{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Numerical maximum likelihood estimation\n", "\n", "[Dataset download](https://s3.amazonaws.com/bebi103.caltech.edu/data/singer_transcript_counts.csv)\n", "\n", "
" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "nbsphinx": "hidden", "tags": [] }, "outputs": [], "source": [ "# Colab setup ------------------\n", "import os, sys, subprocess\n", "if \"google.colab\" in sys.modules:\n", " cmd = \"pip install --upgrade polars iqplot bebi103 watermark\"\n", " process = subprocess.Popen(cmd.split(), stdout=subprocess.PIPE, stderr=subprocess.PIPE)\n", " stdout, stderr = process.communicate()\n", " data_path = \"https://s3.amazonaws.com/bebi103.caltech.edu/data/\"\n", "else:\n", " data_path = \"../data/\"\n", "# ------------------------------" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "tags": [] }, "outputs": [ { "data": { "text/html": [ " \n", "
\n", " \n", " Loading BokehJS ...\n", "
\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/javascript": [ "'use strict';\n", "(function(root) {\n", " function now() {\n", " return new Date();\n", " }\n", "\n", " const force = true;\n", "\n", " if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n", " root._bokeh_onload_callbacks = [];\n", " root._bokeh_is_loading = undefined;\n", " }\n", "\n", "const JS_MIME_TYPE = 'application/javascript';\n", " const HTML_MIME_TYPE = 'text/html';\n", " const EXEC_MIME_TYPE = 'application/vnd.bokehjs_exec.v0+json';\n", " const CLASS_NAME = 'output_bokeh rendered_html';\n", "\n", " /**\n", " * Render data to the DOM node\n", " */\n", " function render(props, node) {\n", " const script = document.createElement(\"script\");\n", " node.appendChild(script);\n", " }\n", "\n", " /**\n", " * Handle when an output is cleared or removed\n", " */\n", " function handleClearOutput(event, handle) {\n", " function drop(id) {\n", " const view = Bokeh.index.get_by_id(id)\n", " if (view != null) {\n", " view.model.document.clear()\n", " Bokeh.index.delete(view)\n", " }\n", " }\n", "\n", " const cell = handle.cell;\n", "\n", " const id = cell.output_area._bokeh_element_id;\n", " const server_id = cell.output_area._bokeh_server_id;\n", "\n", " // Clean up Bokeh references\n", " if (id != null) {\n", " drop(id)\n", " }\n", "\n", " if (server_id !== undefined) {\n", " // Clean up Bokeh references\n", " const cmd_clean = \"from bokeh.io.state import curstate; print(curstate().uuid_to_server['\" + server_id + \"'].get_sessions()[0].document.roots[0]._id)\";\n", " cell.notebook.kernel.execute(cmd_clean, {\n", " iopub: {\n", " output: function(msg) {\n", " const id = msg.content.text.trim()\n", " drop(id)\n", " }\n", " }\n", " });\n", " // Destroy server and session\n", " const cmd_destroy = \"import bokeh.io.notebook as ion; ion.destroy_server('\" + server_id + \"')\";\n", " cell.notebook.kernel.execute(cmd_destroy);\n", " }\n", " }\n", "\n", " /**\n", " * Handle when a new output is added\n", " */\n", " function handleAddOutput(event, handle) {\n", " const output_area = handle.output_area;\n", " const output = handle.output;\n", "\n", " // limit handleAddOutput to display_data with EXEC_MIME_TYPE content only\n", " if ((output.output_type != \"display_data\") || (!Object.prototype.hasOwnProperty.call(output.data, EXEC_MIME_TYPE))) {\n", " return\n", " }\n", "\n", " const toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n", "\n", " if (output.metadata[EXEC_MIME_TYPE][\"id\"] !== undefined) {\n", " toinsert[toinsert.length - 1].firstChild.textContent = output.data[JS_MIME_TYPE];\n", " // store reference to embed id on output_area\n", " output_area._bokeh_element_id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n", " }\n", " if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n", " const bk_div = document.createElement(\"div\");\n", " bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n", " const script_attrs = bk_div.children[0].attributes;\n", " for (let i = 0; i < script_attrs.length; i++) {\n", " toinsert[toinsert.length - 1].firstChild.setAttribute(script_attrs[i].name, script_attrs[i].value);\n", " toinsert[toinsert.length - 1].firstChild.textContent = bk_div.children[0].textContent\n", " }\n", " // store reference to server id on output_area\n", " output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n", " }\n", " }\n", "\n", " function register_renderer(events, OutputArea) {\n", "\n", " function append_mime(data, metadata, element) {\n", " // create a DOM node to render to\n", " const toinsert = this.create_output_subarea(\n", " metadata,\n", " CLASS_NAME,\n", " EXEC_MIME_TYPE\n", " );\n", " this.keyboard_manager.register_events(toinsert);\n", " // Render to node\n", " const props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n", " render(props, toinsert[toinsert.length - 1]);\n", " element.append(toinsert);\n", " return toinsert\n", " }\n", "\n", " /* Handle when an output is cleared or removed */\n", " events.on('clear_output.CodeCell', handleClearOutput);\n", " events.on('delete.Cell', handleClearOutput);\n", "\n", " /* Handle when a new output is added */\n", " events.on('output_added.OutputArea', handleAddOutput);\n", "\n", " /**\n", " * Register the mime type and append_mime function with output_area\n", " */\n", " OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n", " /* Is output safe? */\n", " safe: true,\n", " /* Index of renderer in `output_area.display_order` */\n", " index: 0\n", " });\n", " }\n", "\n", " // register the mime type if in Jupyter Notebook environment and previously unregistered\n", " if (root.Jupyter !== undefined) {\n", " const events = require('base/js/events');\n", " const OutputArea = require('notebook/js/outputarea').OutputArea;\n", "\n", " if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n", " register_renderer(events, OutputArea);\n", " }\n", " }\n", " if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n", " root._bokeh_timeout = Date.now() + 5000;\n", " root._bokeh_failed_load = false;\n", " }\n", "\n", " const NB_LOAD_WARNING = {'data': {'text/html':\n", " \"
\\n\"+\n", " \"

\\n\"+\n", " \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n", " \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n", " \"

\\n\"+\n", " \"\\n\"+\n", " \"\\n\"+\n", " \"from bokeh.resources import INLINE\\n\"+\n", " \"output_notebook(resources=INLINE)\\n\"+\n", " \"\\n\"+\n", " \"
\"}};\n", "\n", " function display_loaded(error = null) {\n", " const el = document.getElementById(\"e925cfc7-ac23-4abe-b795-b5878014fc97\");\n", " if (el != null) {\n", " const html = (() => {\n", " if (typeof root.Bokeh === \"undefined\") {\n", " if (error == null) {\n", " return \"BokehJS is loading ...\";\n", " } else {\n", " return \"BokehJS failed to load.\";\n", " }\n", " } else {\n", " const prefix = `BokehJS ${root.Bokeh.version}`;\n", " if (error == null) {\n", " return `${prefix} successfully loaded.`;\n", " } else {\n", " return `${prefix} encountered errors while loading and may not function as expected.`;\n", " }\n", " }\n", " })();\n", " el.innerHTML = html;\n", "\n", " if (error != null) {\n", " const wrapper = document.createElement(\"div\");\n", " wrapper.style.overflow = \"auto\";\n", " wrapper.style.height = \"5em\";\n", " wrapper.style.resize = \"vertical\";\n", " const content = document.createElement(\"div\");\n", " content.style.fontFamily = \"monospace\";\n", " content.style.whiteSpace = \"pre-wrap\";\n", " content.style.backgroundColor = \"rgb(255, 221, 221)\";\n", " content.textContent = error.stack ?? error.toString();\n", " wrapper.append(content);\n", " el.append(wrapper);\n", " }\n", " } else if (Date.now() < root._bokeh_timeout) {\n", " setTimeout(() => display_loaded(error), 100);\n", " }\n", " }\n", "\n", " function run_callbacks() {\n", " try {\n", " root._bokeh_onload_callbacks.forEach(function(callback) {\n", " if (callback != null)\n", " callback();\n", " });\n", " } finally {\n", " delete root._bokeh_onload_callbacks\n", " }\n", " console.debug(\"Bokeh: all callbacks have finished\");\n", " }\n", "\n", " function load_libs(css_urls, js_urls, callback) {\n", " if (css_urls == null) css_urls = [];\n", " if (js_urls == null) js_urls = [];\n", "\n", " root._bokeh_onload_callbacks.push(callback);\n", " if (root._bokeh_is_loading > 0) {\n", " console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n", " return null;\n", " }\n", " if (js_urls == null || js_urls.length === 0) {\n", " run_callbacks();\n", " return null;\n", " }\n", " console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n", " root._bokeh_is_loading = css_urls.length + js_urls.length;\n", "\n", " function on_load() {\n", " root._bokeh_is_loading--;\n", " if (root._bokeh_is_loading === 0) {\n", " console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n", " run_callbacks()\n", " }\n", " }\n", "\n", " function on_error(url) {\n", " console.error(\"failed to load \" + url);\n", " }\n", "\n", " for (let i = 0; i < css_urls.length; i++) {\n", " const url = css_urls[i];\n", " const element = document.createElement(\"link\");\n", " element.onload = on_load;\n", " element.onerror = on_error.bind(null, url);\n", " element.rel = \"stylesheet\";\n", " element.type = \"text/css\";\n", " element.href = url;\n", " console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n", " document.body.appendChild(element);\n", " }\n", "\n", " for (let i = 0; i < js_urls.length; i++) {\n", " const url = js_urls[i];\n", " const element = document.createElement('script');\n", " element.onload = on_load;\n", " element.onerror = on_error.bind(null, url);\n", " element.async = false;\n", " element.src = url;\n", " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", " document.head.appendChild(element);\n", " }\n", " };\n", "\n", " function inject_raw_css(css) {\n", " const element = document.createElement(\"style\");\n", " element.appendChild(document.createTextNode(css));\n", " document.body.appendChild(element);\n", " }\n", "\n", " const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.4.1.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.4.1.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.4.1.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.4.1.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.4.1.min.js\", \"https://unpkg.com/@holoviz/panel@1.4.4/dist/panel.min.js\"];\n", " const css_urls = [];\n", "\n", " const inline_js = [ function(Bokeh) {\n", " Bokeh.set_log_level(\"info\");\n", " },\n", "function(Bokeh) {\n", " }\n", " ];\n", "\n", " function run_inline_js() {\n", " if (root.Bokeh !== undefined || force === true) {\n", " try {\n", " for (let i = 0; i < inline_js.length; i++) {\n", " inline_js[i].call(root, root.Bokeh);\n", " }\n", "\n", " } catch (error) {display_loaded(error);throw error;\n", " }if (force === true) {\n", " display_loaded();\n", " }} else if (Date.now() < root._bokeh_timeout) {\n", " setTimeout(run_inline_js, 100);\n", " } else if (!root._bokeh_failed_load) {\n", " console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n", " root._bokeh_failed_load = true;\n", " } else if (force !== true) {\n", " const cell = $(document.getElementById(\"e925cfc7-ac23-4abe-b795-b5878014fc97\")).parents('.cell').data().cell;\n", " cell.output_area.append_execute_result(NB_LOAD_WARNING)\n", " }\n", " }\n", "\n", " if (root._bokeh_is_loading === 0) {\n", " console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n", " run_inline_js();\n", " } else {\n", " load_libs(css_urls, js_urls, function() {\n", " console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n", " run_inline_js();\n", " });\n", " }\n", "}(window));" ], "application/vnd.bokehjs_load.v0+json": "'use strict';\n(function(root) {\n function now() {\n return new Date();\n }\n\n const force = true;\n\n if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n root._bokeh_onload_callbacks = [];\n root._bokeh_is_loading = undefined;\n }\n\n\n if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n const NB_LOAD_WARNING = {'data': {'text/html':\n \"
\\n\"+\n \"

\\n\"+\n \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n \"

\\n\"+\n \"\\n\"+\n \"\\n\"+\n \"from bokeh.resources import INLINE\\n\"+\n \"output_notebook(resources=INLINE)\\n\"+\n \"\\n\"+\n \"
\"}};\n\n function display_loaded(error = null) {\n const el = document.getElementById(\"e925cfc7-ac23-4abe-b795-b5878014fc97\");\n if (el != null) {\n const html = (() => {\n if (typeof root.Bokeh === \"undefined\") {\n if (error == null) {\n return \"BokehJS is loading ...\";\n } else {\n return \"BokehJS failed to load.\";\n }\n } else {\n const prefix = `BokehJS ${root.Bokeh.version}`;\n if (error == null) {\n return `${prefix} successfully loaded.`;\n } else {\n return `${prefix} encountered errors while loading and may not function as expected.`;\n }\n }\n })();\n el.innerHTML = html;\n\n if (error != null) {\n const wrapper = document.createElement(\"div\");\n wrapper.style.overflow = \"auto\";\n wrapper.style.height = \"5em\";\n wrapper.style.resize = \"vertical\";\n const content = document.createElement(\"div\");\n content.style.fontFamily = \"monospace\";\n content.style.whiteSpace = \"pre-wrap\";\n content.style.backgroundColor = \"rgb(255, 221, 221)\";\n content.textContent = error.stack ?? error.toString();\n wrapper.append(content);\n el.append(wrapper);\n }\n } else if (Date.now() < root._bokeh_timeout) {\n setTimeout(() => display_loaded(error), 100);\n }\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n\n root._bokeh_onload_callbacks.push(callback);\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls == null || js_urls.length === 0) {\n run_callbacks();\n return null;\n }\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n root._bokeh_is_loading = css_urls.length + js_urls.length;\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n\n function on_error(url) {\n console.error(\"failed to load \" + url);\n }\n\n for (let i = 0; i < css_urls.length; i++) {\n const url = css_urls[i];\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n }\n\n for (let i = 0; i < js_urls.length; i++) {\n const url = js_urls[i];\n const element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.4.1.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.4.1.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.4.1.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.4.1.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.4.1.min.js\", \"https://unpkg.com/@holoviz/panel@1.4.4/dist/panel.min.js\"];\n const css_urls = [];\n\n const inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {\n }\n ];\n\n function run_inline_js() {\n if (root.Bokeh !== undefined || force === true) {\n try {\n for (let i = 0; i < inline_js.length; i++) {\n inline_js[i].call(root, root.Bokeh);\n }\n\n } catch (error) {display_loaded(error);throw error;\n }if (force === true) {\n display_loaded();\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n } else if (force !== true) {\n const cell = $(document.getElementById(\"e925cfc7-ac23-4abe-b795-b5878014fc97\")).parents('.cell').data().cell;\n cell.output_area.append_execute_result(NB_LOAD_WARNING)\n }\n }\n\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n run_inline_js();\n } else {\n load_libs(css_urls, js_urls, function() {\n console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n run_inline_js();\n });\n }\n}(window));" }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import itertools\n", "import warnings\n", "\n", "import numpy as np\n", "import polars as pl\n", "import scipy.optimize\n", "import scipy.stats as st\n", "\n", "import iqplot\n", "\n", "import bebi103\n", "\n", "import bokeh.io\n", "import bokeh.plotting\n", "bokeh.io.output_notebook()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "
\n", "\n", "As discussed in the previous lesson, maximum likelihood estimates for parameters may sometimes be computed analytically, but often cannot. In those cases, we need to resort to numerical methods. In this lesson, we demonstrate some numerical methods to perform maximum likelihood estimates of parameters form a Negative Binomial distribution." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## The data set\n", "\n", "The data come from the [Elowitz lab](http://elowitz.caltech.edu/), published in Singer et al., Dynamic Heterogeneity and DNA Methylation in Embryonic Stem Cells, *Molec. Cell*, **55**, 319-331, 2014, available [here](https://doi.org/10.1016/j.molcel.2014.06.029).\n", "\n", "In this paper, the authors investigated cell populations of embryonic stem cells using RNA single molecule fluorescence in situ hybridization (smFISH), a technique that enables them to count the number of mRNA transcripts in a cell for a given gene. They were able to measure four different genes in the same cells. So, for one experiment, they get the counts of four different genes in a collection of cells. \n", "\n", "The authors focused on genes that code for pluripotency-associated regulators to study cell differentiation. Indeed, differing gene expression levels are a hallmark of differentiated cells. The authors do not just look at counts in a given cell at a given time. The *temporal* nature of gene expression is also important. While the authors do not directly look at temporal data using smFISH (since the technique requires fixing the cells), they did look at time lapse fluorescence movies of other regulators. We will not focus on these experiments here, but will discuss how the distribution of mRNA counts acquired via smFISH can serve to provide some insight about the dynamics of gene expression.\n", "\n", "The data set we are analyzing now comes from an experiment where smFISH was performed in 279 cells for the genes *rex1*, *rest*, *nanog*, and *prdm14*. The data set may be downloaded at [https://s3.amazonaws.com/bebi103.caltech.edu/data/singer_transcript_counts.csv](https://s3.amazonaws.com/bebi103.caltech.edu/data/singer_transcript_counts.csv)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exploratory data analysis\n", "\n", "We first load in the data set and generate ECDFs for the mRNA counts for each of the four genes. " ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "shape: (5, 4)
Rex1RestNanogPrdm14
i64i64i64i64
1134390
17291335
26170680
17854881
12954410
" ], "text/plain": [ "shape: (5, 4)\n", "┌──────┬──────┬───────┬────────┐\n", "│ Rex1 ┆ Rest ┆ Nanog ┆ Prdm14 │\n", "│ --- ┆ --- ┆ --- ┆ --- │\n", "│ i64 ┆ i64 ┆ i64 ┆ i64 │\n", "╞══════╪══════╪═══════╪════════╡\n", "│ 11 ┆ 34 ┆ 39 ┆ 0 │\n", "│ 172 ┆ 91 ┆ 33 ┆ 5 │\n", "│ 261 ┆ 70 ┆ 68 ┆ 0 │\n", "│ 178 ┆ 54 ┆ 88 ┆ 1 │\n", "│ 129 ┆ 54 ┆ 41 ┆ 0 │\n", "└──────┴──────┴───────┴────────┘" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Load DataFrame\n", "df = pl.read_csv(os.path.join(data_path, 'singer_transcript_counts.csv'), comment_prefix='#')\n", "\n", "# Take a look\n", "df.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Each of the 279 rows has the mRNA counts for each of the four genes. There may be multiple cell types present, and we do now know how many there are. Our aim here is not to find how many cell types there are, but to demonstrate how MLE works. Nonetheless, we should have some idea of the properties of the data set we are exploring. We can start by plotting ECDFs for each of the four genes. It is useful to have the gene names around for iteration here, and throughout the lesson." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "
\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/javascript": [ "(function(root) {\n", " function embed_document(root) {\n", " const docs_json = {\"c0ef0fc7-69c4-45f1-b998-426cc0068808\":{\"version\":\"3.4.1\",\"title\":\"Bokeh Application\",\"roots\":[{\"type\":\"object\",\"name\":\"GridPlot\",\"id\":\"p1249\",\"attributes\":{\"rows\":null,\"cols\":null,\"toolbar\":{\"type\":\"object\",\"name\":\"Toolbar\",\"id\":\"p1248\",\"attributes\":{\"tools\":[{\"type\":\"object\",\"name\":\"ToolProxy\",\"id\":\"p1242\",\"attributes\":{\"tools\":[{\"type\":\"object\",\"name\":\"PanTool\",\"id\":\"p1024\"},{\"type\":\"object\",\"name\":\"PanTool\",\"id\":\"p1084\"},{\"type\":\"object\",\"name\":\"PanTool\",\"id\":\"p1144\"},{\"type\":\"object\",\"name\":\"PanTool\",\"id\":\"p1204\"}]}},{\"type\":\"object\",\"name\":\"ToolProxy\",\"id\":\"p1243\",\"attributes\":{\"tools\":[{\"type\":\"object\",\"name\":\"WheelZoomTool\",\"id\":\"p1025\",\"attributes\":{\"renderers\":\"auto\"}},{\"type\":\"object\",\"name\":\"WheelZoomTool\",\"id\":\"p1085\",\"attributes\":{\"renderers\":\"auto\"}},{\"type\":\"object\",\"name\":\"WheelZoomTool\",\"id\":\"p1145\",\"attributes\":{\"renderers\":\"auto\"}},{\"type\":\"object\",\"name\":\"WheelZoomTool\",\"id\":\"p1205\",\"attributes\":{\"renderers\":\"auto\"}}]}},{\"type\":\"object\",\"name\":\"ToolProxy\",\"id\":\"p1244\",\"attributes\":{\"tools\":[{\"type\":\"object\",\"name\":\"BoxZoomTool\",\"id\":\"p1026\",\"attributes\":{\"overlay\":{\"type\":\"object\",\"name\":\"BoxAnnotation\",\"id\":\"p1027\",\"attributes\":{\"syncable\":false,\"level\":\"overlay\",\"visible\":false,\"left\":{\"type\":\"number\",\"value\":\"nan\"},\"right\":{\"type\":\"number\",\"value\":\"nan\"},\"top\":{\"type\":\"number\",\"value\":\"nan\"},\"bottom\":{\"type\":\"number\",\"value\":\"nan\"},\"left_units\":\"canvas\",\"right_units\":\"canvas\",\"top_units\":\"canvas\",\"bottom_units\":\"canvas\",\"line_color\":\"black\",\"line_alpha\":1.0,\"line_width\":2,\"line_dash\":[4,4],\"fill_color\":\"lightgrey\",\"fill_alpha\":0.5}}}},{\"type\":\"object\",\"name\":\"BoxZoomTool\",\"id\":\"p1086\",\"attributes\":{\"overlay\":{\"type\":\"object\",\"name\":\"BoxAnnotation\",\"id\":\"p1087\",\"attributes\":{\"syncable\":false,\"level\":\"overlay\",\"visible\":false,\"left\":{\"type\":\"number\",\"value\":\"nan\"},\"right\":{\"type\":\"number\",\"value\":\"nan\"},\"top\":{\"type\":\"number\",\"value\":\"nan\"},\"bottom\":{\"type\":\"number\",\"value\":\"nan\"},\"left_units\":\"canvas\",\"right_units\":\"canvas\",\"top_units\":\"canvas\",\"bottom_units\":\"canvas\",\"line_color\":\"black\",\"line_alpha\":1.0,\"line_width\":2,\"line_dash\":[4,4],\"fill_color\":\"lightgrey\",\"fill_alpha\":0.5}}}},{\"type\":\"object\",\"name\":\"BoxZoomTool\",\"id\":\"p1146\",\"attributes\":{\"overlay\":{\"type\":\"object\",\"name\":\"BoxAnnotation\",\"id\":\"p1147\",\"attributes\":{\"syncable\":false,\"level\":\"overlay\",\"visible\":false,\"left\":{\"type\":\"number\",\"value\":\"nan\"},\"right\":{\"type\":\"number\",\"value\":\"nan\"},\"top\":{\"type\":\"number\",\"value\":\"nan\"},\"bottom\":{\"type\":\"number\",\"value\":\"nan\"},\"left_units\":\"canvas\",\"right_units\":\"canvas\",\"top_units\":\"canvas\",\"bottom_units\":\"canvas\",\"line_color\":\"black\",\"line_alpha\":1.0,\"line_width\":2,\"line_dash\":[4,4],\"fill_color\":\"lightgrey\",\"fill_alpha\":0.5}}}},{\"type\":\"object\",\"name\":\"BoxZoomTool\",\"id\":\"p1206\",\"attributes\":{\"overlay\":{\"type\":\"object\",\"name\":\"BoxAnnotation\",\"id\":\"p1207\",\"attributes\":{\"syncable\":false,\"level\":\"overlay\",\"visible\":false,\"left\":{\"type\":\"number\",\"value\":\"nan\"},\"right\":{\"type\":\"number\",\"value\":\"nan\"},\"top\":{\"type\":\"number\",\"value\":\"nan\"},\"bottom\":{\"type\":\"number\",\"value\":\"nan\"},\"left_units\":\"canvas\",\"right_units\":\"canvas\",\"top_units\":\"canvas\",\"bottom_units\":\"canvas\",\"line_color\":\"black\",\"line_alpha\":1.0,\"line_width\":2,\"line_dash\":[4,4],\"fill_color\":\"lightgrey\",\"fill_alpha\":0.5}}}}]}},{\"type\":\"object\",\"name\":\"SaveTool\",\"id\":\"p1245\"},{\"type\":\"object\",\"name\":\"ToolProxy\",\"id\":\"p1246\",\"attributes\":{\"tools\":[{\"type\":\"object\",\"name\":\"ResetTool\",\"id\":\"p1033\"},{\"type\":\"object\",\"name\":\"ResetTool\",\"id\":\"p1093\"},{\"type\":\"object\",\"name\":\"ResetTool\",\"id\":\"p1153\"},{\"type\":\"object\",\"name\":\"ResetTool\",\"id\":\"p1213\"}]}},{\"type\":\"object\",\"name\":\"ToolProxy\",\"id\":\"p1247\",\"attributes\":{\"tools\":[{\"type\":\"object\",\"name\":\"HelpTool\",\"id\":\"p1034\"},{\"type\":\"object\",\"name\":\"HelpTool\",\"id\":\"p1094\"},{\"type\":\"object\",\"name\":\"HelpTool\",\"id\":\"p1154\"},{\"type\":\"object\",\"name\":\"HelpTool\",\"id\":\"p1214\"}]}}]}},\"children\":[[{\"type\":\"object\",\"name\":\"Figure\",\"id\":\"p1002\",\"attributes\":{\"x_range\":{\"type\":\"object\",\"name\":\"DataRange1d\",\"id\":\"p1003\"},\"y_range\":{\"type\":\"object\",\"name\":\"DataRange1d\",\"id\":\"p1004\"},\"x_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1012\"},\"y_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1013\"},\"title\":{\"type\":\"object\",\"name\":\"Title\",\"id\":\"p1005\",\"attributes\":{\"text\":\"Nanog\"}},\"renderers\":[{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1041\",\"attributes\":{\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1035\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1036\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1037\"},\"data\":{\"type\":\"map\",\"entries\":[[\"x\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAAAAQAAAAAAAAABAAAAAAAAAAEAAAAAAAAAAQAAAAAAAAABAAAAAAAAAAEAAAAAAAAAIQAAAAAAAAAhAAAAAAAAACEAAAAAAAAAIQAAAAAAAABBAAAAAAAAAEEAAAAAAAAAQQAAAAAAAABBAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAYQAAAAAAAABhAAAAAAAAAGEAAAAAAAAAYQAAAAAAAABhAAAAAAAAAGEAAAAAAAAAgQAAAAAAAACBAAAAAAAAAIEAAAAAAAAAgQAAAAAAAACBAAAAAAAAAIEAAAAAAAAAkQAAAAAAAACRAAAAAAAAAJEAAAAAAAAAkQAAAAAAAACRAAAAAAAAAJEAAAAAAAAAkQAAAAAAAACRAAAAAAAAAJEAAAAAAAAAkQAAAAAAAACZAAAAAAAAAJkAAAAAAAAAmQAAAAAAAACZAAAAAAAAAJkAAAAAAAAAmQAAAAAAAACZAAAAAAAAAJkAAAAAAAAAoQAAAAAAAAChAAAAAAAAAKkAAAAAAAAAqQAAAAAAAACxAAAAAAAAALEAAAAAAAAAsQAAAAAAAACxAAAAAAAAALEAAAAAAAAAsQAAAAAAAAC5AAAAAAAAALkAAAAAAAAAyQAAAAAAAADJAAAAAAAAAM0AAAAAAAAAzQAAAAAAAADNAAAAAAAAAM0AAAAAAAAAzQAAAAAAAADNAAAAAAAAAM0AAAAAAAAAzQAAAAAAAADRAAAAAAAAANEAAAAAAAAA0QAAAAAAAADRAAAAAAAAANUAAAAAAAAA1QAAAAAAAADVAAAAAAAAANUAAAAAAAAA2QAAAAAAAADZAAAAAAAAANkAAAAAAAAA2QAAAAAAAADdAAAAAAAAAN0AAAAAAAAA4QAAAAAAAADhAAAAAAAAAOEAAAAAAAAA4QAAAAAAAADhAAAAAAAAAOEAAAAAAAAA4QAAAAAAAADhAAAAAAAAAOUAAAAAAAAA5QAAAAAAAADpAAAAAAAAAOkAAAAAAAAA7QAAAAAAAADtAAAAAAAAAO0AAAAAAAAA7QAAAAAAAADxAAAAAAAAAPEAAAAAAAAA9QAAAAAAAAD1AAAAAAAAAPUAAAAAAAAA9QAAAAAAAAD1AAAAAAAAAPUAAAAAAAAA9QAAAAAAAAD1AAAAAAAAAPkAAAAAAAAA+QAAAAAAAAD5AAAAAAAAAPkAAAAAAAAA/QAAAAAAAAD9AAAAAAAAAQEAAAAAAAABAQAAAAAAAAEBAAAAAAAAAQEAAAAAAAABAQAAAAAAAAEBAAAAAAACAQEAAAAAAAIBAQAAAAAAAgEBAAAAAAACAQEAAAAAAAIBAQAAAAAAAgEBAAAAAAACAQEAAAAAAAIBAQAAAAAAAAEFAAAAAAAAAQUAAAAAAAIBBQAAAAAAAgEFAAAAAAACAQkAAAAAAAIBCQAAAAAAAgEJAAAAAAACAQkAAAAAAAABDQAAAAAAAAENAAAAAAAAAQ0AAAAAAAABDQAAAAAAAgENAAAAAAACAQ0AAAAAAAIBDQAAAAAAAgENAAAAAAACAQ0AAAAAAAIBDQAAAAAAAAERAAAAAAAAAREAAAAAAAABEQAAAAAAAAERAAAAAAACAREAAAAAAAIBEQAAAAAAAgERAAAAAAACAREAAAAAAAABGQAAAAAAAAEZAAAAAAAAARkAAAAAAAABGQAAAAAAAAEdAAAAAAAAAR0AAAAAAAIBHQAAAAAAAgEdAAAAAAAAASEAAAAAAAABIQAAAAAAAgEhAAAAAAACASEAAAAAAAIBIQAAAAAAAgEhAAAAAAAAASUAAAAAAAABJQAAAAAAAgElAAAAAAACASUAAAAAAAABKQAAAAAAAAEpAAAAAAACASkAAAAAAAIBKQAAAAAAAgEtAAAAAAACAS0AAAAAAAIBLQAAAAAAAgEtAAAAAAACATEAAAAAAAIBMQAAAAAAAAE1AAAAAAAAATUAAAAAAAIBNQAAAAAAAgE1AAAAAAACATUAAAAAAAIBNQAAAAAAAAE5AAAAAAAAATkAAAAAAAIBOQAAAAAAAgE5AAAAAAACATkAAAAAAAIBOQAAAAAAAAE9AAAAAAAAAT0AAAAAAAIBPQAAAAAAAgE9AAAAAAAAAUEAAAAAAAABQQAAAAAAAAFBAAAAAAAAAUEAAAAAAAABQQAAAAAAAAFBAAAAAAAAAUEAAAAAAAABQQAAAAAAAQFBAAAAAAABAUEAAAAAAAEBQQAAAAAAAQFBAAAAAAABAUEAAAAAAAEBQQAAAAAAAgFBAAAAAAACAUEAAAAAAAIBQQAAAAAAAgFBAAAAAAACAUEAAAAAAAIBQQAAAAAAAgFBAAAAAAACAUEAAAAAAAMBQQAAAAAAAwFBAAAAAAADAUEAAAAAAAMBQQAAAAAAAwFBAAAAAAADAUEAAAAAAAMBQQAAAAAAAwFBAAAAAAAAAUUAAAAAAAABRQAAAAAAAAFFAAAAAAAAAUUAAAAAAAABRQAAAAAAAAFFAAAAAAABAUUAAAAAAAEBRQAAAAAAAQFFAAAAAAABAUUAAAAAAAMBRQAAAAAAAwFFAAAAAAAAAUkAAAAAAAABSQAAAAAAAAFJAAAAAAAAAUkAAAAAAAEBSQAAAAAAAQFJAAAAAAABAUkAAAAAAAEBSQAAAAAAAgFJAAAAAAACAUkAAAAAAAIBSQAAAAAAAgFJAAAAAAACAUkAAAAAAAIBSQAAAAAAAAFNAAAAAAAAAU0AAAAAAAABTQAAAAAAAAFNAAAAAAABAU0AAAAAAAEBTQAAAAAAAQFNAAAAAAABAU0AAAAAAAEBTQAAAAAAAQFNAAAAAAABAU0AAAAAAAEBTQAAAAAAAgFNAAAAAAACAU0AAAAAAAIBTQAAAAAAAgFNAAAAAAADAU0AAAAAAAMBTQAAAAAAAwFNAAAAAAADAU0AAAAAAAABUQAAAAAAAAFRAAAAAAAAAVEAAAAAAAABUQAAAAAAAAFRAAAAAAAAAVEAAAAAAAEBUQAAAAAAAQFRAAAAAAACAVEAAAAAAAIBUQAAAAAAAgFRAAAAAAACAVEAAAAAAAMBUQAAAAAAAwFRAAAAAAADAVEAAAAAAAMBUQAAAAAAAAFVAAAAAAAAAVUAAAAAAAABVQAAAAAAAAFVAAAAAAAAAVUAAAAAAAABVQAAAAAAAQFVAAAAAAABAVUAAAAAAAIBVQAAAAAAAgFVAAAAAAACAVUAAAAAAAIBVQAAAAAAAwFVAAAAAAADAVUAAAAAAAMBVQAAAAAAAwFVAAAAAAAAAVkAAAAAAAABWQAAAAAAAAFZAAAAAAAAAVkAAAAAAAIBWQAAAAAAAgFZAAAAAAAAAV0AAAAAAAABXQAAAAAAAgFdAAAAAAACAV0AAAAAAAIBXQAAAAAAAgFdAAAAAAACAV0AAAAAAAIBXQAAAAAAAgFdAAAAAAACAV0AAAAAAAABYQAAAAAAAAFhAAAAAAABAWEAAAAAAAEBYQAAAAAAAAFlAAAAAAAAAWUAAAAAAAEBZQAAAAAAAQFlAAAAAAABAWUAAAAAAAEBZQAAAAAAAwFlAAAAAAADAWUAAAAAAAMBZQAAAAAAAwFlAAAAAAAAAWkAAAAAAAABaQAAAAAAAAFpAAAAAAAAAWkAAAAAAAABaQAAAAAAAAFpAAAAAAAAAWkAAAAAAAABaQAAAAAAAAFpAAAAAAAAAWkAAAAAAAABaQAAAAAAAAFpAAAAAAABAWkAAAAAAAEBaQAAAAAAAQFpAAAAAAABAWkAAAAAAAMBaQAAAAAAAwFpAAAAAAADAWkAAAAAAAMBaQAAAAAAAAFtAAAAAAAAAW0AAAAAAAEBbQAAAAAAAQFtAAAAAAACAW0AAAAAAAIBbQAAAAAAAQFxAAAAAAABAXEAAAAAAAIBcQAAAAAAAgFxAAAAAAADAXEAAAAAAAMBcQAAAAAAAAF1AAAAAAAAAXUAAAAAAAABdQAAAAAAAAF1AAAAAAABAXUAAAAAAAEBdQAAAAAAAgF1AAAAAAACAXUAAAAAAAIBdQAAAAAAAgF1AAAAAAADAXUAAAAAAAMBdQAAAAAAAAF5AAAAAAAAAXkAAAAAAAABeQAAAAAAAAF5AAAAAAAAAXkAAAAAAAABeQAAAAAAAQF5AAAAAAABAXkAAAAAAAMBeQAAAAAAAwF5AAAAAAAAAX0AAAAAAAABfQAAAAAAAQF9AAAAAAABAX0AAAAAAAMBfQAAAAAAAwF9AAAAAAADAX0AAAAAAAMBfQAAAAAAAwF9AAAAAAADAX0AAAAAAAABgQAAAAAAAAGBAAAAAAAAAYEAAAAAAAABgQAAAAAAAAGBAAAAAAAAAYEAAAAAAACBgQAAAAAAAIGBAAAAAAABAYEAAAAAAAEBgQAAAAAAAgGBAAAAAAACAYEAAAAAAAIBgQAAAAAAAgGBAAAAAAACAYEAAAAAAAIBgQAAAAAAAwGBAAAAAAADAYEAAAAAAAMBgQAAAAAAAwGBAAAAAAAAAYUAAAAAAAABhQAAAAAAAIGFAAAAAAAAgYUAAAAAAAEBhQAAAAAAAQGFAAAAAAABgYUAAAAAAAGBhQAAAAAAAgGFAAAAAAACAYUAAAAAAAIBhQAAAAAAAgGFAAAAAAACgYUAAAAAAAKBhQAAAAAAAoGFAAAAAAACgYUAAAAAAAOBhQAAAAAAA4GFAAAAAAADgYUAAAAAAAOBhQAAAAAAAAGJAAAAAAAAAYkAAAAAAACBiQAAAAAAAIGJAAAAAAACAYkAAAAAAAIBiQAAAAAAAoGJAAAAAAACgYkAAAAAAACBjQAAAAAAAIGNAAAAAAAAgY0AAAAAAACBjQAAAAAAAIGNAAAAAAAAgY0AAAAAAAEBjQAAAAAAAQGNAAAAAAABAY0AAAAAAAEBjQAAAAAAAYGNAAAAAAABgY0AAAAAAAIBjQAAAAAAAgGNAAAAAAACAY0AAAAAAAIBjQAAAAAAAgGNAAAAAAACAY0AAAAAAAABkQAAAAAAAAGRAAAAAAABAZEAAAAAAAEBkQAAAAAAAQGRAAAAAAABAZEAAAAAAAABlQAAAAAAAAGVAAAAAAABgZUAAAAAAAGBlQAAAAAAAwGVAAAAAAADAZUAAAAAAAOBlQAAAAAAA4GVAAAAAAADgZUAAAAAAAOBlQAAAAAAAAGZAAAAAAAAAZkAAAAAAACBmQAAAAAAAIGZAAAAAAACgZkAAAAAAAKBmQAAAAAAAQGdAAAAAAABAZ0AAAAAAAGBnQAAAAAAAYGdAAAAAAADAZ0AAAAAAAMBnQAAAAAAA4GdAAAAAAADgZ0AAAAAAACBoQAAAAAAAIGhAAAAAAABAaEAAAAAAAEBoQAAAAAAAYGhAAAAAAABgaEAAAAAAAIBoQAAAAAAAgGhAAAAAAADAaEAAAAAAAMBoQAAAAAAAAGlAAAAAAAAAaUAAAAAAAEBpQAAAAAAAQGlAAAAAAACAakAAAAAAAIBqQAAAAAAAAGtAAAAAAAAAa0AAAAAAAGBsQAAAAAAAYGxAAAAAAACAbEAAAAAAAIBsQAAAAAAA4GxAAAAAAADgbEAAAAAAAIBtQAAAAAAAgG1AAAAAAADgbUAAAAAAAOBtQAAAAAAAwG5AAAAAAADAbkAAAAAAAGBvQAAAAAAAYG9AAAAAAACAb0AAAAAAAIBvQAAAAAAAcHBAAAAAAABwcEAAAAAAAHBwQAAAAAAAcHBAAAAAAAAgcUAAAAAAACBxQAAAAAAAUHJAAAAAAABQckAAAAAAAIB5QAAAAAAAgHlA\"},\"shape\":[558],\"dtype\":\"float64\",\"order\":\"little\"}],[\"y\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAAACycnWArFxtP7JydYCsXG0/snJ1gKxcfT+ycnWArFx9PwYWWGCBBYY/BhZYYIEFhj+ycnWArFyNP7JydYCsXI0/r2dJ0OtZkj+vZ0nQ61mSPwYWWGCBBZY/BhZYYIEFlj9cxGbwFrGZP1zEZvAWsZk/snJ1gKxcnT+ycnWArFydP4QQQgghhKA/hBBCCCGEoD+vZ0nQ61miP69nSdDrWaI/2r5QmLYvpD/avlCYti+kPwYWWGCBBaY/BhZYYIEFpj8xbV8oTNunPzFtXyhM26c/XMRm8BaxqT9cxGbwFrGpP4cbbrjhhqs/hxtuuOGGqz+ycnWArFytP7JydYCsXK0/3cl8SHcyrz/dyXxIdzKvP4QQQgghhLA/hBBCCCGEsD8avEVsBm+xPxq8RWwGb7E/r2dJ0OtZsj+vZ0nQ61myP0UTTTTRRLM/RRNNNNFEsz/avlCYti+0P9q+UJi2L7Q/cGpU/JsatT9walT8mxq1PwYWWGCBBbY/BhZYYIEFtj+bwVvEZvC2P5vBW8Rm8LY/MW1fKEzbtz8xbV8oTNu3P8YYY4wxxrg/xhhjjDHGuD9cxGbwFrG5P1zEZvAWsbk/8W9qVPybuj/xb2pU/Ju6P4cbbrjhhrs/hxtuuOGGuz8cx3Ecx3G8PxzHcRzHcbw/snJ1gKxcvT+ycnWArFy9P0geeeSRR74/SB555JFHvj/dyXxIdzK/P93JfEh3Mr8/uTpAVq4OwD+5OkBWrg7AP4QQQgghhMA/hBBCCCGEwD9P5kO6k/nAP0/mQ7qT+cA/GrxFbAZvwT8avEVsBm/BP+SRRx555ME/5JFHHnnkwT+vZ0nQ61nCP69nSdDrWcI/ej1Lgl7Pwj96PUuCXs/CP0UTTTTRRMM/RRNNNNFEwz8Q6U7mQ7rDPxDpTuZDusM/2r5QmLYvxD/avlCYti/EP6WUUkoppcQ/pZRSSimlxD9walT8mxrFP3BqVPybGsU/O0BWrg6QxT87QFauDpDFPwYWWGCBBcY/BhZYYIEFxj/Q61kS9HrGP9DrWRL0esY/m8FbxGbwxj+bwVvEZvDGP2aXXXbZZcc/Zpdddtllxz8xbV8oTNvHPzFtXyhM28c/+0Jh2r5QyD/7QmHavlDIP8YYY4wxxsg/xhhjjDHGyD+R7mQ+pDvJP5HuZD6kO8k/XMRm8BaxyT9cxGbwFrHJPyeaaKKJJso/J5poookmyj/xb2pU/JvKP/FvalT8m8o/vEVsBm8Ryz+8RWwGbxHLP4cbbrjhhss/hxtuuOGGyz9S8W9qVPzLP1Lxb2pU/Ms/HMdxHMdxzD8cx3Ecx3HMP+ecc84558w/55xzzjnnzD+ycnWArFzNP7JydYCsXM0/fUh3Mh/SzT99SHcyH9LNP0geeeSRR84/SB555JFHzj8S9HqWBL3OPxL0epYEvc4/3cl8SHcyzz/dyXxIdzLPP6iffvrpp88/qJ9++umnzz+5OkBWrg7QP7k6QFauDtA/nyVBr2dJ0D+fJUGvZ0nQP4QQQgghhNA/hBBCCCGE0D9q+0Jh2r7QP2r7QmHavtA/T+ZDupP50D9P5kO6k/nQPzTRRBNNNNE/NNFEE0000T8avEVsBm/RPxq8RWwGb9E//6ZGxb+p0T//pkbFv6nRP+SRRx555NE/5JFHHnnk0T/KfEh3Mh/SP8p8SHcyH9I/r2dJ0OtZ0j+vZ0nQ61nSP5VSSimllNI/lVJKKaWU0j96PUuCXs/SP3o9S4Jez9I/XyhM2xcK0z9fKEzbFwrTP0UTTTTRRNM/RRNNNNFE0z8q/k2Nin/TPyr+TY2Kf9M/EOlO5kO60z8Q6U7mQ7rTP/XTTz/99NM/9dNPP/300z/avlCYti/UP9q+UJi2L9Q/wKlR8W9q1D/AqVHxb2rUP6WUUkoppdQ/pZRSSiml1D+Lf1Oj4t/UP4t/U6Pi39Q/cGpU/Jsa1T9walT8mxrVP1VVVVVVVdU/VVVVVVVV1T87QFauDpDVPztAVq4OkNU/ICtXB8jK1T8gK1cHyMrVPwYWWGCBBdY/BhZYYIEF1j/rAFm5OkDWP+sAWbk6QNY/0OtZEvR61j/Q61kS9HrWP7bWWmuttdY/ttZaa6211j+bwVvEZvDWP5vBW8Rm8NY/gKxcHSAr1z+ArFwdICvXP2aXXXbZZdc/Zpdddtll1z9Lgl7PkqDXP0uCXs+SoNc/MW1fKEzb1z8xbV8oTNvXPxZYYIEFFtg/FlhggQUW2D/7QmHavlDYP/tCYdq+UNg/4S1iM3iL2D/hLWIzeIvYP8YYY4wxxtg/xhhjjDHG2D+sA2Tl6gDZP6wDZOXqANk/ke5kPqQ72T+R7mQ+pDvZP3bZZZdddtk/dtlll1122T9cxGbwFrHZP1zEZvAWsdk/Qa9nSdDr2T9Br2dJ0OvZPyeaaKKJJto/J5poookm2j8MhWn7QmHaPwyFaftCYdo/8W9qVPyb2j/xb2pU/JvaP9daa6211to/11prrbXW2j+8RWwGbxHbP7xFbAZvEds/oTBtXyhM2z+hMG1fKEzbP4cbbrjhhts/hxtuuOGG2z9sBm8Rm8HbP2wGbxGbwds/UvFvalT82z9S8W9qVPzbPzfccMMNN9w/N9xwww033D8cx3Ecx3HcPxzHcRzHcdw/ArJydYCs3D8CsnJ1gKzcP+ecc84559w/55xzzjnn3D/Nh3Qn8yHdP82HdCfzId0/snJ1gKxc3T+ycnWArFzdP5dddtlll90/l1122WWX3T99SHcyH9LdP31IdzIf0t0/YjN4i9gM3j9iM3iL2AzeP0geeeSRR94/SB555JFH3j8tCXo9S4LePy0Jej1Lgt4/EvR6lgS93j8S9HqWBL3eP/jee++9994/+N5777333j/dyXxIdzLfP93JfEh3Mt8/w7R9oTBt3z/DtH2hMG3fP6iffvrpp98/qJ9++umn3z+Nin9To+LfP42Kf1Oj4t8/uTpAVq4O4D+5OkBWrg7gPyywwAILLOA/LLDAAgss4D+fJUGvZ0ngP58lQa9nSeA/EZvBW8Rm4D8Rm8FbxGbgP4QQQgghhOA/hBBCCCGE4D/3hcK0faHgP/eFwrR9oeA/avtCYdq+4D9q+0Jh2r7gP9xwww033OA/3HDDDTfc4D9P5kO6k/ngP0/mQ7qT+eA/wlvEZvAW4T/CW8Rm8BbhPzTRRBNNNOE/NNFEE0004T+nRsW/qVHhP6dGxb+pUeE/GrxFbAZv4T8avEVsBm/hP4wxxhhjjOE/jDHGGGOM4T//pkbFv6nhP/+mRsW/qeE/chzHcRzH4T9yHMdxHMfhP+SRRx555OE/5JFHHnnk4T9XB8jK1QHiP1cHyMrVAeI/ynxIdzIf4j/KfEh3Mh/iPz3yyCOPPOI/PfLII4884j+vZ0nQ61niP69nSdDrWeI/It3JfEh34j8i3cl8SHfiP5VSSimllOI/lVJKKaWU4j8HyMrVAbLiPwfIytUBsuI/ej1Lgl7P4j96PUuCXs/iP+2yyy677OI/7bLLLrvs4j9fKEzbFwrjP18oTNsXCuM/0p3Mh3Qn4z/SncyHdCfjP0UTTTTRROM/RRNNNNFE4z+4iM3gLWLjP7iIzeAtYuM/Kv5NjYp/4z8q/k2Nin/jP51zzjnnnOM/nXPOOeec4z8Q6U7mQ7rjPxDpTuZDuuM/gl7PkqDX4z+CXs+SoNfjP/XTTz/99OM/9dNPP/304z9oSdDrWRLkP2hJ0OtZEuQ/2r5QmLYv5D/avlCYti/kP0000UQTTeQ/TTTRRBNN5D/AqVHxb2rkP8CpUfFvauQ/Mh/SncyH5D8yH9KdzIfkP6WUUkoppeQ/pZRSSiml5D8YCtP2hcLkPxgK0/aFwuQ/i39To+Lf5D+Lf1Oj4t/kP/30008//eQ//fTTTz/95D9walT8mxrlP3BqVPybGuU/49/UqPg35T/j39So+DflP1VVVVVVVeU/VVVVVVVV5T/IytUBsnLlP8jK1QGycuU/O0BWrg6Q5T87QFauDpDlP6211lprreU/rbXWWmut5T8gK1cHyMrlPyArVwfIyuU/k6DXsyTo5T+ToNezJOjlPwYWWGCBBeY/BhZYYIEF5j94i9gM3iLmP3iL2AzeIuY/6wBZuTpA5j/rAFm5OkDmP1522WWXXeY/XnbZZZdd5j/Q61kS9HrmP9DrWRL0euY/Q2HavlCY5j9DYdq+UJjmP7bWWmutteY/ttZaa6215j8oTNsXCtPmPyhM2xcK0+Y/m8FbxGbw5j+bwVvEZvDmPw433HDDDec/DjfccMMN5z+ArFwdICvnP4CsXB0gK+c/8yHdyXxI5z/zId3JfEjnP2aXXXbZZec/Zpdddtll5z/ZDN4iNoPnP9kM3iI2g+c/S4Jez5Kg5z9Lgl7PkqDnP7733nvvvec/vvfee++95z8xbV8oTNvnPzFtXyhM2+c/o+Lf1Kj45z+j4t/UqPjnPxZYYIEFFug/FlhggQUW6D+JzeAtYjPoP4nN4C1iM+g/+0Jh2r5Q6D/7QmHavlDoP2644YYbbug/brjhhhtu6D/hLWIzeIvoP+EtYjN4i+g/U6Pi39So6D9To+Lf1KjoP8YYY4wxxug/xhhjjDHG6D85juM4juPoPzmO4ziO4+g/rANk5eoA6T+sA2Tl6gDpPx555JFHHuk/HnnkkUce6T+R7mQ+pDvpP5HuZD6kO+k/BGTl6gBZ6T8EZOXqAFnpP3bZZZddduk/dtlll1126T/pTuZDupPpP+lO5kO6k+k/XMRm8Bax6T9cxGbwFrHpP84555xzzuk/zjnnnHPO6T9Br2dJ0OvpP0GvZ0nQ6+k/tCTo9SwJ6j+0JOj1LAnqPyeaaKKJJuo/J5poookm6j+ZD+lO5kPqP5kP6U7mQ+o/DIVp+0Jh6j8MhWn7QmHqP3/66aeffuo/f/rpp59+6j/xb2pU/JvqP/FvalT8m+o/ZOXqAFm56j9k5eoAWbnqP9daa6211uo/11prrbXW6j9J0OtZEvTqP0nQ61kS9Oo/vEVsBm8R6z+8RWwGbxHrPy+77LLLLus/L7vssssu6z+hMG1fKEzrP6EwbV8oTOs/FKbtC4Vp6z8Upu0LhWnrP4cbbrjhhus/hxtuuOGG6z/6kO5kPqTrP/qQ7mQ+pOs/bAZvEZvB6z9sBm8Rm8HrP99777333us/33vvvffe6z9S8W9qVPzrP1Lxb2pU/Os/xGbwFrEZ7D/EZvAWsRnsPzfccMMNN+w/N9xwww037D+qUfFvalTsP6pR8W9qVOw/HMdxHMdx7D8cx3Ecx3HsP4888sgjj+w/jzzyyCOP7D8CsnJ1gKzsPwKycnWArOw/dSfzId3J7D91J/Mh3cnsP+ecc8455+w/55xzzjnn7D9aEvR6lgTtP1oS9HqWBO0/zYd0J/Mh7T/Nh3Qn8yHtPz/99NNPP+0/P/30008/7T+ycnWArFztP7JydYCsXO0/Jej1LAl67T8l6PUsCXrtP5dddtlll+0/l1122WWX7T8K0/aFwrTtPwrT9oXCtO0/fUh3Mh/S7T99SHcyH9LtP++999577+0/77333nvv7T9iM3iL2AzuP2IzeIvYDO4/1aj4NzUq7j/VqPg3NSruP0geeeSRR+4/SB555JFH7j+6k/mQ7mTuP7qT+ZDuZO4/LQl6PUuC7j8tCXo9S4LuP6B++umnn+4/oH766aef7j8S9HqWBL3uPxL0epYEve4/hWn7QmHa7j+FaftCYdruP/jee++99+4/+N5777337j9qVPybGhXvP2pU/JsaFe8/3cl8SHcy7z/dyXxIdzLvP1A//fTTT+8/UD/99NNP7z/DtH2hMG3vP8O0faEwbe8/NSr+TY2K7z81Kv5NjYrvP6iffvrpp+8/qJ9++umn7z8bFf+mRsXvPxsV/6ZGxe8/jYp/U6Pi7z+Nin9To+LvPwAAAAAAAPA/\"},\"shape\":[558],\"dtype\":\"float64\",\"order\":\"little\"}]]}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1042\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1043\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1038\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":\"#1f77b3\",\"line_width\":2}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1039\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":\"#1f77b3\",\"line_alpha\":0.1,\"line_width\":2}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1040\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":\"#1f77b3\",\"line_alpha\":0.2,\"line_width\":2}}}},{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1050\",\"attributes\":{\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1044\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1045\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1046\"},\"data\":{\"type\":\"map\"}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1051\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1052\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Ray\",\"id\":\"p1047\",\"attributes\":{\"x\":{\"type\":\"value\",\"value\":0.0},\"y\":{\"type\":\"value\",\"value\":0},\"angle\":{\"type\":\"value\",\"value\":3.141592653589793},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"line_width\":{\"type\":\"value\",\"value\":2}}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Ray\",\"id\":\"p1048\",\"attributes\":{\"x\":{\"type\":\"value\",\"value\":0.0},\"y\":{\"type\":\"value\",\"value\":0},\"angle\":{\"type\":\"value\",\"value\":3.141592653589793},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.1},\"line_width\":{\"type\":\"value\",\"value\":2}}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Ray\",\"id\":\"p1049\",\"attributes\":{\"x\":{\"type\":\"value\",\"value\":0.0},\"y\":{\"type\":\"value\",\"value\":0},\"angle\":{\"type\":\"value\",\"value\":3.141592653589793},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.2},\"line_width\":{\"type\":\"value\",\"value\":2}}}}},{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1059\",\"attributes\":{\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1053\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1054\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1055\"},\"data\":{\"type\":\"map\"}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1060\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1061\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Ray\",\"id\":\"p1056\",\"attributes\":{\"x\":{\"type\":\"value\",\"value\":408.0},\"y\":{\"type\":\"value\",\"value\":1},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"line_width\":{\"type\":\"value\",\"value\":2}}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Ray\",\"id\":\"p1057\",\"attributes\":{\"x\":{\"type\":\"value\",\"value\":408.0},\"y\":{\"type\":\"value\",\"value\":1},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.1},\"line_width\":{\"type\":\"value\",\"value\":2}}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Ray\",\"id\":\"p1058\",\"attributes\":{\"x\":{\"type\":\"value\",\"value\":408.0},\"y\":{\"type\":\"value\",\"value\":1},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.2},\"line_width\":{\"type\":\"value\",\"value\":2}}}}}],\"toolbar\":{\"type\":\"object\",\"name\":\"Toolbar\",\"id\":\"p1011\",\"attributes\":{\"tools\":[{\"id\":\"p1024\"},{\"id\":\"p1025\"},{\"id\":\"p1026\"},{\"type\":\"object\",\"name\":\"SaveTool\",\"id\":\"p1032\"},{\"id\":\"p1033\"},{\"id\":\"p1034\"}]}},\"toolbar_location\":null,\"left\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1019\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1020\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1021\"},\"axis_label\":\"ECDF\",\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1022\"}}}],\"below\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1014\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1015\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1016\"},\"axis_label\":\"mRNA