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1 Background
All the sounds we make and hear are audio signals, usually a whole bunch of
them. An example of such a bunch is the the sound of shouting ”Hello World!”
out into the void. Let’s denote ’the bunch’ of signals (s1, ..., sn). In reality the
signals are continuous, but each audio signal s can be represented as a discrete
function of time, s : Z→ R. At any point in time t ∈ Z, the audio signal has a
value s(t) ∈ R. The set of all possible signals is then S = Z→ R and our bunch,
actually a tuple, a member of the set Sn, n ∈ N.

Now if we were to shout ”Hello World!” in a ravine we would also hear echoes.
The echoes are transformed versions of the original signals and could be denoted
(s′

1, ..., s′
n). There is thus some process echo producing the echo of a signal such

that echo(s1) = s′
1, echo(s2) = s′

2 and so on. echo : S→ S is an example of an
audio signal processor: something that transforms a set of input audio signals
to a set of output signals. More formally, a signal processor p is thus a function
p : Sn → Sm, n, m ∈ N [1].

Faust is a functional programming language for the digital audio processing
domain. A Faust program describes an audio signal processor, such as echo.
From the Faust implementation of some signal processor p, it is possible to
generate the corresponding implementation of p in a number of programming
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languages. The FAST [2] project aims to extend the Faust compiler with code
generation for FPGA-based platforms; an extension that would enable high-
level programming – in Faust – of ultra-low-latency audio signal processors.

The signals described above, S, are discrete-time signals i.e. sequences of real
numbers. Some real numbers have an infinite number of decimals, but within
the limited memory space of a computer such numbers cannot be stored in
their entirety. Instead, a finite approximation of the reals are used. For this
task, floating-point number formats are commonly used. They are versatile and
provide high accuracy – at a computational cost in time, power and silicone.
In some cases, like ultra-low-latency audio signal processing, a more resource
efficient alternative to floating-point numbers is desirable. This is when the
fixed-point numbers enter the stage.

Faust uses floating-point numbers, but in programs for FPGA-based platforms
we would like to use fixed-point numbers when appropriate. So, extending the
Faust compiler with code generation for FGPA requires a method for determin-
ing sensible fixed-point formats for the signal processor described by a Faust
program. A fixed-point format is defined by two integers m, l ∈ Z, the positions
of its Most and Least Significant Bits, abbreviated MSB and LSB. A. Dudermel,
a previous intern, begun the work on fix-point format determination [3] and his
report provides a more in-depth introduction to the floating- and fixed-point
formats.

My work has been focused on the LSB, i.e. the number determining the decimal
precision of the number format. The LSB and precision are inversely correlated;
the smaller the LSB the higher precision. Remembering the domain, audio sig-
nal processing, the precision with which the signals are processed may actually
affect the sound. When a fixed-point format offers less precision than required
for a certain number, one has to apply rounding, which could affect how the
signal sounds. On the other hand, a format more precise than necessary is a
waste of resources. So, is there a general method for determining what ’just
enough precision’ is for for Faust signals?
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2 The Faust Signal Graph
The signal graph is an intermediate representation of an audio processor used in
the Faust compiler. It is a directed graph where the nodes represent Faust prim-
itives and the edges represent signals. Formally, any signal S can be represented
as a pair of sets, the nodes and edges, as defined below.

S = (N, E) E ⊆ {(n1, n2) | n1, n2 ∈ N2, n1 ̸= n2} (1)

The edges are directed, meaning that the edge (n1, n2) spans from n1 to n2 as
illustrated in figure 1. In a Faust signal graph, the edge represents a signal that
is the output of the primitive n1 and the argument of n2.

Figure 1: Two nodes n1 and n2 and a directed edge e = (n1, n2)

n1 n2
e

2.1 The Faust Primitives
Primitives are elementary audio processors predefined in Faust. For instance,
the numerical operator + is a signal processor of the type S2 → S1. It takes two
argument signals s0, s1 ∈ S and produces the output signal s(t) = s0(t) + s1(t).
Even integer numbers are signal processors. Take the integer 2, it is a signal
processor with no arguments and one output signal such that ∀t ∈ Z. s(t) = 2,
so integers are signal processors of type S0 → S1 [1]. The Faust primitives are
listed in figure 2 below. More thorough descriptions of the primitives is provided
in the Faust syntax documentation [4].

Figure 2: The Faust primitives, P

P ::= n | c | op | @ | _ | ! [5]

n numbers, integers or real numbers
c UI elements (slider, button etc.)
op numerical operations
@ the delay operation
_ the identity function
! the cut operation
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2.2 Argument Order
So, the Faust primitives are all signal processors. We’ve defined signal processors
as functions p : Sn → Sm, n, m ∈ N [1] and for n ≥ 2 the function arguments can
be ordered in multiple ways. For example, a signal processor of type S2 → S1

takes two argument signals s0, s1 ∈ S and these can be ordered in two ways:
(s0, s1) and (s1, s0). For non-commutative operators, like minus and the delay
operator, different argument orders may produce different output signals. The
argument order is therefore reflected in the signal graph by a natural number
i ∈ N associated with each edge. Extending definition (1) with this argument
enumeration gives definition (2) below. Pay attention to the fact that N is the
set of nodes and N that of natural numbers.

