(stack)

000116
309FA

(stack)
xxxx16 ∗

0309FC
(stack)

000216
309FC

(stack)
xxxx16 ∗

0309FE
(stack)

000316
309FE

(stack)
xxxx16 ∗

031000
(stack)

2F5016
031000
(stack)

xxxx16 ∗

031002
(stack)

107E16
031002
(stack)

xxxx16 ∗

031004
(stack)

35EC16
031004
(stack)

xxxx16 ∗

031006
(stack)

000316
031006
(stack)

xxxx16 ∗

031008
(stack)

35EC16
031008
(stack)

xxxx16 ∗

03100A
(stack)

004316
03100A
(stack)

xxxx16 ∗

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET 5-50

PUSH Push Registers on Stack

PUSH

PUSH count, src, RA
imm3 reg.r
read read.W read.L

PUSH count, src
imm3 reg.r
read read.W

PUSH RA

read.LThe PUSH instruction saves up to eight adjacent
registers plus the RA on the program stack. The registers are defined by
src register, with up to seven more adjacent registers (e.g., src, src+1,
src+2, src+3, src+4, src+5, src+6, src+7) and the RA. count reflects
the total number of words to save, excluding the RA. The count operand
is in the range 1 to 8.

src is loaded with the value residing at the lowest address (top of stack)
and the RA register, if saved, at the highest address. The stack pointer
(SP) is adjusted (decremented) accordingly. Note that a double-word reg-
ister is considered two words long. This instruction is not interruptible.

Register pairs stored within a single PUSH instruction comply with little-
endian methodology.

Depending on the format, the following registers are saved:

• In the three operand format, the instruction saves up to eight adja-
cent registers and the RA register.

• In the two operand format, the instruction saves up to eight adjacent
registers.

• In the one operand format, the instruction saves only the RA register
from the stack.

Flag None

Trap None

RA is part of the instruction it refers to: (ra) if CFG.SR = 0, and (ra, era), otherwise.

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET 5-51

Example Pushes three registers, starting with R5, on the stack:

SP 0000100616

push $3,r5

SP 0000100016

r5 2F5016 r5 2F5016

r6 107E16 r6 107E16

r7 35ED16 r7 35ED16

001000
(stack)

XXXX16
001000
(stack)

2F5016

001002
(stack)

XXXX16
001002
(stack)

107E16

001004
(stack)

XXXX16
001004
(stack)

35ED16

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET 5-52

RETX Return from Exception

RETX (Return from Exception) RETX

RETX

The RETX instruction returns control from a trap service procedure. The
following steps are performed:

1. The instruction pops a 32-bit value from the interrupt stack, copying
bits 22 - 0 to bits 23 - 1 of the PC.

2. The instruction then pops a 16-bit value from the interrupt stack into
the PSR register.

The RETX instruction does not change the contents of memory locations
indicated by an asterisk (*). However, information that is outside the
stack should be considered unpredictable for other reasons.

Flag All PSR flag states are restored from the stack.

Trap None

Example Returns control from an interrupt service procedure.

PC 0008F03416

retx

PC
0013200816

(9900416 × 2)

ISP 0000100016 ISP 0000100616

PSR xxxx16 PSR 084516

001000
(stack)

900416
001000
(stack)

xxxx16 ∗

001002
(stack)

000916
001002

(stack)
xxxx16 ∗

001004
(stack)

84516
001004
(stack)

xxxx16 ∗

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET 5-53

SBITi Set Bit in Integer

SBITB, SBITW

SBITB position, dest
imm3 abs/rel.r/rel.rp/idx
read.i read+write.i

SBITW position, dest
imm4 abs/rel.r/rel.rp/idx
read.i read+write.i

The SBITi instruction loads the dest operand from memory, sets the bit
position specified by position, and stores it back into memory location
dest, in an uninterruptable manner. The position operand value must
be in the range 0 to +7 if SBITB is used, and 0 to +15 if SBITW is used;
otherwise, the result is unpredictable.

As there is no native support for setting a bit in a double length core reg-
ister, the ORD instruction should be used with SR=0.

See Table 5-4.

Flag Before the specified bit is modified, its value is stored in PSR.F.

Trap None

Examples 1. Sets bit in position 5 in a byte operand at address 9 (R1).

2. Sets bit in position 8 in a word operand in address 0 (R8).

r1 200016
sbitb $5,9(r1)

r1 200016

200916
(memory)

8F16
200916

(memory)
AF16

PSR enzfltc PSR enz0ltc

r8 200416
sbitw $8,0(r8)

r8 200416

200416
(memory)

F4E716
200416

(memory)
F5E716

PSR enzfltc PSR enz0ltc

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET 5-54

3. Sets bit in position 3 in a byte operand in address 3000216

3000216
(memory)

xx9116
sbitb $3,0x30002 3000216

(memory)
xx9916

PSR enzfltc PSR enz0ltc

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET 5-55

Scond Save Condition as Boolean

Scond (Save Condition as Boolean)SEQ, SNE, SCS, SCC, SHI, SLS, SGT,
SLE, SFS, SFC, SLO, SHS, SLT, SGE

Scond dest
reg.r
write.W

The Scond instruction sets the dest operand to the integer value 1 if the
condition specified in cond is true, and clears it to 0 if the condition is
false.

cond is a two-character condition code that specifies the state of a flag
or flags in the PSR register. If the flag(s) is/are set as required by the
specified cond, the condition is true; otherwise, the condition is false.
Table 5-9 describes the possible cond codes and the related PSR flag set-
tings:

Table 5-9. cond Codes and Related PSR Flags

Flag None

Trap None

cond Code Condition True State

EQ Equal Z flag is 1

NE Not Equal Z flag is 0

CS Carry Set C flag is 1

CC Carry Clear C flag is 0

HI Higher L flag is 1

LS Lower or Same L flag is 0

GT Greater Than N flag is 1

LE Less Than or Equal To N flag is 0

FS Flag Set F flag is 1

FC Flag Clear F flag is 0

LO Lower Z and L flags are 0

HS Higher or Same Z or L flag is 1

LT Less Than Z and N flags are 0

GE Greater Than or Equal To Z or N flag is 1

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET 5-56

Examples 1. Sets register R0 to 1 if the PSR.Z flag is 1, and to 0 if it is 0.

2. Sets register R2 to 1 if the PSR.Z and PSR.L flags are 0, and to 0 if
they are not both 0.

r0 xxxx16 seq r0 r0
000116
(True)

PSR en1fltc PSR en1fltc

r2 xxxx16 slo r2 r2
000016
(False)

PSR en1f1tc PSR en1f1tc

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET 5-57

SPR Store Processor Register

SPR (Store Processor Register) SPR, SPRD

SPR src, dest
procreg reg.r
read.W write.W

SPRD src, dest
procregdreg.rp
read.D write.D

The SPR/SPRD instruction copies the processor register specified by the
src operand to the dest operand.

On a SPRD of a 16 bit register, the upper 16 bits of the dest are loaded
with 0.

The processor registers in Table 5-10 may be stored:

Table 5-10. Storable Processor Registers

Register SPR SPRD

Processor Status Register PSR PSR

Configuration Register CFG CFG

Interrupt Base Register INTBASE

Interrupt Base Low Register INTBASEL

Interrupt Base High Register INTBASEH

Interrupt Stack Pointer Register ISP

Interrupt Stack Pointer Low Register ISPL

Interrupt Stack Pointer High Register ISPH

User Stack Pointer Register USP

User Stack Pointer Low Register USPL

User Stack Pointer High Register USPH

Debug Status Register DSR DSR

Debug Condition Register DCR

Debug Condition Low Register DCRL

Debug Condition High Register DCRH

Compare Address 0 Register CAR0

Compare Address 0 Register Low CAR0L

Compare Address 0 Register High CAR0H

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET 5-58

Refer to “REGISTER SET” on page 3-1 and to “INSTRUCTION SET” on
page 6-1 for more information on these registers.

Flag None

Trap None

Examples 1. Copies the INTBASEL register to register R0.

2. Copies the INTBASEH register to register R1.

Compare Address 1 Register CAR1

Compare Address 1 Register Low CAR1L

Compare Address 1 Register High CAR1H

Register SPR SPRD

intbase 0000010016
spr intbase, r0

intbase 0000010016

intbasel 010016 intbasel 010016

r0 xxxx16 r0 010016

intbase 0002010016
spr intbaseh, r1

intbase 02010016

intbaseh 000216 intbaseh 000216

r1 xxxx16 r1 000216

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET 5-59

STORi Store Integer

STORi (Store Integer) STORB, STORW, STORD

STORi src, dest
reg.r abs/rel.r/rel.rp/idx
read.i write.i

STORD src, dest
reg.rp abs/rel.r/rel.rp/idx
read.D write.D

STORi src, dest
imm4 abs/rel.r/rel.rp/idx
read.i write.i

The STORi instruction stores the src operand in the dest memory oper-
and.

Table 5-7 describes the addressing options for the first and second for-
mats of the instruction.

The third format of the instructions allows storing an unsigned 4-bit
immediate operand (in the range of 0 to 15) into the dest memory oper-
and. The addressing options for this format are described in Table 5-4.

Flag None

Trap None

Examples 1. Copies the contents of register R0 to the word at address 912016.

2. Stores the low-order byte of R7 at address 3000216. The address is
formed by adding 3000016 to the value in R4.

r0 567816 storw r0, 0x9120 r0 567816

912016 xxxx16 912016 567816

r7 xx5516

storb
r7,0x30000(r4)

r7 xx5516

r4 000216 r4 000216

3000216

(memory)
xx16

3000216
(memory)

5516

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET 5-60

3. Stores the low-order byte of R7 at address 1A000216. The address is
formed by adding 1000016 to the value in R4, concatenated with the
value in R5.

4. Copies the contents of register R3 to the non-aligned word at address
9 (R5).

5. Stores the immediate value of 0x5 to the word at address 912016.

6. Stores the immediate value of 0x7 to the word at address 4 (R1).

r7 xx5516

storb
r7,0x10000(r5,r4)

r7 xx5516

r4 000216 r4 000216

r5 xx1916 r5 xx1916

1A000216

(memory)
xx16

1A000216
(memory)

5516

r3 AA5516

storw r3,9(r5)

r3 AA5516

r5 200016 r5 200016

200816

(memory)
xxxx16

200816

(memory)
55xx16

200A16

(memory)
xxxx16

200A16

(memory)
xxAA16

912016 xxxx16 storw $5, 0x9120 912016 000516

r1 200016
storw $7,4(r1)

r1 200016

200416

(memory)
xxxx16

200416

(memory)
000716

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET 5-61

7. Stores the immediate value of 0x7 to the non-aligned word at address
3 (R1).

8. Copies the contents of register R12 to the double-word at address
912016

r1 200016

storw $7,3(r1)

r1 200016

200216

(memory)
xxxx16

200216

(memory)
07xx16

200416

(memory)
xxxx16

200416

(memory)
xx0016

r12 1234567816

stord (r12), 0x9120

r12 1234567816

912016

(memory)

xxxx16 912016 567816

912216 xxxx16 912216 123416

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET 5-62

STORM Store Multiple Registers to Memory

STORM, STORMP

STORM count
imm3
read,

STORMP count
imm3
read,

The STORM and STORMP instructions store adjacent registers to memory.
count reflects the total number of words to be stored where count is in the
range from 1 to 8. The instructions always operate on a fixed set of regis-
ters.

For STORM:

• R1 contains the target address of the first word in memory;
• R2 is stored into the lowest address word;
• R3 through R5 and then R8 through R11 are stored into the next

count-1 consecutive addresses.

R1 is adjusted (incremented) by 2 for each word stored, and therefore
points to the next unwritten word in memory at the transfer-end. The
address does not wrap around i.e. if R1 points to the end of the 64k
addressable range STORM will overflow to addresses 0x010000 and fol-
lowing.

For STORMP:

• (R7,R6) contains the target address of the first word in memory;
• R2 is stored into the lowest address word;
• R3 through R5 and then R8 through R11 are stored into the next

count-1 consecutive addresses.

(R7,R6) is adjusted (incremented) by 2 for each word stored, and there-
fore points to the next unwritten word in memory at the transfer-end.

This instruction is not interruptible.

Flag None

Trap None

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET 5-63

Example Stores three registers into memory.

r1 100016

storm $3

r1 100616

r2 2F5016 r2 2F5016

r3 107E16 r3 107E16

r4 35EC16 r4 35EC16

001000
(memory)

XXXX16
001000

(memory)
2F5016

001002
(memory)

XXXX16
001002

(memory)
107E16

001004
(memory)

XXXX16
001004

(memory)
35EC16

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET 5-64

SUBi Subtract Integer

SUBi (Subtract Integer) SUBB, SUBW, SUBD

SUBi src, dest
reg.r/imm4/16reg.r
read.i rmw.i

SUBD src, dest
reg.rp/imm32 reg.rp
read.D rmw.D

The SUBi and SUBD instructions subtract the src operand from the dest
operand, and place the result in the dest operand.

Flag During execution of an SUBi or SUBD instruction, PSR.C is set to 1 if a
borrow occurs, and cleared to 0 if no borrow occurs. PSR.F is set to 1 if
an overflow occurs, and cleared to 0 if there is no overflow.

Trap None

Examples 1. Subtracts the low-order byte of register R0 from the low-order byte of
register R1, and places the result in the low-order byte of register R1.
The remaining byte of register R1 is not affected.

2. Subtracts the word in register R7 from the word in register R8, and
places the result in register R8.

r0
xx0116
(+110)

subb r0, r1

r0
xx0116
(+110)

r1
xx7F16
(+12710)

r1
xx7E16

(+12610)

PSR enzfltc PSR enz0lt0

r7
FFFE16
(−210)

subw r7, r8

r7
FFFE16
(−210)

r8
100016

(+409610)
r8

100216
(+409810)

PSR enzfltc PSR enz0lt0

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET 5-65

SUBCi Subtract Integer with Carry

SUBCi (Subtract Integer with Carry) SUBCB, SUBCW

SUBCi src, dest
reg.r/imm4/16reg.r
read.i rmw.i

The SUBCi instruction subtracts the sum of the src operand and the
PSR.C flag from the dest operand, and places the result in the dest
operand.