count\",\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1017\"}}}],\"center\":[{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1018\",\"attributes\":{\"axis\":{\"id\":\"p1014\"}}},{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1023\",\"attributes\":{\"dimension\":1,\"axis\":{\"id\":\"p1019\"}}}],\"frame_width\":200,\"frame_height\":150}},0,0],[{\"type\":\"object\",\"name\":\"Figure\",\"id\":\"p1062\",\"attributes\":{\"x_range\":{\"type\":\"object\",\"name\":\"DataRange1d\",\"id\":\"p1063\"},\"y_range\":{\"type\":\"object\",\"name\":\"DataRange1d\",\"id\":\"p1064\"},\"x_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1072\"},\"y_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1073\"},\"title\":{\"type\":\"object\",\"name\":\"Title\",\"id\":\"p1065\",\"attributes\":{\"text\":\"Prdm14\"}},\"renderers\":[{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1101\",\"attributes\":{\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1095\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1096\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1097\"},\"data\":{\"type\":\"map\",\"entries\":[[\"x\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAAAEAAAAAAAAAAQAAAAAAAAABAAAAAAAAAAEAAAAAAAAAAQAAAAAAAAABAAAAAAAAAAEAAAAAAAAAAQAAAAAAAAABAAAAAAAAAAEAAAAAAAAAAQAAAAAAAAABAAAAAAAAAAEAAAAAAAAAAQAAAAAAAAABAAAAAAAAAAEAAAAAAAAAAQAAAAAAAAABAAAAAAAAAAEAAAAAAAAAAQAAAAAAAAABAAAAAAAAAAEAAAAAAAAAAQAAAAAAAAABAAAAAAAAAAEAAAAAAAAAAQAAAAAAAAABAAAAAAAAAAEAAAAAAAAAAQAAAAAAAAABAAAAAAAAACEAAAAAAAAAIQAAAAAAAAAhAAAAAAAAACEAAAAAAAAAIQAAAAAAAAAhAAAAAAAAACEAAAAAAAAAIQAAAAAAAAAhAAAAAAAAACEAAAAAAAAAIQAAAAAAAAAhAAAAAAAAACEAAAAAAAAAIQAAAAAAAAAhAAAAAAAAACEAAAAAAAAAIQAAAAAAAAAhAAAAAAAAACEAAAAAAAAAIQAAAAAAAAAhAAAAAAAAACEAAAAAAAAAIQAAAAAAAAAhAAAAAAAAACEAAAAAAAAAIQAAAAAAAAAhAAAAAAAAACEAAAAAAAAAIQAAAAAAAAAhAAAAAAAAACEAAAAAAAAAIQAAAAAAAAAhAAAAAAAAACEAAAAAAAAAIQAAAAAAAAAhAAAAAAAAACEAAAAAAAAAIQAAAAAAAAAhAAAAAAAAACEAAAAAAAAAIQAAAAAAAAAhAAAAAAAAACEAAAAAAAAAIQAAAAAAAAAhAAAAAAAAACEAAAAAAAAAIQAAAAAAAAAhAAAAAAAAAEEAAAAAAAAAQQAAAAAAAABBAAAAAAAAAEEAAAAAAAAAQQAAAAAAAABBAAAAAAAAAEEAAAAAAAAAQQAAAAAAAABBAAAAAAAAAEEAAAAAAAAAQQAAAAAAAABBAAAAAAAAAEEAAAAAAAAAQQAAAAAAAABBAAAAAAAAAEEAAAAAAAAAQQAAAAAAAABBAAAAAAAAAEEAAAAAAAAAQQAAAAAAAABBAAAAAAAAAEEAAAAAAAAAQQAAAAAAAABBAAAAAAAAAEEAAAAAAAAAQQAAAAAAAABBAAAAAAAAAEEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAGEAAAAAAAAAYQAAAAAAAABhAAAAAAAAAGEAAAAAAAAAYQAAAAAAAABhAAAAAAAAAGEAAAAAAAAAYQAAAAAAAABhAAAAAAAAAGEAAAAAAAAAYQAAAAAAAABhAAAAAAAAAGEAAAAAAAAAYQAAAAAAAABhAAAAAAAAAGEAAAAAAAAAYQAAAAAAAABhAAAAAAAAAGEAAAAAAAAAYQAAAAAAAABhAAAAAAAAAGEAAAAAAAAAYQAAAAAAAABhAAAAAAAAAGEAAAAAAAAAYQAAAAAAAABhAAAAAAAAAGEAAAAAAAAAYQAAAAAAAABhAAAAAAAAAGEAAAAAAAAAYQAAAAAAAABxAAAAAAAAAHEAAAAAAAAAcQAAAAAAAABxAAAAAAAAAHEAAAAAAAAAcQAAAAAAAABxAAAAAAAAAHEAAAAAAAAAcQAAAAAAAABxAAAAAAAAAHEAAAAAAAAAcQAAAAAAAABxAAAAAAAAAHEAAAAAAAAAcQAAAAAAAABxAAAAAAAAAHEAAAAAAAAAcQAAAAAAAABxAAAAAAAAAHEAAAAAAAAAcQAAAAAAAABxAAAAAAAAAIEAAAAAAAAAgQAAAAAAAACBAAAAAAAAAIEAAAAAAAAAgQAAAAAAAACBAAAAAAAAAIEAAAAAAAAAgQAAAAAAAACBAAAAAAAAAIEAAAAAAAAAgQAAAAAAAACBAAAAAAAAAIEAAAAAAAAAgQAAAAAAAACBAAAAAAAAAIEAAAAAAAAAiQAAAAAAAACJAAAAAAAAAIkAAAAAAAAAiQAAAAAAAACJAAAAAAAAAIkAAAAAAAAAiQAAAAAAAACJAAAAAAAAAJEAAAAAAAAAkQAAAAAAAACRAAAAAAAAAJEAAAAAAAAAmQAAAAAAAACZAAAAAAAAAJkAAAAAAAAAmQAAAAAAAACZAAAAAAAAAJkAAAAAAAAAmQAAAAAAAACZAAAAAAAAAKEAAAAAAAAAoQAAAAAAAAChAAAAAAAAAKEAAAAAAAAAoQAAAAAAAAChAAAAAAAAAKEAAAAAAAAAoQAAAAAAAAChAAAAAAAAAKEAAAAAAAAAoQAAAAAAAAChAAAAAAAAAKEAAAAAAAAAoQAAAAAAAAChAAAAAAAAAKEAAAAAAAAAqQAAAAAAAACpAAAAAAAAAKkAAAAAAAAAqQAAAAAAAACpAAAAAAAAAKkAAAAAAAAAsQAAAAAAAACxAAAAAAAAALkAAAAAAAAAuQAAAAAAAAC5AAAAAAAAALkAAAAAAAAAuQAAAAAAAAC5AAAAAAAAALkAAAAAAAAAuQAAAAAAAAC5AAAAAAAAALkAAAAAAAAAwQAAAAAAAADBAAAAAAAAAMEAAAAAAAAAwQAAAAAAAADFAAAAAAAAAMUAAAAAAAAAxQAAAAAAAADFAAAAAAAAAMkAAAAAAAAAyQAAAAAAAADJAAAAAAAAAMkAAAAAAAAAyQAAAAAAAADJAAAAAAAAAM0AAAAAAAAAzQAAAAAAAADNAAAAAAAAAM0AAAAAAAAA0QAAAAAAAADRAAAAAAAAANUAAAAAAAAA1QAAAAAAAADZAAAAAAAAANkAAAAAAAAA4QAAAAAAAADhAAAAAAAAAOUAAAAAAAAA5QAAAAAAAADtAAAAAAAAAO0AAAAAAAAA7QAAAAAAAADtAAAAAAAAAP0AAAAAAAAA/QAAAAAAAAEBAAAAAAAAAQEAAAAAAAABAQAAAAAAAAEBA\"},\"shape\":[558],\"dtype\":\"float64\",\"order\":\"little\"}],[\"y\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAAACycnWArFxtP7JydYCsXG0/snJ1gKxcfT+ycnWArFx9PwYWWGCBBYY/BhZYYIEFhj+ycnWArFyNP7JydYCsXI0/r2dJ0OtZkj+vZ0nQ61mSPwYWWGCBBZY/BhZYYIEFlj9cxGbwFrGZP1zEZvAWsZk/snJ1gKxcnT+ycnWArFydP4QQQgghhKA/hBBCCCGEoD+vZ0nQ61miP69nSdDrWaI/2r5QmLYvpD/avlCYti+kPwYWWGCBBaY/BhZYYIEFpj8xbV8oTNunPzFtXyhM26c/XMRm8BaxqT9cxGbwFrGpP4cbbrjhhqs/hxtuuOGGqz+ycnWArFytP7JydYCsXK0/3cl8SHcyrz/dyXxIdzKvP4QQQgghhLA/hBBCCCGEsD8avEVsBm+xPxq8RWwGb7E/r2dJ0OtZsj+vZ0nQ61myP0UTTTTRRLM/RRNNNNFEsz/avlCYti+0P9q+UJi2L7Q/cGpU/JsatT9walT8mxq1PwYWWGCBBbY/BhZYYIEFtj+bwVvEZvC2P5vBW8Rm8LY/MW1fKEzbtz8xbV8oTNu3P8YYY4wxxrg/xhhjjDHGuD9cxGbwFrG5P1zEZvAWsbk/8W9qVPybuj/xb2pU/Ju6P4cbbrjhhrs/hxtuuOGGuz8cx3Ecx3G8PxzHcRzHcbw/snJ1gKxcvT+ycnWArFy9P0geeeSRR74/SB555JFHvj/dyXxIdzK/P93JfEh3Mr8/uTpAVq4OwD+5OkBWrg7AP4QQQgghhMA/hBBCCCGEwD9P5kO6k/nAP0/mQ7qT+cA/GrxFbAZvwT8avEVsBm/BP+SRRx555ME/5JFHHnnkwT+vZ0nQ61nCP69nSdDrWcI/ej1Lgl7Pwj96PUuCXs/CP0UTTTTRRMM/RRNNNNFEwz8Q6U7mQ7rDPxDpTuZDusM/2r5QmLYvxD/avlCYti/EP6WUUkoppcQ/pZRSSimlxD9walT8mxrFP3BqVPybGsU/O0BWrg6QxT87QFauDpDFPwYWWGCBBcY/BhZYYIEFxj/Q61kS9HrGP9DrWRL0esY/m8FbxGbwxj+bwVvEZvDGP2aXXXbZZcc/Zpdddtllxz8xbV8oTNvHPzFtXyhM28c/+0Jh2r5QyD/7QmHavlDIP8YYY4wxxsg/xhhjjDHGyD+R7mQ+pDvJP5HuZD6kO8k/XMRm8BaxyT9cxGbwFrHJPyeaaKKJJso/J5poookmyj/xb2pU/JvKP/FvalT8m8o/vEVsBm8Ryz+8RWwGbxHLP4cbbrjhhss/hxtuuOGGyz9S8W9qVPzLP1Lxb2pU/Ms/HMdxHMdxzD8cx3Ecx3HMP+ecc84558w/55xzzjnnzD+ycnWArFzNP7JydYCsXM0/fUh3Mh/SzT99SHcyH9LNP0geeeSRR84/SB555JFHzj8S9HqWBL3OPxL0epYEvc4/3cl8SHcyzz/dyXxIdzLPP6iffvrpp88/qJ9++umnzz+5OkBWrg7QP7k6QFauDtA/nyVBr2dJ0D+fJUGvZ0nQP4QQQgghhNA/hBBCCCGE0D9q+0Jh2r7QP2r7QmHavtA/T+ZDupP50D9P5kO6k/nQPzTRRBNNNNE/NNFEE0000T8avEVsBm/RPxq8RWwGb9E//6ZGxb+p0T//pkbFv6nRP+SRRx555NE/5JFHHnnk0T/KfEh3Mh/SP8p8SHcyH9I/r2dJ0OtZ0j+vZ0nQ61nSP5VSSimllNI/lVJKKaWU0j96PUuCXs/SP3o9S4Jez9I/XyhM2xcK0z9fKEzbFwrTP0UTTTTRRNM/RRNNNNFE0z8q/k2Nin/TPyr+TY2Kf9M/EOlO5kO60z8Q6U7mQ7rTP/XTTz/99NM/9dNPP/300z/avlCYti/UP9q+UJi2L9Q/wKlR8W9q1D/AqVHxb2rUP6WUUkoppdQ/pZRSSiml1D+Lf1Oj4t/UP4t/U6Pi39Q/cGpU/Jsa1T9walT8mxrVP1VVVVVVVdU/VVVVVVVV1T87QFauDpDVPztAVq4OkNU/ICtXB8jK1T8gK1cHyMrVPwYWWGCBBdY/BhZYYIEF1j/rAFm5OkDWP+sAWbk6QNY/0OtZEvR61j/Q61kS9HrWP7bWWmuttdY/ttZaa6211j+bwVvEZvDWP5vBW8Rm8NY/gKxcHSAr1z+ArFwdICvXP2aXXXbZZdc/Zpdddtll1z9Lgl7PkqDXP0uCXs+SoNc/MW1fKEzb1z8xbV8oTNvXPxZYYIEFFtg/FlhggQUW2D/7QmHavlDYP/tCYdq+UNg/4S1iM3iL2D/hLWIzeIvYP8YYY4wxxtg/xhhjjDHG2D+sA2Tl6gDZP6wDZOXqANk/ke5kPqQ72T+R7mQ+pDvZP3bZZZdddtk/dtlll1122T9cxGbwFrHZP1zEZvAWsdk/Qa9nSdDr2T9Br2dJ0OvZPyeaaKKJJto/J5poookm2j8MhWn7QmHaPwyFaftCYdo/8W9qVPyb2j/xb2pU/JvaP9daa6211to/11prrbXW2j+8RWwGbxHbP7xFbAZvEds/oTBtXyhM2z+hMG1fKEzbP4cbbrjhhts/hxtuuOGG2z9sBm8Rm8HbP2wGbxGbwds/UvFvalT82z9S8W9qVPzbPzfccMMNN9w/N9xwww033D8cx3Ecx3HcPxzHcRzHcdw/ArJydYCs3D8CsnJ1gKzcP+ecc84559w/55xzzjnn3D/Nh3Qn8yHdP82HdCfzId0/snJ1gKxc3T+ycnWArFzdP5dddtlll90/l1122WWX3T99SHcyH9LdP31IdzIf0t0/YjN4i9gM3j9iM3iL2AzeP0geeeSRR94/SB555JFH3j8tCXo9S4LePy0Jej1Lgt4/EvR6lgS93j8S9HqWBL3eP/jee++9994/+N5777333j/dyXxIdzLfP93JfEh3Mt8/w7R9oTBt3z/DtH2hMG3fP6iffvrpp98/qJ9++umn3z+Nin9To+LfP42Kf1Oj4t8/uTpAVq4O4D+5OkBWrg7gPyywwAILLOA/LLDAAgss4D+fJUGvZ0ngP58lQa9nSeA/EZvBW8Rm4D8Rm8FbxGbgP4QQQgghhOA/hBBCCCGE4D/3hcK0faHgP/eFwrR9oeA/avtCYdq+4D9q+0Jh2r7gP9xwww033OA/3HDDDTfc4D9P5kO6k/ngP0/mQ7qT+eA/wlvEZvAW4T/CW8Rm8BbhPzTRRBNNNOE/NNFEE0004T+nRsW/qVHhP6dGxb+pUeE/GrxFbAZv4T8avEVsBm/hP4wxxhhjjOE/jDHGGGOM4T//pkbFv6nhP/+mRsW/qeE/chzHcRzH4T9yHMdxHMfhP+SRRx555OE/5JFHHnnk4T9XB8jK1QHiP1cHyMrVAeI/ynxIdzIf4j/KfEh3Mh/iPz3yyCOPPOI/PfLII4884j+vZ0nQ61niP69nSdDrWeI/It3JfEh34j8i3cl8SHfiP5VSSimllOI/lVJKKaWU4j8HyMrVAbLiPwfIytUBsuI/ej1Lgl7P4j96PUuCXs/iP+2yyy677OI/7bLLLrvs4j9fKEzbFwrjP18oTNsXCuM/0p3Mh3Qn4z/SncyHdCfjP0UTTTTRROM/RRNNNNFE4z+4iM3gLWLjP7iIzeAtYuM/Kv5NjYp/4z8q/k2Nin/jP51zzjnnnOM/nXPOOeec4z8Q6U7mQ7rjPxDpTuZDuuM/gl7PkqDX4z+CXs+SoNfjP/XTTz/99OM/9dNPP/304z9oSdDrWRLkP2hJ0OtZEuQ/2r5QmLYv5D/avlCYti/kP0000UQTTeQ/TTTRRBNN5D/AqVHxb2rkP8CpUfFvauQ/Mh/SncyH5D8yH9KdzIfkP6WUUkoppeQ/pZRSSiml5D8YCtP2hcLkPxgK0/aFwuQ/i39To+Lf5D+Lf1Oj4t/kP/30008//eQ//fTTTz/95D9walT8mxrlP3BqVPybGuU/49/UqPg35T/j39So+DflP1VVVVVVVeU/VVVVVVVV5T/IytUBsnLlP8jK1QGycuU/O0BWrg6Q5T87QFauDpDlP6211lprreU/rbXWWmut5T8gK1cHyMrlPyArVwfIyuU/k6DXsyTo5T+ToNezJOjlPwYWWGCBBeY/BhZYYIEF5j94i9gM3iLmP3iL2AzeIuY/6wBZuTpA5j/rAFm5OkDmP1522WWXXeY/XnbZZZdd5j/Q61kS9HrmP9DrWRL0euY/Q2HavlCY5j9DYdq+UJjmP7bWWmutteY/ttZaa6215j8oTNsXCtPmPyhM2xcK0+Y/m8FbxGbw5j+bwVvEZvDmPw433HDDDec/DjfccMMN5z+ArFwdICvnP4CsXB0gK+c/8yHdyXxI5z/zId3JfEjnP2aXXXbZZec/Zpdddtll5z/ZDN4iNoPnP9kM3iI2g+c/S4Jez5Kg5z9Lgl7PkqDnP7733nvvvec/vvfee++95z8xbV8oTNvnPzFtXyhM2+c/o+Lf1Kj45z+j4t/UqPjnPxZYYIEFFug/FlhggQUW6D+JzeAtYjPoP4nN4C1iM+g/+0Jh2r5Q6D/7QmHavlDoP2644YYbbug/brjhhhtu6D/hLWIzeIvoP+EtYjN4i+g/U6Pi39So6D9To+Lf1KjoP8YYY4wxxug/xhhjjDHG6D85juM4juPoPzmO4ziO4+g/rANk5eoA6T+sA2Tl6gDpPx555JFHHuk/HnnkkUce6T+R7mQ+pDvpP5HuZD6kO+k/BGTl6gBZ6T8EZOXqAFnpP3bZZZddduk/dtlll1126T/pTuZDupPpP+lO5kO6k+k/XMRm8Bax6T9cxGbwFrHpP84555xzzuk/zjnnnHPO6T9Br2dJ0OvpP0GvZ0nQ6+k/tCTo9SwJ6j+0JOj1LAnqPyeaaKKJJuo/J5poookm6j+ZD+lO5kPqP5kP6U7mQ+o/DIVp+0Jh6j8MhWn7QmHqP3/66aeffuo/f/rpp59+6j/xb2pU/JvqP/FvalT8m+o/ZOXqAFm56j9k5eoAWbnqP9daa6211uo/11prrbXW6j9J0OtZEvTqP0nQ61kS9Oo/vEVsBm8R6z+8RWwGbxHrPy+77LLLLus/L7vssssu6z+hMG1fKEzrP6EwbV8oTOs/FKbtC4Vp6z8Upu0LhWnrP4cbbrjhhus/hxtuuOGG6z/6kO5kPqTrP/qQ7mQ+pOs/bAZvEZvB6z9sBm8Rm8HrP99777333us/33vvvffe6z9S8W9qVPzrP1Lxb2pU/Os/xGbwFrEZ7D/EZvAWsRnsPzfccMMNN+w/N9xwww037D+qUfFvalTsP6pR8W9qVOw/HMdxHMdx7D8cx3Ecx3HsP4888sgjj+w/jzzyyCOP7D8CsnJ1gKzsPwKycnWArOw/dSfzId3J7D91J/Mh3cnsP+ecc8455+w/55xzzjnn7D9aEvR6lgTtP1oS9HqWBO0/zYd0J/Mh7T/Nh3Qn8yHtPz/99NNPP+0/P/30008/7T+ycnWArFztP7JydYCsXO0/Jej1LAl67T8l6PUsCXrtP5dddtlll+0/l1122WWX7T8K0/aFwrTtPwrT9oXCtO0/fUh3Mh/S7T99SHcyH9LtP++999577+0/77333nvv7T9iM3iL2AzuP2IzeIvYDO4/1aj4NzUq7j/VqPg3NSruP0geeeSRR+4/SB555JFH7j+6k/mQ7mTuP7qT+ZDuZO4/LQl6PUuC7j8tCXo9S4LuP6B++umnn+4/oH766aef7j8S9HqWBL3uPxL0epYEve4/hWn7QmHa7j+FaftCYdruP/jee++99+4/+N5777337j9qVPybGhXvP2pU/JsaFe8/3cl8SHcy7z/dyXxIdzLvP1A//fTTT+8/UD/99NNP7z/DtH2hMG3vP8O0faEwbe8/NSr+TY2K7z81Kv5NjYrvP6iffvrpp+8/qJ9++umn7z8bFf+mRsXvPxsV/6ZGxe8/jYp/U6Pi7z+Nin9To+LvPwAAAAAAAPA/\"},\"shape\":[558],\"dtype\":\"float64\",\"order\":\"little\"}]]}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1102\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1103\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1098\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":\"#1f77b3\",\"line_width\":2}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1099\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":\"#1f77b3\",\"line_alpha\":0.1,\"line_width\":2}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1100\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":\"#1f77b3\",\"line_alpha\":0.2,\"line_width\":2}}}},{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1110\",\"attributes\":{\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1104\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1105\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1106\"},\"data\":{\"type\":\"map\"}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1111\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1112\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Ray\",\"id\":\"p1107\",\"attributes\":{\"x\":{\"type\":\"value\",\"value\":0.0},\"y\":{\"type\":\"value\",\"value\":0},\"angle\":{\"type\":\"value\",\"value\":3.141592653589793},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"line_width\":{\"type\":\"value\",\"value\":2}}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Ray\",\"id\":\"p1108\",\"attributes\":{\"x\":{\"type\":\"value\",\"value\":0.0},\"y\":{\"type\":\"value\",\"value\":0},\"angle\":{\"type\":\"value\",\"value\":3.141592653589793},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.1},\"line_width\":{\"type\":\"value\",\"value\":2}}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Ray\",\"id\":\"p1109\",\"attributes\":{\"x\":{\"type\":\"value\",\"value\":0.0},\"y\":{\"type\":\"value\",\"value\":0},\"angle\":{\"type\":\"value\",\"value\":3.141592653589793},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.2},\"line_width\":{\"type\":\"value\",\"value\":2}}}}},{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1119\",\"attributes\":{\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1113\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1114\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1115\"},\"data\":{\"type\":\"map\"}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1120\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1121\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Ray\",\"id\":\"p1116\",\"attributes\":{\"x\":{\"type\":\"value\",\"value\":32.0},\"y\":{\"type\":\"value\",\"value\":1},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"line_width\":{\"type\":\"value\",\"value\":2}}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Ray\",\"id\":\"p1117\",\"attributes\":{\"x\":{\"type\":\"value\",\"value\":32.0},\"y\":{\"type\":\"value\",\"value\":1},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.1},\"line_width\":{\"type\":\"value\",\"value\":2}}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Ray\",\"id\":\"p1118\",\"attributes\":{\"x\":{\"type\":\"value\",\"value\":32.0},\"y\":{\"type\":\"value\",\"value\":1},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.2},\"line_width\":{\"type\":\"value\",\"value\":2}}}}}],\"toolbar\":{\"type\":\"object\",\"name\":\"Toolbar\",\"id\":\"p1071\",\"attributes\":{\"tools\":[{\"id\":\"p1084\"},{\"id\":\"p1085\"},{\"id\":\"p1086\"},{\"type\":\"object\",\"name\":\"SaveTool\",\"id\":\"p1092\"},{\"id\":\"p1093\"},{\"id\":\"p1094\"}]}},\"toolbar_location\":null,\"left\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1079\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1080\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1081\"},\"axis_label\":\"ECDF\",\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1082\"}}}],\"below\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1074\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1075\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1076\"},\"axis_label\":\"mRNA count\",\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1077\"}}}],\"center\":[{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1078\",\"attributes\":{\"axis\":{\"id\":\"p1074\"}}},{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1083\",\"attributes\":{\"dimension\":1,\"axis\":{\"id\":\"p1079\"}}}],\"frame_width\":200,\"frame_height\":150}},0,1],[{\"type\":\"object\",\"name\":\"Figure\",\"id\":\"p1122\",\"attributes\":{\"x_range\":{\"type\":\"object\",\"name\":\"DataRange1d\",\"id\":\"p1123\"},\"y_range\":{\"type\":\"object\",\"name\":\"DataRange1d\",\"id\":\"p1124\"},\"x_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1132\"},\"y_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1133\"},\"title\":{\"type\":\"object\",\"name\":\"Title\",\"id\":\"p1125\",\"attributes\":{\"text\":\"Rest\"}},\"renderers\":[{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1161\",\"attributes\":{\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1155\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1156\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1157\"},\"data\":{\"type\":\"map\",\"entries\":[[\"x\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFEAAAAAAAAAUQAAAAAAAACBAAAAAAAAAIEAAAAAAAAAmQAAAAAAAACZAAAAAAAAAKEAAAAAAAAAoQAAAAAAAAChAAAAAAAAAKEAAAAAAAAAqQAAAAAAAACpAAAAAAAAALkAAAAAAAAAuQAAAAAAAADBAAAAAAAAAMEAAAAAAAAAxQAAAAAAAADFAAAAAAAAAMkAAAAAAAAAyQAAAAAAAADVAAAAAAAAANUAAAAAAAAA4QAAAAAAAADhAAAAAAAAAOUAAAAAAAAA5QAAAAAAAADpAAAAAAAAAOkAAAAAAAAA6QAAAAAAAADpAAAAAAAAAO0AAAAAAAAA7QAAAAAAAADtAAAAAAAAAO0AAAAAAAAA8QAAAAAAAADxAAAAAAAAAPUAAAAAAAAA9QAAAAAAAAD1AAAAAAAAAPUAAAAAAAAA+QAAAAAAAAD5AAAAAAAAAPkAAAAAAAAA+QAAAAAAAAD9AAAAAAAAAP0AAAAAAAAA/QAAAAAAAAD9AAAAAAAAAP0AAAAAAAAA/QAAAAAAAAEBAAAAAAAAAQEAAAAAAAABAQAAAAAAAAEBAAAAAAACAQEAAAAAAAIBAQAAAAAAAgEBAAAAAAACAQEAAAAAAAABBQAAAAAAAAEFAAAAAAAAAQUAAAAAAAABBQAAAAAAAAEFAAAAAAAAAQUAAAAAAAABBQAAAAAAAAEFAAAAAAACAQUAAAAAAAIBBQAAAAAAAgEFAAAAAAACAQUAAAAAAAABCQAAAAAAAAEJAAAAAAACAQkAAAAAAAIBCQAAAAAAAgEJAAAAAAACAQkAAAAAAAIBDQAAAAAAAgENAAAAAAACAQ0AAAAAAAIBDQAAAAAAAgENAAAAAAACAQ0AAAAAAAABEQAAAAAAAAERAAAAAAAAAREAAAAAAAABEQAAAAAAAAERAAAAAAAAAREAAAAAAAABEQAAAAAAAAERAAAAAAACAREAAAAAAAIBEQAAAAAAAAEVAAAAAAAAARUAAAAAAAABFQAAAAAAAAEVAAAAAAACARUAAAAAAAIBFQAAAAAAAgEVAAAAAAACARUAAAAAAAABGQAAAAAAAAEZAAAAAAAAARkAAAAAAAABGQAAAAAAAAEZAAAAAAAAARkAAAAAAAIBGQAAAAAAAgEZAAAAAAAAAR0AAAAAAAABHQAAAAAAAAEdAAAAAAAAAR0AAAAAAAABHQAAAAAAAAEdAAAAAAAAAR0AAAAAAAABHQAAAAAAAAEhAAAAAAAAASEAAAAAAAABIQAAAAAAAAEhAAAAAAAAASEAAAAAAAABIQAAAAAAAgEhAAAAAAACASEAAAAAAAIBIQAAAAAAAgEhAAAAAAAAASUAAAAAAAABJQAAAAAAAAElAAAAAAAAASUAAAAAAAIBJQAAAAAAAgElAAAAAAACASUAAAAAAAIBJQAAAAAAAgElAAAAAAACASUAAAAAAAIBJQAAAAAAAgElAAAAAAAAASkAAAAAAAABKQAAAAAAAAEpAAAAAAAAASkAAAAAAAIBKQAAAAAAAgEpAAAAAAACASkAAAAAAAIBKQAAAAAAAgEpAAAAAAACASkAAAAAAAIBKQAAAAAAAgEpAAAAAAACASkAAAAAAAIBKQAAAAAAAgEpAAAAAAACASkAAAAAAAIBKQAAAAAAAgEpAAAAAAAAAS0AAAAAAAABLQAAAAAAAAEtAAAAAAAAAS0AAAAAAAABLQAAAAAAAAEtAAAAAAAAAS0AAAAAAAABLQAAAAAAAgEtAAAAAAACAS0AAAAAAAIBLQAAAAAAAgEtAAAAAAAAATEAAAAAAAABMQAAAAAAAAExAAAAAAAAATEAAAAAAAIBMQAAAAAAAgExAAAAAAACATEAAAAAAAIBMQAAAAAAAgExAAAAAAACATEAAAAAAAIBMQAAAAAAAgExAAAAAAAAATUAAAAAAAABNQAAAAAAAAE1AAAAAAAAATUAAAAAAAIBNQAAAAAAAgE1AAAAAAACATUAAAAAAAIBNQAAAAAAAgE1AAAAAAACATUAAAAAAAIBNQAAAAAAAgE1AAAAAAACATUAAAAAAAIBNQAAAAAAAAE5AAAAAAAAATkAAAAAAAABOQAAAAAAAAE5AAAAAAAAATkAAAAAAAABOQAAAAAAAAE5AAAAAAAAATkAAAAAAAIBOQAAAAAAAgE5AAAAAAACATkAAAAAAAIBOQAAAAAAAAE9AAAAAAAAAT0AAAAAAAABPQAAAAAAAAE9AAAAAAAAAT0AAAAAAAABPQAAAAAAAAE9AAAAAAAAAT0AAAAAAAABPQAAAAAAAAE9AAAAAAAAAT0AAAAAAAABPQAAAAAAAAE9AAAAAAAAAT0AAAAAAAIBPQAAAAAAAgE9AAAAAAAAAUEAAAAAAAABQQAAAAAAAAFBAAAAAAAAAUEAAAAAAAABQQAAAAAAAAFBAAAAAAABAUEAAAAAAAEBQQAAAAAAAQFBAAAAAAABAUEAAAAAAAEBQQAAAAAAAQFBAAAAAAABAUEAAAAAAAEBQQAAAAAAAQFBAAAAAAABAUEAAAAAAAEBQQAAAAAAAQFBAAAAAAABAUEAAAAAAAEBQQAAAAAAAgFBAAAAAAACAUEAAAAAAAMBQQAAAAAAAwFBAAAAAAADAUEAAAAAAAMBQQAAAAAAAwFBAAAAAAADAUEAAAAAAAABRQAAAAAAAAFFAAAAAAAAAUUAAAAAAAABRQAAAAAAAAFFAAAAAAAAAUUAAAAAAAABRQAAAAAAAAFFAAAAAAAAAUUAAAAAAAABRQAAAAAAAQFFAAAAAAABAUUAAAAAAAIBRQAAAAAAAgFFAAAAAAACAUUAAAAAAAIBRQAAAAAAAgFFAAAAAAACAUUAAAAAAAIBRQAAAAAAAgFFAAAAAAACAUUAAAAAAAIBRQAAAAAAAAFJAAAAAAAAAUkAAAAAAAABSQAAAAAAAAFJAAAAAAAAAUkAAAAAAAABSQAAAAAAAQFJAAAAAAABAUkAAAAAAAIBSQAAAAAAAgFJAAAAAAACAUkAAAAAAAIBSQAAAAAAAgFJAAAAAAACAUkAAAAAAAIBSQAAAAAAAgFJAAAAAAACAUkAAAAAAAIBSQAAAAAAAgFJAAAAAAACAUkAAAAAAAIBSQAAAAAAAgFJAAAAAAADAUkAAAAAAAMBSQAAAAAAAwFJAAAAAAADAUkAAAAAAAMBSQAAAAAAAwFJAAAAAAADAUkAAAAAAAMBSQAAAAAAAAFNAAAAAAAAAU0AAAAAAAABTQAAAAAAAAFNAAAAAAABAU0AAAAAAAEBTQAAAAAAAQFNAAAAAAABAU0AAAAAAAIBTQAAAAAAAgFNAAAAAAACAU0AAAAAAAIBTQAAAAAAAgFNAAAAAAACAU0AAAAAAAIBTQAAAAAAAgFNAAAAAAADAU0AAAAAAAMBTQAAAAAAAwFNAAAAAAADAU0AAAAAAAMBTQAAAAAAAwFNAAAAAAAAAVEAAAAAAAABUQAAAAAAAAFRAAAAAAAAAVEAAAAAAAABUQAAAAAAAAFRAAAAAAAAAVEAAAAAAAABUQAAAAAAAgFRAAAAAAACAVEAAAAAAAIBUQAAAAAAAgFRAAAAAAACAVEAAAAAAAIBUQAAAAAAAgFRAAAAAAACAVEAAAAAAAIBUQAAAAAAAgFRAAAAAAACAVEAAAAAAAIBUQAAAAAAAgFRAAAAAAACAVEAAAAAAAMBUQAAAAAAAwFRAAAAAAADAVEAAAAAAAMBUQAAAAAAAwFRAAAAAAADAVEAAAAAAAMBUQAAAAAAAwFRAAAAAAAAAVUAAAAAAAABVQAAAAAAAAFVAAAAAAAAAVUAAAAAAAEBVQAAAAAAAQFVAAAAAAABAVUAAAAAAAEBVQAAAAAAAQFVAAAAAAABAVUAAAAAAAIBVQAAAAAAAgFVAAAAAAACAVUAAAAAAAIBVQAAAAAAAwFVAAAAAAADAVUAAAAAAAMBVQAAAAAAAwFVAAAAAAADAVUAAAAAAAMBVQAAAAAAAAFZAAAAAAAAAVkAAAAAAAABWQAAAAAAAAFZAAAAAAABAVkAAAAAAAEBWQAAAAAAAQFZAAAAAAABAVkAAAAAAAIBWQAAAAAAAgFZAAAAAAACAVkAAAAAAAIBWQAAAAAAAwFZAAAAAAADAVkAAAAAAAMBWQAAAAAAAwFZAAAAAAADAVkAAAAAAAMBWQAAAAAAAwFZAAAAAAADAVkAAAAAAAMBWQAAAAAAAwFZAAAAAAADAVkAAAAAAAMBWQAAAAAAAwFZAAAAAAADAVkAAAAAAAABXQAAAAAAAAFdAAAAAAAAAV0AAAAAAAABXQAAAAAAAAFdAAAAAAAAAV0AAAAAAAABXQAAAAAAAAFdAAAAAAAAAV0AAAAAAAABXQAAAAAAAAFdAAAAAAAAAV0AAAAAAAEBXQAAAAAAAQFdAAAAAAACAV0AAAAAAAIBXQAAAAAAAgFdAAAAAAACAV0AAAAAAAIBXQAAAAAAAgFdAAAAAAACAV0AAAAAAAIBXQAAAAAAAgFdAAAAAAACAV0AAAAAAAIBXQAAAAAAAgFdAAAAAAADAV0AAAAAAAMBXQAAAAAAAwFdAAAAAAADAV0AAAAAAAMBXQAAAAAAAwFdAAAAAAAAAWEAAAAAAAABYQAAAAAAAAFhAAAAAAAAAWEAAAAAAAEBYQAAAAAAAQFhAAAAAAACAWEAAAAAAAIBYQAAAAAAAgFhAAAAAAACAWEAAAAAAAIBYQAAAAAAAgFhAAAAAAADAWEAAAAAAAMBYQAAAAAAAAFlAAAAAAAAAWUAAAAAAAEBZQAAAAAAAQFlAAAAAAACAWUAAAAAAAIBZQAAAAAAAwFlAAAAAAADAWUAAAAAAAMBZQAAAAAAAwFlAAAAAAADAWUAAAAAAAMBZQAAAAAAAwFlAAAAAAADAWUAAAAAAAABaQAAAAAAAAFpAAAAAAAAAWkAAAAAAAABaQAAAAAAAAFpAAAAAAAAAWkAAAAAAAEBaQAAAAAAAQFpAAAAAAACAWkAAAAAAAIBaQAAAAAAAgFpAAAAAAACAWkAAAAAAAIBaQAAAAAAAgFpAAAAAAADAWkAAAAAAAMBaQAAAAAAAwFpAAAAAAADAWkAAAAAAAABbQAAAAAAAAFtAAAAAAAAAW0AAAAAAAABbQAAAAAAAAFtAAAAAAAAAW0AAAAAAAEBbQAAAAAAAQFtAAAAAAABAW0AAAAAAAEBbQAAAAAAAgFtAAAAAAACAW0AAAAAAAIBbQAAAAAAAgFtAAAAAAAAAXEAAAAAAAABcQAAAAAAAAFxAAAAAAAAAXEAAAAAAAIBcQAAAAAAAgFxAAAAAAAAAXUAAAAAAAABdQAAAAAAAQF1AAAAAAABAXUAAAAAAAIBdQAAAAAAAgF1AAAAAAABAXkAAAAAAAEBeQAAAAAAAAF9AAAAAAAAAX0AAAAAAAEBfQAAAAAAAQF9AAAAAAABAX0AAAAAAAEBfQAAAAAAAQF9AAAAAAABAX0AAAAAAACBgQAAAAAAAIGBAAAAAAAAgYEAAAAAAACBgQAAAAAAAQGBAAAAAAABAYEAAAAAAAEBgQAAAAAAAQGBAAAAAAADAYEAAAAAAAMBgQAAAAAAAwGBAAAAAAADAYEAAAAAAACBhQAAAAAAAIGFAAAAAAAAgYUAAAAAAACBhQAAAAAAAQGFAAAAAAABAYUAAAAAAAIBhQAAAAAAAgGFAAAAAAADAYUAAAAAAAMBhQAAAAAAAAGJAAAAAAAAAYkAAAAAAAIBiQAAAAAAAgGJAAAAAAAAAY0AAAAAAAABjQAAAAAAAIGNAAAAAAAAgY0AAAAAAAGBjQAAAAAAAYGNAAAAAAADgY0AAAAAAAOBjQAAAAAAAQGRAAAAAAABAZEAAAAAAAEBkQAAAAAAAQGRAAAAAAABAZUAAAAAAAEBlQAAAAAAAwGZAAAAAAADAZkAAAAAAAMBuQAAAAAAAwG5A\"},\"shape\":[558],\"dtype\":\"float64\",\"order\":\"little\"}],[\"y\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAAACycnWArFxtP7JydYCsXG0/snJ1gKxcfT+ycnWArFx9PwYWWGCBBYY/BhZYYIEFhj+ycnWArFyNP7JydYCsXI0/r2dJ0OtZkj+vZ0nQ61mSPwYWWGCBBZY/BhZYYIEFlj9cxGbwFrGZP1zEZvAWsZk/snJ1gKxcnT+ycnWArFydP4QQQgghhKA/hBBCCCGEoD+vZ0nQ61miP69nSdDrWaI/2r5QmLYvpD/avlCYti+kPwYWWGCBBaY/BhZYYIEFpj8xbV8oTNunPzFtXyhM26c/XMRm8BaxqT9cxGbwFrGpP4cbbrjhhqs/hxtuuOGGqz+ycnWArFytP7JydYCsXK0/3cl8SHcyrz/dyXxIdzKvP4QQQgghhLA/hBBCCCGEsD8avEVsBm+xPxq8RWwGb7E/r2dJ0OtZsj+vZ0nQ61myP0UTTTTRRLM/RRNNNNFEsz/avlCYti+0P9q+UJi2L7Q/cGpU/JsatT9walT8mxq1PwYWWGCBBbY/BhZYYIEFtj+bwVvEZvC2P5vBW8Rm8LY/MW1fKEzbtz8xbV8oTNu3P8YYY4wxxrg/xhhjjDHGuD9cxGbwFrG5P1zEZvAWsbk/8W9qVPybuj/xb2pU/Ju6P4cbbrjhhrs/hxtuuOGGuz8cx3Ecx3G8PxzHcRzHcbw/snJ1gKxcvT+ycnWArFy9P0geeeSRR74/SB555JFHvj/dyXxIdzK/P93JfEh3Mr8/uTpAVq4OwD+5OkBWrg7AP4QQQgghhMA/hBBCCCGEwD9P5kO6k/nAP0/mQ7qT+cA/GrxFbAZvwT8avEVsBm/BP+SRRx555ME/5JFHHnnkwT+vZ0nQ61nCP69nSdDrWcI/ej1Lgl7Pwj96PUuCXs/CP0UTTTTRRMM/RRNNNNFEwz8Q6U7mQ7rDPxDpTuZDusM/2r5QmLYvxD/avlCYti/EP6WUUkoppcQ/pZRSSimlxD9walT8mxrFP3BqVPybGsU/O0BWrg6QxT87QFauDpDFPwYWWGCBBcY/BhZYYIEFxj/Q61kS9HrGP9DrWRL0esY/m8FbxGbwxj+bwVvEZvDGP2aXXXbZZcc/Zpdddtllxz8xbV8oTNvHPzFtXyhM28c/+0Jh2r5QyD/7QmHavlDIP8YYY4wxxsg/xhhjjDHGyD+R7mQ+pDvJP5HuZD6kO8k/XMRm8BaxyT9cxGbwFrHJPyeaaKKJJso/J5poookmyj/xb2pU/JvKP/FvalT8m8o/vEVsBm8Ryz+8RWwGbxHLP4cbbrjhhss/hxtuuOGGyz9S8W9qVPzLP1Lxb2pU/Ms/HMdxHMdxzD8cx3Ecx3HMP+ecc84558w/55xzzjnnzD+ycnWArFzNP7JydYCsXM0/fUh3Mh/SzT99SHcyH9LNP0geeeSRR84/SB555JFHzj8S9HqWBL3OPxL0epYEvc4/3cl8SHcyzz/dyXxIdzLPP6iffvrpp88/qJ9++umnzz+5OkBWrg7QP7k6QFauDtA/nyVBr2dJ0D+fJUGvZ0nQP4QQQgghhNA/hBBCCCGE0D9q+0Jh2r7QP2r7QmHavtA/T+ZDupP50D9P5kO6k/nQPzTRRBNNNNE/NNFEE0000T8avEVsBm/RPxq8RWwGb9E//6ZGxb+p0T//pkbFv6nRP+SRRx555NE/5JFHHnnk0T/KfEh3Mh/SP8p8SHcyH9I/r2dJ0OtZ0j+vZ0nQ61nSP5VSSimllNI/lVJKKaWU0j96PUuCXs/SP3o9S4Jez9I/XyhM2xcK0z9fKEzbFwrTP0UTTTTRRNM/RRNNNNFE0z8q/k2Nin/TPyr+TY2Kf9M/EOlO5kO60z8Q6U7mQ7rTP/XTTz/99NM/9dNPP/300z/avlCYti/UP9q+UJi2L9Q/wKlR8W9q1D/AqVHxb2rUP6WUUkoppdQ/pZRSSiml1D+Lf1Oj4t/UP4t/U6Pi39Q/cGpU/Jsa1T9walT8mxrVP1VVVVVVVdU/VVVVVVVV1T87QFauDpDVPztAVq4OkNU/ICtXB8jK1T8gK1cHyMrVPwYWWGCBBdY/BhZYYIEF1j/rAFm5OkDWP+sAWbk6QNY/0OtZEvR61j/Q61kS9HrWP7bWWmuttdY/ttZaa6211j+bwVvEZvDWP5vBW8Rm8NY/gKxcHSAr1z+ArFwdICvXP2aXXXbZZdc/Zpdddtll1z9Lgl7PkqDXP0uCXs+SoNc/MW1fKEzb1z8xbV8oTNvXPxZYYIEFFtg/FlhggQUW2D/7QmHavlDYP/tCYdq+UNg/4S1iM3iL2D/hLWIzeIvYP8YYY4wxxtg/xhhjjDHG2D+sA2Tl6gDZP6wDZOXqANk/ke5kPqQ72T+R7mQ+pDvZP3bZZZdddtk/dtlll1122T9cxGbwFrHZP1zEZvAWsdk/Qa9nSdDr2T9Br2dJ0OvZPyeaaKKJJto/J5poookm2j8MhWn7QmHaPwyFaftCYdo/8W9qVPyb2j/xb2pU/JvaP9daa6211to/11prrbXW2j+8RWwGbxHbP7xFbAZvEds/oTBtXyhM2z+hMG1fKEzbP4cbbrjhhts/hxtuuOGG2z9sBm8Rm8HbP2wGbxGbwds/UvFvalT82z9S8W9qVPzbPzfccMMNN9w/N9xwww033D8cx3Ecx3HcPxzHcRzHcdw/ArJydYCs3D8CsnJ1gKzcP+ecc84559w/55xzzjnn3D/Nh3Qn8yHdP82HdCfzId0/snJ1gKxc3T+ycnWArFzdP5dddtlll90/l1122WWX3T99SHcyH9LdP31IdzIf0t0/YjN4i9gM3j9iM3iL2AzeP0geeeSRR94/SB555JFH3j8tCXo9S4LePy0Jej1Lgt4/EvR6lgS93j8S9HqWBL3eP/jee++9994/+N5777333j/dyXxIdzLfP93JfEh3Mt8/w7R9oTBt3z/DtH2hMG3fP6iffvrpp98/qJ9++umn3z+Nin9To+LfP42Kf1Oj4t8/uTpAVq4O4D+5OkBWrg7gPyywwAILLOA/LLDAAgss4D+fJUGvZ0ngP58lQa9nSeA/EZvBW8Rm4D8Rm8FbxGbgP4QQQgghhOA/hBBCCCGE4D/3hcK0faHgP/eFwrR9oeA/avtCYdq+4D9q+0Jh2r7gP9xwww033OA/3HDDDTfc4D9P5kO6k/ngP0/mQ7qT+eA/wlvEZvAW4T/CW8Rm8BbhPzTRRBNNNOE/NNFEE0004T+nRsW/qVHhP6dGxb+pUeE/GrxFbAZv4T8avEVsBm/hP4wxxhhjjOE/jDHGGGOM4T//pkbFv6nhP/+mRsW/qeE/chzHcRzH4T9yHMdxHMfhP+SRRx555OE/5JFHHnnk4T9XB8jK1QHiP1cHyMrVAeI/ynxIdzIf4j/KfEh3Mh/iPz3yyCOPPOI/PfLII4884j+vZ0nQ61niP69nSdDrWeI/It3JfEh34j8i3cl8SHfiP5VSSimllOI/lVJKKaWU4j8HyMrVAbLiPwfIytUBsuI/ej1Lgl7P4j96PUuCXs/iP+2yyy677OI/7bLLLrvs4j9fKEzbFwrjP18oTNsXCuM/0p3Mh3Qn4z/SncyHdCfjP0UTTTTRROM/RRNNNNFE4z+4iM3gLWLjP7iIzeAtYuM/Kv5NjYp/4z8q/k2Nin/jP51zzjnnnOM/nXPOOeec4z8Q6U7mQ7rjPxDpTuZDuuM/gl7PkqDX4z+CXs+SoNfjP/XTTz/99OM/9dNPP/304z9oSdDrWRLkP2hJ0OtZEuQ/2r5QmLYv5D/avlCYti/kP0000UQTTeQ/TTTRRBNN5D/AqVHxb2rkP8CpUfFvauQ/Mh/SncyH5D8yH9KdzIfkP6WUUkoppeQ/pZRSSiml5D8YCtP2hcLkPxgK0/aFwuQ/i39To+Lf5D+Lf1Oj4t/kP/30008//eQ//fTTTz/95D9walT8mxrlP3BqVPybGuU/49/UqPg35T/j39So+DflP1VVVVVVVeU/VVVVVVVV5T/IytUBsnLlP8jK1QGycuU/O0BWrg6Q5T87QFauDpDlP6211lprreU/rbXWWmut5T8gK1cHyMrlPyArVwfIyuU/k6DXsyTo5T+ToNezJOjlPwYWWGCBBeY/BhZYYIEF5j94i9gM3iLmP3iL2AzeIuY/6wBZuTpA5j/rAFm5OkDmP1522WWXXeY/XnbZZZdd5j/Q61kS9HrmP9DrWRL0euY/Q2HavlCY5j9DYdq+UJjmP7bWWmutteY/ttZaa6215j8oTNsXCtPmPyhM2xcK0+Y/m8FbxGbw5j+bwVvEZvDmPw433HDDDec/DjfccMMN5z+ArFwdICvnP4CsXB0gK+c/8yHdyXxI5z/zId3JfEjnP2aXXXbZZec/Zpdddtll5z/ZDN4iNoPnP9kM3iI2g+c/S4Jez5Kg5z9Lgl7PkqDnP7733nvvvec/vvfee++95z8xbV8oTNvnPzFtXyhM2+c/o+Lf1Kj45z+j4t/UqPjnPxZYYIEFFug/FlhggQUW6D+JzeAtYjPoP4nN4C1iM+g/+0Jh2r5Q6D/7QmHavlDoP2644YYbbug/brjhhhtu6D/hLWIzeIvoP+EtYjN4i+g/U6Pi39So6D9To+Lf1KjoP8YYY4wxxug/xhhjjDHG6D85juM4juPoPzmO4ziO4+g/rANk5eoA6T+sA2Tl6gDpPx555JFHHuk/HnnkkUce6T+R7mQ+pDvpP5HuZD6kO+k/BGTl6gBZ6T8EZOXqAFnpP3bZZZddduk/dtlll1126T/pTuZDupPpP+lO5kO6k+k/XMRm8Bax6T9cxGbwFrHpP84555xzzuk/zjnnnHPO6T9Br2dJ0OvpP0GvZ0nQ6+k/tCTo9SwJ6j+0JOj1LAnqPyeaaKKJJuo/J5poookm6j+ZD+lO5kPqP5kP6U7mQ+o/DIVp+0Jh6j8MhWn7QmHqP3/66aeffuo/f/rpp59+6j/xb2pU/JvqP/FvalT8m+o/ZOXqAFm56j9k5eoAWbnqP9daa6211uo/11prrbXW6j9J0OtZEvTqP0nQ61kS9Oo/vEVsBm8R6z+8RWwGbxHrPy+77LLLLus/L7vssssu6z+hMG1fKEzrP6EwbV8oTOs/FKbtC4Vp6z8Upu0LhWnrP4cbbrjhhus/hxtuuOGG6z/6kO5kPqTrP/qQ7mQ+pOs/bAZvEZvB6z9sBm8Rm8HrP99777333us/33vvvffe6z9S8W9qVPzrP1Lxb2pU/Os/xGbwFrEZ7D/EZvAWsRnsPzfccMMNN+w/N9xwww037D+qUfFvalTsP6pR8W9qVOw/HMdxHMdx7D8cx3Ecx3HsP4888sgjj+w/jzzyyCOP7D8CsnJ1gKzsPwKycnWArOw/dSfzId3J7D91J/Mh3cnsP+ecc8455+w/55xzzjnn7D9aEvR6lgTtP1oS9HqWBO0/zYd0J/Mh7T/Nh3Qn8yHtPz/99NNPP+0/P/30008/7T+ycnWArFztP7JydYCsXO0/Jej1LAl67T8l6PUsCXrtP5dddtlll+0/l1122WWX7T8K0/aFwrTtPwrT9oXCtO0/fUh3Mh/S7T99SHcyH9LtP++999577+0/77333nvv7T9iM3iL2AzuP2IzeIvYDO4/1aj4NzUq7j/VqPg3NSruP0geeeSRR+4/SB555JFH7j+6k/mQ7mTuP7qT+ZDuZO4/LQl6PUuC7j8tCXo9S4LuP6B++umnn+4/oH766aef7j8S9HqWBL3uPxL0epYEve4/hWn7QmHa7j+FaftCYdruP/jee++99+4/+N5777337j9qVPybGhXvP2pU/JsaFe8/3cl8SHcy7z/dyXxIdzLvP1A//fTTT+8/UD/99NNP7z/DtH2hMG3vP8O0faEwbe8/NSr+TY2K7z81Kv5NjYrvP6iffvrpp+8/qJ9++umn7z8bFf+mRsXvPxsV/6ZGxe8/jYp/U6Pi7z+Nin9To+LvPwAAAAAAAPA/\"},\"shape\":[558],\"dtype\":\"float64\",\"order\":\"little\"}]]}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1162\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1163\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1158\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":\"#1f77b3\",\"line_width\":2}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1159\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":\"#1f77b3\",\"line_alpha\":0.1,\"line_width\":2}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1160\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":\"#1f77b3\",\"line_alpha\":0.2,\"line_width\":2}}}},{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1170\",\"attributes\":{\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1164\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1165\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1166\"},\"data\":{\"type\":\"map\"}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1171\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1172\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Ray\",\"id\":\"p1167\",\"attributes\":{\"x\":{\"type\":\"value\",\"value\":5.0},\"y\":{\"type\":\"value\",\"value\":0},\"angle\":{\"type\":\"value\",\"value\":3.141592653589793},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"line_width\":{\"type\":\"value\",\"value\":2}}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Ray\",\"id\":\"p1168\",\"attributes\":{\"x\":{\"type\":\"value\",\"value\":5.0},\"y\":{\"type\":\"value\",\"value\":0},\"angle\":{\"type\":\"value\",\"value\":3.141592653589793},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.1},\"line_width\":{\"type\":\"value\",\"value\":2}}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Ray\",\"id\":\"p1169\",\"attributes\":{\"x\":{\"type\":\"value\",\"value\":5.0},\"y\":{\"type\":\"value\",\"value\":0},\"angle\":{\"type\":\"value\",\"value\":3.141592653589793},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.2},\"line_width\":{\"type\":\"value\",\"value\":2}}}}},{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1179\",\"attributes\":{\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1173\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1174\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1175\"},\"data\":{\"type\":\"map\"}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1180\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1181\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Ray\",\"id\":\"p1176\",\"attributes\":{\"x\":{\"type\":\"value\",\"value\":246.0},\"y\":{\"type\":\"value\",\"value\":1},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"line_width\":{\"type\":\"value\",\"value\":2}}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Ray\",\"id\":\"p1177\",\"attributes\":{\"x\":{\"type\":\"value\",\"value\":246.0},\"y\":{\"type\":\"value\",\"value\":1},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.1},\"line_width\":{\"type\":\"value\",\"value\":2}}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Ray\",\"id\":\"p1178\",\"attributes\":{\"x\":{\"type\":\"value\",\"value\":246.0},\"y\":{\"type\":\"value\",\"value\":1},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.2},\"line_width\":{\"type\":\"value\",\"value\":2}}}}}],\"toolbar\":{\"type\":\"object\",\"name\":\"Toolbar\",\"id\":\"p1131\",\"attributes\":{\"tools\":[{\"id\":\"p1144\"},{\"id\":\"p1145\"},{\"id\":\"p1146\"},{\"type\":\"object\",\"name\":\"SaveTool\",\"id\":\"p1152\"},{\"id\":\"p1153\"},{\"id\":\"p1154\"}]}},\"toolbar_location\":null,\"left\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1139\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1140\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1141\"},\"axis_label\":\"ECDF\",\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1142\"}}}],\"below\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1134\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1135\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1136\"},\"axis_label\":\"mRNA count\",\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1137\"}}}],\"center\":[{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1138\",\"attributes\":{\"axis\":{\"id\":\"p1134\"}}},{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1143\",\"attributes\":{\"dimension\":1,\"axis\":{\"id\":\"p1139\"}}}],\"frame_width\":200,\"frame_height\":150}},1,0],[{\"type\":\"object\",\"name\":\"Figure\",\"id\":\"p1182\",\"attributes\":{\"x_range\":{\"type\":\"object\",\"name\":\"DataRange1d\",\"id\":\"p1183\"},\"y_range\":{\"type\":\"object\",\"name\":\"DataRange1d\",\"id\":\"p1184\"},\"x_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1192\"},\"y_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1193\"},\"title\":{\"type\":\"object\",\"name\":\"Title\",\"id\":\"p1185\",\"attributes\":{\"text\":\"Rex1\"}},\"renderers\":[{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1221\",\"attributes\":{\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1215\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1216\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1217\"},\"data\":{\"type\":\"map\",\"entries\":[[\"x\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAACEAAAAAAAAAIQAAAAAAAABBAAAAAAAAAEEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAGEAAAAAAAAAYQAAAAAAAABhAAAAAAAAAGEAAAAAAAAAYQAAAAAAAABhAAAAAAAAAGEAAAAAAAAAYQAAAAAAAABhAAAAAAAAAGEAAAAAAAAAcQAAAAAAAABxAAAAAAAAAIEAAAAAAAAAgQAAAAAAAACBAAAAAAAAAIEAAAAAAAAAgQAAAAAAAACBAAAAAAAAAIEAAAAAAAAAgQAAAAAAAACBAAAAAAAAAIEAAAAAAAAAgQAAAAAAAACBAAAAAAAAAIkAAAAAAAAAiQAAAAAAAACJAAAAAAAAAIkAAAAAAAAAkQAAAAAAAACRAAAAAAAAAJkAAAAAAAAAmQAAAAAAAACZAAAAAAAAAJkAAAAAAAAAmQAAAAAAAACZAAAAAAAAAJkAAAAAAAAAmQAAAAAAAACZAAAAAAAAAJkAAAAAAAAAmQAAAAAAAACZAAAAAAAAAJkAAAAAAAAAmQAAAAAAAAChAAAAAAAAAKEAAAAAAAAAqQAAAAAAAACpAAAAAAAAALEAAAAAAAAAsQAAAAAAAAC5AAAAAAAAALkAAAAAAAAAuQAAAAAAAAC5AAAAAAAAAMEAAAAAAAAAwQAAAAAAAADFAAAAAAAAAMUAAAAAAAAAxQAAAAAAAADFAAAAAAAAAMkAAAAAAAAAyQAAAAAAAADNAAAAAAAAAM0AAAAAAAAAzQAAAAAAAADNAAAAAAAAAN0AAAAAAAAA3QAAAAAAAADdAAAAAAAAAN0AAAAAAAAA5QAAAAAAAADlAAAAAAAAAPUAAAAAAAAA9QAAAAAAAAD1AAAAAAAAAPUAAAAAAAAA+QAAAAAAAAD5AAAAAAAAAP0AAAAAAAAA/QAAAAAAAAEBAAAAAAAAAQEAAAAAAAABAQAAAAAAAAEBAAAAAAAAAQ0AAAAAAAABDQAAAAAAAAERAAAAAAAAAREAAAAAAAABEQAAAAAAAAERAAAAAAAAARUAAAAAAAABFQAAAAAAAgEdAAAAAAACAR0AAAAAAAIBHQAAAAAAAgEdAAAAAAAAASEAAAAAAAABIQAAAAAAAgElAAAAAAACASUAAAAAAAABKQAAAAAAAAEpAAAAAAACASkAAAAAAAIBKQAAAAAAAAEtAAAAAAAAAS0AAAAAAAABLQAAAAAAAAEtAAAAAAAAATEAAAAAAAABMQAAAAAAAgE5AAAAAAACATkAAAAAAAIBOQAAAAAAAgE5AAAAAAAAAT0AAAAAAAABPQAAAAAAAgE9AAAAAAACAT0AAAAAAAMBQQAAAAAAAwFBAAAAAAAAAUUAAAAAAAABRQAAAAAAAQFFAAAAAAABAUUAAAAAAAABSQAAAAAAAAFJAAAAAAAAAU0AAAAAAAABTQAAAAAAAAFNAAAAAAAAAU0AAAAAAAIBTQAAAAAAAgFNAAAAAAADAU0AAAAAAAMBTQAAAAAAAAFRAAAAAAAAAVEAAAAAAAEBUQAAAAAAAQFRAAAAAAABAVEAAAAAAAEBUQAAAAAAAgFVAAAAAAACAVUAAAAAAAEBWQAAAAAAAQFZAAAAAAABAVkAAAAAAAEBWQAAAAAAAgFZAAAAAAACAVkAAAAAAAIBWQAAAAAAAgFZAAAAAAABAV0AAAAAAAEBXQAAAAAAAgFdAAAAAAACAV0AAAAAAAIBXQAAAAAAAgFdAAAAAAADAV0AAAAAAAMBXQAAAAAAAAFhAAAAAAAAAWEAAAAAAAABYQAAAAAAAAFhAAAAAAABAWEAAAAAAAEBYQAAAAAAAQFhAAAAAAABAWEAAAAAAAIBYQAAAAAAAgFhAAAAAAACAWEAAAAAAAIBYQAAAAAAAgFhAAAAAAACAWEAAAAAAAIBYQAAAAAAAgFhAAAAAAACAWEAAAAAAAIBYQAAAAAAAwFhAAAAAAADAWEAAAAAAAABZQAAAAAAAAFlAAAAAAAAAWUAAAAAAAABZQAAAAAAAgFlAAAAAAACAWUAAAAAAAIBZQAAAAAAAgFlAAAAAAADAWUAAAAAAAMBZQAAAAAAAAFpAAAAAAAAAWkAAAAAAAEBaQAAAAAAAQFpAAAAAAAAAW0AAAAAAAABbQAAAAAAAAFtAAAAAAAAAW0AAAAAAAIBbQAAAAAAAgFtAAAAAAADAW0AAAAAAAMBbQAAAAAAAwFtAAAAAAADAW0AAAAAAAEBcQAAAAAAAQFxAAAAAAABAXEAAAAAAAEBcQAAAAAAAAF1AAAAAAAAAXUAAAAAAAABdQAAAAAAAAF1AAAAAAAAAXUAAAAAAAABdQAAAAAAAAF1AAAAAAAAAXUAAAAAAAIBdQAAAAAAAgF1AAAAAAACAXUAAAAAAAIBdQAAAAAAAgF1AAAAAAACAXUAAAAAAAABeQAAAAAAAAF5AAAAAAAAAXkAAAAAAAABeQAAAAAAAQF5AAAAAAABAXkAAAAAAAIBeQAAAAAAAgF5AAAAAAACAXkAAAAAAAIBeQAAAAAAAgF5AAAAAAACAXkAAAAAAAABfQAAAAAAAAF9AAAAAAAAAX0AAAAAAAABfQAAAAAAAAF9AAAAAAAAAX0AAAAAAAEBfQAAAAAAAQF9AAAAAAABAX0AAAAAAAEBfQAAAAAAAgF9AAAAAAACAX0AAAAAAAIBfQAAAAAAAgF9AAAAAAAAAYEAAAAAAAABgQAAAAAAAIGBAAAAAAAAgYEAAAAAAACBgQAAAAAAAIGBAAAAAAABAYEAAAAAAAEBgQAAAAAAAYGBAAAAAAABgYEAAAAAAAGBgQAAAAAAAYGBAAAAAAABgYEAAAAAAAGBgQAAAAAAAgGBAAAAAAACAYEAAAAAAAKBgQAAAAAAAoGBAAAAAAADAYEAAAAAAAMBgQAAAAAAA4GBAAAAAAADgYEAAAAAAAABhQAAAAAAAAGFAAAAAAAAgYUAAAAAAACBhQAAAAAAAIGFAAAAAAAAgYUAAAAAAAIBhQAAAAAAAgGFAAAAAAACAYUAAAAAAAIBhQAAAAAAAgGFAAAAAAACAYUAAAAAAAMBhQAAAAAAAwGFAAAAAAADAYUAAAAAAAMBhQAAAAAAAwGFAAAAAAADAYUAAAAAAAOBhQAAAAAAA4GFAAAAAAAAAYkAAAAAAAABiQAAAAAAAAGJAAAAAAAAAYkAAAAAAAABiQAAAAAAAAGJAAAAAAAAgYkAAAAAAACBiQAAAAAAAIGJAAAAAAAAgYkAAAAAAAGBiQAAAAAAAYGJAAAAAAACAYkAAAAAAAIBiQAAAAAAAwGJAAAAAAADAYkAAAAAAAOBiQAAAAAAA4GJAAAAAAADgYkAAAAAAAOBiQAAAAAAA4GJAAAAAAADgYkAAAAAAAABjQAAAAAAAAGNAAAAAAAAgY0AAAAAAACBjQAAAAAAAIGNAAAAAAAAgY0AAAAAAAEBjQAAAAAAAQGNAAAAAAABAY0AAAAAAAEBjQAAAAAAAYGNAAAAAAABgY0AAAAAAAGBjQAAAAAAAYGNAAAAAAABgY0AAAAAAAGBjQAAAAAAAgGNAAAAAAACAY0AAAAAAAKBjQAAAAAAAoGNAAAAAAACgY0AAAAAAAKBjQAAAAAAAwGNAAAAAAADAY0AAAAAAAOBjQAAAAAAA4GNAAAAAAAAAZEAAAAAAAABkQAAAAAAAAGRAAAAAAAAAZEAAAAAAAABkQAAAAAAAAGRAAAAAAABgZEAAAAAAAGBkQAAAAAAAYGRAAAAAAABgZEAAAAAAAGBkQAAAAAAAYGRAAAAAAADAZEAAAAAAAMBkQAAAAAAAwGRAAAAAAADAZEAAAAAAAMBkQAAAAAAAwGRAAAAAAADAZEAAAAAAAMBkQAAAAAAAwGRAAAAAAADAZEAAAAAAAOBkQAAAAAAA4GRAAAAAAAAgZUAAAAAAACBlQAAAAAAAQGVAAAAAAABAZUAAAAAAAEBlQAAAAAAAQGVAAAAAAABgZUAAAAAAAGBlQAAAAAAAgGVAAAAAAACAZUAAAAAAAIBlQAAAAAAAgGVAAAAAAACAZUAAAAAAAIBlQAAAAAAAoGVAAAAAAACgZUAAAAAAAMBlQAAAAAAAwGVAAAAAAADAZUAAAAAAAMBlQAAAAAAAAGZAAAAAAAAAZkAAAAAAACBmQAAAAAAAIGZAAAAAAABAZkAAAAAAAEBmQAAAAAAAYGZAAAAAAABgZkAAAAAAAIBmQAAAAAAAgGZAAAAAAADAZkAAAAAAAMBmQAAAAAAAQGdAAAAAAABAZ0AAAAAAAEBnQAAAAAAAQGdAAAAAAABAZ0AAAAAAAEBnQAAAAAAAwGdAAAAAAADAZ0AAAAAAAOBnQAAAAAAA4GdAAAAAAADgZ0AAAAAAAOBnQAAAAAAA4GdAAAAAAADgZ0AAAAAAAABoQAAAAAAAAGhAAAAAAAAAaEAAAAAAAABoQAAAAAAAIGhAAAAAAAAgaEAAAAAAAEBoQAAAAAAAQGhAAAAAAABAaEAAAAAAAEBoQAAAAAAAYGhAAAAAAABgaEAAAAAAAGBoQAAAAAAAYGhAAAAAAADAaEAAAAAAAMBoQAAAAAAAIGlAAAAAAAAgaUAAAAAAACBpQAAAAAAAIGlAAAAAAABAaUAAAAAAAEBpQAAAAAAAYGlAAAAAAABgaUAAAAAAAIBpQAAAAAAAgGlAAAAAAACAaUAAAAAAAIBpQAAAAAAAgGlAAAAAAACAaUAAAAAAAKBpQAAAAAAAoGlAAAAAAACgaUAAAAAAAKBpQAAAAAAAwGlAAAAAAADAaUAAAAAAACBqQAAAAAAAIGpAAAAAAABAakAAAAAAAEBqQAAAAAAAwGpAAAAAAADAakAAAAAAAOBqQAAAAAAA4GpAAAAAAAAga0AAAAAAACBrQAAAAAAAIGtAAAAAAAAga0AAAAAAAEBrQAAAAAAAQGtAAAAAAABAa0AAAAAAAEBrQAAAAAAAYGtAAAAAAABga0AAAAAAAKBrQAAAAAAAoGtAAAAAAABAbEAAAAAAAEBsQAAAAAAAYGxAAAAAAABgbEAAAAAAAGBsQAAAAAAAYGxAAAAAAAAgbUAAAAAAACBtQAAAAAAAYG1AAAAAAABgbUAAAAAAAMBtQAAAAAAAwG1AAAAAAADAbUAAAAAAAMBtQAAAAAAA4G1AAAAAAADgbUAAAAAAAOBtQAAAAAAA4G1AAAAAAAAgbkAAAAAAACBuQAAAAAAAQG5AAAAAAABAbkAAAAAAAIBuQAAAAAAAgG5AAAAAAACgbkAAAAAAAKBuQAAAAAAAoG5AAAAAAACgbkAAAAAAAOBuQAAAAAAA4G5AAAAAAABAb0AAAAAAAEBvQAAAAAAAgG9AAAAAAACAb0AAAAAAAMBvQAAAAAAAwG9AAAAAAADgb0AAAAAAAOBvQAAAAAAAIHBAAAAAAAAgcEAAAAAAAEBwQAAAAAAAQHBAAAAAAABQcEAAAAAAAFBwQAAAAAAAYHBAAAAAAABgcEAAAAAAAIBwQAAAAAAAgHBAAAAAAACQcEAAAAAAAJBwQAAAAAAAkHBAAAAAAACQcEAAAAAAAKBwQAAAAAAAoHBAAAAAAADwcEAAAAAAAPBwQAAAAAAAQHFAAAAAAABAcUAAAAAAAIBxQAAAAAAAgHFAAAAAAACQcUAAAAAAAJBxQAAAAAAAwHFAAAAAAADAcUAAAAAAAAByQAAAAAAAAHJAAAAAAAAQckAAAAAAABByQAAAAAAAIHJAAAAAAAAgckAAAAAAADByQAAAAAAAMHJAAAAAAACQckAAAAAAAJByQAAAAAAA4HJAAAAAAADgckAAAAAAABB0QAAAAAAAEHRAAAAAAABgdEAAAAAAAGB0QAAAAAAAsHRAAAAAAACwdEAAAAAAALB0QAAAAAAAsHRAAAAAAAAQdkAAAAAAABB2QAAAAAAAoHZAAAAAAACgdkAAAAAAAEB6QAAAAAAAQHpA\"},\"shape\":[558],\"dtype\":\"float64\",\"order\":\"little\"}],[\"y\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAAACycnWArFxtP7JydYCsXG0/snJ1gKxcfT+ycnWArFx9PwYWWGCBBYY/BhZYYIEFhj+ycnWArFyNP7JydYCsXI0/r2dJ0OtZkj+vZ0nQ61mSPwYWWGCBBZY/BhZYYIEFlj9cxGbwFrGZP1zEZvAWsZk/snJ1gKxcnT+ycnWArFydP4QQQgghhKA/hBBCCCGEoD+vZ0nQ61miP69nSdDrWaI/2r5QmLYvpD/avlCYti+kPwYWWGCBBaY/BhZYYIEFpj8xbV8oTNunPzFtXyhM26c/XMRm8BaxqT9cxGbwFrGpP4cbbrjhhqs/hxtuuOGGqz+ycnWArFytP7JydYCsXK0/3cl8SHcyrz/dyXxIdzKvP4QQQgghhLA/hBBCCCGEsD8avEVsBm+xPxq8RWwGb7E/r2dJ0OtZsj+vZ0nQ61myP0UTTTTRRLM/RRNNNNFEsz/avlCYti+0P9q+UJi2L7Q/cGpU/JsatT9walT8mxq1PwYWWGCBBbY/BhZYYIEFtj+bwVvEZvC2P5vBW8Rm8LY/MW1fKEzbtz8xbV8oTNu3P8YYY4wxxrg/xhhjjDHGuD9cxGbwFrG5P1zEZvAWsbk/8W9qVPybuj/xb2pU/Ju6P4cbbrjhhrs/hxtuuOGGuz8cx3Ecx3G8PxzHcRzHcbw/snJ1gKxcvT+ycnWArFy9P0geeeSRR74/SB555JFHvj/dyXxIdzK/P93JfEh3Mr8/uTpAVq4OwD+5OkBWrg7AP4QQQgghhMA/hBBCCCGEwD9P5kO6k/nAP0/mQ7qT+cA/GrxFbAZvwT8avEVsBm/BP+SRRx555ME/5JFHHnnkwT+vZ0nQ61nCP69nSdDrWcI/ej1Lgl7Pwj96PUuCXs/CP0UTTTTRRMM/RRNNNNFEwz8Q6U7mQ7rDPxDpTuZDusM/2r5QmLYvxD/avlCYti/EP6WUUkoppcQ/pZRSSimlxD9walT8mxrFP3BqVPybGsU/O0BWrg6QxT87QFauDpDFPwYWWGCBBcY/BhZYYIEFxj/Q61kS9HrGP9DrWRL0esY/m8FbxGbwxj+bwVvEZvDGP2aXXXbZZcc/Zpdddtllxz8xbV8oTNvHPzFtXyhM28c/+0Jh2r5QyD/7QmHavlDIP8YYY4wxxsg/xhhjjDHGyD+R7mQ+pDvJP5HuZD6kO8k/XMRm8BaxyT9cxGbwFrHJPyeaaKKJJso/J5poookmyj/xb2pU/JvKP/FvalT8m8o/vEVsBm8Ryz+8RWwGbxHLP4cbbrjhhss/hxtuuOGGyz9S8W9qVPzLP1Lxb2pU/Ms/HMdxHMdxzD8cx3Ecx3HMP+ecc84558w/55xzzjnnzD+ycnWArFzNP7JydYCsXM0/fUh3Mh/SzT99SHcyH9LNP0geeeSRR84/SB555JFHzj8S9HqWBL3OPxL0epYEvc4/3cl8SHcyzz/dyXxIdzLPP6iffvrpp88/qJ9++umnzz+5OkBWrg7QP7k6QFauDtA/nyVBr2dJ0D+fJUGvZ0nQP4QQQgghhNA/hBBCCCGE0D9q+0Jh2r7QP2r7QmHavtA/T+ZDupP50D9P5kO6k/nQPzTRRBNNNNE/NNFEE0000T8avEVsBm/RPxq8RWwGb9E//6ZGxb+p0T//pkbFv6nRP+SRRx555NE/5JFHHnnk0T/KfEh3Mh/SP8p8SHcyH9I/r2dJ0OtZ0j+vZ0nQ61nSP5VSSimllNI/lVJKKaWU0j96PUuCXs/SP3o9S4Jez9I/XyhM2xcK0z9fKEzbFwrTP0UTTTTRRNM/RRNNNNFE0z8q/k2Nin/TPyr+TY2Kf9M/EOlO5kO60z8Q6U7mQ7rTP/XTTz/99NM/9dNPP/300z/avlCYti/UP9q+UJi2L9Q/wKlR8W9q1D/AqVHxb2rUP6WUUkoppdQ/pZRSSiml1D+Lf1Oj4t/UP4t/U6Pi39Q/cGpU/Jsa1T9walT8mxrVP1VVVVVVVdU/VVVVVVVV1T87QFauDpDVPztAVq4OkNU/ICtXB8jK1T8gK1cHyMrVPwYWWGCBBdY/BhZYYIEF1j/rAFm5OkDWP+sAWbk6QNY/0OtZEvR61j/Q61kS9HrWP7bWWmuttdY/ttZaa6211j+bwVvEZvDWP5vBW8Rm8NY/gKxcHSAr1z+ArFwdICvXP2aXXXbZZdc/Zpdddtll1z9Lgl7PkqDXP0uCXs+SoNc/MW1fKEzb1z8xbV8oTNvXPxZYYIEFFtg/FlhggQUW2D/7QmHavlDYP/tCYdq+UNg/4S1iM3iL2D/hLWIzeIvYP8YYY4wxxtg/xhhjjDHG2D+sA2Tl6gDZP6wDZOXqANk/ke5kPqQ72T+R7mQ+pDvZP3bZZZdddtk/dtlll1122T9cxGbwFrHZP1zEZvAWsdk/Qa9nSdDr2T9Br2dJ0OvZPyeaaKKJJto/J5poookm2j8MhWn7QmHaPwyFaftCYdo/8W9qVPyb2j/xb2pU/JvaP9daa6211to/11prrbXW2j+8RWwGbxHbP7xFbAZvEds/oTBtXyhM2z+hMG1fKEzbP4cbbrjhhts/hxtuuOGG2z9sBm8Rm8HbP2wGbxGbwds/UvFvalT82z9S8W9qVPzbPzfccMMNN9w/N9xwww033D8cx3Ecx3HcPxzHcRzHcdw/ArJydYCs3D8CsnJ1gKzcP+ecc84559w/55xzzjnn3D/Nh3Qn8yHdP82HdCfzId0/snJ1gKxc3T+ycnWArFzdP5dddtlll90/l1122WWX3T99SHcyH9LdP31IdzIf0t0/YjN4i9gM3j9iM3iL2AzeP0geeeSRR94/SB555JFH3j8tCXo9S4LePy0Jej1Lgt4/EvR6lgS93j8S9HqWBL3eP/jee++9994/+N5777333j/dyXxIdzLfP93JfEh3Mt8/w7R9oTBt3z/DtH2hMG3fP6iffvrpp98/qJ9++umn3z+Nin9To+LfP42Kf1Oj4t8/uTpAVq4O4D+5OkBWrg7gPyywwAILLOA/LLDAAgss4D+fJUGvZ0ngP58lQa9nSeA/EZvBW8Rm4D8Rm8FbxGbgP4QQQgghhOA/hBBCCCGE4D/3hcK0faHgP/eFwrR9oeA/avtCYdq+4D9q+0Jh2r7gP9xwww033OA/3HDDDTfc4D9P5kO6k/ngP0/mQ7qT+eA/wlvEZvAW4T/CW8Rm8BbhPzTRRBNNNOE/NNFEE0004T+nRsW/qVHhP6dGxb+pUeE/GrxFbAZv4T8avEVsBm/hP4wxxhhjjOE/jDHGGGOM4T//pkbFv6nhP/+mRsW/qeE/chzHcRzH4T9yHMdxHMfhP+SRRx555OE/5JFHHnnk4T9XB8jK1QHiP1cHyMrVAeI/ynxIdzIf4j/KfEh3Mh/iPz3yyCOPPOI/PfLII4884j+vZ0nQ61niP69nSdDrWeI/It3JfEh34j8i3cl8SHfiP5VSSimllOI/lVJKKaWU4j8HyMrVAbLiPwfIytUBsuI/ej1Lgl7P4j96PUuCXs/iP+2yyy677OI/7bLLLrvs4j9fKEzbFwrjP18oTNsXCuM/0p3Mh3Qn4z/SncyHdCfjP0UTTTTRROM/RRNNNNFE4z+4iM3gLWLjP7iIzeAtYuM/Kv5NjYp/4z8q/k2Nin/jP51zzjnnnOM/nXPOOeec4z8Q6U7mQ7rjPxDpTuZDuuM/gl7PkqDX4z+CXs+SoNfjP/XTTz/99OM/9dNPP/304z9oSdDrWRLkP2hJ0OtZEuQ/2r5QmLYv5D/avlCYti/kP0000UQTTeQ/TTTRRBNN5D/AqVHxb2rkP8CpUfFvauQ/Mh/SncyH5D8yH9KdzIfkP6WUUkoppeQ/pZRSSiml5D8YCtP2hcLkPxgK0/aFwuQ/i39To+Lf5D+Lf1Oj4t/kP/30008//eQ//fTTTz/95D9walT8mxrlP3BqVPybGuU/49/UqPg35T/j39So+DflP1VVVVVVVeU/VVVVVVVV5T/IytUBsnLlP8jK1QGycuU/O0BWrg6Q5T87QFauDpDlP6211lprreU/rbXWWmut5T8gK1cHyMrlPyArVwfIyuU/k6DXsyTo5T+ToNezJOjlPwYWWGCBBeY/BhZYYIEF5j94i9gM3iLmP3iL2AzeIuY/6wBZuTpA5j/rAFm5OkDmP1522WWXXeY/XnbZZZdd5j/Q61kS9HrmP9DrWRL0euY/Q2HavlCY5j9DYdq+UJjmP7bWWmutteY/ttZaa6215j8oTNsXCtPmPyhM2xcK0+Y/m8FbxGbw5j+bwVvEZvDmPw433HDDDec/DjfccMMN5z+ArFwdICvnP4CsXB0gK+c/8yHdyXxI5z/zId3JfEjnP2aXXXbZZec/Zpdddtll5z/ZDN4iNoPnP9kM3iI2g+c/S4Jez5Kg5z9Lgl7PkqDnP7733nvvvec/vvfee++95z8xbV8oTNvnPzFtXyhM2+c/o+Lf1Kj45z+j4t/UqPjnPxZYYIEFFug/FlhggQUW6D+JzeAtYjPoP4nN4C1iM+g/+0Jh2r5Q6D/7QmHavlDoP2644YYbbug/brjhhhtu6D/hLWIzeIvoP+EtYjN4i+g/U6Pi39So6D9To+Lf1KjoP8YYY4wxxug/xhhjjDHG6D85juM4juPoPzmO4ziO4+g/rANk5eoA6T+sA2Tl6gDpPx555JFHHuk/HnnkkUce6T+R7mQ+pDvpP5HuZD6kO+k/BGTl6gBZ6T8EZOXqAFnpP3bZZZddduk/dtlll1126T/pTuZDupPpP+lO5kO6k+k/XMRm8Bax6T9cxGbwFrHpP84555xzzuk/zjnnnHPO6T9Br2dJ0OvpP0GvZ0nQ6+k/tCTo9SwJ6j+0JOj1LAnqPyeaaKKJJuo/J5poookm6j+ZD+lO5kPqP5kP6U7mQ+o/DIVp+0Jh6j8MhWn7QmHqP3/66aeffuo/f/rpp59+6j/xb2pU/JvqP/FvalT8m+o/ZOXqAFm56j9k5eoAWbnqP9daa6211uo/11prrbXW6j9J0OtZEvTqP0nQ61kS9Oo/vEVsBm8R6z+8RWwGbxHrPy+77LLLLus/L7vssssu6z+hMG1fKEzrP6EwbV8oTOs/FKbtC4Vp6z8Upu0LhWnrP4cbbrjhhus/hxtuuOGG6z/6kO5kPqTrP/qQ7mQ+pOs/bAZvEZvB6z9sBm8Rm8HrP99777333us/33vvvffe6z9S8W9qVPzrP1Lxb2pU/Os/xGbwFrEZ7D/EZvAWsRnsPzfccMMNN+w/N9xwww037D+qUfFvalTsP6pR8W9qVOw/HMdxHMdx7D8cx3Ecx3HsP4888sgjj+w/jzzyyCOP7D8CsnJ1gKzsPwKycnWArOw/dSfzId3J7D91J/Mh3cnsP+ecc8455+w/55xzzjnn7D9aEvR6lgTtP1oS9HqWBO0/zYd0J/Mh7T/Nh3Qn8yHtPz/99NNPP+0/P/30008/7T+ycnWArFztP7JydYCsXO0/Jej1LAl67T8l6PUsCXrtP5dddtlll+0/l1122WWX7T8K0/aFwrTtPwrT9oXCtO0/fUh3Mh/S7T99SHcyH9LtP++999577+0/77333nvv7T9iM3iL2AzuP2IzeIvYDO4/1aj4NzUq7j/VqPg3NSruP0geeeSRR+4/SB555JFH7j+6k/mQ7mTuP7qT+ZDuZO4/LQl6PUuC7j8tCXo9S4LuP6B++umnn+4/oH766aef7j8S9HqWBL3uPxL0epYEve4/hWn7QmHa7j+FaftCYdruP/jee++99+4/+N5777337j9qVPybGhXvP2pU/JsaFe8/3cl8SHcy7z/dyXxIdzLvP1A//fTTT+8/UD/99NNP7z/DtH2hMG3vP8O0faEwbe8/NSr+TY2K7z81Kv5NjYrvP6iffvrpp+8/qJ9++umn7z8bFf+mRsXvPxsV/6ZGxe8/jYp/U6Pi7z+Nin9To+LvPwAAAAAAAPA/\"},\"shape\":[558],\"dtype\":\"float64\",\"order\":\"little\"}]]}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1222\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1223\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1218\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":\"#1f77b3\",\"line_width\":2}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1219\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":\"#1f77b3\",\"line_alpha\":0.1,\"line_width\":2}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1220\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":\"#1f77b3\",\"line_alpha\":0.2,\"line_width\":2}}}},{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1230\",\"attributes\":{\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1224\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1225\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1226\"},\"data\":{\"type\":\"map\"}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1231\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1232\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Ray\",\"id\":\"p1227\",\"attributes\":{\"x\":{\"type\":\"value\",\"value\":3.0},\"y\":{\"type\":\"value\",\"value\":0},\"angle\":{\"type\":\"value\",\"value\":3.141592653589793},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"line_width\":{\"type\":\"value\",\"value\":2}}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Ray\",\"id\":\"p1228\",\"attributes\":{\"x\":{\"type\":\"value\",\"value\":3.0},\"y\":{\"type\":\"value\",\"value\":0},\"angle\":{\"type\":\"value\",\"value\":3.141592653589793},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.1},\"line_width\":{\"type\":\"value\",\"value\":2}}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Ray\",\"id\":\"p1229\",\"attributes\":{\"x\":{\"type\":\"value\",\"value\":3.0},\"y\":{\"type\":\"value\",\"value\":0},\"angle\":{\"type\":\"value\",\"value\":3.141592653589793},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.2},\"line_width\":{\"type\":\"value\",\"value\":2}}}}},{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1239\",\"attributes\":{\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1233\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1234\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1235\"},\"data\":{\"type\":\"map\"}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1240\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1241\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Ray\",\"id\":\"p1236\",\"attributes\":{\"x\":{\"type\":\"value\",\"value\":420.0},\"y\":{\"type\":\"value\",\"value\":1},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"line_width\":{\"type\":\"value\",\"value\":2}}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Ray\",\"id\":\"p1237\",\"attributes\":{\"x\":{\"type\":\"value\",\"value\":420.0},\"y\":{\"type\":\"value\",\"value\":1},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.1},\"line_width\":{\"type\":\"value\",\"value\":2}}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Ray\",\"id\":\"p1238\",\"attributes\":{\"x\":{\"type\":\"value\",\"value\":420.0},\"y\":{\"type\":\"value\",\"value\":1},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.2},\"line_width\":{\"type\":\"value\",\"value\":2}}}}}],\"toolbar\":{\"type\":\"object\",\"name\":\"Toolbar\",\"id\":\"p1191\",\"attributes\":{\"tools\":[{\"id\":\"p1204\"},{\"id\":\"p1205\"},{\"id\":\"p1206\"},{\"type\":\"object\",\"name\":\"SaveTool\",\"id\":\"p1212\"},{\"id\":\"p1213\"},{\"id\":\"p1214\"}]}},\"toolbar_location\":null,\"left\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1199\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1200\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1201\"},\"axis_label\":\"ECDF\",\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1202\"}}}],\"below\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1194\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1195\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1196\"},\"axis_label\":\"mRNA