S = (N, E) E ⊆ {(n1, n2, i) | n1, n2 ∈ N2, i ∈ N, n1 ̸= n2} (2)

In the following chapters, edges will be denoted (n1, n2, i) only when the value
of i is relevant. Otherwise the shorthand notation (n1, n2) will be used.

In a well-formed signal graph, the incoming edges to a node of indegree d ∈ N
each have a unique argument number between 0 and d - 1. This is ensured by
the logical formulas (3) and (4) below, where deg− denotes the indegree of a
node.

∀ (na, nb, i), (nc, nd, j) ∈ E2 . nb = nd ∧ i = j =⇒ na = nc (3)

∀ (na, nb, i) ∈ E . i ≤ deg−(nb)− 1 (4)

2.3 Recursion
Faust being a functional language, recursion is a common element in the pro-
grams and introduced using the operator ∼. The recursive composition opera-
tion [4] is not a primitive operation like those described in section 2.1. Therefore,
it is not represented by a node in the signal graph but instead unfolds into a
cycle including primitive operations like the delay operation. Best explained by
example, consider the recursive Faust program in figure 3 below. The program
describes a signal processor p : S0 → S1 with output signal s ∈ S such that
s(t) = s(t− 1) + 1

Figure 3: A recursive Faust program
process = _ ~ (+1);
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The corresponding signal graph1 is shown in figure 4 below, where the recursive
composition is represented by the cycle Proj0→ @→ +→ RECW0→ Proj0.

Figure 4: The signal graph for the Faust program process = _ ∼ (+1)
The node labels are primitive Faust operations and the edge labels the signals’
argument numbers for the operations

1

@

+ RECW 0

P roj0 @

0

OUT P UT0

1

1

0

0

0

0
0

1

0

3 Finding the LSB
Given the precision of the argument signals to an elementary processor (if it has
any) and the kind of processor, it is for most processors possible to compute the
precision required to keep its output signal exact. Let’s look at a few examples,
using lsbi to denote the LSB of an argument signal si, i its argument number,
and lsbout for the output signal’s LSB. Boolean operations will always output
integer values (1 or 0) requiring lsbout = 0. Addition of two signals s0, s1 ∈ S in
fixed-point formats with some LSBs lsb0 and lsb1 requires min(lsb0, lsb1) for the
output signal since there is an inverse correlation between LSB and precision;
the smallest LSB gives the highest precision. For other operations, like division,
it is not as clear-cut. Take the division of two argument signals s0, s1 ∈ S with
lsb0 = lsb1 = 0. If s0/s1 comes out even lsbout = 0 is sufficient, but if their
quotient is e.g. 0.110 for which the binary representation has an infinite number
of decimals, no LSB is small enough to hold the exact value of the signal. Thus
for an operation like division, one has to make a qualified guess for an lsbout

value that will keep the output signal precise enough, knowing that it may entail
some rounding.

1A signal graph description in DOT language can be generated for a Faust program with
the command faust -sg filename.dsp
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The Faust primitives can be divided into two types of processors:

1. p : S0 → Sm, m ∈ N
These are numbers, UI elements and input signals and are in the signal
graph represented by nodes of indegree 0, i.e. sources.

2. p : Sn → Sm, n, m ∈ N, n ≥ 1
These are numerical operations, the delay operation, identity function and
cut operation and are represented by nodes of indegree 1 or greater.

The output – represented by OUTPUT_0 in the signal graph (4) – is not
exactly a primitive, but nonetheless a processor of type:

3. p : S1 → S0

This is the node of outdegree 0 in the signal graph, i.e. the sink.

For the first group of primitives, the precisions of their output signals are known
and for the second they can be computed given the precisions of the argument
signals. Thus it is possible to infer the LSB for all signals in the graph for
which it is not already known, starting in the sources of the graph and working
towards the sink.

From the inference we obtain a precision for the output signal of the graph,
i.e. the argument signal to the output processor of type 3. above, but the ac-
tual precision of the output signal is also known. If lsbactual > lsbinferred for the
output signal, the internal precision of the signal graph is unnecessarily high; in
the end, the value of the output signal will be rounded to fit the actual fixed-
point format. There is thus a possibility to lower the internal precision and save
computational resources by propagating the actual, bigger LSB backwards in the
graph. This process is here called trimming and a kind of inverse LSB inference.