Flag PSR.C is set to 1 if a borrow occurs and cleared to 0 if there is no bor-
row. 0 PSR.F is set to 1 if an overflow occurs and cleared to 0 if there is
no overflow.

Trap None

Example Subtracts the sum of 32 and the PSR.C flag value from the low-order
byte of register R1, and places the result in the low-order byte of register
R1. The remaining byte of register R1 is not affected.

r1
xx5016
(+8010) subcb $32, r1 r1

xx2F16
(+4710)

PSR enzflt1 PSR enz0lt0

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET 5-66

TBIT Test Bit

TBIT, TBITB, TBITW

TBIT offset, src
reg.r/imm4 reg.r
read.W read.W

TBITi offset, src
imm4 abs/rel.r/rel.rp/idx
read.i read.i

The TBIT instruction copies the bit located in register or memory loca-
tion src at the bit position specified by offset, to the PSR.F flag. The
direct memory format of the instruction supports byte and word opera-
tions (TBITB, TBITW), while the register-sourced format supports only
word operations. The offset value must be in the range of 0 through 15
for a word operand, and in the range of 0 through 7 for a byte operand.

As there is no native support for testing a bit in a double-length core
register with SR=0, an ANDD/CMPD instruction sequence should be
used.

See Table 5-4.

Flag PSR.F is set to the value of the specified bit.

Trap None

Examples 1. Copies bit in position 3, in register R1 to the PSR.F flag.

2. Copies bit in position 3, in memory location 8 (R1) to the PSR.F flag.

3. Copies bit in position 5, in memory location 0 (R8) to the PSR.F flag.

r1 0016 000010002 tbit $3, r1 r1 0016 000010002

PSR enzfltc PSR enz1ltc

r1 200016 r1 200016

200816
(memory)

000010002 tbitb $3,
8(r1)

200816
(memory)

000010002

PSR enzfltc PSR enz1ltc

r8 200816 r8 200816

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET 5-67

4. Copies bit in position 5, in memory location 3000216 to the PSR.F
flag.

200816
(memory)

0016 001000002 tbitw $5,
0(r8)

200816
(memory)

0016 001000002

PSR enzfltc PSR enz1ltc

3000216
(memory)

0016 001000002 tbitw $5,
0x30002

3000216
(memory)

0016 001000002

PSR enzfltc PSR enz1ltc

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET 5-68

WAIT Wait for Interrupt

WAIT (Wait for Interrupt) WAIT

WAIT

The WAIT instruction suspends program execution until an interrupt
occurs. An interrupt restores program execution by passing it to an
interrupt service procedure. When the WAIT instruction is interrupted,
the return address saved on the stack is the address of the instruction
following the WAIT instruction.

Flag None

Trap None

Example wait

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET 5-69

XORi Bitwise Logical Exclusive OR

XORi (Bitwise Logical Exclusive OR) XORB, XORW, XORD

XORi src, dest
reg.r/imm4/16reg.r
read.i rmw.i

XORD src, dest
reg.rp/imm32 reg.rp
read.D rmw.D

The XORi instruction performs a bitwise logical exclusive OR operation
on the src and dest operands, and places the result in the dest oper-
and.

Flag None

Trap None

Example XORs the low-order bytes of registers R1 and R2, and places the result
in the low-order byte of register R2. The remaining byte of R2 is unaf-
fected.

r1 xx16 111100002 xorb r1, r2 r1 xx16 111100002

r2 xx16 100101012 r2 xx16 011001012

This page is intentionally blank.

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION EXECUTION TIMING A-1

Appendix A

INSTRUCTION EXECUTION TIMING

This appendix describes the factors which affect instruction execution
timing in the CR16C. A CR16C-based microprocessor may include a
write buffer and a Bus Interface Unit (BIU). This appendix does not
describe instruction execution timing that depends on the architecture of
such modules.

A.1 TIMING PRINCIPLES

Timing
glossary

Clock Cycle - The unit of time for the clock tick. For example, at 50 MHz
operation, there are 50 million clock cycles per second.

Instruction Latency - The number of clock cycles required to process a
given instruction, from the time it enters the pipeline until it leaves it.

Instruction Throughput - The number of instructions that complete the
execution stage in a given number of clock cycles.

Program Execution Time - The number of elapsed clock cycles from the
time the first instruction begins until the last instruction leaves the pipe-
line. The program execution time depends on the instruction latency for
each instruction in the program and the instruction throughput.

Timing
factors

Under optimal conditions, the CR16C performs one instruction per clock
cycle. At 50 MHz, this translates to 50 MIPS (Million Instructions Per
Second). However, under a typical workload, unavoidable delays are
caused by the pipeline and memory.

Memory
access time

Each access to memory, when there are zero wait states, takes one clock
cycle. This means that the data arrives one clock cycle after the address
was issued. The access time for off-chip memory depends on the speed
and configuration of the off-chip memory.

During an instruction fetch when a load or a store instruction accesses
external memory, additional clock cycles may be added depending on the
configuration of the CPU, i.e., the existence and depth of a write buffer,
and the speed and configuration of the off-chip memory.

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION EXECUTION TIMING A-2

Calculating
program
execution
time

To calculate the total program execution time in clock cycles, combine
the following:

1. The number of clock cycles required to execute each instruction.

2. Delays in clock cycles, caused by contention for memory and stalled
execution of instructions in the pipeline.

3. The number of clock cycles required to handle exceptional conditions,
such as interrupts.

A.2 THE PIPELINE

Every instruction executed by the CR16C passes through three stages in
the pipeline:

• Instruction Fetch (IF)
• Instruction Decoding (ID)
• Instruction Execution (EX)

Figure A-1 shows how instructions move through the pipeline.

Figure A-1. Instruction Flow through the Pipeline

IR[15:0] EXT[31:0]

Decoder

IF

ID

EX

IF[15:0]

DIR DISP

16

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION EXECUTION TIMING A-3

The IF stage The CR16C fetches the first word of an instruction directly into the
Instruction Register (IR) if the IR is idle. If it is not idle and a fetch is exe-
cuted, the next instruction is stored in the next available Fetch register
until the IR is free again. The consecutive words of a two- or three-word
instruction are directly fetched into the upper or lower half of the 32-bit
Extension register (EXT). Initiating the fetch cycle is controlled by the ID
stage, such that at the end of the fetch cycle, the IR and, depending on the
length of the instruction, EXT hold a valid instruction.

The ID stage The Instruction Decode (ID) stage uses two registers, IR and EXT to
decode the current instruction. In combination, these registers hold the
instruction’s opcode and the displacement, absolute address or immediate
value. The ID stage is fully loaded with a complete instruction before
decode begins. At the end of the decode stage the execution control regis-
ters are loaded.

The EX stage Instructions are executed in the Execution (EX) stage. The currently exe-
cuting instruction is held in the Decoded Instruction Register (DIR) and
the corresponding displacement or constant is held in the DISP register
until execution ends.

The operations performed during execution depend on the instruction.

If it is an arithmetic or logic instruction:

• The Arithmetic/Logic Unit (ALU) or the shifter computes the result of
the instruction.

• The result is written to the destination register.

If it is a load instruction:

• The ALU computes the effective memory address.
• The memory operand is read.
• The memory operand is written to the destination register.

If it is a store instruction:

• The ALU computes the effective memory address.
•
• The source operand is written to memory.

If it is a branch or jump instruction:

• The ALU computes the target address.
• The target address is written to the PC register.

Source operands are read in the ID stage and results are written only in
the EX stage. The instruction latency, when there are no delays, is usu-
ally three clock cycles (from fetch until execution end).

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION EXECUTION TIMING A-4

Instruction
completion

The instruction execution state machine signals End of Instruction (EOI)
when it starts the last cycle of an instruction. For non-data-transfer
related instructions, this indicates that the current instruction termi-
nates after this cycle. Data transfer instruction completion may be
delayed, if the data transfer is not completed, until the RDY signal is
asserted for the last transferred data portion.

Rolling the
pipeline

At best, the CR16C pipeline proceeds to the next stage once every clock.
The core fetches a new instruction, or continues to fetch the second
word of a previously fetched instruction, whenever the IF stage is going
to be empty the following cycle. The conditions for issuing a new fetch
cycle can be one of the following:

1. The pipeline has been flushed (e.g., during a Branch instruction) and
therefore all of its stages are empty.

2. The currently executing instruction ends during this cycle.

3. Either the Instruction Register (IR) is free and IF contains the first
word of an instruction, or the Extension Register (EXT) is free and IF
contains the second word of an instruction. (e.g., when the fetch
phase takes more than a clock due to bus latencies).

In such cases, the core performs the following operations:

• It schedules the currently decoded instruction, if one exists, to be
transferred to the EX stage.

• It schedules the transfer of the previously fetched instruction (first or
second word), residing in the IF register into the decode stage (ID or
EX respectively).

• It schedules a new instruction fetch cycle that results in loading a
new instruction word into the IF register.

The following sections describe most of the delays that may occur during
execution of a program, and which should be considered when evaluat-
ing a program’s execution time.

A.3 EXECUTION DELAYS

Fetch delays Decoding of an instruction, i.e., the ID stage, is delayed until all of its
words have been fetched, i.e., are completely in the IF stage. Depending
on the length of the instruction up to three bus cycles are required to
fetch this instruction.

For example, it takes two bus cycles to fetch a double-word instruction
from memory. If no instruction is in the ID stage when the example dou-
ble-word instruction fetch begins, a fetch delay occurs until the instruc-
tion currently being fetched can progress to the ID stage.

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION EXECUTION TIMING A-5

Branch
delays

Upon execution of a non-conditional branch or jump instruction, or a
conditional branch instruction that is true, subsequent instructions in
the sequence may already have entered the pipeline, i.e., been fetched
and possibly decoded. These instructions are discarded, and clock cycles
are added in which the target address for the branch instruction is
fetched and decoded. These added clock cycles are called a branch delay.

For example, even if no wait state is needed while the memory from
which instructions are fetched is accessed, the overall delay for a branch
is three clock cycles for a single word target instruction plus potential
additional cycles if the target instruction is longer.

Data delays A data delay occurs whenever the contents of a memory location are
loaded into a register (using a load instruction) or when the contents of
a register are stored in memory (using a store instruction). The length of
the delay, i.e., the number of clock cycles that must be added, depends
on the CPU, system configurations and the alignment of the data.

Load delays A load instruction is executed in two cycles. In the first cycle, the effec-
tive memory address is calculated and sent on the address bus. When
memory is accessed without wait states, the data is returned on the data
bus and stored in the appropriate register in the next cycle.

Store delays A store instruction is executed in two cycles. In the first cycle, the effec-
tive memory address is calculated and sent on the address bus. In the
next cycle, the contents of the register are sent on the data bus. All data
is aligned as required, without performance penalties.

Serialized
execution
delays

When a serializing instruction is executed, all instructions residing in
the IF stage and in the ID stage are discarded. Instructions that follow
are not fetched from memory until the execution is complete. This
causes a delay while the instructions following the serializing instruction
are fetched.

See Section 4.3.2 on page 4-26 for more information on serializing
instructions.

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION EXECUTION TIMING A-6

A.4 INSTRUCTION EXECUTION TIMING

The following sections specify the execution times in clock cycles, and
other considerations that affect the total time required to execute each
type of instruction. For more information about clock cycles that are
added in the EX stage, see Section A.3.

Arithmetic
instructions

IR[15:0] EXT[31:0]

Decoder

IF

ID

EX

IF[15:0]

DIR DISP

16

Table A-1. Execution Times for Arithmetic Instructions

Instruction Clock Cycles in EX Stage

ADDi, ADDCi, ADDUi, ANDi, ASHUi, CMPi, LSHi,
MOVi, MOVX, MOVZ, ORi, Scond, SUBCi, SUBi,

NOP, TBIT and XORi.
1

ASHUD, LSHD,CMDD,ADDD 1

MOVXW, MOVZW 1

MOVD 1

MULB 1

MULW 4

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION EXECUTION TIMING A-7

MULSB 2

MULSW 4

MULUW 4

MACSW, MACUW 6

MACQW 7

Table A-1. Execution Times for Arithmetic Instructions

Instruction Clock Cycles in EX Stage

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION EXECUTION TIMING A-8

Load and
store
Instructions

Load or store instructions may be stalled in the EX stage for additional
cycles while an instruction fetch is in process. This may occur when
instructions that require wait states are fetched from memory, e.g., off-
chip memory.

In this case, additional clock cycles may be added to the number shown
in the table. depending on the speed at which memory can be accessed.

When zero wait states are used, the number of additional cycles that are
needed to execute each load or store instruction depends on operand
alignment on the word boundary.

Table A-2. Execution Times for Load/Store Instructions

PUSH,
POP/POPRET,
LOADM and
STORM
instructions

These instructions access the memory a multiple number of times,
depending on the number of registers needing save or restore. Also,
these instructions perform a pointer adjustment, which requires an
extra clock in the store instructions. Each such access may be stalled in
the EX stage for additional cycles while an instruction fetch is in pro-
cess. This may occur when instructions that require wait states are
fetched from memory, e.g., off-chip memory.

In this case, additional clock cycles may be added to the number shown
in the table, depending on the speed at which memory can be accessed.

Instruction
Clock Cycles in

EX Stage (Zero Wait
States)

Memory
Alignment

Bus Accesses in
EX Stage (Zero Wait

States)

LOADB 2 aligned 1

LOADB 3 non-aligned 1

LOADW 2 aligned 1

LOADW 4 non-aligned 2

LOADD 3 aligned 2

LOADD 5 non-aligned 3

STORB 2 aligned 1

STORB 2 non-aligned 1

STORW 2 aligned 1

STORW 3 non-aligned 2

STORD 3 aligned 2

STORD 4 non-aligned 3

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION EXECUTION TIMING A-9

When zero wait states are used, the number of additional cycles needed
to execute the instructions depends on the operation length itself, and
on operand alignment on the word boundary.