count\",\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1197\"}}}],\"center\":[{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1198\",\"attributes\":{\"axis\":{\"id\":\"p1194\"}}},{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1203\",\"attributes\":{\"dimension\":1,\"axis\":{\"id\":\"p1199\"}}}],\"frame_width\":200,\"frame_height\":150}},1,1]]}}],\"defs\":[{\"type\":\"model\",\"name\":\"ReactiveHTML1\"},{\"type\":\"model\",\"name\":\"FlexBox1\",\"properties\":[{\"name\":\"align_content\",\"kind\":\"Any\",\"default\":\"flex-start\"},{\"name\":\"align_items\",\"kind\":\"Any\",\"default\":\"flex-start\"},{\"name\":\"flex_direction\",\"kind\":\"Any\",\"default\":\"row\"},{\"name\":\"flex_wrap\",\"kind\":\"Any\",\"default\":\"wrap\"},{\"name\":\"gap\",\"kind\":\"Any\",\"default\":\"\"},{\"name\":\"justify_content\",\"kind\":\"Any\",\"default\":\"flex-start\"}]},{\"type\":\"model\",\"name\":\"FloatPanel1\",\"properties\":[{\"name\":\"config\",\"kind\":\"Any\",\"default\":{\"type\":\"map\"}},{\"name\":\"contained\",\"kind\":\"Any\",\"default\":true},{\"name\":\"position\",\"kind\":\"Any\",\"default\":\"right-top\"},{\"name\":\"offsetx\",\"kind\":\"Any\",\"default\":null},{\"name\":\"offsety\",\"kind\":\"Any\",\"default\":null},{\"name\":\"theme\",\"kind\":\"Any\",\"default\":\"primary\"},{\"name\":\"status\",\"kind\":\"Any\",\"default\":\"normalized\"}]},{\"type\":\"model\",\"name\":\"GridStack1\",\"properties\":[{\"name\":\"mode\",\"kind\":\"Any\",\"default\":\"warn\"},{\"name\":\"ncols\",\"kind\":\"Any\",\"default\":null},{\"name\":\"nrows\",\"kind\":\"Any\",\"default\":null},{\"name\":\"allow_resize\",\"kind\":\"Any\",\"default\":true},{\"name\":\"allow_drag\",\"kind\":\"Any\",\"default\":true},{\"name\":\"state\",\"kind\":\"Any\",\"default\":[]}]},{\"type\":\"model\",\"name\":\"drag1\",\"properties\":[{\"name\":\"slider_width\",\"kind\":\"Any\",\"default\":5},{\"name\":\"slider_color\",\"kind\":\"Any\",\"default\":\"black\"},{\"name\":\"value\",\"kind\":\"Any\",\"default\":50}]},{\"type\":\"model\",\"name\":\"click1\",\"properties\":[{\"name\":\"terminal_output\",\"kind\":\"Any\",\"default\":\"\"},{\"name\":\"debug_name\",\"kind\":\"Any\",\"default\":\"\"},{\"name\":\"clears\",\"kind\":\"Any\",\"default\":0}]},{\"type\":\"model\",\"name\":\"FastWrapper1\",\"properties\":[{\"name\":\"object\",\"kind\":\"Any\",\"default\":null},{\"name\":\"style\",\"kind\":\"Any\",\"default\":null}]},{\"type\":\"model\",\"name\":\"NotificationAreaBase1\",\"properties\":[{\"name\":\"js_events\",\"kind\":\"Any\",\"default\":{\"type\":\"map\"}},{\"name\":\"position\",\"kind\":\"Any\",\"default\":\"bottom-right\"},{\"name\":\"_clear\",\"kind\":\"Any\",\"default\":0}]},{\"type\":\"model\",\"name\":\"NotificationArea1\",\"properties\":[{\"name\":\"js_events\",\"kind\":\"Any\",\"default\":{\"type\":\"map\"}},{\"name\":\"notifications\",\"kind\":\"Any\",\"default\":[]},{\"name\":\"position\",\"kind\":\"Any\",\"default\":\"bottom-right\"},{\"name\":\"_clear\",\"kind\":\"Any\",\"default\":0},{\"name\":\"types\",\"kind\":\"Any\",\"default\":[{\"type\":\"map\",\"entries\":[[\"type\",\"warning\"],[\"background\",\"#ffc107\"],[\"icon\",{\"type\":\"map\",\"entries\":[[\"className\",\"fas fa-exclamation-triangle\"],[\"tagName\",\"i\"],[\"color\",\"white\"]]}]]},{\"type\":\"map\",\"entries\":[[\"type\",\"info\"],[\"background\",\"#007bff\"],[\"icon\",{\"type\":\"map\",\"entries\":[[\"className\",\"fas fa-info-circle\"],[\"tagName\",\"i\"],[\"color\",\"white\"]]}]]}]}]},{\"type\":\"model\",\"name\":\"Notification\",\"properties\":[{\"name\":\"background\",\"kind\":\"Any\",\"default\":null},{\"name\":\"duration\",\"kind\":\"Any\",\"default\":3000},{\"name\":\"icon\",\"kind\":\"Any\",\"default\":null},{\"name\":\"message\",\"kind\":\"Any\",\"default\":\"\"},{\"name\":\"notification_type\",\"kind\":\"Any\",\"default\":null},{\"name\":\"_destroyed\",\"kind\":\"Any\",\"default\":false}]},{\"type\":\"model\",\"name\":\"TemplateActions1\",\"properties\":[{\"name\":\"open_modal\",\"kind\":\"Any\",\"default\":0},{\"name\":\"close_modal\",\"kind\":\"Any\",\"default\":0}]},{\"type\":\"model\",\"name\":\"BootstrapTemplateActions1\",\"properties\":[{\"name\":\"open_modal\",\"kind\":\"Any\",\"default\":0},{\"name\":\"close_modal\",\"kind\":\"Any\",\"default\":0}]},{\"type\":\"model\",\"name\":\"TemplateEditor1\",\"properties\":[{\"name\":\"layout\",\"kind\":\"Any\",\"default\":[]}]},{\"type\":\"model\",\"name\":\"MaterialTemplateActions1\",\"properties\":[{\"name\":\"open_modal\",\"kind\":\"Any\",\"default\":0},{\"name\":\"close_modal\",\"kind\":\"Any\",\"default\":0}]},{\"type\":\"model\",\"name\":\"copy_to_clipboard1\",\"properties\":[{\"name\":\"fill\",\"kind\":\"Any\",\"default\":\"none\"},{\"name\":\"value\",\"kind\":\"Any\",\"default\":null}]}]}};\n", " const render_items = [{\"docid\":\"c0ef0fc7-69c4-45f1-b998-426cc0068808\",\"roots\":{\"p1249\":\"ef49532b-a5cf-4e68-9a50-9ea5f0374f36\"},\"root_ids\":[\"p1249\"]}];\n", " void root.Bokeh.embed.embed_items_notebook(docs_json, render_items);\n", " }\n", " if (root.Bokeh !== undefined) {\n", " embed_document(root);\n", " } else {\n", " let attempts = 0;\n", " const timer = setInterval(function(root) {\n", " if (root.Bokeh !== undefined) {\n", " clearInterval(timer);\n", " embed_document(root);\n", " } else {\n", " attempts++;\n", " if (attempts > 100) {\n", " clearInterval(timer);\n", " console.log(\"Bokeh: ERROR: Unable to run BokehJS code because BokehJS library is missing\");\n", " }\n", " }\n", " }, 10, root)\n", " }\n", "})(window);" ], "application/vnd.bokehjs_exec.v0+json": "" }, "metadata": { "application/vnd.bokehjs_exec.v0+json": { "id": "p1249" } }, "output_type": "display_data" } ], "source": [ "genes = [\"Nanog\", \"Prdm14\", \"Rest\", \"Rex1\"]\n", "\n", "plots = [\n", " iqplot.ecdf(\n", " data=df.get_column(gene),\n", " q=gene,\n", " x_axis_label=\"mRNA count\",\n", " title=gene,\n", " frame_height=150,\n", " frame_width=200,\n", " )\n", " for gene in genes\n", "]\n", "\n", "bokeh.io.show(bokeh.layouts.gridplot(plots, ncols=2))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Note the difference in the x-axis scales. Clearly, *prdm14* has far fewer mRNA copies than the other genes. The presence of two inflection points in the Rex1 EDCF implies bimodality, leading us to suspect that there may be two cell types, or at least more than one cell type. We can plot all pairwise combinations of gene counts to explore further.\n", "\n", "For visualizing the data, it will be useful to have labels for the cells so we can compare expression levels in all four cells at one. We will label them according to the Rex1 levels." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "# Add cell label, ranked lowest to highest in Rex1 expression\n", "df = df.with_columns(pl.col('Rex1').rank(method='dense').alias('cell'))\n", "\n", "# Add colors for plotting, using quantitative to color conversion in bebi103 package\n", "df = df.with_columns(pl.Series(name='color', values=bebi103.viz.q_to_color(df[\"cell\"], bokeh.palettes.Viridis256)))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We will now look at all of the pair-wise plots of mRNA expression. We color the dots according to cell ID, with cell 1 having the lowest count of Rex1 mRNA and the last cell having the highest." ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "
\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/javascript": [ "(function(root) {\n", " function embed_document(root) {\n", " const docs_json = {\"085590b8-eaf5-4cb8-afe9-1b566a971cad\":{\"version\":\"3.4.1\",\"title\":\"Bokeh Application\",\"roots\":[{\"type\":\"object\",\"name\":\"GridPlot\",\"id\":\"p1530\",\"attributes\":{\"rows\":null,\"cols\":null,\"toolbar\":{\"type\":\"object\",\"name\":\"Toolbar\",\"id\":\"p1529\",\"attributes\":{\"tools\":[{\"type\":\"object\",\"name\":\"ToolProxy\",\"id\":\"p1523\",\"attributes\":{\"tools\":[{\"type\":\"object\",\"name\":\"PanTool\",\"id\":\"p1280\"},{\"type\":\"object\",\"name\":\"PanTool\",\"id\":\"p1324\"},{\"type\":\"object\",\"name\":\"PanTool\",\"id\":\"p1368\"},{\"type\":\"object\",\"name\":\"PanTool\",\"id\":\"p1412\"},{\"type\":\"object\",\"name\":\"PanTool\",\"id\":\"p1456\"},{\"type\":\"object\",\"name\":\"PanTool\",\"id\":\"p1500\"}]}},{\"type\":\"object\",\"name\":\"ToolProxy\",\"id\":\"p1524\",\"attributes\":{\"tools\":[{\"type\":\"object\",\"name\":\"WheelZoomTool\",\"id\":\"p1281\",\"attributes\":{\"renderers\":\"auto\"}},{\"type\":\"object\",\"name\":\"WheelZoomTool\",\"id\":\"p1325\",\"attributes\":{\"renderers\":\"auto\"}},{\"type\":\"object\",\"name\":\"WheelZoomTool\",\"id\":\"p1369\",\"attributes\":{\"renderers\":\"auto\"}},{\"type\":\"object\",\"name\":\"WheelZoomTool\",\"id\":\"p1413\",\"attributes\":{\"renderers\":\"auto\"}},{\"type\":\"object\",\"name\":\"WheelZoomTool\",\"id\":\"p1457\",\"attributes\":{\"renderers\":\"auto\"}},{\"type\":\"object\",\"name\":\"WheelZoomTool\",\"id\":\"p1501\",\"attributes\":{\"renderers\":\"auto\"}}]}},{\"type\":\"object\",\"name\":\"ToolProxy\",\"id\":\"p1525\",\"attributes\":{\"tools\":[{\"type\":\"object\",\"name\":\"BoxZoomTool\",\"id\":\"p1282\",\"attributes\":{\"overlay\":{\"type\":\"object\",\"name\":\"BoxAnnotation\",\"id\":\"p1283\",\"attributes\":{\"syncable\":false,\"level\":\"overlay\",\"visible\":false,\"left\":{\"type\":\"number\",\"value\":\"nan\"},\"right\":{\"type\":\"number\",\"value\":\"nan\"},\"top\":{\"type\":\"number\",\"value\":\"nan\"},\"bottom\":{\"type\":\"number\",\"value\":\"nan\"},\"left_units\":\"canvas\",\"right_units\":\"canvas\",\"top_units\":\"canvas\",\"bottom_units\":\"canvas\",\"line_color\":\"black\",\"line_alpha\":1.0,\"line_width\":2,\"line_dash\":[4,4],\"fill_color\":\"lightgrey\",\"fill_alpha\":0.5}}}},{\"type\":\"object\",\"name\":\"BoxZoomTool\",\"id\":\"p1326\",\"attributes\":{\"overlay\":{\"type\":\"object\",\"name\":\"BoxAnnotation\",\"id\":\"p1327\",\"attributes\":{\"syncable\":false,\"level\":\"overlay\",\"visible\":false,\"left\":{\"type\":\"number\",\"value\":\"nan\"},\"right\":{\"type\":\"number\",\"value\":\"nan\"},\"top\":{\"type\":\"number\",\"value\":\"nan\"},\"bottom\":{\"type\":\"number\",\"value\":\"nan\"},\"left_units\":\"canvas\",\"right_units\":\"canvas\",\"top_units\":\"canvas\",\"bottom_units\":\"canvas\",\"line_color\":\"black\",\"line_alpha\":1.0,\"line_width\":2,\"line_dash\":[4,4],\"fill_color\":\"lightgrey\",\"fill_alpha\":0.5}}}},{\"type\":\"object\",\"name\":\"BoxZoomTool\",\"id\":\"p1370\",\"attributes\":{\"overlay\":{\"type\":\"object\",\"name\":\"BoxAnnotation\",\"id\":\"p1371\",\"attributes\":{\"syncable\":false,\"level\":\"overlay\",\"visible\":false,\"left\":{\"type\":\"number\",\"value\":\"nan\"},\"right\":{\"type\":\"number\",\"value\":\"nan\"},\"top\":{\"type\":\"number\",\"value\":\"nan\"},\"bottom\":{\"type\":\"number\",\"value\":\"nan\"},\"left_units\":\"canvas\",\"right_units\":\"canvas\",\"top_units\":\"canvas\",\"bottom_units\":\"canvas\",\"line_color\":\"black\",\"line_alpha\":1.0,\"line_width\":2,\"line_dash\":[4,4],\"fill_color\":\"lightgrey\",\"fill_alpha\":0.5}}}},{\"type\":\"object\",\"name\":\"BoxZoomTool\",\"id\":\"p1414\",\"attributes\":{\"overlay\":{\"type\":\"object\",\"name\":\"BoxAnnotation\",\"id\":\"p1415\",\"attributes\":{\"syncable\":false,\"level\":\"overlay\",\"visible\":false,\"left\":{\"type\":\"number\",\"value\":\"nan\"},\"right\":{\"type\":\"number\",\"value\":\"nan\"},\"top\":{\"type\":\"number\",\"value\":\"nan\"},\"bottom\":{\"type\":\"number\",\"value\":\"nan\"},\"left_units\":\"canvas\",\"right_units\":\"canvas\",\"top_units\":\"canvas\",\"bottom_units\":\"canvas\",\"line_color\":\"black\",\"line_alpha\":1.0,\"line_width\":2,\"line_dash\":[4,4],\"fill_color\":\"lightgrey\",\"fill_alpha\":0.5}}}},{\"type\":\"object\",\"name\":\"BoxZoomTool\",\"id\":\"p1458\",\"attributes\":{\"overlay\":{\"type\":\"object\",\"name\":\"BoxAnnotation\",\"id\":\"p1459\",\"attributes\":{\"syncable\":false,\"level\":\"overlay\",\"visible\":false,\"left\":{\"type\":\"number\",\"value\":\"nan\"},\"right\":{\"type\":\"number\",\"value\":\"nan\"},\"top\":{\"type\":\"number\",\"value\":\"nan\"},\"bottom\":{\"type\":\"number\",\"value\":\"nan\"},\"left_units\":\"canvas\",\"right_units\":\"canvas\",\"top_units\":\"canvas\",\"bottom_units\":\"canvas\",\"line_color\":\"black\",\"line_alpha\":1.0,\"line_width\":2,\"line_dash\":[4,4],\"fill_color\":\"lightgrey\",\"fill_alpha\":0.5}}}},{\"type\":\"object\",\"name\":\"BoxZoomTool\",\"id\":\"p1502\",\"attributes\":{\"overlay\":{\"type\":\"object\",\"name\":\"BoxAnnotation\",\"id\":\"p1503\",\"attributes\":{\"syncable\":false,\"level\":\"overlay\",\"visible\":false,\"left\":{\"type\":\"number\",\"value\":\"nan\"},\"right\":{\"type\":\"number\",\"value\":\"nan\"},\"top\":{\"type\":\"number\",\"value\":\"nan\"},\"bottom\":{\"type\":\"number\",\"value\":\"nan\"},\"left_units\":\"canvas\",\"right_units\":\"canvas\",\"top_units\":\"canvas\",\"bottom_units\":\"canvas\",\"line_color\":\"black\",\"line_alpha\":1.0,\"line_width\":2,\"line_dash\":[4,4],\"fill_color\":\"lightgrey\",\"fill_alpha\":0.5}}}}]}},{\"type\":\"object\",\"name\":\"SaveTool\",\"id\":\"p1526\"},{\"type\":\"object\",\"name\":\"ToolProxy\",\"id\":\"p1527\",\"attributes\":{\"tools\":[{\"type\":\"object\",\"name\":\"ResetTool\",\"id\":\"p1289\"},{\"type\":\"object\",\"name\":\"ResetTool\",\"id\":\"p1333\"},{\"type\":\"object\",\"name\":\"ResetTool\",\"id\":\"p1377\"},{\"type\":\"object\",\"name\":\"ResetTool\",\"id\":\"p1421\"},{\"type\":\"object\",\"name\":\"ResetTool\",\"id\":\"p1465\"},{\"type\":\"object\",\"name\":\"ResetTool\",\"id\":\"p1509\"}]}},{\"type\":\"object\",\"name\":\"ToolProxy\",\"id\":\"p1528\",\"attributes\":{\"tools\":[{\"type\":\"object\",\"name\":\"HelpTool\",\"id\":\"p1290\"},{\"type\":\"object\",\"name\":\"HelpTool\",\"id\":\"p1334\"},{\"type\":\"object\",\"name\":\"HelpTool\",\"id\":\"p1378\"},{\"type\":\"object\",\"name\":\"HelpTool\",\"id\":\"p1422\"},{\"type\":\"object\",\"name\":\"HelpTool\",\"id\":\"p1466\"},{\"type\":\"object\",\"name\":\"HelpTool\",\"id\":\"p1510\"}]}}]}},\"children\":[[{\"type\":\"object\",\"name\":\"Figure\",\"id\":\"p1259\",\"attributes\":{\"x_range\":{\"type\":\"object\",\"name\":\"DataRange1d\",\"id\":\"p1260\"},\"y_range\":{\"type\":\"object\",\"name\":\"DataRange1d\",\"id\":\"p1261\"},\"x_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1268\"},\"y_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1269\"},\"title\":{\"type\":\"object\",\"name\":\"Title\",\"id\":\"p1266\"},\"renderers\":[{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1300\",\"attributes\":{\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1291\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1292\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1293\"},\"data\":{\"type\":\"map\",\"entries\":[[\"Rex1\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"CwAAAKwAAAAFAQAAsgAAAIEAAABhAAAAEAAAAB0AAAB2AAAAhQAAAJgAAAAIAAAAfQAAAKwAAAD1AAAACQEAAMoAAAAjAQAADgAAACgAAAA4AAAAoAAAAHgAAAA0AAAA7wAAAAsAAACXAAAATAAAAHoAAAAiAQAAYgAAAKoAAADaAAAAqwAAAIMAAABZAAAAIAAAAAgAAADWAAAA2wAAAKwAAABhAQAASwEAAOsAAADRAAAACAAAACkBAADvAAAAwAAAAO4AAAB8AAAAowAAAJQAAACXAAAAKAAAAM0AAABLAQAA2gAAAJYAAAA9AAAATAAAAIAAAAALAAAApgAAAGAAAABqAQAAoAAAAPcAAADMAAAACgEAAGIAAACRAAAAPQAAAIgAAABvAAAADwAAAFAAAAD6AAAAqQAAAJsAAAAGAAAAowAAAK4AAADjAAAARQAAAN0AAACnAAAArgAAAJsAAADDAAAAJgAAAIcAAAD0AAAAYgAAALYAAAAKAAAAvwAAAIMAAAD/AAAAIAEAAIkAAADuAAAAZwAAAIMAAACmAAAAEQAAABwBAAAIAQAAVgAAAAgAAAAEAQAAUQAAABMAAAB5AAAACQAAAH4AAAAIAAAABgAAAG4AAADCAAAAdgAAAHoAAAB6AAAAnwAAABcAAAAMAAAAowAAAMAAAAAuAQAAnQAAAD4AAADOAAAAaAAAAIwAAACBAAAAfgAAAKAAAACMAAAAAgEAAB4AAABjAAAABgAAAGIAAACqAAAA/gAAAAkAAAALAAAAmgAAAJEAAAALAAAAWgAAAMsAAAC6AAAAkAAAAEQAAACmAAAAXgAAALoAAADJAAAAcQAAALAAAAASAAAAnAAAAB8AAACtAAAApgAAAGwAAAD1AAAAvwAAAHEAAABIAAAAnQAAADMAAACTAAAAbAAAAAsAAACkAQAAvgAAAJcAAACZAAAAxgAAAJoAAAAwAAAACwAAAF8AAAAXAAAAhgAAAEYBAAB8AAAAaQAAAOkAAADZAAAAAwAAAF4AAACQAAAALwAAALEAAADxAAAANgAAAGYAAACOAAAAzAAAAFkAAABRAAAAfAAAAAcAAAAJAQAAZAAAAMwAAABmAAAAdAAAAI4AAADSAAAAjAAAAB0AAACbAAAABgAAAFoAAABgAAAAjgAAABkBAAB2AAAABQAAAHQAAAAPAQAAEwAAAEEBAADiAAAAyQAAAAgAAAARAAAAswAAACEBAAAZAAAABgEAAOMAAADCAAAAYgAAAIIAAAB0AAAAKgAAAE8AAAAPAAAAwQAAABQBAACPAAAAXQAAAPIAAAAgAAAAmQAAAG8AAAA1AAAALwAAAAYAAAD8AAAATgAAAM0AAADZAAAA1wAAAA0AAAC/AAAAdAAAAIQAAAB9AAAAPwAAALoAAABhAAAAZAAAADYAAACJAAAABAAAAJ4AAACmAAAAtAAAAMMAAACQAAAAQwAAAHgAAAAYAQAA\"},\"shape\":[279],\"dtype\":\"int32\",\"order\":\"little\"}],[\"Rest\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"IgAAAFsAAABGAAAANgAAADYAAABEAAAASgAAADwAAABgAAAAIwAAADIAAAAzAAAAKwAAADIAAABKAAAAfQAAAD4AAACCAAAAXwAAAB8AAABDAAAAWgAAAD4AAAAnAAAARAAAACgAAABBAAAATgAAADwAAABeAAAAYwAAADcAAABFAAAAKQAAAGYAAABBAAAAKgAAAEwAAAByAAAAVAAAAGoAAAC2AAAARAAAAFYAAAA/AAAAGAAAAGcAAABgAAAASwAAADwAAABGAAAATwAAAEoAAABKAAAALAAAAGgAAABhAAAAHgAAADoAAAARAAAAIgAAACwAAAAcAAAAMQAAAEEAAAD2AAAAaAAAAGwAAABbAAAAkAAAACgAAABQAAAAOQAAAFIAAABVAAAAMwAAACcAAABiAAAAWAAAAEEAAAANAAAAjAAAAFUAAABMAAAAFQAAAFAAAAA8AAAAiQAAAFsAAABGAAAADAAAADUAAABBAAAAIQAAADsAAAA7AAAASAAAAG4AAACKAAAAaQAAAFMAAABoAAAAPgAAADkAAABuAAAAMwAAAGoAAABcAAAAOwAAACEAAABsAAAANQAAACIAAABeAAAAMAAAAEAAAABdAAAANQAAAE0AAABTAAAAOAAAADAAAABYAAAANgAAAEsAAAAuAAAAHQAAACoAAABPAAAAQAAAADkAAABcAAAAfQAAACUAAAAsAAAAcAAAADQAAAB9AAAAmAAAABIAAAAiAAAAEAAAADUAAABIAAAAZwAAACMAAABLAAAAPgAAAIYAAABTAAAAXgAAAEMAAABUAAAAUAAAADkAAABQAAAAHQAAAFcAAACCAAAAIAAAAI4AAABOAAAAXAAAAEoAAACbAAAAnwAAAD0AAABKAAAAXgAAADsAAABbAAAAcAAAAEQAAAAbAAAAIAAAAE4AAACiAAAAWQAAAKIAAABcAAAAZAAAACgAAAAlAAAABQAAAGsAAAAfAAAAWwAAAJkAAABeAAAAgQAAAGIAAABsAAAACAAAADUAAABfAAAAJwAAAEEAAABEAAAASwAAAFMAAAAtAAAAWgAAAFcAAABOAAAAdQAAACQAAABSAAAAPQAAAIEAAABnAAAANwAAACsAAAAoAAAAOAAAABsAAABXAAAANQAAAEgAAABZAAAAbQAAAHwAAAAxAAAAHwAAADAAAABSAAAARgAAAFIAAAB5AAAAQQAAAAsAAACqAAAAZwAAAD4AAAAuAAAAagAAAF4AAABSAAAAXwAAAFsAAABAAAAAOgAAAEIAAAAaAAAAQwAAAE8AAAB2AAAAGgAAAG0AAAAZAAAANgAAADMAAAA1AAAANAAAAAwAAABGAAAAPgAAAHQAAABVAAAAZQAAAFwAAACGAAAASgAAAC4AAABJAAAAHgAAAIkAAABrAAAAOwAAAC4AAABWAAAADwAAAD4AAABSAAAAlAAAAE0AAABbAAAAXAAAAFIAAABiAAAA\"},\"shape\":[279],\"dtype\":\"int32\",\"order\":\"little\"}],[\"Nanog\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"JwAAACEAAABEAAAAWAAAACkAAABnAAAAGwAAAA8AAACZAAAAfwAAAEkAAAAFAAAAQAAAAGgAAADKAAAA2AAAADMAAAAlAQAABAAAAAEAAAAFAAAAjwAAAE0AAAAbAAAAnAAAAAAAAABkAAAAZQAAACEAAAB4AAAAZQAAADkAAABhAAAAeQAAAOQAAABPAAAAMAAAAAAAAAAiAAAAawAAAG4AAACYAQAA5wAAAJkAAACKAAAACgAAAIkAAABFAAAArgAAAD0AAAAgAAAAVAAAAEMAAACNAAAAGAAAAF4AAAD2AAAAUAAAAEUAAAALAAAAFAAAAAoAAAANAAAALAAAAEQAAAD7AAAAfwAAAEoAAACcAAAALAAAAD0AAAAhAAAAJwAAAK8AAACAAAAAGAAAAEMAAAASAQAATgAAADEAAAAEAAAAjwAAAMEAAABSAAAACgAAALAAAABWAAAAawAAAIIAAACVAAAAHwAAACgAAACxAAAAJQAAAJEAAAABAAAAVgAAAHEAAABzAAAAiwAAAEQAAABTAAAAQAAAAF4AAAB1AAAAGgAAAGwAAAB4AAAAVAAAAAIAAACQAAAAPgAAADcAAAAMAAAAFQAAACcAAAAhAAAADgAAAGcAAABOAAAAUgAAAC4AAAAvAAAATwAAAAEAAAAGAAAAGAAAAHQAAABoAAAAPwAAADsAAACEAAAAfQAAAJkAAABVAAAAaAAAADQAAACMAAAAgAAAABYAAAAjAAAAAgAAAKIAAADsAAAAjAAAAA4AAAADAAAAhAAAAHgAAAAeAAAAVAAAAMgAAABKAAAAmgAAAFEAAABNAAAAOwAAAFgAAABQAAAACgAAAK8AAAATAAAAfAAAADwAAABXAAAAwgAAAB0AAAB3AAAAQwAAAAgAAAAmAAAAXgAAABwAAAAWAAAAQgAAAAYAAABaAAAATQAAAFwAAAB2AAAAqwAAAB0AAAAgAAAACwAAAE0AAAAlAAAAxgAAAIYAAAAOAAAA4wAAAL4AAAAoAAAAAQAAADIAAABBAAAAEwAAAEAAAACaAAAAQQAAABkAAABHAAAAgQAAAHIAAAB7AAAAnAAAAAgAAACEAAAAiAAAAFAAAACiAAAANQAAAFcAAABIAAAAQAAAABMAAACGAAAACgAAAEEAAABtAAAAYAAAAGkAAAAVAAAAFAAAAHQAAADvAAAAAAAAAFMAAAAHAQAAQwAAAAAAAAAdAAAAQgAAAL8AAAAeAAAAxAAAADEAAAC6AAAAtQAAAGgAAAB/AAAAQgAAAAsAAAATAAAAmwAAAPwAAACgAAAAJgAAACkAAAAGAAAAwwAAADcAAAAYAAAAXgAAAAsAAABCAAAASQAAAAcBAACoAAAAgAAAABIAAAA6AAAASAAAAGkAAAB2AAAAFwAAANQAAABMAAAAIAAAAB0AAABoAAAAAgAAAEwAAACUAAAAuwAAAI0AAAADAAAACAAAAEoAAABoAAAA\"},\"shape\":[279],\"dtype\":\"int32\",\"order\":\"little\"}],[\"Prdm14\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAUAAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAIAAAABAAAAAwAAAAEAAAABAAAAAwAAAA4AAAAQAAAACwAAAAEAAAAPAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAAAAAAABwAAAAAAAAAEAAAABgAAAAAAAAAMAAAABAAAAAAAAAAHAAAAEQAAAAEAAAAIAAAAAgAAAAAAAAAAAAAAAQAAAAQAAAAYAAAAHwAAAAMAAAADAAAAAAAAAAEAAAABAAAABQAAAAAAAAADAAAAAQAAAAcAAAABAAAABQAAAAEAAAAHAAAAAQAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAwAAAAkAAAAgAAAAAwAAAA8AAAAEAAAABAAAAAAAAAABAAAABgAAAAMAAAADAAAAAQAAAAIAAAATAAAACAAAAAEAAAAAAAAACwAAAAMAAAAGAAAAAAAAAAwAAAAAAAAADAAAAAUAAAAJAAAAAgAAAAcAAAAVAAAAAAAAAAUAAAAAAAAAAQAAAAIAAAADAAAAAQAAAAEAAAAFAAAAAAAAAAAAAAANAAAAAAAAAAQAAAACAAAAAwAAAAAAAAANAAAAGwAAAAAAAAACAAAAAQAAAAEAAAAAAAAAAAAAAAMAAAAGAAAABQAAAAIAAAADAAAABwAAAAIAAAAAAAAAAAAAAAYAAAAAAAAAAAAAAAEAAAAZAAAADAAAAAcAAAABAAAABgAAAAAAAAAEAAAAAwAAAAEAAAAAAAAAAQAAABQAAAAKAAAABwAAAAAAAAAAAAAAAAAAAAUAAAAAAAAADAAAAAAAAAACAAAAAQAAAAAAAAAAAAAABwAAAAMAAAABAAAAAAAAAAgAAAAAAAAADwAAAAUAAAAEAAAABgAAAAAAAAACAAAAAQAAAAAAAAAMAAAABAAAAAYAAAAAAAAAAwAAAAAAAAAJAAAACAAAAAwAAAAHAAAADQAAAAEAAAAAAAAAAQAAAAsAAAADAAAACwAAABsAAAAGAAAAIAAAAAAAAAAGAAAAAAAAAAAAAAAFAAAAAAAAAAIAAAADAAAAAgAAAAEAAAACAAAAAgAAAAYAAAAGAAAAAQAAAAEAAAADAAAAAAAAAAAAAAADAAAABAAAAAcAAAAGAAAAAwAAAAAAAAAWAAAAAAAAABIAAAABAAAABQAAAAAAAAABAAAAAQAAABIAAAADAAAAAAAAAAQAAAAPAAAAAwAAAAAAAAAAAAAAAAAAABIAAAABAAAAAAAAAAEAAAAQAAAADAAAAAEAAAAIAAAABQAAAAAAAAAAAAAAEQAAAAQAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAEAAAABAAAACgAAAAAAAAAFAAAAAAAAAAAAAAAAAAAADwAAAAAAAAAIAAAABQAAAAYAAAAFAAAAAQAAAAAAAAABAAAAAAAAAAEAAAAJAAAAAAAAAAYAAAAFAAAAEwAAAAYAAAABAAAABAAAAAQAAAAAAAAA\"},\"shape\":[279],\"dtype\":\"int32\",\"order\":\"little\"}],[\"cell\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"CQAAAGsAAACbAAAAcAAAAEoAAAA1AAAADgAAABQAAABCAAAATgAAAFwAAAAGAAAARwAAAGsAAACTAAAAngAAAH0AAACoAAAADAAAABkAAAAhAAAAZAAAAEMAAAAeAAAAjwAAAAkAAABbAAAAKQAAAEUAAACnAAAANgAAAGkAAACHAAAAagAAAEwAAAAvAAAAFwAAAAYAAACEAAAAiAAAAGsAAACuAAAArQAAAI0AAACCAAAABgAAAKkAAACPAAAAdwAAAI4AAABGAAAAZQAAAFkAAABbAAAAGQAAAIAAAACtAAAAhwAAAFoAAAAiAAAAKQAAAEkAAAAJAAAAZgAAADQAAACvAAAAZAAAAJQAAAB/AAAAnwAAADYAAABXAAAAIgAAAFEAAAA/AAAADQAAACwAAACVAAAAaAAAAF8AAAAEAAAAZQAAAG0AAACLAAAAJwAAAIkAAABnAAAAbQAAAF8AAAB6AAAAGAAAAFAAAACSAAAANgAAAHMAAAAIAAAAdgAAAEwAAACYAAAApQAAAFIAAACOAAAAOgAAAEwAAABmAAAADwAAAKQAAACdAAAALgAAAAYAAACaAAAALQAAABEAAABEAAAABwAAAEgAAAAGAAAABAAAAD4AAAB5AAAAQgAAAEUAAABFAAAAYwAAABIAAAAKAAAAZQAAAHcAAACqAAAAYQAAACMAAACBAAAAOwAAAFMAAABKAAAASAAAAGQAAABTAAAAmQAAABUAAAA3AAAABAAAADYAAABpAAAAlwAAAAcAAAAJAAAAXgAAAFcAAAAJAAAAMAAAAH4AAAB0AAAAVgAAACYAAABmAAAAMgAAAHQAAAB8AAAAQAAAAG4AAAAQAAAAYAAAABYAAABsAAAAZgAAAD0AAACTAAAAdgAAAEAAAAAoAAAAYQAAAB0AAABYAAAAPQAAAAkAAACwAAAAdQAAAFsAAABdAAAAewAAAF4AAAAcAAAACQAAADMAAAASAAAATwAAAKwAAABGAAAAPAAAAIwAAACGAAAAAQAAADIAAABWAAAAGwAAAG8AAACQAAAAIAAAADkAAABUAAAAfwAAAC8AAAAtAAAARgAAAAUAAACeAAAAOAAAAH8AAAA5AAAAQQAAAFQAAACDAAAAUwAAABQAAABfAAAABAAAADAAAAA0AAAAVAAAAKMAAABCAAAAAwAAAEEAAACgAAAAEQAAAKsAAACKAAAAfAAAAAYAAAAPAAAAcQAAAKYAAAATAAAAnAAAAIsAAAB5AAAANgAAAEsAAABBAAAAGgAAACsAAAANAAAAeAAAAKEAAABVAAAAMQAAAJEAAAAXAAAAXQAAAD8AAAAfAAAAGwAAAAQAAACWAAAAKgAAAIAAAACGAAAAhQAAAAsAAAB2AAAAQQAAAE0AAABHAAAAJAAAAHQAAAA1AAAAOAAAACAAAABSAAAAAgAAAGIAAABmAAAAcgAAAHoAAABWAAAAJQAAAEMAAACiAAAA\"},\"shape\":[279],\"dtype\":\"uint32\",\"order\":\"little\"}],[\"color\",{\"type\":\"ndarray\",\"array\":[\"#471265\",\"#23A982\",\"#AFDC2E\",\"#2AB07E\",\"#277C8E\",\"#345E8D\",\"#481C6E\",\"#472777\",\"#2C718E\",\"#25828E\",\"#1F958B\",\"#460C5F\",\"#29788E\",\"#23A982\",\"#90D643\",\"#BADE27\",\"#47C06E\",\"#E1E318\",\"#48196B\",\"#46307D\",\"#423E85\",\"#1EA087\",\"#2B738E\",\"#433A83\",\"#81D34C\",\"#471265\",\"#1F948B\",\"#3D4C89\",\"#2A768E\",\"#DCE218\",\"#33608D\",\"#21A784\",\"#67CC5C\",\"#22A784\",\"#267F8E\",\"#38568B\",\"#462D7C\",\"#460C5F\",\"#5BC862\",\"#69CC5B\",\"#23A982\",\"#F8E621\",\"#F3E51E\",\"#79D151\",\"#55C666\",\"#460C5F\",\"#E4E318\",\"#81D34C\",\"#38B976\",\"#7ED24E\",\"#2A778E\",\"#1FA187\",\"#20918C\",\"#1F948B\",\"#46307D\",\"#51C468\",\"#F3E51E\",\"#67CC5C\",\"#1F928C\",\"#414186\",\"#3D4C89\",\"#287A8E\",\"#471265\",\"#1FA386\",\"#355D8C\",\"#FAE622\",\"#1EA087\",\"#95D73F\",\"#4DC26B\",\"#BFDF24\",\"#33608D\",\"#218E8C\",\"#414186\",\"#24868D\",\"#2E6D8E\",\"#481A6C\",\"#3B518A\",\"#97D83E\",\"#21A685\",\"#1E998A\",\"#45085B\",\"#1FA187\",\"#26AC81\",\"#74D054\",\"#3E4989\",\"#6DCE58\",\"#20A485\",\"#26AC81\",\"#1E998A\",\"#40BD72\",\"#462F7C\",\"#24858D\",\"#8DD644\",\"#33608D\",\"#30B47A\",\"#471163\",\"#36B877\",\"#267F8E\",\"#A5DA35\",\"#D4E11A\",\"#23888D\",\"#7ED24E\",\"#31668D\",\"#267F8E\",\"#1FA386\",\"#481E70\",\"#D2E11B\",\"#B7DD29\",\"#39548B\",\"#460C5F\",\"#AADB32\",\"#3A538B\",\"#482273\",\"#2B748E\",\"#460E61\",\"#287A8E\",\"#460C5F\",\"#45085B\",\"#2E6B8E\",\"#3DBB74\",\"#2C718E\",\"#2A768E\",\"#2A768E\",\"#1E9E88\",\"#482374\",\"#471567\",\"#1FA187\",\"#38B976\",\"#E9E419\",\"#1E9B89\",\"#414286\",\"#53C567\",\"#30678D\",\"#23898D\",\"#277C8E\",\"#287A8E\",\"#1EA087\",\"#23898D\",\"#A7DB33\",\"#472A79\",\"#33618D\",\"#45085B\",\"#33608D\",\"#21A784\",\"#9FD938\",\"#460E61\",\"#471265\",\"#1E988A\",\"#218E8C\",\"#471265\",\"#38578C\",\"#4BC26C\",\"#32B57A\",\"#218C8D\",\"#3F4788\",\"#1FA386\",\"#365A8C\",\"#32B57A\",\"#45BF6F\",\"#2D6E8E\",\"#27AD80\",\"#482071\",\"#1E9A89\",\"#472B7A\",\"#24AA82\",\"#1FA386\",\"#2F6A8D\",\"#90D643\",\"#36B877\",\"#2D6E8E\",\"#3D4A89\",\"#1E9B89\",\"#443781\",\"#208F8C\",\"#2F6A8D\",\"#471265\",\"#FDE724\",\"#35B778\",\"#1F948B\",\"#1E978A\",\"#42BE71\",\"#1E988A\",\"#453681\",\"#471265\",\"#365B8C\",\"#482374\",\"#25838D\",\"#F1E51C\",\"#2A778E\",\"#30688D\",\"#77D052\",\"#62CA5F\",\"#440154\",\"#365A8C\",\"#218C8D\",\"#45347F\",\"#29AF7F\",\"#86D449\",\"#423D84\",\"#31648D\",\"#22898D\",\"#4DC26B\",\"#38568B\",\"#3A538B\",\"#2A778E\",\"#46095C\",\"#BADE27\",\"#32638D\",\"#4DC26B\",\"#31648D\",\"#2C708E\",\"#22898D\",\"#59C764\",\"#23898D\",\"#472777\",\"#1E998A\",\"#45085B\",\"#38578C\",\"#355D8C\",\"#22898D\",\"#CFE11C\",\"#2C718E\",\"#450558\",\"#2C708E\",\"#C2DF22\",\"#482273\",\"#ECE41A\",\"#70CE56\",\"#45BF6F\",\"#460C5F\",\"#481E70\",\"#2CB17D\",\"#DAE218\",\"#472676\",\"#B2DD2C\",\"#74D054\",\"#3DBB74\",\"#33608D\",\"#277D8E\",\"#2C708E\",\"#45327F\",\"#3B508A\",\"#481A6C\",\"#3BBA75\",\"#C7E01F\",\"#228B8D\",\"#37588C\",\"#88D547\",\"#462D7C\",\"#1E978A\",\"#2E6D8E\",\"#433B83\",\"#45347F\",\"#45085B\",\"#9DD93A\",\"#3C4D8A\",\"#51C468\",\"#62CA5F\",\"#60C960\",\"#471669\",\"#36B877\",\"#2C708E\",\"#26808E\",\"#29788E\",\"#404387\",\"#32B57A\",\"#345E8D\",\"#32638D\",\"#423D84\",\"#23888D\",\"#440357\",\"#1E9D88\",\"#1FA386\",\"#2EB27C\",\"#40BD72\",\"#218C8D\",\"#3F4587\",\"#2B738E\",\"#CAE01E\"],\"shape\":[279],\"dtype\":\"object\",\"order\":\"little\"}]]}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1301\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1302\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Scatter\",\"id\":\"p1297\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"Nanog\"},\"y\":{\"type\":\"field\",\"field\":\"Prdm14\"},\"size\":{\"type\":\"value\",\"value\":2},\"line_color\":{\"type\":\"field\",\"field\":\"color\"},\"fill_color\":{\"type\":\"field\",\"field\":\"color\"},\"hatch_color\":{\"type\":\"field\",\"field\":\"color\"}}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Scatter\",\"id\":\"p1298\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"Nanog\"},\"y\":{\"type\":\"field\",\"field\":\"Prdm14\"},\"size\":{\"type\":\"value\",\"value\":2},\"line_color\":{\"type\":\"field\",\"field\":\"color\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.1},\"fill_color\":{\"type\":\"field\",\"field\":\"color\"},\"fill_alpha\":{\"type\":\"value\",\"value\":0.1},\"hatch_color\":{\"type\":\"field\",\"field\":\"color\"},\"hatch_alpha\":{\"type\":\"value\",\"value\":0.1}}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Scatter\",\"id\":\"p1299\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"Nanog\"},\"y\":{\"type\":\"field\",\"field\":\"Prdm14\"},\"size\":{\"type\":\"value\",\"value\":2},\"line_color\":{\"type\":\"field\",\"field\":\"color\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.2},\"fill_color\":{\"type\":\"field\",\"field\":\"color\"},\"fill_alpha\":{\"type\":\"value\",\"value\":0.2},\"hatch_color\":{\"type\":\"field\",\"field\":\"color\"},\"hatch_alpha\":{\"type\":\"value\",\"value\":0.2}}}}}],\"toolbar\":{\"type\":\"object\",\"name\":\"Toolbar\",\"id\":\"p1267\",\"attributes\":{\"tools\":[{\"id\":\"p1280\"},{\"id\":\"p1281\"},{\"id\":\"p1282\"},{\"type\":\"object\",\"name\":\"SaveTool\",\"id\":\"p1288\"},{\"id\":\"p1289\"},{\"id\":\"p1290\"}]}},\"toolbar_location\":null,\"left\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1275\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1276\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1277\"},\"axis_label\":\"Prdm14\",\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1278\"}}}],\"below\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1270\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1271\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1272\"},\"axis_label\":\"Nanog\",\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1273\"}}}],\"center\":[{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1274\",\"attributes\":{\"axis\":{\"id\":\"p1270\"}}},{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1279\",\"attributes\":{\"dimension\":1,\"axis\":{\"id\":\"p1275\"}}}],\"frame_width\":150,\"frame_height\":150}},0,0],[{\"type\":\"object\",\"name\":\"Figure\",\"id\":\"p1303\",\"attributes\":{\"x_range\":{\"type\":\"object\",\"name\":\"DataRange1d\",\"id\":\"p1304\"},\"y_range\":{\"type\":\"object\",\"name\":\"DataRange1d\",\"id\":\"p1305\"},\"x_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1312\"},\"y_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1313\"},\"title\":{\"type\":\"object\",\"name\":\"Title\",\"id\":\"p1310\"},\"renderers\":[{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1344\",\"attributes\":{\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1335\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1336\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1337\"},\"data\":{\"type\":\"map\",\"entries\":[[\"Rex1\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"CwAAAKwAAAAFAQAAsgAAAIEAAABhAAAAEAAAAB0AAAB2AAAAhQAAAJgAAAAIAAAAfQAAAKwAAAD1AAAACQEAAMoAAAAjAQAADgAAACgAAAA4AAAAoAAAAHgAAAA0AAAA7wAAAAsAAACXAAAATAAAAHoAAAAiAQAAYgAAAKoAAADaAAAAqwAAAIMAAABZAAAAIAAAAAgAAADWAAAA2wAAAKwAAABhAQAASwEAAOsAAADRAAAACAAAACkBAADvAAAAwAAAAO4AAAB8AAAAowAAAJQAAACXAAAAKAAAAM0AAABLAQAA2gAAAJYAAAA9AAAATAAAAIAAAAALAAAApgAAAGAAAABqAQAAoAAAAPcAAADMAAAACgEAAGIAAACRAAAAPQAAAIgAAABvAAAADwAAAFAAAAD6AAAAqQAAAJsAAAAGAAAAowAAAK4AAADjAAAARQAAAN0AAACnAAAArgAAAJsAAADDAAAAJgAAAIcAAAD0AAAAYgAAALYAAAAKAAAAvwAAAIMAAAD/AAAAIAEAAIkAAADuAAAAZwAAAIMAAACmAAAAEQAAABwBAAAIAQAAVgAAAAgAAAAEAQAAUQAAABMAAAB5AAAACQAAAH4AAAAIAAAABgAAAG4AAADCAAAAdgAAAHoAAAB6AAAAnwAAABcAAAAMAAAAowAAAMAAAAAuAQAAnQAAAD4AAADOAAAAaAAAAIwAAACBAAAAfgAAAKAAAACMAAAAAgEAAB4AAABjAAAABgAAAGIAAACqAAAA/gAAAAkAAAALAAAAmgAAAJEAAAALAAAAWgAAAMsAAAC6AAAAkAAAAEQAAACmAAAAXgAAALoAAADJAAAAcQAAALAAAAASAAAAnAAAAB8AAACtAAAApgAAAGwAAAD1AAAAvwAAAHEAAABIAAAAnQAAADMAAACTAAAAbAAAAAsAAACkAQAAvgAAAJcAAACZAAAAxgAAAJoAAAAwAAAACwAAAF8AAAAXAAAAhgAAAEYBAAB8AAAAaQAAAOkAAADZAAAAAwAAAF4AAACQAAAALwAAALEAAADxAAAANgAAAGYAAACOAAAAzAAAAFkAAABRAAAAfAAAAAcAAAAJAQAAZAAAAMwAAABmAAAAdAAAAI4AAADSAAAAjAAAAB0AAACbAAAABgAAAFoAAABgAAAAjgAAABkBAAB2AAAABQAAAHQAAAAPAQAAEwAAAEEBAADiAAAAyQAAAAgAAAARAAAAswAAACEBAAAZAAAABgEAAOMAAADCAAAAYgAAAIIAAAB0AAAAKgAAAE8AAAAPAAAAwQAAABQBAACPAAAAXQAAAPIAAAAgAAAAmQAAAG8AAAA1AAAALwAAAAYAAAD8AAAATgAAAM0AAADZAAAA1wAAAA0AAAC/AAAAdAAAAIQAAAB9AAAAPwAAALoAAABhAAAAZAAAADYAAACJAAAABAAAAJ4AAACmAAAAtAAAAMMAAACQAAAAQwAAAHgAAAAYAQAA\"},\"shape\":[279],\"dtype\":\"int32\",\"order\":\"little\"}],[\"Rest\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"IgAAAFsAAABGAAAANgAAADYAAABEAAAASgAAADwAAABgAAAAIwAAADIAAAAzAAAAKwAAADIAAABKAAAAfQAAAD4AAACCAAAAXwAAAB8AAABDAAAAWgAAAD4AAAAnAAAARAAAACgAAABBAAAATgAAADwAAABeAAAAYwAAADcAAABFAAAAKQAAAGYAAABBAAAAKgAAAEwAAAByAAAAVAAAAGoAAAC2AAAARAAAAFYAAAA/AAAAGAAAAGcAAABgAAAASwAAADwAAABGAAAATwAAAEoAAABKAAAALAAAAGgAAABhAAAAHgAAADoAAAARAAAAIgAAACwAAAAcAAAAMQAAAEEAAAD2AAAAaAAAAGwAAABbAAAAkAAAACgAAABQAAAAOQAAAFIAAABVAAAAMwAAACcAAABiAAAAWAAAAEEAAAANAAAAjAAAAFUAAABMAAAAFQAAAFAAAAA8AAAAiQAAAFsAAABGAAAADAAAADUAAABBAAAAIQAAADsAAAA7AAAASAAAAG4AAACKAAAAaQAAAFMAAABoAAAAPgAAADkAAABuAAAAMwAAAGoAAABcAAAAOwAAACEAAABsAAAANQAAACIAAABeAAAAMAAAAEAAAABdAAAANQAAAE0AAABTAAAAOAAAADAAAABYAAAANgAAAEsAAAAuAAAAHQAAACoAAABPAAAAQAAAADkAAABcAAAAfQAAACUAAAAsAAAAcAAAADQAAAB9AAAAmAAAABIAAAAiAAAAEAAAADUAAABIAAAAZwAAACMAAABLAAAAPgAAAIYAAABTAAAAXgAAAEMAAABUAAAAUAAAADkAAABQAAAAHQAAAFcAAACCAAAAIAAAAI4AAABOAAAAXAAAAEoAAACbAAAAnwAAAD0AAABKAAAAXgAAADsAAABbAAAAcAAAAEQAAAAbAAAAIAAAAE4AAACiAAAAWQAAAKIAAABcAAAAZAAAACgAAAAlAAAABQAAAGsAAAAfAAAAWwAAAJkAAABeAAAAgQAAAGIAAABsAAAACAAAADUAAABfAAAAJwAAAEEAAABEAAAASwAAAFMAAAAtAAAAWgAAAFcAAABOAAAAdQAAACQAAABSAAAAPQAAAIEAAABnAAAANwAAACsAAAAoAAAAOAAAABsAAABXAAAANQAAAEgAAABZAAAAbQAAAHwAAAAxAAAAHwAAADAAAABSAAAARgAAAFIAAAB5AAAAQQAAAAsAAACqAAAAZwAAAD4AAAAuAAAAagAAAF4AAABSAAAAXwAAAFsAAABAAAAAOgAAAEIAAAAaAAAAQwAAAE8AAAB2AAAAGgAAAG0AAAAZAAAANgAAADMAAAA1AAAANAAAAAwAAABGAAAAPgAAAHQAAABVAAAAZQAAAFwAAACGAAAASgAAAC4AAABJAAAAHgAAAIkAAABrAAAAOwAAAC4AAABWAAAADwAAAD4AAABSAAAAlAAAAE0AAABbAAAAXAAAAFIAAABiAAAA\"},\"shape\":[279],\"dtype\":\"int32\",\"order\":\"little\"}],[\"Nanog\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"JwAAACEAAABEAAAAWAAAACkAAABnAAAAGwAAAA8AAACZAAAAfwAAAEkAAAAFAAAAQAAAAGgAAADKAAAA2AAAADMAAAAlAQAABAAAAAEAAAAFAAAAjwAAAE0AAAAbAAAAnAAAAAAAAABkAAAAZQAAACEAAAB4AAAAZQAAADkAAABhAAAAeQAAAOQAAABPAAAAMAAAAAAAAAAiAAAAawAAAG4AAACYAQAA5wAAAJkAAACKAAAACgAAAIkAAABFAAAArgAAAD0AAAAgAAAAVAAAAEMAAACNAAAAGAAAAF4AAAD2AAAAUAAAAEUAAAALAAAAFAAAAAoAAAANAAAALAAAAEQAAAD7AAAAfwAAAEoAAACcAAAALAAAAD0AAAAhAAAAJwAAAK8AAACAAAAAGAAAAEMAAAASAQAATgAAADEAAAAEAAAAjwAAAMEAAABSAAAACgAAALAAAABWAAAAawAAAIIAAACVAAAAHwAAACgAAACxAAAAJQAAAJEAAAABAAAAVgAAAHEAAABzAAAAiwAAAEQAAABTAAAAQAAAAF4AAAB1AAAAGgAAAGwAAAB4AAAAVAAAAAIAAACQAAAAPgAAADcAAAAMAAAAFQAAACcAAAAhAAAADgAAAGcAAABOAAAAUgAAAC4AAAAvAAAATwAAAAEAAAAGAAAAGAAAAHQAAABoAAAAPwAAADsAAACEAAAAfQAAAJkAAABVAAAAaAAAADQAAACMAAAAgAAAABYAAAAjAAAAAgAAAKIAAADsAAAAjAAAAA4AAAADAAAAhAAAAHgAAAAeAAAAVAAAAMgAAABKAAAAmgAAAFEAAABNAAAAOwAAAFgAAABQAAAACgAAAK8AAAATAAAAfAAAADwAAABXAAAAwgAAAB0AAAB3AAAAQwAAAAgAAAAmAAAAXgAAABwAAAAWAAAAQgAAAAYAAABaAAAATQAAAFwAAAB2AAAAqwAAAB0AAAAgAAAACwAAAE0AAAAlAAAAxgAAAIYAAAAOAAAA4wAAAL4AAAAoAAAAAQAAADIAAABBAAAAEwAAAEAAAACaAAAAQQAAABkAAABHAAAAgQAAAHIAAAB7AAAAnAAAAAgAAACEAAAAiAAAAFAAAACiAAAANQAAAFcAAABIAAAAQAAAABMAAACGAAAACgAAAEEAAABtAAAAYAAAAGkAAAAVAAAAFAAAAHQAAADvAAAAAAAAAFMAAAAHAQAAQwAAAAAAAAAdAAAAQgAAAL8AAAAeAAAAxAAAADEAAAC6AAAAtQAAAGgAAAB/AAAAQgAAAAsAAAATAAAAmwAAAPwAAACgAAAAJgAAACkAAAAGAAAAwwAAADcAAAAYAAAAXgAAAAsAAABCAAAASQAAAAcBAACoAAAAgAAAABIAAAA6AAAASAAAAGkAAAB2AAAAFwAAANQAAABMAAAAIAAAAB0AAABoAAAAAgAAAEwAAACUAAAAuwAAAI0AAAADAAAACAAAAEoAAABoAAAA\"},\"shape\":[279],\"dtype\":\"int32\",\"order\":\"little\"}],[\"Prdm14\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAUAAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAIAAAABAAAAAwAAAAEAAAABAAAAAwAAAA4AAAAQAAAACwAAAAEAAAAPAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAAAAAAABwAAAAAAAAAEAAAABgAAAAAAAAAMAAAABAAAAAAAAAAHAAAAEQAAAAEAAAAIAAAAAgAAAAAAAAAAAAAAAQAAAAQAAAAYAAAAHwAAAAMAAAADAAAAAAAAAAEAAAABAAAABQAAAAAAAAADAAAAAQAAAAcAAAABAAAABQAAAAEAAAAHAAAAAQAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAwAAAAkAAAAgAAAAAwAAAA8AAAAEAAAABAAAAAAAAAABAAAABgAAAAMAAAADAAAAAQAAAAIAAAATAAAACAAAAAEAAAAAAAAACwAAAAMAAAAGAAAAAAAAAAwAAAAAAAAADAAAAAUAAAAJAAAAAgAAAAcAAAAVAAAAAAAAAAUAAAAAAAAAAQAAAAIAAAADAAAAAQAAAAEAAAAFAAAAAAAAAAAAAAANAAAAAAAAAAQAAAACAAAAAwAAAAAAAAANAAAAGwAAAAAAAAACAAAAAQAAAAEAAAAAAAAAAAAAAAMAAAAGAAAABQAAAAIAAAADAAAABwAAAAIAAAAAAAAAAAAAAAYAAAAAAAAAAAAAAAEAAAAZAAAADAAAAAcAAAABAAAABgAAAAAAAAAEAAAAAwAAAAEAAAAAAAAAAQAAABQAAAAKAAAABwAAAAAAAAAAAAAAAAAAAAUAAAAAAAAADAAAAAAAAAACAAAAAQAAAAAAAAAAAAAABwAAAAMAAAABAAAAAAAAAAgAAAAAAAAADwAAAAUAAAAEAAAABgAAAAAAAAACAAAAAQAAAAAAAAAMAAAABAAAAAYAAAAAAAAAAwAAAAAAAAAJAAAACAAAAAwAAAAHAAAADQAAAAEAAAAAAAAAAQAAAAsAAAADAAAACwAAABsAAAAGAAAAIAAAAAAAAAAGAAAAAAAAAAAAAAAFAAAAAAAAAAIAAAADAAAAAgAAAAEAAAACAAAAAgAAAAYAAAAGAAAAAQAAAAEAAAADAAAAAAAAAAAAAAADAAAABAAAAAcAAAAGAAAAAwAAAAAAAAAWAAAAAAAAABIAAAABAAAABQAAAAAAAAABAAAAAQAAABIAAAADAAAAAAAAAAQAAAAPAAAAAwAAAAAAAAAAAAAAAAAAABIAAAABAAAAAAAAAAEAAAAQAAAADAAAAAEAAAAIAAAABQAAAAAAAAAAAAAAEQAAAAQAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAEAAAABAAAACgAAAAAAAAAFAAAAAAAAAAAAAAAAAAAADwAAAAAAAAAIAAAABQAAAAYAAAAFAAAAAQAAAAAAAAABAAAAAAAAAAEAAAAJAAAAAAAAAAYAAAAFAAAAEwAAAAYAAAABAAAABAAAAAQAAAAAAAAA\"},\"shape\":[279],\"dtype\":\"int32\",\"order\":\"little\"}],[\"cell\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"CQAAAGsAAACbAAAAcAAAAEoAAAA1AAAADgAAABQAAABCAAAATgAAAFwAAAAGAAAARwAAAGsAAACTAAAAngAAAH0AAACoAAAADAAAABkAAAAhAAAAZAAAAEMAAAAeAAAAjwAAAAkAAABbAAAAKQAAAEUAAACnAAAANgAAAGkAAACHAAAAagAAAEwAAAAvAAAAFwAAAAYAAACEAAAAiAAAAGsAAACuAAAArQAAAI0AAACCAAAABgAAAKkAAACPAAAAdwAAAI4AAABGAAAAZQAAAFkAAABbAAAAGQAAAIAAAACtAAAAhwAAAFoAAAAiAAAAKQAAAEkAAAAJAAAAZgAAADQAAACvAAAAZAAAAJQAAAB/AAAAnwAAADYAAABXAAAAIgAAAFEAAAA/AAAADQAAACwAAACVAAAAaAAAAF8AAAAEAAAAZQAAAG0AAACLAAAAJwAAAIkAAABnAAAAbQAAAF8AAAB6AAAAGAAAAFAAAACSAAAANgAAAHMAAAAIAAAAdgAAAEwAAACYAAAApQAAAFIAAACOAAAAOgAAAEwAAABmAAAADwAAAKQAAACdAAAALgAAAAYAAACaAAAALQAAABEAAABEAAAABwAAAEgAAAAGAAAABAAAAD4AAAB5AAAAQgAAAEUAAABFAAAAYwAAABIAAAAKAAAAZQAAAHcAAACqAAAAYQAAACMAAACBAAAAOwAAAFMAAABKAAAASAAAAGQAAABTAAAAmQAAABUAAAA3AAAABAAAADYAAABpAAAAlwAAAAcAAAAJAAAAXgAAAFcAAAAJAAAAMAAAAH4AAAB0AAAAVgAAACYAAABmAAAAMgAAAHQAAAB8AAAAQAAAAG4AAAAQAAAAYAAAABYAAABsAAAAZgAAAD0AAACTAAAAdgAAAEAAAAAoAAAAYQAAAB0AAABYAAAAPQAAAAkAAACwAAAAdQAAAFsAAABdAAAAewAAAF4AAAAcAAAACQAAADMAAAASAAAATwAAAKwAAABGAAAAPAAAAIwAAACGAAAAAQAAADIAAABWAAAAGwAAAG8AAACQAAAAIAAAADkAAABUAAAAfwAAAC8AAAAtAAAARgAAAAUAAACeAAAAOAAAAH8AAAA5AAAAQQAAAFQAAACDAAAAUwAAABQAAABfAAAABAAAADAAAAA0AAAAVAAAAKMAAABCAAAAAwAAAEEAAACgAAAAEQAAAKsAAACKAAAAfAAAAAYAAAAPAAAAcQAAAKYAAAATAAAAnAAAAIsAAAB5AAAANgAAAEsAAABBAAAAGgAAACsAAAANAAAAeAAAAKEAAABVAAAAMQAAAJEAAAAXAAAAXQAAAD8AAAAfAAAAGwAAAAQAAACWAAAAKgAAAIAAAACGAAAAhQAAAAsAAAB2AAAAQQAAAE0AAABHAAAAJAAAAHQAAAA1AAAAOAAAACAAAABSAAAAAgAAAGIAAABmAAAAcgAAAHoAAABWAAAAJQAAAEMAAACiAAAA\"},\"shape\":[279],\"dtype\":\"uint32\",\"order\":\"little\"}],[\"color\",{\"type\":\"ndarray\",\"array\":[\"#471265\",\"#23A982\",\"#AFDC2E\",\"#2AB07E\",\"#277C8E\",\"#345E8D\",\"#481C6E\",\"#472777\",\"#2C718E\",\"#25828E\",\"#1F958B\",\"#460C5F\",\"#29788E\",\"#23A982\",\"#90D643\",\"#BADE27\",\"#47C06E\",\"#E1E318\",\"#48196B\",\"#46307D\",\"#423E85\",\"#1EA087\",\"#2B738E\",\"#433A83\",\"#81D34C\",\"#471265\",\"#1F948B\",\"#3D4C89\",\"#2A768E\",\"#DCE218\",\"#33608D\",\"#21A784\",\"#67CC5C\",\"#22A784\",\"#267F8E\",\"#38568B\",\"#462D7C\",\"#460C5F\",\"#5BC862\",\"#69CC5B\",\"#23A982\",\"#F8E621\",\"#F3E51E\",\"#79D151\",\"#55C666\",\"#460C5F\",\"#E4E318\",\"#81D34C\",\"#38B976\",\"#7ED24E\",\"#2A778E\",\"#1FA187\",\"#20918C\",\"#1F948B\",\"#46307D\",\"#51C468\",\"#F3E51E\",\"#67CC5C\",\"#1F928C\",\"#414186\",\"#3D4C89\",\"#287A8E\",\"#471265\",\"#1FA386\",\"#355D8C\",\"#FAE622\",\"#1EA087\",\"#95D73F\",\"#4DC26B\",\"#BFDF24\",\"#33608D\",\"#218E8C\",\"#414186\",\"#24868D\",\"#2E6D8E\",\"#481A6C\",\"#3B518A\",\"#97D83E\",\"#21A685\",\"#1E998A\",\"#45085B\",\"#1FA187\",\"#26AC81\",\"#74D054\",\"#3E4989\",\"#6DCE58\",\"#20A485\",\"#26AC81\",\"#1E998A\",\"#40BD72\",\"#462F7C\",\"#24858D\",\"#8DD644\",\"#33608D\",\"#30B47A\",\"#471163\",\"#36B877\",\"#267F8E\",\"#A5DA35\",\"#D4E11A\",\"#23888D\",\"#7ED24E\",\"#31668D\",\"#267F8E\",\"#1FA386\",\"#481E70\",\"#D2E11B\",\"#B7DD29\",\"#39548B\",\"#460C5F\",\"#AADB32\",\"#3A538B\",\"#482273\",\"#2B748E\",\"#460E61\",\"#287A8E\",\"#460C5F\",\"#45085B\",\"#2E6B8E\",\"#3DBB74\",\"#2C718E\",\"#2A768E\",\"#2A768E\",\"#1E9E88\",\"#482374\",\"#471567\",\"#1FA187\",\"#38B976\",\"#E9E419\",\"#1E9B89\",\"#414286\",\"#53C567\",\"#30678D\",\"#23898D\",\"#277C8E\",\"#287A8E\",\"#1EA087\",\"#23898D\",\"#A7DB33\",\"#472A79\",\"#33618D\",\"#45085B\",\"#33608D\",\"#21A784\",\"#9FD938\",\"#460E61\",\"#471265\",\"#1E988A\",\"#218E8C\",\"#471265\",\"#38578C\",\"#4BC26C\",\"#32B57A\",\"#218C8D\",\"#3F4788\",\"#1FA386\",\"#365A8C\",\"#32B57A\",\"#45BF6F\",\"#2D6E8E\",\"#27AD80\",\"#482071\",\"#1E9A89\",\"#472B7A\",\"#24AA82\",\"#1FA386\",\"#2F6A8D\",\"#90D643\",\"#36B877\",\"#2D6E8E\",\"#3D4A89\",\"#1E9B89\",\"#443781\",\"#208F8C\",\"#2F6A8D\",\"#471265\",\"#FDE724\",\"#35B778\",\"#1F948B\",\"#1E978A\",\"#42BE71\",\"#1E988A\",\"#453681\",\"#471265\",\"#365B8C\",\"#482374\",\"#25838D\",\"#F1E51C\",\"#2A778E\",\"#30688D\",\"#77D052\",\"#62CA5F\",\"#440154\",\"#365A8C\",\"#218C8D\",\"#45347F\",\"#29AF7F\",\"#86D449\",\"#423D84\",\"#31648D\",\"#22898D\",\"#4DC26B\",\"#38568B\",\"#3A538B\",\"#2A778E\",\"#46095C\",\"#BADE27\",\"#32638D\",\"#4DC26B\",\"#31648D\",\"#2C708E\",\"#22898D\",\"#59C764\",\"#23898D\",\"#472777\",\"#1E998A\",\"#45085B\",\"#38578C\",\"#355D8C\",\"#22898D\",\"#CFE11C\",\"#2C718E\",\"#450558\",\"#2C708E\",\"#C2DF22\",\"#482273\",\"#ECE41A\",\"#70CE56\",\"#45BF6F\",\"#460C5F\",\"#481E70\",\"#2CB17D\",\"#DAE218\",\"#472676\",\"#B2DD2C\",\"#74D054\",\"#3DBB74\",\"#33608D\",\"#277D8E\",\"#2C708E\",\"#45327F\",\"#3B508A\",\"#481A6C\",\"#3BBA75\",\"#C7E01F\",\"#228B8D\",\"#37588C\",\"#88D547\",\"#462D7C\",\"#1E978A\",\"#2E6D8E\",\"#433B83\",\"#45347F\",\"#45085B\",\"#9DD93A\",\"#3C4D8A\",\"#51C468\",\"#62CA5F\",\"#60C960\",\"#471669\",\"#36B877\",\"#2C708E\",\"#26808E\",\"#29788E\",\"#404387\",\"#32B57A\",\"#345E8D\",\"#32638D\",\"#423D84\",\"#23888D\",\"#440357\",\"#1E9D88\",\"#1FA386\",\"#2EB27C\",\"#40BD72\",\"#218C8D\",\"#3F4587\",\"#2B738E\",\"#CAE01E\"],\"shape\":[279],\"dtype\":\"object\",\"order\":\"little\"}]]}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1345\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1346\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Scatter\",\"id\":\"p1341\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"Nanog\"},\"y\":{\"type\":\"field\",\"field\":\"Rest\"},\"size\":{\"type\":\"value\",\"value\":2},\"line_color\":{\"type\":\"field\",\"field\":\"color\"},\"fill_color\":{\"type\":\"field\",\"field\":\"color\"},\"hatch_color\":{\"type\":\"field\",\"field\":\"color\"}}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Scatter\",\"id\":\"p1342\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"Nanog\"},\"y\":{\"type\":\"field\",\"field\":\"Rest\"},\"size\":{\"type\":\"value\",\"value\":2},\"line_color\":{\"type\":\"field\",\"field\":\"color\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.1},\"fill_color\":{\"type\":\"field\",\"field\":\"color\"},\"fill_alpha\":{\"type\":\"value\",\"value\":0.1},\"hatch_color\":{\"type\":\"field\",\"field\":\"color\"},\"hatch_alpha\":{\"type\":\"value\",\"value\":0.1}}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Scatter\",\"id\":\"p1343\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"Nanog\"},\"y\":{\"type\":\"field\",\"field\":\"Rest\"},\"size\":{\"type\":\"value\",\"value\":2},\"line_color\":{\"type\":\"field\",\"field\":\"color\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.2},\"fill_color\":{\"type\":\"field\",\"field\":\"color\"},\"fill_alpha\":{\"type\":\"value\",\"value\":0.2},\"hatch_color\":{\"type\":\"field\",\"field\":\"color\"},\"hatch_alpha\":{\"type\":\"value\",\"value\":0.2}}}}}],\"toolbar\":{\"type\":\"object\",\"name\":\"Toolbar\",\"id\":\"p1311\",\"attributes\":{\"tools\":[{\"id\":\"p1324\"},{\"id\":\"p1325\"},{\"id\":\"p1326\"},{\"type\":\"object\",\"name\":\"SaveTool\",\"id\":\"p1332\"},{\"id\":\"p1333\"},{\"id\":\"p1334\"}]}},\"toolbar_location\":null,\"left\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1319\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1320\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1321\"},\"axis_label\":\"Rest\",\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1322\"}}}],\"below\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1314\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1315\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1316\"},\"axis_label\":\"Nanog\",\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1317\"}}}],\"center\":[{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1318\",\"attributes\":{\"axis\":{\"id\":\"p1314\"}}},{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1323\",\"attributes\":{\"dimension\":1,\"axis\":{\"id\":\"p1319\"}}}],\"frame_width\":150,\"frame_height\":150}},0,1],[{\"type\":\"object\",\"name\":\"Figure\",\"id\":\"p1347\",\"attributes\":{\"x_range\":{\"type\":\"object\",\"name\":\"DataRange1d\",\"id\":\"p1348\"},\"y_range\":{\"type\":\"object\",\"name\":\"DataRange1d\",\"id\":\"p1349\"},\"x_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1356\"},\"y_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1357\"},\"title\":{\"type\":\"object\",\"name\":\"Title\",\"id\":\"p1354\"},\"renderers\":[{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1388\",\"attributes\":{\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1379\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1380\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1381\"},\"data\":{\"type\":\"map\",\"entries\":[[\"Rex1\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"CwAAAKwAAAAFAQAAsgAAAIEAAABhAAAAEAAAAB0AAAB2AAAAhQAAAJgAAAAIAAAAfQAAAKwAAAD1AAAACQEAAMoAAAAjAQAADgAAACgAAAA4AAAAoAAAAHgAAAA0AAAA7wAAAAsAAACXAAAATAAAAHoAAAAiAQAAYgAAAKoAAADaAAAAqwAAAIMAAABZAAAAIAAAAAgAAADWAAAA2wAAAKwAAABhAQAASwEAAOsAAADRAAAACAAAACkBAADvAAAAwAAAAO4AAAB8AAAAowAAAJQAAACXAAAAKAAAAM0AAABLAQAA2gAAAJYAAAA9AAAATAAAAIAAAAALAAAApgAAAGAAAABqAQAAoAAAAPcAAADMAAAACgEAAGIAAACRAAAAPQAAAIgAAABvAAAADwAAAFAAAAD6AAAAqQAAAJsAAAAGAAAAowAAAK4AAADjAAAARQAAAN0AAACnAAAArgAAAJsAAADDAAAAJgAAAIcAAAD0AAAAYgAAALYAAAAKAAAAvwAAAIMAAAD/AAAAIAEAAIkAAADuAAAAZwAAAIMAAACmAAAAEQAAABwBAAAIAQAAVgAAAAgAAAAEAQAAUQAAABMAAAB5AAAACQAAAH4AAAAIAAAABgAAAG4AAADCAAAAdgAAAHoAAAB6AAAAnwAAABcAAAAMAAAAowAAAMAAAAAuAQAAnQAAAD4AAADOAAAAaAAAAIwAAACBAAAAfgAAAKAAAACMAAAAAgEAAB4AAABjAAAABgAAAGIAAACqAAAA/gAAAAkAAAALAAAAmgAAAJEAAAALAAAAWgAAAMsAAAC6AAAAkAAAAEQAAACmAAAAXgAAALoAAADJAAAAcQAAALAAAAASAAAAnAAAAB8AAACtAAAApgAAAGwAAAD1AAAAvwAAAHEAAABIAAAAnQAAADMAAACTAAAAbAAAAAsAAACkAQAAvgAAAJcAAACZAAAAxgAAAJoAAAAwAAAACwAAAF8AAAAXAAAAhgAAAEYBAAB8AAAAaQAAAOkAAADZAAAAAwAAAF4AAACQAAAALwAAALEAAADxAAAANgAAAGYAAACOAAAAzAAAAFkAAABRAAAAfAAAAAcAAAAJAQAAZAAAAMwAAABmAAAAdAAAAI4AAADSAAAAjAAAAB0AAACbAAAABgAAAFoAAABgAAAAjgAAABkBAAB2AAAABQAAAHQAAAAPAQAAEwAAAEEBAADiAAAAyQAAAAgAAAARAAAAswAAACEBAAAZAAAABgEAAOMAAADCAAAAYgAAAIIAAAB0AAAAKgAAAE8AAAAPAAAAwQAAABQBAACPAAAAXQAAAPIAAAAgAAAAmQAAAG8AAAA1AAAALwAAAAYAAAD8AAAATgAAAM0AAADZAAAA1wAAAA0AAAC/AAAAdAAAAIQAAAB9AAAAPwAAALoAAABhAAAAZAAAADYAAACJAAAABAAAAJ4AAACmAAAAtAAAAMMAAACQAAAAQwAAAHgAAAAYAQAA\"},\"shape\":[279],\"dtype\":\"int32\",\"order\":\"little\"}],[\"Rest\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"IgAAAFsAAABGAAAANgAAADYAAABEAAAASgAAADwAAABgAAAAIwAAADIAAAAzAAAAKwAAADIAAABKAAAAfQAAAD4AAACCAAAAXwAAAB8AAABDAAAAWgAAAD4AAAAnAAAARAAAACgAAABBAAAATgAAADwAAABeAAAAYwAAADcAAABFAAAAKQAAAGYAAABBAAAAKgAAAEwAAAByAAAAVAAAAGoAAAC2AAAARAAAAFYAAAA/AAAAGAAAAGcAAABgAAAASwAAADwAAABGAAAATwAAAEoAAABKAAAALAAAAGgAAABhAAAAHgAAADoAAAARAAAAIgAAACwAAAAcAAAAMQAAAEEAAAD2AAAAaAAAAGwAAABbAAAAkAAAACgAAABQAAAAOQAAAFIAAABVAAAAMwAAACcAAABiAAAAWAAAAEEAAAANAAAAjAAAAFUAAABMAAAAFQAAAFAAAAA8AAAAiQAAAFsAAABGAAAADAAAADUAAABBAAAAIQAAADsAAAA7AAAASAAAAG4AAACKAAAAaQAAAFMAAABoAAAAPgAAADkAAABuAAAAMwAAAGoAAABcAAAAOwAAACEAAABsAAAANQAAACIAAABeAAAAMAAAAEAAAABdAAAANQAAAE0AAABTAAAAOAAAADAAAABYAAAANgAAAEsAAAAuAAAAHQAAACoAAABPAAAAQAAAADkAAABcAAAAfQAAACUAAAAsAAAAcAAAADQAAAB9AAAAmAAAABIAAAAiAAAAEAAAADUAAABIAAAAZwAAACMAAABLAAAAPgAAAIYAAABTAAAAXgAAAEMAAABUAAAAUAAAADkAAABQAAAAHQAAAFcAAACCAAAAIAAAAI4AAABOAAAAXAAAAEoAAACbAAAAnwAAAD0AAABKAAAAXgAAADsAAABbAAAAcAAAAEQAAAAbAAAAIAAAAE4AAACiAAAAWQAAAKIAAABcAAAAZAAAACgAAAAlAAAABQAAAGsAAAAfAAAAWwAAAJkAAABeAAAAgQAAAGIAAABsAAAACAAAADUAAABfAAAAJwAAAEEAAABEAAAASwAAAFMAAAAtAAAAWgAAAFcAAABOAAAAdQAAACQAAABSAAAAPQAAAIEAAABnAAAANwAAACsAAAAoAAAAOAAAABsAAABXAAAANQAAAEgAAABZAAAAbQAAAHwAAAAxAAAAHwAAADAAAABSAAAARgAAAFIAAAB5AAAAQQAAAAsAAACqAAAAZwAAAD4AAAAuAAAAagAAAF4AAABSAAAAXwAAAFsAAABAAAAAOgAAAEIAAAAaAAAAQwAAAE8AAAB2AAAAGgAAAG0AAAAZAAAANgAAADMAAAA1AAAANAAAAAwAAABGAAAAPgAAAHQAAABVAAAAZQAAAFwAAACGAAAASgAAAC4AAABJAAAAHgAAAIkAAABrAAAAOwAAAC4AAABWAAAADwAAAD4AAABSAAAAlAAAAE0AAABbAAAAXAAAAFIAAABiAAAA\"},\"shape\":[279],\"dtype\":\"int32\",\"order\":\"little\"}],[\"Nanog\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"JwAAACEAAABEAAAAWAAAACkAAABnAAAAGwAAAA8AAACZAAAAfwAAAEkAAAAFAAAAQAAAAGgAAADKAAAA2AAAADMAAAAlAQAABAAAAAEAAAAFAAAAjwAAAE0AAAAbAAAAnAAAAAAAAABkAAAAZQAAACEAAAB4AAAAZQAAADkAAABhAAAAeQAAAOQAAABPAAAAMAAAAAAAAAAiAAAAawAAAG4AAACYAQAA5wAAAJkAAACKAAAACgAAAIkAAABFAAAArgAAAD0AAAAgAAAAVAAAAEMAAACNAAAAGAAAAF4AAAD2AAAAUAAAAEUAAAALAAAAFAAAAAoAAAANAAAALAAAAEQAAAD7AAAAfwAAAEoAAACcAAAALAAAAD0AAAAhAAAAJwAAAK8AAACAAAAAGAAAAEMAAAASAQAATgAAADEAAAAEAAAAjwAAAMEAAABSAAAACgAAALAAAABWAAAAawAAAIIAAACVAAAAHwAAACgAAACxAAAAJQAAAJEAAAABAAAAVgAAAHEAAABzAAAAiwAAAEQAAABTAAAAQAAAAF4AAAB1AAAAGgAAAGwAAAB4AAAAVAAAAAIAAACQAAAAPgAAADcAAAAMAAAAFQAAACcAAAAhAAAADgAAAGcAAABOAAAAUgAAAC4AAAAvAAAATwAAAAEAAAAGAAAAGAAAAHQAAABoAAAAPwAAADsAAACEAAAAfQAAAJkAAABVAAAAaAAAADQAAACMAAAAgAAAABYAAAAjAAAAAgAAAKIAAADsAAAAjAAAAA4AAAADAAAAhAAAAHgAAAAeAAAAVAAAAMgAAABKAAAAmgAAAFEAAABNAAAAOwAAAFgAAABQAAAACgAAAK8AAAATAAAAfAAAADwAAABXAAAAwgAAAB0AAAB3AAAAQwAAAAgAAAAmAAAAXgAAABwAAAAWAAAAQgAAAAYAAABaAAAATQAAAFwAAAB2AAAAqwAAAB0AAAAgAAAACwAAAE0AAAAlAAAAxgAAAIYAAAAOAAAA4wAAAL4AAAAoAAAAAQAAADIAAABBAAAAEwAAAEAAAACaAAAAQQAAABkAAABHAAAAgQAAAHIAAAB7AAAAnAAAAAgAAACEAAAAiAAAAFAAAACiAAAANQAAAFcAAABIAAAAQAAAABMAAACGAAAACgAAAEEAAABtAAAAYAAAAGkAAAAVAAAAFAAAAHQAAADvAAAAAAAAAFMAAAAHAQAAQwAAAAAAAAAdAAAAQgAAAL8AAAAeAAAAxAAAADEAAAC6AAAAtQAAAGgAAAB/AAAAQgAAAAsAAAATAAAAmwAAAPwAAACgAAAAJgAAACkAAAAGAAAAwwAAADcAAAAYAAAAXgAAAAsAAABCAAAASQAAAAcBAACoAAAAgAAAABIAAAA6AAAASAAAAGkAAAB2AAAAFwAAANQAAABMAAAAIAAAAB0AAABoAAAAAgAAAEwAAACUAAAAuwAAAI0AAAADAAAACAAAAEoAAABoAAAA\"},\"shape\":[279],\"dtype\":\"int32\",\"order\":\"little\"}],[\"Prdm14\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAUAAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAIAAAABAAAAAwAAAAEAAAABAAAAAwAAAA4AAAAQAAAACwAAAAEAAAAPAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAAAAAAABwAAAAAAAAAEAAAABgAAAAAAAAAMAAAABAAAAAAAAAAHAAAAEQAAAAEAAAAIAAAAAgAAAAAAAAAAAAAAAQAAAAQAAAAYAAAAHwAAAAMAAAADAAAAAAAAAAEAAAABAAAABQAAAAAAAAADAAAAAQAAAAcAAAABAAAABQAAAAEAAAAHAAAAAQAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAwAAAAkAAAAgAAAAAwAAAA8AAAAEAAAABAAAAAAAAAABAAAABgAAAAMAAAADAAAAAQAAAAIAAAATAAAACAAAAAEAAAAAAAAACwAAAAMAAAAGAAAAAAAAAAwAAAAAAAAADAAAAAUAAAAJAAAAAgAAAAcAAAAVAAAAAAAAAAUAAAAAAAAAAQAAAAIAAAADAAAAAQAAAAEAAAAFAAAAAAAAAAAAAAANAAAAAAAAAAQAAAACAAAAAwAAAAAAAAANAAAAGwAAAAAAAAACAAAAAQAAAAEAAAAAAAAAAAAAAAMAAAAGAAAABQAAAAIAAAADAAAABwAAAAIAAAAAAAAAAAAAAAYAAAAAAAAAAAAAAAEAAAAZAAAADAAAAAcAAAABAAAABgAAAAAAAAAEAAAAAwAAAAEAAAAAAAAAAQAAABQAAAAKAAAABwAAAAAAAAAAAAAAAAAAAAUAAAAAAAAADAAAAAAAAAACAAAAAQAAAAAAAAAAAAAABwAAAAMAAAABAAAAAAAAAAgAAAAAAAAADwAAAAUAAAAEAAAABgAAAAAAAAACAAAAAQAAAAAAAAAMAAAABAAAAAYAAAAAAAAAAwAAAAAAAAAJAAAACAAAAAwAAAAHAAAADQAAAAEAAAAAAAAAAQAAAAsAAAADAAAACwAAABsAAAAGAAAAIAAAAAAAAAAGAAAAAAAAAAAAAAAFAAAAAAAAAAIAAAADAAAAAgAAAAEAAAACAAAAAgAAAAYAAAAGAAAAAQAAAAEAAAADAAAAAAAAAAAAAAADAAAABAAAAAcAAAAGAAAAAwAAAAAAAAAWAAAAAAAAABIAAAABAAAABQAAAAAAAAABAAAAAQAAABIAAAADAAAAAAAAAAQAAAAPAAAAAwAAAAAAAAAAAAAAAAAAABIAAAABAAAAAAAAAAEAAAAQAAAADAAAAAEAAAAIAAAABQAAAAAAAAAAAAAAEQAAAAQAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAEAAAABAAAACgAAAAAAAAAFAAAAAAAAAAAAAAAAAAAADwAAAAAAAAAIAAAABQAAAAYAAAAFAAAAAQAAAAAAAAABAAAAAAAAAAEAAAAJAAAAAAAAAAYAAAAFAAAAEwAAAAYAAAABAAAABAAAAAQAAAAAAAAA\"},\"shape\":[279],\"dtype\":\"int32\",\"order\":\"little\"}],[\"cell\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"CQAAAGsAAACbAAAAcAAAAEoAAAA1AAAADgAAABQAAABCAAAATgAAAFwAAAAGAAAARwAAAGsAAACTAAAAngAAAH0AAACoAAAADAAAABkAAAAhAAAAZAAAAEMAAAAeAAAAjwAAAAkAAABbAAAAKQAAAEUAAACnAAAANgAAAGkAAACHAAAAagAAAEwAAAAvAAAAFwAAAAYAAACEAAAAiAAAAGsAAACuAAAArQAAAI0AAACCAAAABgAAAKkAAACPAAAAdwAAAI4AAABGAAAAZQAAAFkAAABbAAAAGQAAAIAAAACtAAAAhwAAAFoAAAAiAAAAKQAAAEkAAAAJAAAAZgAAADQAAACvAAAAZAAAAJQAAAB/AAAAnwAAADYAAABXAAAAIgAAAFEAAAA/AAAADQAAACwAAACVAAAAaAAAAF8AAAAEAAAAZQAAAG0AAACLAAAAJwAAAIkAAABnAAAAbQAAAF8AAAB6AAAAGAAAAFAAAACSAAAANgAAAHMAAAAIAAAAdgAAAEwAAACYAAAApQAAAFIAAACOAAAAOgAAAEwAAABmAAAADwAAAKQAAACdAAAALgAAAAYAAACaAAAALQAAABEAAABEAAAABwAAAEgAAAAGAAAABAAAAD4AAAB5AAAAQgAAAEUAAABFAAAAYwAAABIAAAAKAAAAZQAAAHcAAACqAAAAYQAAACMAAACBAAAAOwAAAFMAAABKAAAASAAAAGQAAABTAAAAmQAAABUAAAA3AAAABAAAADYAAABpAAAAlwAAAAcAAAAJAAAAXgAAAFcAAAAJAAAAMAAAAH4AAAB0AAAAVgAAACYAAABmAAAAMgAAAHQAAAB8AAAAQAAAAG4AAAAQAAAAYAAAABYAAABsAAAAZgAAAD0AAACTAAAAdgAAAEAAAAAoAAAAYQAAAB0AAABYAAAAPQAAAAkAAACwAAAAdQAAAFsAAABdAAAAewAAAF4AAAAcAAAACQAAADMAAAASAAAATwAAAKwAAABGAAAAPAAAAIwAAACGAAAAAQAAADIAAABWAAAAGwAAAG8AAACQAAAAIAAAADkAAABUAAAAfwAAAC8AAAAtAAAARgAAAAUAAACeAAAAOAAAAH8AAAA5AAAAQQAAAFQAAACDAAAAUwAAABQAAABfAAAABAAAADAAAAA0AAAAVAAAAKMAAABCAAAAAwAAAEEAAACgAAAAEQAAAKsAAACKAAAAfAAAAAYAAAAPAAAAcQAAAKYAAAATAAAAnAAAAIsAAAB5AAAANgAAAEsAAABBAAAAGgAAACsAAAANAAAAeAAAAKEAAABVAAAAMQAAAJEAAAAXAAAAXQAAAD8AAAAfAAAAGwAAAAQAAACWAAAAKgAAAIAAAACGAAAAhQAAAAsAAAB2AAAAQQAAAE0AAABHAAAAJAAAAHQAAAA1AAAAOAAAACAAAABSAAAAAgAAAGIAAABmAAAAcgAAAHoAAABWAAAAJQAAAEMAAACiAAAA\"},\"shape\":[279],\"dtype\":\"uint32\",\"order\":\"little\"}],[\"color\",{\"type\":\"ndarray\",\"array\":[\"#471265\",\"#23A982\",\"#AFDC2E\",\"#2AB07E\",\"#277C8E\",\"#345E8D\",\"#481C6E\",\"#472777\",\"#2C718E\",\"#25828E\",\"#1F958B\",\"#460C5F\",\"#29788E\",\"#23A982\",\"#90D643\",\"#BADE27\",\"#47C06E\",\"#E1E318\",\"#48196B\",\"#46307D\",\"#423E85\",\"#1EA087\",\"#2B738E\",\"#433A83\",\"#81D34C\",\"#471265\",\"#1F948B\",\"#3D4C89\",\"#2A768E\",\"#DCE218\",\"#33608D\",\"#21A784\",\"#67CC5C\",\"#22A784\",\"#267F8E\",\"#38568B\",\"#462D7C\",\"#460C5F\",\"#5BC862\",\"#69CC5B\",\"#23A982\",\"#F8E621\",\"#F3E51E\",\"#79D151\",\"#55C666\",\"#460C5F\",\"#E4E318\",\"#81D34C\",\"#38B976\",\"#7ED24E\",\"#2A778E\",\"#1FA187\",\"#20918C\",\"#1F948B\",\"#46307D\",\"#51C468\",\"#F3E51E\",\"#67CC5C\",\"#1F928C\",\"#414186\",\"#3D4C89\",\"#287A8E\",\"#471265\",\"#1FA386\",\"#355D8C\",\"#FAE622\",\"#1EA087\",\"#95D73F\",\"#4DC26B\",\"#BFDF24\",\"#33608D\",\"#218E8C\",\"#414186\",\"#24868D\",\"#2E6D8E\",\"#481A6C\",\"#3B518A\",\"#97D83E\",\"#21A685\",\"#1E998A\",\"#45085B\",\"#1FA187\",\"#26AC81\",\"#74D054\",\"#3E4989\",\"#6DCE58\",\"#20A485\",\"#26AC81\",\"#1E998A\",\"#40BD72\",\"#462F7C\",\"#24858D\",\"#8DD644\",\"#33608D\",\"#30B47A\",\"#471163\",\"#36B877\",\"#267F8E\",\"#A5DA35\",\"#D4E11A\",\"#23888D\",\"#7ED24E\",\"#31668D\",\"#267F8E\",\"#1FA386\",\"#481E70\",\"#D2E11B\",\"#B7DD29\",\"#39548B\",\"#460C5F\",\"#AADB32\",\"#3A538B\",\"#482273\",\"#2B748E\",\"#460E61\",\"#287A8E\",\"#460C5F\",\"#45085B\",\"#2E6B8E\",\"#3DBB74\",\"#2C718E\",\"#2A768E\",\"#2A768E\",\"#1E9E88\",\"#482374\",\"#471567\",\"#1FA187\",\"#38B976\",\"#E9E419\",\"#1E9B89\",\"#414286\",\"#53C567\",\"#30678D\",\"#23898D\",\"#277C8E\",\"#287A8E\",\"#1EA087\",\"#23898D\",\"#A7DB33\",\"#472A79\",\"#33618D\",\"#45085B\",\"#33608D\",\"#21A784\",\"#9FD938\",\"#460E61\",\"#471265\",\"#1E988A\",\"#218E8C\",\"#471265\",\"#38578C\",\"#4BC26C\",\"#32B57A\",\"#218C8D\",\"#3F4788\",\"#1FA386\",\"#365A8C\",\"#32B57A\",\"#45BF6F\",\"#2D6E8E\",\"#27AD80\",\"#482071\",\"#1E9A89\",\"#472B7A\",\"#24AA82\",\"#1FA386\",\"#2F6A8D\",\"#90D643\",\"#36B877\",\"#2D6E8E\",\"#3D4A89\",\"#1E9B89\",\"#443781\",\"#208F8C\",\"#2F6A8D\",\"#471265\",\"#FDE724\",\"#35B778\",\"#1F948B\",\"#1E978A\",\"#42BE71\",\"#1E988A\",\"#453681\",\"#471265\",\"#365B8C\",\"#482374\",\"#25838D\",\"#F1E51C\",\"#2A778E\",\"#30688D\",\"#77D052\",\"#62CA5F\",\"#440154\",\"#365A8C\",\"#218C8D\",\"#45347F\",\"#29AF7F\",\"#86D449\",\"#423D84\",\"#31648D\",\"#22898D\",\"#4DC26B\",\"#38568B\",\"#3A538B\",\"#2A778E\",\"#46095C\",\"#BADE27\",\"#32638D\",\"#4DC26B\",\"#31648D\",\"#2C708E\",\"#22898D\",\"#59C764\",\"#23898D\",\"#472777\",\"#1E998A\",\"#45085B\",\"#38578C\",\"#355D8C\",\"#22898D\",\"#CFE11C\",\"#2C718E\",\"#450558\",\"#2C708E\",\"#C2DF22\",\"#482273\",\"#ECE41A\",\"#70CE56\",\"#45BF6F\",\"#460C5F\",\"#481E70\",\"#2CB17D\",\"#DAE218\",\"#472676\",\"#B2DD2C\",\"#74D054\",\"#3DBB74\",\"#33608D\",\"#277D8E\",\"#2C708E\",\"#45327F\",\"#3B508A\",\"#481A6C\",\"#3BBA75\",\"#C7E01F\",\"#228B8D\",\"#37588C\",\"#88D547\",\"#462D7C\",\"#1E978A\",\"#2E6D8E\",\"#433B83\",\"#45347F\",\"#45085B\",\"#9DD93A\",\"#3C4D8A\",\"#51C468\",\"#62CA5F\",\"#60C960\",\"#471669\",\"#36B877\",\"#2C708E\",\"#26808E\",\"#29788E\",\"#404387\",\"#32B57A\",\"#345E8D\",\"#32638D\",\"#423D84\",\"#23888D\",\"#440357\",\"#1E9D88\",\"#1FA386\",\"#2EB27C\",\"#40BD72\",\"#218C8D\",\"#3F4587\",\"#2B738E\",\"#CAE01E\"],\"shape\":[279],\"dtype\":\"object\",\"order\":\"little\"}]]}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1389\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1390\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Scatter\",\"id\":\"p1385\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"Nanog\"},\"y\":{\"type\":\"field\",\"field\":\"Rex1\"},\"size\":{\"type\":\"value\",\"value\":2},\"line_color\":{\"type\":\"field\",\"field\":\"color\"},\"fill_color\":{\"type\":\"field\",\"field\":\"color\"},\"hatch_color\":{\"type\":\"field\",\"field\":\"color\"}}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Scatter\",\"id\":\"p1386\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"Nanog\"},\"y\":{\"type\":\"field\",\"field\":\"Rex1\"},\"size\":{\"type\":\"value\",\"value\":2},\"line_color\":{\"type\":\"field\",\"field\":\"color\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.1},\"fill_color\":{\"type\":\"field\",\"field\":\"color\"},\"fill_alpha\":{\"type\":\"value\",\"value\":0.1},\"hatch_color\":{\"type\":\"field\",\"field\":\"color\"},\"hatch_alpha\":{\"type\":\"value\",\"value\":0.1}}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Scatter\",\"id\":\"p1387\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"Nanog\"},\"y\":{\"type\":\"field\",\"field\":\"Rex1\"},\"size\":{\"type\":\"value\",\"value\":2},\"line_color\":{\"type\":\"field\",\"field\":\"color\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.2},\"fill_color\":{\"type\":\"field\",\"field\":\"color\"},\"fill_alpha\":{\"type\":\"value\",\"value\":0.2},\"hatch_color\":{\"type\":\"field\",\"field\":\"color\"},\"hatch_alpha\":{\"type\":\"value\",\"value\":0.2}}}}}],\"toolbar\":{\"type\":\"object\",\"name\":\"Toolbar\",\"id\":\"p1355\",\"attributes\":{\"tools\":[{\"id\":\"p1368\"},{\"id\":\"p1369\"},{\"id\":\"p1370\"},{\"type\":\"object\",\"name\":\"SaveTool\",\"id\":\"p1376\"},{\"id\":\"p1377\"},{\"id\":\"p1378\"}]}},\"toolbar_location\":null,\"left\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1363\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1364\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1365\"},\"axis_label\":\"Rex1\",\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1366\"}}}],\"below\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1358\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1359\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1360\"},\"axis_label\":\"Nanog\",\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1361\"}}}],\"center\":[{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1362\",\"attributes\":{\"axis\":{\"id\":\"p1358\"}}},{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1367\",\"attributes\":{\"dimension\":1,\"axis\":{\"id\":\"p1363\"}}}],\"frame_width\":150,\"frame_height\":150}},0,2],[{\"type\":\"object\",\"name\":\"Figure\",\"id\":\"p1391\",\"attributes\":{\"x_range\":{\"type\":\"object\",\"name\":\"DataRange1d\",\"id\":\"p1392\"},\"y_range\":{\"type\":\"object\",\"name\":\"DataRange1d\",\"id\":\"p1393\"},\"x_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1400\"},\"y_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1401\"},\"title\":{\"type\":\"object\",\"name\":\"Title\",\"id\":\"p1398\"},\"renderers\":[{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1432\",\"attributes\":{\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1423\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1424\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1425\"},\"data\":{\"type\":\"map\",\"entries\":[[\"Rex1\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"CwAAAKwAAAAFAQAAsgAAAIEAAABhAAAAEAAAAB0AAAB2AAAAhQAAAJgAAAAIAAAAfQAAAKwAAAD1AAAACQEAAMoAAAAjAQAADgAAACgAAAA4AAAAoAAAAHgAAAA0AAAA7wAAAAsAAACXAAAATAAAAHoAAAAiAQAAYgAAAKoAAADaAAAAqwAAAIMAAABZAAAAIAAAAAgAAADWAAAA2wAAAKwAAABhAQAASwEAAOsAAADRAAAACAAAACkBAADvAAAAwAAAAO4AAAB8AAAAowAAAJQAAACXAAAAKAAAAM0AAABLAQAA2gAAAJYAAAA9AAAATAAAAIAAAAALAAAApgAAAGAAAABqAQAAoAAAAPcAAADMAAAACgEAAGIAAACRAAAAPQAAAIgAAABvAAAADwAAAFAAAAD6AAAAqQAAAJsAAAAGAAAAowAAAK4AAADjAAAARQAAAN0AAACnAAAArgAAAJsAAADDAAAAJgAAAIcAAAD0AAAAYgAAALYAAAAKAAAAvwAAAIMAAAD/AAAAIAEAAIkAAADuAAAAZwAAAIMAAACmAAAAEQAAABwBAAAIAQAAVgAAAAgAAAAEAQAAUQAAABMAAAB5AAAACQAAAH4AAAAIAAAABgAAAG4AAADCAAAAdgAAAHoAAAB6AAAAnwAAABcAAAAMAAAAowAAAMAAAAAuAQAAnQAAAD4AAADOAAAAaAAAAIwAAACBAAAAfgAAAKAAAACMAAAAAgEAAB4AAABjAAAABgAAAGIAAACqAAAA/gAAAAkAAAALAAAAmgAAAJEAAAALAAAAWgAAAMsAAAC6AAAAkAAAAEQAAACmAAAAXgAAALoAAADJAAAAcQAAALAAAAASAAAAnAAAAB8AAACtAAAApgAAAGwAAAD1AAAAvwAAAHEAAABIAAAAnQAAADMAAACTAAAAbAAAAAsAAACkAQAAvgAAAJcAAACZAAAAxgAAAJoAAAAwAAAACwAAAF8AAAAXAAAAhgAAAEYBAAB8AAAAaQAAAOkAAADZAAAAAwAAAF4AAACQAAAALwAAALEAAADxAAAANgAAAGYAAACOAAAAzAAAAFkAAABRAAAAfAAAAAcAAAAJAQAAZAAAAMwAAABmAAAAdAAAAI4AAADSAAAAjAAAAB0AAACbAAAABgAAAFoAAABgAAAAjgAAABkBAAB2AAAABQAAAHQAAAAPAQAAEwAAAEEBAADiAAAAyQAAAAgAAAARAAAAswAAACEBAAAZAAAABgEAAOMAAADCAAAAYgAAAIIAAAB0AAAAKgAAAE8AAAAPAAAAwQAAABQBAACPAAAAXQAAAPIAAAAgAAAAmQAAAG8AAAA1AAAALwAAAAYAAAD8AAAATgAAAM0AAADZAAAA1wAAAA0AAAC/AAAAdAAAAIQAAAB9AAAAPwAAALoAAABhAAAAZAAAADYAAACJAAAABAAAAJ4AAACmAAAAtAAAAMMAAACQAAAAQwAAAHgAAAAYAQAA\"},\"shape\":[279],\"dtype\":\"int32\",\"order\":\"little\"}],[\"Rest\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"IgAAAFsAAABGAAAANgAAADYAAABEAAAASgAAADwAAABgAAAAIwAAADIAAAAzAAAAKwAAADIAAABKAAAAfQAAAD4AAACCAAAAXwAAAB8AAABDAAAAWgAAAD4AAAAnAAAARAAAACgAAABBAAAATgAAADwAAABeAAAAYwAAADcAAABFAAAAKQAAAGYAAABBAAAAKgAAAEwAAAByAAAAVAAAAGoAAAC2AAAARAAAAFYAAAA/AAAAGAAAAGcAAABgAAAASwAAADwAAABGAAAATwAAAEoAAABKAAAALAAAAGgAAABhAAAAHgAAADoAAAARAAAAIgAAACwAAAAcAAAAMQAAAEEAAAD2AAAAaAAAAGwAAABbAAAAkAAAACgAAABQAAAAOQAAAFIAAABVAAAAMwAAACcAAABiAAAAWAAAAEEAAAANAAAAjAAAAFUAAABMAAAAFQAAAFAAAAA8AAAAiQAAAFsAAABGAAAADAAAADUAAABBAAAAIQAAADsAAAA7AAAASAAAAG4AAACKAAAAaQAAAFMAAABoAAAAPgAAADkAAABuAAAAMwAAAGoAAABcAAAAOwAAACEAAABsAAAANQAAACIAAABeAAAAMAAAAEAAAABdAAAANQAAAE0AAABTAAAAOAAAADAAAABYAAAANgAAAEsAAAAuAAAAHQAAACoAAABPAAAAQAAAADkAAABcAAAAfQAAACUAAAAsAAAAcAAAADQAAAB9AAAAmAAAABIAAAAiAAAAEAAAADUAAABIAAAAZwAAACMAAABLAAAAPgAAAIYAAABTAAAAXgAAAEMAAABUAAAAUAAAADkAAABQAAAAHQAAAFcAAACCAAAAIAAAAI4AAABOAAAAXAAAAEoAAACbAAAAnwAAAD0AAABKAAAAXgAAADsAAABbAAAAcAAAAEQAAAAbAAAAIAAAAE4AAACiAAAAWQAAAKIAAABcAAAAZAAAACgAAAAlAAAABQAAAGsAAAAfAAAAWwAAAJkAAABeAAAAgQAAAGIAAABsAAAACAAAADUAAABfAAAAJwAAAEEAAABEAAAASwAAAFMAAAAtAAAAWgAAAFcAAABOAAAAdQAAACQAAABSAAAAPQAAAIEAAABnAAAANwAAACsAAAAoAAAAOAAAABsAAABXAAAANQAAAEgAAABZAAAAbQAAAHwAAAAxAAAAHwAAADAAAABSAAAARgAAAFIAAAB5AAAAQQAAAAsAAACqAAAAZwAAAD4AAAAuAAAAagAAAF4AAABSAAAAXwAAAFsAAABAAAAAOgAAAEIAAAAaAAAAQwAAAE8AAAB2AAAAGgAAAG0AAAAZAAAANgAAADMAAAA1AAAANAAAAAwAAABGAAAAPgAAAHQAAABVAAAAZQAAAFwAAACGAAAASgAAAC4AAABJAAAAHgAAAIkAAABrAAAAOwAAAC4AAABWAAAADwAAAD4AAABSAAAAlAAAAE0AAABbAAAAXAAAAFIAAABiAAAA\"},\"shape\":[279],\"dtype\":\"int32\",\"order\":\"little\"}],[\"Nanog\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"JwAAACEAAABEAAAAWAAAACkAAABnAAAAGwAAAA8AAACZAAAAfwAAAEkAAAAFAAAAQAAAAGgAAADKAAAA2AAAADMAAAAlAQAABAAAAAEAAAAFAAAAjwAAAE0AAAAbAAAAnAAAAAAAAABkAAAAZQAAACEAAAB4AAAAZQAAADkAAABhAAAAeQAAAOQAAABPAAAAMAAAAAAAAAAiAAAAawAAAG4AAACYAQAA5wAAAJkAAACKAAAACgAAAIkAAABFAAAArgAAAD0AAAAgAAAAVAAAAEMAAACNAAAAGAAAAF4AAAD2AAAAUAAAAEUAAAALAAAAFAAAAAoAAAANAAAALAAAAEQAAAD7AAAAfwAAAEoAAACcAAAALAAAAD0AAAAhAAAAJwAAAK8AAACAAAAAGAAAAEMAAAASAQAATgAAADEAAAAEAAAAjwAAAMEAAABSAAAACgAAALAAAABWAAAAawAAAIIAAACVAAAAHwAAACgAAACxAAAAJQAAAJEAAAABAAAAVgAAAHEAAABzAAAAiwAAAEQAAABTAAAAQAAAAF4AAAB1AAAAGgAAAGwAAAB4AAAAVAAAAAIAAACQAAAAPgAAADcAAAAMAAAAFQAAACcAAAAhAAAADgAAAGcAAABOAAAAUgAAAC4AAAAvAAAATwAAAAEAAAAGAAAAGAAAAHQAAABoAAAAPwAAADsAAACEAAAAfQAAAJkAAABVAAAAaAAAADQAAACMAAAAgAAAABYAAAAjAAAAAgAAAKIAAADsAAAAjAAAAA4AAAADAAAAhAAAAHgAAAAeAAAAVAAAAMgAAABKAAAAmgAAAFEAAABNAAAAOwAAAFgAAABQAAAACgAAAK8AAAATAAAAfAAAADwAAABXAAAAwgAAAB0AAAB3AAAAQwAAAAgAAAAmAAAAXgAAABwAAAAWAAAAQgAAAAYAAABaAAAATQAAAFwAAAB2AAAAqwAAAB0AAAAgAAAACwAAAE0AAAAlAAAAxgAAAIYAAAAOAAAA4wAAAL4AAAAoAAAAAQAAADIAAABBAAAAEwAAAEAAAACaAAAAQQAAABkAAABHAAAAgQAAAHIAAAB7AAAAnAAAAAgAAACEAAAAiAAAAFAAAACiAAAANQAAAFcAAABIAAAAQAAAABMAAACGAAAACgAAAEEAAABtAAAAYAAAAGkAAAAVAAAAFAAAAHQAAADvAAAAAAAAAFMAAAAHAQAAQwAAAAAAAAAdAAAAQgAAAL8AAAAeAAAAxAAAADEAAAC6AAAAtQAAAGgAAAB/AAAAQgAAAAsAAAATAAAAmwAAAPwAAACgAAAAJgAAACkAAAAGAAAAwwAAADcAAAAYAAAAXgAAAAsAAABCAAAASQAAAAcBAACoAAAAgAAAABIAAAA6AAAASAAAAGkAAAB2AAAAFwAAANQAAABMAAAAIAAAAB0AAABoAAAAAgAAAEwAAACUAAAAuwAAAI0AAAADAAAACAAAAEoAAABoAAAA\"},\"shape\":[279],\"dtype\":\"int32\",\"order\":\"little\"}],[\"Prdm14\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAUAAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAIAAAABAAAAAwAAAAEAAAABAAAAAwAAAA4AAAAQAAAACwAAAAEAAAAPAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAAAAAAABwAAAAAAAAAEAAAABgAAAAAAAAAMAAAABAAAAAAAAAAHAAAAEQAAAAEAAAAIAAAAAgAAAAAAAAAAAAAAAQAAAAQAAAAYAAAAHwAAAAMAAAADAAAAAAAAAAEAAAABAAAABQAAAAAAAAADAAAAAQAAAAcAAAABAAAABQAAAAEAAAAHAAAAAQAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAwAAAAkAAAAgAAAAAwAAAA8AAAAEAAAABAAAAAAAAAABAAAABgAAAAMAAAADAAAAAQAAAAIAAAATAAAACAAAAAEAAAAAAAAACwAAAAMAAAAGAAAAAAAAAAwAAAAAAAAADAAAAAUAAAAJAAAAAgAAAAcAAAAVAAAAAAAAAAUAAAAAAAAAAQAAAAIAAAADAAAAAQAAAAEAAAAFAAAAAAAAAAAAAAANAAAAAAAAAAQAAAACAAAAAwAAAAAAAAANAAAAGwAAAAAAAAACAAAAAQAAAAEAAAAAAAAAAAAAAAMAAAAGAAAABQAAAAIAAAADAAAABwAAAAIAAAAAAAAAAAAAAAYAAAAAAAAAAAAAAAEAAAAZAAAADAAAAAcAAAABAAAABgAAAAAAAAAEAAAAAwAAAAEAAAAAAAAAAQAAABQAAAAKAAAABwAAAAAAAAAAAAAAAAAAAAUAAAAAAAAADAAAAAAAAAACAAAAAQAAAAAAAAAAAAAABwAAAAMAAAABAAAAAAAAAAgAAAAAAAAADwAAAAUAAAAEAAAABgAAAAAAAAACAAAAAQAAAAAAAAAMAAAABAAAAAYAAAAAAAAAAwAAAAAAAAAJAAAACAAAAAwAAAAHAAAADQAAAAEAAAAAAAAAAQAAAAsAAAADAAAACwAAABsAAAAGAAAAIAAAAAAAAAAGAAAAAAAAAAAAAAAFAAAAAAAAAAIAAAADAAAAAgAAAAEAAAACAAAAAgAAAAYAAAAGAAAAAQAAAAEAAAADAAAAAAAAAAAAAAADAAAABAAAAAcAAAAGAAAAAwAAAAAAAAAWAAAAAAAAABIAAAABAAAABQAAAAAAAAABAAAAAQAAABIAAAADAAAAAAAAAAQAAAAPAAAAAwAAAAAAAAAAAAAAAAAAABIAAAABAAAAAAAAAAEAAAAQAAAADAAAAAEAAAAIAAAABQAAAAAAAAAAAAAAEQAAAAQAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAEAAAABAAAACgAAAAAAAAAFAAAAAAAAAAAAAAAAAAAADwAAAAAAAAAIAAAABQAAAAYAAAAFAAAAAQAAAAAAAAABAAAAAAAAAAEAAAAJAAAAAAAAAAYAAAAFAAAAEwAAAAYAAAABAAAABAAAAAQAAAAAAAAA\"},\"shape\":[279],\"dtype\":\"int32\",\"order\":\"little\"}],[\"cell\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"CQAAAGsAAACbAAAAcAAAAEoAAAA1AAAADgAAABQAAABCAAAATgAAAFwAAAAGAAAARwAAAGsAAACTAAAAngAAAH0AAACoAAAADAAAABkAAAAhAAAAZAAAAEMAAAAeAAAAjwAAAAkAAABbAAAAKQAAAEUAAACnAAAANgAAAGkAAACHAAAAagAAAEwAAAAvAAAAFwAAAAYAAACEAAAAiAAAAGsAAACuAAAArQAAAI0AAACCAAAABgAAAKkAAACPAAAAdwAAAI4AAABGAAAAZQAAAFkAAABbAAAAGQAAAIAAAACtAAAAhwAAAFoAAAAiAAAAKQAAAEkAAAAJAAAAZgAAADQAAACvAAAAZAAAAJQAAAB/AAAAnwAAADYAAABXAAAAIgAAAFEAAAA/AAAADQAAACwAAACVAAAAaAAAAF8AAAAEAAAAZQAAAG0AAACLAAAAJwAAAIkAAABnAAAAbQAAAF8AAAB6AAAAGAAAAFAAAACSAAAANgAAAHMAAAAIAAAAdgAAAEwAAACYAAAApQAAAFIAAACOAAAAOgAAAEwAAABmAAAADwAAAKQAAACdAAAALgAAAAYAAACaAAAALQAAABEAAABEAAAABwAAAEgAAAAGAAAABAAAAD4AAAB5AAAAQgAAAEUAAABFAAAAYwAAABIAAAAKAAAAZQAAAHcAAACqAAAAYQAAACMAAACBAAAAOwAAAFMAAABKAAAASAAAAGQAAABTAAAAmQAAABUAAAA3AAAABAAAADYAAABpAAAAlwAAAAcAAAAJAAAAXgAAAFcAAAAJAAAAMAAAAH4AAAB0AAAAVgAAACYAAABmAAAAMgAAAHQAAAB8AAAAQAAAAG4AAAAQAAAAYAAAABYAAABsAAAAZgAAAD0AAACTAAAAdgAAAEAAAAAoAAAAYQAAAB0AAABYAAAAPQAAAAkAAACwAAAAdQAAAFsAAABdAAAAewAAAF4AAAAcAAAACQAAADMAAAASAAAATwAAAKwAAABGAAAAPAAAAIwAAACGAAAAAQAAADIAAABWAAAAGwAAAG8AAACQAAAAIAAAADkAAABUAAAAfwAAAC8AAAAtAAAARgAAAAUAAACeAAAAOAAAAH8AAAA5AAAAQQAAAFQAAACDAAAAUwAAABQAAABfAAAABAAAADAAAAA0AAAAVAAAAKMAAABCAAAAAwAAAEEAAACgAAAAEQAAAKsAAACKAAAAfAAAAAYAAAAPAAAAcQAAAKYAAAATAAAAnAAAAIsAAAB5AAAANgAAAEsAAABBAAAAGgAAACsAAAANAAAAeAAAAKEAAABVAAAAMQAAAJEAAAAXAAAAXQAAAD8AAAAfAAAAGwAAAAQAAACWAAAAKgAAAIAAAACGAAAAhQAAAAsAAAB2AAAAQQAAAE0AAABHAAAAJAAAAHQAAAA1AAAAOAAAACAAAABSAAAAAgAAAGIAAABmAAAAcgAAAHoAAABWAAAAJQAAAEMAAACiAAAA\"},\"shape\":[279],\"dtype\":\"uint32\",\"order\":\"little\"}],[\"color\",{\"type\":\"ndarray\",\"array\":[\"#471265\",\"#23A982\",\"#AFDC2E\",\"#2AB07E\",\"#277C8E\",\"#345E8D\",\"#481C6E\",\"#472777\",\"#2C718E\",\"#25828E\",\"#1F958B\",\"#460C5F\",\"#29788E\",\"#23A982\",\"#90D643\",\"#BADE27\",\"#47C06E\",\"#E1E318\",\"#48196B\",\"#46307D\",\"#423E85\",\"#1EA087\",\"#2B738E\",\"#433A83\",\"#81D34C\",\"#471265\",\"#1F948B\",\"#3D4C89\",\"#2A768E\",\"#DCE218\",\"#33608D\",\"#21A784\",\"#67CC5C\",\"#22A784\",\"#267F8E\",\"#38568B\",\"#462D7C\",\"#460C5F\",\"#5BC862\",\"#69CC5B\",\"#23A982\",\"#F8E621\",\"#F3E51E\",\"#79D151\",\"#55C666\",\"#460C5F\",\"#E4E318\",\"#81D34C\",\"#38B976\",\"#7ED24E\",\"#2A778E\",\"#1FA187\",\"#20918C\",\"#1F948B\",\"#46307D\",\"#51C468\",\"#F3E51E\",\"#67CC5C\",\"#1F928C\",\"#414186\",\"#3D4C89\",\"#287A8E\",\"#471265\",\"#1FA386\",\"#355D8C\",\"#FAE622\",\"#1EA087\",\"#95D73F\",\"#4DC26B\",\"#BFDF24\",\"#33608D\",\"#218E8C\",\"#414186\",\"#24868D\",\"#2E6D8E\",\"#481A6C\",\"#3B518A\",\"#97D83E\",\"#21A685\",\"#1E998A\",\"#45085B\",\"#1FA187\",\"#26AC81\",\"#74D054\",\"#3E4989\",\"#6DCE58\",\"#20A485\",\"#26AC81\",\"#1E998A\",\"#40BD72\",\"#462F7C\",\"#24858D\",\"#8DD644\",\"#33608D\",\"#30B47A\",\"#471163\",\"#36B877\",\"#267F8E\",\"#A5DA35\",\"#D4E11A\",\"#23888D\",\"#7ED24E\",\"#31668D\",\"#267F8E\",\"#1FA386\",\"#481E70\",\"#D2E11B\",\"#B7DD29\",\"#39548B\",\"#460C5F\",\"#AADB32\",\"#3A538B\",\"#482273\",\"#2B748E\",\"#460E61\",\"#287A8E\",\"#460C5F\",\"#45085B\",\"#2E6B8E\",\"#3DBB74\",\"#2C718E\",\"#2A768E\",\"#2A768E\",\"#1E9E88\",\"#482374\",\"#471567\",\"#1FA187\",\"#38B976\",\"#E9E419\",\"#1E9B89\",\"#414286\",\"#53C567\",\"#30678D\",\"#23898D\",\"#277C8E\",\"#287A8E\",\"#1EA087\",\"#23898D\",\"#A7DB33\",\"#472A79\",\"#33618D\",\"#45085B\",\"#33608D\",\"#21A784\",\"#9FD938\",\"#460E61\",\"#471265\",\"#1E988A\",\"#218E8C\",\"#471265\",\"#38578C\",\"#4BC26C\",\"#32B57A\",\"#218C8D\",\"#3F4788\",\"#1FA386\",\"#365A8C\",\"#32B57A\",\"#45BF6F\",\"#2D6E8E\",\"#27AD80\",\"#482071\",\"#1E9A89\",\"#472B7A\",\"#24AA82\",\"#1FA386\",\"#2F6A8D\",\"#90D643\",\"#36B877\",\"#2D6E8E\",\"#3D4A89\",\"#1E9B89\",\"#443781\",\"#208F8C\",\"#2F6A8D\",\"#471265\",\"#FDE724\",\"#35B778\",\"#1F948B\",\"#1E978A\",\"#42BE71\",\"#1E988A\",\"#453681\",\"#471265\",\"#365B8C\",\"#482374\",\"#25838D\",\"#F1E51C\",\"#2A778E\",\"#30688D\",\"#77D052\",\"#62CA5F\",\"#440154\",\"#365A8C\",\"#218C8D\",\"#45347F\",\"#29AF7F\",\"#86D449\",\"#423D84\",\"#31648D\",\"#22898D\",\"#4DC26B\",\"#38568B\",\"#3A538B\",\"#2A778E\",\"#46095C\",\"#BADE27\",\"#32638D\",\"#4DC26B\",\"#31648D\",\"#2C708E\",\"#22898D\",\"#59C764\",\"#23898D\",\"#472777\",\"#1E998A\",\"#45085B\",\"#38578C\",\"#355D8C\",\"#22898D\",\"#CFE11C\",\"#2C718E\",\"#450558\",\"#2C708E\",\"#C2DF22\",\"#482273\",\"#ECE41A\",\"#70CE56\",\"#45BF6F\",\"#460C5F\",\"#481E70\",\"#2CB17D\",\"#DAE218\",\"#472676\",\"#B2DD2C\",\"#74D054\",\"#3DBB74\",\"#33608D\",\"#277D8E\",\"#2C708E\",\"#45327F\",\"#3B508A\",\"#481A6C\",\"#3BBA75\",\"#C7E01F\",\"#228B8D\",\"#37588C\",\"#88D547\",\"#462D7C\",\"#1E978A\",\"#2E6D8E\",\"#433B83\",\"#45347F\",\"#45085B\",\"#9DD93A\",\"#3C4D8A\",\"#51C468\",\"#62CA5F\",\"#60C960\",\"#471669\",\"#36B877\",\"#2C708E\",\"#26808E\",\"#29788E\",\"#404387\",\"#32B57A\",\"#345E8D\",\"#32638D\",\"#423D84\",\"#23888D\",\"#440357\",\"#1E9D88\",\"#1FA386\",\"#2EB27C\",\"#40BD72\",\"#218C8D\",\"#3F4587\",\"#2B738E\",\"#CAE01E\"],\"shape\":[279],\"dtype\":\"object\",\"order\":\"little\"}]]}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1433\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1434\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Scatter\",\"id\":\"p1429\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"Prdm14\"},\"y\":{\"type\":\"field\",\"field\":\"Rest\"},\"size\":{\"type\":\"value\",\"value\":2},\"line_color\":{\"type\":\"field\",\"field\":\"color\"},\"fill_color\":{\"type\":\"field\",\"field\":\"color\"},\"hatch_color\":{\"type\":\"field\",\"field\":\"color\"}}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Scatter\",\"id\":\"p1430\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"Prdm14\"},\"y\":{\"type\":\"field\",\"field\":\"Rest\"},\"size\":{\"type\":\"value\",\"value\":2},\"line_color\":{\"type\":\"field\",\"field\":\"color\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.1},\"fill_color\":{\"type\":\"field\",\"field\":\"color\"},\"fill_alpha\":{\"type\":\"value\",\"value\":0.1},\"hatch_color\":{\"type\":\"field\",\"field\":\"color\"},\"hatch_alpha\":{\"type\":\"value\",\"value\":0.1}}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Scatter\",\"id\":\"p1431\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"Prdm14\"},\"y\":{\"type\":\"field\",\"field\":\"Rest\"},\"size\":{\"type\":\"value\",\"value\":2},\"line_color\":{\"type\":\"field\",\"field\":\"color\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.2},\"fill_color\":{\"type\":\"field\",\"field\":\"color\"},\"fill_alpha\":{\"type\":\"value\",\"value\":0.2},\"hatch_color\":{\"type\":\"field\",\"field\":\"color\"},\"hatch_alpha\":{\"type\":\"value\",\"value\":0.2}}}}}],\"toolbar\":{\"type\":\"object\",\"name\":\"Toolbar\",\"id\":\"p1399\",\"attributes\":{\"tools\":[{\"id\":\"p1412\"},{\"id\":\"p1413\"},{\"id\":\"p1414\"},{\"type\":\"object\",\"name\":\"SaveTool\",\"id\":\"p1420\"},{\"id\":\"p1421\"},{\"id\":\"p1422\"}]}},\"toolbar_location\":null,\"left\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1407\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1408\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1409\"},\"axis_label\":\"Rest\",\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1410\"}}}],\"below\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1402\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1403\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1404\"},\"axis_label\":\"Prdm14\",\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1405\"}}}],\"center\":[{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1406\",\"attributes\":{\"axis\":{\"id\":\"p1402\"}}},{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1411\",\"attributes\":{\"dimension\":1,\"axis\":{\"id\":\"p1407\"}}}],\"frame_width\":150,\"frame_height\":150}},1,0],[{\"type\":\"object\",\"name\":\"Figure\",\"id\":\"p1435\",\"attributes\":{\"x_range\":{\"type\":\"object\",\"name\":\"DataRange1d\",\"id\":\"p1436\"},\"y_range\":{\"type\":\"object\",\"name\":\"DataRange1d\",\"id\":\"p1437\"},\"x_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1444\"},\"y_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1445\"},\"title\":{\"type\":\"object\",\"name\":\"Title\",\"id\":\"p1442\"},\"renderers\":[{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1476\",\"attributes\":{\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1467\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1468\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1469\"},\"data\":{\"type\":\"map\",\"entries\":[[\"Rex1\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"CwAAAKwAAAAFAQAAsgAAAIEAAABhAAAAEAAAAB0AAAB2AAAAhQAAAJgAAAAIAAAAfQAAAKwAAAD1AAAACQEAAMoAAAAjAQAADgAAACgAAAA4AAAAoAAAAHgAAAA0AAAA7wAAAAsAAACXAAAATAAAAHoAAAAiAQAAYgAAAKoAAADaAAAAqwAAAIMAAABZAAAAIAAAAAgAAADWAAAA2wAAAKwAAABhAQAASwEAAOsAAADRAAAACAAAACkBAADvAAAAwAAAAO4AAAB8AAAAowAAAJQAAACXAAAAKAAAAM0AAABLAQAA2gAAAJYAAAA9AAAATAAAAIAAAAALAAAApgAAAGAAAABqAQAAoAAAAPcAAADMAAAACgEAAGIAAACRAAAAPQAAAIgAAABvAAAADwAAAFAAAAD6AAAAqQAAAJsAAAAGAAAAowAAAK4AAADjAAAARQAAAN0AAACnAAAArgAAAJsAAADDAAAAJgAAAIcAAAD0AAAAYgAAALYAAAAKAAAAvwAAAIMAAAD/AAAAIAEAAIkAAADuAAAAZwAAAIMAAACmAAAAEQAAABwBAAAIAQAAVgAAAAgAAAAEAQAAUQAAABMAAAB5AAAACQAAAH4AAAAIAAAABgAAAG4AAADCAAAAdgAAAHoAAAB6AAAAnwAAABcAAAAMAAAAowAAAMAAAAAuAQAAnQAAAD4AAADOAAAAaAAAAIwAAACBAAAAfgAAAKAAAACMAAAAAgEAAB4AAABjAAAABgAAAGIAAACqAAAA/gAAAAkAAAALAAAAmgAAAJEAAAALAAAAWgAAAMsAAAC6AAAAkAAAAEQAAACmAAAAXgAAALoAAADJAAAAcQAAALAAAAASAAAAnAAAAB8AAACtAAAApgAAAGwAAAD1AAAAvwAAAHEAAABIAAAAnQAAADMAAACTAAAAbAAAAAsAAACkAQAAvgAAAJcAAACZAAAAxgAAAJoAAAAwAAAACwAAAF8AAAAXAAAAhgAAAEYBAAB8AAAAaQAAAOkAAADZAAAAAwAAAF4AAACQAAAALwAAALEAAADxAAAANgAAAGYAAACOAAAAzAAAAFkAAABRAAAAfAAAAAcAAAAJAQAAZAAAAMwAAABmAAAAdAAAAI4AAADSAAAAjAAAAB0AAACbAAAABgAAAFoAAABgAAAAjgAAABkBAAB2AAAABQAAAHQAAAAPAQAAEwAAAEEBAADiAAAAyQAAAAgAAAARAAAAswAAACEBAAAZAAAABgEAAOMAAADCAAAAYgAAAIIAAAB0AAAAKgAAAE8AAAAPAAAAwQAAABQBAACPAAAAXQAAAPIAAAAgAAAAmQAAAG8AAAA1AAAALwAAAAYAAAD8AAAATgAAAM0AAADZAAAA1wAAAA0AAAC/AAAAdAAAAIQAAAB9AAAAPwAAALoAAABhAAAAZAAAADYAAACJAAAABAAAAJ4AAACmAAAAtAAAAMMAAACQAAAAQwAAAHgAAAAYAQAA\"},\"shape\":[279],\"dtype\":\"int32\",\"order\":\"little\"}],[\"Rest\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"IgAAAFsAAABGAAAANgAAADYAAABEAAAASgAAADwAAABgAAAAIwAAADIAAAAzAAAAKwAAADIAAABKAAAAfQAAAD4AAACCAAAAXwAAAB8AAABDAAAAWgAAAD4AAAAnAAAARAAAACgAAABBAAAATgAAADwAAABeAAAAYwAAADcAAABFAAAAKQAAAGYAAABBAAAAKgAAAEwAAAByAAAAVAAAAGoAAAC2AAAARAAAAFYAAAA/AAAAGAAAAGcAAABgAAAASwAAADwAAABGAAAATwAAAEoAAABKAAAALAAAAGgAAABhAAAAHgAAADoAAAARAAAAIgAAACwAAAAcAAAAMQAAAEEAAAD2AAAAaAAAAGwAAABbAAAAkAAAACgAAABQAAAAOQAAAFIAAABVAAAAMwAAACcAAABiAAAAWAAAAEEAAAANAAAAjAAAAFUAAABMAAAAFQAAAFAAAAA8AAAAiQAAAFsAAABGAAAADAAAADUAAABBAAAAIQAAADsAAAA7AAAASAAAAG4AAACKAAAAaQAAAFMAAABoAAAAPgAAADkAAABuAAAAMwAAAGoAAABcAAAAOwAAACEAAABsAAAANQAAACIAAABeAAAAMAAAAEAAAABdAAAANQAAAE0AAABTAAAAOAAAADAAAABYAAAANgAAAEsAAAAuAAAAHQAAACoAAABPAAAAQAAAADkAAABcAAAAfQAAACUAAAAsAAAAcAAAADQAAAB9AAAAmAAAABIAAAAiAAAAEAAAADUAAABIAAAAZwAAACMAAABLAAAAPgAAAIYAAABTAAAAXgAAAEMAAABUAAAAUAAAADkAAABQAAAAHQAAAFcAAACCAAAAIAAAAI4AAABOAAAAXAAAAEoAAACbAAAAnwAAAD0AAABKAAAAXgAAADsAAABbAAAAcAAAAEQAAAAbAAAAIAAAAE4AAACiAAAAWQAAAKIAAABcAAAAZAAAACgAAAAlAAAABQAAAGsAAAAfAAAAWwAAAJkAAABeAAAAgQAAAGIAAABsAAAACAAAADUAAABfAAAAJwAAAEEAAABEAAAASwAAAFMAAAAtAAAAWgAAAFcAAABOAAAAdQAAACQAAABSAAAAPQAAAIEAAABnAAAANwAAACsAAAAoAAAAOAAAABsAAABXAAAANQAAAEgAAABZAAAAbQAAAHwAAAAxAAAAHwAAADAAAABSAAAARgAAAFIAAAB5AAAAQQAAAAsAAACqAAAAZwAAAD4AAAAuAAAAagAAAF4AAABSAAAAXwAAAFsAAABAAAAAOgAAAEIAAAAaAAAAQwAAAE8AAAB2AAAAGgAAAG0AAAAZAAAANgAAADMAAAA1AAAANAAAAAwAAABGAAAAPgAAAHQAAABVAAAAZQAAAFwAAACGAAAASgAAAC4AAABJAAAAHgAAAIkAAABrAAAAOwAAAC4AAABWAAAADwAAAD4AAABSAAAAlAAAAE0AAABbAAAAXAAAAFIAAABiAAAA\"},\"shape\":[279],\"dtype\":\"int32\",\"order\":\"little\"}],[\"Nanog\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"JwAAACEAAABEAAAAWAAAACkAAABnAAAAGwAAAA8AAACZAAAAfwAAAEkAAAAFAAAAQAAAAGgAAADKAAAA2AAAADMAAAAlAQAABAAAAAEAAAAFAAAAjwAAAE0AAAAbAAAAnAAAAAAAAABkAAAAZQAAACEAAAB4AAAAZQAAADkAAABhAAAAeQAAAOQAAABPAAAAMAAAAAAAAAAiAAAAawAAAG4AAACYAQAA5wAAAJkAAACKAAAACgAAAIkAAABFAAAArgAAAD0AAAAgAAAAVAAAAEMAAACNAAAAGAAAAF4AAAD2AAAAUAAAAEUAAAALAAAAFAAAAAoAAAANAAAALAAAAEQAAAD7AAAAfwAAAEoAAACcAAAALAAAAD0AAAAhAAAAJwAAAK8AAACAAAAAGAAAAEMAAAASAQAATgAAADEAAAAEAAAAjwAAAMEAAABSAAAACgAAALAAAABWAAAAawAAAIIAAACVAAAAHwAAACgAAACxAAAAJQAAAJEAAAABAAAAVgAAAHEAAABzAAAAiwAAAEQAAABTAAAAQAAAAF4AAAB1AAAAGgAAAGwAAAB4AAAAVAAAAAIAAACQAAAAPgAAADcAAAAMAAAAFQAAACcAAAAhAAAADgAAAGcAAABOAAAAUgAAAC4AAAAvAAAATwAAAAEAAAAGAAAAGAAAAHQAAABoAAAAPwAAADsAAACEAAAAfQAAAJkAAABVAAAAaAAAADQAAACMAAAAgAAAABYAAAAjAAAAAgAAAKIAAADsAAAAjAAAAA4AAAADAAAAhAAAAHgAAAAeAAAAVAAAAMgAAABKAAAAmgAAAFEAAABNAAAAOwAAAFgAAABQAAAACgAAAK8AAAATAAAAfAAAADwAAABXAAAAwgAAAB0AAAB3AAAAQwAAAAgAAAAmAAAAXgAAABwAAAAWAAAAQgAAAAYAAABaAAAATQAAAFwAAAB2AAAAqwAAAB0AAAAgAAAACwAAAE0AAAAlAAAAxgAAAIYAAAAOAAAA4wAAAL4AAAAoAAAAAQAAADIAAABBAAAAEwAAAEAAAACaAAAAQQAAABkAAABHAAAAgQAAAHIAAAB7AAAAnAAAAAgAAACEAAAAiAAAAFAAAACiAAAANQAAAFcAAABIAAAAQAAAABMAAACGAAAACgAAAEEAAABtAAAAYAAAAGkAAAAVAAAAFAAAAHQAAADvAAAAAAAAAFMAAAAHAQAAQwAAAAAAAAAdAAAAQgAAAL8AAAAeAAAAxAAAADEAAAC6AAAAtQAAAGgAAAB/AAAAQgAAAAsAAAATAAAAmwAAAPwAAACgAAAAJgAAACkAAAAGAAAAwwAAADcAAAAYAAAAXgAAAAsAAABCAAAASQAAAAcBAACoAAAAgAAAABIAAAA6AAAASAAAAGkAAAB2AAAAFwAAANQAAABMAAAAIAAAAB0AAABoAAAAAgAAAEwAAACUAAAAuwAAAI0AAAADAAAACAAAAEoAAABoAAAA\"},\"shape\":[279],\"dtype\":\"int32\",\"order\":\"little\"}],[\"Prdm14\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAUAAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAIAAAABAAAAAwAAAAEAAAABAAAAAwAAAA4AAAAQAAAACwAAAAEAAAAPAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAAAAAAABwAAAAAAAAAEAAAABgAAAAAAAAAMAAAABAAAAAAAAAAHAAAAEQAAAAEAAAAIAAAAAgAAAAAAAAAAAAAAAQAAAAQAAAAYAAAAHwAAAAMAAAADAAAAAAAAAAEAAAABAAAABQAAAAAAAAADAAAAAQAAAAcAAAABAAAABQAAAAEAAAAHAAAAAQAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAwAAAAkAAAAgAAAAAwAAAA8AAAAEAAAABAAAAAAAAAABAAAABgAAAAMAAAADAAAAAQAAAAIAAAATAAAACAAAAAEAAAAAAAAACwAAAAMAAAAGAAAAAAAAAAwAAAAAAAAADAAAAAUAAAAJAAAAAgAAAAcAAAAVAAAAAAAAAAUAAAAAAAAAAQAAAAIAAAADAAAAAQAAAAEAAAAFAAAAAAAAAAAAAAANAAAAAAAAAAQAAAACAAAAAwAAAAAAAAANAAAAGwAAAAAAAAACAAAAAQAAAAEAAAAAAAAAAAAAAAMAAAAGAAAABQAAAAIAAAADAAAABwAAAAIAAAAAAAAAAAAAAAYAAAAAAAAAAAAAAAEAAAAZAAAADAAAAAcAAAABAAAABgAAAAAAAAAEAAAAAwAAAAEAAAAAAAAAAQAAABQAAAAKAAAABwAAAAAAAAAAAAAAAAAAAAUAAAAAAAAADAAAAAAAAAACAAAAAQAAAAAAAAAAAAAABwAAAAMAAAABAAAAAAAAAAgAAAAAAAAADwAAAAUAAAAEAAAABgAAAAAAAAACAAAAAQAAAAAAAAAMAAAABAAAAAYAAAAAAAAAAwAAAAAAAAAJAAAACAAAAAwAAAAHAAAADQAAAAEAAAAAAAAAAQAAAAsAAAADAAAACwAAABsAAAAGAAAAIAAAAAAAAAAGAAAAAAAAAAAAAAAFAAAAAAAAAAIAAAADAAAAAgAAAAEAAAACAAAAAgAAAAYAAAAGAAAAAQAAAAEAAAADAAAAAAAAAAAAAAADAAAABAAAAAcAAAAGAAAAAwAAAAAAAAAWAAAAAAAAABIAAAABAAAABQAAAAAAAAABAAAAAQAAABIAAAADAAAAAAAAAAQAAAAPAAAAAwAAAAAAAAAAAAAAAAAAABIAAAABAAAAAAAAAAEAAAAQAAAADAAAAAEAAAAIAAAABQAAAAAAAAAAAAAAEQAAAAQAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAEAAAABAAAACgAAAAAAAAAFAAAAAAAAAAAAAAAAAAAADwAAAAAAAAAIAAAABQAAAAYAAAAFAAAAAQAAAAAAAAABAAAAAAAAAAEAAAAJAAAAAAAAAAYAAAAFAAAAEwAAAAYAAAABAAAABAAAAAQAAAAAAAAA\"},\"shape\":[279],\"dtype\":\"int32\",\"order\":\"little\"}],[\"cell\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"CQAAAGsAAACbAAAAcAAAAEoAAAA1AAAADgAAABQAAABCAAAATgAAAFwAAAAGAAAARwAAAGsAAACTAAAAngAAAH0AAACoAAAADAAAABkAAAAhAAAAZAAAAEMAAAAeAAAAjwAAAAkAAABbAAAAKQAAAEUAAACnAAAANgAAAGkAAACHAAAAagAAAEwAAAAvAAAAFwAAAAYAAACEAAAAiAAAAGsAAACuAAAArQAAAI0AAACCAAAABgAAAKkAAACPAAAAdwAAAI4AAABGAAAAZQAAAFkAAABbAAAAGQAAAIAAAACtAAAAhwAAAFoAAAAiAAAAKQAAAEkAAAAJAAAAZgAAADQAAACvAAAAZAAAAJQAAAB/AAAAnwAAADYAAABXAAAAIgAAAFEAAAA/AAAADQAAACwAAACVAAAAaAAAAF8AAAAEAAAAZQAAAG0AAACLAAAAJwAAAIkAAABnAAAAbQAAAF8AAAB6AAAAGAAAAFAAAACSAAAANgAAAHMAAAAIAAAAdgAAAEwAAACYAAAApQAAAFIAAACOAAAAOgAAAEwAAABmAAAADwAAAKQAAACdAAAALgAAAAYAAACaAAAALQAAABEAAABEAAAABwAAAEgAAAAGAAAABAAAAD4AAAB5AAAAQgAAAEUAAABFAAAAYwAAABIAAAAKAAAAZQAAAHcAAACqAAAAYQAAACMAAACBAAAAOwAAAFMAAABKAAAASAAAAGQAAABTAAAAmQAAABUAAAA3AAAABAAAADYAAABpAAAAlwAAAAcAAAAJAAAAXgAAAFcAAAAJAAAAMAAAAH4AAAB0AAAAVgAAACYAAABmAAAAMgAAAHQAAAB8AAAAQAAAAG4AAAAQAAAAYAAAABYAAABsAAAAZgAAAD0AAACTAAAAdgAAAEAAAAAoAAAAYQAAAB0AAABYAAAAPQAAAAkAAACwAAAAdQAAAFsAAABdAAAAewAAAF4AAAAcAAAACQAAADMAAAASAAAATwAAAKwAAABGAAAAPAAAAIwAAACGAAAAAQAAADIAAABWAAAAGwAAAG8AAACQAAAAIAAAADkAAABUAAAAfwAAAC8AAAAtAAAARgAAAAUAAACeAAAAOAAAAH8AAAA5AAAAQQAAAFQAAACDAAAAUwAAABQAAABfAAAABAAAADAAAAA0AAAAVAAAAKMAAABCAAAAAwAAAEEAAACgAAAAEQAAAKsAAACKAAAAfAAAAAYAAAAPAAAAcQAAAKYAAAATAAAAnAAAAIsAAAB5AAAANgAAAEsAAABBAAAAGgAAACsAAAANAAAAeAAAAKEAAABVAAAAMQAAAJEAAAAXAAAAXQAAAD8AAAAfAAAAGwAAAAQAAACWAAAAKgAAAIAAAACGAAAAhQAAAAsAAAB2AAAAQQAAAE0AAABHAAAAJAAAAHQAAAA1AAAAOAAAACAAAABSAAAAAgAAAGIAAABmAAAAcgAAAHoAAABWAAAAJQAAAEMAAACiAAAA\"},\"shape\":[279],\"dtype\":\"uint32\",\"order\":\"little\"}],[\"color\",{\"type\":\"ndarray\",\"array\":[\"#471265\",\"#23A982\",\"#AFDC2E\",\"#2AB07E\",\"#277C8E\",\"#345E8D\",\"#481C6E\",\"#472777\",\"#2C718E\",\"#25828E\",\"#1F958B\",\"#460C5F\",\"#29788E\",\"#23A982\",\"#90D643\",\"#BADE27\",\"#47C06E\",\"#E1E318\",\"#48196B\",\"#46307D\",\"#423E85\",\"#1EA087\",\"#2B738E\",\"#433A83\",\"#81D34C\",\"#471265\",\"#1F948B\",\"#3D4C89\",\"#2A768E\",\"#DCE218\",\"#33608D\",\"#21A784\",\"#67CC5C\",\"#22A784\",\"#267F8E\",\"#38568B\",\"#462D7C\",\"#460C5F\",\"#5BC862\",\"#69CC5B\",\"#23A982\",\"#F8E621\",\"#F3E51E\",\"#79D151\",\"#55C666\",\"#460C5F\",\"#E4E318\",\"#81D34C\",\"#38B976\",\"#7ED24E\",\"#2A778E\",\"#1FA187\",\"#20918C\",\"#1F948B\",\"#46307D\",\"#51C468\",\"#F3E51E\",\"#67CC5C\",\"#1F928C\",\"#414186\",\"#3D4C89\",\"#287A8E\",\"#471265\",\"#1FA386\",\"#355D8C\",\"#FAE622\",\"#1EA087\",\"#95D73F\",\"#4DC26B\",\"#BFDF24\",\"#33608D\",\"#218E8C\",\"#414186\",\"#24868D\",\"#2E6D8E\",\"#481A6C\",\"#3B518A\",\"#97D83E\",\"#21A685\",\"#1E998A\",\"#45085B\",\"#1FA187\",\"#26AC81\",\"#74D054\",\"#3E4989\",\"#6DCE58\",\"#20A485\",\"#26AC81\",\"#1E998A\",\"#40BD72\",\"#462F7C\",\"#24858D\",\"#8DD644\",\"#33608D\",\"#30B47A\",\"#471163\",\"#36B877\",\"#267F8E\",\"#A5DA35\",\"#D4E11A\",\"#23888D\",\"#7ED24E\",\"#31668D\",\"#267F8E\",\"#1FA386\",\"#481E70\",\"#D2E11B\",\"#B7DD29\",\"#39548B\",\"#460C5F\",\"#AADB32\",\"#3A538B\",\"#482273\",\"#2B748E\",\"#460E61\",\"#287A8E\",\"#460C5F\",\"#45085B\",\"#2E6B8E\",\"#3DBB74\",\"#2C718E\",\"#2A768E\",\"#2A768E\",\"#1E9E88\",\"#482374\",\"#471567\",\"#1FA187\",\"#38B976\",\"#E9E419\",\"#1E9B89\",\"#414286\",\"#53C567\",\"#30678D\",\"#23898D\",\"#277C8E\",\"#287A8E\",\"#1EA087\",\"#23898D\",\"#A7DB33\",\"#472A79\",\"#33618D\",\"#45085B\",\"#33608D\",\"#21A784\",\"#9FD938\",\"#460E61\",\"#471265\",\"#1E988A\",\"#218E8C\",\"#471265\",\"#38578C\",\"#4BC26C\",\"#32B57A\",\"#218C8D\",\"#3F4788\",\"#1FA386\",\"#365A8C\",\"#32B57A\",\"#45BF6F\",\"#2D6E8E\",\"#27AD80\",\"#482071\",\"#1E9A89\",\"#472B7A\",\"#24AA82\",\"#1FA386\",\"#2F6A8D\",\"#90D643\",\"#36B877\",\"#2D6E8E\",\"#3D4A89\",\"#1E9B89\",\"#443781\",\"#208F8C\",\"#2F6A8D\",\"#471265\",\"#FDE724\",\"#35B778\",\"#1F948B\",\"#1E978A\",\"#42BE71\",\"#1E988A\",\"#453681\",\"#471265\",\"#365B8C\",\"#482374\",\"#25838D\",\"#F1E51C\",\"#2A778E\",\"#30688D\",\"#77D052\",\"#62CA5F\",\"#440154\",\"#365A8C\",\"#218C8D\",\"#45347F\",\"#29AF7F\",\"#86D449\",\"#423D84\",\"#31648D\",\"#22898D\",\"#4DC26B\",\"#38568B\",\"#3A538B\",\"#2A778E\",\"#46095C\",\"#BADE27\",\"#32638D\",\"#4DC26B\",\"#31648D\",\"#2C708E\",\"#22898D\",\"#59C764\",\"#23898D\",\"#472777\",\"#1E998A\",\"#45085B\",\"#38578C\",\"#355D8C\",\"#22898D\",\"#CFE11C\",\"#2C718E\",\"#450558\",\"#2C708E\",\"#C2DF22\",\"#482273\",\"#ECE41A\",\"#70CE56\",\"#45BF6F\",\"#460C5F\",\"#481E70\",\"#2CB17D\",\"#DAE218\",\"#472676\",\"#B2DD2C\",\"#74D054\",\"#3DBB74\",\"#33608D\",\"#277D8E\",\"#2C708E\",\"#45327F\",\"#3B508A\",\"#481A6C\",\"#3BBA75\",\"#C7E01F\",\"#228B8D\",\"#37588C\",\"#88D547\",\"#462D7C\",\"#1E978A\",\"#2E6D8E\",\"#433B83\",\"#45347F\",\"#45085B\",\"#9DD93A\",\"#3C4D8A\",\"#51C468\",\"#62CA5F\",\"#60C960\",\"#471669\",\"#36B877\",\"#2C708E\",\"#26808E\",\"#29788E\",\"#404387\",\"#32B57A\",\"#345E8D\",\"#32638D\",\"#423D84\",\"#23888D\",\"#440357\",\"#1E9D88\",\"#1FA386\",\"#2EB27C\",\"#40BD72\",\"#218C8D\",\"#3F4587\",\"#2B738E\",\"#CAE01E\"],\"shape\":[279],\"dtype\":\"object\",\"order\":\"little\"}]]}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1477\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1478\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Scatter\",\"id\":\"p1473\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"Prdm14\"},\"y\":{\"type\":\"field\",\"field\":\"Rex1\"},\"size\":{\"type\":\"value\",\"value\":2},\"line_color\":{\"type\":\"field\",\"field\":\"color\"},\"fill_color\":{\"type\":\"field\",\"field\":\"color\"},\"hatch_color\":{\"type\":\"field\",\"field\":\"color\"}}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Scatter\",\"id\":\"p1474\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"Prdm14\"},\"y\":{\"type\":\"field\",\"field\":\"Rex1\"},\"size\":{\"type\":\"value\",\"value\":2},\"line_color\":{\"type\":\"field\",\"field\":\"color\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.1},\"fill_color\":{\"type\":\"field\",\"field\":\"color\"},\"fill_alpha\":{\"type\":\"value\",\"value\":0.1},\"hatch_color\":{\"type\":\"field\",\"field\":\"color\"},\"hatch_alpha\":{\"type\":\"value\",\"value\":0.1}}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Scatter\",\"id\":\"p1475\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"Prdm14\"},\"y\":{\"type\":\"field\",\"field\":\"Rex1\"},\"size\":{\"type\":\"value\",\"value\":2},\"line_color\":{\"type\":\"field\",\"field\":\"color\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.2},\"fill_color\":{\"type\":\"field\",\"field\":\"color\"},\"fill_alpha\":{\"type\":\"value\",\"value\":0.2},\"hatch_color\":{\"type\":\"field\",\"field\":\"color\"},\"hatch_alpha\":{\"type\":\"value\",\"value\":0.2}}}}}],\"toolbar\":{\"type\":\"object\",\"name\":\"Toolbar\",\"id\":\"p1443\",\"attributes\":{\"tools\":[{\"id\":\"p1456\"},{\"id\":\"p1457\"},{\"id\":\"p1458\"},{\"type\":\"object\",\"name\":\"SaveTool\",\"id\":\"p1464\"},{\"id\":\"p1465\"},{\"id\":\"p1466\"}]}},\"toolbar_location\":null,\"left\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1451\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1452\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1453\"},\"axis_label\":\"Rex1\",\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1454\"}}}],\"below\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1446\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1447\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1448\"},\"axis_label\":\"Prdm14\",\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1449\"}}}],\"center\":[{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1450\",\"attributes\":{\"axis\":{\"id\":\"p1446\"}}},{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1455\",\"attributes\":{\"dimension\":1,\"axis\":{\"id\":\"p1451\"}}}],\"frame_width\":150,\"frame_height\":150}},1,1],[{\"type\":\"object\",\"name\":\"Figure\",\"id\":\"p1479\",\"attributes\":{\"x_range\":{\"type\":\"object\",\"name\":\"DataRange1d\",\"id\":\"p1480\"},\"y_range\":{\"type\":\"object\",\"name\":\"DataRange1d\",\"id\":\"p1481\"},\"x_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1488\"},\"y_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1489\"},\"title\":{\"type\":\"object\",\"name\":\"Title\",\"id\":\"p1486\"},\"renderers\":[{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1520\",\"attributes\":{\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1511\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1512\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1513\"},\"data\":{\"type\":\"map\",\"entries\":[[\"Rex1\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"CwAAAKwAAAAFAQAAsgAAAIEAAABhAAAAEAAAAB0AAAB2AAAAhQAAAJgAAAAIAAAAfQAAAKwAAAD1AAAACQEAAMoAAAAjAQAADgAAACgAAAA4AAAAoAAAAHgAAAA0AAAA7wAAAAsAAACXAAAATAAAAHoAAAAiAQAAYgAAAKoAAADaAAAAqwAAAIMAAABZAAAAIAAAAAgAAADWAAAA2wAAAKwAAABhAQAASwEAAOsAAADRAAAACAAAACkBAADvAAAAwAAAAO4AAAB8AAAAowAAAJQAAACXAAAAKAAAAM0AAABLAQAA2gAAAJYAAAA9AAAATAAAAIAAAAALAAAApgAAAGAAAABqAQAAoAAAAPcAAADMAAAACgEAAGIAAACRAAAAPQAAAIgAAABvAAAADwAAAFAAAAD6AAAAqQAAAJsAAAAGAAAAowAAAK4AAADjAAAARQAAAN0AAACnAAAArgAAAJsAAADDAAAAJgAAAIcAAAD0AAAAYgAAALYAAAAKAAAAvwAAAIMAAAD/AAAAIAEAAIkAAADuAAAAZwAAAIMAAACmAAAAEQAAABwBAAAIAQAAVgAAAAgAAAAEAQAAUQAAABMAAAB5AAAACQAAAH4AAAAIAAAABgAAAG4AAADCAAAAdgAAAHoAAAB6AAAAnwAAABcAAAAMAAAAowAAAMAAAAAuAQAAnQAAAD4AAADOAAAAaAAAAIwAAACBAAAAfgAAAKAAAACMAAAAAgEAAB4AAABjAAAABgAAAGIAAACqAAAA/gAAAAkAAAALAAAAmgAAAJEAAAALAAAAWgAAAMsAAAC6AAAAkAAAAEQAAACmAAAAXgAAALoAAADJAAAAcQAAALAAAAASAAAAnAAAAB8AAACtAAAApgAAAGwAAAD1AAAAvwAAAHEAAABIAAAAnQAAADMAAACTAAAAbAAAAAsAAACkAQAAvgAAAJcAAACZAAAAxgAAAJoAAAAwAAAACwAAAF8AAAAXAAAAhgAAAEYBAAB8AAAAaQAAAOkAAADZAAAAAwAAAF4AAACQAAAALwAAALEAAADxAAAANgAAAGYAAACOAAAAzAAAAFkAAABRAAAAfAAAAAcAAAAJAQAAZAAAAMwAAABmAAAAdAAAAI4AAADSAAAAjAAAAB0AAACbAAAABgAAAFoAAABgAAAAjgAAABkBAAB2AAAABQAAAHQAAAAPAQAAEwAAAEEBAADiAAAAyQAAAAgAAAARAAAAswAAACEBAAAZAAAABgEAAOMAAADCAAAAYgAAAIIAAAB0AAAAKgAAAE8AAAAPAAAAwQAAABQBAACPAAAAXQAAAPIAAAAgAAAAmQAAAG8AAAA1AAAALwAAAAYAAAD8AAAATgAAAM0AAADZAAAA1wAAAA0AAAC/AAAAdAAAAIQAAAB9AAAAPwAAALoAAABhAAAAZAAAADYAAACJAAAABAAAAJ4AAACmAAAAtAAAAMMAAACQAAAAQwAAAHgAAAAYAQAA\"},\"shape\":[279],\"dtype\":\"int32\",\"order\":\"little\"}],[\"Rest\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"IgAAAFsAAABGAAAANgAAADYAAABEAAAASgAAADwAAABgAAAAIwAAADIAAAAzAAAAKwAAADIAAABKAAAAfQAAAD4AAACCAAAAXwAAAB8AAABDAAAAWgAAAD4AAAAnAAAARAAAACgAAABBAAAATgAAADwAAABeAAAAYwAAADcAAABFAAAAKQAAAGYAAABBAAAAKgAAAEwAAAByAAAAVAAAAGoAAAC2AAAARAAAAFYAAAA/AAAAGAAAAGcAAABgAAAASwAAADwAAABGAAAATwAAAEoAAABKAAAALAAAAGgAAABhAAAAHgAAADoAAAARAAAAIgAAACwAAAAcAAAAMQAAAEEAAAD2AAAAaAAAAGwAAABbAAAAkAAAACgAAABQAAAAOQAAAFIAAABVAAAAMwAAACcAAABiAAAAWAAAAEEAAAANAAAAjAAAAFUAAABMAAAAFQAAAFAAAAA8AAAAiQAAAFsAAABGAAAADAAAADUAAABBAAAAIQAAADsAAAA7AAAASAAAAG4AAACKAAAAaQAAAFMAAABoAAAAPgAAADkAAABuAAAAMwAAAGoAAABcAAAAOwAAACEAAABsAAAANQAAACIAAABeAAAAMAAAAEAAAABdAAAANQAAAE0AAABTAAAAOAAAADAAAABYAAAANgAAAEsAAAAuAAAAHQAAACoAAABPAAAAQAAAADkAAABcAAAAfQAAACUAAAAsAAAAcAAAADQAAAB9AAAAmAAAABIAAAAiAAAAEAAAADUAAABIAAAAZwAAACMAAABLAAAAPgAAAIYAAABTAAAAXgAAAEMAAABUAAAAUAAAADkAAABQAAAAHQAAAFcAAACCAAAAIAAAAI4AAABOAAAAXAAAAEoAAACbAAAAnwAAAD0AAABKAAAAXgAAADsAAABbAAAAcAAAAEQAAAAbAAAAIAAAAE4AAACiAAAAWQAAAKIAAABcAAAAZAAAACgAAAAlAAAABQAAAGsAAAAfAAAAWwAAAJkAAABeAAAAgQAAAGIAAABsAAAACAAAADUAAABfAAAAJwAAAEEAAABEAAAASwAAAFMAAAAtAAAAWgAAAFcAAABOAAAAdQAAACQAAABSAAAAPQAAAIEAAABnAAAANwAAACsAAAAoAAAAOAAAABsAAABXAAAANQAAAEgAAABZAAAAbQAAAHwAAAAxAAAAHwAAADAAAABSAAAARgAAAFIAAAB5AAAAQQAAAAsAAACqAAAAZwAAAD4AAAAuAAAAagAAAF4AAABSAAAAXwAAAFsAAABAAAAAOgAAAEIAAAAaAAAAQwAAAE8AAAB2AAAAGgAAAG0AAAAZAAAANgAAADMAAAA1AAAANAAAAAwAAABGAAAAPgAAAHQAAABVAAAAZQAAAFwAAACGAAAASgAAAC4AAABJAAAAHgAAAIkAAABrAAAAOwAAAC4AAABWAAAADwAAAD4AAABSAAAAlAAAAE0AAABbAAAAXAAAAFIAAABiAAAA\"},\"shape\":[279],\"dtype\":\"int32\",\"order\":\"little\"}],[\"Nanog\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"JwAAACEAAABEAAAAWAAAACkAAABnAAAAGwAAAA8AAACZAAAAfwAAAEkAAAAFAAAAQAAAAGgAAADKAAAA2AAAADMAAAAlAQAABAAAAAEAAAAFAAAAjwAAAE0AAAAbAAAAnAAAAAAAAABkAAAAZQAAACEAAAB4AAAAZQAAADkAAABhAAAAeQAAAOQAAABPAAAAMAAAAAAAAAAiAAAAawAAAG4AAACYAQAA5wAAAJkAAACKAAAACgAAAIkAAABFAAAArgAAAD0AAAAgAAAAVAAAAEMAAACNAAAAGAAAAF4AAAD2AAAAUAAAAEUAAAALAAAAFAAAAAoAAAANAAAALAAAAEQAAAD7AAAAfwAAAEoAAACcAAAALAAAAD0AAAAhAAAAJwAAAK8AAACAAAAAGAAAAEMAAAASAQAATgAAADEAAAAEAAAAjwAAAMEAAABSAAAACgAAALAAAABWAAAAawAAAIIAAACVAAAAHwAAACgAAACxAAAAJQAAAJEAAAABAAAAVgAAAHEAAABzAAAAiwAAAEQAAABTAAAAQAAAAF4AAAB1AAAAGgAAAGwAAAB4AAAAVAAAAAIAAACQAAAAPgAAADcAAAAMAAAAFQAAACcAAAAhAAAADgAAAGcAAABOAAAAUgAAAC4AAAAvAAAATwAAAAEAAAAGAAAAGAAAAHQAAABoAAAAPwAAADsAAACEAAAAfQAAAJkAAABVAAAAaAAAADQAAACMAAAAgAAAABYAAAAjAAAAAgAAAKIAAADsAAAAjAAAAA4AAAADAAAAhAAAAHgAAAAeAAAAVAAAAMgAAABKAAAAmgAAAFEAAABNAAAAOwAAAFgAAABQAAAACgAAAK8AAAATAAAAfAAAADwAAABXAAAAwgAAAB0AAAB3AAAAQwAAAAgAAAAmAAAAXgAAABwAAAAWAAAAQgAAAAYAAABaAAAATQAAAFwAAAB2AAAAqwAAAB0AAAAgAAAACwAAAE0AAAAlAAAAxgAAAIYAAAAOAAAA4wAAAL4AAAAoAAAAAQAAADIAAABBAAAAEwAAAEAAAACaAAAAQQAAABkAAABHAAAAgQAAAHIAAAB7AAAAnAAAAAgAAACEAAAAiAAAAFAAAACiAAAANQAAAFcAAABIAAAAQAAAABMAAACGAAAACgAAAEEAAABtAAAAYAAAAGkAAAAVAAAAFAAAAHQAAADvAAAAAAAAAFMAAAAHAQAAQwAAAAAAAAAdAAAAQgAAAL8AAAAeAAAAxAAAADEAAAC6AAAAtQAAAGgAAAB/AAAAQgAAAAsAAAATAAAAmwAAAPwAAACgAAAAJgAAACkAAAAGAAAAwwAAADcAAAAYAAAAXgAAAAsAAABCAAAASQAAAAcBAACoAAAAgAAAABIAAAA6AAAASAAAAGkAAAB2AAAAFwAAANQAAABMAAAAIAAAAB0AAABoAAAAAgAAAEwAAACUAAAAuwAAAI0AAAADAAAACAAAAEoAAABoAAAA\"},\"shape\":[279],\"dtype\":\"int32\",\"order\":\"little\"}],[\"Prdm14\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAUAAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAIAAAABAAAAAwAAAAEAAAABAAAAAwAAAA4AAAAQAAAACwAAAAEAAAAPAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAAAAAAABwAAAAAAAAAEAAAABgAAAAAAAAAMAAAABAAAAAAAAAAHAAAAEQAAAAEAAAAIAAAAAgAAAAAAAAAAAAAAAQAAAAQAAAAYAAAAHwAAAAMAAAADAAAAAAAAAAEAAAABAAAABQAAAAAAAAADAAAAAQAAAAcAAAABAAAABQAAAAEAAAAHAAAAAQAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAwAAAAkAAAAgAAAAAwAAAA8AAAAEAAAABAAAAAAAAAABAAAABgAAAAMAAAADAAAAAQAAAAIAAAATAAAACAAAAAEAAAAAAAAACwAAAAMAAAAGAAAAAAAAAAwAAAAAAAAADAAAAAUAAAAJAAAAAgAAAAcAAAAVAAAAAAAAAAUAAAAAAAAAAQAAAAIAAAADAAAAAQAAAAEAAAAFAAAAAAAAAAAAAAANAAAAAAAAAAQAAAACAAAAAwAAAAAAAAANAAAAGwAAAAAAAAACAAAAAQAAAAEAAAAAAAAAAAAAAAMAAAAGAAAABQAAAAIAAAADAAAABwAAAAIAAAAAAAAAAAAAAAYAAAAAAAAAAAAAAAEAAAAZAAAADAAAAAcAAAABAAAABgAAAAAAAAAEAAAAAwAAAAEAAAAAAAAAAQAAABQAAAAKAAAABwAAAAAAAAAAAAAAAAAAAAUAAAAAAAAADAAAAAAAAAACAAAAAQAAAAAAAAAAAAAABwAAAAMAAAABAAAAAAAAAAgAAAAAAAAADwAAAAUAAAAEAAAABgAAAAAAAAACAAAAAQAAAAAAAAAMAAAABAAAAAYAAAAAAAAAAwAAAAAAAAAJAAAACAAAAAwAAAAHAAAADQAAAAEAAAAAAAAAAQAAAAsAAAADAAAACwAAABsAAAAGAAAAIAAAAAAAAAAGAAAAAAAAAAAAAAAFAAAAAAAAAAIAAAADAAAAAgAAAAEAAAACAAAAAgAAAAYAAAAGAAAAAQAAAAEAAAADAAAAAAAAAAAAAAADAAAABAAAAAcAAAAGAAAAAwAAAAAAAAAWAAAAAAAAABIAAAABAAAABQAAAAAAAAABAAAAAQAAABIAAAADAAAAAAAAAAQAAAAPAAAAAwAAAAAAAAAAAAAAAAAAABIAAAABAAAAAAAAAAEAAAAQAAAADAAAAAEAAAAIAAAABQAAAAAAAAAAAAAAEQAAAAQAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAEAAAABAAAACgAAAAAAAAAFAAAAAAAAAAAAAAAAAAAADwAAAAAAAAAIAAAABQAAAAYAAAAFAAAAAQAAAAAAAAABAAAAAAAAAAEAAAAJAAAAAAAAAAYAAAAFAAAAEwAAAAYAAAABAAAABAAAAAQAAAAAAAAA\"},\"shape\":[279],\"dtype\":\"int32\",\"order\":\"little\"}],[\"cell\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"CQAAAGsAAACbAAAAcAAAAEoAAAA1AAAADgAAABQAAABCAAAATgAAAFwAAAAGAAAARwAAAGsAAACTAAAAngAAAH0AAACoAAAADAAAABkAAAAhAAAAZAAAAEMAAAAeAAAAjwAAAAkAAABbAAAAKQAAAEUAAACnAAAANgAAAGkAAACHAAAAagAAAEwAAAAvAAAAFwAAAAYAAACEAAAAiAAAAGsAAACuAAAArQAAAI0AAACCAAAABgAAAKkAAACPAAAAdwAAAI4AAABGAAAAZQAAAFkAAABbAAAAGQAAAIAAAACtAAAAhwAAAFoAAAAiAAAAKQAAAEkAAAAJAAAAZgAAADQAAACvAAAAZAAAAJQAAAB/AAAAnwAAADYAAABXAAAAIgAAAFEAAAA/AAAADQAAACwAAACVAAAAaAAAAF8AAAAEAAAAZQAAAG0AAACLAAAAJwAAAIkAAABnAAAAbQAAAF8AAAB6AAAAGAAAAFAAAACSAAAANgAAAHMAAAAIAAAAdgAAAEwAAACYAAAApQAAAFIAAACOAAAAOgAAAEwAAABmAAAADwAAAKQAAACdAAAALgAAAAYAAACaAAAALQAAABEAAABEAAAABwAAAEgAAAAGAAAABAAAAD4AAAB5AAAAQgAAAEUAAABFAAAAYwAAABIAAAAKAAAAZQAAAHcAAACqAAAAYQAAACMAAACBAAAAOwAAAFMAAABKAAAASAAAAGQAAABTAAAAmQAAABUAAAA3AAAABAAAADYAAABpAAAAlwAAAAcAAAAJAAAAXgAAAFcAAAAJAAAAMAAAAH4AAAB0AAAAVgAAACYAAABmAAAAMgAAAHQAAAB8AAAAQAAAAG4AAAAQAAAAYAAAABYAAABsAAAAZgAAAD0AAACTAAAAdgAAAEAAAAAoAAAAYQAAAB0AAABYAAAAPQAAAAkAAACwAAAAdQAAAFsAAABdAAAAewAAAF4AAAAcAAAACQAAADMAAAASAAAATwAAAKwAAABGAAAAPAAAAIwAAACGAAAAAQAAADIAAABWAAAAGwAAAG8AAACQAAAAIAAAADkAAABUAAAAfwAAAC8AAAAtAAAARgAAAAUAAACeAAAAOAAAAH8AAAA5AAAAQQAAAFQAAACDAAAAUwAAABQAAABfAAAABAAAADAAAAA0AAAAVAAAAKMAAABCAAAAAwAAAEEAAACgAAAAEQAAAKsAAACKAAAAfAAAAAYAAAAPAAAAcQAAAKYAAAATAAAAnAAAAIsAAAB5AAAANgAAAEsAAABBAAAAGgAAACsAAAANAAAAeAAAAKEAAABVAAAAMQAAAJEAAAAXAAAAXQAAAD8AAAAfAAAAGwAAAAQAAACWAAAAKgAAAIAAAACGAAAAhQAAAAsAAAB2AAAAQQAAAE0AAABHAAAAJAAAAHQAAAA1AAAAOAAAACAAAABSAAAAAgAAAGIAAABmAAAAcgAAAHoAAABWAAAAJQAAAEMAAACiAAAA\"},\"shape\":[279],\"dtype\":\"uint32\",\"order\":\"little\"}],[\"color\",{\"type\":\"ndarray\",\"array\":[\"#471265\",\"#23A982\",\"#AFDC2E\",\"#2AB07E\",\"#277C8E\",\"#345E8D\",\"#481C6E\",\"#472777\",\"#2C718E\",\"#25828E\",\"#1F958B\",\"#460C5F\",\"#29788E\",\"#23A982\",\"#90D643\",\"#BADE27\",\"#47C06E\",\"#E1E318\",\"#48196B\",\"#46307D\",\"#423E85\",\"#1EA087\",\"#2B738E\",\"#433A83\",\"#81D34C\",\"#471265\",\"#1F948B\",\"#3D4C89\",\"#2A768E\",\"#DCE218\",\"#33608D\",\"#21A784\",\"#67CC5C\",\"#22A784\",\"#267F8E\",\"#38568B\",\"#462D7C\",\"#460C5F\",\"#5BC862\",\"#69CC5B\",\"#23A982\",\"#F8E621\",\"#F3E51E\",\"#79D151\",\"#55C666\",\"#460C5F\",\"#E4E318\",\"#81D34C\",\"#38B976\",\"#7ED24E\",\"#2A778E\",\"#1FA187\",\"#20918C\",\"#1F948B\",\"#46307D\",\"#51C468\",\"#F3E51E\",\"#67CC5C\",\"#1F928C\",\"#414186\",\"#3D4C89\",\"#287A8E\",\"#471265\",\"#1FA386\",\"#355D8C\",\"#FAE622\",\"#1EA087\",\"#95D73F\",\"#4DC26B\",\"#BFDF24\",\"#33608D\",\"#218E8C\",\"#414186\",\"#24868D\",\"#2E6D8E\",\"#481A6C\",\"#3B518A\",\"#97D83E\",\"#21A685\",\"#1E998A\",\"#45085B\",\"#1FA187\",\"#26AC81\",\"#74D054\",\"#3E4989\",\"#6DCE58\",\"#20A485\",\"#26AC81\",\"#1E998A\",\"#40BD72\",\"#462F7C\",\"#24858D\",\"#8DD644\",\"#33608D\",\"#30B47A\",\"#471163\",\"#36B877\",\"#267F8E\",\"#A5DA35\",\"#D4E11A\",\"#23888D\",\"#7ED24E\",\"#31668D\",\"#267F8E\",\"#1FA386\",\"#481E70\",\"#D2E11B\",\"#B7DD29\",\"#39548B\",\"#460C5F\",\"#AADB32\",\"#3A538B\",\"#482273\",\"#2B748E\",\"#460E61\",\"#287A8E\",\"#460C5F\",\"#45085B\",\"#2E6B8E\",\"#3DBB74\",\"#2C718E\",\"#2A768E\",\"#2A768E\",\"#1E9E88\",\"#482374\",\"#471567\",\"#1FA187\",\"#38B976\",\"#E9E419\",\"#1E9B89\",\"#414286\",\"#53C567\",\"#30678D\",\"#23898D\",\"#277C8E\",\"#287A8E\",\"#1EA087\",\"#23898D\",\"#A7DB33\",\"#472A79\",\"#33618D\",\"#45085B\",\"#33608D\",\"#21A784\",\"#9FD938\",\"#460E61\",\"#471265\",\"#1E988A\",\"#218E8C\",\"#471265\",\"#38578C\",\"#4BC26C\",\"#32B57A\",\"#218C8D\",\"#3F4788\",\"#1FA386\",\"#365A8C\",\"#32B57A\",\"#45BF6F\",\"#2D6E8E\",\"#27AD80\",\"#482071\",\"#1E9A89\",\"#472B7A\",\"#24AA82\",\"#1FA386\",\"#2F6A8D\",\"#90D643\",\"#36B877\",\"#2D6E8E\",\"#3D4A89\",\"#1E9B89\",\"#443781\",\"#208F8C\",\"#2F6A8D\",\"#471265\",\"#FDE724\",\"#35B778\",\"#1F948B\",\"#1E978A\",\"#42BE71\",\"#1E988A\",\"#453681\",\"#471265\",\"#365B8C\",\"#482374\",\"#25838D\",\"#F1E51C\",\"#2A778E\",\"#30688D\",\"#77D052\",\"#62CA5F\",\"#440154\",\"#365A8C\",\"#218C8D\",\"#45347F\",\"#29AF7F\",\"#86D449\",\"#423D84\",\"#31648D\",\"#22898D\",\"#4DC26B\",\"#38568B\",\"#3A538B\",\"#2A778E\",\"#46095C\",\"#BADE27\",\"#32638D\",\"#4DC26B\",\"#31648D\",\"#2C708E\",\"#22898D\",\"#59C764\",\"#23898D\",\"#472777\",\"#1E998A\",\"#45085B\",\"#38578C\",\"#355D8C\",\"#22898D\",\"#CFE11C\",\"#2C718E\",\"#450558\",\"#2C708E\",\"#C2DF22\",\"#482273\",\"#ECE41A\",\"#70CE56\",\"#45BF6F\",\"#460C5F\",\"#481E70\",\"#2CB17D\",\"#DAE218\",\"#472676\",\"#B2DD2C\",\"#74D054\",\"#3DBB74\",\"#33608D\",\"#277D8E\",\"#2C708E\",\"#45327F\",\"#3B508A\",\"#481A6C\",\"#3BBA75\",\"#C7E01F\",\"#228B8D\",\"#37588C\",\"#88D547\",\"#462D7C\",\"#1E978A\",\"#2E6D8E\",\"#433B83\",\"#45347F\",\"#45085B\",\"#9DD93A\",\"#3C4D8A\",\"#51C468\",\"#62CA5F\",\"#60C960\",\"#471669\",\"#36B877\",\"#2C708E\",\"#26808E\",\"#29788E\",\"#404387\",\"#32B57A\",\"#345E8D\",\"#32638D\",\"#423D84\",\"#23888D\",\"#440357\",\"#1E9D88\",\"#1FA386\",\"#2EB27C\",\"#40BD72\",\"#218C8D\",\"#3F4587\",\"#2B738E\",\"#CAE01E\"],\"shape\":[279],\"dtype\":\"object\",\"order\":\"little\"}]]}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1521\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1522\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Scatter\",\"id\":\"p1517\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"Rest\"},\"y\":{\"type\":\"field\",\"field\":\"Rex1\"},\"size\":{\"type\":\"value\",\"value\":2},\"line_color\":{\"type\":\"field\",\"field\":\"color\"},\"fill_color\":{\"type\":\"field\",\"field\":\"color\"},\"hatch_color\":{\"type\":\"field\",\"field\":\"color\"}}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Scatter\",\"id\":\"p1518\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"Rest\"},\"y\":{\"type\":\"field\",\"field\":\"Rex1\"},\"size\":{\"type\":\"value\",\"value\":2},\"line_color\":{\"type\":\"field\",\"field\":\"color\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.1},\"fill_color\":{\"type\":\"field\",\"field\":\"color\"},\"fill_alpha\":{\"type\":\"value\",\"value\":0.1},\"hatch_color\":{\"type\":\"field\",\"field\":\"color\"},\"hatch_alpha\":{\"type\":\"value\",\"value\":0.1}}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Scatter\",\"id\":\"p1519\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"Rest\"},\"y\":{\"type\":\"field\",\"field\":\"Rex1\"},\"size\":{\"type\":\"value\",\"value\":2},\"line_color\":{\"type\":\"field\",\"field\":\"color\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.2},\"fill_color\":{\"type\":\"field\",\"field\":\"color\"},\"fill_alpha\":{\"type\":\"value\",\"value\":0.2},\"hatch_color\":{\"type\":\"field\",\"field\":\"color\"},\"hatch_alpha\":{\"type\":\"value\",\"value\":0.2}}}}}],\"toolbar\":{\"type\":\"object\",\"name\":\"Toolbar\",\"id\":\"p1487\",\"attributes\":{\"tools\":[{\"id\":\"p1500\"},{\"id\":\"p1501\"},{\"id\":\"p1502\"},{\"type\":\"object\",\"name\":\"SaveTool\",\"id\":\"p1508\"},{\"id\":\"p1509\"},{\"id\":\"p1510\"}]}},\"toolbar_location\":null,\"left\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1495\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1496\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1497\"},\"axis_label\":\"Rex1\",\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1498\"}}}],\"below\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1490\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1491\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1492\"},\"axis_label\":\"Rest\",\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1493\"}}}],\"center\":[{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1494\",\"attributes\":{\"axis\":{\"id\":\"p1490\"}}},{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1499\",\"attributes\":{\"dimension\":1,\"axis\":{\"id\":\"p1495\"}}}],\"frame_width\":150,\"frame_height\":150}},1,2]]}}],\"defs\":[{\"type\":\"model\",\"name\":\"ReactiveHTML1\"},{\"type\":\"model\",\"name\":\"FlexBox1\",\"properties\":[{\"name\":\"align_content\",\"kind\":\"Any\",\"default\":\"flex-start\"},{\"name\":\"align_items\",\"kind\":\"Any\",\"default\":\"flex-start\"},{\"name\":\"flex_direction\",\"kind\":\"Any\",\"default\":\"row\"},{\"name\":\"flex_wrap\",\"kind\":\"Any\",\"default\":\"wrap\"},{\"name\":\"gap\",\"kind\":\"Any\",\"default\":\"\"},{\"name\":\"justify_content\",\"kind\":\"Any\",\"default\":\"flex-start\"}]},{\"type\":\"model\",\"name\":\"FloatPanel1\",\"properties\":[{\"name\":\"config\",\"kind\":\"Any\",\"default\":{\"type\":\"map\"}},{\"name\":\"contained\",\"kind\":\"Any\",\"default\":true},{\"name\":\"position\",\"kind\":\"Any\",\"default\":\"right-top\"},{\"name\":\"offsetx\",\"kind\":\"Any\",\"default\":null},{\"name\":\"offsety\",\"kind\":\"Any\",\"default\":null},{\"name\":\"theme\",\"kind\":\"Any\",\"default\":\"primary\"},{\"name\":\"status\",\"kind\":\"Any\",\"default\":\"normalized\"}]},{\"type\":\"model\",\"name\":\"GridStack1\",\"properties\":[{\"name\":\"mode\",\"kind\":\"Any\",\"default\":\"warn\"},{\"name\":\"ncols\",\"kind\":\"Any\",\"default\":null},{\"name\":\"nrows\",\"kind\":\"Any\",\"default\":null},{\"name\":\"allow_resize\",\"kind\":\"Any\",\"default\":true},{\"name\":\"allow_drag\",\"kind\":\"Any\",\"default\":true},{\"name\":\"state\",\"kind\":\"Any\",\"default\":[]}]},{\"type\":\"model\",\"name\":\"drag1\",\"properties\":[{\"name\":\"slider_width\",\"kind\":\"Any\",\"default\":5},{\"name\":\"slider_color\",\"kind\":\"Any\",\"default\":\"black\"},{\"name\":\"value\",\"kind\":\"Any\",\"default\":50}]},{\"type\":\"model\",\"name\":\"click1\",\"properties\":[{\"name\":\"terminal_output\",\"kind\":\"Any\",\"default\":\"\"},{\"name\":\"debug_name\",\"kind\":\"Any\",\"default\":\"\"},{\"name\":\"clears\",\"kind\":\"Any\",\"default\":0}]},{\"type\":\"model\",\"name\":\"FastWrapper1\",\"properties\":[{\"name\":\"object\",\"kind\":\"Any\",\"default\":null},{\"name\":\"style\",\"kind\":\"Any\",\"default\":null}]},{\"type\":\"model\",\"name\":\"NotificationAreaBase1\",\"properties\":[{\"name\":\"js_events\",\"kind\":\"Any\",\"default\":{\"type\":\"map\"}},{\"name\":\"position\",\"kind\":\"Any\",\"default\":\"bottom-right\"},{\"name\":\"_clear\",\"kind\":\"Any\",\"default\":0}]},{\"type\":\"model\",\"name\":\"NotificationArea1\",\"properties\":[{\"name\":\"js_events\",\"kind\":\"Any\",\"default\":{\"type\":\"map\"}},{\"name\":\"notifications\",\"kind\":\"Any\",\"default\":[]},{\"name\":\"position\",\"kind\":\"Any\",\"default\":\"bottom-right\"},{\"name\":\"_clear\",\"kind\":\"Any\",\"default\":0},{\"name\":\"types\",\"kind\":\"Any\",\"default\":[{\"type\":\"map\",\"entries\":[[\"type\",\"warning\"],[\"background\",\"#ffc107\"],[\"icon\",{\"type\":\"map\",\"entries\":[[\"className\",\"fas fa-exclamation-triangle\"],[\"tagName\",\"i\"],[\"color\",\"white\"]]}]]},{\"type\":\"map\",\"entries\":[[\"type\",\"info\"],[\"background\",\"#007bff\"],[\"icon\",{\"type\":\"map\",\"entries\":[[\"className\",\"fas fa-info-circle\"],[\"tagName\",\"i\"],[\"color\",\"white\"]]}]]}]}]},{\"type\":\"model\",\"name\":\"Notification\",\"properties\":[{\"name\":\"background\",\"kind\":\"Any\",\"default\":null},{\"name\":\"duration\",\"kind\":\"Any\",\"default\":3000},{\"name\":\"icon\",\"kind\":\"Any\",\"default\":null},{\"name\":\"message\",\"kind\":\"Any\",\"default\":\"\"},{\"name\":\"notification_type\",\"kind\":\"Any\",\"default\":null},{\"name\":\"_destroyed\",\"kind\":\"Any\",\"default\":false}]},{\"type\":\"model\",\"name\":\"TemplateActions1\",\"properties\":[{\"name\":\"open_modal\",\"kind\":\"Any\",\"default\":0},{\"name\":\"close_modal\",\"kind\":\"Any\",\"default\":0}]},{\"type\":\"model\",\"name\":\"BootstrapTemplateActions1\",\"properties\":[{\"name\":\"open_modal\",\"kind\":\"Any\",\"default\":0},{\"name\":\"close_modal\",\"kind\":\"Any\",\"default\":0}]},{\"type\":\"model\",\"name\":\"TemplateEditor1\",\"properties\":[{\"name\":\"layout\",\"kind\":\"Any\",\"default\":[]}]},{\"type\":\"model\",\"name\":\"MaterialTemplateActions1\",\"properties\":[{\"name\":\"open_modal\",\"kind\":\"Any\",\"default\":0},{\"name\":\"close_modal\",\"kind\":\"Any\",\"default\":0}]},{\"type\":\"model\",\"name\":\"copy_to_clipboard1\",\"properties\":[{\"name\":\"fill\",\"kind\":\"Any\",\"default\":\"none\"},{\"name\":\"value\",\"kind\":\"Any\",\"default\":null}]}]}};\n", " const render_items = [{\"docid\":\"085590b8-eaf5-4cb8-afe9-1b566a971cad\",\"roots\":{\"p1530\":\"d54b6c10-c41e-4810-bb54-038cb1694cd9\"},\"root_ids\":[\"p1530\"]}];\n", " void root.Bokeh.embed.embed_items_notebook(docs_json, render_items);\n", " }\n", " if (root.Bokeh !== undefined) {\n", " embed_document(root);\n", " } else {\n", " let attempts = 0;\n", " const timer = setInterval(function(root) {\n", " if (root.Bokeh !== undefined) {\n", " clearInterval(timer);\n", " embed_document(root);\n", " } else {\n", " attempts++;\n", " if (attempts > 100) {\n", " clearInterval(timer);\n", " console.log(\"Bokeh: ERROR: Unable to run BokehJS code because BokehJS library is missing\");\n", " }\n", " }\n", " }, 10, root)\n", " }\n", "})(window);" ], "application/vnd.bokehjs_exec.v0+json": "" }, "metadata": { "application/vnd.bokehjs_exec.v0+json": { "id": "p1530" } }, "output_type": "display_data" } ], "source": [ "def pairwise_plot(df, gene1, gene2):\n", " p = bokeh.plotting.figure(\n", " frame_height=150,\n", " frame_width=150,\n", " x_axis_label=gene1,\n", " y_axis_label=gene2,\n", " )\n", "\n", " p.scatter(source=df.to_dict(), x=gene1, y=gene2, color=\"color\", size=2)\n", "\n", " return p\n", "\n", "\n", "plots = [\n", " pairwise_plot(df, gene1, gene2) for gene1, gene2 in itertools.combinations(genes, 2)\n", "]\n", "\n", "bokeh.io.show(bokeh.layouts.gridplot(plots, ncols=3))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "It appears as though there is a correlation between Rest, Nanog, and Rex1. They tend to be high or low together. Prdm14, on the other hand, shows less correlation." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Model for mRNA levels\n", "\n", "In this part of the lesson, we will model gene expression of each of the four genes separately, though they are connected by which cell is being measured. We will discuss that later. For now, we develop a model for the mRNA counts for a given gene.\n", "\n", "If gene expression is a purely Poisson process, we might expect a Poisson distribution. Or, if the copy number is itself somehow tightly regulated, we might expect a Normal distribution.\n", "\n", "Study of gene expression dynamics, largely through fluorescence imaging, has lead to a different story. Expression of many important genes can be **bursty**, which means that the promoter is on for a period of time in which transcripts are made, and then it is off for a while. The \"on\" periods are called \"bursts\" and are themselves well-modeled as a Poisson process. That is to say that the amount of time that a promoter is on is Exponentially distributed. Thus, we can think of a burst as a series of Bernoulli trials. A \"failure\" is production of an mRNA molecule, and a \"success\" is a switch to an off state. The number of \"successes\" we get is equal to the number of bursts we get per decay time of the mRNA. We can define the number of bursts before degradation of the mRNA as $\\alpha$. This is the so-called **burst frequency**. So, we have a series of Bernoulli trials and we wait for $\\alpha$ successes. Then, $n$, the total number of failures (which is the number of mRNA transcripts), is Negative Binomially distributed, since this matches the Negative Binomial story. Referring to the parametrization used in the [distribution explorer](https://distribution-explorer.github.io/discrete/negative_binomial.html),\n", "\n", "\\begin{align}\n", "n \\sim \\text{NBinom}(\\alpha, \\beta),\n", "\\end{align}\n", "\n", "where $\\beta$ is related to the probability $\\theta$ of a success of a Bernoulli trial by $\\theta = \\beta/(1+\\beta)$.\n", "\n", "The meaning of the parameter $\\beta$, and the related quantity $\\theta$, can be a little mystical here. We would like to relate it to the typical **burst size**, i.e., the typical number of transcripts made per burst. The size of a single given burst (that is, the number of transcripts made in a burst) is geometrically distributed (since it matches that story), so\n", "\n", "\\begin{align}\n", "f(n_\\mathrm{burst} ; \\theta) = (1-\\theta)^{n_\\mathrm{burst}}\\,\\theta.\n", "\\end{align}\n", "\n", "The mean number of transcripts $b$ in a burst is\n", "\n", "\\begin{align}\n", "b \\equiv \\left\\langle n_\\mathrm{burst}\\right\\rangle &= \\sum_{n_\\mathrm{burst}=0}^\\infty\n", "n_\\mathrm{burst}(1-\\theta)^{n_\\mathrm{burst}}\\theta\\\\[1em]\n", "&= \\theta \\sum_{n_\\mathrm{burst}=0}^\\infty\n", "n_\\mathrm{burst}(1-\\theta)^{n_\\mathrm{burst}} \\\\[1em]\n", "&= \\theta(1-\\theta)\\, \\frac{\\mathrm{d}}{\\mathrm{d}(1-\\theta)}\\sum_{n_\\mathrm{burst}=0}^\\infty(1-\\theta)^{n_\\mathrm{burst}} \\\\[1em]\n", "&= \\theta(1-\\theta)\\, \\frac{\\mathrm{d}}{\\mathrm{d}(1-\\theta)}\\,\\frac{1}{\\theta}\\\\[1em]\n", "&= -\\theta(1-\\theta)\\, \\frac{\\mathrm{d}}{\\mathrm{d}\\theta}\\,\\frac{1}{\\theta} \\\\[1em]\n", "&= \\frac{1-\\theta}{\\theta} \\\\[1em]\n", "&= \\frac{1}{\\beta}.\n", "\\end{align}\n", "\n", "So we now see that $1/\\beta$ is the typical burst size. Using the Negative Binomial property of mRNA copy numbers of bursty gene expression, we can characterize the expression levels of a given cell type by the two parameters of the Negative Binomial, the burst frequency $\\alpha$ and the burst size $b = 1/\\beta$. These are the two parameters we would like to infer from transcript count data. The conclusion of all this is that we have have our likelihood.\n", "\n", "\\begin{align}\n", "&n \\sim \\text{NBinom}(\\alpha, \\beta),\\\\[1em]\n", "&b = 1/\\beta.\n", "\\end{align}" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Maximum likelihood estimation by numerical optimization\n", "\n", "To compute the MLE for the two parameters, the burst frequency $\\alpha$ and burst size $\\beta$, we need to define the likelihood function. We make the assumption that the number of transcripts in each cell is i.i.d., giving a statistical model of\n", "\n", "\\begin{align}\n", "n_i \\sim \\text{NBinom}(\\alpha,\\beta)\\;\\forall i.\n", "\\end{align}\n", "\n", "Referring to the PMF of the Negative Binomial distribution and making the change of variables $b=1/\\beta$, the likelihood function is\n", "\n", "\\begin{align}\n", "L(\\alpha, b;\\mathbf{n}) = \\prod_i\\frac{\\Gamma(n_i+\\alpha)}{\\Gamma(\\alpha)n!}\\left(\\frac{1}{1+b}\\right)^\\alpha\\left(\\frac{b}{1+b}\\right)^{n_i},\n", "\\end{align}\n", "\n", "and the log-likelihood is \n", "\n", "\\begin{align}\n", "\\ell(\\alpha, b;\\mathbf{n}) = \\ln L(\\alpha, b;\\mathbf{n}) = \\sum_i \\ln \\left(\\frac{\\Gamma(n_i+\\alpha)}{\\Gamma(\\alpha)n!}\\left(\\frac{1}{1+b}\\right)^\\alpha\\left(\\frac{b}{1+b}\\right)^{n_i}\\right).\n", "\\end{align}\n", "\n", "To find the MLE, we need to find the values of $\\alpha$ and $b$ that satisfy\n", "\n", "\\begin{align}\n", "\\frac{\\partial \\ell}{\\partial \\alpha} = \\frac{\\partial \\ell}{\\partial b} = 0.\n", "\\end{align}\n", "\n", "Unfortunately, no closed form solution exists for this. We therefore need to resort to [numerical optimization](https://en.wikipedia.org/wiki/Mathematical_optimization) to find the MLE $\\alpha^*$ and $b^*$." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Numerical optimization\n", "\n", "Numerical optimization is typically implemented to find a *minimizers* of a function rather than maximizers. The function being minimized is called an **objective function**. This is not a problem for maximum likelihood estimation; we simply define a *negative* log-likelihood as our objective function.\n", "\n", "Sometimes, we have **constraints** on the allowed values for the parameters. In our case, both $\\alpha$ and $\\beta$ must be non-negative. So, the statement of the optimization problem to find the MLE is\n", "\n", "\\begin{align}\n", "\\text{minimize } (-\\ell(\\alpha, \\beta;\\mathbf{n})) \\text{ s.t. } \\alpha, \\beta > 0,\n", "\\end{align}\n", "\n", "where \"s.t.\" is read \"subject to.\" If we explicitly consider the constraints, we are performing a **constrained optimization problem**. Constrained optimization is often considerably more challenging than unconstrained optimization. There are ways around simple positivity constraints such as the ones here. We can instead define new variables $\\xi_\\alpha = \\ln \\alpha$ and $\\xi_b = \\ln b$, and write the log-likelihood in terms of these variables instead. We then find minimizing $\\xi_\\alpha$ and $\\xi_b$ and convert them to $\\alpha$ and $\\beta$ by exponentiation after performing the minimization calculation.\n", "\n", "Numerical optimization is implemented in the `scipy.optimize` submodule ([docs](https://docs.scipy.org/doc/scipy/reference/optimize.html)). Most of the functionality you need is in the `scipy.optimize.minimize()` function. To use the function to find minimizers of an objective function, the standard call signature is\n", "\n", "```python\n", "scipy.optimize.minimize(fun, x0, args=(), method='BFGS')\n", "```\n", "\n", "The `fun` argument is a function with call signature `fun(x, *args)`, where `x` is the variables used in the optimization. In the case of MLE, the function is the negative log-likelihood function, `x` is always an array of the parameter values we are trying to estimate, and the remaining arguments are additional arguments passed into the likelihood function, which always include the measured data. Importantly, we have to provide a guess as to which values of the parameters are optimal. This is passed as an array `x0`. The kwarg `args` specifies which additional arguments are to be passed to `fun()`. **Note that** `args` **must be a tuple**. Finally, the `method` keyword argument specifies which numerical optimization method to use, the default being the [Broyden–Fletcher–Goldfarb–Shanno algorithm](https://en.wikipedia.org/wiki/Broyden–Fletcher–Goldfarb–Shanno_algorithm). This is a good algorithm but does compute derivatives, so it is only useful if the parameter values can take on any real value.