We arrive at the following process.

1. Infer LSBs
Given the LSB for the output signals from processors of type 1 above,
propagate the precision forward in the signal graph to the output signal

If the inferred LSB for the output signal is greater than the actual, then

2. Trim LSBs
Trim the LSB for the output signal by setting it to the actual output LSB.
Propagate the decreased precision backwards towards the input signals
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3.1 Signal Graph Traversal
An intuitive way to traverse a signal graph for LSB inference would be to, for
an arbitrary node ∈ N :

If all argument signals to the node have LSBs, compute the LSB for its output
signal, then infer the LSB for the node with that output signal as argument.
Otherwise infer LSBs for the argument signals that lack it.

However, the signal graph often contains cycles which the above method cannot
handle. Once within a cycle, one will never reach a node with LSBs for all its
arguments and thus loop forever. The signal graph needs to be traversed in such
a manner that covers all edges - to infer the LSBs for the whole graph - and
avoids getting stuck in a loop. This requires a more complex method than the
one proposed above; one that detects when looping and then infers the LSB of
the current node’s output signal despite not knowing the LSBs of all argument
signals. This means that the precision of signals within a loop needs to be fixed
and predefined, since it cannot be inferred.

The method enforced in the LSB inference and trimming algorithms is to tra-
verse the signal graph backwards, i.e. starting in the sink node and going in the
opposite direction to the edges, while keeping track of the path to detect loops.
Operating on a node level, a loop is detected if visiting the current node from
a node that it’s been visited from before. The algorithm has then followed a
cyclic path in the graph and should not continue further backwards. The node
is treated as a sink, for which the precision of the input signals is known, and
the algorithm infers the LSB of the output signal and then visits the node that
it came from.

3.2 LSB Inference and Trimming
Before presenting the LSB algorithms, let’s introduce some terminology and
complementary set definitions. The heads of the incoming edges to a node are
its predecessors, denoted Pnode. A predecessor node is considered unvisited if it
has not been visited from the current node. A node’s unvisited predecessors are
denoted P ′

node. The path is kept on a node level as a list of successors, denoted
Snode, i.e. the tails of the outgoing edges from a node that it node has been
visited from. The list is initially empty, and when visiting a node the successor
is added at the head of the list. The set of predecessors is static for a particular
graph, but the successors and with it the unvisited predecessors change as the
path progresses. To exemplify, the predecessors of n3 in figure 5 are n1 and
n2, written Pn3 = {n1, n2} and in the case that we have a path n3 → n1, n3
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is a successor of n1 but not n2 and so Sn1 = [n3], Sn2 = [ ] and the unvisited
predeccessors of n3 would be n2, i.e. P ′

n3
= {n2}.

Figure 5: Three nodes n1, n2 and n3 such that n1 and n2 are the predecessors
of n3

n1 n3

n2

Complementing definition (2) of a signal graph, we formalize the terms prede-
cessors (P ), successors (S) and unvisited predecessors (P ′) of a node:

Pnode = {p | p, node ∈ N, (p, node) ∈ E} (5)

Snode ⊆ {s | s, node ∈ N, (node, s) ∈ E}2 (6)

P ′
node = {p′ | p′ ∈ Pnode, node /∈ Sp′} (7)

The LSBs of a signal graph can be represented as a set of tuples of an edge, a
natural number LSB and a boolean value trimmed. The set is initially empty
and members are added with the progression of the LSB inference. As the
trimming algorithm progresses, the size of the set is constant but the values of
lsb and trimmed may change for some members.

LSBs ⊆ {(e, lsb, trimmed) | e ∈ E, lsb ∈ Z, trimmed ∈ {True, False}} (8)

With inspiration from the Haskell data type Maybe [6], we define the collection
of sets Mn:

Mn = {Nothing} ∪ Zn, n ∈ Z+ (9)

2A node’s successors must be an ordered collection to represent a path, but S here is the
corresponding set
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3.2.1 LSB Inference Algorithm – from the inputs to the output

Preconditions for the inference algorithm are:
∀ node ∈ N . Snode = [ ]
LSBs = ∅

Algorithm 1 LSB inference
1: function inferLSBs(node)
2: if P ′

node ̸= ∅ then
3: predecessor ∈ P ′

node

4: Spredecessor ← node + + Spredecessor

5: inferLSBs(predecessor)
6: else
7: Snode ← [s | s ∈ Snode, ((node, s), _, _) /∈ LSBs]
8: if Snode ̸= [ ] then
9: successor ← Snode[0]

10: lsb← computeLSB(node)
11: if lsb ∈ Z then
12: LSBs← LSBs ∪ {((node, successor), lsb, False)}
13: inferLSBs(successor)
14: else
15: return
16: else
17: return

computeLSB is a function that computes the precision of the given node’s output
signal based on its processor type and the LSBs of its argument signals. The
return value is a member of M1. For primitives of type Sn → S0, Nothing is
returned and for primitives of type Sn → Sm, m ≥ 1 an integer value.
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3.2.2 LSB Trimming Algorithm – from the output to the inputs