Memory bit
manipulation
instructions

Bit manipulation instructions perform a read-modify-write cycle on
memory operands. As a result, the general timing for such an instruction
is based on load timing, execution timing, and some store timing (some-
what shortened because of internal parallelism). Just as in load and
store, the instructions may be stalled in the EX stage for additional
cycles while an instruction fetch is in process. This may occur when
instructions that require wait states are fetched from memory, e.g., off-
chip memory.

In this case, additional clock cycles may be added to the number shown
in the table, depending on the speed at which memory can be accessed.

When zero wait states is used, the number of additional cycles that is
needed to execute the instructions depends on the operation length
itself, and on operand alignment on the word boundary.

Table A-3. Execution Times for PUSH, POP/POPRET, LOADM and STORM

Instruction Na Clock Cycles in EX
Stage (Zero Wait States)

Memory
Address / Stack

Alignment

Bus Accesses
in EX Stage

PUSH[N]/
STORM[N]

(1-8)
N+1 Aligned N

N+2 Not word aligned N+1

PUSH[N}, RA (1-8) + 2
N+1 Aligned N

N+3 Not word aligned N+2

LOADM[N] /
POP[N]

(1-8) N+2 Aligned N

2,4,6,8 2N+2
Not word aligned

1.5N

1,3,5,7 2N+3 0.5(3N+1)

POP[N], RA

(1-10) N+2 Aligned N

2,4,6,8,10 2N+2
Not word aligned

1.5N

1,3,5,7,9 2N+3 0.5(3N+1)

+RET (for POP) +1b always -

a. N = Number of registers to load or store
b. Note that POPRET, like the BR and JUMP derivatives, flushes the pipeline. Therefore,

when calculating total throughput, the appropriate branch delay should be accounted
for.

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION EXECUTION TIMING A-10

Table A-4. Execution Times for Bit Manipulation Instructions

Control
instructions

Some of the control instructions listed in Table A-5 also cause a pipeline
flush and serialized execution of the next instruction. This delays execu-
tion, because clock cycles must be added to fetch and decode the
instructions that follow the serializing instructions.

Table A-5. Execution Times for Control Instructions

Interrupts
and traps

The interrupt or trap latency of the CR16C for a given interrupt or trap,
in clock cycles, is the sum of the following:

• The longest execution time for a load or store instruction, or the spe-
cific long CR16 instruction (SBIT/CBIT, TBITi, PUSH, POP, LOADM,
STORM)

• The time in clock cycles shown in Table A-6 for the specific exception
• The time it takes to fetch the first instruction in the interrupt handler
• Additional clock cycles required as a result of wait states on the bus,

hold requests, disabled interrupts or interrupt nesting.

Instruction Clock Cycles in EX Stage
(Zero Wait States)

Bus Accesses
in EX Stage

SBITi/CBITi 4 2

TBITi 3 1

Instruction Clock Cycles in
EX Stage

Pipeline Flush
Condition

LPR 2 Always

SPR 1 Never

JUMP, BAL, JAL, BR 1 Always

Bcond 1
When condition is

true

Compare & Branch 2
When condition is

true

RETX 5 Always

WAIT, EIWAIT 1
Always, by inter-

rupt

EI, DI 1 Never

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION EXECUTION TIMING A-11

Table A-6. Execution Times for Interrupts and Traps

Interrupt or Trap

Clock Cycles in EX Stage

CFG.ED=0
(16-bit dispatch table)

CFG.ED=1
(32-bit dispatch table)

INT 12 13

NMI and ISEa

a. For ISE, TRC, DBG and BPT, if AISE, ATRC, ADBG and ABPT bits
in the CFG registers are set (respectively), then the execution time
is that of ISE/NMI for Large Model the 32-bit dispatch table (12
cycles). See Section 4.1.5 on page 4-14 for more details.

11 12

TRCa 9 10

DBGa 9 10

SVC, DVZ, FLG,
BPTa and UND

9 10

This page is intentionally blank.

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET ENCODING B-1

Appendix B

INSTRUCTION SET ENCODING

This appendix describes instruction set encoding. Most instructions are
encoded according to the basic instruction format. The various instruc-
tion formats are detailed and then the instructions for each class of in-
structions are listed, followed by a summary of addressing methodology.

B.1 INTRODUCTION

Instructions may have zero to four operands, and are encoded using one,
two or three words. All instructions must be word-aligned.

The most frequently used instructions are encoded into one word. These
instructions have zero to three operands and use the basic formats,
shown in Figure B-1.

Figure B-1. Basic Instruction Structure: First Word

The operands are typically encoded in 4-bit fields, starting from the least
significant bit of the word. The opcode typically uses all available bits,
starting from the most significant bits of the word.

Instructions using 16-bit displacements or 20-bit labels require an addi-
tional word in the instruction. In these cases, the second word typically
contains bits 15 to 0 of the displacement or label, as shown in Figure B-
2 below.

Figure B-2. Basic Instruction Structure: Second Word

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

op code

op code operand 1

op code operand 2 operand 1

op code operand 3 operand 2 operand 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

displacement(15:0) or absolute(15:0)

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET ENCODING B-2

Certain less frequently used operations using a 20/24-bit displace-
ment/label or a 32-bit immediate use three-word encoding. In these cas-
es, the first word is used as an escape to indicate that the following two
words contain the instruction. These two words then use the two-word
instruction format with an opcode and operands in the first word, and a
displacement/label or immediate in the second word.

B.2 INSTRUCTION FORMATS

Most instructions use one of the basic formats described above; the rest
use slight variations thereof. Opcode formats are described in Table B-1
below. These formats are referred to by their number in the instruction
descriptions.

Table B-1. CR16C Opcode Formats

16 0
word1 at addn

16 0
 word2 at addn+2

16 0
word3 at addn+4

fmt
#

format name
#

wrds
oc

size
byte 1 byte 0 byte 3 byte 2 byte 5 byte 4

1 escape2 2 16 opcode16 p4_4 p3_4 p2_4 p1_4

2 escape3_20 3 16+4a opcode16 p4_4 p3_20 p2_4 p1_4 p3_20

3 escape3_24 3 16+4a opcode16 p4_4 p1_24(
19:16) p2_4 p1_24

(23:20) p1_24

3a escape3a_24 3 16+4a opcode16 p4_4 p1_24(
19:16) p2_4 p1_24

(23:20) p1_24(15:1) 2
4

4 param0 1 16 opcode16

5 param0_24 2 8 opcode8 p1_24(23:16) p1_24(15:1) 2
4

6 param3 1 13 opcode13 p1_3

7 param3_20 2 9 opcode9 p2_3 p1_20 p1_20

8 param31_20 2 8 opcode8 p
3 p2_3 p1_20 p1_20

9 param34 1 9 opcode9 p2_3 p1_4

10 param34_16 2 9 opcode9 p2_3 p1_4 p3_16

11 param4 1 12 opcode12 p1_4

12 param4_20 2 8 opcode8 p2_4 p1_20 p1_20

13 param41_20 2 7 opcode7 p
3 p2_4 p1_20 p1_20

14 param431 1 8 opcode8
p
3 p2_3 p1_4

15 param44 1 8 opcode8 p2_4 p1_4

16 param44_16 2 8 opcode8 p2_4 p1_4 p2_16

17 param44_14 2 10 opcode10 p3
5:4 p1_4 p3_14

 (7,6,13-8) p2_4 p3_14
(3:0)

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET ENCODING B-3

B.2.1 Field Definitions for CR16C Encoding

The following tables detail the parameter types and modes used in the
instruction fields.

Table B-2. Parameter Types and Modes

Table B-3. Parameter Descriptions

18 param444 1 4 op-
code4 p3_4 p2_4 p1_4

19 param444_16 2 4 op-
code4 p3_4 p2_4 p1_4 p4_16

20 param54 1 7 opcode7 p2_5 p1_4

21 param84 1 4 op-
code4

p1_8(
8:5) p2_4 p1_8(4:

1)

22 param84_16 2 4 op-
code4

p1_8(
8:5) p2_4 p1_8(4:

1) p3_16(15:1) 1
6

23 param4_32 3 12 opcode12 p1_4 p2_32

a. The first word of the instruction is an escape code, and pt_4 is the expansion opcode.

16 0
word1 at addn

16 0
 word2 at addn+2

16 0
word3 at addn+4

fmt
#

format name
#

wrds
oc

size
byte 1 byte 0 byte 3 byte 2 byte 5 byte 4

Parameter
Types

Description Parameter Modes

dest destination reg, rp, rrp, rs, disp, disp2, (rp), (reg), (prp), (rrp), abs, pr

src source reg, rp, rrp, rs, disp, disp2, (rp), (reg), (prp), (rrp), abs, imm, pr

link link pointer rp

ope opcode extension imm

vect exception vector imm

ci co-processor index imm

cinst coprocessor instruction imm

cond condition code imm

count imm, reg

pos position imm, reg

res reserved - set to 0 -

Parameter Value Meaning Description

rsa 0 R12 selected index register select

1 R13 selected

RA 0 RA not used RA select for stack operations

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET ENCODING B-4

1 RA used

reg(4) 0 R0 register number

1 R1

2 R2

3 R3

4 R4

5 R5

6 R6

7 R7

8 R8

9 R9

10 R10

11 R11

12 R12_L least significant 16 bits of R12

13 R13_L least significant 16 bits of R13

14 RA_L least significant 16 bits of RA

15 SP_L
least significant 16 bits of (U)SP

(if PSR.U set: use USP_L else SP_L)

rp(4) 0 R1,R0 register pair

1 R2,R1

2 R3,R2

3 R4,R3

4 R5,R4

5 R6,R5

6 R7,R6

7 R8,R7

8 R9,R8

9 R10,R9

10 R11,R10

11 R12_L,R11

12 R12 if CFG.SR set: use R13_L, R12_L

13 R13 if CFG.SR set: use RA_L, R13_L

14 RA
if CFG.SR set: use (U)SP_L, RA_L

(if PSR.U set: use USP_L else SP_L)

15 SP
if CFG.SR set: use (U)SP_H, (U)SP_L

(if PSR.U set: use USP else SP)

rrp(4)a 0 R12 + R1,R0 reduced register pair

1 R12 + R3,R2

2 R12 + R5,R4

3 R12 + R7,R6

Parameter Value Meaning Description

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET ENCODING B-5

4 R12 + R9,R8

5 R12 + R11,R10

6 R12 + R4,R3

7 R12 + R6,R5

8 R13 + R1,R0

9 R13 + R3,R2

10 R13 + R5,R4

11 R13 + R7,R6

12 R13 + R9,R8

13 R13 + R11,R10

14 R13 + R4,R3

15 R13 + R6,R5

prp(4) if CFG.SR set: prp is reg else prp is rrpa

prd(4) 0 DBS processor registers for LPRD/SPRD

1 DSR

2 DCR

3 reserved

4 CAR0

5 reserved

6 CAR1

7 reserved

8 CFG

9 PSR

10 INTBASE

11 reserved

12 ISP

13 reserved

14 USP

15 reserved

pr(4) 0 DBS processor registers for LPR/SPR

1 DSR

2 DCRL

3 DCRH

4 CAR0L

5 CAR0H

6 CAR1L

7 CAR1H

8 CFG

9 PSR

Parameter Value Meaning Description

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET ENCODING B-6

10 INTBASEL

11 INTBASEH

12 ISPL

13 ISPH

14 USPL

15 USPH

vect 0 exception vector

1

2

3

4

5 SVC

6 DVZ

7 FLG

8 BPT

9 TRC

10 UND

11

12 IAD

13

14 DBG

15 ISE

cond(4) 0 eq compare conditions

1 ne

2 cs

3 cc

4 hi

5 ls

6 gt

7 le

8 fs

9 fc

10 lo

11 hs

12 lt

13 ge

14 always

15 uc
unconditional

for jcond also set U flag (JUSR)

Parameter Value Meaning Description

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET ENCODING B-7

pos(3) 0 bit0 bit position

1 bit1

2 bit2

3 bit3

4 bit4

5 bit5

6 bit6

7 bit7

pos(4) 0 bit0 bit position

1 bit1

2 bit2

3 bit3

4 bit4

5 bit5

6 bit6

7 bit7

8 bit8 for byte ops bit 0

9 bit9 for byte ops bit 1

10 bit10 for byte ops bit 2

11 bit11 for byte ops bit 3

12 bit12 for byte ops bit 4

13 bit13 for byte ops bit 5

14 bit14 for byte ops bit 6

15 bit15 for byte ops bit 7

ope(4) 0-15 Opcode Extension
used as an extension to an opcode for codes

encoded in three words.

(rp) data at address rp

(rrpa) data at address rrp

(reg) data at address reg

rp*2 jump to address of rp shifted once left

abs absolute address - used as explicit address pointer

rel index register relative - the contents of an index register is added to the address

imm4 0-15 For Store Immediate

imm4
0-8,10,
12-15

In arithmetic operations, when parameter type is source,
used as immediate values

9 interpreted as -1

11 used as escape code to 16 bit immediate format

Parameter Value Meaning Description

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET ENCODING B-8

B.3 CR16C INSTRUCTION SET SUMMARY

For each class of instructions listed in Tables B-4 through B-14, the in-
structions are detailed with:

• the 16-bit binary opcode of the first word of the instruction
• Parameter values (number bits, type- pt?, mode-pm?)
• the opcode format number (fmt#)
• the opcode length (ln).

An “x” in the opcode value denotes bit positions reserved for parameters,
as determined by the format.

Due to the structure of the opcode assignment, items such as the format
type, byte/word command, arithmetic/logical operations, and field place-
ment are readily available from a limited decode.

imm16
signedb immediate value

imm20
unsigned immediate value

imm32
signedb immediate value

disp
immediate value used as displacement- added to other source or destination
parameters

disp*2 displacement value shifted once left - multiplied by 2

disp*2+
displacement value add 1 and shift once left
for beq0/bne0 disp4 commands (+2 to +32)

disp4 0-13
treated as a positive displacement
for store/load word/double-word operations shift once left

14 escape used to denote a prp register mode operation with disp0

15 used as escape code to displacement 16 format

disp8 not 0x80 disp of 8 bits is always signed and shifted by 1 (mult by 2)

0x80 treated as escape to displacement16 format (format #22)

disp(n) where
n>8

for branches, disp of 8 bits or more is signed and shifted by 1 (mult by 2)

for loads, stores and bitops, disp(n) is always unsigned and not shifted!

-disp20 -220 to -1 for backwards compatibility with CR16B for load/stor instructions

a. When CFG.SR =1, the index addressing mode is not supported. All instructions using "rrp" or "rs"
cause undefined behavior.

b. The assembler must allow unsigned values for logic operations such as AND, OR,
XOR using this encoding.

Parameter Value Meaning Description

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET ENCODING B-9

Table B-4. Moves

Table B-5. Integer Arithmetic

Opcode (15:0) Instruction Name p1 pt1 pm1 p2 pt2 pm2 p3 pt3 pm3 p4 pt4 pm4
fmt
#

ln

0101 1000 xxxx xxxx movb imm4/16,reg 4 dest reg 4 src imm 15/16 1/2

0101 1001 xxxx xxxx movb reg,reg 4 dest reg 4 src reg 15 1

0000 0101 xxxx xxxx movd imm20 20 src imm 4 dest rp 12 2

0000 0000 0111 xxxx movd imm32 4 dest imm 32 src rp 23 3

0101 0100 xxxx xxxx movd imm4/imm16, rp 4 dest rp 4 src imm 15/16 1/2

0101 0101 xxxx xxxx movd rp, rp 4 dest rp 4 src rp 15 1

0101 1010 xxxx xxxx movw imm4/16,reg 4 dest reg 4 src imm 15/16 1/2

0101 1011 xxxx xxxx movw reg,reg 4 dest reg 4 src reg 15 1

0101 1100 xxxx xxxx movxb 4 dest reg 4 src reg 15 1

0101 1110 xxxx xxxx movxw 4 dest rp 4 src reg 15 1

0101 1101 xxxx xxxx movzb 4 dest reg 4 src reg 15 1

0101 1111 xxxx xxxx movzw 4 dest rp 4 src reg 15 1

Opcode (15:0) Instruction Name p1 pt1 pm1 p2 pt2 pm2 p3 pt3 pm3 p4 pt4 pm4
fmt
#

ln

0011 0000 xxxx xxxx addb imm4/16,reg 4 dest reg 4 src imm 15/16 1/2

0011 0001 xxxx xxxx addb reg,reg 4 dest reg 4 src reg 15 1

0011 0100 xxxx xxxx addcb imm4/16,reg 4 dest reg 4 src imm 15/16 1/2

0011 0101 xxxx xxxx addcb reg,reg 4 dest reg 4 src reg 15 1

0011 0110 xxxx xxxx addcw imm4/16,reg 4 dest reg 4 src imm 15/16 1/2

0011 0111 xxxx xxxx addcw reg,reg 4 dest reg 4 src reg 15 1

0000 0100 xxxx xxxx addd imm20, rp 20 src imm 4 dest rp 12 2

0000 0000 0010 xxxx addd imm32, rp 4 dest rp 32 src imm 23 3

0110 0000 xxxx xxxx addd imm4/16,rp 4 dest rp 4 src imm 15/16 1/2

0110 0001 xxxx xxxx addd rp,rp 4 dest rp 4 src rp 15 1

0010 1100 xxxx xxxx addub imm4/16,reg 4 dest reg 4 src imm 15/16 1/2

0010 1101 xxxx xxxx addub reg,reg 4 dest reg 4 src reg 15 1

0010 1110 xxxx xxxx adduw imm4/16,reg 4 dest reg 4 src imm 15/16 1/2

0010 1111 xxxx xxxx adduw reg,reg 4 dest reg 4 src reg 15 1

0011 0010 xxxx xxxx addw imm4/16,reg 4 dest reg 4 src imm 15/16 1/2

0011 0011 xxxx xxxx addw reg,reg 4 dest reg 4 src reg 15 1

0000 0000 0001 0100 macqw 4 src2 reg 4 src1 reg 4 dest rp 4 ope 13 1 2

0000 0000 0001 0100 macuw 4 src2 reg 4 src1 reg 4 dest rp 4 ope 14 1 2

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET ENCODING B-10

Table B-6. Integer Comparison

Table B-7. Logical and Boolean

0000 0000 0001 0100 macsw 4 src2 reg 4 src1 reg 4 dest rp 4 ope 15 1 2

0110 0100 xxxx xxxx mulb imm4/16,reg 4 dest reg 4 src imm 15/16 1/2

0110 0101 xxxx xxxx mulb reg,reg 4 dest reg 4 src reg 15 1

0000 1011 xxxx xxxx mulsb reg,reg 4 dest reg 4 src reg 15 1

0110 0010 xxxx xxxx mulsw reg,rp 4 dest rp 4 src reg 15 1

0110 0011 xxxx xxxx muluw reg,rp 4 dest rp 4 src reg 15 1

0110 0110 xxxx xxxx mulw imm4/16,reg 4 dest reg 4 src imm 15/16 1/2

0110 0111 xxxx xxxx mulw reg,reg 4 dest reg 4 src reg 15 1

0011 1000 xxxx xxxx subb imm4/16,reg 4 dest reg 4 src imm 15/16 1/2

0011 1001 xxxx xxxx subb reg,reg 4 dest reg 4 src reg 15 1

0011 1100 xxxx xxxx subcb imm4/16,reg 4 dest reg 4 src imm 15/16 1/2

0011 1101 xxxx xxxx subcb reg,reg 4 dest reg 4 src reg 15 1

0011 1110 xxxx xxxx subcw imm4/16,reg 4 dest reg 4 src imm 15/16 1/2

0011 1111 xxxx xxxx subcw reg,reg 4 dest reg 4 src reg 15 1

0000 0000 0001 0100 subd rp,rp 4 dest rp 4 src rp 4 res 0 4 ope 12 1 2

0000 0000 0011 xxxx subd imm32,rp 4 dest rp 32 src imm 23 3

0011 1010 xxxx xxxx subw imm4/16,reg 4 dest reg 4 src imm 15/16 1/2

0011 1011 xxxx xxxx subw reg,reg 4 dest reg 4 src reg 15 1

Opcode (15:0) Instruction Name p1 pt1 pm1 p2 pt2 pm2 p3 pt3 pm3 p4 pt4 pm4
fmt
#

ln

Opcode (15:0) Instruction Name p1 pt1 pm1 p2 pt2 pm2 p3 pt3 pm3 p4 pt4 pm4
fmt
#

ln

0101 0000 xxxx xxxx cmpb imm4/16,reg 4 src reg 4 src imm 15/16 1/2

0101 0001 xxxx xxxx cmpb reg,reg 4 src reg 4 src reg 15 1

0000 0000 1001 xxxx cmpd imm32 4 dest rp 32 src imm 23 3

0101 0110 xxxx xxxx cmpd imm4/16, rp 4 src rp 4 src imm 15/16 1/2

0101 0111 xxxx xxxx cmpd rp, rp 4 src rp 4 src rp 15 1

0101 0010 xxxx xxxx cmpw imm4/16,reg 4 src reg 4 src imm 15/16 1/2

0101 0011 xxxx xxxx cmpw reg,reg 4 src reg 4 src reg 15 1

Opcode (15:0) Instruction Name p1 pt1 pm1 p2 pt2 pm2 p3 pt3 pm3 p4 pt4 pm4
fmt
#

ln

0010 0000 xxxx xxxx andb imm4/16,reg 4 dest reg 4 src imm 15/16 1/2

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET ENCODING B-11

Table B-8. Shifts

0010 0001 xxxx xxxx andb reg,reg 4 dest reg 4 src reg 15 1

0010 0010 xxxx xxxx andw imm4/16,reg 4 dest reg 4 src imm 15/16 1/2

0010 0011 xxxx xxxx andw reg,reg 4 dest reg 4 src reg 15 1

0000 0000 0100 xxxx andd imm32,rp 4 dest rp 32 src imm 23 3

0000 0000 0001 0100 andd rp,rp 4 dest rp 4 src rp 4 ope 11 1 2

0010 0100 xxxx xxxx orb imm4/16,reg 4 dest reg 4 src imm 15/16 1/2

0010 0101 xxxx xxxx orb reg,reg 4 dest reg 4 src reg 15 1

0010 0110 xxxx xxxx orw imm4/16,reg 4 dest reg 4 src imm 15/16 1/2

0010 0111 xxxx xxxx orw reg,reg 4 dest reg 4 src reg 15 1

0000 0000 0101 xxxx ord imm32,rp 4 dest rp 32 src imm 23 3

0000 0000 0001 0100 ord rp,rp 4 dest rp 4 src rp 4 ope 9 1 2

0000 1000 xxxx xxxx Scond (reg) 4 dest reg 4 cond imm 15 1

0010 1000 xxxx xxxx xorb imm4/16,reg 4 dest reg 4 src imm 15/16 1/2

0010 1001 xxxx xxxx xorb reg,reg 4 dest reg 4 src reg 15 1

0010 1010 xxxx xxxx xorw imm4/16,reg 4 dest reg 4 src imm 15/16 1/2

0010 1011 xxxx xxxx xorw reg,reg 4 dest reg 4 src reg 15 1

0000 0000 0110 xxxx xord imm32,rp 4 dest rp 32 src imm 23 3

0000 0000 0001 0100 xord rp,rp 4 dest rp 4 src rp 4 ope 10 1 2

Opcode (15:0) Instruction Name p1 pt1 pm1 p2 pt2 pm2 p3 pt3 pm3 p4 pt4 pm4
fmt
#

ln

Opcode (15:0) Instruction Name p1 pt1 pm1 p2 pt2 pm2 p3 pt3 pm3 p4 pt4 pm4
fmt
#

ln

0100 0000 0xxx xxxx ashub cnt (left +), reg 4 dest reg 3 count imm 9 1

0100 0000 1xxx xxxx ashub cnt (right -), reg 4 dest reg 3 count imm 9 1

0100 0001 xxxx xxxx ashub reg,reg 4 dest reg 4 count reg 15 1

0100 110x xxxx xxxx ashud cnt (left +), rp 4 dest rp 5 count imm 20 1

0100 111x xxxx xxxx ashud cnt (right -), rp 4 dest rp 5 count imm 20 1

0100 1000 xxxx xxxx ashud reg,rp 4 dest rp 4 count reg 15 1

0100 0010 xxxx xxxx ashuw cnt (left +), reg 4 dest reg 4 count imm 15 1

0100 0011 xxxx xxxx ashuw cnt (right -), reg 4 dest reg 4 count imm 15 1

0100 0101 xxxx xxxx ashuw reg,reg 4 dest reg 4 count reg 15 1

0000 1001 1xxx xxxx lshb cnt (right -), reg 4 dest reg 3 count imm 9 1

0100 0100 xxxx xxxx lshb reg,reg 4 dest reg 4 count reg 15 1

0100 101x xxxx xxxx lshd cnt (right -), rp 4 dest rp 5 count imm 20 1

0100 0111 xxxx xxxx lshd reg,rp 4 dest rp 4 count reg 15 1

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET ENCODING B-12

Table B-9. Bit Operations

0100 1001 xxxx xxxx lshw cnt (right -), reg 4 dest reg 4 count imm 15 1

0100 0110 xxxx xxxx lshw reg,reg 4 dest reg 4 count reg 15 1

Opcode (15:0) Instruction Name p1 pt1 pm1 p2 pt2 pm2 p3 pt3 pm3 p4 pt4 pm4
fmt
#

ln

Opcode (15:0) Instruction Name p1 pt1 pm1 p2 pt2 pm2 p3 pt3 pm3 p4 pt4 pm4
fmt
#

ln

0110 1010 10xx xxxx cbitb (prp) disp14 4 dest (prp) 3 pos imm 14 dest disp 17 2

0000 0000 0001 0000 cbitb (reg) disp20 4 dest (reg) 3 pos imm 20 dest disp 4 ope 4 2 3

0110 1010 0xxx xxxx cbitb (rp) disp0 4 dest (rp) 3 pos imm 9 1

0110 1011 0xxx xxxx cbitb (rp) disp16 4 dest (rp) 3 pos imm 16 dest disp 10 2

0000 0000 0001 0000 cbitb (rp) disp20 4 dest (rp) 3 pos imm 20 dest disp 4 ope 5 2 3

0000 0000 0001 0000 cbitb (rrp) disp20 4 dest (rrp) 3 pos imm 20 dest disp 4 ope 6 2 3

0110 1011 1xxx xxxx cbitb abs20 20 dest abs 3 pos imm 7 2

0110 1000 xxxx xxxx cbitb abs20 rel 20 dest abs 3 pos imm 1 dest rs 8 2

0000 0000 0001 0000 cbitb abs24 24 dest abs 3 pos imm 4 ope 7 3 3

0110 1010 11xx xxxx cbitw (prp) disp14 4 dest (prp) 4 pos imm 14 dest disp 17 2

0000 0000 0001 0001 cbitw (reg) disp20 4 dest (reg) 4 pos imm 20 dest disp 4 ope 4 2 3

0110 1110 xxxx xxxx cbitw (rp) disp0 4 dest (rp) 4 pos imm 15 1

0110 1001 xxxx xxxx cbitw (rp) disp16 4 dest (rp) 4 pos imm 16 dest disp 16 2

0000 0000 0001 0001 cbitw (rp) disp20 4 dest (rp) 4 pos imm 20 dest disp 4 ope 5 2 3