\n", "\n", "I have omitted the `bounds` keyword argument here because we will not usually use them, as we will either do the logarithm trick above, or use [Powell's method](https://en.wikipedia.org/wiki/Powell%27s_method), which does not required calculation of derivatives (so we may therefore have discontinuities in the objective function and set the value of the objective function to be infinity for disallowed parameter values)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Guess at optimal parameters\n", "\n", "We will use the method of moments to guess the optimal parameters. Referring to the [Distribution Explorer](https://distribution-explorer.github.io/) for the first moment and variance, we can equate them with the plug-in estimates.\n", "\n", "\\begin{align}\n", "&\\langle n \\rangle = \\frac{\\alpha}{\\beta} = \\alpha b = \\bar{n},\\\\[1em]\n", "&\\sigma^2 = \\frac{\\alpha(1+\\beta)}{\\beta^2} = \\alpha b(1+b) = \\hat{\\sigma}^2.\n", "\\end{align}\n", "\n", "Solving gives our method-of-moments estimates,\n", "\n", "\\begin{align}\n", "&\\alpha_\\mathrm{mom} = \\frac{\\bar{n}}{b} = \\frac{\\bar{x}^2}{\\hat{\\sigma}^2 - \\bar{n}},\\\\[1em]\n", "&b_\\mathrm{mom} = \\frac{\\hat{\\sigma}^2}{\\bar{n}} - 1.\n", "\\end{align}\n", "\n", "We can compute the estimates from the plug-in values." ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "α_mom = 1.7700110004078886\n", "b_mom = 49.569381904553985\n" ] } ], "source": [ "# Extract the values for Nanog\n", "n = df.get_column('Nanog').to_numpy()\n", "\n", "# Compute\n", "b_mom = np.var(n) / np.mean(n) - 1\n", "alpha_mom = np.mean(n) / b_mom\n", "\n", "# Take a look\n", "print(f\"α_mom = {alpha_mom}\\nb_mom = {b_mom}\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Note that the method-of-moments is not the only way to come up with guesses. As an example, if the data are not actually generated from a Negative Binomial distribution (or even if they are and there are not too many data points), then we may have $\\hat{\\sigma} < \\bar{n}$, which would result in a negative estimate for both $\\alpha$ and $b$, which are not even allowed values of the parameters. It turns out that in this case, the optimization works just fine if we arbitrarily pick something like $\\alpha \\approx \\beta \\approx 3$." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Solving with the BFGS algorithm\n", "\n", "We will now solve the minimization problem using the BFGS algorithm, specifying the parameters using logarithms to make sure that the problem is completely unconstrained. First, we have to write a function for the log-likelihood matching the required function signature of the input `fun` to `scipy.optimize.minimize()`. Note that we do not have to hand-code the log-likelihood. The `scipy.stats` module has functions to compute the log-PDF/log-PMF for many distributions. We just need to check the [Distribution Explorer](https://distribution-explorer.github.io/) to ensure we use the parametrization that the `scipy.stats` module requires. In this case, it expects parameters `alpha` and `1/1+b`." ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "def log_like_iid_nbinom_log_params(log_params, n):\n", " \"\"\"Log likelihood for i.i.d. NBinom measurements with \n", " input being logarithm of parameters.\n", " \n", " Parameters\n", " ----------\n", " log_params : array\n", " Logarithm of the parameters alpha and b.\n", " n : array\n", " Array of counts.\n", " \n", " Returns\n", " -------\n", " output : float\n", " Log-likelihood. \n", " \"\"\"\n", " log_alpha, log_b = log_params\n", "\n", " # Convert from log parameters\n", " alpha = np.exp(log_alpha)\n", " b = np.exp(log_b)\n", "\n", " return np.sum(st.nbinom.logpmf(n, alpha, 1/(1+b)))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "With the log likelihood specified, we simply use `-log_like_iid_nbinom_params()` as our objective function, which we can succinctly code up as an anonymous (lambda) function. Let's perform the optimization for the *nanog* gene and look at the result." ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/plain": [ " message: Desired error not necessarily achieved due to precision loss.\n", " success: False\n", " status: 2\n", " fun: 1524.9284357729396\n", " x: [ 2.338e-01 4.241e+00]\n", " nit: 11\n", " jac: [ 3.204e-04 1.068e-04]\n", " hess_inv: [[ 8.545e-09 2.968e-07]\n", " [ 2.968e-07 1.043e-05]]\n", " nfev: 308\n", " njev: 96" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Solve, making sure to use log parameters\n", "res = scipy.optimize.minimize(\n", " fun=lambda log_params, n: -log_like_iid_nbinom_log_params(log_params, n),\n", " x0=np.array([np.log(alpha_mom), np.log(b_mom)]),\n", " args=(n,),\n", " method='BFGS'\n", ")\n", "\n", "res" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The result returned by `scipy.optimize.minimize()` is an `OptimizeResult` object that has several attributes about how the optimization calculation went, including if it was successful. Importantly, the optimal log-parameter values are in the array `x`. We can extract them and exponentiate them to get the MLE." ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "α: 1.263433985420747\n", "b: 69.44437003467432\n" ] } ], "source": [ "alpha_mle, b_mle = np.exp(res.x)\n", "\n", "print(\"α: \", alpha_mle)\n", "print(\"b: \", b_mle)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "So, the MLE for the burst frequency is about 1.25 inverse degradation times. The MLE for the burst size is about 70 transcripts per burst." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Solving using Powell's method\n", "\n", "As an alternative to the BFGS method, we can use Powell's method. This has the advantage that we do not have to use derivatives in the optimization, so we do not have to use logarithms of the parameters. We do, however, need to specify that the log-likelihood is minus infinity for disallowed parameter values." ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "def log_like_iid_nbinom(params, n):\n", " \"\"\"Log likelihood for i.i.d. NBinom measurements.\"\"\"\n", " alpha, b = params\n", " \n", " if alpha <= 0 or b <= 0:\n", " return -np.inf\n", "\n", " return np.sum(st.nbinom.logpmf(n, alpha, 1/(1+b)))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We take a similar approach to solving using Powell's method. This time, we will catch warnings because the solver will stumble into regions where the log-likelihood is minus infinity. We know this to be the case, as we designed it that way, so we will suppress the warnings to keep our notebook clean. We will tighten the tolerance on the solver using the `tol` keyword argument to insist on very small gradients when finding the minimum. This results in a more accurate MLE at the cost of more computational effort." ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "α: 1.2634329776733069\n", "b: 69.44440337333538\n" ] } ], "source": [ "with warnings.catch_warnings():\n", " warnings.simplefilter(\"ignore\")\n", " \n", " res = scipy.optimize.minimize(\n", " fun=lambda params, n: -log_like_iid_nbinom(params, n),\n", " x0=np.array([alpha_mom, b_mom]),\n", " args=(n,),\n", " method='Powell',\n", " tol=1e-6,\n", " )\n", "\n", "if res.success:\n", " alpha_mle, b_mle = res.x\n", "else:\n", " raise RuntimeError('Convergence failed with message', res.message)\n", " \n", "print(\"α: \", alpha_mle)\n", "print(\"b: \", b_mle)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This differs from the result we got with BFGS in the third or fourth decimal place, due to inaccuracies in introducing the logarithms, but the difference is not big and also is small compared to the confidence interval we will for the MLEs of *α* and *b* in a subsequent lesson." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## The likelihood function\n", "\n", "To help give a picture of what the likelihood function looks like, and what the optimizer is doing, we can plot it. In this case, we have two parameters, so we can make a contour plot. We first compute the log-likelihood for various values of $\\alpha$ and $b$." ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [], "source": [ "# alpha and b values for plotting\n", "alpha = np.linspace(1, 1.5, 100)\n", "b = np.linspace(50, 90, 100)\n", "\n", "# Compute log-likelihood for each value\n", "log_like = np.empty((100, 100))\n", "for j, alpha_val in enumerate(alpha):\n", " for i, b_val in enumerate(b):\n", " log_like[i, j] = log_like_iid_nbinom((alpha_val, b_val), n)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Remember that the likelihood function is not a probability distribution, so it is not normalized. When we exponentiate the log-likelihood, we may get values close to zero, or very large. It is therefore a good idea to first subtract the maximal value of all computed log-likelihoods. This has the effect of multiplying the likelihood function by a constant." ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [], "source": [ "like = np.exp(log_like - log_like.max())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now, we can make a contour plot using the `bebi103.viz.contour()` function." ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "
\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/javascript": [ "(function(root) {\n", " function embed_document(root) {\n", " const docs_json = {\"833b61ab-9002-4bac-a8f4-5d90c0cf4fe1\":{\"version\":\"3.4.1\",\"title\":\"Bokeh Application\",\"roots\":[{\"type\":\"object\",\"name\":\"Figure\",\"id\":\"p1563\",\"attributes\":{\"x_range\":{\"type\":\"object\",\"name\":\"Range1d\",\"id\":\"p1572\",\"attributes\":{\"start\":1.0,\"end\":1.5}},\"y_range\":{\"type\":\"object\",\"name\":\"Range1d\",\"id\":\"p1573\",\"attributes\":{\"start\":50.0,\"end\":90.0}},\"x_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1574\"},\"y_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1575\"},\"title\":{\"type\":\"object\",\"name\":\"Title\",\"id\":\"p1570\"},\"renderers\":[{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1606\",\"attributes\":{\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1597\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1598\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1599\"},\"data\":{\"type\":\"map\",\"entries\":[[\"image\",[{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"y/vkyOCi0DpFNdDW9F3lOrjhboRXI/s6I+f1vTQLETss9wEMhCwlO/ooWQvVBDo74Hyh+p+gTzsUoPfNOwRjO0OYdd3xn3Y7G+7SlyWiijuLBIgOAQafO0NrpXhk4bE7ujraztNlxDuV+XwK1AfXO5KidKbzvOk7TNekkv94/DvRCvtAVS4PPNYL/3on5yA8MwS2AOMkMjyNk9ZT0khDPAQtdQTAS1Q8TuATrhgnZTylMZjAMtV1PPUGjiONUYY8fbp05gCZljz1j3YA46mmPNDV2CwUhLY8w15eIP4oxjzwG5GNfpvVPN4jfpfB3+Q8hM6RVA778zzC6o/JiPMCPbHGuULtzxE9EKgpIEmXID0hk9MYaqEuPQuAVmEoBjw9xaO/vbZpST2379rPxNdWPb1QIP2BWmQ9Ag+vYG/6cT23Bkvaknx/PbPyFtcOVos9uoBI9NuHlz1EhSDxYRWkPb+mIeBB/7A9rWqt4X+HvD32ooVCab7HPXECHTv9mNM9/kIqbN8K4D2wTAdywgzqPcAdZ6hh+vQ9CudJxtjBAD4jA0faX44KPlFd3LLb3xQ+x5S08ypHID6h7DhA0S8pPoMRce8iVTM+c+f6RT5yPT4p7mbeT0BGPnA2o9Mwr1A+xSryRAHUWD4C6ng6FFViPohHq4TG3Wo+3dIHNaSJcz5yecZh3jN8PisO4sT3M4Q+69Pp5sa6jD4HBEBbuEaUPlp4OprkaJw+//L/Q9fBoz7zJnn+lEerPtVflYJVsrI+ru1mjoVxuT6GjsDuNDDBPqxixVmzDsc+/nA8RQi2zj7haxdD5U7UPsbwnsplq9o+MCgTrqpj4T60qrIx3ITmPmuiM83D9ew+M3ame1J+8j6Bb/08G3X3PmJcD/gOjf0+yWssMcp8Aj9U9J3vy/kGPyjyF22kXAw/AcLbUWZjET9lTH2t3S0VPwrnIHctoBk/hpiX7yrNHj/3DWlNzmMiP1nWQ17b0CU/skKiSEK2KT89m/VsoBsuP0b0PmGogzE/zh+m3QY/ND8q9KQkSUE3P6g+RMqeijo/JnHwqd4ZPj/ToKlwApP1OmMwQ+AfZws7eyYgWKk1ITs/a4cDq2A1O6Jmsb2lQ0o74Jysw8jqXzthaMq8HS9zO9cOpdJ60IY7lvtBsdTXmjs8Ep0J6j+vO7igQAjD/8E75wY6C6iE1DtPg0lK5iXnO8zTzfTK2Pk7AVR01+eQDDyx88HPaUAfPCRStrRE7DA8X6DceAglQjyNWRa5+EJTPOrJ/UfvPmQ87Fx7NHQSdTyT6TIlBbiFPLZCjMtSK5Y8oZ4trHBppjxWHApa9HC2PH0zK1kCQsY83EOyF0je1Tz0ysSq40jlPEWn8yc7hvQ8b2NpccabAz2ZnXMJz48SPW5CqPMpaSE9CjIDy+8uMD13LroNbtA9PfwJiu2nN0s9qxViqkKgWD0PMMUKpxVmPZAMZWmvoXM9bGkNfH5MgT3l4cyd2ziOPa8QA60jLJo9gJxc+6B4pj2k38XeDCGzPdsryR9uJcA9bgmXbgwHyz3LwfuhiG7WPXNPEvxuduI9Nrvf3uoj7j2PtN+ZWmb4PeCZXd5ZlwM+3fJvW3I0Dz43Nn7elqYYPj0e1egWUSM+K025XDQILj7USpmmASk3PnLKPKM5uEE+tI6AhrfmSj6lkL2gu0JUPvD4ZFYVSF4+xmK2NV50Zj4NVDQez4VwPiiWfI1AIXg+li4F0l98gT5UzVpCmyaJPpfquH2t85E+3PL+gnBvmT4FbXe4luKhPsYtC1ZS96g+v+D6VwlMsT6Yu2KHvcq3PnE5ABhhPsA+dtxb1gUFxj4Bim3GXKLNPhHAfRRLzNM+DuziLLtD2j5IDXtkSEzhPtqpDlfJn+Y+bCzhgeZh7T7PKjg+RfLyPssk7OuXQ/g+pr29i/Hb/j4A4iQ8AX0DP7iq1Poscgg/7C0VpLB0Dj8jr7DMw9cSP/k8No2RKBc/yLYKOXRFHD8zqPM1HiQhP/CHHMmvpSQ/1/sRXbC0KD92n4vSDV4tP5q0B/b8VjE/IklpwrpXND+sgVsB6bU3P4zapzcWdTs/gikTPHOXPz/ks56UyA5CPxp4m8QRg0Q/9A8r2eQmRz9cAGYtcfdJP1vTQMNeyho7Rbc1Q9bTMDtFuXtYeudEO1Rt/fGdrlk7sUAeLN00bzvMh4Mt5sCCOxvKPTPrS5Y7IHjqJJc5qjus0/VtdIS+OwlpXxuVkdE7sdo4mygE5Dtmnmr8PJH2O3+V5To1Lgk8HuPSu8rOGzwi4fstZWUuPN8LheHFcUA8lxaScDWdUTyyCS3Ps61iPMGVHntcnHM8IE0o7f5ihDyGBPKMY/yUPBnvb1aGZKU83eQrlMOYtTx2vWD485fFPIuiYnt2YtU8aVEUnyf65DwJ2sryRmL0PDCdytVMnwM9gqaiabO2Ej3ILlxWtq4hPYA8TGYNjjA9TH8yJEy3Pj2XH/G3vzxMPegYMrqduVk9k3Wmcw46Zz1x++7E5sh0PZmn8FZsb4I9SVxj5DE1kD1YGbwPFUCcPU9cq3ojaKg9oRcduYnntD2JSZ6BVMDBPVQViF4I5M09DSR0jPPz2D3bSOY50KfkPX2IlNKF9PA9FXgAtJqa+z2waudF10gGPiMI6kqi1xE+aawJbnRWHD7ACsZ2DlImPt7IvnlgcDE+m0thuvYHOz5OGswTRMhEPtD78vbBs08+TF3jPin9Vz6+FyXYfAJiPoypVa6V1Go+rkFWb5LUcz6M6mxdNhZ9PnRJEdsDK4U+WMH7cSaTjj4iQK3hv+mVPqbErapFLJ8+BEX+V5MBpj726wjoa9auPj2x064kcrU+fMZXsrCbvT7afewBv0nEPsax7bOWmcs+fDxwvwSj0j4f1+rSi/zYPu/PPR0LoeA+nOiw5K355T47VQduStXsPs84ZokEyPI+6vEBQ3NL+D71RcWcsTT/PmdUFw3A5gM/N3lOwxo1CT9X/t+vDbUPP1Rx2n/fzRM/ptD8PteRGD/x0+0PKkYeP2Crg+9ehiI/DMXOgJWEJj+8wfcfDjArPx3p7C6hTTA/dfSy6ipsMz9Jk033Q/w2P/U1MdLJBTs/7/25UICPPz81C6+RWk9CP1C0EZhwG0U/NmlwmKUsSD+pdrm4V4JLP4DjAmt4Gk8/eL7c27V4UT/NuWkz+IBTP0mTx3uJolU/VvqWWojkPzvTi0DIbNBTO9kJtqKyWGg7uk65wuKVfTvovVrjcceRO9WUggLRIqU7zL5KqAfbuDvn5I5lperMO+jh4F1BpOA7f4Dvsc3z8jtHiY1DjFsFPAMBFidI0Rc8lrC6bT5JKjwLDQJ2dLY8PIeD1SUmC088MBbhlqOcYDz++SpgiJlxPHvYOvDJdYI8cpNo2aMrkzwvS0KXRbajPEEJ5BMJErQ83AzReJs8xDyrtDbQFTXUPJZkuxIE/OM88LdgblqT8zyqpYbBWf4CPQw4zVhlQRI9BCCp4MxhIT1KJuAbjmUwPdRg4ogkpj49TuocBtZhTD0Y8w9NJQtaPb28TYhlrmc93zwddudWdT2kPkyUrQ6DPTzIYyg33pA9ewjHisSYnT0piZ8Qx7ypPWSyu0OiL7Y9SJyq43v1wj3VmZL6wQ/QPasgE34V+9o9AhE71Pt35j0V6XhngY3yPXpgU7t6Yf49MBT22quqCD7MBwalWdwTPlliRUTHtx8+0FHsCWYeKT5AYYMp4rozPgHRLJ0mvj4+zlkyIfzBRz7/pf71VzZSPrzx/XoJs1s+4/olC5rlZD6+NbNJ50dvPgwgvhh/Onc+0+Jjrj4dgT4RtoCk2QWJPq7Dsb3WJpI++hjo/eEhmj4esArIyaqiPvwCxdVgd6o+z6UK2MOesj48HDY2zwC6PtMbybFeBcI+xSs/PtfKyD4o97iBhu3QPsTZc7Yr8tY+zJHRpj3g3j4FK9KTNZ/kPpxwv23TWOs+o6oiE3sA8j5gJGMbzYf3Pozr/Nybif4+aElHp8msAz+GixkEciwJP2Sw3i2T+w8/F9ooJ70sFD9BgcrBiEYZPyiE+4xech8/8ii7FXttIz+UDWcsFNcnP1scEPErDi0/h70v1eiVMT/nD64ctyQ1P/RRrC0RQDk/67J1OAT0PT+34sMU16VBP/o3eltjqEQ/hlrSRZAFSD+ZI9kyE8BLPwjJsGIs2U8/XgY8XDQoUj/Rjj2itJFUP2+ArsjZJlc/MJwI1EbkWT8Tp3pHdMVcP7No4detxF8/fxVcw4xtYT+krfWaBzhiO1U6GtCvZHY7T4f2v+M3izt3h98I51ugO8+v4+H4crM70CM0zh7fxjsVCpkAI5vaO6yzWUVcnu47F2VTzEZuATzufMxs+aITPBMSy7q/4yU80JymX6glODxOtAQBqVxKPNn/HkgGfFw82qvpMc12bjw3APKvKyCAPBRNXXxp5pA8m87HBOOIoTzLLAOtQgOyPN0l3aRLUsI8ad7vRf5z0jxR79gorWfiPACsgcQBLvI8e+a/iPDIAT2IXyGAnTsRPRXtqIIziiA9hDVxoWFzLz09YrH1WJ89PQ1oVIEwpEs9tk3XGgWOWT3olEXit2hnPZPnzeqFP3U9Pk2tB7Ecgz1sXdimPAmRPYMexi2AGZ496OeZOpxaqj3Oykf04N62PTGmQeFprMM9UF3uapHG0D0EWzz1elzcPV10EzF1xOc9LvrIPj2/8z0w7kahWUQAPj9x313Ykgo+xbhEzMWFFT5MlJbYJkkhPpvud433iCs+05egQte/NT78mtAYxglBPvlBXoYOeko+JEkut6RnVD4Prc/tWTJfPgCq4psOqGc+zNjcOKDLcT5bsI52bY96PqErFBsbqoM+sE7HfKrjjD4WAj/NFw6VPswBc/zAc54+NDDZB/3ZpT5OJpdNdB6vPjo1bB00/bU+4YujUuDWvj4mG8B4X3bFPqvxnAgGps0+H7kezUlT1D6reirVFanbPoQn65KfruI+rk9mqOQM6T5YI+Rz9avwPlQphx6DB/Y+Vqv1WdXl/D78aSX8NdECP4e3iBecVAg/OtuXCBQ8Dz+MojPZHegTP0DzZMPpMRk/pUXjKv6pHz//9x0xCcIjPxIIGd1kfCg/Jq3C1Z4iLj98a2kokWoyPzmpopnbWjY/LRxSVmzzOj8FaEnPuCJAPzpeu7zGMEM/pqpZL6OrRj9FGtT/M5pKPx7uLvwrAk8/KzHR2NjzUT8VNFbagqZUP90ZX/cVmVc/moS86k3KWj/+4J3RfTdePxsvHqs67mA/CANwrrfZYj+hemz4hdpkP1Rko20r7GY/6wm3720JaT+GNzCJZCxrP+X6L5mj/4M7KhcaNDlRmDt21M/PbT2tO5i0oGa5YsE7QcJKcLVy1Dusic5I3MnnOzaUwvBAYPs7RHfKobwqDzyP9K1Dfo0hPKgvR3/ejzM815d43pmSRTwzlyFz04pXPH8Zn80VbWk8imrmm8EtezxG54jQhcGMPIJxaHraHZ48G9BK8HY5rzykkhEAXgbAPLZXpboFSdA83R4wuwNj4DzNSovt2lPwPDfDDcNCHAA9ejhF3TV8Dz3jD/N6ongePY6uoPx2NS09hsc6PtC7Oz0R5m9G0RVKPY+ARZcyTlg91dLVf9JvZj3A2wx7TIV0PfC1PrKcmII9kil/fdOykD2fwWuwtredPbS5WqykNKo9UkQSpe3mtj3WCKnbS9bDPYw1+RfTB9E9v7Dum0v83D3dt2zkeXPoPeQsONJ3cvQ9pC4ZsJTzAD4cjHVZud0LPj+otMCJtRY+JZ8TBpBZIj7cUeZSvGctPoTDbzENXTc+5hFG3qFoQj6/WmqdA8VMPlwgsVTMS1Y+LsVHEFIjYT5jq2+c2SFqPoL+AZktw3M+ui0EOn+mfT67jrsrrhCGPu4jWd46SpA+LE4O0dbclz5P+F/4LFehPqFSYaJTAak+e02huYbjsT4311tKyWW5Pt20IHD+48E+7P+tMi0DyT41dMN2ClrRPmhgDNuD5Nc+wupkxG9T4D5IfCJs7iTmPs91VZoP0O0+emHz2H3r8z5NjiHYdmz6Pkl3ZUCsZQE/EqgoZtC9Bj8M3rjJGIMNPyZPgv/eAhM//uSeb1pRGD/nF+8BN+IeP4ImtFvSeCM/C/itamlhKD+ZgJol3E8uPxxeIwYktjI/0cD5a7/wNj9kuOTAM+47P0nY5ZHK4kA/fYBTaglHRD8yCjopKy9IP8vH/EvkpUw//i2YH3DaUD87qtW7J7JTP1E548033VY/I3Cy14hdWj+fspdzkTNePwWqAVUPL2E/kTrpexFtYz9j1RVrR9FlPz7zKr4aWGg/W7goKuD8aj/S4mWZ2bltPzNwWbUgRHA/yf+Vni+wcT/HktQm0xxzP2Byj35uhXQ/XGJW5+kcpTsN0HCXLGa5O2zGbwpBN8471fvJQVTG4TsJ0Vvm6a70O07nAJFbzgc8gbDl7M0aGzyd7UesnYcuPPoRMrHKAkE8BppdbKbBUjwKaOn+13ZkPFoJVjdUGHY8QQXN1PCbhzwhQK+8zveYPJ9iXi/GIqo8Mn5yb84UuzzJOPxiWsfLPBenZVCkNdw81jTP7eNc7Dwewdlxazz8PM2ygQ+q1Qs93RpVGxQsGz27QdXe8kQqPQyrTa8fJzk95W6iGK/aRz397fm6kWhWPXvEQdEw2mQ9d1Y4Ngw5cz0wERIyX46BPfkAbe+gxY89+whPMmF8nD2Czv72kU6pPdRqriN4R7Y9p4MP+exvwz28/65ZX87QPTe9Xqffzdw95ZrnRUR36D2XV1DDPJn0PeF4piz4MAE+mNaDtkZyDD5yWm9rDlUXPuarAeY8+SI+4vaNFnSYLj7v6RkjlXU4PvIbj22jY0M+9Ln7VaV7Tj5nRdilR8NXPuGZsOz3XmI+pjNPTu0rbD6qqe6nfWx1PrBIDZ3sKIA+DoQow34uiD7L24BfhPKRPlOB9vODbZo+HmOZLJtNoz6KMAP9x/mrPnDrX/fzHLQ+gT6XQ9SxvD4m/NMUT0/EPllGBAcuh8w+HyQ99cXh0z6BOu/yK4DbPsA4KUL53+I+b+tZkqS26T4o8DmIFWLxPionlRzPU/c+4DUYPEcS/z6ZQEdjPIoEP/1/pW7S9Ao/abIhOBuPET9DhPgodLUWP3j17oj5Jx0/t3oe9AKVIj+VpvGrFYQnPxJUuUEsjC0/Op6lzWtuMj9ZstK0/tQ2PyYGc32tFTw/J+jFC/ImQT9qg7oqDc5EP7t1leeWD0k/PYReVsv6TT8uW3wtHs9RP8urpQGlA1U/0IdkvcagWD9zPfk+HatcP+CwQBPfkmA/hiOrBvUIYz+M1zfxX7dlPx6rNA18nGg/xeyEwFW1az9aUzy0lP1uP3vbICu4N3E/YXXNoNcBcz/pOKBY2dh0P8zaJ1jHt3Y/0Uo6mxeZeD+NFq7mxHZ6P/LhXGJtSnw/XeA9MnYNfj8k/WdbfXXFOwgW/8bwitk7zsbRudcQ7juZv+IJ638BPGXgDentJRQ8cCrvGf/xJjyczf0gSNk5PFZoRYzAzkw81fqQ3oDDXzyziSHGm1NxPLwlm9BdtII8t5iTDFv7kzxibP9mLCClPDO6uCwMG7Y8ZWbUxy7lxjwgjGmzEXnXPOi31Ju70uc8hoJql+nv9zyx/AavJtAHPSJFfHDMdBc9xkTK3OzgJj1XuxyMJxk2PZe6PjltI0U9K0vb8LUGVD0U+EjMrspiPRM1AmJkd3E9LsNU8e4UgD3dePyaSVaNPQIqxYKtgpo9oRV5TjK8pz23Gu+yNg61PbJgxhccgsI9EAftOjAf0D03YFFvYtXbPfhfIDvQz+c9ilB54Kow9D1mvF4O1fcAPms0uC4rRQw+1iCgvEBYFz7zd3RHOxwjPndozL+kBC8+tSCQIhL1OD7tIzU/5OhDPhmofMVDf08+9o+5qFq0WD6zSdhz9DZjPloQXlsWpG0+3hZGP2Gsdj7qcrR1djOBPlwD8w+44ok+dSwY7rZRkz4bKJ8GnZqcPumXmGteAaU+6pSzoaiarj77GgpZFh62Pplnrm1Nt78++bMuUbePxj4Qr/m8/djPPtKr/4SrTdY+KQimFVz/3j5Alj7I81/lPt6VufzeQO0+usm5safd8z4bXNXVEcf6PqAVaURQ6QE/3CE0h0zIBz+Xoya1zFcPP/k6nbMtgBQ/QMYt1OKeGj9WQPjQPyghP/gpSyhx9CU/uZY2OPXjKz8asyRKc5YxPwDo937CBTY/TpG6LfpgOz9Eiosy7eVAPx0xrlAytkQ/vykwAiE1ST/iQ5Kx/HZOP66P+vf8R1I/L3YfP9TJVT+oBBJpI8pZP/BaTyIBUV4/B+ngJYqyYT/046M/lIVkP2bN/w7homc/sNdUJFsKaz/yiGzJZbpuP8MQ0h/aV3E/qbWbNJVycz9GOLKg5Kl1P24+g59U+Xc/2sy3KIJbej83AK1MKMp8P0r0Ays2Pn8/zPzcr/bXgD+A6i0vhAuCP0LmrOZzNYM/uQcVymJRhD/UQyj99VqFP/E6cbu/BOU7yLOzNZzB+Ds+33rQqtUMPORErp9vmyA84Uh2WI/rMjx5A3pXKlJFPA6m0V1hxFc8JrDOEsY1ajzFDt2QvZh8PD399tH73o485QvfBwl9oDzQ0HktBG6xPFe+KrT8O8I85dYPfVPh0jxVr/a9flnjPJO1Ti0/ofM8tT0TJcW2Az1uxt5ww5kTPTC45sRuSyM9KGT9NGrOMj1ppdtNoiZCPfuSkpIZWVE92Ca7/alrYD3UTGRif8luPRgsDWMilnw9XiTEybJKij3LO9k0LvSXPRDjbV2qnqU9sIqbEPtUsz2xlbN1cCDBPQbKm9NcEc49yJFGGzgn2j2cfzZ90ormPSiJFFJNQfM96Km88dhMAD5rGoOVLVoLPjKsyYwPvxY+X4GYdf6/Ij4FCZIIT6QuPsnC5Ywi0jg+oNJbpa/uQz5GSDqlNb1PPsEkisH0DVk+XSKapj+cYz6VAxn0oXBuPjYb/O5rbXc+UaBie2PhgT4Rk77WYxGLPnnbn7/XUZQ+A+aaDCNCnj6FG8wtklimPnVUvKiKXrA+PmCd+yTKtz4sUJRBEibBPuVvar3fhsg+NwViELFm0T5l/QQjUH/YPgXzei/kG+E+RpBEI1C25z7TUYSfE07wPkzWvJpCQPY+etI8KSQi/j7zJdBKuT8EP0Gi+sMEAgs/1QFnjETgET9Gyp3DmHwXP8vVCdT4oB4/UbG0adbSIz/Oqf+CuXgpP2Cl75ebPjA/M/4WSLCRND9VLFWaLds5P36I0oNLIkA/6GFFyI39Qz/oe8fUjpdIPzQbJvLACU4/hzUq4C83Uj8NDx8M7O9VPwmPfsMHPFo/IsW7gMYnXz9PJkWRIV9iP6D8cNR1hGU/0K+N2noHaT9+Li48aOpsPwaIJmXmlnA/N6a/xybocj9F4b5XNmd1P7W1tMAtEXg/rBXike3hej+jZFQ9F9R9P/q1lAKIcIA/DTOKXIcAgj9ePcJdmpWDP4U6eiXZKoU/6STSw/q6hj+KfkOTcUCIP2afG6CLtYk/z2FzGpYUiz/kUL6eAliMP0xrkP2Meo0/7ITWS73bAzwLXdyreyUXPKBO1nnWrSo80Xd6t15pPjzMYOxpsyRRPJW7NckhHmM8EK+ONt8WdTxc4LaC2wOHPGvnL7d22Zg8t/ABw/WLqjxhBpdLABC8PKcVdjEgW808z4vF3jpk3jy2h3We/CPvPBT32ggvlf882ilu9PS0Dz0Onowx6IIfPQWzgXoXAS89UWQ0PeUzPj0ICiEFyiFNPVJB0ST/0ls95qBFphdRaj0Zo2tpjqZ4PQaUfKJQ3oY9wATMpEsDlT1HlTYhBCCjPZWeUtY7PrE9v1FkilLNvj22VqzqhkHLPRcnQKBE5dc9RXHAfeXB5D3CX8kq+d3xPVmn4/Tdev49lyzxRK7DCT6ko72RaJUVPqBn1gOt6yE+lhUDw+V+LT56nECigA84Pj+ShCyqdEM+PI8fmwgxTz4QktgqqclYPvxUMVeoh2M+jgAVjTqDbj5RjGqTSqJ3Pt2t2V/lJoI+PfriVlWmiz5b/+3MKOKUPtG/Yf34SJ8+6lub9rg9pz5d5r/60B+xPg0Ty0KVB7k+YNfgwvckwj6u3qwjVBjKPifya8hmndI+Lx8nCcZY2j5uXdNTcn/iPoKekHUyxek+dD2g24zP8T4ELSXNj234PhiKtYZXnwA/RAmUa71yBj9z6IufhxUOP6Kl5SpnARQ/xfDItNJnGj9NRMcBqEshP5QPhYHQfCY/be9eJEwFLT8he5U4XZYyP6As6DJ4ojc/08cMUxvVPT+RDTi4zLBCP2ZZnQkaQEc/eNEwns62TD86nNZ2jJpRPwF86mo5blU/c4m66XbnWT+UbnldKhdfP53J0wjJhmI/1vs5QdfsZT/h8RTlTcRpP6yo4cBvEm4/Y/wALWxtcT9dsFIskA90P0EISCND73Y/ojPz788Kej8nt7wtDF99PyacKACgc4A/OUKHRIxOgj/FoLthUzyEP3nZ/Q42OIY/4Du20Lo8iD+u0UTvwkOKP1VqgZemRow/EbO4klc+jj9CMF3WxBGQPxIn1cZv95A//iZDRI3MkT/JaTDVpY2SP5dC/hqCN5M/8ZaP1kHHkz9pgpRDVR0iPFcYfChW5TQ89jPXxxPWRzwN8rJD8+NaPE/UiSr2AG48w9mEpoqOgDwQsTuzYBOSPGDpDlDChaM8Kossil7ctDwNWG0EMw7GPO3u2PLxEtc8Ho5sFGPj5zwX8BttuXn4PJ++5ijY0Qg9hxCUMILpGD0llN52ccAoPd5Xrr9UWDg9ebzLcLS0Rz2KW5SzwNpWPV93Y6oM0WU95ne8nDufdD0YeU2tpU2DPbxhDOX55JE9F2+MIeNtoD0RRo+iaeGtPfb48ulG6ro90Qa0axcEyD2goPRFkzrVPQbjheJAl+I9wkOiA2Qh8D3d9hgzErz7PXMIJJlQoAc+lSfPtbXxEz4Vb3I7Oq8gPp/X0bpeqis+jjwoo6q7Nj7eyeUI24NCPpwL7z4H5U0+BbX1yW/sVz4M4WijqfpiPrjWlICL2m0+GV6XW0NHdz5ZLxmmJ/+BPn02rUpal4s+aZZ0J/H4lD6uTRoht52fPs35bbnsoac+0FAunNSEsT4+lY5ElMK5PqJKkcLEyMI+dkFmJh4syz4Q78tPh37TPsenIhQuv9s+Pm1GOLWW4z5dWmOCU3DrPjkmsCTIEPM+1ai9MHFJ+j4V5U636foBP/+8igbVZwg/TiTEbohvED/26yjkfPcVP8BtVtuDIh0/c/FuVZMsIz/6jU0X/gspPzkpyJ5zPDA/WRIAK2HkND9oEFVC6q46P7g+4MPr6UA/yFJeINJIRT/8YI2RppZKP+9H4BR1fFA/2X1IldtLVD/ITJFYk85YP1mTKNdAGl4/AUfwyE4iYj/xsTUAbbFlP5v9/PNyxGk/ZBujJFFkbj/jkc5xQMxxP14gBYdHs3Q/rTIEtNLodz8I8L6yC217PwclJNt7Pn8/oFPkDu+sgT9z0sGF/dyDP3W/BNDIK4Y/8JnnnKeUiD/yGZpZ7BGLP5KMJ/rynI0/sC9/JRwXkD/adxVWvV6RPw9QStLxoJI/swVWpBzZkz8s+l8BiwKVPypDoHWSGJY/5X8BSbAWlz9kG8HyqPiXP7m7cWamupg/jHd8CFRZmT85/SMr99GZP4FLxYR87z88+FzzUAQ7Ujyr+k6iKJVkPNUIpDFc+3Y8LoDFyjdhiTyetPLZH7mbPMibxyLC9K089OKrndMCwDx9iOTd5+7QPFgMM9wpuOE8YarNPv1Y8jxHuhxc4MwCPV6RpR2iEBM9hXb2LIciIz2YhhUUXAIzPVPlalhzsUI9PD9DBJAyUj1CkeRtvolhPbIuLTYevHA9dztAtUKffz1RA32AiZWNPYcAbIyNaJs9YcMTesAlqT2fk5I2B9q2PQ+M4A1LkcQ9BXEpwCFW0j3g1WX9jjHgPa8uboK/Vew9I+qPpTyP+D0e+j6MOBcFPq+ODbEd8hE+xhp0meVCHj7rEW0LhkgpPgtna3Uh7zQ+l7xPKZYtQT7FTVMa//BLPraw3lgPhlY+CO1MPD//YT5VLg/OaYJsPlWBvgakYnY+G5rUGtxsgT7iPHWgXuWKPgVPV3eOlJQ+k2GiAYw6nz7NpvzMcn6nPmBAc7bthrE+0lPLZQrvuT672t45FQfDPhJDjvAXscs+ru4YxV380z5xbOJEMJ3cPnI8qXdtUeQ+lapjonOf7D5hWS7d///zPiebKntHuvs+T2xO25gRAz/XNCqJjgUKP+d75unCnRE/YS85wqCqFz8mERYgkIwfPwafsHzw3SQ/Jf4o33JkKz84cmN8sdcxP16SDLOGETc/bz/at8mZPT+8BDs7btlCP35hzWHR00c/ZiMlG7blTT9ZZPeVYZ5SPz7/eLMZBVc/Nfw4sBdBXD8cHVF0uTZhPw2qirXX0mQ/bqVqP4ICaT/D5AafwNJtP6dn2pjEp3E/R5yto5vBdD/uIVIe/Dp4P4ZJdy6aFnw/HAI3Vb4qgD85wXEyW3uCPxtk7IyT+4Q/wM1+06Oohz9T0fCRgn6KP0sP/RHXd40/pz6tOv1GkD93thQpgtyRPxBRTLTxd5M/l1ENQkEUlT+KI7KE/KuWPw3B4g5jOZg/RqSqYYq2mT8zZh9hgx2bP+EOwOSBaJw/oHeO8ASSnT+9wAwN/pSeP/wmVjH2bJ8/5Ke1YRcLoD9yGPmr3kagP2KMk4jQaKA/pm25TgE6Wzw41eW1uMRuPD+wec86MYE8kXNY8DwAkzzlmwtJFcWkPCcY7XTndLY8m1JJ67YEyDyR8Rr+3mnZPCj1bdKMmuo80pwwmjOO+zxfiuJ68z0MPYkkx1PspBw9vQhx8nbALD2aJHgVQZA8Pf+QD7lKFkw9GsGhXMVWWz2O9TIJ2FdqPZeJk61MIXk9xCqTwiy8hz1+1zv8UzKWPev3mAwAjqQ9AupeLGTZsj0NEi9RRh7BPU0nSZdVy849yZcFOSNv2z3f7COZjjXoPcI5VzOTKfU9Ejs89X1TAj5iaO+m+3EPPgbXXoGguho+eEVF5QWDJj5XrEQqiMkyPk2t0B3pEj8+BCB+qHl3ST5ky/vkSK9UPgzlHkK/pmA+IK1UIHuSaj47+ozKDAR1PhE+82bveYA+iPeyN1aciT6Gjzl3pruTPlce7+DjJZ4+jt2m53jVpj5MFfJr1iWxPiYBf5vhibk+z/eeXcbbwj6Rgr1bqJ7LPurFwnb0DtQ+Tt+ZWAzl3D4hgms/SKTkPuLVyfqVQO0+hfFWOFOP9D59li++LKv8PvrQSZr90wM/en7ZHaI1Cz8tdAzinIUSP0RCgqCqBBk/qnxQT7fDID8el0iMAUsmP85Saexiai0/cV6XGf5BMz/CJb3JzQU5P1462yQSIkA/AIQR+V+lRD8zHkCK/jhKP3+UJKE6h1A/7NYzfD6uVD9aozyuTa9ZP81ZytE7ql8/ZtYq+TdgYz/3+sA1HopnP8dp4zAFZGw/fSL+TVb/cD91V3Yv5TR0P0nFgt2x2Xc/xho1R4zzez9maPCMWUOAP+KbvTK6yoI/VmqHtuiPhT+o9K0DlZGIP4z5MBj6zIs/uHMRN8I9jz/fK8Ha+m6RP99Edyj7UpM/iIQ+S0RGlT+Rw4cvdkOXP/TKeGGCRJk/uepcmsdCmz+yXgNbNDedPxHj5q1vGp8/ARgMaoNyoD+f2I8pz0ehP4+nUE+SCaI/89npOIK0oj89G1dvqkWjP87Z8JGCuqM/oqAUQAERpD/gjT07q0ekPxcalSSeXaQ/5cANapZSpD8nk+7EAHh2PCWsmE+UIok8G6gxWifOmzwr8gY+emuuPNHOnTs4dcA8MWqjv1qd0TzvYRf3N6biPEiRUgd8iPM8zwnDI8M9BD2wQWn05sAUPfc8yAc9DiU9e+hzLcIjNT3jZyX0LwFFPfyZ0hz7p1Q9QlKDfjsbZD0MbFtsf19zPdp/Xg2OeoI9o+XsHR1zkT17s4gzf1CgPePs/ZafNK49fcn3YUSwuz3/ssdXbyLJPb1d3wuBmNY9iuGxwVQe5D1xpSVn+r3xPaslWJ8c//49qOfxTlrSCj6+woj1Af4WPlI57AvGhiM+nRz1rhpuMD6QVZpYXGU7PnGddcDZoUY+lcGR5A6HUj6EHaHXzw9ePmmk+auQK2g+0LCuh7NCcz4esGTG4Wx+Ph19nDvv0Yc+QBNuVXB8kj50IxfQvHGcPnhjzLLesaU++9S5tbZnsD4tnF9BX5m4Pt00vndpScI+qGglKKv1yj4JDVju5rTTPhk3hr/8kdw+zcTFO/2J5D44dKl/vEntPv/X+csUtvQ+Qafz4N8N/T7c0+/52TYEP08xa0Hi5gs/RQiJvU0aEz85AgweAPMZP9YPMMxKfCE/Y+E5Ji9hJz+O3JdsLwQvP0FnlIT3aTQ/vtQCyfepOj/bSYpkqUdBPxZZPPHPOUY/f4wOSr1eTD+5BF4dNfhRP5rGHPC1l1Y/sQ5+1k8xXD8I0mVBoXVhP7rUriUOd2U/xwK59AEyaj+nNw+a5btvP9qYNX/yFHM/lMAzvCDIdj9bu0njxQB7P0g55+nkxn8/qmr/k2OQgj//UL14QomFPymgBNTHzog/9UwqSSFgjD/eLG8MYB2QPyRYsH0YLZI/rGcFAwBclD/hOxyc1aWWP3iDye9SBZk/x7pqNjd0mz/2ljvLW+udP9bxTTNpMaA/XTvrRgZpoT/VEjSmBZiiP16BmuvKuaM/AL3QqLrJpD+7h6/LWcOlPwl+MVhtoqY/zCKNOhljpz8pVIb0/AGoPwti4PlMfKg/jtA9sOfPqD+YArM1ZfuoP6CqhEsh/qg/Ss6HBT/YqD9SkYslpoqoP3ATJAyS9pE8Zf+zUqfkozyqPYTsI8m1PI0NvoxWmMc8jz2IaF1G2TxkWbD+qMfqPBedTuCBEfw8CmNV7YgaDT23qe6OKdsdPQ3RUEn2TS49NKEfeOlvPj1TDY4IhkBOPf4oZFzWwV09ImD79kn4bD3dw/XvdOp7PQh2sS+2oIo9msvpBMskmT2txW2TV4GnPUhJfOZrwbU92DcwGg3wwz2O7twryRfSPc54ZrBaQuA9tVn8M8Dw7D290G8KUYL5PXU+VMEsRQY+l7S+li1CEz7jCdetVn8gPtJOtwIMACw+tOU94HqKNz4gimyE9ptDPv7J7KI1L1A+/DtUD9t4Wj6Xg2x3HXRlPmvxAeLiOnE+utF/ta9tez70xkW0PqOFPpU+wKIw65A+ZKGTur85mj43Qyr7EiakPkrv0foEsa4+fggSe4Mstz7ZXse3BVnBPhkdNLZjwMk+R4ikDI3z0j4CRbEGu6jbPrMx4jbbA+Q+WutUXuq57D6TCD9ppXH0PkokQZoj3Pw+H1BbnCc0BD+uE8mmzg4MP6RlN+o+UxM/qdAdrjJoGj8WDEtc3OUhPys5ifmOESg/Q7XuCTgOMD/Vh++EkUA1P55RntRA6Ts/Id0OtJQvQj+2eL/97oNHPwSJhOFOLE4/NYxES741Uz+H7qCcP0ZYP22TuRozcV4/TpZlP+3xYj9mJLBMWGdnP5vdOWNVsmw/YvFm6o12cT+6jeAi/hh1Px4LdXNNTXk/Boj8p4Qffj+VmAcJMc2BP4Z8qLhm44Q/LtOfn6JViD9r5QBcpSWMP2gR67e0KZA/eff123Bukj8Kova94N6UP4QHxd6od5c/e5LYmys0mj8c0GoJhg6dPwC2wdeX/58/IGuxhIt/oT933dvf1wGjPx2rceqXgaQ/ED91sV75pT/SEdFhi2OnP5An9QRtuqg/dWYJv2j4qT+VXrMlIRirP4A7KiqdFKw/ZAsNCG3prD/UBVG2y5KtPzyYl3e7Da4/JCWAWhxYrj/saKi9u3CuPy6f/DpcV64/VvIytbUMrj9q7cmcbZKtP3aSTdkH66w/DLGRLMbYqzy5dAuUDYi+PJtYZ4csjdA8Pg3an1y/4TxuZe2FU9LyPJsfvs5hvgM97Iyvnsh8FD0iT/pfDAglPSk7SzA4XDU9SrAgfQ13RT0Qm2m1HFhVPQLRx6bFAGU9vPeb5R90dD2SFfZUzbaDPQJ2DmC6zpI9QIbnmNDCoT1R3YUioZqwPSzRZQ0ZvL494Etet9opzD1ad632lI3ZPaouHzYp9eY9paiq3ONs9D2nGESIMv8BPmW2yXjzaA8+znmfxRAmGz4m1jOJSz4nPtXghM1qtjM+8tj2/taPQD5EgmwJMpJLPi7b1OTJvFY+SFdJuU2UYj4jLI69JxZuPnMY6PfOI3g+Ro7rrL4xgz6a1zO5QECOPmZk8KxkoJc+12ME5y1Koj4XbFAggRGsPmB9At6DWbU+JWn1zjAZwD65bQOfehHIPs+8RyR41tE+E/XkChI32j4Nh8JlrxnjPiVLaBxJmes+0Y05yb3F8z4NU5PdYhj8PhIRq72wywM/p4gZL5eqCz8Wgekc2iwTP6cVvPU5XRo/ccCs/Uv6IT807CX1LlIoP0nSE73gUTA/akU+T1G6NT9+s6NfBrM8P01qR1cRzkI/vI4U4XVzSD/plZsumItPPzgoz8oVMVQ/W8dKEHymWT8mswoe9CpgPxomwAAIOmQ/gA1oLv8caT/J7QaAKvJuP4WwwaeP7HI/6KcqQQP5dj/rciJRYK57P/P+ThL4jYA/INqipd+ngz+j7L8E/CqHP9rDLMwYHIs/JL/BEl1+jz9n+OeveCmSP0M+xVZVzJQ/bGumcd+llz916uOpw7KaP7n/T9Yq7p0/GRSs2NeooD/Tq1u/sGqiP2FAT27qN6Q/6CyitCELpj/TNUIeXd6nP3jYqz4rq6k/61vmT8dqqz+eWd8RQxatP3Iw7IW0pq4/z9Ah8LIKsD8DLq/tAq6wP4Dg7EBrOrE/MjoNQ2ytsT+dUlut+ASyPwvV7zmFP7I/ld5UMhRcsj/DwvhzPFqyP1GquKYrOrI/LSGimaP8sT8B8Xfx8qKxP0/zCInpLrE/6A1gEcmisD9ookjFPfHEPFeSi+P1u9Y8SLr6xrVn6Dx27uRO6Oj5PA4aVTu9NAs9QM58z6tBHD3OVwZl6ActPa8urffEgT09yD+KH/arTT2z34Hwt4VdPfYNpJbQEG0996bKDnFRfD2Gu1/M9k2LPTicrT6TDpo9yxX2y9+cqD0n1fPdZQO3PR/xdvUiTcU90hxpbBCF0z31VumrtbXhPZs0h46U0e89Ht8NnNdN/D2uTlPU0u4IPjWA71pLwBU+MHJX3BrLIj51sECxQhUwPo9iGOw7RDs+hUkPN1blRj40IhFNygtTPjICsIiUZF8+GBaFSxSiaT6vg+xi+7x0PgRiQfkKoIA+8mJuXBZqij6mKuLbicuUPtVhi52MOaA+/F7lYcwXqT7TwVNFlzuzPoFaS9A7Ob0+N67osigCxj6krgQAU27QPkKOOTiLUtg+LRg+bgnZ4T6Bi4iYafjpPo2RMwkcvPI+d5TdmIPN+j7/GbI1HwMDP+QgGetsvwo/5tBGL+eoEj+XpdRXI9IZP0/P2JYTuCE/xnuJNf4eKD+a1yzNEUkwP+TgWeJL0DU/TCejly38PD9ZLxHqpRpDP375+OPv+0g/5h8NU2o1UD+KzvnG391UPymX3IOYp1o/XIcJdnzkYD/kbb2sNT9lP4thZJr+hGo/PL1axqpscD8IxV5S1DB0PyI9QQ9Oong/mbfPK47UfT/WwP7lTu2BPx+PMZo3Y4U/YSWzGw9UiT8QjJ3Hj8aNPz5biGHZX5E/8/YCeyAhlD9N3CSwMyeXP4UY9wGqcJo/8Y8fd3D6nT/ZkG271N+gP/9rD07M3KI/I7fRqM7vpD/X+C4GnxOnPyXXhasiQqk/gKIsj3h0qz+1uhjpGaOtP1wSZAUDxq8/+jHQnnHqsD8Mmv1JqeOxP6p89IeFyrI/9iNW2xGbsz8H2VVnpVG0P6Rl/of+6rQ/USOau1tktT+ixkbRkLu1P7CRW3gX77U/Rj+ogBr+tT+T8PhYe+i1P01ns5zRrrU/5SlGxmRStT+zPydfINW0Pwe/vUKDObQ/a8hKvYqCsz/b6j93mrOyP7LwzR/fld48zPLXaSdw8DwU7NxpD3kBPTE7RXUwXhI9MbRMpewYIz0RgA1R0aMzPZiXr/3a+kM9vbA1kqYbVD2WqNCJjAVkPdjMhIOkuXM9MutaULE6gz0CYc1W94ySPd5YFKMAtqE9yWk6JlO8sD0jOMbGPE6/PVISACDM+8w9HOlh912Q2j0coyH4ZRroPR78GV4/p/U9xNe6jsVCAz4gtt7CCvcQPqm4DsFamB0+kt3XC5WQKT4IP7UcFd81PtEkrzmGiEI+tgcj/qUcTz60Z+MTQN5ZPluCbEKkTmU+Q6fhHi1jcT4WuR6+lx18PispcP/thYY+sGOtw/PgkT5AfS5kgyCcPn0EgxYB7aU+K7QCfV/wsD7wV83LqfC5Pl/7ZFDOr8M+DKBqGZaezT63fOYXYxbWPtn7+Cj0U+A+2w6OeLju5z6FjNVwnmPxPiu0HaLrDfk+D85nIH7lAT+rffTiFFoJP9vHropszhE/EVTOWB/OGD8LjWAKdCIhP6s8ias2eic/NxgTEb7nLz/L0v4uyYA1P6enNdwgwDw/XFD4Dt4QQz8xK7C4xhVJP/neeqoEX1A/WZliUB8zVT+luo4TmTxbP4wrITAZXGE/p3VErAb1ZT/VifiHtY5rPwRVNN0DKXE/IM2UY081dT+tMJ8CEAN6Pwyob2ydqX8/tkj/xxsggz8yVDJJpe6GP7MNlgHLSos/3pTN8M4ekD+lNX9LL+eSP5bWC8n7AJY/wAqK3jttmT95DLD2SSudP44maWhNnKA/Ey0zdkfIoj9AIe6qKBalP6u0JHJjgac/eBC0PkgEqj86zBEkEZisP7iBAG74NK8/r6SAHy3psD9YEgpacDOyP+C8c79cdLM/P2bar+mmtD+1Xdm2EMa1Pzu8u9zwzLY/X6r+RvK2tz96pAW56H+4P78qMYczJLk/Q7/ko9mguT9jPrWVoPO5Pyhdz14dG7o/N7dfo74Wuj8jClCsz+a5P4v9cTd0jLk/AA/1WZ0JuT9VlEkI+GC4P2qzsBvWlbc/SFgy5RKstj9gk8KF9Ke1Pw9cfFkLjrQ/QWR3uqGz9TxoXvPdeBkHPfskS4pnUBg96MbXUmhPKT0CsmXM/g46PaG/YImViUo9uBBnM8O7Wj2Z8O0dcqRqPXwwqOTnRHo9eZKIDa2giT3xNJD/Vr2YPbxiQbQ4oqc9Y3nLKwBYtj10+AC6R+jEPecmFq0iXdM9RxSul6zA4T3SiHvAoRzwPXUjcAAM9Pw9NOHcpLvBCT6ivX5v968WPqX/89PEySM+7ORn23UXMT74l6NzcT09Pk5vrKiJxUg+WjncaTzJVD7u4U0k0EZhPkPDGlT9cmw+TM6bCls0dz5A8SL5PcCCPviVl6xOBo4+Ll4wilzRlz6ik7vh0biiPsSNN0GOKq0+ZeREXZuDtj4NZYHWRznBPmHgKJ5vHso+ce5MMwmh0z6bBFuSmj7dPm0SZFtYmOU+fz+DWNCd7z4mbyly1vH2Pk5Iofo8ggA/Epz/dsiNBz96HDSiFKkQP9NlnyrpXhc/4a1uvDRBID9+6xb0OGwmP3UHk4fwrC4/i4Tsl3fPND9X6JeNRQE8P5mwrpe1sEI/tSJrKfG+SD8q8TWDB0BQPzSVO6z3K1U/0f0LaGddWz8bjS+CiothP9hgdQlLUmY/mgEM7iAtbD+XcaP/LqVxP80X1jYD7nU/egKp1Y0Lez/HgBTbp4yAP904j66SGYQ/k3jcFD46iD9PUtRjsfuMP012vjLeNJE/f+159jBHlD+/AtrUnLiXPzEbdHRni5s/yvmggwHAnz/41RnLXiqiP9MrpFrIoqQ/0iPEXfBFpz/0LX00Mg+qPxa3ZFWM+Kw/KQEM8qb6rz8VN6/Gc4axP4l0cvPIErM/iWCs/vqctD8R1kAgVR+2Pw09XDDok7c/Mt63RbH0uD8FTKgtwzu6P+1MMyxxY7s/bxJSUXlmvD9Ts3elLEC9P6rBn3yT7L0/p95sY4xovj8KPnpU5LG+Pw9imzBnx74/oUEQ0Oeovj8T5ftlP1e+PxziAVZE1L0/R27C/rgivT/RvRxWM0a8P3Je+n/+Qrs/w+jbwvcduj/9Yt5iaNy4PzHFU/zdg7c/zSht8QIatj+0Xs4M5/ENPXrUFzKbkB89piFayIlzMD2CMfGImfVAPSViXkaqSlE9gEVpI1VwYT0Ab1dWu2VxPS4tbFmNK4E9kQuAwfzDkD11IH0hmjKgPdQQq5hD+K49ISmkzXZMvT10qv/xYW7LPde2Ov9Ea9k9Q9scw3VQ5z1iOAJd1Sr1PRpwPX5YBgM+9Ioem6ftED5ja/UNtNMdPk3BV5CZBCo+bY+B8yd5Nj7HabrlBzlDPolr5n2cSFA+a0hy+LZSWz4NSAkadLRmPg25gyFJsHI+FSGYh+N5fj61gkLi752IPgaUDc0Vs5M+k+8bHuo8nz57BxgNS4qoPg9vr55WGrM+xBFr5ah4vT4m757/d4fGPpK2kvt7EdE+cm4s1OKh2T4kbtPqphPjPvmD1LZ2Jew+Zg/jZjCV9D7jYIEVptf9Por4lLyFcgU/PlA33FSQDj9OZF5HmZcVP4lzOBL4Px4/F/5jztwCJT9PZ+uuqvEsP5ShQPgnxTM/2iE2Q9rIOj/QIE2Apf5BP2tDaUAv+0c/DgC6PRSzTz+80OiaHshUP1J6ZgiIB1s/a6WQF/FvYT8En9n30VFmP2MQgy/iV2w/M5H2Dt/acT80N+ZE41F2P9KCFio+r3s/rXEXwmIJgT9M63XZns6EP0eI25XCN4k/nANMRMlUjj+IqMMEUhqSP0ipMKRIcpU/TAZbCLM3mT+rxOPBZ26dP2RRGeEkDKE/2iYDT3aaoz+d3Mu2oGCmP4GnTpqoW6k/8Br51wSHrD8itwWIkNyvPw+thSBFqrE/FKlVHtFysz+loU8djEK1P2hmhaV0E7c/DtOgcAbfuD9jcBvhX566P36qoUxtSrw/fjNypBjcvT+dIGK7e0y/P3LcvZmJSsA/K9Y9APjXwD+faha28kvBP7rT39JYpME/P37Qjo/fwT/g1POfjvzBP9jJXMLn+sE/EuFiIMnawT/kKEmN+pzBPzcnjcHVQsE/hY2sATrOwD8E45HKe0HAPy3XoY+iPr8/TDTw6XjVvT/165u35028Pw3pAMmVrro/AJBsRzX+uD/3LZT7V0O3P+Yy80UVGiQ9k6wur0X8ND1xII7/EapFPWLobcxTHlY9RWd+xLZVZj1WW7mu4E52PafV4Ol9CoY9aSpe8zGLlT0gPFKUbdWkPa8raTgu77M9pRCMeKvfwj3wyjvr+K7RPRMx9MSiZeA9dXORdJcY7j3loYXzo1b7PYTxNhsAlQg+sTMIT5rhFT67uM/OXUgjPtcB6Hz60jA+LJKUBJ8RPT4cGnGa6t1IPtmb+6DDEFU+29PB5UGsYT5K5V0Ma15tPgUeqcuEK3g+s5kI4f6zgz4D3uvgQNKPPkn2zaDGdJk+K4ArJNMspD4BwAbNJa+vPvakgzm3prg+tUI84jABwz4TKnJvognNPlaH8Kzp+9U+LCPFvrl+4D7O4lt+d4joPpaegTU6FfI+893QhVps+j6GIeGsAyMDP21m+G+Xegs/jF4WTQaPEz/aUpSSp5obP9/2PopJUCM/YreHSB3MKj/ABTZtGG8yP8wFh+w+Jjk/ExH8oE8DQT/f5r39ytNGP/BKy9iFYE4/8M8cafELVD+/NnnXYD5aP6b9EI0UCmE/IEmCdeDyZT8m5TBC9QtsPzq8KxHvxnE/KaE2k4pbdj+qX4SZveV7P+kJyrLdRIE/DFqC36s2hT89uYa/l9uJP2O371HNRo8/0veBVlrFkj+9dccmHFyWP0hEGaH7bpo/+SEgjLQDnz/Btf7N/g6iPzH0tD6M36Q/52mURLTypz+nD2rsCkarP5HVS01h1a4/abiZFFZNsT/J1t+K/EazP68CRyW6UrU/mUAOScBqtz9KxyEKcYi5PyDwIud9pLs/BWDITA+3vT9g6GfW87e/P7Iu2uZqz8A/bbQMg7qxwT/qPD1w8X7CPx402AdfM8M/qd4N0bXLwz+mFDhxJUXEP9A6OulwncQ/VF44KQDTxD+y8xM67OTEP+chXXwF08Q/nMS2w9OdxD/vCfBekEbEP/2exmQaz8M/NKZK3uU5wz9EEXKf5onCP8uZ7sh3wsE/5HJlCkHnwD8ifq6QNfi/P7Cl6YvkCb4/5dKvwl0LvD9eZ0alMgS6P5ZqwWyL+7c/gh7XYPJGOj2AVGYngCtLPWzLkXTjx1s9xU+S+pEXbD1Rz8YVghh8PVtsMTw/y4s9dmxGd9oymz1souisuFSqPSdy0vlCOLk92WD7Z3/mxz30NUi0mWnWPRTrnYZkzOQ9hHVjc9sZ8z2ItiFkrVwBPvvVDX6rPQ8+2Jn5+JHSGz56c6n/bocoPpZbUFbPaDU+xWum40yAQj74bioCMalPPgqLgw9M01o+hDEOu+WBZj6gwG6CvbNyPtYqFhY7yH4+30cLrUwXiT4KAbnNJ0KUPt1cSZLlM6A+FNvyofmsqT5FNyRakye0PnzS+YF1Wb8+d3JmZV4oyD5Tvg9CN3LSPvczTh446ts+91RFqJru5D529LrYdRzvPgKA0WQr6vY+vqnhmoe6AD+PXXib8DUIPx6usXjkXRE/czHw2u2yGD++zXkVeGkhP8wMEKLpVig/SJi2j+HdMD/DSTz9uS03Pzj54nGilT8/moq5q+JWRT+QmoMjXphMP90ivZsoAFM/5ksTsQYLWT99w5iIYF5gPxnMYsFQOWU/ljs1qwFMaz+4Fa2nrGlxPzcaagCzCXY/w0UeSX+rez8+CYHVwDuBP0OwT4FMTIU/DfjNY6Adij/awBbGP8aPPw8HpmElLpM/8H9rgVv6lj/v8b+nNlGbP5UUyWRUHaA/lVAzOk/eoj8+t9fhPO2lP51D24RISqk/ccnF0dvzrD/05BD1NXOwP633dSMpjrI/zLyoa9rGtD92L2obQBi3P9p/DR07fLk/PtsxIanruz8NGRHngV6+P7X+7Kn/ZcA/DVvdu2eVwT924waIp7jCPzTTEUnlysM/Ik6UrWHHxD+OQH4nm6nFP0YUaYBwbcY/b6orPEEPxz+tk9ljCozHPxrEz3d+4cc/RZhOfhcOyD/F6oRpIhHIPzvObmDD6sc/0TPLy/Kbxz+oEVFfcybHP6VCKKnBjMY/ivuq+v3RxT9orJm40fnEP9L7MUxRCMQ/5A1mB9wBwz9RZ9RU++rBP07YQoBCyMA/Nt0ukWA8vz8X8VOFJuK8P1PJqcHjibo/PXrQce06uD/OvmTXibtQPbM5M2EHI2E9Go8EUhVbcT1G+H0qNmKBPTv37Q6KOJE9GtFu/8ffoD2JMfJFIVuwPbSPkTUjXr89gmpwqz/CzT3jTNrnJ+/bPXqs4HJP8uk9NVwxdW7Z9z0yWuVg7LEFPkb6oGlciBM+CpQN9hFoIT7U+Bi9obUuPr8FnNw10To+p/Aw1TMvRz6zOwMYR9hTPqKMPOWm0WA+5Tf4+dg6bD5OijpdAnZ3PrYbrA80T4M+0vyqNN96jz4svAlSjWqZPsoLwWOAU6Q+idqz4EIasD7OSCKTVka5Poceb9bKpsM+813OVNtGzj4JvG2NDxzXPi4v6Wx1euE+6E/ndAAz6j5lEdgSg3XzPtvc2c2zpfw+ocwnYk/mBD9VqThftDkOP9vsU9QVqhU/KGkfoRPJHj+jgJGgA68lP6l3YitJSC4/BK05+Nz2ND/quXyTncc8P8K3sH5PlkM/qEnPj+tvSj8pO8PhMLFRP2cw/kWVe1c/UfoPWC7pXj8f5JpNVS1kP+5RQ1c7IGo/Q+q2EODGcD/7sQ+XX191P+dko3gmAns/3LyhIcrtgD/s6xlDrg2FP/3PpMzh+Yk/OR5K20nMjz/EEifYcU+TP2kqpmZ6RZc/clonLQzUmz9DwX2my4KgP3Hv+m1NcaM/q1FzcYW4pj8HSeQE21mqP7GpnQLZVK4/EFg0o3VTsT+D9My9k6WzP7a43p4SHbY/FLgFn/S0uD/I4vpH82a7P//EWTiMK74/0WCRdQ19wD8ei+63f+TBP4rpP7zoRsM/2EtvO8+exD/Lbg1vmObFP/d7xASvGMc/LsqI6asvyD/tzpZIfybJP+Pn/QaY+Mk/rltGCQiiyj9N3Xqtox/LP52cyhcbb8s/PbOVNwyPyz/c+m7CDH/LP9qAUMSrP8s/5KLSymrSyj9TN2wVrznKPx98tJGreMk/m2TpuUSTyD/TL3aq743HP0bBw+yNbcY/TzjPiUc3xT94/ff0ZPDDP+y2N0kqnsI/o8eTKrVFwT+Xkm/OvNe/P0y/sGVAKr0/bX7SIQOLuj+0tzV1DgG4PwIk6jUgxmQ978rFZ0ATdT099BGTqSSFPcXMCGc5+pQ9NvqhZMWVpD3c8Gk++/qzPaT8WsgoL8M9slBDCPA40j0S2gY47R/hPeJEQHiq2O895aUXVyZN/T3d7dkl1q0KPjfhAWVOChg+zDiiaqdwJT4eiVHdFu0yPktOcl6tiUA+CFIwhG+cTD5jr+CvgYBYPsdFmvxdxmQ+VpgJIe9wcT549Pbzhv98PugwBnZJ34c+jBzDzmt2kz5IJ51QNm6fPnUFmWwSI6k+T7Razs7psz7zsAgL5UC/PkHAKF3tS8g+WOHrkn220j4HGdu8B4/cPns2RbO6l+U+Jjy/rFQt8D49pws8HwX4PlC69MoWrAE/4q5bkHzFCT+5FrbT0J8SPyvkb1dFrho/159L0IHxIj/HQg/DPqoqPyBSzTK1mjI/hgaHO6e8OT+yDRduRqZBPwl7+bIvAEg/BOwjLTouUD8QxctxIaJVP5TjWaB/rlw/d4CpwOPaYj8IOoQL1JVoP2JmLXsey28/P6zqibNjdD8NvHqRffB5P7iUYWzgXYA/XhwM7Mx8hD/7rc3u4XCJPwfrjSNQV48/g4NrSvomkz8kZaw+QzmXPzfEakzN8Js/UMqF4F+toD99RU9iPsGjP8E9Qdp5OKc/7X/RCvcVqz9slQdMr1qvPxaUV62uArI/vMeNCRqJtD8ZD3DpUT23P5gDhIqZGro/8ysKNLcavT/S8TrH/BrAPwvKK8GlscE/FsZfkytMwz/2mljG2+TEP66pYzecdcY/heBCAhH4xz8tThI/x2XJP5RJvwVjuMo/MIYT6s7pyz9hsxD8avTMP4NzBkw5080/cc+EAQaCzj8YCmVAif3OP8Qtq1yBQ88/aNanOcRSzz/b+jccRyvPP2RQcq0czs4/K3xfYmk9zj/YtEDwTnzNP/QNhNvPjsw/B8Exhax5yz9hWb5ZO0LKPyGdJ+s97sg/fQXDzLSDxz97+w/7swjGPxLXeHY5g8Q/6uqGgQf5wj9PTpitg2/BPzcHySQ3178/Iydfcl/jvD/ttIDkCQu6P9cDwPt3VLc/Vv6gB3IoeT1xHTP8pEiJPd+U0ee0IJk9Vo/zz3yyqD2omGw2GwK4PVHQcyeyFcc9khO5Ig711T3A42PMOqnkPfbmxEYNPPM9UoDZT6y3AT5HkHrHHSYQPp8mZGrAIR0+BkzSzSoBKj782usCg/k2PsvDUxRAF0Q+59hOcB1kUT4dFHWHMc5dPszzXtskSWk+yWC01RI9dT75yfu91amBPrHFWIu1F40+jVR1UcO5lz6K2Hy+cSmjPggU+Reyp64+bZvQ0oNJuD5icnLoUg/DPjR8yIlBos0+NjzEn1fS1j4ePK0aiGnhPp8+WwgpU+o+yApT8p638z7x6mjNbUT9Plwwa6VXhgU/v0QfLkpgDz9yHJne46kWP/AGuQCWOSA/2jtj4pkGJz/P1q4D+jEwP3HI9UhHlTY/J22w87A3Pz+p3OFaAmRFP34w5N8rEE0/oyGPfGGTUz/7pqXWwCVaP5mvvjPWUGE/XH2HKgq+Zj8L6tScAZ9tP400+BB4IXM/CyQmDgmCeD9bklsu1CN/PzHjBelen4M/GcEMz7OHiD9YfvQIK2uOP373nVKutZI/jlosxTTVlj+SfRcy/qSbP+TyQpiGmqA/PqmQMPLJoz9UokDp42anP1ZAXXf5das/0ar8Q+X5rz+FUqcDhXmyPzoZwAaPL7U/AFlJx20cuD+p877G4Tu7P/0R1jT8h74/25UPK438wD8CKOFn+MLCP8jRE/3TkcQ/nO99ygRjxj9yX5us3y/IP+0GeH5Q8ck/wgN0rAegyz8h7C7HrDTNP5AisS4UqM4/a8LerXXzzz/QPaHdUIjQPz7tdYgZ/dA/p0ucNd1V0T/LoQ8+8ZDRP/lhpT1FrdE/wNRpFmuq0T8+Jj5dmYjRPyBpiyKoSNE/D57DTgjs0D+crakKtnTQP+VeccdNys8/IJWSE2mAzj9lrE9FChLNP/mej4Hkhcs/FboiGN/iyT8YkQs+5C/IP7SA3AKzc8Y/1GqVDLa0xD+3YO1P4PjCPyzndpyQRcE/HTqw5vg+vz8/NOaCRBW8P6ATAoGFFLk/So0S8sFBtj+fLUqVf7yNPTiVtPBdm509krwKA4ImrT2oL/S4ZGK8PXY85VTzVcs9ckhLQCkK2j1yVteikonoPQ+m6RjB3/Y9RqUGS7wYBT7Vea23d0ATPtsyIdRVYiE+rEs62H0RLz6gi4oooHk7Pu9XfqFIDEg+Sobg72/VVD4CJy4Kyd1hPvHh7n/GVW4+vexrnNx+eT56XqUwLjeFPhM+ZxjnepE+3UYIcNOFnD4HuQunYQunPlBPGC5FcLI+X6J1/y85vT4RJjW1/O/GPm92P6RI1dE+ThtCD/J32z5+4vlHEPXkPp89GsWVru8++wxvEPu59z67lzi2EZsBPyxAnirP4wk/o2B1iRjdEj+eap1xwD0bP9UIOblpfiM/3EIgic6mKz/zX7H2PHAzP4ogcK3zFjs/IF8T8Sm2Qj/irHmsBKBJPwFDwnUuZVE/jTZGdStqVz8cUhinsT9fP005CTHsrGQ/hRgDSBUhaz+x+bX0W6ZxPxDuLfo+xnY/nhA0+NMkfT+xWaKPen6CPwGxwnOuR4c/yREsFPsQjT+O6nBesv+RP4jlfY2fHJY/SMjaX5rymj+8hVhgRUqgPx2S27MbiqM/R//nLr1Apz/KjcaasXSrPwfkcpNTFbA/OyldlH6ysj+4da2vqZG1P7fEC9oRsbg/4TtFXjYNvD/hnCWauaC/P1At4AwossE/tRiGQ2Cnwz/md54ie6rFP4dRtOETtcc/oJ3FUQjAyT/6bpRmn8PLPylHeDu4t80/VxMgGACUzz8NjG3DFqjQPx3xdhgfctE/2xwce1ok0j/6gDLMarvSPyate61tNNM/tds0FBSN0z+UU+IPtcPTP1BWBfBa19M/RTfAOMrH0z/GJk4jgpXTP4OdTre2QdM/DcfE10TO0j9/qR7moD3SP2yU6NnAktE/j5hd2gLR0D9eOdEJI/jPP2ySLDGOL84//qjScyFQzD+h7+zcpWHKP49XWZuga8g/hNyubyZ1xj9qaj5htoTEP7/5FIYcoMI/gKbrOl3MwD/L0Zd+URu+P5UFHpmtzro/szkg4dK3tz8ugJtxLNq0P7y5XTd5KaE9K1PCLertsD1TTIIApoPAPV5qq9373M893zdRVQVn3j2PWPIVebHsPU5wYz+1yfo9AQPK1by9CD7Wsnypk5sWPv0z4pmocCQ+vpVEIFZJMj6DXjWjfjBAPoCkA/OOXkw+V+PF++WZWD5abxS2rx1lPmBPV+Tj8HE+falrEiAufj7FyJSDgiGJPt6i9dECuJQ+8sTk3bnpoD4x4eaioFerPrrOkpjy4rU+q+ERbqRZwT5PSDxWgz7LPkn201ixL9U+p8GDysRR4D61LTTokOfoPvdCVQ9P0/I+au/mSjIy/D4u41YytOsEPxrCxCCzwg4/ktRRB35oFj+c5PnjCC0gP023VmvVJCc/+eLtPp1oMD9a8iIpaQ83PzXZWU2ZD0A/0PyPkgItRj8s0/IGClpOP2KMRNVCl1Q/oSlwfn6yWz9tKDsn8HdiP1nzsIV6a2g/albuCP8BcD/aCa1sdc90P3ydv3TW03o/RNiShPslgT+IT9xF072FP8mtTEyaVos/F2eOTSQMkT9kcjp2fhaVP94jmUgK4Jk/akpVEYF+nz9hnNbreAOjP30mgDh3xqY/BKv4e88Qqz93CSoqYemvP0palDBpqrI/2pmC1oWqtT+3MYhTXfS4Pxgl/jBxhbw/TosLNKAswD865RwJlDTCP0+otKIqVsQ/XZy0X+WLxj8cPoUePs/IP9pg1DLAGMs/LlHsiyxgzT/dkJpaqJzPP7QnMXZ64tA/p/P2cNfn0T8XgKY0ydnSPwoo9eHgs9M/fSxikQVy1D911+5nlRDVP0u1wFmDjNU/58bCQ3Dj1T9uZdQ6vhPWP6GkhzWdHNY/ztMJiBD+1T84Mt8D7bjVPxLFaejPTtU/FROkKA/C1D8zWz/YoxXUP1nQi9IPTdM/ZXY/3D9s0j8Qzuyca3fRPwnTX9T0ctA/cd0jSY7Gzj857jlXc5nMP8i4aPvmZso/njgrsac2yD+PGKVZvQ/GPyD50LJb+MM/H0wsb871wT+pNuu1bgzAP9QwjN5Cf7w/dttv3bojuT/Ovy2icAm2P6mWxXzxMbM/e02beiZbsz1WRGUnFuvCPauuyZDySNI98LHQRlN64T1cpIYP/YXwPctfd0ML5/49gMalpuSVDD76TbScsCgaPs7PbW8Iryc+Z/msNFw3NT7loEkQes5CPloOlr04f1A+A38KhYykXD7luucHMpxoPlPXapX+7XQ+2B0jg4+egT49PMhf8l2NPnsR2+qqOpg+G7uNmbvKoz51Vq1MDAKwPj+QOQI+pLk+hLH4YC5WxD6/ktYka/LPPk+StNYh2tg+yja1cAom4z5ruOg6izrtPv3rsaYBGfY+KSILL+CMAD/c8Kp0kY8IPz/c87tbDhI/m/bE6ANOGj+gPJoAfPwiPyjnQpHiKCs/vpHrtUdAMz//hNzX9ws7PzlGChqu1EI/PK/riVT9ST+1vrJRC8dRPwMRo4O9G1g/9CaJOII0YD/4nghnAZllPxfyAEvCiWw/bBld8aGxcj/nAThFk0h4P00Z8E5sR38/izlyBvH5gz98jtH5tU2JP66Z5dpRyY8/dtBDrgvNkz8F/lWfyHeYP8LQV2Y2/Z0/Z7pmn8Y6oj+w9jiYCfylP2cgiKATTao/jKMTmxg3rz8hEfOEn2CyP8B1/QMFeLU/UMsEvmLiuD+NBgr2fZ68PwbtH3t/VMA/fA6H0yB+wj9IoVh2G8jEPwf5tSItLcc/GuprON+myT8NkcF8mS3MP78IpKrBuM4/KdXVwXOf0D9JYYE0/trRP0AgjWvKCdM/bGLev5gm1D/KIRCcRizVP1AUbEb2FdY/y1W6yjXf1j8FZoxMI4TXP7KK3B+NAdg/A+sOMwxV2D+xK7WYF33YPw2sQlQQedg/4zlO7kRJ2D8oTWS87O7XPwNhzS8bbNc/SDEL36vD1j8DMAJSKPnVP7iJc9uoENU/0JLU+LEO1D+ZUC3JD/jSP2PZ8Syx0dE/Tcw/DISg0D9hhOUzqNLOP/BP+mZaYcw/nBsUeYT1yT+gJhIcspbHP9oBp493S8U/sbKxHF8Zwz84YqD94ATBP25Nc7vJIr4/JJ66ipeCuj9q/FwcAiy3P0SCDLEhILQ/n5n84oResT9MMsq9jlfFPW5Ay3NFq9Q9YuB3z3bL4z17qoBvlb/yPZgBbjsVkAE+hXhG/PxFED6RZt3E8NQdPn/J1NviDCs+jELvAG5EOD6CzUCraYpFPiOLXcZ+61I+4EY11OhxYD7MFz64vUpsPrEuV/o/Fng+pLvoMjtMhD7gh7znd+6QPvJCLu+G9ps+CMavJz3cpj7Cl+pt3ICyPrSIo92RqL0+2quW42SJxz4HAPjCNX/SPmWHicexytw+X4Cf1ngx5j7MaGWmpfHwPo3k6MWhoPk+c7X1LcIyAz/Hl4Guv34MP75stYha8xQ/kxHH6d+FHj9wOreR1AcmP5InMp8ogy8/12GQC1tVNj+jyGXHF18/P5t0NlIm1kU/dGUrMAshTj/9mT4/EZpUP+z/sGpa7Vs/PYGg33DDYj/ulwE0nf5oP/PQrU0IgXA/a2V3E9CbdT9/9s/7Fw18PxJ70WeXDYI/mkO0CaUKhz+XswrblymNP6iyQZ8aTZI/HgvRfL3Hlj8zBd6EVB+cP/xll4Z+N6E/HKt2P8LopD/RnsSBOTCpP47y5Rd5Ga4/XZycpSXXsT9c6nCHBfu0P4uLcfF9erg/+YUSAtNVvD8MEErcj0XAP+q8KLYKi8I/z2EtZeX3xD9kUsFUT4fHP5SKJjsZM8o/L9guj7/zzD+Borshg8DPP8Lt4wnIR9E/MouZURmr0j/qAo9BjATUP3wABFpOTtU/9sRIkY2C1j+Z5IRipJvXP4lBJEZGlNg/LTlOpapn2T8+zzVdtBHaP1GviAYUj9o/IvMfcGPd2j8G6yUOOfvaP6wozYMy6No/HLZq3vWk2j9H6KCOKTPaP+5xSp9jldk/g31+ExHP2D8pFWquVuTXP5Mykqzs2dY/s3xfIve01T+ywLjG3HrUP5Z+hekdMdM/+qzjNy3d0T8Hoku9S4TQP3voIJ7SVs4/nD73hRSuyz9e8cEAZhbJP+Y1y1KzlsY/myGEm7s0xD+6tb2oC/XBPxw2hEQGtr8/eJpzRsXRuz81vgo9wj+4P3Our52NALU/gcfI4hcTsj+DiRN55umuP17Uis5cBNc9Fsv/+NEW5j0z0u37ifb0PZk5Q9LErAM+047ZuH5DEj6NnjgI9MQgPicuHfVXdi4+ZHlVWiJfOz437ib6OVVIPg5J/94xZ1U+h6a4ve6gYj5lUWylhQtwPo4ob4mHWns+PWi7fbEThz4uiedIN0WTPrF+ZFqI258+vWSBRYURqj60umSpRh61Ptz3SDM58MA+MzqtrmPnyj70/YrRNyjVPkr/+KHieeA+iCYysutp6T6doE2VbGnzPlPnK70+X/0+NC7Rj9MCBj9uj4pE8VYQP8qsKEpDCBg/J5iMu1mCIT+tq1tRI0cpP6e2DZtWFDI/JMdS3U+gOT+V14jdRf9BPycOpF8aDUk/ey7CE3VHUT8eTSQ09p9XP/HOeFgEAmA/eL8mt8aAZT8WICm076FsP+Qo6YHO5XI/g2r07u26eD/TDR398wqAPyQJLhEWo4Q/L562AYFSij9ua4EGRaWQP82MJ+Rc4JQ/YJGiBQD3mT/f5J5fZAOgP/Kb6GbalqM/1b2mC5zEpz+VMIaokZqsP+RIkeyYErE/qRuBBmk3tD/eK//Wdr+3PwsEoKG1rLs/EpDpJ/T+vz/TvBBqxVnCP3bID5+L4sQ/S2DaD6WVxz9y4bA4Zm3KP1Qwe9qfYs0/yhLXGlc20D9cTSQYzMDRP4q/rjofS9M/WnHp4UzP1D9yY8thA0fWP+0DQ3LOq9c/M68Nh0b32D/FfyopQiPaPw