Preconditions for the trimming algorithm are:
∀ node ∈ N . Snode = [ ]
∀ edge ∈ E ∃ (e, lsb, trimmed) ∈ LSBs . edge = e, lsb ∈ Z

Algorithm 2 LSB trimming
1: function trimLSBs(node)
2: if P ′

node ̸= ∅ then
3: predecessor ∈ P ′

node

4: if {(_, node) | ((_, node), _, False) ∈ LSBs} ≠ ∅ then
5: lsbs← refineLSB(node)
6: if lsbs ⊂ N2 then
7: LSBs← LSBs

8: \ {((p, node), _, _) | ((p, node), _, _) ∈ LSBs}
9: ∪ {((p, node, i), lsbi, T rue) | p ∈ Pnode, lsbi ∈ lsbs}

10: Spredecessor ← node + + Spredecessor

11: trimLSBs(predecessor)
12: else
13: if Snode ̸= [ ] then
14: successor ← Snode[0]
15: trimLSBs(successor)
16: else
17: return
18: else
19: Spredecessor ← node + + Spredecessor

20: trimLSBs(predecessor)
21: else
22: if Snode ̸= [ ] then
23: successor ← Snode[0]
24: trimLSBs(successor)
25: else
26: return ▷ lsbi is shorthand notation for (i, lsb) ∈ N2

refineLSB is a function that computes the precision of the given node’s argument
signals based on its processor type and the current LSBs of its argument signals
and output signal. If the argument signals’ current LSBs produce an output
LSB smaller than the actual, the argument signals’ LSBs should be refined
i.e. increased. The difference in output LSBs, actual LSB – computed LSB
from argument signals’ LSBs, is then distributed over the argument signals’
LSBs. The return value is then a collection members of M2; pairs of argument
numbers and the corresponding new LSB for the argument. For primitives of
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type S0 → Sm or primitives for which the argument LSBs can remain the same,
Nothing is returned.

3.2.3 Algorithm Demonstration: A Small Recursive Example

To demonstrate the algorithms described in section 3.2.1 and 3.2.2, they can be
run on the recursive signal graph in figure 4 starting in the output node. The
actual precision of the output signal is known and here denoted lsbout. The pre-
cision for signals with loops in recursive graphs is predefined and here denoted
lsbrec. Both LSBs are integers smaller than or equal to zero.

Running the LSB inference algorithm, the graph is traversed with the following
path.
OUTPUT0 → @ → Proj0 → RECW0 → + → @ → Proj0 → @ →
1 → @ → + → 1 → + → RECW0 → Proj0 → @ → 0 → @ → OUTPUT0

When the algorithm halts, LSBs have been inferred for all signals in the graph
and the result is shown as edge labels in figure 6 below.

Figure 6: The signal graph for the Faust program process = _ ∼ (+1)
The edge labels show the signals’ inferred LSBs

1

@

+ RECW 0

P roj0 @

0

OUT P UT0

0

0

lsbrec

lsbrec

lsbrec

lsbrec

lsbrec

0

lsbrec

With LSBs inferred for the signal graph, the LSB trimming algorithm can be
run on it. If lsbout ≥ lsbrec, the graph is traversed with the following path.
OUTPUT0 → @ → Proj0 → @ → 0 → @ → OUTPUT0

When the algorithm halts, LSBs have been trimmed for the signals in the graph
and the result is shown as edge labels in figure 7 below. Note the trimmed LSBs
for the signals represented by edges (Proj0, @) and (@, lsbout).
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Figure 7: The signal graph for the Faust program process = _ ∼ (+1)
The edge labels show the signals’ trimmed LSBs
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3.3 Implementation
A toy Haskell implementation of the LSB inference and trimming algorithms
presented is available at GitHub.

4 Conclusion
It is possible to systematically infer LSBs for the Faust signal graphs using the
LSB inference and trimming algorithms presented here. With most ’interesting’
graphs being cyclic due to recursion, it requires a predefined, fixed LSB for the
signals within the cycles. The choice of a sufficiently small LSB is lies on the
user, and what constitutes ’sufficiently large’ differs between signal processors.
This means that with fixed-point formats for the signals within cycles, there is
a risk of rounding errors accumulating within the cycle and affecting the sound
of the processor’s output signal. To avoid this, one could instead use fixed-
point formats for all signals outside of the cycles and floating-point within the
cycles. However, this approach was not investigated within the scope of this
project but would entail LSB inference from the sources up until the cycle(s)
and a backwards inference, similar to the LSB trimming, from the sinks to the
cycle(s).
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