0000 0000 0001 0001 cbitw (rrp) disp20 4 dest (rrp) 4 pos imm 20 dest disp 4 ope 6 2 3

0110 1111 xxxx xxxx cbitw abs20 20 dest abs 4 pos imm 12 2

0110 110x xxxx xxxx cbitw abs20 rel 20 dest abs 4 pos imm 1 dest rs 13 2

0000 0000 0001 0001 cbitw abs24 24 dest abs 4 pos imm 4 ope 7 3 3

0111 0010 10xx xxxx sbitb (prp) disp14 4 dest (prp) 3 pos imm 14 dest disp 17 2

0000 0000 0001 0000 sbitb (reg) disp20 4 dest (reg) 3 pos imm 20 dest disp 4 ope 8 2 3

0111 0010 0xxx xxxx sbitb (rp) disp0 4 dest (rp) 3 pos imm 9 1

0111 0011 0xxx xxxx sbitb (rp) disp16 4 dest (rp) 3 pos imm 16 dest disp 10 2

0000 0000 0001 0000 sbitb (rp) disp20 4 dest (rp) 3 pos imm 20 dest disp 4 ope 9 2 3

0000 0000 0001 0000 sbitb (rrp) disp20 4 dest (rrp) 3 pos imm 20 dest disp 4 ope 10 2 3

0111 0011 1xxx xxxx sbitb abs20 20 dest abs 3 pos imm 7 2

0111 0000 xxxx xxxx sbitb abs20 rel 20 dest abs 3 pos imm 1 dest rs 8 2

0000 0000 0001 0000 sbitb abs24 24 dest abs 3 pos imm 4 ope 11 3 3

0111 0010 11xx xxxx sbitw (prp) disp14 4 dest (prp) 4 pos imm 14 dest disp 17 2

0000 0000 0001 0001 sbitw (reg) disp20 4 dest (reg) 4 pos imm 20 dest disp 4 ope 8 2 3

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET ENCODING B-13

Table B-10. Processor Register Manipulation

0111 0110 xxxx xxxx sbitw (rp) disp0 4 dest (rp) 4 pos imm 15 1

0111 0001 xxxx xxxx sbitw (rp) disp16 4 dest (rp) 4 pos imm 16 dest disp 16 2

0000 0000 0001 0001 sbitw (rp) disp20 4 dest (rp) 4 pos imm 20 dest disp 4 ope 9 2 3

0000 0000 0001 0001 sbitw (rrp) disp20 4 dest (rrp) 4 pos imm 20 dest disp 4 ope 10 2 3

0111 0111 xxxx xxxx sbitw abs20 20 dest abs 4 pos imm 12 2

0111 010x xxxx xxxx sbitw abs20 rel 20 dest abs 4 pos imm 1 dest rs 13 2

0000 0000 0001 0001 sbitw abs24 24 dest abs 4 pos imm 4 ope 11 3 3

0000 0110 xxxx xxxx tbit cnt 4 src reg 4 pos imm 15 1

0000 0111 xxxx xxxx tbit reg, reg 4 src reg 4 pos reg 15 1

0111 1010 10xx xxxx tbitb (prp) disp14 4 dest (prp) 3 pos imm 14 dest disp 17 2

0000 0000 0001 0000 tbitb (reg) disp20 4 dest (reg) 3 pos imm 20 dest disp 4 ope 12 2 3

0111 1010 0xxx xxxx tbitb (rp) disp0 4 dest (rp) 3 pos imm 9 1

0111 1011 0xxx xxxx tbitb (rp) disp16 4 dest (rp) 3 pos imm 16 dest disp 10 2

0000 0000 0001 0000 tbitb (rp) disp20 4 dest (rp) 3 pos imm 20 dest disp 4 ope 13 2 3

0000 0000 0001 0000 tbitb (rrp) disp20 4 dest (rrp) 3 pos imm 20 dest disp 4 ope 14 2 3

0111 1011 1xxx xxxx tbitb abs20 20 dest abs 3 pos imm 7 2

0111 1000 xxxx xxxx tbitb abs20 rel 20 dest abs 3 pos imm 1 dest rs 8 2

0000 0000 0001 0000 tbitb abs24 24 dest abs 3 pos imm 4 ope 15 3 3

0111 1010 11xx xxxx tbitw (prp) disp14 4 dest (prp) 4 pos imm 14 dest disp 17 2

0000 0000 0001 0001 tbitw (reg) disp20 4 dest (reg) 4 pos imm 20 dest disp 4 ope 12 2 3

0111 1110 xxxx xxxx tbitw (rp) disp0 4 dest (rp) 4 pos imm 15 1

0111 1001 xxxx xxxx tbitw (rp) disp16 4 dest (rp) 4 pos imm 16 dest disp 16 2

0000 0000 0001 0001 tbitw (rp) disp20 4 dest (rp) 4 pos imm 20 dest disp 4 ope 13 2 3

0000 0000 0001 0001 tbitw (rrp) disp20 4 dest (rrp) 4 pos imm 20 dest disp 4 ope 14 2 3

0111 1111 xxxx xxxx tbitw abs20 20 dest abs 4 pos imm 12 2

0111 110x xxxx xxxx tbitw abs20 rel 20 dest abs 4 pos imm 1 dest rs 13 2

0000 0000 0001 0001 tbitw abs24 24 dest abs 4 pos imm 4 ope 15 3 3

Opcode (15:0) Instruction Name p1 pt1 pm1 p2 pt2 pm2 p3 pt3 pm3 p4 pt4 pm4
fmt
#

ln

Opcode (15:0) Instruction Name p1 pt1 pm1 p2 pt2 pm2 p3 pt3 pm3 p4 pt4 pm4
fmt
#

ln

0000 0000 0001 0100 lpr 4 src reg 4 dest pr 4 res 0 4 ope 0 1 2

0000 0000 0001 0100 lprd 4 src rp 4 dest prd 4 res 0 4 ope 1 1 2

0000 0000 0001 0100 spr 4 dest reg 4 src pr 4 res 0 4 ope 2 1 2

0000 0000 0001 0100 sprd 4 dest rp 4 src prd 4 res 0 4 ope 3 1 2

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET ENCODING B-14

Table B-11. Jumps and Linkage

Table B-12. Load and Store

Opcode (15:0) Instruction Name p1 pt1 pm1 p2 pt2 pm2 p3 pt3 pm3 p4 pt4 pm4 fmt# ln

1100 0000 xxxx xxxx bal (ra) disp24 23 dest disp*2 5 2

0000 0000 0001 0000 bal (rp) disp24 24 dest disp*2 4 link rp 4 ope 2 3a 3

0000 1100 xxxx xxxx beq0b disp4 (2-32) 4 src reg 4 dest disp*2+ 15 1

0000 1110 xxxx xxxx beq0w disp4 (2-32) 4 src reg 4 dest disp*2+ 15 1

0000 1101 xxxx xxxx bne0b disp4 (2-32) 4 src reg 4 dest disp*2+ 15 1

0000 1111 xxxx xxxx bne0w disp4 (2-32) 4 src reg 4 dest disp*2+ 15 1

0001 xxxx xxxx xxxx bra cond disp8 8 dest disp*2 4 cond imm 21 1

0001 1000 xxxx 0000 bra cond disp16 4 cond imm 16 dest disp*2 22 2

0000 0000 0001 0000 bra cond disp24 24 dest disp*2 4 cond imm 4 ope 0 3a 3

0000 0000 1100 xxxx excp 4 vect imm 11 1

0000 0000 1101 xxxx jal (ra,rp) 4 dest rp*2 11 1

0000 0000 0001 0100 jal (rp,rp) 4 link rp 4 dest rp*2 4 res 0 4 ope 8 1 2

0000 1010 xxxx xxxx Jcondb (rp) 4 dest rp*2 4 cond imm 15 1

0000 0010 xxxx xxxx pop 4 dest reg 3 count imm 1 RA imm 14 1

0000 0011 xxxx xxxx pop ret 4 dest reg 3 count imm 1 RA imm 14 1

0000 0001 xxxx xxxx push 4 src reg 3 count imm 1 RA imm 14 1

0000 0000 0000 0011 retx 4 1

a. This includes BR (condition := always)
b. This includes JUMP (condition := always) and JUSR (condition := UC)

Opcode (15:0) Instruction Name p1 pt1 pm1 p2 pt2 pm2 p3 pt3 pm3 p4 pt4 pm4 fmt# ln

1011 1110 xxxx xxxx loadb (prp) disp0 4 src (prp) 4 dest reg 4 ope 0E 18 1

1000 0110 01xx xxxx loadb (prp) disp14 4 src (prp) 4 dest reg 14 src disp 17 2

0000 0000 0001 0010 loadb (reg) disp20 4 src (reg) 4 dest reg 20 src disp 4 ope 4 2 3

0000 0000 0001 1000 loadb (reg) -disp20 4 src (reg) 4 dest reg 20 src disp 4 ope 4 2 3

1011 1111 xxxx xxxx loadb (rp) disp16 4 src (rp) 4 dest reg 4 ope 0F 16 src disp 19 2

0000 0000 0001 0010 loadb (rp) disp20 4 src (rp) 4 dest reg 20 src disp 4 ope 5 2 3

0000 0000 0001 1000 loadb (rp) -disp20 4 src (rp) 4 dest reg 20 src disp 4 ope 5 2 3

1011 xxxx xxxx xxxx loadb (rp) disp4 4 src (rp) 4 dest reg 4 src disp 18 1

0000 0000 0001 0010 loadb (rrp) disp20 4 src (rrp) 4 dest reg 20 src disp 4 ope 6 2 3

1000 1000 xxxx xxxx loadb abs20 20 src abs 4 dest reg 12 2

1000 101x xxxx xxxx loadb abs20 rel 20 src abs 4 dest reg 1 src rs 13 2

0000 0000 0001 0010 loadb abs24 24 src abs 4 dest reg 4 ope 7 3 3

1010 1110 xxxx xxxx loadd (prp) disp0 4 src (prp) 4 dest rp 4 ope 0E 18 1

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET ENCODING B-15

1000 0110 10xx xxxx loadd (prp) disp14 4 src (prp) 4 dest rp 14 src disp 17 2

0000 0000 0001 0010 loadd (reg) disp20 4 src (reg) 4 dest rp 20 src disp 4 ope 8 2 3

0000 0000 0001 1000 loadd (reg) -disp20 4 src (reg) 4 dest rp 20 src disp 4 ope 8 2 3

1010 1111 xxxx xxxx loadd (rp) disp16 4 src (rp) 4 dest rp 4 ope 0F 16 src disp 19 2

0000 0000 0001 0010 loadd (rp) disp20 4 src (rp) 4 dest rp 20 src disp 4 ope 9 2 3

0000 0000 0001 1000 loadd (rp) -disp20 4 src (rp) 4 dest rp 20 src disp 4 ope 9 2 3

1010 xxxx xxxx xxxx loadd (rp) disp4 4 src (rp) 4 dest rp 4 src disp*2 18 1

0000 0000 0001 0010 loadd (rrp) disp20 4 src (rrp) 4 dest rp 20 src disp 4 ope 10 2 3

1000 0111 xxxx xxxx loadd abs20 20 src abs 4 dest rp 12 2

1000 110x xxxx xxxx loadd abs20 rel 20 src abs 4 dest rp 1 src rs 13 2

0000 0000 0001 0010 loadd abs24 24 src abs 4 dest rp 4 ope 11 3 3

0000 0000 1010 0xxx loadm (reg) 3 count imm 6 1

0000 0000 1010 1xxx loadmp (rp) 3 count imm 6 1

1001 1110 xxxx xxxx loadw (prp) disp0 4 src (prp) 4 dest reg 4 ope 0E 18 1

1000 0110 11xx xxxx loadw (prp) disp14 4 src (prp) 4 dest reg 14 src disp 17 2

0000 0000 0001 0010 loadw (reg) disp20 4 src (reg) 4 dest reg 20 src disp 4 ope 12 2 3

0000 0000 0001 1000 loadw (reg) -disp20 4 src (reg) 4 dest reg 20 src disp 4 ope 12 2 3

1001 1111 xxxx xxxx loadw (rp) disp16 4 src (rp) 4 dest reg 4 ope 0F 16 src disp 19 2

0000 0000 0001 0010 loadw (rp) disp20 4 src (rp) 4 dest reg 20 src disp 4 ope 13 2 3

0000 0000 0001 1000 loadw (rp) -disp20 4 src (rp) 4 dest reg 20 src disp 4 ope 13 2 3

1001 xxxx xxxx xxxx loadw (rp) disp4 4 src (rp) 4 dest reg 4 src disp*2 18 1

0000 0000 0001 0010 loadw (rrp) disp20 4 src (rrp) 4 dest reg 20 src disp 4 ope 14 2 3

1000 1001 xxxx xxxx loadw abs20 20 src abs 4 dest reg 12 2

1000 111x xxxx xxxx loadw abs20 rel 20 src abs 4 dest reg 1 src rs 13 2

0000 0000 0001 0010 loadw abs24 24 src abs 4 dest reg 4 ope 15 3 3

1111 1110 xxxx xxxx storb (prp) disp0 4 dest (prp) 4 src reg 4 ope 0E 18 1

1100 0110 01xx xxxx storb (prp) disp14 4 dest (prp) 4 src reg 14 dest disp 17 2

0000 0000 0001 0011 storb (reg) disp20 4 dest (reg) 4 src reg 20 dest disp 4 ope 4 2 3

0000 0000 0001 1001 storb (reg) -disp20 4 dest (reg) 4 src reg 20 dest disp 4 ope 4 2 3

1111 1111 xxxx xxxx storb (rp) disp16 4 dest (rp) 4 src reg 4 ope 0F 16 dest disp 19 2

0000 0000 0001 0011 storb (rp) disp20 4 dest (rp) 4 src reg 20 dest disp 4 ope 5 2 2

0000 0000 0001 1001 storb (rp) -disp20 4 dest (rp) 4 src reg 20 dest disp 4 ope 5 2 2