4fiTkHKts//u4C8XkG3D9jDGt9R7TcP9UEm0cKMN0/JCmiN2Z33T8+iyyvG4ndP388tWcQZd0/GNVu400M3T/z+Puj9YDcP23ZTtkrxts/1LLrrPnf2j8qBUisKNPZP/4lTRoZpdg/CE2lGZVb1z/+U56tovzVP8pttn9WjtQ/gmhNLqkW0z+EhpGqUJvRP1VPCd2eIdA/ZfrQ38xczT+rc+aDzIvKP+xBN1V318c/EEEnybZFxT+e9RFYIdvCP1xlC8cDm8A/1WNOoOcOvT8C+8mL1EK5PwojdXLF0bU/K97iYP25sj9TOK1vqvCvPwA2ipwLEas/D0YKufVK6D26jB6LfRr3Pbe7TSdpugU+1s99B5Q1FD5XjnlHO5ciPsLxStl56jA+5MRiOKVzPj7cNYXbnB1LPvxUt1tk41c+iib78ZzSZD7dI3OS0fVxPqnXip/vqH4+DgHdAjHmiT6QVmYiL6eVPnXyIRwj66E+sMgx8BZbrT5pnZCcEM63PiUihUFiHMM+fdNoRWVhzj5IFJEV7ujXPgQ16koeouI+rkyUuIvC7D6ORp6xEfv1PvohFNFpowA/nzVFLN/yCD+O8pZ1IIcSP/WC0WeRQhs/Zr1sm83dIz/Pr3SH968sP9aVPeR2hTQ/pPGg/ScXPT8CD/WXV25EP8yGE/VOcEw/Yh4BQkedUz8g6fXxfNBaP0UGbt10KmI/XTI3bGdlaD9birBV3zxwP+U/NFpDbXU/Pvz66GUHfD/jueuesyyCP4/lCtUnXoc/HLOw7vvJjT/Fuvw9nNOSPyWTc7C0mJc/1DSiT9ZTnT9xAc3+1xKiP835vRqaF6Y/xGe9zUTIqj/wyFbW8hmwP1Z0H+rnM7M/CFe/pGu3tj+VHJSoQai6P1/rgyYgCL8/36BgxybrwT+gCY1BpIfEP6W03eE/Vsc/JhlE2Q9Syj/wVBZHfXTNP7rJNuqjWtA/GLJTKU0F0j/bd2eOmLTTP13+JAxJYtU/qvDOnaoH1z9mAqvFvZ3YP34FIspoHdo/IK3Y0Kx/2z+FU5+p3L3cP1HAvevS0d0/CAUt+iS23j8y7tWZUGbfPw9iM/7h3t8/AUFeRcgO4D8st9F9qBDgP+jRXTBc6t8/OmxRZCp63z/Xz1o1Y9PeP5ZXoGLD+d0/P1BeqPnx3D/qY2R/fMHbPzKXUsxabto/2V2krwn/2D9cg1ysMXrXP/pCm0B95tU/2GPp1WpK1D9BFgKjI6zSP83Ab71YEdE/km2/aE7+zj8Ta4pOB/TLP9N7b89aC8k/pXsvuVFKxj+d3r8ggbXDP+3iUjIYUME/7zTnfO83vj8e5c+9ojO6P2cFswGYkrY/pTHmZVdSsz8BJNh/9W6wPwhsaGvJxqs/xltir4VTpz8t+UoYfBr5Pb+PvIsmqQc+iutjRZcNFj6uvn/d8VMkPo/Fb3JRiDI+MyczbES2QD5l42HTudBNPlX4/1y1T1o+U+8p9eH4Zj4W2hbCUNhzPtyKQVm19oA+DfzwLhWzjD7m0Vu9tgaYPmQ5MApK6KM+KetFZpJTsD6W5LXDFoK6PkyvGQaoTcU+bmkdlRHz0D7yZ7XmDbTaPlaySdLs0+Q+PQ/XhAsW8D4ywc6qMpv4Pm4wUGdHowI/fezctpf2Cz+nHRVWBMcUP1KxT0F8lR4/Xv1iVDZMJj9af/4ExBowP0xF19cKDDc/OCM86shWQD+B8RklUvRGPyeMCahS9E8/WQI4WkoKVj/a40+2YyFeP2/r5t43aWQ/05YNHnJoaz+OcZTaQD1yP7gKGmz5D3g/YR24QLt3fz9cPYR8yGWEP+2JSbQ/N4o/jn5IUNazkD+NA7RAABqVPwd3lkb/bpo/2QgStMhqoD+iKckoxzikPz1CVvh1s6g/FnQZcEXsrT//MQWgs/mxPy+P7RyCa7U/m5y61TBRuT9pq6khf669P9kUJBJsQsE/eR35HHTpwz/X8e5uH8rGPxkMq7CB4Mk/HBajTOEmzT9YEErC1krQPxsaMgLDEdI/i2OEvKri0z+HhrbnP7fVP5qiXN6RiNc/Rvu8DzdP2T8uSQRcfgPbP+/sYV2mndw/+zhjdBgW3j9Gbh0fpWXfP1aW03rfQuA/UMk70Fi44D/Y+2kf6RDhPzo2P37TSuE/zVBtAAJl4T9R46c0Dl/hP+YxaU1DOeE/ZHYs7Zn04D8qvererZLgP5YW8k6uFeA/K0qqsZIA3z/Y/LHjJ6vdPzr7D7LeMdw/8O31i9qb2j8AszMaaPDYP0GqWbrHNtc/Wxj5MPx11T9Q5N09n7TTP4TChFO9+NE/9aHyQblH0D+iDzlmcEzNPzW9oNcrMMo/4I7qyMFAxz9t2fb7uoLEP6rR7bUe+cE/PrbX8x5Lvz+koX/H3hC7PwXzvW0TQrc/+9aso37bsz+WtBHZZ9iwPxgLWEDpZaw/ua9dL/jIpz/So5YRpsujP+I1fok/aQk+CTeJtdq8Fz5lgMyElO0lPrUXX5FqCDQ+UOs3Z+AZQj4I28tegi1QPuWDnSMGm1w+hDmOI+0EaT7J6qruV6Z1PkcgLTNHiYI+8rvtrHlojz68Ms/eBlWaPiLPVTYn2aU+geCYChjxsT6tw6Ojxiq9PoXX3cO8d8c+fjsgwTCx0j4B7aN4t3rdPvaNKmjsA+c+4tL/P6jK8T5aHJ/S4zz7Pqxl7C2ipQQ/0Hrbnuj/Dj+Bb0zeXwwXP9uccswi+SA//amP6RDDKD+8lM0/fuQxP6dTRH6wnTk/2bI9OZUqQj8lQ+S7VYdJP7EwrcvbxVE/04Qw43GFWD9/mop/SsNgPxce0j5OtmY/nDjbcml/bj80dbyRSkt0P2M7A14mxXo/vTQaIVmAgT9GeH3TFK+GP6j9qwFtJY0/1rBP8zeQkj+P0SLTj3GXP9fQS6/OWp0/TdU5bvk4oj+wc5dZBW+mPyUKnUAMY6s/wjXGSu6TsD8pMW6WZOezP4amk1hks7c/Wj2MJ8L9uz+GBkerF2XAP1MGj5DfDMM/FUlb7jn1xT99yDGEbRvJP8cEn5rfesw/6Zh/nX0G0D9x4TjQlOTRP2Xn8Rxv0tM/tmVn4NvJ1T/dbNxy28PXP5jp7vjEuNk/3qZhxnWg2z96iUHViHLdP3sTtEuUJt8/FB1QTTVa4D/isYs3LgrhP/tc6UO8n+E/Z2AgQeMX4j8mZvHwPHDiP3VCwXYNp+I/EHEivlG74j/7UKkzx6ziP5kzgYHse+I/wyK4W/sp4j+R/NfA27jhP7DZ+GMRK+E/7YehOaSD4D82CoOoCozfP5GFWbvi690/0IeoDqQu3D9X4HyHP1zaP3QgjQSKfNg/0vpB+weX1j8lRZDyv7LUPy9kkhwV1tI/s96R0aoG0T+mnv9lopLOP/SXQpL1Q8s/1DtEE3UnyD8JsrPGkkHFP003G18klcI/+GwMhoUjwD+HDjglg9m7P/cjbF+E37c/QT2o7ABVtD+wdCWEbDSxP6SS8G437qw/vMv10zkrqD80ncdPERCkP4AU3bePjKA/OIAPr201GT7PbPB2KlcnPlHACBfcXjU+TXvsS9tZQz40eWifllRRPtz3VsJGtF4+CeEChdvnaj6+766RElN3PvZziItAAYQ+d3cC5/35kD6Tj+to1YKcPgZ8yyEpsac+B+cWo+V7sz4ngbQjtre/PlwsA3KVjck+Uew5CNBg1D4aWXN+fRbgPs8X+o3bJek+wE4T0Mh18z6ZR/95GtL9PhidAs0DoAY/hTNe1bH/ED9LnW2W70sZP5pZ7RJTpCI/zBA68rc2Kz9LlSFy6qwzP1iHDrnULjw/fOgLWu7+Qz+lCUNbURxMP88u8eizk1M//JizMo4EWz9u22H2N3liP0rtBnmvCGk/tztb2DfPcD/jhWxEQ192PwH5AUbTgn0/IJmgesZKgz9XBnZPhQCJP3fHmw1FD5A/bRqe9tBzlD+RsCjKfNKZP7Cj2ghKKaA/hA3x0q8OpD8935fpla6oP+w9BDMFHq4/hKr5jZQ4sj9fFRKLON21P6c245XMBLo/hdjJwVC1vj93KfHGL/nBP5plEYpU3sQ/osvqCrwIyD+yBt04JHXLP7lJq1E7Hs8/K5Tx4EN+0T+ENNelMYPTP8GeRfEFmNU/7b+f2+W11z9X8mRmHNXZP8On7pVF7ds/yzQTvoP13T8BKfFCveTfP8ajFD/w2OA/IOiFgRWq4T+MFi2WuGHiP9LhBF0x/OI/yB4VqWR24z9zjmr63s3jPwwMHm/pAOQ/sCG08ZcO5D/GdyUD0PbjPyP/kd9HuuM/oN1oIH5a4z+LgnNeqtniPzPJVaynOuI/TvTmCNqA4T/F/ugcELDgP4BsYGzFmN8/2kmp9Sa03T9f7duD2LrbP/rJcL5Atdk/smaC/WGr1z/K5enjqqTVP7A3sxjQp9M/+8nn0a+60T/Ef2S3fsTPP/cvwpcERcw/w7Y6UBX9yD+eSW7jAfHFPxlNnZxlI8M/VbHWw02VwD9Q0s2N0Yy8P/ZRn/dzarg/nGF4rZ6+tD8BeXB67YKxPwNolQfEX60/1aIt/IN6qD+JjtfM1kSkP4KORK46raA/dXduNNNEmz+Y1AEy9oQoPqkYMCK7gDY+kQ56KzJsRD7mAJpJi1RSPoZyHT+mRWA+8+18426TbD53Ul1LHdJ4PkbFgYf9U4U+rQy7Fcchkj5iKPtlAYGePvuql8XIY6k+4JAyy7rptD4yfproJwzBPvw5xWnvgcs+XPBFr3P31T6TNhUrOl3hPtjxu/gNLes+nu++GrwN9T74d3JCFiYAP7QhjU5yhwg/Ko2wQmNyEj9zPyG+yHkbP7n6uOmpQyQ/9QQJX8GaLT/zjH+iNWs1P48xJycMsz4/Z3lX9yzLRT8mFcjyU6dOP+DNtMGIW1U/9Hqs4JN8XT8d55voEitkP7KCpFyGVms/EJL0ckpccj/gHa88vHB4P2XENOYNH4A/NDocMS0UhT/An21nQlGLP3LX3LS8i5E/3/uUg7RXlj82dvmIOTScP+N81U/rpaE/H+5D/JDlpT8PDZYu0++qP9sLZZ6gbbA/QufyG7Desz/YrKEx29S3P1GnQUNeWLw/1fwygK+3wD9os47IrI7DP31Ak+ZIscY/4mcQIsgdyj9XPcKsWdDNPx+T4i534dA/6MQ/vZD20j8HGtdwGyLVP0g0+YyYXdc/RTuaWYCh2T+3JpaSZuXbP4BjsfgqIN4/Tno7WBok4D8qAjU22ynhP4riqmJ8HOI/y4jz1FP34j9TIGy/D7bjP57wrDXbVOQ/SIIwMn/Q5D8+HCtrfiblPw2UzaQqVeU/w8CrgrJb5T+a+Sw8JzrlP0YuJQN68eQ/alMJWHGD5D8HfVzulvLjP4t9tR4fQuM/BkxaLct14j9JsELgx5HhP0FtqPuJmuA/UBY8gFQp3z/pginkhAndP625NZaZ3to/+b6B+g2x2D9SN6Zas4jWP4FP5PyJbNQ/6TGg+6Ri0j+BqQPqGHDQP/olSKDpMc0/7F8sN4nAyT9aPa6YN5DGPzTuH9hNo8M/IaKPfIT6wD/ctdJHUCq9PxEvTrGk4rg/z+LOmUcYtT+4wsQV+8OxPxGDImTcuq0/52L1GEC3qD8Wb5wjb2qkP7Z1RiydwaA/fpN6Dr9Umz/BXBsWHiaWP7sIR+6vZDc+It30nDBIRT614x0NYyVTPsSovHPRCGE+MvE9ncL6bT7DY1syIBh6PqCl6ECld4Y+sPzscCgjkz4/9jpSoiCgPm740KwZ5ao+K+jE/sAwtj4mGAXvRB7CPlG8qKnfR80+lHIjPdNq1z5j9t1geoniPjM7Qu/sDO0+yevWN9OI9j7/w/1OL04BP9yXREDYUAo/MLt30sjPEz/Re32AxYkdP6Rt6apNziU/MUYOX2riLz/cEurqRBY3P4z2vEC9jkA/v7uGdlOGRz89AFTP9Y1QP5vlTDPTFFc/PzSrQvDhXz+Mku2UFNFlP9vvO0d5lW0/QNgiDBrgcz9cvY/ZzHZ6PwtLrti8dYE/HTg/vSrVhj8PTLh+65eNP+tovDc3ApM//BrsmIc0mD+JqGNlr42eP9oFfZK6HaM/Rjqj0tu2pz+Tpvz2nCqtPyBIoNSHyLE/u2c5pYaAtT88n0wWlse5PxOfObxMpr4/3WlRbngRwj9fMlg2bSDFPynRUjLtf8g/VZoY9tctzD9Tjf4W5RLQPyA+esB5MNI/XeoSPABr1D+GRm32jbzWPzS3hUcFHtk/Kdum8TCH2z/jDRRY7e7dPwEl/FKvJeA/gY0OLBlJ4T/LawXwdFziP6iPNLqVWuM/0Awg0oo+5D/f2Hr6yAPlPz6TrF1RpuU/lkzXQdQi5j+6bnfczXbmP7RVVeaboOY/5Pks7oqf5j/Xd9nV2nPmPw3axFq6HuY/2eX4/zmi5T/eVuMdNwHlP5XsoTtAP+Q/C6H8IHRg4z/Rj9VDXWniP1wR9UzLXuE/2tclb6xF4D/f8Xtj0EXeP4k3UUF69ts/2tLVJ0Wm2T86E1jqXl3XP7uncDANI9U/MWdl05H90j+bgqjTGvLQP+MX5ZJ6Cc4/jglchPRwyj/1n25OmB7HP8lrkSR2FMQ/bM/RsexSwT9jsNNdxrG9P+dw1moOSLk/nMruvBZitT8EbkFNyPexP4Mibi0EAK4/KYm0XgHiqD/zuVlTcoGkPwVrNChMyqA/GvH09BhSmz+1xtpINhaWPxnRm9QjvpE/9dzi6+XmRT55l4mwm8BTPojlrGWknWE+ORkjjPESbz49BrhuXht7PnuCqVykY4c+ZVtoBbD2kz4v8b2nb9ugPkvzbrpWKqw+55yBof1Htz5a2otJzgrDPpZUcgRj084+dN1LEEqx2D7qpW1MmJPjPlhKVdJ7ue4+XMdzYcXd9z5GC06fPFoCP/n8Hphy8Qs/30f6S9QPFT98OUWd+G8fP7hWsaaCOyc/WmEwBIYAMT8i2t8IB6U4P96gW7+hsEE/lh4ZT1snST+2dR1Kx7ZRPxmVYlz0tlg/fjhql3MUYT9HtnGWVGNnP3x2w8f6um8/Pff+xa1TdT+GuMlcVWh8P2MJ186Mv4I/voH75yeGiD9YVixv2cqPP9lWsAOgbJQ/CssWbrMCmj92kGruvWqgPxtmAN/3iqQ/kLiOD5V7qT/OEBamjFavP0Ije+i1GrM/U/xojywYtz/il2y/ea67P3aRDTJFc8A/93JxtmBjwz8v0fRZJ6nGP1hE6kdGRMo/r2+CqTYyzj/GMXybADfRPyevWrIJeNM/aqRESRXX1T9l2c90rE3YP6BaV0QT1No/XoU7JWhh3T/SHevz0evfP0wtm+NdNOE/TCI3Vo5m4j8TZYRh5IbjPxmtXT3kj+Q/EKYPG1l85T80zLkjgUfmP7/k9ZY27eY/glK0FBRq5z93czxUkrvnP5auctwd4Oc/XEp5uiPX5z+GSJSrFKHnP9Xly65eP+c/f3SgcF205j8eeP53QgPmPwT/OV/2L+U/pZUxsfQ+5D8Zbwc1JDXjP5Qt74itF+I/ihbv5dHr4D9CctSLh23fP1oZa9wF+9w/p2TKMXqJ2j/0+thGaCHYP54cTKFUytU/ar3LqKmK0z9UJPsZqWfRPzi9Rx7Sys4/KNrmyLYNyz8ci5nQu5vHP/P37SWjdsQ/slKW1G2ewT+6P2ruNiO+P8A4BszZmrk/CFQIHE6ctT/ziyGuph6yPwrSDhruL64/5qOHYH77qD9ycf05koqkPwz2D+Lux6A/yUVrsBI+mz+9L5X1zviVP4iB05LLm5E/N9WdupILjD/oLqw0gyFUPjcsVsml/2E+Mu9PYaHTbz7tzJczMdR7PsjMaeEXEYg+ZnzwTUWWlD59ScQXmWuhPk5YFXViKq0+kiRFQbsnuD5DP05fVsvDPpLclinzDNA+jeDU1ELC2T4Wt7Rls3TkPlb0pYTsE/A+5QrpAxIE+T4NkUIOrkMDP4iCdEA+Xw0/kJTAfPkqFj/iY34qkZAgP64e8yP/gig/CniQXkn1MT8fWqlOyA46Pzar9s7/uEI/QQegcYWlSj+wE39ZBMhSP187yYJ/OVo//kCZ1foiYj+xq2kiCtpoPy8OJIVP3nA/hfxAwx2wdj+zIaEKRjx+P23Y/M6a9oM/WY1lzpEfij8bztTcMvCQP5AACjzgxJU/wMcMcJu6mz+XxNwVGYGhP6L5Bmnb56U/2g9kXrYsqz+PeBl6lrWwP2Sp6zwfX7Q/7Am29KqfuD8pB9J3iYK9P+T+7lZ9iME/DGpKyL2oxD9BzeUSiSPIP7BuDr9Q+Ms/5Ak97hMS0D/K2j4fwlDSP6EwjIcJtNQ/JTdnsFI21z/l8m5KnNDZPzNbAaGOetw/2NjB6J4q3z9+f/IWIevgP/vLe2AXOeI/BwEMDlV54z84BQMz8KXkP/z+qwIhueU/jj7RmHGt5j+SnKeT7H3nPxqEf01IJug/sJJvowyj6D9RYGx1sfHoPy7dFWm0EOk/7oHu66T/6D81F+L0Jb/oP7N7G47lUOg/BxQJt4q35z+ubCypmvbmP7tDT/JWEuY/ymXfJJYP5T8mioYQmfPjPzg7Bofew+I/s3VZpfeF4T8pgSNxXj/gP/2hLreg6t0/gY0L1VtZ2z/TofzZwNPYP+85ZYKMYdY/XDaHp0sJ1D/MzNpUTtDRP4GB1gdOdc8/yOZVMGmWyz+HO4C/agfIP0FZ2VfCycQ/C0zSBBHdwT8w2fLS236+P0UOkDtb27k/C+joFFLHtT/rD58zAjmyP1aAnp50S64/YAqZwYoEqT8tD4U8lYakP7q15HE6u6A/fb0Afu8Zmz8JMWHzAs+VP6I19tAMcJE/gtuhxWe1iz9b47ifIuCFP2BLtiQbLGI+uYan8bQbcD5KY4C7ZT18PpNwVh8he4g+sxZUwnL9lD6xdnq6Hs2hPjZ7MYsy3q0+vs8rW+PJuD7JMdyyr1rEPkgCdxxfidA+BD2US5eW2j61HXkB/CblPjOkdNlZp/A+BKBVOFv0+T4dnEjGwwQEP9hKayBfkQ4/ne9VkXoaFz/KcPsckEkhPxXUp1A8nSk/nb0xAvnJMj9E4W+ehEs7Pyq0xHMXokM/Q4mguan4Sz9pwOkr9LtTP/Ohr9ODlFs/eAPWbBoXYz+VOX6xzS1qP1yhMhA5yHE/OXS/Rsvudz8ExlNz5+l/P0huLKo4FYU/NvBkGhSaiz9PzjWtmeeRP6h/JNgLBZc/SD1SodRUnT+4wN1QT4WiP7i+She+Lqc/6g9Cw17DrD+gsnKWGbCxPwg1cXbQkLU/Z/R2mCYRuj+xdJck6Dy/P+lySqDSjsI/F6uh4PncxT/6g6g6WIrJP7S1JeUkls0/tatfoof+0D99qYL0flzTP5moNEtx4NU/U4xyIlSE2D8BQcqIn0DbP1VcpmxkDN4/xmr/5rlu4D8PfdA9S9ThP0RqogbqMOM/kFOCa2N+5D84EnzZfLblP1n9LOEl0+Y/xwKv4KrO5z/iiwAh5qPoPyU/1xFtTuk/TZLdc7fK6T+qce2JPhbqP23ccdCSL+o/GfTpOGcW6j8qzQR1kcvpP5qjSnD/UOk/7mXapaKp6D+E3CWBUtnnPyU0mGOn5OY/WdSfONDQ5T+TvrqwZKPkP5EJcko2YuM/FYXXPSIT4j/mJCEw5rvgP3xglJvyw94//TBaItYU3D/NWLAwkXPZP2ZtAQ0S6NY/qOFwFAJ51D+SXQyPuivSP78LyDBGBNA/KM5DadsKzD+VX4lXm2HIP0giC9jmDcU/8u7c+f0Owj+eb0DUH8W+P70EMZINCro/x+Ejn6TjtT8hQmEcXUeyP4hVdL+SU64/20vfIBH+qD/C9n04UXakP6fhraXtpKA/TOiSbP3mmj+0aGay8ZmVP74xePfaO5E/Waw0oMdSiz/lsL9vwIWFP7caqKeW2IA/1XYrrwgecD67JsAxeFR8Pop2BUAdn4g+elnFzpgplT6KPYn9ff2hPlxIdMcfQa4+I4jPCEMquT4Kzy7NJrXEPq4z25TD29A+GcL1nN4o2z51dNc48qXlPrVCr5lXE/E+cSGrbrOo+j4EgxwDypgEP90KRth6gA8/h8M/FKzYFz9QbVPoqN4hPwpAGcy/gyo/LyjnXcd5Mz8G8okuM1Q8P1ESAeXRZkQ/nHSWbYEZTT8c18SJco1UP1LfkWnSwFw/MfT5M9zrYz+WG1//11drP9BNkJWllnI/23bUBJcJeT8YHTJWkLSAP4VfbeoZFoY/wesl7dHujD99h/IUO8eSPztcXfSNJ5g/U7lvF1zKnj9EKcR9BHOjP6ARjIVBWqg/nTWPZAI5rj8NlGfc25ayPxAPwJwPq7Y/DXWQXgZnuz/wRe9BgmvAP360YTF0gsM/MFmmf7D7xj8/Jzx7ktjKP8pSpAYaGM8/VsiNtkvb0T8X14wYtFbUP2XXQkll+dY/ZYbMeea82T+A4rSgLpncP90jXJC9hN8/wWGzeWM64T8aLg5dt67iP0uN5r0KGeQ/E+h4Jtly5T+W7jRPm7XmP6s7K/z72uc/P/TvbA3d6D9eDz3ifLbpP/0ZUsHBYuo/U3Z2CUbe6j/fVuYghibrPzGswm8mOus/Ogm1yP0Y6z/86ow3FMTqP5k3tWqWPeo/0yR0g76I6T9HO3yfs6noP1WbJd1hpec/anA560yB5j/dlOZiX0PlP+DhBjS58eM/cyLUU3+S4j+HKnWnrivhPwaay6nnhd8/k8bXhxK73D+1b4lcOADaPyQYMWJyXdc/2YLf0oDZ1D9iCAiPwXnSP5tXd+wzQtA/Qy9o3g9rzD8eQJq4barIP4QaoddFQ8U/LQzCsXc0wj90RHufmPa+PwEqy7SMJ7o/DIegkODxtT90B0/XS0qyPzrr1ipdSa4/Va0ZXA3pqD+7GLrSplqkP9uZRjzNhaA/MNRvao+mmj/pCtmiulqVP9tDijsmAJE/Kfz6Hz7lij/GKn68nSOFP7R1ObFkgoA/VIOlwc2feT9ibfc0qBl8Pg7WBki9fIg+ov4mNwcalT6JetPQyvuhPlFq0rsVUa4+YpmDh7ZGuT59dOXSqNjEPhipiws0AtE+0uktrKV12z5+2YyIlO7lPhhSTnpXVfE+fGGO59kc+z4qD9GQSPwEP/veiBqBExA/8npS4yxhGD8D2JBOdkwiP5M9NOpZMSs/VAVvDs0AND8aOQA2CCM9Pz5OU1fwAkU/z8loGukBTj+Ys96fHThVP3cuIDo9uF0/8z/RBfKcZD87221yO1JsP2Xv2UuMRXM/HBX/NBP7eT+a3hovXFmBP6ezJaJ99IY/UWo7DJsXjj9EezblGouTP0HzQIFSJ5k/r4D5L2UKoD+tN2GOOUakP7Fl3ul1Zak/7a1z4JeHrz8c2TXoNWazPzj0l5h7qbc/Bjpa3xecvD+AGdafYSXBPxVBKXTUX8Q/WsORcskAyD9zPoWFiwnMP6VXYO9zPNA/hGP3LWul0j+hF38YGjzVPz6wL3JL+9c/I7GxgB7c2j8unVRmENbdP2aSKvGLb+A/W+ws+On14T/qrsNa5nfjP8hfRIni7uQ/FI/lDw1U5j+4FmVxlqDnP/X5reDozeg/e5jIVuDV6T97gU5iALPqPx/RIhelYOs/lcXetyzb6z9vqocMGCDsP6d55tQfLuw/0fkWWT4F7D8f+jm9rKbrPy0XrWPUFOs/Q/pQRzVT6j/pvgHEQmbpPwTqjbQ4U+g/2qPxHesf5z86uonKktLlP6+roj2ZceQ/Pz8jSWYD4z/MTXBRMY7hP8XgevTXF+A/cZoWwXZL3T/z4IFqSnnaP7bHG6xowdc/T80WUKMq1T+WC8qnWLrSP8YVLKh5dNA/SWYqbDe3zD9duFTTJ+LIP9Ps/tMyasU/xcaTAtlNwj88FsCnABS/P7C64DiQNLo/XhNKAbXytT8ccqsccUKyP5Xia7r7La4/qKBfP4fGqD93Y2sxfTSkP8j8uIWgXqA/s/QTDPhZmj+ze68/eRKVP0uq3bHYvZA/gjTwpUhuij9LhgQT7bqEP6+LAmbJJ4A/rDaJ0EgFeT8b0GbMv0BzP7GXWbz9FYg+eTBy2PvPlD7kv8g0s8ihPohbw8ufDq4+uVLtYTkfuT5gT9vA1MTEPlk5fh4a/NA+Fg6Ia4572z7CiZure//lPkPtyicDbPE+7khXyGJO+z6fuUWGIy0FP6HuZcGyQBA/AoJ2Mw+xGD/4KPmlnZAiPzzviIVVois/+trBgSxcND9d7Uo/qbM9P3lZHNkxc0U/VU9+nBatTj8E0W4LfLhVP4JS8PjLdV4/uHxFDNomZT9ra5tPFRhtP6g6ZwOR0XM/kfPcL6++ej9vvN/qRuCBP5nXYFVTrIc/xiWQGBsPjz8J3XexxC+UP3EtgaLr/5k/S1vM4UCXoD8SQt/caPukPxa53Gr8S6o/TtzcveBUsD9SClcv5Rq0Pwf3fOsoiLg/OCBVzbCrvT9xcUSwUsnBP2dJxAG/I8U/VHlIi5HoyD/MF8usCBnNP9nSR4/i2dA/F0U5fzda0z9NqUsttwnWPy5bosje4tg/SKtkk23e2z9ZJ5/Bb/PePyJ1ZluuC+E/21ddiCSf4j9qIw/qlS3kP5F5q3MasOU/p0N59Jgf5z/jTWW2/nToP1Piku15qek/IPrvT7S26j83xuINC5frP3BJeXLBRew/YuxQqyu/7D/9Cn+azwDtPwe41Bl6Ce0/8KG2tEfZ7D9jiK2KoHHsP78iorsn1es/zRO+ZJ8H6z9mKxTGwg3qP2X8m50Y7eg/+gkQFMCr5z+cwm/BOlDmPzsEoE824eQ/QhFpHVhl4z9zmsn+DOPhP2NvHdleYOA/VqF+0qLF3T/CvAESjt7aP8fs2p/bE9g/S5nt8mls1T+u5ZoslO3SPw2GeHk6m9A/ZTXqu6zvzD+fnGMfMQnJP/JGZLQbg8U/GmOzJZFbwj8PhGwaMR6/P25EMzHmMbo/oAQv5ODmtT8vztdDejCyP0DTfXKjAq4//6cksI2XqD8AQDkqvgSkPwGJFm0uMKA/S2hmDYUCmj9HDVS6QcKUPx1/EOnTdZA/6CGiyVLviT855Napz0yEP/TcbYxPk38/cQ9LdXVmeD8PwMCPYbxyPwGpeC5Vl2w/VTLMrYdOlD6wqbSSbWahPqpUbr3TfK0+wntI+Nq1uD6rW77P9nrEPmdH4mo1ytA+U9ne7VQ72z6hRqB94tjlPvBB6TtFV/E+XTKH8Mg8+z7W/EqzqyoFPw9zhKIYRxA/gDDosfDGGD8GzFt84qkiPx7paR6X1Cs/yXi4DiqKND+GsTixUQM+P12t5IButUU/V2oI3sAXTz9H6DZvGQxWP5HkYpLk9V4/JAQB//qGZT8oBv2WtKVtP/KDoYUeOHQ/ldRnwtpQez8P9Kjd40aCP+RO73pZOog/5fNd6QDRjz9s/H3lZLKUP5pYh0qxrZo/jMhb0moJoT8G62Jpno+lP2fzr6QkCqs/mjuPV3jNsD/HHYMtIbK0P24yyqO6Q7k/7HdlDMyRvj+teIft9FTCP6Iox8dry8U/Xp+6PtCvyT8MiWwOWQPOP9CHxxBBYtE/DbHeL1f30z8gBW0L77zWP/w9f1BArdk/QQFOkbPA3D+rWr187u3fPyiXhi/6lOE/ZcwSqS004z8zM6Gsys3kP0PSvralWuY/CYySqWPT5z9fVOgBtDDpP4wIu9CNa+o/Uf1rrGx96z+nmdSvimDsP42TRK8UEO0/+bwaC1aI7T8cNWLy2cbtPwtYrnWAyu0/IJ60coaT7T8iHvwWgCPtP2WL8W9Gfew/slEJK9mk6z+ENSo/Np/qP5r35q4pcuk/WgCk4xck6D8NYAtIxbvmP7hUIMUdQOU/cbONmv634z+k5Aq/BCriP3x7X49hnOA/9amfNm4p3j/fOOu/+S/bP0/xm4DaVNg/B2nbLPee1T9KAJ2hpBPTPwPmlnewttA/RgzXau8UzT9tSBk6DiDJP5Rp5OWEjsU/m/JYUSBewj/MmN8FHBa/P86RMTpuILo/hqJ25y7PtT+Kg6HhGxWyP15Zng6RyK0/R1p/XDJdqD/HJF/oUsyjP2lie9h19p8/nZO7iXuhmT+W+2NAHmuUP1ECcAPvKJA/L2Jj0rNpiT/a/mbOU9qDPy+XYKGj0X4/AfnVdJXEdz+flKUVljZyP+Cnx2d8vGs/l/IUC2P8ZD+5OWDAk9igPuHxoVocoaw+hv92CZkOuD4Kc4P77v3DPlgE5uWKbtA+pwUytLq32j4CDG8FmnzlPlu2Gx5DGPE+WRPCK2np+j7eTsxHnvUEP6FkFzAJJxA/Bpuv4gCjGD/1/YWJLZgiP3peEQ2qxys/KVAjiTeKND9vvy4R5hA+P52HDNGmyEU/MjkOqTdATz+TwTxmmDFWP8zXRJhlNl8/TQjpMLe7ZT+XL8T5tPhtP80jBVR5d3Q/KGtj0x+vez8LNKJPe4uCPxwE8Go0nIg/rvgYSA4tkD8OmzMm3BCVP3zrJezZLZs/VyAwyBRfoT8AmLAmiwCmPwOyqFgEnas/I3AecMErsT/VklGarCm1P9xs6b522bk/xxFqjyFLvz8t5PiXVMbCP8lZ9NaOVMY/BkA3iNlTyj8mmcSVacXOP7bjc4nP09E/Vw+K8dF61D8EDKP9j1PXP2IB1hIFWNo/hseyrk2A3T9opGtgWmHgP9UdVRTrCeI/vgp2W2uz4z9KWvds2FblP3PD2urJ7OY/ITTQF6lt6D/QFtJu7dHpPwFaL/ZbEus/pqK8XkYo7D/shQ/lxg3tP6SomP/1ve0/7gyAKhc17j+fOQKUunDuPxtgOgPSb+4/bog6BLgy7j/Z1dMjKbvtP+F53sQvDO0//ctazAMq7D+hO0j83xnrP78dNk7P4ek/xEOH7nSI6D+18++d0RTnP4uQ3DYJjuU/+3CV5Cr74z9EggpH/mLiP8uISlHXy+A/ajE5ZOR23j/D/wohsG3bP5+nesOZhNg/gfsiSIzC1T+V2ebA0yzTP/cbTgAqx9A/iaG/HZ8nzT9VbsGIXCfJP6flVIsFjcU/prE9cRRWwj8HtsrLxvy+P/K8ntgUAbo/IwGgp3GstT/zcTu3DvGxP2N8lCQEga0/R02R8oUYqD8oFdEKIYyjP7AmQ84JgZ8/jMJk4hQ4mT+mXtDRDA6UP7YUR4vqr48/qmtP6qzeiD+qRP3ic2SDP8UGnCAQDH4/P8+Ds8wgdz+zv7xAN7BxP5C1aoYu4mo/klGXfrtMZD84cfrlhnZeP1onoLvogqs+tb0UjSMvtz75UkYEBVLDPgOriZ2K2M8+bASiXFr12T5EH3YL6+3kPi/RFaxIsfA+XSd5xmdX+j4kx6hEFJAEPxtsjUDCww8/WoXh8fVGGD8aFE/1hlwiP8/xfZ+7fCs/0uTDF/NcND/7sxCF9dw9P5xhVuIGrUU/eyMb1WomTz803kRCuShWPyf60MKxNl8/L2l4yXXEZT9rSH8ADRBuP9CRriPKjnQ/YO3eezHYez+6DkgYFa2CPxIjG/V80Ig/+WOdgjlUkD+r6oFZzEmVP6mEM3SLfps/J1NsgQOXoT/HMKW5kkymP630XYuIAqw/xHwZM2tusT8QWU8k4n+1P6W5mmFVR7o/memqTjjVvz8j6Twt9RvDP1i9iW5kvcY/HrzcmZvSyj9ihJla1FzPP32ERHwuLdI/awq69xnj1D/dFZ/+3MvXPyuHDelA4do//tCA2CEb3j/3L/x5vrfgP9pAn0hKaeI/D6uzU5Ub5D8K26xPaMflP6iJSCIlZec/+gusKADt6D+DV5b4PlfqP/EEmNd5nOs/HT7/2dy17D+KTlqAZZ3tP+rSm8MZTu4/SoKhyjXE7j+5O1v9Tf3uP8n5oshj+O4/ro8PIOy17j80ZmSSxzfuP2k284wsge0/nZ9RI4WW7D9wNzpQQn3rPzQFIh+nO+o/Ho6Efo7Y6D+Jn8OcLlvnP52QM6bcyuU/hYorhdMu5D+qXU/s/43iP2M3RX/T7uA/OgP80kCu3j+a3Z9N/JfbP7KTtXFvo9g/W+t5DIbX1T8EdrlpgTnTP9+1OvYGzdA/0ebunnYozT/9n5H1zR/JP8Q3GdNDf8U/TR6sCwZEwj+i23jyRNO+P9/3ejfP1Lk/ixJ4PoB/tT/cYFv2DMWxP9QBT+E6La0/J4CM35TKpz+GMlY3CEWjPwuQgNOIAZ8/sBGjSHzHmD9gPXmb/auTPyqAkh1KB48/rmuM9WdPiD8n/P/ZFeyCP3zaRw3zQ30/hRlVmSF8dj/a23ueBipxP+27sv6DCWo/dhMNoGSfYz+zIkvlmWNdPy/L0k6C3lU/hJf6hI4etj7bvCJXrXzCPuYhq28Sj84+cecyQGf62D5uQw25ZzHkPrzOUWCnJfA+1TJ604KL+T4Ff047Y/0DPz4QGPXc8w4/ZnB3MvG1Fz/8BDyxBPkhP+tpfgSF9io//XPvyhkEND9lvi4aqmk9P6IzL5XdY0U/d+aoAuHLTj/ToYagVfJVPzJsDHas914/Tbb9DKKhZT9Sx64kD+xtP+0dSuAffnQ/NHzuPfDLez+fQkJPfKuCP8+lq0PG1og/+gIDf6NdkD+BMlkAn1yVP1JF/hvknps/i95SqJSwoT+tD+xR03KmPyiil6J/Oaw/Z3sMqquUsT84tJ1hvLO1P1Bp4ogKjLo/MMKV9TgXwD9GSapJ2FTDPzbBw/+4BMc/WqpID6gqyz9Pee8I68fPP/cSFqdkbdI/6OYoWRIv1T+Ae7CjlCTYP1oN9eCNR9s/t+PxfKaP3j9/KS3mTfngP6fOPMMysuI/Lqd9Hrlr5D8VaJPsfB7mP7qeAeOxwuc/8VZojl5Q6T+EGwD/nL/qP541RiveCOw/7y5I3Swl7T+D9dDlbA7uP4mUoWuTv+4/tNZJfdU07z8iJkuLymvvPwR+GheBY+8/jgU7pYQc7z+GznnQ1JjuP4KueyrO2+0/YmZOVQbq7D8PlolkHcnrP+y2+RGHf+o/N0avoU4U6T9L+8Zx2I7nP47+zyKk9uU/pryLCxJT5D/2FNFLLqviP7FGwFiDBeE/Ymj4ourP3j9xdYK1Ta/bPwX4NGTPsdg/BPoOUVne1T9ooqmMIDrTP3fO3we2yNA/tJdSHkcYzT/F5hfaJArJPwFIw4DxZcU/H8ohXZUowj8lTJxis5q+P9QI4E2XnLk/q8VEMjNJtT8phTPcz5GxP93psF5uzqw/na+fkmR0pz+c2vIc4PeiP90QuYRSeZ4/Z6R13cxQmD+RKkLJ0UWTP/FoolteWY4/xr43+Pa8hz8XMbIbC3KCPwAmZMiHenw/CyRu433XdT/6pvZorqRwP46EpOxvM2k/f3eIHgj1Yj+1zYdFvlZcPyGcFj0bDFU/uae2W/MQTz/THHoUQ4TBPsUL45V/Cs0+zpunnl3O1z5sM6yZsEzjPiEtJLQW8+4+pZ5YfdSL+D7FznCu8UEDP2PRv2ak5A0/vvb/aFX0Fj//N+RKrnAhP2PD/NIlOSo/gTdpGm+CMz9rspNBqbo8P182IKuI70Q/9hX18p4zTj8qRvdyUZBVPxfXfgCoe14/82rFF6FUZT81q59IXo5tP7nrr2xpRnQ/62p8jWOLez+gmuwoPIeCP4ePbRqbr4g/2NymeYtJkD+YH9DdhEmVP63ZDAX7jps/wiDoy7+roT/Vg46FJ3OmP/JqQmOcQaw/Okok70GesT9r+KHa2MS1P+APXxEKp7o/pw4J6wcrwD9/denbgHDDP46log7tKcc/XnGQhDhbyz/7uS0Z3gLQPxuzWwfik9I/HQsCbBJe1T8LifrH9FzYP5QrqSoQits/eJCrq+bc3j+Q/2tHgiXhP5SsvVUT5OI/sgZeOjyj5D+tsMRQdFvmP6ztjAPJBOg/WAOMbRqX6T+SFVyvXQrrP7v95wDiVuw/Vfb0OZV17T9+KNdyRGDuP2x6mnzVEe8/NAtBQ3aG7z/FN2ayv7vvP3ugXWHKsO8/uNhrFTRm7z+XHB3/Fd7uP48tFW3sG+4/XvH1cnEk7T8PqVmqbP3rP7f1rbJ6reo/hnVpZc876T+LBVDS9a/nP/JCWwWREeY/FzG8WCBo5D/6LMCxybriP2sduIcrEOE/U58oCHDc3j9d8G/pM7TbP7Zli3BHsNg/KIfPj4/X1T+KrfQkNC/TP3ZmPgyyutA/Fri9p/P3zD85xswlMOfIP7l2JLXIQcU/D+OMsWcEwj+6LIsaNFS+PxDIQHFoWbk/j2mpxmEKtT9nLF+iDVixPz+SuI3PZaw/Id8qPfEWpz+/LFjedqWiP4kIlOCz6Z0/vfWJWBDVlz+kqt3BWtySP8KJ0Q9tp40/7tKn9VMohz/ySpPEEPeBPwTKlP7nsHs/YZcsy68zdT/MzSLAwiBwPxW0bXfCYGg/eIKpcDROYj+J9TTAsFBbPyp95YrvP1Q/mQjW7k3VTT8NwQlTWNZFP82LVZ63Vcs+Yc0Eo6h51j77R+/oMEbiPo8dNEWSY+0+njPWgIlf9z7SALT+AWMCPzCgkcG0nQw/dszHspEHFj9ov2whWMcgPx5pBr/xSSk/+EGL/ZrbMj8ziAC55tQ7P3WSgDVXU0Q/cBgDSwFiTT/y4sOfggVVP4nJBfhGxl0/IKgr5b7fZD9TQECR1vlsPzq3obpn6XM/XoqNXakYez+CjuVklkGCP7szWOVyXIg/Q3g8a8gYkD/ZNaUxbxGVP6kgV+rYT5s/6WkQhRKJoT8DB+5ZIk6mP+pTVPtxG6w/1bLfQ3SLsT+MTqpFdrO1P4nfbyyGmLo/MazaCRkmwD9dcg638m7DP2O4kPz0LMc/7bVDny5kyz9Khd3LCQvQP/+hnx6AoNI/6Z/LJuZv1T+c1RoEu3TYP416XJ52qNs/YDuKnoIC3z/ofm3GJDzhP2AiDd6u/uI/u+gkM9zB5D/0h7D6B37mPzhjJX4hK+g/3J9E/unA6T8B54trODfrP8kGeuc/huw/s2m4stWm7T86S9MSs5LuP80D4divRO8/s5gfivK47z9d9sm0E+3vP3GuDK8y4O8/wk0WzfqS7z9E/cz4mAfvP24Ca3CiQe4/HTssO+5F7T/yeZuNYxrsP+ueldi/xeo/RgN2jldP6T+iIHDH1L7nP4fupdj2G+Y/QkgOr1Vu5D+Gg3NWK73iPzBer5AlD+E/7DoRmIHU3j+oG+ZaWqfbP1HyT5x7n9g/9uzvisPD1T+kG11MTBnTPwfcU39/o9A/nsmN3mzIzD9Ytc7Lx7fIP08tFPyIE8U/Zi2s/yTYwT88P0db6gC+P0OUUFU8DLk//+H1rd/DtD/MMA/DdxixP9eQZa2E9Ks/6rn0Byyzpj8kw5vbj06iP2B3Fr7lU50//bHMJj5Vlz+eV5a+WXCSPyay6weg8ow/5rvkNGGShj8T+pkr0HuBP60hefgM6Ho/X9VwbWuRdD9Yd3gUhj1vP5cKB18rkmc/oa/UGl+rYT//VBA9CFJaP0ENl7NaelM/mUAxRRClTD+QmwI44e1EP0WVq+T6Yz4/crQmy0MF1T6GcutZ1iThPv2r0JJOp+s+NM3fWpAO9j7t4Esrd2YBP39MVLyuJws/oOoGU+T1FD9+J6tFeAEgP+jv0ps0Lyg/0CWUuQAUMj9vdwOxbL46P12ZnjNkk0M/cXXMKotcTD9ywffCkFVUP+gTaqtS3Fw/OZxQ3RNGZD+hFOMnbDJsPyMRFCiZaXM/CcaH0tx2ej9aMw37c9yBP0R/yGKf34c/cPdfZXyZjz+/xHUQA7aUP0rmV4Vp45o/d6ZPIqhJoT92X4HfBQWmP4GtKIlpyKs/Jl2pSgpdsT+8eAs5boC1Pw3HRo9oYbo/O7vf9ucIwD9oCH6wrlDDP9ljau5UDsc/AIQHvw9Gyz/BN8qldfnPP9M2b5Z/k9I/NFaSqMtk1T/OoaQXImzYP56w5wL4ots/OAZV16wA3z+QBwuJTD3hP2fhEKEaAuM/xR3I26zH5D/KmWHuSobmPwoW4FrONeg/IkAMSOHN6T8eVeNTQ0brP06QokIRl+w/DOmRGwy57T9LtNQp3KXuP0CBv3dMWO8/uTo/tHvM7z8AAAAAAADwP3Y2S9f78e8/i9dMIyOj7z8vuNJfsBXvP1FRZqNKTe4/GtiSJd5O7T/WCaqNaSDsPz82WdfCyOo/g/f561ZP6T/56JMr57vnP1GNdglIFuY/kB0EmiNm5D8t0QCDwrLiP8Hk0jbdAuE/UM0alO243j8dslkohInbP0oanGgigNg/sv2hEp6j1T90dVl0A/nSP5PqbCaqg9A/cn0YCq2KzD8cXjd/yXzIP7WMfKT028Q/oAasyHWkwT+rHkBQ96G9P7Cv03cItrg/OY6qF3t2tD/zvBWMudOwP2VK9USne6s/msaJs/lJpj9f7fLR4vOhP86oAsoLuZw/Np5A8TrSlj/GiZOxfwKSP7rFll8FPIw/Pbxv1+n7hT9KXiGh3wCBP5JuVDXRIHo/RMGLX0zxcz8uLS7aNj5uPx5oV588yGY/u/gC+OYMYT8OerqsOVtZPz+tjCmfu1I/uvPXU3uASz+8nHxJIw9EP50m2mJTEz0/j+bOHm/wND9UYbrvkN/fPnONSelNyek+edvszEWh9D4ghEzNllIAP9zZVavciwk/vrLm6RjGEz//vg7+7kceP7OFORzw7yY/OoU4w5AwMT+gs+pjHH45P4yrFYVrtEI/I8CVbawpSz9xqM3rzoRTP9ooQguJw1s/ei/hbmSLYz+TnW7OAT1rP2lWxFMfynI/G9b/kfWpeT9Da4nsUFqBP+1sC/4zPIc/g6XFZp3Ojj+k1bqchzmUP5SAd4tmTJo/FH53Xh3voD+ES5L4tJmlP+3ShM2xSqs/Cv5kxUMUsT8V6IXBKi21P6Xrb9ZGA7o/+eHLG6uovz/qY0GUqxbDP9ROYx8Zz8Y//vjBrvwByz+R/b2EFrHPP2ziwXeDbdI/4AQiIG491T9Vi2qA3EPYP46r7FRNets/UhBsFiTY3j8fFfWEWynhP3cEVPS67uI/aIN/zhS15D+xCdELpnTmP7t0Edw6Jeg/LvOwJG6+6T+J1rkh7zfrP1qq6/7Jiew/rABH6q+s7T/0mooFO5ruP+ZirbsqTe8/FcWjWpXB7z/StqNhDPXvP9nIa7Cx5u8/6bYjnTyX7z8ah9je7gjvP5U5Tx96P+4/CU/F2dc/7T+Y4nTdFRDsPzxFelAat+o/o52UYWI86T+WHXbzvqfnP62YD3MSAeY/VRfzwRJQ5D+ap9WtEZziP9sgKeLN6+A/1ktHR5uK3j8en0cIiFvbP5FSF0QBU9g//Wsu9tJ31T8eKsPM+87SP/FvJuLCW9A/Cil1erQ/zD9bepzCFTfIP4mwpWTOm8Q/VDVFPAFqwT8zrY4vdzi9P0b8i/S7V7g/XzAzF/sitD/HcoD7doqwP/teZZZC/Ko/hwxfmTHcpT+7xKVHG5ahP8WoLPozGpw/YrzkfNhMlj+VvehtbZORP/4k4CiQhIs/oQc7saJlhT+i19ZYw4aAP9WU9jryW3k/shapYddTcz9WAxqpTERtP4w1khdtA2Y/0vpQeRZzYD+Km3DBm2xYP1CSnVrpA1I/uW/wmrBnSj9NMVCTHTpDP+GpHuRx0js/oPRvpX0AND8MijoS+ZMsP4FrI6Kc1Oc+GJ1MIiMg8z4VvS0xl1v+Pr7E3TTX0wc/hMvclkV/Ej8XyYDsAWgcP8rx19mWkyU/hlFhKJg2MD/StZt9ahs4P0aU6nmbu0E/g3vZo4LQST9RtT9cEZhSP6qaDbBkglo/61hpavyzYj+PrJl0OR9qPyubTsmgDnI/ImiyZ6G2eD9/R+dHJL6AP4zAUSXodYY/Ihs8X4/VjT8ku6EP0J6TPwMrmV49jpk/hncnyIB7oD+102oLoQ6lP7wO/uUppao/vhY6V8yysD/Cif5rmLu0P+9ZFr5SgLk/+VM1FT4Tvz8vl2JSTMLCPzdLLg3LcMY/lsZFzKWZyj/lgOk6zT7PPzE2mTqKL9I/ULEMXN761D+hdd2NDP3XP9HpnWGpL9s/mSKhgSqK3j8Qgf3b+QDhPzLuPmY+xeI/I5l7ZMiK5D+Mv+bZ0knmPzY4ACEl+uc/FnVlv1KT6T8go1GIAQ3rP353OtoyX+w/7aItbYyC7T/UOz0JnXDuP7i9h5sZJO8/vzlvew+Z7z9uo/tDCc3vP3cafWMkv+8/YtdkYRZw7z/I54rFIeLuP0z8GHb7GO4/P08lN6IZ7T8KbSasKurrPxcn3MKCkeo/txbzwi8X6T+W0VdZCoPnPylAhdz73OU/T+NSvL8s5D+Wuredq3niPzr3fhOAyuA/ONNrioZK3j/40/xhTB7bP+WAHi/pGNg/EFLMKB5B1T8u8QLe3JvSP8qy7LFdLNA/rqghSoboyz/7kotMjefHP0vOy0rXU8Q/P1Twn2spwT80JzjOfsW8P7vxlrs98rc/TsXYXB7Ksz+HfY/fSz2wP2uqmX1Sd6o/3XfFAp1qpT+955862DWhPzZ+v2VWeJs/7ydz1dXFlT+YzGsFtCORP37OuF8ZzYo/WwtVUivQhD8JwrVy7g2AP4KUiogSmng/pxI3IXy5cj9GHkX4W1BsP4jgKCgbRGU/QO/TpUu8Xz9iHg56aoZXPz7djYRSU1E/JvpxlrZaST/mWNmNvG5CP9im4PMToTo/8b5i8NwcMz8Of65j/0IrPyjG/O7ZUSM/Km5jJHKT8T7eNPi61vz7Ph7hohsuCQY/T0FiTYooET94KYDNpW0aP9tFGQnIISQ/j4Dazx9XLj9APiWqGp42P7Hy1kplrkA/kjVT4ZdYSD8D5bFegZRRP9C2ObzhH1k/FaId6ofEYT9XFfMdQd9oP9y6NP4nO3E/QWwWGxqidz+5Nr2IRQuAPyx4IAj2kIU/HuG+e5yzjD+O2CieIumSPx6EY7HwrJg/f9rTLoHinz+wq5x9tGakP9VeWxBI26k/McYR3aw6sD+ilRRqFS60P5tbK+xG27g/FvpAX6ZUvj/E/oraU1XCP68hJf5j9cU/GXcyMzwPyj/cwJB6A6XOP+ORzf/k2tE/yFvOWome1D/hAUlNOpnXP0aypRauxNo/OAV6YXoY3j/bxfr2D8XgP6WMvZuXhuI/MZtbXcNJ5D/GaJP/1AbmP0z11XiXtec/ABtoyp5N6T92gT9WjsbqP9EFo3piGOw/fFIB4bk77T/2gNfMGiruP3XBitQw3u4/EIsdyf9T7z/eJ/4jCYnvP5tjzBJifO8/TY1mGLku7z+LlD0qS6LuPw5eLB3J2u0/7iZzDy/d7D9vsr40kK/rP0GZpPPZWOo/xEqYmJHg6D+cuzr/j07nP69XWHi+quU/6yuO59f84z/5+jCfMEziP3UZ7e+Gn+A/5schfrv53T+Iau2fw9LaPwU8hpqz0tc/MIBMIEEA1T/MPoJaUWDSPy+RW9Yf7M8/iyQVfiWGyz8vmb7ADo/HPwc1OfjMBMQ/CUiX9lTjwD/xBASiGUq8P/IJeiNrhrc/5tv8OZpssz/a3RBnltmvP9qW8a/C7ak/UTXyyvb1pD9VxBgIrNOgPxCviHJV1Jo/n1uAtd89lT9D5oZR1bOQP/Hj1BZhFoo//aLPNA88hD9+CkMxiC1/P7Ih4py723c/lTL7/5Yicj/Kcgvo22JrP48LcDyPimQ/SejXHnqcXj9K08t2yqhWP8VAJFXjqVA/pkAkz3xZSD/3Xp423axBP80E5enifjk/Cg4byzJFMj8MK+oLqwQqP7SHSxmKaCI//Bp8VUniGT+TVF8bBpX5PmuLyPIYNQQ/ANQldaqRDz/CMLToJGMYP/uhwu0OoiI/NFY81twpLD9CpcRm/Q01P3era0adJD8/l0YjV6LJRj80KDI0cX9QP979J0pCo1c/P4EQjOvBYD8PTcFonoNnP05Q2RwBVHA/FD+hWvlxdj8KzUoHoYp+P25ybTn3kYQ/56/fg5Fuiz8TUNVVHRySP4w50nP3rJc/9ltVeC2mnj98KPnmOqWjPwghUo398Kg/5YaN+nVcrz+GREGJXoezP4sYLBxRF7g//fwCwYtwvT/IuXQn19HBP0lobnA9X8U/5ScVh2BlyT+b00LEoubNP46o5k8tcdE/+cYjPC0q1D/rI3G1RxrXPzBsD/NfO9o/2p8K5TiF3T9UlHCZv3bgPyD+6x72M+I/9/FPc0Hz4z8MooKo8qzlP8fBy6PgWOc/gVraqKfu6D/bqpyU72XqP1RHe4+1tus/UwWYoJXZ7D+x82NnEMjtPzlhx1vJfO4/tx0CTrrz7j9o2M9xWSrvP7gT3QCwH+8/2CZyYmDU7j/a7jC3m0ruP9CsBpgHhu0/1dyas5WL7D+nRciwT2HrP3FN0kgaDuo/DUkp43KZ6D/qkgcaKwvnP6TAiXUla+U/OBejXhbB4z/s+HvWSxTiPwkes+t9a+A/ntqBhlKZ3T8/oyrE6HnaPyYCGYc/gdc/Pu1OcQC21D9duoIpBR3SP2/sukndcs8/C+6vg5IZyz+CXN27dC7HP/615CNor8M/tvEg5VeYwD/1C1UpSMe7P+6XI88WFbc/vnxh6RkLsz8+9jhl/TKvPxb4V1BuYKk/SACFQet+pD+f83GEHHCgP7bMMkj+Lpo/Ig3dH5G1lD8P3CidRESQP6Qxvs4PYYk/bvQAA8epgz+ecsZPMUN+PxqKRwNgIXc/deHC1nKPcT/Uazw2KXxqP4PB7jf+1mM/VhV4CeyGXT9akWgSzNNVPx6pY1OWB1A/39I6i99jRz9lz93WT/RAP17WGAV4azg/vXOIXRt5MT/HmRCxRdgoP6J33Kn6jCE/4dO914OjGD8Athvldy8RP5vniMEyYAI/dX1cHV3NDD+wARXNSFIWP8uxx6moGyE/BN6nDPrvKT9BDiHOsnIzPyEnZVKM2Tw/TWHgZ0crRT9zVZjkY7xOPwWjp+PUE1Y/GyKCUTtiXz/EyPnm+hJmPyoophUwu24/erYNkgwsdT/VMEYREuB8P/gwB6vAfYM/NOPmopAMij92S7sMmjuRP5Fe/F8ak5Y/OLff5udHnT8bjGjwx82iP6EnvcCY6qc/yh1aKQ8grj9eJyW7esqyP3Z4joX6N7c/06sRUQVrvD8aGngCLjrBP0sMgggAscQ/STqgARCfyD+2yVGQ/wbNP10KKL859NA/bKvr+cyf0z+a1fR9Y4LWPzeklAoYltk/Xl2KYufS3D8hhMIqXBfgPzRLHV2+zuE/c1X+GraI4z/RaBYVrD3lP8OoA0KL5eY/+p7fy/936D86McfhvOzpP4JmNTnGO+s/tLWoqLld7D81Aj8dFUztP9BfCER1Ae4/BeqPlsl57j9uaVMKe7LuP9PybGODqu4/ZGFNDHRi7j8CNKBHbNztP49fzoL/G+0/VEJ4bw0m7D+Z0AdHjgDrPwyVRytWsuk/q1N379JC6D+s9Rq1x7nmP0yEpa4JH+U/uHnLDkF64z8iYcS1sNLhPzScf5oGL+A/S3Q3kWwq3T9jExRFvBTaP0ukZeluJdc/9sICqyFj1D8sSMWro9LRP8mUoq0a7s4/WWvdCcmjyj8Ye1sulMbGP/u9c2BbVMM/gR+WzwhJwD/+y2iw/j27Pyl60t8Hn7Y/XwbwEz6msj+oDXY0zYeuP0GIAswf0Kg/MhKeQxgGpD9sGt06owugP+6m2nsJiZk/I6ogH3QtlD/PI4POzqqPPywRpum3rYg/uFQz7LkZgz/kYDC+ZV19P0hUfFxda3Y/ylRprEoAcT/u7vcSiZxpP0qZasGLKWM/IQArTrx7XD8V46E8bgdVPywXoSK02E4/XArpH6t5Rj99qjB72kRAP1naIgZgZjc/2YxmwSu4MD8vkuYJEr0nP0DXy6+JviA/ha2VlpJ4Fz/Q2r4PelgQPwp/DAp5nwY/UFD8uBoQCj8RAb43GEQUP4k9Z9ekKh8/ZaPmB2azJz+/qAWYdNMxPydw3jv5hTo/trAUe+SEQz+3Hl7M2WtMP0LGBDG/eFQ/9W3T/wMuXT+r6ExC85NkP320E+6vuGw/99D6WyrWcz/l8Ceifh57Px/khmE/WYI/okz7vuSTiD9WOVB0kkuQP+irWHJRZJU/DqS/VtXNmz/TLyzNHeShP1hV8KimzKY/UV5SSpnFrD+epsXspfqxPxNzX1UPQbY/fIklUn1Iuz/2PTAI45DAP8AJCJeR7cM/HgiDa5C/xz8nuaI0wwnMP1GCOtgRZtA/UhWfUKMB0z9QyjoQ+9PVPxnPgQ5119g/VvX5i1ME3D+PNfrkxFDfP7XV3BKBWOE/q5KtrsML4z+qWDCVsrrkPxx6ZK9UXeY/9MQ/gW3r5z9Yxr9EwlzpPyhI6PJiqeo/rmCCqPPJ6z/Kg8Sn8rfsP2DDUUv3be0/KLuskebn7T8weCR2GiPuP/3biwp6Hu4/6kOmJoHa7T+e2TB1N1ntP4DABJoXnuw/5PzKDeit6z9HmC0MiI7qP9ukvoKzRuk/Yev0SsHd5z82xtQaX1vmP3m0GIFOx+Q/mx8L9yUp4z9+NdWdGIjhPxlDy1KN1d8/xQzxqy+u3D91mqo1QaTZPxxas1MkwNY/dcObcmkI1D+w9E851oHRPwcXs1b5Xs4/yqV6Mb4lyj+an8YBO1jGP6zY6CBS9MI/7r8vVOrrvz9DdQxrJK+6PyfJiWr5JLY/Tvuhipw+sj86XIcq89itP6Qh1vSQPag/Nm8hgg2Moz9GomCaW02fPzxxjecb45g/+9a1oQKmkz8BSlxsLM+OPy2xtTDX/Ic/dypI/z6Mgj+nAEgVmnx8P6+2a1v+uXU/lbzEW0t1cD8KYkfPK8RoP9/W0WdMgmI/B6XQcPB6Wz+4hw8VoUNUPzf0uU0msE0/Ga5Q556aRT8m259Adjw/P4DgnlIebzY/ozAlOvQBMD8N3HbvTrImP+1zMM8p+R8/AgUEK2tgFj9OJ5UV/h4PP+8EiFAGgQU/yeHsY6iH/T4QPn8jo0ASP36qML1CKhw/rqy8my59JT+t6vPw6DYwP9WetpyHMzg/jZBmV1/dQT8GdC+FAxdKP8XjO6jO2FI/LzyULZLwWj/OpynX6gxjP1t13RsbqWo/+Tr9Bwt2cj/926FcbE15PzOBtxpXKYE/apGN69YKhz9FLHWNCqCOP5C8936iJZQ/kHy03zQ+mj8C7xUuFOygP+45orbUm6U/89a1w7ZSqz+vtsThOxuxP5TkMAuGNrU/SabGypQNuj/rGCPmRrG/PzZ9lskCGMM/wq90olvKxj9jJqw31fLKP+ds41nDkc8/dtUyPRVS0j/y0cL9qxHVP0CY8sxLAtg/7xgVDYcc2z+YxZsH4FbeP9YoRmPy0uA/rhFyQjJ+4j8DHa4r3yXkP3qtl4kjwuU/ywS9b+FK5z9stHaz9rfoP+o98TWFAeo/RQxK1Tsg6z9rLXBJnA3sP9zUUj86xOw/qk5lU/A/7T9wbhcWCH7tPxMbxQBTfe0/wAP+IDM+7T/DjRwzk8LsP2TeqtjODew/s0p5eowk6z+GkhIoiwzqP3WPX1tnzOg/Sew05Vlr5z8IYX1s9PDlPyjoodTeZOQ/JOeyl5jO4j92OF6tQDXhP42EzwrMPt8/jlNX7sMl3D80zhy7einZP7j2+eVAUtY/II+G3Zmm0z9wKWTWQivRP/JhtAGTxs0/OlG6D1+gyT8uWUMDL+TFPxJMpfbvj8I/Pops8UU/vz9lVoPZkhu6P7uW4Siap7U/ZOpGLsDUsT9+AeyTSSetP/0K+E5rqac/0rmn7EwRoz/jB+LZPIOeP4yi06LHPZg/eR/Vaacfkz9GRGjrOvaNP2msLGHYToc/3NuAhJ4Bgj9lfIlVLKF7PzsYRK98DXU/vZmeSCrdbz+f0N9gL/NnP1ycnZ5H4WE/nIGrpnuEWj8PHNpGSIhTP9nMe+87lUw/i44232/GRD8trd8zUwA+Px0KT6ovhTU/szkhMASsLj9Z6kzuObclP8EJENv2jB4/BxvEsQhaFT9tFtL7bacNPwa/COoEdgQ/lqrEqYAO/D73iQ67Th3zPhj2+i/KQBk/6prqrlJVIz8SyUZl/kUtP/5YSUro6jU/ZFleQf86QD/UKXQI1cZHP45+K5JQOlE/i7JwdKiyWD8paQMY5YNhPyYhAnSZlGg/QFl8aiURcT+7WG2KF3R3P/mXrOCH5X8/pvmWS4d3hT+VowPMupmMPzn86+8B3JI/WfhpCTmfmD/Zi9vtANOfPzVVlPXTXKQ/dAfUzRXNqT/Dutm5oy+wPzP7WXlnHLQ/IUujswe/uD98sJ1PXii+P5pn3RB9M8I/dc9HRQvDxT+vr+63RMbJP44u9c7aPc4/2G4pcaST0T+0KixiNT7UP7Z015GXGdc/6dvRAbce2j8hPewidUTdP/4e0dTgP+A/mXsTXObh4T90rvgUKYHjP5SuAhr+FeU/yth9+WyY5j/K0dSCcgDoP4qcBAxIRuk/A1qnsati6j9xJg3dJU/rP9qcbmRIBuw/mRzD4eOD7D8jsNdhMMXsPwXEskTnyOw/AytaBU2P7D+6HyyQKhrsP1wg8MK2bOs/g+KTlXGL6j//XSIv83vpPxX9g8GxROg/xOuxaMHs5j8h0DdxkXvlP3uZ0Viq+OM/oKXdlW9r4j8TOpvB59rgP84lD2Aam94/NzbSuFCS2z8JChfPaaXYPxlfl4Ki3NU/mLIVCHE+0z/cRhsdi8/QP69Y0jD4Jc0/WGOxfI8UyT87TEoNLWvFPwKGTQPQJ8I/JsIG8iCNvj8iuJtvFYS5P50tKl2MJ7U/b0dZ/ihpsT/aIJ0JmHOsP8ZTFohIFKc/tNlROUuWoj+3uPnOmLmdP2TynhKNmZc/TeQxCr+akj//3hW0fCCNP1Z9iLkUpIY/3kTOUBN6gT9QjT8fZst6PxZ+FNYCZnQ/zymnRXrYbj/QggW4oSlnP0THwJB5RmE/PBTTo0GYWT/BnhknPdVSP8y6Io2gh0s/eqz69cr8Qz9sA9lxstQ8P/inGHgMqDQ/XP9EnsJnLT96W7tlEcskP8bhwTg+Nx0/tPfPfG1kFD+MpvtWs0gMP9XE9zY9fQM/Jkg4nuGv+j79PgL31yfyPkAFtMcQjOg+D9dx96JCIT9XZRjbrTkqPxDCaoyyszM/hYORIZ9GPT/IkDg4S4NFP6JqlIXkRU8/XPO+kj18Vj/csvdOy/xfPy6dxzK1gmY/BMXCviFZbz9jqxzpSpl1PzqPEJL/c30/m8wkdsrfgz84Uq46t4uKPxeHIIw2jJE/7OFFceT2lj+wCRHCP8CdP/TcDVU+FKM/6E+9MVA6qD+ZyFNleXauP2z/9BK49rI/Wql7gJJhtz9oWiLmkoy8Pwv5VjkxQ8E/jWsmEUWtxD/AY1aAMojIPyXjoV0K1cw/X6ycFeLI0D8l/lqPaVzTP1T9t8xqINY/WXRwrDMO2T+nLQ2+Dh3cP8cb39JYQt8/aDeyxNc44T+LRKVmnM7iP4Ilv9gAW+Q//8JxuDjW5T/7X1/yZTjnP5BVfL/eeeg/aHLO9nST6T/qCCgKu37qP5VvCgZDNus/bq9fL9S16z/PG11YlPrrPxytobgiA+w/cl9b7aLP6z90yVi1t2HrP1a9ce9tvOo/UgmNRhnk6T/TUUa8JN7oP/I7st3ZsOc/eB5l0iFj5j8GOcehQ/zkPwGtcPyig+M/n8aElYIA4j/NZ5apzHngPzfHn4TH690/P6BER/r02j//MC5NCxnYP3YrGkUiYNU/W53B5afQ0j/oQlBYS2/QP7I1b9wufsw/Vux1JymDyD9LIKZq6O3EPxYk35iEvME/n7Pa4GfWvT/jnwV1aem4P7vTXeJlpbQ/P5ZsSEz8sD/Mlxf2k76rP+DvtQ+zfqY/z9SsgnAboj+wGMN/CfGcP5LucAjc9pY/NTsd6ZgXkj8+RQOHX06MP+YHP4DV/IU/KshlDsz1gD/tLNHQfvt5P+tjrdStw3M/pOuCYJ3cbT/YBFTmgmdmP7W5DsrUsWA/Z2MBIhm2WD8MVmqYUCpSP5aAsTD1hko/UjaxC1c9Qz/tErBs9Lg7P69Tacgq1zM/uGebkzs2LD+rI6FCFu0jP0G51UbL9hs/tMeCXaR+Ez+HeP1ITgELPzj3PbSGlQI/BzooyQZq+T606hRWNUTxPrDUbzQVUOc+kWzJMRhH3z64SSNNYlEnP1yahnRLlDE/kJPW0hc2Oj95dQkrTVNDP/+puNVTL0w/wQ7HQFpUVD92UQpprwJdP+yfkCM4emQ/hU8BM9qZbD8VHUemPsNzP1OddltYBns/4l1XJwxJgj8MYAAUB32IP+CJP/PAOpA/z2tYvepKlT9F3KIoCKebPzf3Srl+xqE/WczZI86fpj/DkfFAmYKsP0zeuhdjybE/PFFMq9n5tT9bKQ2xVeO6PzaTWSNHSsA/Jv1xaaiMwz/Fee1PvDzHP0KWSE/zW8s/zcGJWMTozz8r4r5XIG/SP7Xu2VPgGdU/F0cxx1ju1z8eic79ReTaPzpdZAR88d0/QnrcpAiF4D82fWr4UBDiP1ehQThVk+M/44niQnsG5T+cRBwAEGLmP86iItSLnuc/ocHOxti06D885ZfDlp7pP14QJlJaVuo/7Oc5YuLX6j//rcQ9QiDrP9hKKWD9Les/Sz3TxRMB6z9iIIsy/prqPxT/Jt6a/uk/4cR52wsw6T/TYBZViTToP+OMC1gqEuc/78itTafP5T+rmb50GXTkPzZbLqG6BuM/l5IqS6iO4T+0mUWMrBLgP33dYTseMt0/6rKrld9O2j/wmVFIVoXXPxm+1DeT3dQ/0QE/R/Fd0j/pRkHMGQvQP/P0PHAx0Ms/RAE26frsxz83PGhsCm3EP2aEhQKXTsE/rjLdNPcbvT/h/aAWPky4P4dKsmCwIbQ/UU9g8pSOsD9ezwNA4QirP7RQ4cgm6aU/NsGL9RihoT9EQo+jFSqcPzzmo+kUVpY/iVILRXiWkT+eUhk+PoCLPy5AHH9VWYU/ocxCd+x0gD/YDWGHnTF5P0xNftGOJnM/vJGuS5npbD/5hSEWx6xlP3XrCrhDI2A/pMhcI87dVz/r7RG3TIdRP66wENfSkkk/hNKfrbaHQj8r6snRdaw6P4JHju7/ETM/DpoU/4gWKz/9zHBijRwjP6AwSbtyyho/3j3flsGnEj+d6yiA0M8JP159dlHIvQE/2H1j3kU7+D7KwAUUJ3HwPqmPEIe3K+Y+88YUrbK03T6dErKidMbTPibcP2q1Iy8/1ubelitMNz9qMjQ2mjxBP8wC7fVPOUk/lkEmYgJBUj+8W36H+SFaP8EHIF0SgWI/uC62FKDsaT9YfCgDf/dxP3loMboBpHg/BsCWvje4gD+srugJGHSGP2Unro2O140/cV0gepagkz8gabA4BY6ZP/R0r1W8d6A/vWnN2KwCpT9Gxcr74ImqP7MCBREomLA/FQZhyVOMtD9qWUGE6DG5P7GcQ+mdl74/0JQicL1kwj9tBAjG6efFPzU8+Z8i18k/qfzSo18xzj8DER8/KnnRPzj7K5ENCdQ/yO2wwX7C1j/jdqoMs53ZP/ilHXH+kNw/ssWrKvqQ3z91V6fAYUjhP8EBBuMoweI/CqWNYHAr5D+ePTurtX/lP289MG2YtuY/VBRJSh/J5z+xYtgv+7DoPx1g6ZzFaOk/D+PDgDbs6T9y9Tu9TjjqPwTmt/90S+o/nS+VcYMl6j9L1NenxcfpP8rhPCjnNOk/tcPEvdNw6D9iTwufi4DnP6+JZAjuaeY/1I7PV30z5T84NTHtH+TjP83cTQzhguI/2DQYxbQW4T9NRDIBg0zfP0qM1ZJib9w/zMIQkxih2T9rEIqkOuvWP4uXDkTBVdQ/wDpxEvnm0T9V1sVRDEfPP+ejXg3uHMs/3k9ZUMhSxz/UL9gsMunDP/rHtnCH3sA/S70LZJtevD8G1M6gNK23Pw1AVqDpnLM/HSjr2WMgsD+N6PoRE1OqP9YrYM4RVKU/MyuniZUnoT/+AOPyMWWbP3+BE9mJt5U/kfs7NpUXkT9L+MKBYraKPwCIXW/CuYQ/Jx+L/hzvfz/YLAL/2m14P8iCWZGsjnI/Lu2pDGX/az9R02JTWPlkP6vhAgdUNV8/xyns9CMPVz/GpENR9utQPxeZdYzMqkg/xCFSkonbQT/btUCUka45PyIZ+eEBWDI/rKsWrcgHKj/Xbw2qwFgiP+jTkuYTsRk/sMCjhePeET9Q7LbC3bIIPw+D1YX49AA/p+WOYw4i9z70tWCyBFvvPidWfS8+HeU+A+bzhSpB3D55pcqO6cjSPutj0U7x0cg+KErvlOWOND/Qk6Dfh4c+P6HQXl2hakY/n2aDLClHUD/cm291xWFXP0xKYnhKnGA/onUOynNYZz+0d/i62jpwP1Rn5nl+U3Y/PJkphk1jfj/qKst1pnaEP8cD8IgKRos/oO4XQ7T8kT/AeOv0TnuXP1RydEuTV54/lqPCQqlnoz9kcruvHpKoP92qbOkVza4/8DOQkDYdsz97ZceXR323P9nJWhNolbw/Wc///uU4wT8sdLBNm43EPy1FyM/9Ssg/JJPaMoVwzD9KU0/NRH3QP5eOZNj18NI/9lNWLO2N1T8f4MOz3kzYPzzW/aClJNs/1OOFkGYK3j/M+uXH5HjgP2RjRo6l5uE/ISsR0lBH4z8CPxXGmZPkP2/NCj9MxOU/1xY51o/S5j+zMU0VKrjnP69d8SO8b+g/uyIZmvj06D+ZKoGBzkTpPxoTrC2HXek/U2bWWNU+6T9KOMjV1OnoP/4alBH7YOg/sbN9gvmn5z/u4orqk8PmP1ZJzPVsueU/xo3OLMyP5D+oF0dsYE3jP3UdBBQC+eE/wYD96neZ4D+fKemrgmreP0ix9vTPpNs/i/2dnrTs2D8z2mHwn0vWP2XbcVhwydM/ycXKp2Ns0T81ps1DMnLOPzZK8glGZco/mkIaXUm1xj9EUll59GLDP/KolwPNbMA/C8UYJBGfuz8d8qPb4Ay3Px0RU/SDF7M/OPKOiSBkrz9wYri3rJ2pP4CSqUPVv6Q/lQd7wCyvoD/owgl7wqKaP3EDSt5/G5U/PyQ+qh2bkD+7G7NtBvGJP7P9zFM+HoQ/F1eO2Ib7fj82YxNRQ7B3PylLqdUE/HE/5qJDGesdaz/JenYnGE1kPya5zInLL14/g+ig9NZJVj/Wa4IvDlhQP1sg/z1xzkc/mqiK3G04QT+YTUOhor44PzzGAVyoqDE/E3q9rh0JKT9bkjDb/6AhP9gsdZuZqRg/GmJ3CjMjET+oCVsoLKkHP8Fx0jAdOgA/rTwVFukc9j6Xzhj4YPDtPvIDq00PI+Q+s+/NcSrq2j4mudZOSN/RPuuxRISylcc+0oe0nTjtvj6aQ2zgZdg6P1hdng16yEM/x5PT3V7VTD/KijpuwcdUP+CGN4rtn10/jXZW/B3jZD/ZXDXosSJtP6W3JilVGnQ/HwKoyypyez8G5SPvrImCP8JVd8aBx4g/cbxvWoNjkD8KzE7mVXSVP0oP9WIuzJs/xX8gNg/ToT+9oKt/n6CmP+bEJkmOb6w/3QHfEGewsT9ZrUGsFsq1P70cs7Fjk7o/6IlgvFAMwD9aBp9LezHDP5GPahqyu8Y/bchKU+qqyj9vXzFiIPzOPxp+7Bd/1NE/n8Kahs5T1D8HZMZbNfXWP6leor8bsNk/Vqqwzjh63D+5nzWgx0ffPzps5X3pBeE/f5czxkpc4j+D3KNx9Z/jP/zoliXmyeQ/i4GfsGnT5T/YJ3LfXbbmPwsx+WNubec/71nseUr05z/wOQFS0EfoP6X9+uArZug/AMipbudO6D+2kXMc7QLoP0TZa4F5hOc/JfV5WgDX5j/3tQ0WBf/lPwvu8qbpAeU/d2eUfbbl4z+mYxrF3rDiP/mcAAgEauE/gD8eMrwX4D8Stn8VuYDdPyzCa4eX09o/El6xSbky2D8I5SB5ZKfVP/HL0sBbOdM/S2q9cM3u0D+bPZNQqJjNP/wbzqYNqsk/JKn8aCoVxj8rB8bd29rCP5Xpi92r878/qF/70AXeuj/AqUiCyWu2P86WVbjmkbI/YL5hutCHrj/wZjmKIumoP301bi3GLKQ/AZWwZhs4oD+BiLPvG+OZPxe0aAYwgpQ/ZOKpVjYhkD8OJAAiVjCJP8Ap3b7ghoM/zkJ2tikPfj+blBiQ1/h2P4ylapyNbnE/jP0zQQtFaj/GWfoJ4adjP9I+PSuhNV0/751sH56NVT8ZlhNipJZPPz++sUdN/UY/cPvpKgGeQD8Uf1ZIBdw3P6MY/L1tAzE/ZltxcbEZKD9X0t0xofQgPxvtKsr6shc/ayLTwONzED88qJkRhLEGPy46KKOWGP8+bhu5IHcq9T78+ANRXKDsPowMRRWvO+M+1c3nOIut2T5SBfxfBAjRPpUtZPXWcsY+YFvmr7VmvT7qHP+oxyGzPgduiXmEVkE/c9vbndVcST+OPsAANFhSP1Vb5Fx9Plo/Ot/JKS6RYj8PkvJ5bPxpP/f3IJoJ/XE/QmURfDmjeD/U1QAKW7GAP2TMV7SGYYY/dsd2PFexjT/OUzYo1X2TP8sLMkhUU5k/eiy6B61IoD93bICpH7qkP5Y9bMaKHao/ydI8Rm1JsD/OEXDrkRy0P56U6sqVlrg/GiDn4NzDvT9RuiO78dbBP6r8rEgmLcU/ydUId/rkyD/y8kmoDPzMP9JIvAhottA/ygDUliUX0z9NccKe+5nVPw2T0X/jNtg/5h7DeSzk2j+3nN6Kq5bdP/vuQ88AIeA/uz36EXts4T9W+apW8abiP4aI63GVyeM/IDWchd3N5D+YnqVMw63lPwW7+g4AZOY/fBAr9EHs5j8HX+C+V0PnP4kMloVQZ+c/0yo0s41X5z+SEBNuxhTnP7henGX8oOY/Hdb542L/5T8CKzzKOTTlP+QF4MKeROQ/rx1xblc24z+t0eaQlw/iP6wFBlPG1uA/IrPbBosk3z+enNvcepDcPyDzXNbe/Nk/8TSeWSF01z9bZYaUXP/UP6AJjKo1ptI/q5ymkspu0D8DqO+CYrvMP+RAM/QL7Mg/UswTMwxzxT/p+eLLaFHCP3NWbGQPDL8//+Dt8Rccuj8A37fPaMq1P5tNi9xuDLI/zCInbmOsrT9acf7k2jWoPyB1j00um6M/cQjJqSqFnz+y10v2hCaZPzmtuXvI65M//sJUQvdTjz/JdTI+cXSIP9A5pAO484I/KCDIYwsqfT/qC0pBj0d2P8XzoUI25nA/pglMZpx0aT9mpAGphwljP8NxWgGBRlw/GLzAayzaVD9NW5mA/IpOP/1ng8XrNkY/lpgNeuELQD9XzHxgGAY3PwX2+8bPZzA/XDUAkrQ4Jz84BILSAVMgPyPPnts6zBY/r/EhGGigDz8eZyzqv8oFP8grOz1N1f0+lU2YLXFJ9D6UaafrFGnrPvjgkSS+ZeI++f2+2VCJ2D5rBV2ssUHQPhA3RRlZZ8U+GenpQzIAvD6ZMzlNCTOyPvDMZdIcgqc+jqLOKGkoRj+YIt5sDBZQPzwX3IfGGFc/VaowzAJmYD8H1G+5zwdnP4GSIz09/m8/r7+qmGT7dT9HgFGBJeJ9P0HvOJ2sGIQ/6ShAM3G+ij+HQHCnypuRP2M75TAt8pY/XERzHJeXnT+AcSm3v+KiP2zj9Hkp3Kc/fLufDtbWrT+5IxiSgniyP7T6GJyDo7Y/VL9wV9N4uz+EqzNQGoHAP7YAETjvosM/55NGE8oixz9SdxTo5v7KP1sJued/Ms8/WIrgZMTa0T963z6GRD7UPyWD7rBNvNY/Bf8rbctL2T8eqOQPMuLbP62DVTS/c94/bSOHOud54D8xhL+qn6rhP9jh4fxzxeI/y9AhmQfE4z+SoqTPc6DkP9F1OqyCVeU/hrOJ0OPe5T/tJGJiWDnmP0dWu5vTYuY/yB4hNo5a5j+RbHu3CyHmPz+aWIERuOU/Msv7XZAi5T/Z9vsNgmTkPyU4jQC9guM/V6OW28CC4j8tzyjBfmrhP/9Yi1IgQOA/EKlooaAT3j9zNbjXDpvbPyXLIMS+Idk/Xs5MA9yx1j+QUMsaUlTUP+86c9CmENI/dTPag83Zzz+kriTwRdvLP+jR2d76K8g/rF02C4TPxD+eDSbaEcfBP39YDsh+I74/OTty1tdZuT8pU3sbLSm1P3rointvh7E/OHpRtVPSrD83Cb8fL4SnPyuE4f5MC6M/KAKqWoydnj80AHVnN22YP0YmuJFtWJM/z//T9gRrjj8dhdpEbL2HP9iMEVHKZII/FNZS+iVMfD+/84O0WZx1PzP6eYroYnA/BELBBW6saD8js2YL3HFiPy5zbqoRYls/hPIQ9TEvVD85R69GmoxNP0cFFa7XekU/1yC9vFsDPz9YqNwyPjw2P4izjz+gqi8/Mjh2dV9lJj94D4kgDHcfP7by7tdp9BU/Ey5QBdpuDj9wkv7By/MEPzRELgvCqPw+30p1X6Z48z6v7DDky0jqPh+qqtf3n+E+4iqRt6d71z5SHwV+BBbPPlrFeNNfccQ+x7dvdRW3uj6XPoYgPVixPpoU668DYaY+lhAfDiqxnD70V/ES9wVMP7v9WWSbMVQ/NH3iN7PHXD9aGE0sSUhkP4tSTes9Rmw/C6H9Vlh+cz8vUaO115Z6P8BC6pOJ8IE/KbC2kjLzhz+hEBRK6qKPP8Ld38T6rJQ/Q1FFmlS+mj9JCEiX/h2hP2YsM5bMr6U/02cvdiwyqz8GoI5RN+GwP/IDRuAovrQ/DbqleEE8uT92XwBBemW+Px7Byx5HIMI/GBx5bQxoxT/aS6uQ4AjJPz491S/A/sw/zSwa5ESh0D/dLxWE6eTSPzDvVpZwQ9U/TvTqlWS01z86kk8u3S3aPxEyGeK5pNw/XsiEs/AM3z+zgAEK96zgP4wbnAaBv+E/NMrQvOq34j/YeimrcJDjP18m4ufwQ+Q/dUFIWh/O5D+iRRq7sSvlP6PgROSAWuU/suqMmp1Z5T8lBYC+VynlP9gx0KY3y+Q/93qaO+pB5D/kpWcwIZHjP8NGm2JpveI/9uC64PnL4T9U60NsfsLgP9XqgcLATd8/3vCEqiH+3D+9PcvxrKHaP7vyaLdCQ9g/jWkKW8zs1T8NTIMLBKfTPzpkuUlOedE/IYf6YUrTzj8RD23FKPnKP31U3V6Hasc/NkPjFhwrxD/Nf0YVRDzBPwI/eg+kOr0/1NNdRciXuD/j+uWBeYi0P+NLmXYyA7E/iw26ow36qz+v1WiIbNSmP5Gh7A1YfaI/FgnFKKS5nT9fHhmEYbeXP/C208M6yJI//tgKZLKHjT/jAtLmUQuHP63RUbcW2oE/sXS0eGl1ez9FDNc7H/d0PxFl0QwTyW8/baqVlUnsZz95zfKPquBhP/P+5rr1h1o/HA2r/FyMUz/QRcJX8ppMP3NYGr2cyEQ/mModNQ7+PT/RCoEy3X01PwJVDIbpli4/kg6SsPKeJT8DGp4kM1seP6G53mGkKhU/UHUifcRRDT+7g1/GpCsEP31FwjN0kfs+iL77Ovu28j5MQwdS4z3pPueH954w6eA+2f993OGC1j76zKMgiMXNPkFTIf86j8M+LtKr1gGJuT7FCidQvo+wPiqyvH+GWKU+QD/1o21Wmz5KSb1/JGWRPhizAsJEilE/UFWRqMwXWT88elPC479hP5fzf3hY1Wg/T6yWdZIucT8e10EBeYR3P+IFWPt9138/lyRyGEhThT9vC33OrkKMP6dbeQcah5I/3nXh5f4JmD+8a/2FcN2eP1Lc2kUXnKM/fKC9TmypqD+IQeJ4ALOuP5EBtRjy6bI/a8WSvkMStz/bnh2Gk9y7P/3b1H4HqMA/QtwwTAy4wz81NBtlux3HP0xg0lrN1co/+c3Smgbazj/YvYoohJDRP93m+AQhz9M/iOy8hwQh1j87R6FF7HzYP6whU4hd2No/j6tFw+0n3T9n4FNSnF/fP8fXj+acueA/nNzyDGyr4T+eyE7Knn/iP/3u75MqMeM/kFl2lcq74z+wFDSfKxzkPzQtvBkOUOQ/4W07G1xW5D8Slp50Mi/kP1UcSVnc2+M/v4fDFMJe4z81dWcFTLviP11Ozru79eE/ftcioP0S4T+bQCzRdRjgPxuIViGWF94/4Aev/WTl2z+jB1dPfaXZPyQr2wFoYtc/dFqw8sgl1T/KeklYJvjSP7miBnfB4NA/JOVsLgHLzT88h4V60hXKP6yQ0cJRqMY/ZZbXqlOGwz/k6qxgY7HAP1npJN8ZUrw/mFTqOF/Wtz+E6ayTpuizP0teVhX5f7A/WzFMbO8jqz9BVz9a1SamP3fHQ4x88aE/xnHUxKzZnD9hZgEcJwWXPww36KVDO5I/piflWxCqjD+bigc2JF6GP4a8oBeWU4E/J5IDNL2lej/B+itEwld0PzFiAdb01W4/SIMiufMzZz+vrELMvFVhPy/Y9PjMt1k/6gU4xFrxUj/0VfyUebVLP9VDPTPIH0Q/e8BnLiAHPT8CtVCIYMo0PzKkyI2Qky0/DFzrRbfkJD/5ipG7XlEdP+5quY8TbhQ/cj9bMeNHDD/rEqGjWHEDP8clvO78jfo+pnw7h2gD8j5mfdlU3EboPjE6b15UQOA+0mQ3VXSd1T4t32fcvY/MPvi+ei5gv8I+Ea9redBzuD5aiA0OHrCvPkzgF/WXZqQ+QqWUFMEZmj7u/wlQLJeQPiELzf439YQ+i86Lo9y8VT+C5X9L0t5eP7G0FjglrWU/p4wV+vEabj8IFhoiTK10P8g1slUPGHw/GOFjRTzhgj+H6QHNfxqJP1SOR9EKg5A/V4RaevZ9lT+z+G72UK6bPxi8emXvo6E/vz6CLUdApj9rRfT2W8erP5pVtpK6KbE/mU2WGFP+tD/JdkOMqWu5P4GQs1JLeb4/9PKKb6cVwj95a43Ww0DFP6VgKv1mu8g/0rhVPzSAzD97vKWNaUPQP7O6d0DtYdI/qhDD12+U1D95cNX9VdLWP48fckzNEdk/3EbieQ5I2z/rwke+sGndPzGlbRYLa98/U6/Qc0+g4D+a/pJUw2/hP/LBQFnxHuI/gn3qF5+p4j/AOtRGcwzjP+RHlDMYReM/vBBODFNS4z9XE5a6DjTjP8sHNNRZ6+I/iZpe8Fd64j+O7AhxJ+ThPz25J3i9LOE/Qo4kRbpY4D+BqPUbcdreP1q6Qxw139w/Hnfl9a7K2j8pcrSsl6fYPxsyqngdgNY/gYexoJtd1D+fziXQYUjSP/c0jAmMR9A/dmnll9bBzD/OXu0i/DHJPxFJgxHu5cU/VqUHtZ/hwj/WhRPiyibAP9CVLkpsars/xEEvowYWtz+N/YoJA0qzP7BaTEz5+68/fWbxeUpQqj+02VCvoXulP8H0vJzfZ6E/Xzl8m9T9mz+ivbikolaWP7+fqsWUsZE/gmV1UCXSiz9KMvi/3bWFP2fcNP870YA/cR8fJgHdeT9DMsRQIL5zP9byMpIy7G0/ckAFUC2DZj8p2ypO2tBgP2/S12o18Vg/JgTgRdhdUj/lqqYQpttKP3z3pXDpf0M/nEdRf9wdPD/MmWl5OCE0P01ADBq0nyw/ZIqqwf41JD/1PFSTg1gcP6IOtKjsvRM/skCJqAVQCz9ovNbVBMQCP92V9DsOnfk+Au8FK/pc8T6wTk8oVWLnPphcLrPJSN8+X+SiqvTJ1D7VTXQDpXLLPoPh359nAMI+wa+OU4x1tz4h1x77qV+uPuWJ0fdciaM+wRI3UZ34mD5sSLhVyLaPPvkeCSDQAoQ+Qt67k/oXeT5uLa64D61aP/elYeS/zWI/SGs0t+s2aj+O22mRShJyP7tXx7mUpHg/kJomKIyegD+DY8tlqCyGP+eUZvb3RI0/hUlyi5wckz+8ou4m4rGYP/xE3AQHk58/bN3xC5f5oz8P1MfrJwOpP32f5aWb/64/krIuXkUDsz+C9RacLha3PwZIYEtjwLs/4fAtpUyDwD98EFcuznTDP7YdMf3LssY/QiJIZ784yj9piX/MTv/NP8P0DYgZ/tA/sfQTLh8R0z9A3+3owzDVP/a7TtneU9c/t5WNkE5w2T9OGoICRnvbP9vE54mnad0/pEsJ3mkw3z9aVmn5gGLgP5iGfxTmDuE/8QXjgTeZ4T/qSUPpGP7hP+95Uy8hO+I/N83w1fJO4j9/XXuQSDniP6eqjnL1+uE/iuFe49iV4T9jr+08xwzhPxTSOaZoY+A/IOJieyA83z/Qh8EKHIPdP/8iYV78pds/UuUdyjCv2T9thurzAqnXP677bjlDndU/svqBagGV0z9dPRonVJjRPwRgyD9gXM8/QbaB5J64yz9qb+PXUE7IP9Ltq33kI8U/Kp3rMms9wj+Cyofqmjm/P31iGK0ZhLo/eK1NNx1Xtj+jQut41KyyP+aakDre+q4/EqWNgmR/qT+MEklqANOkP0bKFDef4KA/sxT+Fz8mmz+WS8I/5quVP0Gw13w0K5E/dHYToO7/ij/GO4eQchKFP3ufCG73UoA/Z+CfGg8beT8U2GvbEipzP7EwPWSDC20/QtCMYrTZZT9eC2pCyVFgP8SgYjzMM1g/RoPtzYLRUT+NC4fU7wxKP+qpBm+S6EI/bkq8j5NBOz95spSt2oEzP3gXrLl8uis/AwUFOSOSIz+9pGbBpG8bP66oCs1wGRM/SXJlfQ5pCj95t2vu1SICPyLeC5Nxvfg+scXBC87C8D4kY6NDB4/mPkLkiV7wKN4+g9YifBYH1D4pxI/maGzKPlfoAmgJUcE+9ESA/G2Mtj6VMZWirCutPtXu3gQov6I+VXBB37rwlz7ldYQphWCOPkYh0SM3JoM+wOPIjlz9dz7SiEyiId1tPkb4Y2L6NWA/mdz5oSuwZj9hgwQdk2ZvP6PcUCpffXU/ky/qLIEXfT8tR4iLPnqDP3Fuip62zIk/Zz8PZmTnkD/vPZJnRuqVP9CJJPGoHJw/gH2V+2fXoT+CMJwXGmmmP46wF/7X26s/DgwOMVEjsT/sdOxK4d60PzmEgIauKLk/J9CjfvgFvj+YBdRPNrzBP0KqkYm5vsQ/N8kTksoGyD9euU0vBY7LP8M2ZnY8S88/EC3p9zyZ0T+FMQfJj5rTP0sek0MXodU/gNB7NFmj1z+oMZkTJ5fZP5xgvajycds/j9BHHy0p3T+KAO3Yq7LeP4fDltiGAuA/JREGkA2M4D+Arv3mjfLgP5+cw1mOM+E/yGhvYpFN4T+0drGsI0DhP633T3HeC+E/5457/12y4D/H5OgyLTbgP8hnvXdONd8/pNb8TKPH3T/6C1/dYSzcP8wJGEM0bdo/ZxtCJAiU2D/itxwCtarWP0KWSZWqutQ/e+KCjarM0j/MaEYVkOjQP16JMepMKs4/UIIhZB6wyj/1rfM1bmvHP9LoJOexYsQ/+Ri7sBeawT/l9CxKbCe+P+XuyI2Tn7k/pATkM/eZtT9xXkkHWBGyP/JVkWH3/K0/fYe/kXixqD8SgOoWGC2kP6epG+LSW6A/gh561AVTmj+z/dmv/ASVP6sUD7QjqJA/c0TaxmEzij81Qfod0XOEP3gtLBVnsX8/RRJfvLtfeD/2cGUbcJtyP0bChJCaM2w/88/R7kQ3ZT9Ap4QGnrBfP3rYKYAuf1c/x8dneQhMUT9F+OWA0UhJP2kwdB9YWUI/0vLsvJtxOj8k0bVawusyP3A03tcc4yo/PwupMof4Ij/M+qNq05UaP8g06Y3sfxI/Jt62jfKRCT9SzwbTBo0BPwT/s5EG7vc+Fqsp8RI08D7B/DWJxcvlPlziOM5uH90+YUtCPKlT0z7zZ9