1111 xxxx xxxx xxxx storb (rp) disp4a 4 dest (rp) 4 src reg 4 dest disp 18 1

0000 0000 0001 0011 storb (rrp) disp20 4 dest (rrp) 4 src reg 20 dest disp 4 ope 6 2 2

1100 1000 xxxx xxxx storb abs20 20 dest abs 4 src reg 12 2

1100 101x xxxx xxxx storb abs20 rel 20 dest abs 4 src reg 1 dest rs 13 2

Opcode (15:0) Instruction Name p1 pt1 pm1 p2 pt2 pm2 p3 pt3 pm3 p4 pt4 pm4 fmt# ln

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET ENCODING B-16

0000 0000 0001 0011 storb abs24 24 dest abs 4 src reg 4 ope 7 3 3

1000 0110 00xx xxxx storb imm (prp) disp14 4 dest (prp) 4 src imm 14 dest disp 17 2

0000 0000 0001 0010 storb imm (reg) disp20 4 dest (reg) 4 src imm 20 dest disp 4 ope 0 2 3

1000 0010 xxxx xxxx storb imm (rp) disp0 4 dest (rp) 4 src imm 15 1

1000 0011 xxxx xxxx storb imm (rp) disp16 4 dest (rp) 4 src imm 16 dest disp 16 2

0000 0000 0001 0010 storb imm (rp) disp20 4 dest (rp) 4 src imm 20 dest disp 4 ope 1 2 3

0000 0000 0001 0010 storb imm (rrp) disp20 4 dest (rrp) 4 src imm 20 dest disp 4 ope 2 2 3

1000 0001 xxxx xxxx storb imm abs20 20 dest abs 4 src imm 12 2

1000 010x xxxx xxxx storb imm abs20 rel 20 dest abs 4 src imm 1 dest rs 13 2

0000 0000 0001 0010 storb imm abs24 24 dest abs 4 src imm 4 ope 3 3 3

1110 1110 xxxx xxxx stord (prp) disp0 4 dest (prp) 4 src rp 4 ope 0E 18 1

1100 0110 10xx xxxx stord (prp) disp14 4 dest (prp) 4 src rp 14 dest disp 17 2

0000 0000 0001 0011 stord (reg) disp20 4 dest (reg) 4 src rp 20 dest disp 4 ope 8 2 3

0000 0000 0001 1001 stord (reg) -disp20 4 dest (reg) 4 src rp 20 dest disp 4 ope 8 2 3

1110 1111 xxxx xxxx stord (rp) disp16 4 dest (rp) 4 src rp 4 ope 0F 16 dest disp 19 2

0000 0000 0001 0011 stord (rp) disp20 4 dest (rp) 4 src rp 20 dest disp 4 ope 9 2 3

0000 0000 0001 1001 stord (rp) -disp20 4 dest (rp) 4 src rp 20 dest disp 4 ope 9 2 3

1110 xxxx xxxx xxxx stord (rp) disp4 4 dest (rp) 4 src rp 4 dest disp*2 18 1

0000 0000 0001 0011 stord (rrp) disp20 4 dest (rrp) 4 src rp 20 dest disp 4 ope 10 2 3

1100 0111 xxxx xxxx stord abs20 20 dest abs 4 src rp 12 2

1100 110x xxxx xxxx stord abs20 rel 20 dest abs 4 src rp 1 dest rs 13 2

0000 0000 0001 0011 stord abs24 24 dest abs 4 src rp 4 ope 11 3 3

0000 0000 1011 0xxx storm (reg) 3 count imm 6 1

0000 0000 1011 1xxx stormp (rp) 3 count imm 6 1

1101 1110 xxxx xxxx storw (prp) disp0 4 dest (prp) 4 src reg 4 ope 0E 18 1

1100 0110 11xx xxxx storw (prp) disp14 4 dest (prp) 4 src reg 14 dest disp 17 2

0000 0000 0001 0011 storw (reg) disp20 4 dest (reg) 4 src reg 20 dest disp 4 ope 12 2 3

0000 0000 0001 1001 storw (reg) -disp20 4 dest (reg) 4 src reg 20 dest disp 4 ope 12 2 3

1101 1111 xxxx xxxx storw (rp) disp16 4 dest (rp) 4 src reg 4 ope 0F 16 dest disp 19 2

0000 0000 0001 0011 storw (rp) disp20 4 dest (rp) 4 src reg 20 dest disp 4 ope 13 2 3

0000 0000 0001 1001 storw (rp) -disp20 4 dest (rp) 4 src reg 20 dest disp 4 ope 13 2 3

1101 xxxx xxxx xxxx storw (rp) disp4 4 dest (rp) 4 src reg 4 dest disp*2 18 1

0000 0000 0001 0011 storw (rrp) disp20 4 dest (rrp) 4 src reg 20 dest disp 4 ope 14 2 3

1100 1001 xxxx xxxx storw abs20 20 dest abs 4 src reg 12 2

1100 111x xxxx xxxx storw abs20 rel 20 dest abs 4 src reg 1 dest rs 13 2

0000 0000 0001 0011 storw abs24 24 dest abs 4 src reg 4 ope 15 3 3

Opcode (15:0) Instruction Name p1 pt1 pm1 p2 pt2 pm2 p3 pt3 pm3 p4 pt4 pm4 fmt# ln

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET ENCODING B-17

Table B-13. Miscellaneous

1100 0110 00xx xxxx storw imm (prp) disp14 4 dest (prp) 4 src imm 14 dest disp 17 2

0000 0000 0001 0011 storw imm (reg) disp20 4 dest (reg) 4 src imm 20 dest disp 4 ope 0 2 3

1100 0010 xxxx xxxx storw imm (rp) disp0 4 dest (rp) 4 src imm 15 1

1100 0011 xxxx xxxx storw imm (rp) disp16 4 dest (rp) 4 src imm 16 dest disp 16 2

0000 0000 0001 0011 storw imm (rp) disp20 4 dest (rp) 4 src imm 20 dest disp 4 ope 1 2 3

0000 0000 0001 0011 storw imm (rrp) disp20 4 dest (rrp) 4 src imm 20 dest disp 4 ope 2 2 3

1100 0001 xxxx xxxx storw imm abs20 20 dest abs 4 src imm 12 2

1100 010x xxxx xxxx storw imm abs20 rel 20 dest abs 4 src imm 1 dest rs 13 2

0000 0000 0001 0011 storw imm abs24 24 dest abs 4 src imm 4 ope 3 3 3

Opcode (15:0) Instruction Name p1 pt1 pm1 p2 pt2 pm2 p3 pt3 pm3 p4 pt4 pm4 fmt# ln

Opcode (15:0) Instruction Name p1 pt1 pm1 p2 pt2 pm2 p3 pt3 pm3 p4 pt4 pm4
fmt
#

ln

0000 0000 0000 1010 cinv [i] 4 1

0000 0000 0000 1011 cinv [i,u] 4 1

0000 0000 0000 1100 cinv [d] 4 1

0000 0000 0000 1101 cinv [d,u] 4 1

0000 0000 0000 1110 cinv [d,i] 4 1

0000 0000 0000 1111 cinv [d,i,u] 4 1

0000 0000 0000 0100 di 4 1

0000 0000 0000 0101 ei 4 1

0000 0000 0000 0111 eiwait 4 1

0000 0000 0000 0110 wait 4 1

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET ENCODING B-18

Table B-14. Reserved (res)

Opcode (15:0) Instruction Name p1 pt1 pm1 p2 pt2 pm2 p3 pt3 pm3 p4 pt4 pm4
fmt
#

ln

0000 0000 0000 000x res - undefined trap 1

0000 0000 0000 0010 res - undefined trap 1

0000 0000 0000 100x res - undefined trap 1

0000 0000 0001 0000 res - no operation 4 ope 1 3 3

0000 0000 0001 0000 res - no operation 4 ope 3 3 3

0000 0000 0001 0001 res - no operation 4 ope 0 3 3

0000 0000 0001 0001 res - no operation 4 ope 1 3 3

0000 0000 0001 0001 res - no operation 4 ope 2 3 3

0000 0000 0001 0001 res - no operation 4 ope 3 3 3

0000 0000 0001 0100 res - no operation 4 ope 4 1 2

0000 0000 0001 0100 res - no operation 4 ope 5 1 2

0000 0000 0001 0100 res - no operation 4 ope 6 1 2

0000 0000 0001 0100 res - no operation 4 ope 7 1 2

0000 0000 0001 0101 res - undefined trap 1 2

0000 0000 0001 0110
res - undefined trap

 for movmcr (rp)
4 dest rp 3 count imm 4 src ci 4 src ca 1 2

0000 0000 0001 0111
res - undefined trap

 for movmrc (rp)
4 src rp 3 count imm 4 dest ci 4 dest ca 1 2

0000 0000 0001 1000 res - undefined trap ope 0 3

0000 0000 0001 1000 res - undefined trap ope 1 3

0000 0000 0001 1000 res - undefined trap ope 2 3

0000 0000 0001 1000 res - undefined trap ope 3 3

0000 0000 0001 1000 res - undefined trap ope 6 3

0000 0000 0001 1000 res - undefined trap ope 7 3

0000 0000 0001 1000 res - undefined trap ope 10 3

0000 0000 0001 1000 res - undefined trap ope 11 3

0000 0000 0001 1000 res - undefined trap ope 14 3

0000 0000 0001 1000 res - undefined trap ope 15 3

0000 0000 0001 1001 res - undefined trap ope 0 3

0000 0000 0001 1001 res - undefined trap ope 1 3

0000 0000 0001 1001 res - undefined trap ope 2 3

0000 0000 0001 1001 res - undefined trap ope 3 3

0000 0000 0001 1001 res - undefined trap ope 6 3

0000 0000 0001 1001 res - undefined trap ope 7 3

0000 0000 0001 1001 res - undefined trap ope 10 3

CompactRISC CR16C Programmer’s Reference Manual INSTRUCTION SET ENCODING B-19

0000 0000 0001 1001 res - undefined trap ope 11 3

0000 0000 0001 1001 res - undefined trap ope 14 3

0000 0000 0001 1001 res - undefined trap ope 15 3

0000 0000 0001 101x res - undefined trap 3

0000 0000 0001 11xx res - undefined trap 3

0000 0000 1000 xxxx
res - undefined trap

 for coprocessor inst
4 ci imm 32 cinst imm 23 3

0000 0000 111x xxxx res - undefined trap 1

0000 1001 0xxx xxxx res - undefined trap 2

1000 0000 xxxx xxxx res - undefined trap 15 1

1100 0000 xxxx xxxx res - undefined trap 15 1

1111 1111 1111 1111 res - undefined trap 1

Opcode (15:0) Instruction Name p1 pt1 pm1 p2 pt2 pm2 p3 pt3 pm3 p4 pt4 pm4
fmt
#

ln

This page is intentionally blank.

CompactRISC CR16C Programmer’s Reference Manual STANDARD CALLING CONVENTIONS C-1

Appendix C

STANDARD CALLING CONVENTIONS

The primary goal of standard routine-calling conventions is to enable the
routines of one module to communicate with routines in other modules,
even if they are written in different programming languages.

The calling convention is defined as part of the CompactRISC architec-
ture, and is enforced and supported by CompactRISC development
toolsets. The calling convention consists of a set of rules which form a
handshake between different pieces of code (subroutines), and define
how control is transferred from one to another. It thus defines a general
mechanism for calling subroutines and returning from subroutines.

If you are using a toolset other than National’s CompactRISC Toolset, it
might support another calling convention, in addition to the one below.
Please refer to your toolset’s manual.

C.1 CALLING A ROUTINE

Calling a routine consists of the following steps:

1. Parameter values are computed, and placed in registers or on the
stack.

2. The BAL or JAL instruction is executed.

3. The called function allocates its area on the run-time stack, and saves
the values of the safe registers it plans to use.

4. The called function executes, i.e., it computes the return value and
stores it in a register.

5. The called function restores the safe registers, and de-allocates its
stack section.

6. Control is returned to the calling functions by means of a JUMP in-
struction.

CompactRISC CR16C Programmer’s Reference Manual STANDARD CALLING CONVENTIONS C-2

C.2 SUBROUTINES

C.2.1 Calling a Subroutine

The BAL or JAL instruction is used to call a subroutine. Each of these in-
structions performs two operations:

1. It saves the address of the following instruction (the value of the Pro-
gram Counter Register) in a specified general-purpose register pair.

The calling convention requires the use of (ERA, RA) register pair
(when CFG.SR=1), or the RA Register (CFG.SR =0). This register pair
is used to store the return address.

2. It transfers control to a specified location in the program (the subrou-
tine address).

Example 1 For CFG.SR=1:

bal (era,ra), get_next # call the subroutine "get_next"

or

jal (era,ra), (r8,r7) # call the subroutine whose address is
stored in the pair R7, R8

C.2.2 Returning from a Subroutine

The Jump instruction is used to return from a subroutine. The program
jumps to the return address, which is stored in (ERA, RA) register pair,
or the RA Register, as follows:

For CFG.SR=1:

jump (era,ra) # return to caller

CompactRISC CR16C Programmer’s Reference Manual STANDARD CALLING CONVENTIONS C-3

C.3 CALLING CONVENTION ELEMENTS

This section describes the conventions for passing parameters to a called
subroutine and for returning a value. It also discusses the program
stack and how to call different types of general-purpose registers.

C.3.1 Passing Parameters to a Subroutine

Qualifying arguments may be passed to the called subroutine by loading
them into registers, according to a predefined convention. The registers
used are the integer registers R2, R3, R4, R5.

Qualifying
arguments

A qualifying argument may be one of the following types:

• Integer type, pointer type

• Aligned structure whose size is less than, or equal to, four bytes.

32-bit long integer types and pointers are considered two-word struc-
tures, in this context. The least significant word of a multi-word struc-
ture is always stored first.

The algorithm The following algorithm determines how parameters are passed to a giv-
en routine:

1. The parameter list is scanned from left to right.

2. A qualifying argument is allocated to the next free register in ascend-
ing order, i.e., R2 is allocated before R3, etc. Multi-word structures
use a register pair. The least significant word is allocated to the first
register, and the most significant word to the next consecutive regis-
ter.

3. If a parameter cannot be passed in a register (either because it is not
qualified, or because the registers have been entirely allocated to pre-
vious parameters), then this parameter is passed on the stack, least
significant byte first.

C.3.2 Returning a Value

A subroutine can return one value to its caller. The calling convention
uses the R0 register for passing a short return value and the register
pair R0 and R1 for passing a long (4-byte) return value, with the least
significant word in R0.

For example, consider the following C code:

return 5;

The assembly code generated from this line is:

CompactRISC CR16C Programmer’s Reference Manual STANDARD CALLING CONVENTIONS C-4

For CFG.SR=1:

movw $5, r0 # pass return value
jump (era,ra) # return to caller

The only exception to this rule is a function that returns a structure. In
this case, the calling function must store the address of a structure in
R0. The called function then uses R0 as a pointer to store the resulting
structure.

C.3.3 Program Stack

The program stack is a contiguous memory space that may be used for:

• Allocating memory for local variables which are not in registers
• Passing arguments in special cases (see Section C.3.1 on page C-3.)
• Saving registers before calling a subroutine, or after being called (see

“Scratch Registers” on page C-5).

The stack is a dynamic memory space which begins at a fixed location
(stack bottom) and grows towards lower memory addresses. Its lowest
address (also called top of stack) is changed dynamically and is pointed
to by the Stack Pointer (SP) Register.

Figure C-1. The Program Stack

Address 0

Bottom of Stack

Top of Stack
Stack Pointer (SP)

Stack
Space

Highest Memory Address

CompactRISC CR16C Programmer’s Reference Manual STANDARD CALLING CONVENTIONS C-5

A subroutine can allocate space on the stack by decrementing the value
of the SP to adjust the top of stack. When this subroutine returns, it
must restore the SP to its previous value, thereby releasing the tempo-
rary space that it had occupied on the stack during its lifetime.

C.3.4 Scratch and Safe Registers

According to the convention, CompactRISC general-purpose registers
may be used as scratch registers or safe registers.

Scratch Registers

Any of these registers can be freely modified by any subroutine without
first saving a backup of their previous value. The caller cannot assume
that their value will remain the same after a subroutine has returned. If
for any reason the caller needs to keep this value, the scratch register
must be saved on the stack before calling the subroutine and restored
after the subroutine has returned.

Safe Registers

Before using any of these registers, a subroutine must first store its pre-
vious value on the stack. Upon returning to the caller the subroutine
must restore this value. The caller can always assume that these regis-
ters will not be used by any subroutine that it has called.

When CFG.SR = 1, the calling convention defines R0 through R6 as
scratch registers. All other general-purpose registers, including ERA, RA
and SP, are safe.

Exception The interrupt/trap subroutine is an exception to the rule for using
scratch registers. This kind of subroutine must always save and restore
every scratch register that may be used during the interrupt trap. This
is because there is no real caller. The interrupt, or trap, suspends anoth-
er subroutine which is not aware of, or prepared for, this interception.
To protect it, its scratch registers must be saved and restored so that the
interrupt, or trap, is transparent.

This page is intentionally blank.

CompactRISC CR16C Programmer’s Reference Manual COMPARING CR16C WITH CR16A/B D-1

Appendix D

COMPARING CR16C WITH CR16A/B

The purpose of this appendix is to help CR16A and CR16B developers
migrate to the CR16C. It focuses on both the implications for applica-
tions using the large programming model, and on the differences
between the programming model of the CR16B and the CR16C, particu-
larly on the instruction set differences.

Knowledge of these differences can enhance performance and enable
code optimization of existing applications.

D.1 MAJOR ENHANCEMENTS FROM CR16A/B

The CR16C architecture is an enhancement of the CR16B architecture.
The major enhancement is an increase of the available address space. In
the initial implementation of the CR16C, a 24-bit address is supported
allowing a 16M address space. The increased address size impacts on
the instruction encoding and register usage.

The instruction encoding has been changed to accommodate additional
commands that allow more efficient handling of larger address pointers.
As a result, binary compatibility with CR16A/B code is no longer main-
tained. However, assembly level compatibility is supported.

In addition, to offset the additional register usage required to hold larger
address pointers, registers R12-R15 are doubled in size.

To simplify backward assembly-level compatibility with the CR16A and
CR16B, the CR16C provides a configuration bit, CFG.SR, that permits
exclusive use of only the small registers. The small programming model
of the CR16B, which is backward compatible with the CR16A, is not
supported directly.

D.2 REGISTER SET

See Figures D-1 and D-2 for CR16B and CR16C register mapping.

CompactRISC CR16C Programmer’s Reference Manual COMPARING CR16C WITH CR16A/B D-2

Figure D-1. CR16B Register Set

Figure D-2. CR16C Programming Model

PSR

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12

R13/ERA

RA
SP

CFG

15 0

15 0

15 020 0

00000

15

INTBASE

ISP
PC

General-Purpose
Registers

Dedicated Address
Registers

Processor Status
Register

Configuration
Register

INTBASEH INTBASEL

DCR
15 0

Debug Registers

DSR
CARLCARH

20

ISPL

PSR

Dedicated Address Registers

Processor Status Register

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9

R10
R11
R12
R13

RA
SP

General-Purpose Registers

CFG

Configuration Register

15 0

15 0

15 0
PC31

0

ISPH

15

USPL

DCRL
DSR

CAR0L

Debug Registers
15 0

CAR0H

31

31

CAR1H CAR1L

USPH
INTBASELINTBASEH

DCRH
DBS

23

Debug Register Bank 1
Debug Register Bank 2

CompactRISC CR16C Programmer’s Reference Manual COMPARING CR16C WITH CR16A/B D-3

D.2.1 General-Purpose Registers

The general-purpose registers are 16 bits wide in the CR16A and the
CR16B. In the CR16C, registers R12, R13, RA and SP are doubled in size
to 32 bits. In the CR16C, R12 and R13 can be used as base and index
address registers as a single register. In addition, all other registers can
be paired.

D.2.2 Dedicated Address Registers

The dedicated address registers, used by the CR16B to implement spe-
cific address functions, are 18 bits wide in the CR16A, and 21 bits wide
in the CR16B. In the CR16C, these registers are increased to 32 bits.
See Section 2.3.2 on page 2-3 for a detailed description of these regis-
ters.

CR16B large
programming
model

In the CR16B, the three dedicated address registers, PC, ISP and
INTABSE, are 21 bits wide. However, the five most significant bits of the
ISP registers are always cleared. In the CR16C, these registers are all 24
bits.

Configuration
bits

A short register bit allows use of the registers as in the CR16B; the
extended version of R12, R13 and R14 is effectively disabled.

In the Debug Control Register, there is also an option to use a separate
Compare Address Register, either independently or as the second part of
a range compare.

In addition, support for a cache is included with instruction and data
cache enable bits.

PSR A user mode status bit has been added to indicate whether the processor
is currently in user mode, or is using the user stack.

D.3 INSTRUCTION SET

New
instructions

After extensive code analysis, new instructions have been added to sup-
port additional operations that work on a larger address space. The fol-
lowing new commands accommodate the larger address pointers:

• LOAD/STORE double-word
• Compare double
• Add double
• Subtract double
• Arithmetic/Logical shift double
• MOVXW/MOVZW
• AND/OR/XOR double

CompactRISC CR16C Programmer’s Reference Manual COMPARING CR16C WITH CR16A/B D-4

In response to user feedback, and to facilitate simple DSP algorithms, a
basic set of Multiply and Accumulate instructions has been included in
the instruction set:

• MACSW
• MACUW
• MACQW

Relative
addressing

Addressing relative to a register pair has been expanded to allow any
register pair as the base address, across the entire address range. Direct
access using 20 and 24-bit labels is also provided across all data opera-
tions.

Index
addressing
mode

Improved support for relocatable code and index addressing mode has
been added. This allows the location of data to be determined at run-
time. Code is written only with relative jumps and data may be located
in two regions; for example, one for the RAM and one for flash.

Expanded
instructions

The following instructions have an expanded meaning:

PUSH/POP/POPRET now operate on up to eight registers with a separate
bit for determining if RA should be pushed/popped to/from the stack.
This avoids two consecutive stack operations, which often occur.

Load/Store Multiple now allows a count of up to eight registers, and
permits a register pair to contain the source and destination. The former
Load/Store Multiple instruction, which uses a single register pointer,
is still supported but now with a count of eight.

All restrictions have been removed from bit and Store Immediate
operations regarding which registers can be used to store the address
displacements. Additional addressing modes are provided.

Retired
instructions

Since the CR16B small programming model is no longer supported
directly, the following instructions are no longer necessary:

• bal (reg) disp17
• jal (reg,reg)
• Jcond (reg)
• jump (reg)
• POPRET small model

The Bcond1i instruction is no longer implemented by the CR core. The
Bcond1i assembly instruction is converted by the assembler to a cmp
and bcond instruction.

Peripheral
and interrupt
mapping

Peripherals can be mapped into the last 64K of the address space. This
allows RAM to start at address 0 and increase as much as necessary,
without requiring holes in the memory decode logic. For coding effi-

CompactRISC CR16C Programmer’s Reference Manual COMPARING CR16C WITH CR16A/B D-5

ciency, access to this address space can be accomplished with the 20-bit
absolute addressing mode as double-word commands by mapping the
last 64K in the first MB of memory to the last 64K of the 16M space.

D.4 EXCEPTION HANDLING

Dispatch
table

The dispatch table no longer has any location restrictions. It can exist
anywhere in memory. The CFG.ED bit now determines only if it contains
single-word or double-word entries. This allows size optimization of the
dispatch table, since on-chip RAM is always at a premium.

Interrupt
stack

Due to the larger address pointers, an entry on the interrupt stack must
now be in 3-word format, including: PSR, address high, address low.

Wraparound CR16A and CR16B address wraparound is no longer supported. An
address out of the range of 0 to 16M triggers an IA trap.

User mode The CR16C adds better support for multi-tasking operating systems, and
now supports a user stack in addition a supervisor stack. This is a
requirement for many secure applications. An application that does not
use the user stack runs entirely in supervisor mode. All interrupts and
traps are handled in supervisor mode.

Two stack pointers are used. The user stack pointer is initialized with
LPR commands. The JUSR instruction causes entry to user mode by set-
ting the PSR.U bit. This bit is output from the core on the SFUSR signal
for use by an external Memory Protection Unit. This bit is also used to
determine which current stack pointer to use. The PSR.U bit is cleared
on an exception before the dispatch table is read.

Table D-1. Execution Times for Interrupts and Traps

Interrupt or Trap

Clock Cycles in EX Stage

CFG.ED=0
(16-bit dispatch table)

CFG.ED=1
(32-bit dispatch table)

INT 12 13

NMI and ISEa

a. For ISE, TRC, DBG and BPT, if AISE, ATRC, ADBG and ABPT bits
in the CFG registers are set (respectively), then the execution time
is that of ISE/NMI for Large Model the 32-bit dispatch table (12
cycles). See Section 4.1.5 on page 4-14 for more details.

11 12

TRCa 9 10

DBGa 9 10

SVC, DVZ, FLG,
BPTa and UND

9 10

This page is intentionally blank.

CompactRISC CR16C Programmer’s Reference Manual INDEX 1

A

absolute addressing mode 2-16

acknowledge
exception 3-6

ADDCi instructions 5-5

ADDi instructions 5-4

addition
integer instructions, ADD[U]i 5-4
integer with carry instructions, ADDCi 5-5
with carry 2-5

address
compare 4-19

registers, dedicated 2-3

address-compare match, write
bit, DSR.BWR 4-19

addressing mode
absolute 2-16

immediate 2-15

in instructions 5-1

register 2-15

relative 2-15

ADDUi instructions 5-4

ANDi instructions 5-6

arithmetic
shift instructions, ASHUi 5-7

ASHUi instructions 5-7

B

BAL instruction 5-9

Bcond instructions 5-10

bits, reserved 2-2

bitwise logical
AND instructions, ANDi 5-6
OR instructions, ORi 5-46

boolean data type 2-1

boolean, instructions to save condition as,
Scond 5-55

borrow, see also carry 2-5

BPC, PC bit in DSR 4-19

BPC, PC match bit in DSR 4-19

BPT trap 3-3, 3-12

BR instruction 5-14

branch
and link instruction, BAL 5-9

unconditional, instruction, BR 5-14
BRD, compare address bit in DSR 4-19

breakpoint
generation 4-1

trap, BPT 3-3, 3-12

BWR, write, address-compare match bit in DSR
4-19

C

C, carry bit in PSR 2-5

cache
invalidation instruction, CINV 5-17
on-chip 2-6

CAR register 4-1

carry bit, PSR.C 2-5

CFG register 2-6

CINV instruction 4-21, 4-23

CINV instruction 5-17

clock
cycle A-1

CLRBi instructions 5-15

CMP0BCondi instructions 5-13

CMPi instructions 5-17, 5-18

compare address bit in DSR
BRD 4-19

compare-address
PC match enable bits 4-18

comparison
integer instructions, CMP0BCondi 5-13
integer instructions, CMPi 5-18
operations 2-5

cond, condition code 5-55

conditional instructions
branch, Bcond 5-10
jump, Jcond 5-23
save, Scond 5-55

configuration register, see also CFG 2-6

convert
sign integer to double-word, MOVXi 5-39
sign integer to word, MOVXB 5-39
unsigned integer to unsigned double-word,

MOVZi 5-40
unsigned integer to unsigned word, MOVZB

5-40

INDEX

CompactRISC CR16C Programmer’s Reference Manual INDEX 2

CRD, compare address read enable bit in DCR
4-18

CWR, compare address write enable bit in DCR
4-18

cycle, in instruction execution timing A-1

D

data
length attribute specifier in instructions 5-1

organization 2-12

types 2-1

write accesses 4-23

data cache, DC
bit, CFG.DC 2-6, 4-23

invalidation 4-23

lock bit, CFG.LDC 2-7

DBG trap
and exception service procedures 3-9

DC, data cache
bit in CFG 2-6, 4-23

invalidation 5-17

DCR register 4-1, 4-16

debug
control register, DCR 4-16

features 4-1

dedicated address registers 2-3

delays during instruction execution A-1

DEN, address-compare and PC match enable bit
in DCR 4-18

DI instruction 5-19

DISABLE instruction 2-6

dispatch table, IDT
in SF architecture 3-1

see also IDT 3-1

division by zero
trap, DVZ 3-3

DSR register 4-1

DVZ trap 3-3

E

E, local maskable interrupt enable bit in PSR 2-6

EI instruction 5-20

EIWAIT instruction 5-21

ENABLE instruction 2-6

encoding, instruction set B-1

exception

acknowledge 3-6, 3-8

defined 3-1

handler 3-1

instruction, EXCP 5-22
priority 3-10

processing 3-4

processing table 3-8

processing, flowchart 3-11

return instruction, RETX 5-52
service procedure 3-9

EXCP instruction
and serialized instructions 4-26

EXCP instruction 3-9, 5-22

executing-instructions operating state 4-24

execution
program suspension instruction, EIWAIT 5-

21
program suspension instruction, WAIT 5-68
timing for instructions A-1

F

F
flag bit of PSR 2-5, 5-66

fetch
instruction 4-20

stage in integer pipeline, IF 2-4

flag
bit, PSR.F 2-5, 5-66

FLG trap 3-3

G

general purpose registers 2-3

H

handler
exception 3-1

I

I, maskable interrupt enable bit of PSR 2-6

IC, instruction cache
bit in CFG 2-7, 4-21

CompactRISC CR16C Programmer’s Reference Manual INDEX 3

invalidation 5-17

ICU, interrupt control unit 4-25

ID, stage in integer pipeline A-1

IDT, interrupt dispatch table 3-1, 4-25

IF
stage in integer pipeline 2-4

immediate
addressing mode 2-15

instruction
decoding, stage in integer pipeline, ID A-1

dependency 4-26

endings 3-4

execution order 4-1, 4-24

execution timing A-1

fetch 4-20

format 5-1

latency, defined A-1

parallel execution 4-25

pipeline execution 4-25

serial execution 4-26

set, encoding B-1

suspended, completion 3-9

throughput, defined A-1

tracing 4-1

instruction cache, IC
bit, CFG.IC 2-7, 4-21

invalidation 4-21

lock bit, CFG.LIC 2-7

In-System Emulator interrupt, see ISE interrupt
INTBASE register 2-4

integer
addition instructions, ADD[U]i 5-4
addition with carry instructions, ADDCi 5-5
arithmetic shift instructions, ASHUi 5-7
comparison instructions, CMP0BCondi 5-13
comparison instructions, CMPi 5-18
convert to unsigned 5-40

data type 2-1

load instructions, CLRBi 5-15
load instructions, LOADi 5-27
load instructions, SETBi 5-53
logical shift integer instructions, LSHi 5-33
move instructions, MOVi 5-38
multiplication instructions, MULi 5-35, 5-36,

5-37, 5-41
multiplication instructions, SMULB 5-42
multiplication instructions, SMULW 5-43
multiplication instructions, UMULW 5-44
pipeline organization A-2

sizes 2-1

store instructions, STORi 5-59
subtract with carry instructions, SUBCi 5-65
subtraction instruction, SUBi 5-64

internal register 2-2

interrupt

defined 3-1

dispatch table, IDT 3-1

maskable 2-6

maskable, DI instruction 5-19

maskable, EI instruction 5-20

non-maskable 2-6, 3-2

priority 3-10

stack pointer, see also ISP register 2-4

stack, and RETX instruction 5-52

stack, description 2-14

stack, during exception 3-2, 3-9

vector, see also, dispatch table, INTBASE 5-

22

wait for interrupt instruction, EIWAIT 5-21
wait for interrupt instruction, WAIT 5-68

invalidation
data cache 4-23

instruction cache 4-21

of caches, CINV 5-17
ISE interrupt 3-2

ISE support 4-1

ISP register 2-4

J

JAL instruction 5-25

Jcond instructions 5-23

jump
conditional, instructions, Jcond 5-23

jump and link instruction, JUMP 5-25, 5-26
JUMP instruction 5-26

L

L, low flag of PSR 2-5

latency, instruction A-1

LDC, lock data cache line bit in CFG 2-7

LIC, lock instruction cache line bit in CFG 2-7

link after branch instruction, BAL 5-9
load

integer instructions, CLRBi 5-15
integer instructions, LOADi 5-27
integer instructions, SETBi 5-53
processor register instruction, LPR 5-31, 5-

57
LOADi instructions 5-27

lock
data cache line bit, CFG.LDC 2-7

instruction cache line bit, CFG.LIC 2-7

CompactRISC CR16C Programmer’s Reference Manual INDEX 4

logical
AND instructions, ANDi 5-6
exclusive OR instructions, XORi 5-69
OR instructions, ORi 5-46
shift integer instructions, LSHi 5-33

low flag, PSR.L 2-5

LPR instruction
and PSR.P bit 4-2

and serialized instructions 4-26

LPR instruction
accessing DCR, DSR 4-3

description 5-31, 5-57

LRU, least recently used
DC line replacement 4-21, 4-23

LSHi instructions 5-33

M

maskable
interrupt enable bit, PSR.E 2-6

maskable interrupt 3-2

maskable interrupt disable instruction, DI 5-19
maskable interrupt enable bit, PSR.I 2-6

maskable interrupt enable instruction, EI 5-20
memory

organization 2-12

references using LOAD and STORE 2-14
model, programming 2-1

move
integer instructions, MOVi 5-38
with sign extension instruction, MOVXB 5-39
with sign extension instruction, MOVXi 5-39

MOVi instructions 5-38

MOVXB instruction 5-39

MOVXi instruction 5-39

MOVZB instruction 5-40

MOVZi instructions 5-40

MULi instructions 5-35, 5-36, 5-37, 5-41

multiplication
integer instructions, MULi 5-35, 5-36, 5-37,

5-41
integer instructions, SMULB 5-42
integer instructions, SMULW 5-43
integer instructions, UMULW 5-44

N

N, negative bit in PSR 2-5, 2-7

negative bit, PSR.N 2-5, 2-7

no operation instruction, NOP 5-45
non-maskable interrupt 3-2

NOP instruction 5-45

O

on-chip
caches, control by CFG register 2-6

operand
access class and length in instructions 5-1

in instructions 5-1

OR logical
exclusive, instructions, XORi 5-69

ORi instructions 5-46

P

P, trace trap pending bit in PSR 2-6, 4-1

parallel processing
in pipeline 4-25

PC match
and compare-address enable bits 4-18

PC match bit, DSR.BPC 4-19

PC register
bit, DSR.BPC 4-19

match 4-1

match enable bits in DCR 4-18

pipeline
organization, integer A-2

pipelined instruction execution 4-25

priority, exception 3-10

processing-an-exception operating state 4-24

processor
registers and load instruction, LPR 5-31, 5-

57
status register, see also PSR 2-4, 3-2

program
execution time A-1

modes 2-1

stack 2-14

PSR register
and CMPi instructions 5-17, 5-18

and DI instruction 5-19

and exceptions 3-2

description 2-4

CompactRISC CR16C Programmer’s Reference Manual INDEX 5

R

R0, R1 registers 2-4

references to memory 2-14

register
addressing mode 2-15

configuration, see also CFG 2-6

dedicated address 2-3

general purpose 2-3

internal 2-2

relative addressing mode 2-15

reserved bits 2-2

reset 3-13, 4-24

resume execution after EIWAIT 5-21
resume execution after WAIT 5-68
return

from exception instruction, RETX 5-52
RETX instruction

after exceptions 3-2

and serialized instructions 4-26

tracing 4-2

RETX instruction
description 5-52

in exception service procedure 3-9

RST signal 3-13

S

save, on condition instructions, Scond 5-55
Scond instructions 5-55

SETBi instructions 5-53

shift
arithmetic, instructions, ASHUi 5-7
logical, integer instructions, LSHi 5-33

sign extension plus move instruction, MOVXB 5-
39

sign extension plus move instruction, MOVXi 5-
39

signed integer data type 2-1

SMULB instructions 5-42

SMULW instructions 5-43

SP
general purpose register 2-3

SPR instruction
accessing DCR, DSR 4-3

stack
interrupt and program 2-14

interrupt, during exception 3-2, 3-9

interrupt, in RETX instruction 5-52

store

integer instructions, STORii 5-59

STORi instructions 5-59

SUBCi instructions 5-65

SUBi instructions 5-64

subtraction
integer instruction, SUBi 5-64
with carry 2-5

supervisor
call trap, SVC 3-3

suspend execution instruction, EIWAIT 5-21
suspend execution instruction, WAIT 5-68
SVC trap 3-3

T

T, trace bit in PSR 2-5, 4-1

TBIT instruction 2-13, 2-14, 5-66

test bit instruction, TBIT 5-66
throughput, instruction

defined A-1

timing
instruction execution A-1

trace
bit, PSR.T 2-5, 4-1

trap pending bit, PSR.P 2-6, 4-1

trap TRC, description 3-4

trap, TRC 4-2

tracing
instructions 4-1

program 2-5

trap
defined 3-1

list and descriptiohns 3-3

table with vecor for each type 5-22

trace, TRC 2-6

TRC trap
description 3-4

in exception service procedure 3-9

in instruction tracing 4-2

pending bit, PSR.P 2-6

U

UMULW instructions 5-44

unconditional branch instruction, BR 5-14
UND trap 3-3

definition 3-9

undefined
instruction trap, UND 3-3

CompactRISC CR16C Programmer’s Reference Manual INDEX 6

undefined instruction
trap, UND 3-9

unsigned integer data type 2-1

V

vector
interrupt table 5-22

W

WAIT instruction 4-25, 5-68

waiting-for-an-interrupt operating state 4-24

X

XORi instructions 5-69

Z

Z, zero bit in PSR 2-5

zero
bit, PSR.Z 2-5

	CONTENTS
	INTRODUCTION
	1.1 NATIONAL’S CompactRISC TECHNOLOGY
	1.2 CR16C 16-BIT CompactRISC PROCESSOR CORE
	1.3 THE COMPACTRISC ARCHITECTURE
	1.4 REDUCED MEMORY REQUIREMENTS
	1.5 SCALABLE ARCHITECTURE FROM 8 TO 64 BITS
	1.6 MODULAR EXTENSIONS
	1.7 DEVELOPMENT TOOLS

	PROGRAMMING MODEL
	2.1 COMPATIBILITY WITH CR16A and CR16B
	2.2 DATA TYPES
	2.3 REGISTER SET
	2.3.1 General-Purpose Registers
	2.3.2 Dedicated Address Registers
	2.3.3 The Processor Status Register
	2.3.4 The Configuration Register

	2.4 INSTRUCTION SET
	2.5 MEMORY ORGANIZATION
	2.5.1 Data References
	2.5.2 Stacks

	2.6 ADDRESSING MODES

	EXCEPTIONS
	3.1 INTRODUCTION
	3.2 INTERRUPT HANDLING
	3.3 TRAPS
	3.4 DETAILED EXCEPTION PROCESSING
	3.4.1 Instruction Endings
	3.4.2 The Dispatch Table
	3.4.3 Acknowledging an Exception
	3.4.4 Exception Service Procedures
	3.4.5 Returning from Exception Service Procedures
	3.4.6 Priority Among Exceptions
	3.4.7 Nested Interrupts

	3.5 RESET

	ADDITIONAL TOPICS
	4.1 DEBUGGING SUPPORT
	4.1.1 Instruction Tracing
	4.1.2 The �Breakpoint Instruction
	4.1.3 User Programmable Breakpoint Features
	4.1.4 Example Breakpoints
	4.1.5 In-System Emulator (ISE)
	4.1.6 Hardware Debug Mode
	4.1.7 Debug Control and Status Registers

	4.2 CACHE SUPPORT
	4.2.1 Instruction Cache Operation
	4.2.2 Instruction Cache Invalidation
	4.2.3 Data Cache Operation
	4.2.4 Data Write Operation
	4.2.5 Data Cache Invalidation and Coherence Support
	4.2.6 Data Cache Monitoring

	4.3 INSTRUCTION EXECUTION ORDER
	4.3.1 The Instruction Pipeline
	4.3.2 Serializing Operations

	INSTRUCTION SET
	5.1 INSTRUCTION DEFINITIONS
	5.2 DETAILED INSTRUCTION LIST

	INSTRUCTION EXECUTION TIMING
	A.1 TIMING PRINCIPLES
	A.2 THE PIPELINE
	A.3 EXECUTION DELAYS
	A.4 INSTRUCTION EXECUTION TIMING

	INSTRUCTION SET ENCODING
	B.1 INTRODUCTION
	B.2 INSTRUCTION FORMATS
	B.2.1 Field Definitions for CR16C Encoding

	B.3 CR16C INSTRUCTION SET SUMMARY

	STANDARD CALLING CONVENTIONS
	C.1 CALLING A ROUTINE
	C.2 SUBROUTINES
	C.2.1 Calling a Subroutine
	C.2.2 Returning from a Subroutine

	C.3 CALLING CONVENTION ELEMENTS
	C.3.1 Passing Parameters to a Subroutine
	C.3.2 Returning a Value
	C.3.3 Program Stack
	C.3.4 Scratch and Safe Registers

	COMPARING CR16C WITH CR16A/B
	D.1 MAJOR ENHANCEMENTS FROM CR16A/B
	D.2 REGISTER SET
	D.2.1 General-Purpose Registers
	D.2.2 Dedicated Address Registers

	D.3 INSTRUCTION SET
	D.4 EXCEPTION HANDLING

	INDEX