VaXXvJPuWMYdAasMA+c7wcwNe2tT5QDh9B7RGsPmeNhvh0BqI+nKKsyAsAlz7ugBFwyyiNPuFw6E2UXYI+qNZv4ar8dj6KM9n7uJZsPkNHzjpgqmE+EdpkbVKEYz85UGgvRB5rP5q5BiJzoXI/rXit/hRReT+ehUzoQwOBP8mZd6HQnYY/cSpQB9G9jT+khYTqlViTP6J5+/6D5pg/lqle4gq2nz/R6jXyBPujP+Pf6qeh6qg/e8VwrCnArj++3TUA08eyP+eXDSvCtLY/8HcTWZUsuz8oC4zP4RjAPw3flpVs4cI/8o1C2O7sxT/KdUZ87jXJP5svYe9OtMw/mLpYnaQu0D/NnqxfwhHSP3AEMnip+9M/c168HYfj1T99x237zL/XPytjQGN/htk/PO76Vo4t2z8mABATNavcP7XIThxb9t0/f7TkffEG3z+MsFLyRtbfP0qnQxGnL+A/xIv++GhP4D9P6JpzykngP8/E3gYtH+A/kMYhGNeh3z823fXukMLeP6qYASOlpt0/byddyoNV3D+qB7cYntfaPyZIcnUONtk/eXL76z561z/E84SWkq3VP05zEh0W2dM/UYWLoToF0j/mDsiJnTnQP8wUezy9+cw/W/UU+AmpyT+ERjnp5InGPwTN3GXIosM/g65vzv33wD9IwMhOkRe9P0OcEH0/vbg/0q0tLN/etD81MCwaw3exP+Y/89+OAq0/Uj5kCbjmpz+H7hzAB4qjPzrmWscYs58/QJ9QtzmEmT8O0ww96mGUP9CJtJZeKJA/1aA/dm1siT9Nh0Uf49mDP6+OIYewxH4/SQTahdeqdz8xc/q0CxJyP1NuyHgoZGs/YQ9tmZmbZD9VJgojYcheP7dEYtD50lY/qOj1nBjNUD+NkEHJyI5IP4M3BbDS0UE/T2opnFGtOT9hfapZcF4yP7f6ga/QGCo/ws+7fJVoIj9+WiJVLsoZP5QmjXm38BE/SVlaHrjJCD9sHIr53wEBPyHS/azBLfc+641v4Q5g7z4ksNyIehflPpUWPyS6Ktw+oZpnEJau0j6gTDh8+53IPmLFNuiLHMA+cdYHA1LztD5u/yXMaBCrPreG6jrlXaE+Y2nLILYklj5NMrUDHw2MPqpNYqM/p4E+4mk9S7QTdj74G/zQ325rPkvqVNSp72A+PjIUtYrHVD4jOvhOtEdnP/2/X9S6DnA/QTGtI8LndT+hV3H6ko19P0usW+eRt4M/oisOgwQGij9d1j96+fyQP4Vd8Osy8ZU/908RwhQKnD/wAKvm6LmhPxWcQ2R5LaY/NlPBDD91qz8furtYcdKwPycf6yZ6ZrQ/jKIWz8l8uD9hZ6oqiBi9P668spClHME/qn6jHT/twz9MZu/vc/nGP1LDOxssOso/sUEOMcalzT8zUMClE5jQP99HNRZ2ZdI/Dv10D94y1D/wO8sHXvfVP3O9cQCPqdc/RaaxZ+M/2T/eOdYqAbHaPx+WPEwe9Ns/aDYu7loB3T/HHfq7E9LdP6IlfvInYd4/rJj9+y6r3j8xHUySmq7eP3dDvZLDa94/V8OKBuHk3T8Ybcc96h3dP0+C7x1mHNw/yu8l2Crn2j97Sa8JEobZP1xincelAdg/5TSnPsti1j/qv1llb7LUP5Ejcck5+dI/ODDi0Eg/0T/okPHa8xfPP4XSVad+y8s/3vq8qgekyD+p70xEOarFP/dbF9uP5MI/nxH9x21XwD/xlpWzgwq8P6CzufZ33bc/cAtqzRYmtD8SpTkCROCwP4KNkarjC6w/fwyblksfpz/dhqe65+miP3p+TMyws54/DwpS/eO5mD/4sPuHrcKTP7s1XXC6V48/AFYOlPqqiD9ZOMNNjkSDP9rIx8GV330/ioqPli/8dj8Ptr5Tt41xPym/oXbbnGo/7QO+RGwGZD/LesL0ZepdP2NtRtPMLlY/YOr5FmRUUD9MSl/TVt5HP4vUqbydUUE/Zo0SIRj0OD8tzFwoa9kxP5LoeCbeWik/9sQ39MDhIT+BCqBp4QsZP4tzIZ8zaxE/GURB+XUPCD981AuktoAAP099U+mqe/Y+JS43xfFr7j66yPnWJnHkPioj6f1nSds+z6OZ090W0j5KLUar3tLHPocSt4vKKr8+pFLd84dAtD5PJGsgTSWqPkqTfEc8xKA+vuZeEQ9dlT7YN7BHRAuLPmYG0Ae9AYE+Smc7uIJAdT5IO8ZzA2NqPrvnya3SRmA+veeKhPrzUz41oBatKE5IPurRcbRxhGs/xUENIEHYcj9tBAUmKYZ5P2nc5tQ+GIE/Z+RedMalhj8KUVMAj62NPxgREn5MPJM/A/910eaqmD8gNDdWEEyfP7wtrI7+pKM/qr+hZvlmqD/h+Ce4I/+tPwVESiEFP7I/5jFM5Cz4tT80Kz91yC66P2w19hFc474/pfn1WU0Jwj9aSsyddNrEPwHtYkQD38c/0ICTkHEOyz98xySP2F3OP/NtGZEM4NA/HmzdoBGT0j9TO4U9rj/UP39f/0ER3dU/WPvdSDJi1z8/YxkfJsbYP7QJWah2ANo/p7tTbXkJ2z/OY1jxn9rbPz5ooCy9btw/mN6oITzC3D9JD1BqRNPcPz9CfrrKodw/h5M5m4wv3D9w+bPu93/bP47MYgoAmNo/in8iRuN92T9yLN6z5DjYPyN2kzv+0NY/kudvjo9O1T+QjytJDrrTP0ITWDq7G9I/Xu6TIWB70D8eRbTkMMDNP8hj3oVNoMo/viDXUq+hxz8lkvvd48zEPxGGLoZmKMI/1ELG/F9xvz+g8i97sAC7P7SacT2NALc/HlXQntdvsz867wSgAkuwP7HNXaMqGas/RvAmGlRbpj8bxC9kykyiP92zKiZ+uZ0/JbMAMQf0lz/JwphMQCeTPzYNX1YoZY4/7bPlIe3uhz/sRb4TtbOCPzdoMgrdAX0/2l2qb45Tdj8o0GAxQw5xP8iGHZhg3Wk/xsVgkXZ3Yz9iYWZYNxZdPwdKbaZHklU/GXxGHzvDTz8LE9B8ADdHP2JIaG5Y2EA/vpo6rFhFOD+rz27cPlwxP/o1t5WUqCg/TesIQYRjIT8crd8oJVoYP6JsXw3N7hA/+JAQiVJiBz/8lC4f7AgAP6P4q5vc1vU+NNZlw4SK7T544GR539fjPskYYQQseto+8H2yO5eL0T6dER7EwRjHPu/XPOyLM74+X6iZhESdsz5eD5Kf9E6pPgN9T4hcOKA+7Eg+ZJanlD6v9x7iOSGKPgHXh963a4A+S3lqOFWBdD5+uEIo2HBpPvhPTUK5XF8+EorTsCk1Uz508TeHxmBHPrBmMBYtRjw+dDM7k1EecD+UayVvh+t1PzGcSA2Ben0/SF81p16agz9P1L+GRMmJP8VV/hqGxpA/I/R3l2SXlT932rXC+H2bP6Pb3sEGUaE/8pxPg4GVpT8zv7fy/p6qPwAhQIzyPrA/9A7sGqGfsz+e2aKnyHW3P5WYZsu/wrs/8wr8ozFCwD+NFZMsTNrCP44cua93pMU/yCSOqziZyD/FEOl70K7LP3vWvOxa2c4/23p0K4UF0T+SQ+zuQJrSP4IqmKWlItQ///a8+DGW1T+udU0ObezWP41kWIo5Hdg/2j5qXSgh2T8c5PG1xvHZPxgB/5Piido/temS/sHl2j8W9UemSQPbPyrwG8sQ4to/767+a2GD2j+oDmQGJerZPz3pvF+/Gtk/EfQj49ka2D8Jxrj1IvHWP/6dgzYFpdU/DJjJ4lo+1D+i2+2NIcXSPw52mwkyQdE/6eFvmf9zzz8V+zfZxGzMP6ArRM7VeMk/Tus4Pouixj86UNMyUvLDP9qIKJqhbsE/wNKW/wo4vj84QrziePq5PwBJkjDGJrY/L8t9ulO8sj94O2kDQnCvP4rbGqKPKqo/OZmpg+uapT8QwCHWvLKhP6K2k0aJxJw/5VYnD6Aylz+IHBAVmI+SP3wrQhfqeI0/N/DMDiU4hz9ZhQ8pNyeCP/Tt9kBJK3w/8/0HmrywdT8aQPqKfpNwP2xEaEFkJWk/vndySnLuYj936Zl4YUtcPwfLVDQM/VQ/HvvCUvPoTj/HmayKTphGP3ERtYulZUA/rCYWBoOgNz+Cp1MJfeYwP0i4L4JMASg/XCqhiWHtID+PKcQYPrQXP1BBTk75ehA/xd5/9YLBBj8PChgJ2jP/PtibBDaCPvU+Sde1rpe67D5YmdZqzErjPmBr26TVu9k+IxccIO0L0T7eVfqLfG7GPksHBS7DUb0+R/Zep28Isz7tc2404ouoPhMbtvyIcp8+/Pi8fvIClD7BXoAbM02JPl4rS0b+x38+xQepoJrUcz5BFMnQUZZoPqx59CfnSV4+dwmtvmGJUj4erBfBTotGPpeRCox9Pjs+9UgwZaJbMD7q3u9j5bdyP/JrUqWgRnk/TaGxXi3ggD+zcljFLEmGP/4keiOuG40/VzcNK4TNkj8EK9t1mgeYPwYPPt1tYZ4/H+lrdy0Aoz8GoNeIEoSnP1x3OYmEzKw/th55xGRzsT+u9TGoE+60P9Qlysxb2Lg/rpsDVCUxvT/+c8Il2/nAP7wvTaKoi8M/rjBQBn1Hxj8Jjl+3tCTJP7h/V16bGMw/0WK/cp0Wzz+U149SSwjRPwiGHaOde9I/3/XxY0zd0z9RCnfMUyXVP08EkInzS9Y/gkPRj/1J1z+kZCZcIRnYP/427EkvtNg/nKtQDFAX2T9p72YMLUDZP5Zp314HLtk/Clv1ILzh2D89cYE7tl3YP+GMXrXOpdc/uDXdyh2/1j9K32nbv6/VP0N73NiRftQ/f0Y2Neky0z+f9SNRS9TRPzZs9SwoatA/H+3CQDf3zT85SGxlbx7LP1xEvcqzVcg/yz2/4BinxT9jb5ZH5xrDP/ljONKNt8A/qY7kGVEDvT8bcC5OM/i4P3kI/xlhULU/vBJTfrYLsj8jSmTxd0+uP7N7Rm42QKk/ZMo7nyXepD83po+MxxuhPzsXmMjT1Js/mi16WaZ1lj8ot3fdpvuRP6/aEPjdkow/qzwx9H6Ghj+SUEUf8p6BP7SWK66aW3s/OfnWN4ETdT/kso0GOB1wP05gm7aSdGg/0eLnvxlrYj8xs0Y/colbP2uh7Ha+blQ/5+7xR14ZTj8uL8XGzQFGP2lqvfhW8j8/4VK5SQ0FNz8RsGCcvHcwP48D+UlnZCc/orFnIOJ+ID9bESksfBkXP+FjIuI2DxA/47G7QkosBj8fYDMFYWb+Pn43XSDXsfQ+M7dmJxL76z7RrNM0J8niPuDRrO9NDdk+4Qiw4ByX0D5N1ZdSAdPFPhOuRjb9g7w+9mneyQuBsj6yk/m1vdqnPmZRimAYjJ4+6I1+xOxtkz4G9TjUko2IPmzOpNoD034+PGSSw+w4cz5qGfxundFnPj8CQyzSUl0+hqzxgB3vUT4J3D7Sz8tFPkMZvlMwUjo+1hO+sWiVLz6sVxZQWtQiPtJWeNpCjXU/Er8RHrvlfD/rxRJacSiDP0TYQB43H4k/BU7/i3ZKkD9RV6LYDuaUP8KcBTA6hZo/osT0FJ2loD+zt17pI62kPyM9nWvqaKk/1KOSPUfmrj+0IL56jZeyP9SmESpaJLY/g0q0h14Zuj9OWDgHIXO+P2F9NMc6lcE/vzCJch0axD9M9UNMocDGP7aiuiw1f8k/fVb1m3VKzD9+qy7tbxXPP1eaK8b/6NA/fEgDJKE40j85LT9ID3LTPxXJIYvqjdQ/rZ3pBkuF1T9nwMfgCFLWP8C4hQz+7tY/hJK4rT1Y1z+XZGnTPYvXP8hCxCTxhtc/hPEUHM9L1z9ATkKMytvWP8vAjUs3OtY/kzxv5qBr1T9F2soZlXXUPx5cj3VlXtM/ZXSI5eMs0j8HwUrzHejQPxTRGcg0Ls8/L7AX0ziBzD9uAXYE3tXJP4AiPtd0N8c/UYBWhMmvxD8oHnRK/EbCP9H7NwNwA8A/svJrNZrTuz9YvY0rLPq3P2Tl7HKUfbQ/Z9nMMyVesT9W9ehN1zOtP2Eaj6k7Wqg/v7he1RAlpD9ZJA4B74egP9pxPWdZ6po/FcnYlw29lT/3PCypW2uRP/SNMi7esos/qmLsv9TZhT+4W5fewRqBPyj/qLWPkno/Diavg6J7dD9GSu8UfFZvP+6HP5CYymc/5nU4ESjtYT9HMQOw+c9aP6T/06kE51M/mPZB6O1TTT/joEYND3NFP8ZBRYYoJT8/rh16wnNyNj8oBOywmQ8wP0WXqMhO0SY/dHDlLJYXID/vUgooOokWP2NzdXUZVg8/dgitdfihBT8fKdpVb6j9PopMKZ8lMPQ+FaHv5PFK6z4u6emfOVLiPupi5ZyVbdg+yhlR63Qs0D5nRlbEWkXFPlqKL2bpyLs+YLunijMGsj49F1WhUDqnPsP6CrPFu50+vURNWG7nkj57UoIB5+CHPtx2NaqY9n0+GhtaMgytcj6BO5ZiGyFnPlrz6QZhdVw+M5+q7wNlUT7wSYFwkSBFPl5Gny8Xfzk+kyVewLWSLj4LKv8/xTYiPr5aaHGbkBU+mb7njiibeD92NOE+hWGAP8Omq7VskYU/xRx4A54VjD9vSJihphWSP6k8PfuTCZc/McJ6Mq0HnT/rODZiPxiiP4eqnQM9UaY/a2ryZBI8qz97gKykhnGwP47ufro9prM/j+g2m9E8tz/nR5BV6DK7P1enokTFgr8/7dCDVYARwj8eYamgMoPEP17qw3b9Dcc/ZZuMxaGnyT9pRYTZVUTMP2z36AIX184/A32C9Qip0D87GbaijtPRP8Ly9nwg5NI/2jetWCHU0z/AzYz7l53UP5AyBv1uO9U/xoTDs6up1T+/Y1LvmOXVP60uAv7i7dU/6bofcKPC1T9Aa0IWXGXVPyPM38rh2NQ/c/qimDgh1D+vSLirY0PTPyzodCMsRdI/DCOFQeIs0T/ajeSWHAHQP7UhRV/xkM0/UZsPx8ASyz+Xbv3OrJPIP5I7siCYHsY/jNDF9wK9wz9KrPsw4XbBPwJDolELpb4/BxEvnUKpuj9k9v/LpgC3PwYdZZ6PrrM/iXZcrr+zsD/pQv8GiB2sP/2+u6q1eKc/juk63bZvoz/F5cpzaO6fP2cYIuAQBZo/u28kycUIlT9CN5gKo96QP46buqzB2Io/qXq1TP4xhT9LwxAVgZqAP7E7rnXlz3k/AEotP+bocz+5rZUQvnpuP24WLh0jJ2c/zc9Call0YT/Gv74uih5aPwh6i26HZVM/fQD8ohiYTD86ZFBNp+tEP3RUqt0aYz4/YwAIvzjoNT8opaa8alsvP54SRvV0RyY/VsirpChuHz9DYesH3QIWP+SB+nETnA4/5qprvukhBT/hcCqPGfn8PlEUmMfFuPM+eHLyGEmp6j7Y1JZ5XOXhPs4wBDXD29c+nF0IvaaWzz5eixrqqcTEPlJ9FLRWH7s+VHn2oxeXsT6H5n0jg6mmPh2FcqgZAJ0+7sYdMn1ukj6ch6mk5EWHPpJj8FsJMX0+NdZwd9wvcj7iOU5RWoNmPl6/wjO3r1s+AaK0nePpUD69h8iRDohEPkRJHLpFwzg+/M1sssCsLT4b2W6u0KohPqSNnts+5xQ+FUKRcmyTCD731/fNs9x7PwC5Ykdha4I/8ZGYO1EViD8GqbncKiSPP3c+DinU6ZM/IL+cvsUwmT+ciI8Fr4WfPxWPb3LpgqM/C4T756blpz9Tgo4YoPWsP2TC7P/2XLE/Kevf/ZuatD8DtHwCZDK4PyGISIDfH7w/JUB1yZ4twD/N6O1hkGzCPxkB21ZOxcQ/bgYO57Auxz9q96MXDZ7JP3AvaTV7B8w/63JWjjNezj9zoW3dfkrQP5AB/aFWT9E/spr0mlI30j/j+fOvrfzSP2hcl9tpmtM/wntETIYM1D9j85a7KlDUPwbXv2zFY9Q/lDeNHBpH1D8ezvonQfvTP+fUjDKXgtM/+iuXj57g0j8Ll0+M1BnSPzEmcGR9M9E/AtEQHGoz0D8fm0ZUdz/OP+5QkJ5N/cs/QNvQVXesyT+p87dMZ1jHP6LgMGOPC8U/ot4VOiDPwj9mwVhR3arAP30BItoKSr0/Jxfy6puEuT8I/zox3gu2PwjsA5l747I/Tfau36AMsD+qHw6sqgyrP1XI4Ui1m6Y/mjl7YR2+oj810rGbKtOeP+o+PcPsJJk/TXFvBLxYlD+R9F6eZ1WQPwUEV91cBIo/uIWQ6tGOhD+iSCCZCR6AP7+SNVJYE3k/mnK/EhJbcz8PC0l506ZtP2OZ/7PgiWY/FQxUNGsAYT991le1uHRZP8LszeTx6VI/+a7qeFnlSz/anNd+L2tEP0GSUwmQqz0/MSNOXORlNT85atACa6MuPxh07XtTxiU/Veq8qfK5Hj+QwSpj04UVP9xt41mI7w0/0X7gqYWrBD/wAMVvhVf8Pvrm6YEcS/M+pJfj6jwV6j7UDyZv9oHhPn6e21sBV9c+90vDjknmzj5Z2b1TJFDEPnB57gUxhro+cu+PB/0ysT6MKfVrWSemPlgjk3DDV5w+res9gjkCkj6e9X0wZLuGPggvhx/SgHw+EfMHvmDAcT6sWJKlEvdlPlPPr+0uAFs+lZzmuq58UD7b+O4q8ABEPvLdJYgKHTg+hBGyWmnhLD5Ku2AfKS8hPqTlB3q4URQ+8d9WzKnfBz67IOi2bN/7PWUxRytdS38/hDYGWZKLhD/fqMOhNa2KP9/c1ZO6IJE/kF/X9NDAlT9aF38px1ObP4fFpHvF+qA/j0BkbMrfpD8AN9WvnWOpP61XXITyja4/k0Hj8Usxsj9MgdmySnC1P5674q+wALk/3NFanCDcvD9meFcbeXzAP2cf/jcSpcI/Br6/67zfxD8+RE5I4SLHP43fOh6qY8k/hnjbh1aWyz898NgGnq7NP02tAa0ioM8/SbkDw3Wv0D9BFnRK8G/RP7jTJaegDNI/gKD8SoeB0j93tov1sMvSPyJVb0hW6dI//kDUhO3Z0j+QQoiDLZ7SP0ai3e4BONI/RuP/tXGq0T8eCl+JefnQP7TIPN7cKdA/ZPFu4eCBzj+HiN7wwojMP6fEEYf5c8o/Vd5GZPFOyD/GvIRFiSTGP3b97qS//sM/Fy4FIXLmwT9ZnAjrX8a/PxKLMVM/9rs/hp7E5+1luD9C5sDOBRy1P+KfRJ17HLI/t2auw77Rrj9kwwpTWQGqPw5iPJdGw6U/nKH8l0YQoj8oLQi6G76dP6qHgjDcSZg/skeOC9uskz8od2b1JJ+PP/1QoEaCNYk/r96H2CTwgz/2b7iBaUp/Pwui326kXHg/EBlp4OvRcj9QCHbKWtpsP57DSPaA8mU/0p3dPByRYD+t1cH6HNJYP8Sl1bjxc1I/fdGW+i87Sz+OYLmPRPFDP56FI8rw/Tw/J8v1SQTrND/AxjcFifYtPy+8v1RrTSU/wXQIfc8RHj/RZHDUlBEVP8NDq7KyTw0/VoApWz4+BD8D0bip6ML7PjnZp5ma5vI+ZCLFCwSO6T4DIof8eifhPkYK2juN3tY+BDUO8sVGzj7XmRJqEufDPo0d6sd+/Lk+Qtm0JzvZsD5ULNVB8bKlPsbRHlaVwZs+KNw4WtuhkT6iHxFSXkCGPp2UD0ua5Hs+nEcH27hdcT5JzaOTIntlPomBTuFTZVo+hr2eknccUD7uDruVCIpDPnC04inpijc+czkS4NIuLD6Q9muRpcIgPmQ2E5mYzhM+o15WkR5CBz4INSwpOSP7PcmjKV7Edu89KFJ8FoJvgT9z6VJGULyGP49cmZI0UY0/5PvqcIqxkj8rVBsp+ZOXP3nfPONfap0/V3wmGbAmoj9SQgrBHymmP1QaQNGexKo/iU6ILe39rz/AX4PeyOqyPw6ZxzaKI7Y/o6hfhi2kuT8/B9BhnGS9PzwBEqjPrMA/hMD3NHa6wj/DAS4OsNLEP2bmraKw68Y/BRRbdrf6yD8ng8RkafTKP1NyKmk4zcw/QYImxdR5zj9w551toe/PP+z8LZCSktA/CaF0vjgJ0T+4v1P6vFjRP2w7Ka0qf9E/r2PjGbN70T+bWTnLs07RP4TwRRGv+dA/fBLQPjd/0D/410hTnMXPP5xQ+UJ2Uc4/tktDIbSrzD+9DymDzd7KP6cjO6WO9cg/wkwFbbH6xj8dfsKPf/jEP8TQSeyB+MI/FFgo+T8DwT+/GhjPIUC+P8+kV8P9qbo/c/DZXndNtz+ELDM+SjG0PwEkPrytWbE/t1827huRrT+B/ftrqPuoP2r/upFx76Q/QEXezDFmoT+6UWH+Lq+cP0YogITLc5c/tQrfzwsFkz8NO50nF5qOP++PMyEDbIg/4SYnsctVgz/ZOhJet19+P1IrgRmGq3c/45bxCjpNcj8vhe7c8xRsPyTQdge1YGU/rt5v0ywmYD9YwNaNUTZYP/CnUyk3A1I/jMhjOyCZSj8uPNFJh31DPxuVqVisWTw/5V1Fiit3ND/R+N4zIlQtP6CXl1lE3CQ/vMNXCQ91HT+4NzpkoaUUPz+fM/bZuww/fYQyzY/ZAz8pasG6hzr7PrQSftu7ivI+STbtYOUS6T7x7B9uadXgPt3Fnw+1cdY+sTGs9ye3zT7u9mjlzYjDPnjcTbpegbk+5BM2aTqJsD7mvnvVf0ulPgKctLWBPJs+pwDLlLBMkT63wMgS6dOFPnjUInYwW3s+uAgfrR4HcT5ym56Wig5lPhpkAIPe3Vk+SV1l8dqQTz59kouKTyJDPn2hke+UCzc+zDgi/VyTKz48BygqQ2QgPpDgzz2fXBM+oIvMnEG5Bj6Y71cZzH/6PTOQFyC6tO49PCRBuIqt4T3lnB1IBUeDP8sS5tQD94g/s8aJoJb4jz9RBGNh8D6UP5q1FnZeXJk/475TLDVsnz+0lQ62tEGjP0HFMFdgWac/ud5n55oCrD/ZSOl3l5+wP1+2yus5hrM/pDPa1lSxtj8Iq/r7Pxq6P/04B85qt70/BbmKcC++wD+FbtOE9KzCPz0dNIg1n8Q/0MO/lyqLxj8s2eTVYWbIP3RH4wIdJso/kGVlW7m/yz+78xY6HCnNP3Mi8VweWc4/KPMRhe9Hzz9iIux4bO/PP2kSzBuxJdA/mF9kLd0s0D/kTMIQRw3QP6Xj7UgfkM8/AlkFjbe+zj+QpTlGcazNP202wffsYMw/ut01rfjkyj/LNCypLkLJP0epdhyRgsc/vjFZaCiwxT+s2DDaqNTDP4infe8j+cE/oIvOHsglwD/QZlnsYcO8P+QTa2mQZbk/ujn64W47tj/Eao3m0UuzP9gkk2orm7A/EoAh/3dXrD/5WNGCp/unP5/Y6ro6IKQ/eLI94du/oD/OYX1QVKabP1qn0fSkopY/LwBM6jVhkj8FBJcsdJuNP2qONN2vp4c/PpXiypq/gj//mRcur3t9P5jo8ya6/3Y/8xoFs8PMcT+/cE4zQFZrP0BPKbkv1GQ/HaVzwL1+Xz8qpPnl86BXPxPkeAZ1l1E/BjjQu7L+ST9bLXkznA9DP/tX/h84vjs/+2GmLvIJND8vckAjnLssP6rfittsciQ/5Ie1XQvjHD+dViz3gEEUPxM5S6pRMww/TIieHP98Az/6fcDTtL36Pnk0NkAGN/I+gdbQxDaj6D6bpHH0S4vgPqWa8MfWD9Y+LH9iJZI2zT6rY8ZlwDTDPg2C9vEFFLk+re4lu3JCsD5t9SjJT/CkPq9HjUSYx5o+Dbum9hoCkT4fi+xKNXWFPoT5dQWH43o+0qzUyuO7cD4djnJYarBkPhSYbPavaFk+vViZMLT/Tj4bwuGc3shCPvQul1vsnTY+u7NJI54NKz519Kl2IRMgPg+qgWO3+hI+wcPuD79DBj4AQegHh/P5PU4804o2Du49+8XFLEJL4T0xIhdGt8bTPcobOnK/JoU/I63laGk0iz99MJLoAk2RP2L+twMbw5U/QZmdhvcSmz+MoBzZgqigP0Wy5Y8iR6Q/H9MIRmZrqD+ZyG21IxitPxn5XgohJrE/ktf4gwsBtD+jUS67cxe3P5pvx/BMYbo/LGO3EtPTvT/APMXn0rDAP/xJoqyEfcI/TXY5ciZHxD/bw6wgKgTGP+WEU5yfqsc/sb/Ka5MwyT9R6Ytnc4zKP4va7NRztcs/8O0kB++jzD+LconLuVHNP5GMBoNnus0/kv6mzXnbzT8Bf20BebTNP+n2Jy70Rs0/h7W2C2mWzD9J3u67FajLPzLtraW3gso/3ecKwDsuyT/8EkBZZbPHP/sDZ7JwG8Y/dkjNsLZvxD8V/uJvVrnCP/37IL3oAME/ETDIHYGcvj9My6zidFC7P0rj15E3Kbg/ZGBYfwMwtT9D6A6WvWuyP61bcAMUwq8/JKMhyeskqz8acy3wYQGnPy49faujVaM/p7RTvj8doD9Rcv4FeaOaPy5Six1R1pU/IZ1WB0DBkT+zpoVwCaOMP5h2f5lY6IY/SvO2jWYtgj8V6mDxA558P1Ai7EP+WHY/YLd661BQcT+qBcc5451qP1Zig66lTGQ/nq+t6Ou4Xj/HLjRrpBFXP3kmeatgMFE/yJ6VTHRrST/LRN1rK6dCPwmn6nMPKzs/TP0YEvWiMz/KrnoQZCwsP1wxNzl5DyQ/jOxV/idbHD+AELjAwuQTP5p+B4F4tQs/WpgO2hkoAz9HqfjOzkv6PqHKTiQJ6/E+zJeH3Fs+6D5UgHbItkjgPqN+5cteuNU+9eUgqTvEzD4xTfgpYurCPm7QKAe+s7g+/quxUGoEsD6zVpFrv6CkPgmgCZ8DYpo++imNgo7BkD6sZXhcjCOFPlT+fhuxfHo+CyNNdm97cD53JGn5/V9kPpfzh3fOBFk+6+PHMz6ETj4jJOkr7nxCPoyZ5S31QDY+8eGvZl6cKj58pCRd/pwfPisGbOHypxI+XaxLKHPgBT6o9rObBn35PWU7GlmLge09kwaryDf44D0hMXi6NWXTPTh3fLIfB8Y98HS1uqoIhz/kjcV0u2yNP7TyTHTklZI/gfuGhCM4lz/+jeq10bCcP/q/md5yiKE/Qf30oJ0ypT/Mrj9WlVqpP2K+JnKUAK4/r+ro3GGQsT+PTF/SW1m0P8e4nQaMVLc/lbAa/L54uj+nBaRsSLq9P5I+JVCahcA/RHghoc4twj/CuN0CEM3DP//I9W45WsU/trqAkAfMxj8ac/tudRnIP+NoBBgbOsk/Xv+Ey4gmyj+ZaFU2mdjKP7I8o7u1S8s/89x8pgh9yz8VX41ImmvLP7aOuXBXGMs/lNKRJAGGyj/PPJMCB7nJP5BZ1QhPt8g/xD4eku6Hxz/C3HYd2TLGP1IX/NeJwMQ/zrme4qw5wz/mgmD1zKbBP+EYnlwJEMA/e4Hm3q75vD8VZ4w8o+e5P1t78lsq9bY/6uScaF0rtD+YkfgOKZGxP3vcQGu2Vq4/7nOb9Ir5qT90O3h53wymP2PfIZSrj6I/wwmaeq38nj+Xq1eGiKaZP8imXIC3DpU/8CkpSBAlkT+43LkDpLCLP3de943NLYY/84kFvwOfgT8Koo2pacZ7Py2uMjsRt3U/JDsK5qrXcD9/BAZ7gutpP/1YAHjNyWM/ZhfUqW76XT892oV3BohWP8NwmPOxzVA/Hzpt7PXeSD9FdCiE4ENCP34jB0Sznzo/MX93ktVBMz+/dq9l7qUrP2Q6enYDsyM/dljKOdHcGz+0IFy6/I4TP7KcNoK3QQs/exSXZHXaAj+lEZA0QOT5PhLgfYtcpvE+TjbSAMXj5z50YX9fRw3gPqZbcNHGatU+Ayh1sW5fzD4XXPHiOKnCPsrihG7jX7g+P50o9Gidrz7xzJYfP1ykPuMOUxgHC5o+37aW+4+KkD4m6wkvTt6EPgnfo+PfJXo+mAajzzxFcD5R3gOtmxxkPmiOPjdisVg+0P50LWgdTj7TQSi60j1CPtABU/fY8zU+P0gIHJM+Kj6T6cLUbisfPknACuWGYxI+wFCE02WOBT4j6n0dHRv5Pc8mnqdLDe090vyqKJCz4D080inPihTTPTHRnvfYqMU9IH/yraduuD3bmyvgVuaIP4O54y3jl48/0X9pGQLSkz/FKt28NpiYP7eLPv9CL54/ywrhmDxSoj/QwHS/PgCmPxwBxK/8Iqo/MgftvDK4rj/CEimEwNyxP0XNhaYFjrQ/6VJt3yNotz8XsP5MA2G6P4QhWIhcbL0/0TMBm/49wD/xtCluFsDBP8VRQmQXNMM/eLEcu22RxD+OHpzvpM/FP+apXcK/5sY/ScOKio7Pxz+xrhux/oPIP8JEGX5e/8g/OKnDEZE+yT98nNhnL0DJP7Vv2oSUBMk/o7xBUdSNyD+D7MMNnt/HP/iz45gM/8Y/xt5X1WfyxT+GWpBO28DEP81yya4mcsM/2tk7tUwOwj8xLi8eRZ3APzDPrcxqTb4/GNTpHmdjuz/gJ1RGKom4P5+ON2+XybU/1txXi54tsz+EjjqHK7ywPwcGRP5a9Kw/QyqAr2TVqD9shu3gJB6lP7G2ILJPzqE/5qgdCTLGnT9D5LHdbK+YPw62kfa+S5Q/6v5UmYyMkD8+80ocEcSKP3OcCmrfd4U/0kzHxEcUgT9+Jqy2lfR6P5nyujKzGXU/DwxsGZxicD8JpgrMxT5pP77V9KhfS2M/DxElBNRCXT9sia9SwANWP9/r2ysjb1A/1VzGocxYSD+lS6BWauVBP3nY98ypGzo/l+R3STnmMj8PgW8/ticrPwrZPtaqXCM/PY/sgntnGz+xK8Yfyz8TP9xDxj2B1wo/Owg4TK6TAj96pJ1Mfob5PjGtdG+gaPE+rBA+Oe6S5z4PIudaR7HfPuc2KcyUJtU+j3oy6IYHzD65duGg1nDCPmG9VvjjF7g+J6dQM+FBrz4IlunsTyKkPpcAk8T8wZk+J8MokbNckD5dVD9m76SEPptr1C5g3nk+p/k0P9kYcD5/KlWjseVjPsodWp+ybVg+Xl4eo0nKTT7xYgeh+gpCPmDJ6SXitTU+BwwyFFvzKT79uxSAftAePuudhe/ILBI+nXNe6sZMBT4skPjGzcz4PXwhridGsOw92s347JN84D3hrhF029PSPZ4AL8AiXcU94Yjc3n4WuD3pQ6w02/yqPTNOAwQRuYo/qC9j2NbWkD9AAXCdfvyUP7Fcy3a+3Zk/9nyaFhqInz9DQgN/lAKjP8fbR7GvrKY/Tv5wXnLBqj/u+zgCRzyvPzePSaZECrI/MsPRgaSetD9Hnd99n1K3P7kuq699G7o/0KqolKjsvD+SxTVW/7e/P6uFaKUjN8E/FF4RGtp/wj/1izPZQK7DPwpU1+HKusQ/io/+iJGexT+II5u3oFPGP5MuaJs51cY/B34osQcgxz/5jBTsRDLHPwToktzKC8c/+cVT/g+uxj8suR6oERzGP1DWtFgsWsU/jBxxMuVtxD+uvMVMqF3DPyb1pQmAMMI/vUwKzsntwD/pAfy02Dm/P80KYCYnirw/FSXwu+nZuT90EZjUPDW3P/zUyqClprQ/Ii4KG+M2sj8mQuo2sNmvP9FKqfYYm6s/Za+ZSoS4pz+J/ylmNDWkP0pvaLeLEaE/jm2rtfuWnD9PQ/s/D76XP5IpnBZOjZM/OUhjADbvjz8VvlOJHt2JPzf0sqhfxoQ/nk7u4AiNgD9UoHsoPyh6Py83s+ClgHQ/ODPmw+Dhbz8vQUZwV5doP30N/+cW0WI/mD/7dK2RXD+649wpe4RVPwkKLwJxFFA/MC3NUZHYRz+0iG7ceotBP2FZBkl+njk/LxYDxsmPMj8a3iz0PLEqP+e3tXYTDCM/kJMJ0KL6Gj8O99fvz/YSP/ctGgdRdgo/7631u2dTAj9UPho+CDL5PjgWGxl8MfE+upAdSF5L5z7eHYDo8lTfPl7zkPBZ69Q+Jx4uDPC7yz5qMbvX2EDCPjexl3I927c+ydjqZJL1rj66u4Q1gvKjPuGzF7hThpk+ChpdsJs3kD5qFL3M93aEPssJJ1mYpXk+cHaFJMbrbz5/hso2xLpjPr/o9/IjOVg+dVZPWh+KTT6AGW8W7ONBPlMZGX15hjU+c4mSZPu5KT5cneF0R4sePiAu1EcsAxI+LDIyAOsaBT6VXDXNSJH4PasvejyAaew9VnNDuqxS4D1/a7AudKLSPcFNLvAnI8U96gsHpcbStz0WN+xuJ66qPVuVXUPssJ09SfbyCQ96jD9sI3zBAdORP/2pclyvEJY/sS+ZKYkDmz8OM9dZ5VqgP0eU3+WolqM/Q1DqG0I1pz9t5aOspzOrP9cigoori68/Bf3uRpoYsj+yFAjrkYu0P68b1r42Fbc/r/LZrnSquT9F2o6Drj68P7xNjgcexL4/kpcc5yWWwD+cwRCNTLTBPxbmaVxqtcI/5p1gPemSwz8URg4t/kbEP78ClT/qzMQ/9I+aDjAhxT//dR9KukHFPw6vThzxLcU/J/3GOL3mxD8Ch7aqeG7EP5LohqjOyMM/+PqPxYz6wj8bOFC1aAnCPyojyGe++8A/85BWGJWwvz9cHnb5yku9P7UoPIeE1ro/LbZcsWlduD9mpQD6A+y1PxrOfol0jLM/JlZHDUJHsT91oUJrfEauP/AyuoACS6o/LaHlxPGipj9qn/k3DlKjP0FvkCZaWaA/nheb4fdumz8I9eV8WNKWPzU5I45L05I/rqHNvkPMjj+4TkQZm/uIP2vTwdogGYQ/p6TrZR4JgD93DcIFH2F5P66uwrms63M/J1jQOuoEbz9uA4I35PRnP7+8T/uvWmI/Vbvd+I/mWz/5WCUE4wlVP2ZEuOW0ek8/XDa6leBdRz/Lt+sCxzVBP/vb6KDAJzk/lHGQRjQ+Mj/E1zWeCUIqPwtKafDlwCI/TKZn/8mVGj8G9KlysrMSP5Uq8jiqHQo/JU5H60oZAj8toM85Zub4PgV6j4OdAPE+mfzqxaUM5z7lkL0++wTfPpT95MmxuNQ+Is9EpyR8yz4vnd145xjCPnrOVWp8qbc+X4haG+a3rj6d7G6MdMyjPtypBHaOV5k+Iikq9/cakD4M6XHuAFSEPrf6MHEGe3k+frdNiRC4bz7zB4NXbJtjPrXV6kE1E1g+7uPGtEhcTT52beh7Q8hBPgbyje4jZTU+MuBFrdyRKT7PjXREEFsePulo/tQ/5hE+utK9tkj4BD5H4d8R6Gf4PaRtI+kxOOw9jzI3vGI14D0DnpwSxn/SPb8ctuI++sQ936EqpLaitz3ej+Zm8HWqPW7bQQh8b509oNt87dhEkD2BsIbinCKOP7vWICCQvJI/JTfs/TwKlz/rgzOU7gScP53FVybK2aA/FuHpFTUMpD9XQfN9AJinPzasNLI1eKs/SUc451Gkrz9f1xxsDwiyPxlCmnPcVbQ/2tKfDOSxtj/vojYY9xC5P64MJj60Zrs/1x9vC/ClvT9K2F+9L8G/P0BWVkOY1cA/dLsa7LmrwT8axSg+ZF3CP5GPoBvk5cI/2A9iFaFBwz8COgGyRW7DPzrrw1XYasM/73RHYMM3wz+nKzM3zNbCP3s4Wxj6SsI/2CXYmG6YwT9p7bSTMsTAP5DtDdT1p78/7psamtGbvT/cO3SuknC7P/rrrPyvMrk/wKpg5A3utj9cXCCtn620P2nBEA0de7I/mWBhiM1esD825eTP076sP33nC1AlBKk/F6jfRbKUpT8vlf7XsHSiP1nu90ZpS58/e1YnQxNOmj9eD95lMeyVP6CFO3GeHZI/KEPWZhCwjT8TtR30Vh+IP+nqm+j2b4M/lWLjycEQfz/2qB6L8J54P3ICVBmNWnM/IywAhvItbj+1VZqWG1dnP6K0zNHp52E/iqOpCRRBWz+ghP20ppNUP7QI5WlB004/1tV+j1roRj9Vo/WABuRAP0JRph0Ftzg/01rpdCnxMT+kK+ioqNkpP8IDU/jOeiI/dkJ0QXo4Gj8v9GPEHnYSP5bvr4EXzQk/T/RelgblAT8KMouwKKP4PmavFci41fA+PA/ZSl7W5j4dA6RU18DePlrQzmBBjtQ+BCTV3axHyz5Kt9gftPjBPl75SQk7grc+IRqm6ViIrj6QmVOq0q+jPod01IlBNZk+aK3SRYQGkD5rt2ndtDuEPq+fXJo+Xnk+3hhu5gqWbz4BKe0tVodjPhDw1qZ++1c+ZcFfcEVATT6j4fLvsbdBPnwM58mAUTU+R9aB0Ih6KT5YskwfST8ePmwn61Ws1RE+zMmviHbkBD5nbRpqLFD4PYv6oXnCG+w9kDfnm1ok4D2iHntIZGvSPRQq7m3m4cQ9BqJ0PbaFtz3NeUSWglOqPSjAyfXHRp09/mu5euYskD0lBYYt1MKBPbbdffxJrI8/cY5tH+SPkz9CTHKbQeWXP/x9Lcfv3Zw/ZHIN5dA+oT9p0Dtxj2GkP6lN2a2406c/z/Yf2qGOqz/4a8ToPoivP/RXXneM2bE/AGA/IDn/sz/f8L6yTSu2P0WSpGO8Urg/uqaetpppuj/Thom/jWO8P81zawFENL4/eqM5VfbPvz8yS6Yz9JXAPytmUIdwH8E/Wv3Hh8mAwT9g9nHhd7fBPzONaUMvwsE/yLoF2uqgwT8Ct5Dx6VTBP95xtDid4MA/h16uG4ZHwD/VnbEcFRy/Pyzo+4OAcr0/l+fpU2Wduz+KRD2kTqi5P+5dFc7Hnrc/NuaX4PGLtT/uESBfJ3qzPyI7M9OxcrE/I+Gtiib7rj80y9Z4yEKrPwwrYSGLxqc/U9Jyh8iNpD9q7vdwGZ2hPwrWRXIo7Z0/NphmVTo0mT+M264mgwuVP/Wol38ubJE/jwznjmuajD8eMsvqI0iHP/s4AUy3yoI/eEqXrVQVfj+4rzBiceF3P4sO7mQOzXI/pfAL8JpcbT+wjjq8r71mPxRKwYmFeGE/9BYsmtWgWj+emlfNdyFUPz9vmEwOMk4/MCCCvqJ3Rj/LYPes85VAP/57KBzkSzg/KIvVI12oMT+5UGhhq3cpP2kkPAV/OSI/mnGFiELiGT83aOxkxT0SP81PeTcqhAk/JHLzfE62AT9kKKGT52f4PnhMRJKHsPA+arIspSmo5j528yMiCojePhFrMXG2a9Q+/NUmVR0eyz584UZQ+d/BPqxUwQwgZbc+g3i5/Hhmrj4tiOx8VJyjPuFAMkcSH5k+1Xcn1w/0jz7FT84czS2EPnZQbqTpTnk+7Vhb5UmFbz5w2k/vP35jPoZ9m8iv8Vc+MDYwwbM1TT7KQBEb/LFBPiGbATtISzU+0Aw0EKlzKT6DQet8iTcePsMTsu0y0RE+3j2J/yjfBD5cQ2Zsu0n4PZ/CbdTFE+w9twur3lMf4D0aRnIVAmXSPUg+lYPD2cQ9Guzet1l7tz32asb7XkaqPSU2K986Np09MuAFuY8ikD28qIAWCLaBPcy9XZl5UXM9t5SAi4qIkD/YHuYIvUmUP6tmjS9jnpg/H7+fbFGLnT+wnYuMkIihP5f0XT2ylaQ/os9uq//npz/o7RiDWnerPz+4cbZ9OK8/pb8JyIeOsT+Tc48d8ImzP7KrNOCqhLU/Q/ZlnAF0tz8xeVnLsky5P5WOd55eA7s/J1KzdfyMvD9zhhVSUt+9P2gTeSBn8b4/jwi00ei7vz+1qQXvvxzAPwXpcX+FM8A/Ru9ZwN8hwD/7+RFuLNG/PzXn8c8gE78/jePIK3cPvj+yv9Ebys28P+8wWjYXV7s/L+1aXVa1uT/t7PzzC/O3P4IaL1vcGrY/vpPFhSY3tD+yCw6EqlGyPwHGULM/c7A/bSJLyzlHrT/2R6zzZtKpP3LXIyo6kqY/FomGMDWOoz9GsEYgRMugP8yISCrjl5w/9wsNuFkhmD8XRbqRNzCUP25HPmDkvpA/EozjxiaLiz8laU681XWGP1jkw0I5KYI/4Ultf6wffT/s3UjSYSh3P5rVLCv6QnI/OcDYQ4iQbD853WSiVShmPwtx5HVGDGE//TAREHQFWj+JT1CMCrNTP9MyS2+mlk0/779J1V8LRj9WHgRUS0tAPxZOOMP55Tc/MLPxDoZjMT8E4lmLpxspP0yLdPip/CE/gw9X/raSGT9d3jDMWgoSP4YR9bN5Qgk/DDUD59qMAT/1gQWfQTT4PmRXnpvIkPA+oJU2G7GB5j78CK+SIVrePnP1i63GUNQ+wZoyLhb/yj6GMOvCec7BPsrHC9PdUbc+ui+31eRRrj7pGlFOvZGjPgmjNKy1FJk+5+Vm16nqjz4paEWuESqEPj4D0NLDTHk+lHUvD3yFbz6calff+H9jPj9jw5iO9Vc+gG1NvU48TT6jpB8z+bZBPuF5kg9KUjU+F6K7iAR9KT60OsU7jkMePj4F7/yr2BE+xaQ5SzHoBD7EI6m5XVT4Pbr4wWX6H+w9oAYqpCcm4D3rPXFXcWzSPTi4BmCf4cQ9L/yvFGCDtz1CqY6GOE6qPTO5Bop5PZ09H19Fyp4lkD15mYc2OLiBPeFhMapwUnM9eAKK8K/vZD0XXjZiyiWRP8VNyANN55Q/dgUGVOkymT9COBlnrwqePzat/vQotqE/cn7q5j6opD+GGMPhLtWnP2JkoDmsM6s/ukP9/4q3rj+3ghtp9SixP9YnFNDF+LI/xyPDtaXBtD9Aq9JxZHm2P4NxmduRFbg/SkfdZOiLuT+Ix504u9K6P0zchNlh4bs/30XspJqwvD+ur90P3jq9PyRHIWOdfL0/JlPSF2l0vT80O56f/CK9P/HTXzYvi7w/cSEKLMuxuz/S8wC/Tp26P4y6V/yaVbk/Ww+vE5bjtz9uJ2MPx1C2P1FRiOzwprQ/+pe0p7Lvsj+s5O0NMTSxP0IVtCec+a4/S8e5e+Chqz/agmi9tm2oP5FbqHY1Z6U/dUvtIPeVoj+/DvZmWP6fPzvPQ3OKS5s/J6j6f14Vlz8DR2RgOVqTP374cNSpFZA/k3cR5xWCij9z4KZRQqiFPzbQ7PpVi4E/0wTAnYMvfD9jsDjrhHN2P8/wNT8cvHE/DkJM7GLJaz+mArwdxZZlP/YmOiHyomA/BAAyPZJuWT+u+vXPFUhTP672p7KYAE0/zgiTkDujRT9oB4mSzANAP+QnRrzlhDc/HWgVnV0iMT8gt8P5NsUoP6o7EcoGxCE/w4saf3BJGT/hNvsCl9sRP4dBEreiBwk/epU4L2hoAT8ecwes2wf4PnFG8y0/dvA+Ve2bt6Ri5j75gbOHtTbePgBPVA4vPdQ+qR2MEkLqyj6h6kjA/8PBPofj7HwxSLc+O1uQIUpKrj7JR5gB24+jPscRNGLvFZk+luPYsI7wjz4rORg+WDCEPuUz+M6bV3k+A0kKeGiWbz4SdXt6YIxjPqHFQ0n2Blg+wfwCE+1TTT4HAR0wksZBPj7NCr5sZjU+R2nEAH+WKT42to0vOGMePpQovUEG7BE+ZHecM3z/BD5jaGC3/W/4PVY7V5hHQOw9SgTyu8c44D1qkRVtoYHSPcAVRDxm+cQ96ehygrGdtz1bo0g/8mqqPedT24FgXJ09tcvn6f01kD0nRNbRScmBPRrTwSftY3M9RxCmgkEBZT0i/hIbNZxWPez4aYyNq5E/Sd2oCEtmlT9mWieTzaCZPxDZujSJWp4/Wx5zqkXHoT9c+J7We5mkP9WnI0FbnKc/vWZJWLDFqj9OrvKLuQiuP43ePK0zq7A/x0O2ZOFOsj+B7PrCO+azP8YMWAW+Z7U/T2RFxOfJtj+ZkkuZoQO4PwcDlJShDLk/rSVdYcnduT/NUWQ1eHG6P3QZwl7Lw7o/bxFmZsnSuj8ED1EzdZ66P5pSrUHIKLo/v2aXtJR1uT/nQdWiUYq4P4lnllzVbbc/cXaCbgIotj/Y9OzDbMG0PyEqSnf8QrM/jzGLoZO1sT91RZPbuyGwP5c9Xny+Hq0/vxxuKx8Lqj9X4dSluhSnPygxPDh9RaQ/5puxrwuloT+Ixw+1mHGeP83RB0wPCJo/haBVeTYQlj81w3NodImSP0+Fb8TT4I4/vHDjUg9/iT/RZgHxQd+EPxOb8rjo8IA/PG2685dEez+CnyOroMJ1P7J8BtFCOHE/EQS7ENcGaz+MiAfruAhlP268c1JQPGA/dhnnWNbbWD+GiNYGU+BSPy074NF3b0w/WhCLkOI+RT8XCbtdcX4/P+Q9lu9KKDc/D8BxpZ/kMD+KgIIs93MoPy/RrzhPjyE/vVQsGgwGGT933RFANbERPwoglNBG0wg/WbxnUrZIAT/IOAIMYOL3Pi9RvKuyYPA+6OvenrpK5j7j6ProZh3ePk/q6SuzMNQ+HSEbUVXfyj64FxyHXMDBPoBIlSDiR7c+Su18qmRPrj4wIU1ihZajPomX5dmQIpk+8NlPwcQCkD5slgJrg0CEPp2bisFRb3k+R51doO23bz6Ox2fFZaNjPq/Cu3TWJVg+EyMBA4B8TT5c+2kuweBBPu8Ke6ishzU+CrbRBxjAKT4mkmUVi5YePvTrRTlGCxI+EolYXRElBT6rOCCzppz4PbR0t9G8dOw99R6tDD5X4D2Xxs2BnqTSPVbLPnomIcU9vI+TY17Ktz2ln28inpyqPU018r0Ck509FJs3obZTkD2JfFDsRemBPQZSJNj2hXM9ehHj9hAlZT15UM6ncMFWPZo6AuCgVUg9XcWunukXkj9ZcZJvAMWVP4vr5tLF5pk/vFcx20Z6nj+OSUNEHLyhP9kb8ytNaqQ/QlAP2UY/pz/RAwYZNjCqP1FIJpsRMK0/ZpxkrfUXsD+3hfkKso+xPyBil0ee9rI/lSJB6P5DtD8bShu/V2+1P3XbyN7IcLY/eidBuGdBtz9s+JrTjtu3P1Ra+hYfO7g/i/ace65duD8jKf1SoUK4P2G/obks67c/dr+TZ0Jatz+GkjKVZ5S2P2qm3QN6n7U/WSPMSWeCtD9jBgcz20SzP2FWvlXq7rE/akfM3b2IsD8jfx05ijSuP7KSPFDhVas/hFlQvfOCqD/cC6IhccelP8GZRAQPLaM/D06S3G67oD/zWsmePfCcP7A5Ne5izZg/1/IcXNARlT/ZaPLG1b2RP05uOe4hno0/8A1FMOyBiD/Ylt1orxqEP8LyX/jOWYA/zdEdKateej/dXL4ffhV1Pz/lN4M+t3A/KsqIrpRIaj8DHMK77n1kP7CEMh5WsF8/5zU7+ulMWD+UabkifntSP9fZw0Da4ks/0xWHNATeRD+0ETjspfo+P4NhGETPzzY/h2q8NwqqMD/Q51/yiCcoP7WL53w/XiE/cNFAmCrIGD9tOZGJ84oRP+9L2c8LpQg/tY3Ug4gtAT+vxhvqfcP3PqaW4R3uT/A+XUTsbK455j5STUrB3g3ePrF8pqEcK9Q+JW+lCA3eyj7kzxK9Z8PBPomM8wvAULc+9HQBYP1grj5zoHiEnaWjPt95f394Opk+xgUBs7sUkD7GY68mglqEPpA0Zo7Wk3k+14TshgDqbz5qOiW+BsVjPnHWz3QyUlg+aOshmRK2TT6aBev6kAVCPvR6LZcbtjU+vLbjXer5KT4boVPnrN0ePsSknL6FNhI+fcMf3RJZBT4dag1phNr4PZ5Er+qQvew9mEhXSKyB4D0L3so4kdXSPTccsUQQWcU9dWTT4J4JuD3IsieifOOqPWi9tg6p4Z09JrUscfF+kD3SPnnjWBiCPSAh+I69uHM9ptM5A1FbZT1Ollwm2fpWPSIc87XKkUg9z/pzJGgaOj3uT/T2a2mSPwLlz7RRApY/8MNmp0gEmj9TrGl3NmqeP4V1FYVmlaE/bYLE5SgcpD/a6R7NTcCmPzBEXk6ndqk/B7NvtywyrD8cg91EWeSuP+ZFhPfTvrA/ZLpVcRP3sT/+gGuJDROzP2XACVZVC7Q/bglVG0LZtD8K00wDPHe1P1SDlh/94LU/I8NskcITtj9aL43Eag62P/934/h+0bU/IabTxidftT+SK7G5Dbu0PwKNJGwo6rM/z6I8pn/ysj/uFonA4tqxPxZD5/WaqrA/gVv3qDrSrj/nUrBWgTusPyhXQGj2nqk/TGWBw1UJpz+U9euM1IWkPyqygwXmHaI/hIJg6zaynz8ogHnnOnqbPyxnbf52m5c/ehLf8xsalD+f0TMBTPeQP82l5AYaY4w/AqgllIiKhz/I/4wzaFqDP12eug7Ri38/ydlRy4J9eT/Hm5WD6Wt0PwgwfX7iOHA/MfjOsE+OaT8PW/VBJ/ZjPy/tET6d7F4/ERVUE3rBVz97YBaNVRlSP8W/Fg1aWks//gzJeVKARD8SfPM2wXs+P9traWMbezY/5N6FZ11yMD+SSSQQkN8nP6BsXwCWMCE/9BcdB3CPGD/FF0JakmgRP0u+nTmbfAg/uA3FxaQWAT+RYHiz6Kr3PsYmLca/Q/A+ZMG9mUAv5j7MQGdlzQfePrkH1Hg6LNQ+rzkLXi7myj5+kl7o/szBPsQEIBSkYrc+d6GOcul+rj4bIxAzDb2jPslbBASRXZk+SnlARiMukD4f60QsT36EPtCHAjArxXk+pN5+81UWcD6dYvrrT/FjPgqt8OIgjFg+bC7oHskATj51EivGHDVCPmmKNGfg8TU+7sPYnytEKj5MIm2J5TgfPuo2tuPzbRI+HNk+Fb2bBT6it77o4in5PbQ4Lx4iG+09pYk06ku44D3Ty9CyvhTTPQtHC551ocU9D2IkAtNbuD1nGYHJ/D+rPW7J/ErSSJ49EHyO7fW3kD1fU+OM0laCPcbNhk2Z/HM9Ob9xiWGkZT34XpPU1UhXPVSxtklP5Eg9llRWRvVwOj0loWWj4OgrPZmwHB4hn5I/4k8HScIdlj/WIcGfi/mZP5iU1NuCK54/5G+rsVhUoT/N+bkrB7GjP6Z0X6RPIqY/DfRxFOqcqD9f6MCKDxSrP8C8WRLiea0/IVNxauy/rz8JVYek2euwP6d+MBao2bE/Q3PMTAajsj8MkFgbekKzP9yQXT+qs7M/IOmm8pDzsz9MeDb/nQC0P2pciUPG2rM/Qe/Y4H+Dsz+m98Ojq/2yP9vJpXptTbI/vzBG4fZ3sT9249L4RoOwPzV3cP/I664/WZlrASytrD90rCW+OFiqPz6xvdLm+ac/eEPEyzaepT/JpZBf20+jP/tuziD7F6E/W8+MZBb8nT8JDePKgw+aP0rqU609cpY/T8psOwopkz8HsHYcxzWQP1OwMR2bL4s/TFGzpMOYhj9JFYiTTJ6CP/igsTovan4/KupScOigeD/VSpxXssVzP36ieAYJem8/cN1TBsDXaD8jmPE7JnFjP2JB4SATLV4//NnO7jY5Vz9i7ngdmrlRPyqx38OU1Uo/UUiW3YElRD9L0uY0UQE+P0gWN4LaKTY/RvsDG1s9MD9wZrTsspsnPysHsRgTBiE/n7WuSoNbGD/bV+NK1EkRP/uWPsOhWQg/FjQZhtMDAT/D0hOFV5j3Po456bX4O/A+q17x4zUr5j6q3Q+k6QrePqgPLJrgM9Q+EmpwvIX3yj7v5qDwBN3BPk+68O9ufbc+JcWzfwmprj4eg9NqxtyjPptq3bjQi5k+HRdxvPpOkD7EQnmK8KuEPt5U8y5gA3o+Al48zwdAcD6aXG0LXChkPqS+JUDL01g+0eGzw+BcTj5XjOn7j29CPjdx++k2OzY+gTTNNCyfKj4ATY3MnqgfPp9N5wHVsRI+K3q42mbtBT5P2hPVLov5PT4oAWv2je09OJxYfG774D1kpI/siGLTPReRttvK+sU9t87/SoPBuD0qhqr9vLKrPVLDijk0yZ499jgqRyv/kD3ZX8XWJqWCPVQm2vkKUnQ9ZGBUZNAAZj2uO606AaxXPZHYrkDVTUk9OAcUkFLgOj2QcpfbcV0sPQ7wbAxFvx09bWEDJ5i4kj/0Zhx5cxeWP5l/vOB7x5k/nPXZ7SPAnT97nU2vlPqgP74XNYlPK6M/SXaYB5ZopT8YZPHPQKenP0wPqU0D26k/pL5E2dj2qz9TEfRQhO2tP0MP3FUbsq8/Tgwbj0qcsD8ZN74RKjuxPwMZZ/5QsbE/7FDzuYr7sT8SFyYl7heyP4aZUQryBbI/z4Ys8G/GsT+rRrBmlVuxPxI11xXFyLA/h9ri5WkSsD9ClAjgfnuuP8mskugmoaw/9MF0ngiiqj/+QUWsgIqoP09mdkmTZqY/pJpZnoJBpD9WWQBVeCWiP3N1Ww5FG6A/v9fehm1UnD+N4iMVC7CYP7mvhMqpUZU/pFsmbY0+kj+B2GlZcfKOP1/LD4mHA4o/b9TasX+shT9kJdioP+aBP1j0MdqBTn0/uyS906nIdz+cf2B5qyJzP5gxzPL5hm4/wRVUtqEkaD9cdwmAsu5iPygjQnlZcV0/RUY2L9SzVj/Xr1ESD1xRP1de5lorVEo/FtkcQ0nNQz9zcfE354o9P4z+cC262zU/q7Zr3cYKMD/6So5CmlsnP7oHFMZ43iA/87egsw0sGD/p8zK/fS4RPwzFVdPOOwg/ydp+Pt/0AD8fV76ehIv3PgwSBWhsOPA+6CGDwFYt5j4USjb97xbePskpykTnQdQ+R0BeHeYRyz7HRvGlYfPBPgS4qZsIobc++jNEzEjfrj4oN5zfwgSkPn4lPPs4xZk+q5PLJ0l3kD4jFOs+d+OEPqFvgjKVTno+Wr8bHDBycD5I3/LTU2pkPsSZ/sBtKVk+2lEFd6/KTj79QQQ9JrVCPuNFSfNvkjY+OeK8eVcLKz7MJ6FhshYgPl6HOgCDAhM+wfTl34FOBj4D7Bz99f75PbrVEGa8Fu49ZdbLI35L4T3tNnN0b7/TPT5X0YynZcY9OPRa2WE7uT0AII1cjDysPe6nXTa9Y589op4ZRRlVkT0XkqHq7gODPSwhCq29uXQ9RK3t4lpxZj3kpA/UKiVYPS3fhuE9z0k9SVQlVnJpOz2AdfvYme0sPb2eAEShVR493vkHdrmbDz1zOkMS4rWSP2Tqbq4e8JU/5KyymbFvmT8qYqWrySqdP+VtlZMaiqA/x2ZS/MONoj/0Hr0IupakPxPlTcYpmqY/dWk0PHCMqD9KtUUriWGqPxKGa/yKDaw/wquc2SiFrT/eBtMZM76uP550lPENsK8/lDmkZQsqsD/D4qDe+FKwP9Oc2BjdUbA/ZeVB7AknsD+jx/s2G6ivP1hPu2c3t64/enx/rtCCrT/GQB038ROsP57zCI/WdKo/91txDnuwqD/f1d51HtKmP55Nx4fU5KQ/EdJXcR/zoj8g5gOJmgahP8pa+NFwT54/RIu2tyu7mj9qIBIrw1uXP0TbY8quOZQ/CeyuCJlakT9OlQy2J4ONP7fx+vnE3og/NBJXRKLFhD/8NO5/JzKBPxT1qmSXOHw/iVJK7pj0dj81Gv01q4JyPw+uhv1NmG0//0I69LR0Zz9CVKMIlm5iP9zAnJsWuVw/aa4R0QgxVj8qqEUMegBRP9G0Dh/C1Uk/tqtD3WF3Qz9Dus69Fxg9P7iddhxqkDU/X5U6asu0Lz+WBrrW8B4nP7wn/3WKuSA/Nz5Sm7oAGD//4bqWVBYRP2jlRwfUIgg/f1MOGJTpAD/9rIzaLIT3PhDJUF7wOPA+yh+rzm415j6GrjbfoSvePiDJU4kqVtQ+s+xHVyg1yz4PFJtMARDCPvDbBsRfzbc+9ayjiZwhrz5oHlqKAzWkPmrSp6zVCZo+ceyhHR2nkD6dA4Dg/iSFPrH/oaf4pno+EDF4S/OscD6fTi7VbbdkPokt9zpXjVk+S7/N8aNKTz63nOd5KwZDPj3QypPx9zY+w0AhKTSJKz6eMGUz82MgPktkZs5tYBM+wQmtY5u/Bj56AhlN6IX6PVcL53xMtu496T0tc/6o4T2rM1F4ECzUPfmnD83H4sY97tCYCEzKuT1Jnri6bN6sPTRpSEvLDKA9fTvnrmm6kT06dn7U6nODPUvrp5uINHU9oEuZ9e/2Zj3YpiWDWbVYPW87AtCnaUo9AE1IXooNPD1/+e5wpJotPUoIkEm2Ch891dcAseMrED3Im5sHKL4APWOW42eNl5I/hnXsdQuplT8hMigOX/SYP67Jw+zCbpw/1O0/XjcFoD+OMMrAatuhP2rPegWJsKM/yL2agD96pT+8nZ1Rui2nP4yY0ngRwKg/FwkuJL4mqj/q8H8+EVirPx//juGjS6w/UJSteLr6rD/GAMEnlGCtP6li3Vmheq0/O2tIFp5IrT/2I3q5jsysP29qPMSfCqw/2PdvbOsIqz8GFtdOKc+pP4ouJ+tNZqg/3wmRXSDYpj8nkhIIzS6lP3g5W5d7dKM/CRBTEu6yoT+Lj00WW+afP26z3WiPepw/ch/2Xj4wmT8fX1gEnhKWPxsz4b9AKpM/AUGfziF9kD+xrTzImh2MP7MLFXk8wYc/hgXFIxTkgz+KmAUa7YGAP9gwDHZDKHs/1vjNB4wkdj/DePZZi+VxPxXddOfArWw/6Y2FMr7HZj8TNagAnvBhP2UH5Iv1A1w//86eL4+wVT9t91QMo6ZQP7XpoacAWkk/IGzeHIcjQz/0Q8xHeqg8P7BFrwicRzU/Ykh6+/tXLz8LPoQ1Y+UmP252xMkMlyA/7mBdBTfZFz/cUEDhHwERP4yntr1kDgg/x1H6kb/hAD9/IlsoD4L3PnkARMFbPfA+8rAqT0xD5j5Xx4noxEjePgDQXsiJcNQ+L7ykcCphyz7/5W8s1DLCPoKotDZpArg+2VXSIwNwrz5dfuE9kG2kPjpdaLa8WZo+R6wIcYzekD4u38ZWrXCFPi5FfnvHDHs+s3bA3n/wcD7ZELZp7g9lPjEhBzHp/1k+jdsA7EXdTz4t9RMs/GJDPi7qfH43bDc+y1US/WQZLD50kU1Fe7wgPukB8BMczBM+wm33JF1BBz6l4usX2SD7PehvI6mqbe893bbZhI0U4j1DZWksKqnUPWmAOAYOc8c9voO7m0xvuj0HbkJFlZmtPR9EZ+gTdqA9Ze1zK+ovkj3dsGKzA/aDPdyDMp5xw3U9wUO9E7OSZz3BkKzYzl1ZPc/NebhyHks9amZh8BfOPD10u4R9K2YuPRUz9PM44B89tU8fKwubED2qPNakBzEBPfeqzv2Gr/E8vo0aXZ5ekj8FRhPiAUSVPwIfpxA8WJg/buckCeGPmz+mfzM15dyeP1PZYbh3F6E/h4RYIuq5oj+oEucEG0ykPxFWg1IhxKU/5WEoZUIYpz/KjOVPXj+oPw/yqTdZMak/2b6T/XrnqT8xRJkFv1yqP484peoOjqo/ERLAZWR6qj9uAQJw0CKqP7Ieeoxniqk/bdIFBRW2qD9qVQ+QWKynP7pUwCrzdKY/dQeV2IgYpT9ry+1hPaCjP/81fhVSFaI/R/xaCMqAoD+iConUMtadP/g/QrjGt5o/nZoW2JCzlz+sFNkYjdSUP5OJHEtUI5I/Wn/3ZTtMjz9HSocet8GKP56OpF/aqoY/GCvuU8EHgz/TQZ/e+Kp/P5zW0NheHXo/MGbYw11YdT8FkPE9KUtxP0I3Pg0Ux2s/j5TLNIYdZj9ksnLQmnRhPwbclg2mUVs/+el5DCUyVT8Ozt10VE5QP1PP/s6R4Eg/PQ5Mo3bRQj+2+Og5qTs8P/qJnooDATU/EFMKja7+Lj/Fzx51n64mP01jXWHFdiA/IUmpRjG1Fz+gTuqWp+4QP+77k6U1/gc/i5g3KzDdAD/4ydMM7IT3Pqt8+gGHRfA+Diwunr9W5j5e+tQsIm7ePlk+9zLnkNQ+Rzsw9s6Vyz63bWMizlvCPujrl1YfQLg+0YmQlYPKrz6ArOZAd66kPnBjVpUNtZo+4cpm9LMdkT7dfEGcssaFPl99OOdMgHs+c2CvWA49cT6WCom9J3RlPhu0Iv2XgVo+1FsOPptBUD5Mc2itBcxDPrvR0JfT7zc+TAXKiqm8LD7uoPKOxiAhPklDaRMsRhQ+FvQIm47UBz69aDK6wND7PXvztksEH/A9MfphXuWO4j01wpmOnDfVPcEhDySFF8g9nSxTdJ4ruz3bUJTOdW+uPafhwTmN7qA92+FUmo62kj16jEl6TouEPZ/vLGKwZ3Y9wXyw5P9FaD3lWJQ6CyBaPYLwaflD70s9QZMyBeWsPT0pfu+RHFIvPcMTKGUcbCA9tyNlwGocET3GpY+ZBLcBPRtphNBHOfI8JmOxIvig4jwZU+76gwySP3qEGvg5w5Q/iTed4G6elz+3xyKbWZKaP8qDakP3kJ0/KY2AQjZFoD8UnYw9xbahP+IKocM4FKM/Zx+Q7qRUpD+wq2Wpg2+lP7yfQE0WXaY/VbjIxsAWpz+gn+pbWJenP+Oip+tg26c/BbdQszThpz9FCy4pFKmnP+pipTEdNac/4ilfsCqJpj+R6c4Tn6qlPz7dd9IdoKQ/zcfeyzhxoz8Ih5sJFyaiP7rsUnMax6A/3SkwYBO5nj/BbMpzhdybP5gAKlfzBpk/3cQPVwxFlj8vIbJCgaGTP+0SB37eJJE/z7QXjgerjT+jZoE8bG+JP3NXXkKOm4U/7OGpCZkwgj8+qePViFl+PzlZq4fHF3k/g6rgKO2PdD8z107QZbNwPwyc4XoO5Go/S6/eINp1ZT9+VCMrYPpgPyAlJbbcoVo/dA4pmou1VD8iZVcbtu5PP+LQt7AjaUg/DyfZOfCAQj+5HmfBQdE7P3Sa7/xVvDQ/ZTCzaXSoLj9nCJP+VHomP5cyeap6WCA/TfhKsliUFz+xuRVUtN4QP1EP51H88Qc/T3DiDrXbAD/Wyb0jhYz3PgAf8n1LUfA+RlA0r5pv5j5v3Qh8hZvePsjnaEwnt9Q+MvipUvzSyz5O82Mz5orCPp23EZKBhrg+C/gqYJYYsD4vX1jrzPekPprh3+vwG5s+aJ9RQLdkkT5Mo7KJSCeGPvH9M0riAXw+T/wiOuGScT79lV/meeRlPtpouxTrEls+kqs2T5ieUD7p6DOsxkFEPlxWjq1ugzg+MJQMV99zLT6q1YFdZJEhPnNNXMJUzxQ++n7ccxZ6CD4JK1eZvpb8PTy9tCJklPA94kIroN0Y4z1wGKyJa9jVPe/dSUBj0cg9cuJp3a8AvD15UPzPumGvPZO3jXovd6E9Ehd973NPkz0j1RhLDzWFPQqJkE+yInc9DnqjuW4SaT0pGwD70v1aPWMvEV4M3kw9/T8QqQ6sPj2O/W8DYDAwPdtwidyT+iA9BjHC8U6xET2Lw7tRfVECPT8D8E1h2PI8i+xDmKdD4zyFRUpoeJHTPFDbldEKo5E/BzxK6kgplD8Yjk1lc8qWP2nEOounepk/qqAtVC4snD8C6I946M+ePyntOhPsqqA/uDAv4+DWoT8zjriB7eOiP2In4ti+yqM/ZciksOmEpD9rSTRENw2lP/H1+53jX6U/L1TDpsl6pT+xr/odel2lPxsXizM8CaU/PeLpE/iApD9L1Is/DcmjP40Lg90X56I/vebsQKnhoT+/HnJ/+L+gPyRizGUgE58/fq7rp/yLnD/YEMYlFfmZP2mQf4PtZ5c/GvnrwpfklD9G1HOWanmSPwC397fULpA/Ok+xNpgWjD8Qb2JtrCaIPwX2FtJKk4Q/jJV9l41egT8xZwTCbQ99P1Bzr6ZgF3g/juH5oR3Lcz9oknabJR5wPyaA+/t8BGo/TerXjovQZD/v51McxYFgP8ThgAFT9Fk/+X2eiYc6VD+CqQ0WDENPP8TEY61n80c/zfHqzbUxQj+rQVbD42g7P9/ugGVKeTQ/E5741uBULj/+KhRdNEgmPwGcF7TzOyA/1bhJTF12Fz9Caf8YD9EQP46bJtJu6Qc/9hxhwx3dAD9iHTClnJj3Pv8aUySDYPA+H71CirCN5j6ER6SqvNDePl9LTGww49Q+Q0DFJpwYzD6ThzkfFsDCPjiLtdmT1bg+7vfDYgpSsD4B6YVFq0mlPiZR0BeYjps+aVtAfsCzkT61U12ospKGPncrmRDvkXw+pPUCCUXycT5ngi4MU2FmPgrTQmZ9tFs+g8wT8QQGUT5XSxW7z8REPn2D21bJJzk+y4AvIwNALj4Py8lC+A4iPhtFyhZnaBU+s9N9WvwyCT6FqsOBG3T9PZu65I2/F/E9yC/ShG2z4z1CowV+wYzWPVWyk80Mosk9GeAEdCbwvD3j1xEWKTmwPaFCETcZEaI9xsb5muP7kz0Owst3vfSFPTt3SzEf9nc9oJZL6tn5aT2dxyh0NPlbPcAHlQIP7U09l4p3rgzOPz2gnHW/YMowPTM77LPxnCE9Mh/lOz5bEj0CSNImDgIDPd45MHODjvM8vMiCcS/+4zzAmF7IJE/UPHeKTJ4FgMQ8M3R9000kkT83TyTpDHmTP2lVHrwB4JU/+M/wgGxNmD/gVLV8G7SaPyYg3ojdBZ0/1tr5RQw0nz9ourdeE5igPzF8DL45dqE/SVKGElAuoj+WLJQfKruiP1Yues7WGKM/JzKJFs9Eoz/M54GQEj6jP7yiT/wvBaM/YTUWcTmcoj9knbNfpQaiPz1Ket0eSaE/015TvEhpoD+8yqxh79qePzKDUEbQuJw/2EUchOh5mj8Mc+khnSuYP9/VKQGJ2pU/WqsmiBeSkz8cGvAyOFyRPyEbtvJYgo4/VOH1NN+Oij+fN12KbOeGP40/SLIFkoM/dA5RUpSRgD9XEAb9kMx7P2S+EHQSHHc/0yXW+tYJcz8T2YORoRZvP7lBZygyKGk/FSXhl3AtZD8PaewVpApgP0nWxWjHSFk/2WKFGuHAUz+8GaUvTplOPz75EXQSf0c/OUAqcovjQT8IwCTTMQI7PyN12GSZNzQ/Lg3U7IgDLj8c6j0U7xcmP6govwb4ICA/AiCzgu9aFz+mdFINgcUQP0LZXk9D5Ac/pGYp3DnhAD8fdpnt9Kj3PoYobRwIc/A+pEcDytSw5j6CavvZlg3fPhmBHUDqFNU+B3PHn5pmzD64QHDyWfvCPtSHsxVeLbk+I+JdL6yRsD46lUSnMaSlPnCLsck8DZw+uqR3NQALkj6aqFMJPgmHPhC8c6PoMH0+gKbJX5Bbcj5kCQ6gL+tmPo1P6839Zlw+qS00nVl4UT6e0Oz7w1VFPoub4vu83Tk+Ypz+cjIiLz7gCiQsO5oiPu7GrYtPEhY+nqnWB2sACj5qMWVoTGr+PQpMWsX8qfE9UPH2NK5f5D0fWgo28lXXPapXcUoYi8o9x5ezuOP7vT3gidRguNGwPTt6MKiSvaI9be3piFe9lD2EIp84CMyGPQkk77Le43g9Rp3sKWT+aj2vP+JCjxRdPdYFiX/pHk89HlCiad2KQD3jvykFnXgxPaAldS7gVCI9cGMVJ/8bEz1Am+Ppl8oDPbDLg9ymXfQ8KMaNIJ3S5DxEctabcyfVPLjsZ/G5WsU85kbL0KBrtTw=\"},\"shape\":[100,100],\"dtype\":\"float64\",\"order\":\"little\"}]]]}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1607\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1608\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Image\",\"id\":\"p1600\",\"attributes\":{\"x\":{\"type\":\"value\",\"value\":1.0},\"y\":{\"type\":\"value\",\"value\":50.0},\"dw\":{\"type\":\"value\",\"value\":0.5},\"dh\":{\"type\":\"value\",\"value\":40.0},\"image\":{\"type\":\"field\",\"field\":\"image\"},\"color_mapper\":{\"type\":\"object\",\"name\":\"LinearColorMapper\",\"id\":\"p1562\",\"attributes\":{\"palette\":[\"#440154\",\"#440255\",\"#440357\",\"#450558\",\"#45065A\",\"#45085B\",\"#46095C\",\"#460B5E\",\"#460C5F\",\"#460E61\",\"#470F62\",\"#471163\",\"#471265\",\"#471466\",\"#471567\",\"#471669\",\"#47186A\",\"#48196B\",\"#481A6C\",\"#481C6E\",\"#481D6F\",\"#481E70\",\"#482071\",\"#482172\",\"#482273\",\"#482374\",\"#472575\",\"#472676\",\"#472777\",\"#472878\",\"#472A79\",\"#472B7A\",\"#472C7B\",\"#462D7C\",\"#462F7C\",\"#46307D\",\"#46317E\",\"#45327F\",\"#45347F\",\"#453580\",\"#453681\",\"#443781\",\"#443982\",\"#433A83\",\"#433B83\",\"#433C84\",\"#423D84\",\"#423E85\",\"#424085\",\"#414186\",\"#414286\",\"#404387\",\"#404487\",\"#3F4587\",\"#3F4788\",\"#3E4888\",\"#3E4989\",\"#3D4A89\",\"#3D4B89\",\"#3D4C89\",\"#3C4D8A\",\"#3C4E8A\",\"#3B508A\",\"#3B518A\",\"#3A528B\",\"#3A538B\",\"#39548B\",\"#39558B\",\"#38568B\",\"#38578C\",\"#37588C\",\"#37598C\",\"#365A8C\",\"#365B8C\",\"#355C8C\",\"#355D8C\",\"#345E8D\",\"#345F8D\",\"#33608D\",\"#33618D\",\"#32628D\",\"#32638D\",\"#31648D\",\"#31658D\",\"#31668D\",\"#30678D\",\"#30688D\",\"#2F698D\",\"#2F6A8D\",\"#2E6B8E\",\"#2E6C8E\",\"#2E6D8E\",\"#2D6E8E\",\"#2D6F8E\",\"#2C708E\",\"#2C718E\",\"#2C728E\",\"#2B738E\",\"#2B748E\",\"#2A758E\",\"#2A768E\",\"#2A778E\",\"#29788E\",\"#29798E\",\"#287A8E\",\"#287A8E\",\"#287B8E\",\"#277C8E\",\"#277D8E\",\"#277E8E\",\"#267F8E\",\"#26808E\",\"#26818E\",\"#25828E\",\"#25838D\",\"#24848D\",\"#24858D\",\"#24868D\",\"#23878D\",\"#23888D\",\"#23898D\",\"#22898D\",\"#228A8D\",\"#228B8D\",\"#218C8D\",\"#218D8C\",\"#218E8C\",\"#208F8C\",\"#20908C\",\"#20918C\",\"#1F928C\",\"#1F938B\",\"#1F948B\",\"#1F958B\",\"#1F968B\",\"#1E978A\",\"#1E988A\",\"#1E998A\",\"#1E998A\",\"#1E9A89\",\"#1E9B89\",\"#1E9C89\",\"#1E9D88\",\"#1E9E88\",\"#1E9F88\",\"#1EA087\",\"#1FA187\",\"#1FA286\",\"#1FA386\",\"#20A485\",\"#20A585\",\"#21A685\",\"#21A784\",\"#22A784\",\"#23A883\",\"#23A982\",\"#24AA82\",\"#25AB81\",\"#26AC81\",\"#27AD80\",\"#28AE7F\",\"#29AF7F\",\"#2AB07E\",\"#2BB17D\",\"#2CB17D\",\"#2EB27C\",\"#2FB37B\",\"#30B47A\",\"#32B57A\",\"#33B679\",\"#35B778\",\"#36B877\",\"#38B976\",\"#39B976\",\"#3BBA75\",\"#3DBB74\",\"#3EBC73\",\"#40BD72\",\"#42BE71\",\"#44BE70\",\"#45BF6F\",\"#47C06E\",\"#49C16D\",\"#4BC26C\",\"#4DC26B\",\"#4FC369\",\"#51C468\",\"#53C567\",\"#55C666\",\"#57C665\",\"#59C764\",\"#5BC862\",\"#5EC961\",\"#60C960\",\"#62CA5F\",\"#64CB5D\",\"#67CC5C\",\"#69CC5B\",\"#6BCD59\",\"#6DCE58\",\"#70CE56\",\"#72CF55\",\"#74D054\",\"#77D052\",\"#79D151\",\"#7CD24F\",\"#7ED24E\",\"#81D34C\",\"#83D34B\",\"#86D449\",\"#88D547\",\"#8BD546\",\"#8DD644\",\"#90D643\",\"#92D741\",\"#95D73F\",\"#97D83E\",\"#9AD83C\",\"#9DD93A\",\"#9FD938\",\"#A2DA37\",\"#A5DA35\",\"#A7DB33\",\"#AADB32\",\"#ADDC30\",\"#AFDC2E\",\"#B2DD2C\",\"#B5DD2B\",\"#B7DD29\",\"#BADE27\",\"#BDDE26\",\"#BFDF24\",\"#C2DF22\",\"#C5DF21\",\"#C7E01F\",\"#CAE01E\",\"#CDE01D\",\"#CFE11C\",\"#D2E11B\",\"#D4E11A\",\"#D7E219\",\"#DAE218\",\"#DCE218\",\"#DFE318\",\"#E1E318\",\"#E4E318\",\"#E7E419\",\"#E9E419\",\"#ECE41A\",\"#EEE51B\",\"#F1E51C\",\"#F3E51E\",\"#F6E61F\",\"#F8E621\",\"#FAE622\",\"#FDE724\"],\"low\":2.1501839397774865e-25,\"high\":1.0}}}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Image\",\"id\":\"p1602\",\"attributes\":{\"x\":{\"type\":\"value\",\"value\":1.0},\"y\":{\"type\":\"value\",\"value\":50.0},\"dw\":{\"type\":\"value\",\"value\":0.5},\"dh\":{\"type\":\"value\",\"value\":40.0},\"global_alpha\":{\"type\":\"value\",\"value\":0.1},\"image\":{\"type\":\"field\",\"field\":\"image\"},\"color_mapper\":{\"id\":\"p1562\"}}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Image\",\"id\":\"p1604\",\"attributes\":{\"x\":{\"type\":\"value\",\"value\":1.0},\"y\":{\"type\":\"value\",\"value\":50.0},\"dw\":{\"type\":\"value\",\"value\":0.5},\"dh\":{\"type\":\"value\",\"value\":40.0},\"global_alpha\":{\"type\":\"value\",\"value\":0.2},\"image\":{\"type\":\"field\",\"field\":\"image\"},\"color_mapper\":{\"id\":\"p1562\"}}}}},{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1615\",\"attributes\":{\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1609\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1610\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1611\"},\"data\":{\"type\":\"map\",\"entries\":[[\"xs\",[{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"jJc73p2P9j9LgVq/UqD2PwrU+pUCtfY/yiabbLLJ9j+JeTtDYt72P0jM2xkS8/Y/CB988MEH9z/HcRzHcRz3P4fEvJ0hMfc/RhdddNFF9z84mcyWWFf3PwRq/UqBWvc/xbydITFv9z9LhF1+qn33P4QPPvjgg/c/jFLIqqWN9z9/204695P3P00Z3Bp5lPc/YOqIMgeR9z+wbV62nor3P4QPPvjgg/c/z1di2teB9z+mB+cAY3f3P8W8nSExb/c/fn+JvUJr9z+kmua75133PwVq/UqBWvc/5pB6dZBP9z9GF1100UX3P/6H61gmQPc/h8S8nSEx9z/fWN9q0y/3P/YO8H30Hvc/x3Ecx3Ec9z8OKqt6fw33PwgffPDBB/c/1pGM3Wv79j9IzNsZEvP2P0Fi037N6PY/iXk7Q2Le9j97GpnatNX2P8omm2yyyfY/f+UPpy/C9j8J1PqVArX2P3KdDk1JrvY/S4Fav1Kg9j+Ypy5JC5r2P4wuuuiii/Y/CstRen2F9j/M2xkS83b2P7HeUGGmcPY/DYl5O0Ni9j+KRMBUi1v2P0422WSTTfY/OygVqzBG9j+O4ziO4zj2P+bF+NyZMPY/z5CYtzMk9j9rCzahyRr2PxA++OCDD/Y/XrRhA8IE9j9Q61cK1Pr1P9ZsIXaE7vU/kZi3MyTm9T9bVcfhEdj1P9JFF1100fU/tabRr2rB9T8S83aGxLz1Py8lwNOOqvU/U6DWrxSo9T9/YZjRfZP1P5RNNtlkk/U/1PqVArV+9T8BX3dvgXz1PxWo9SsFavU/3bBrdVdl9T9WVVVVVVX1P2KOAE/7TfU/lgK1fqVA9T9sr87tajb1P9evFKj1K/U/jb973aMe9T8YXXTRRRf1P50x0j+jBvU/WArU+pUC9T+cD1fHZe70P5m3MyTm7fQ/2WSTTTbZ9D9efacqQ9b0PxoS83aGxPQ/cHr2D/C99D9av1Kg1q/0P0y9U/JZpfQ/m2yyySab9D9qqraOe4z0P9wZEvN2hvQ/ATjp/k5z9D8cx3Ecx3H0P1100UUXXfQ/vfiVuR1a9D+eITFvZ0j0P9ByJRC8QPQ/3s6QmLcz9D9DJR4i/Cb0Px988MEHH/Q/5e//s9QM9D9gKVDrVwr0P6DWrxSo9fM/aBDhO4Hy8z/hgw8++ODzP56rftPo1/M/IjFvZ0jM8z+mcAZryrzzP2LezpCYt/M/o4suuuii8z9zXEgKNKHzP+Q4juM4jvM/h2ren0+F8z8k5u0MiXnzP8idnLeyaPM/ZZNNNtlk8z+mQK1fKVDzP38SSMp6S/M/5u0MiXk78z9ogz+NgC3zPyebbLLJJvM/aEjM2xkS8z/E/KnPiQ7zP6j1KwVq/fI/ir2wAXju8j/poosuuujyPypQ61cK1PI/hSKwAubM8j9q/UqBWr/yP6qqqqqqqvI/RpYy8XKp8j/rVwrU+pXyP2kvqRM9g/I/LAVq/UqB8j9usskmm2zyPwTWi3rPWPI/rV8pUOtX8j/uDIl5O0PyPy+66KKLLvI/VfL7G+gl8j9vZ0jM2xnyP7AUqPUrBfI/8MEHH3zw8T8xb2dIzNvxP29GaNK00fE/chzHcRzH8T+yySabbLLxP8usxHe2pPE/83aGxLyd8T80JObtDInxP3TRRRdddPE/pQZOmS1u8T+1fqVArV/xP1WrsJRGWfE/rtss2K5M8T/2KwVq/UrxP0y/BivLRPE/cokhOdk/8T8YN3TMGT3xP8V9rywZPPE/zLiaJIY88T+5ZmONKD7xP9FxeBjbQPE/+RWqPIdE8T9ssHmbIknxP/YrBWr9SvE/Wtk0SGtO8T+ZJYmNYVTxP0JFOqEuW/E/tX6lQK1f8T/a5cgeoWLxP3lkTTuJavE/vRd4NV9z8T900UUXXXTxP5Kao/JlfPE/GlvEuFKG8T80JObtDInxP61YzpeMkPE/YfD3hJ2b8T/zdobEvJ3xP/gg76PipvE/sskmm2yy8T8uNs7wIrPxP7E3viZsv/E/chzHcRzH8T+AHY4RiszxPxvAzJ1P2vE/MW9nSMzb8T+M+NYbPOjxP/DBBx988PE/YdD+APX28T+vFKj1KwXyP6kqGxlpBvI/NM8FdxYW8j9vZ0jM2xnyP06X/7FTJvI/L7rooosu8j/btWkYQTfyP+4MiXk7Q/I/FZceytVI8j+tXylQ61fyP6a5Ll0LW/I/bbLJJpts8j8JNkC43W3yPywFav1KgfI/LAVq/UqB8j9/mng1PJXyP+tXCtT6lfI/dQSSceGp8j+rqqqqqqryPyM0Hu8/v/I/av1KgVq/8j8qUOtXCtTyPz4NlsM21fI/6aKLLrro8j/YJEQi3+vyP6j1KwVq/fI/1CmW20kD8z9oSMzbGRLzP1+2+EGIG/M/J5tssskm8z8701YJsDTzP+btDIl5O/M/753hH9xO8z+mQK1fKVDzP2WTTTbZZPM/qjaNhpZp8z8k5u0MiXnzP1U3KgFUhfM/5DiO4ziO8z+CQDQWZaLzP6OLLrroovM/Yt7OkJi38z9NHA2vB8DzPyIxb2dIzPM/VcqFpjTf8z/hgw8++ODzP6DWrxSo9fM/mkk4hz7/8z9gKVDrVwr0Px588MEHH/Q/6pmsMuog9D/ezpCYtzP0P0ikoPS/Q/Q/niExb2dI9D9ddNFFF130P5/gEKonaPQ/HMdxHMdx9D/cGRLzdob0P6ieE3JWjvQ/m2yyySab9D9av1Kg1q/0P7ScFXxstvQ/GhLzdobE9D/ZZJNNNtn0Pz4UhDSl4PQ/mbczJObt9D9YCtT6lQL1P/EyWa5bDfU/GF100UUX9T/XrxSo9Sv1P6Wxg38RPfU/lgK1fqVA9T9VVVVVVVX1PxWo9SsFavU/sUn6lVpw9T/U+pUCtX71P5NNNtlkk/U/U6DWrxSo9T/6qvUnT6j1PxLzdobEvPU/0kUXXXTR9T+RmLczJOb1Pxi8J7S65vU/UOtXCtT69T8QPvjggw/2P8+QmLczJPY/9sGjgqsv9j+O4ziO4zj2P0422WSTTfY/DYl5O0Ni9j/M2xkS83b2P40uuuiii/Y/jJc73p2P9j8=\"},\"shape\":[289],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"XDXhHkES9j/PkJi3MyT2P47jOI7jOPY/TjbZZJNN9j8NiXk7Q2L2P8zbGRLzdvY/J00hJl199j+NLrrooov2P0uBWr9SoPY/6Q7VRfeo9j8K1PqVArX2P2dLbY7qtvY/UQRmNrG69j9SBLcC87j2PwrU+pUCtfY/9+Kd7nCz9j8izE1gN6v2PzL8dlfWoPY/S4Fav1Kg9j/hs1uN2pT2P4wuuuiii/Y/KYBrvWSH9j8EFy/fwXj2P8zbGRLzdvY/uQwhOjVp9j8NiXk7Q2L2P5DaRbG7WPY/TjbZZJNN9j+kDjeLdEf2P47jOI7jOPY/5FKYhHk19j/PkJi3MyT2P/NJTM/fIvY/iz95U7wP9j8QPvjggw/2Pyq/JF8o/PU/UOtXCtT69T/y6VkcGuj1P5GYtzMk5vU/iAC5HpvT9T/SRRdddNH1PwyLlBizvvU/EvN2hsS89T8iQ6MbaKn1P1Og1q8UqPU/j5DSzL6T9T+UTTbZZJP1P9T6lQK1fvU/lCvby8t99T8VqPUrBWr1P84xX8yMZ/U/VlVVVVVV9T81dAbO/FD1P5YCtX6lQPU/OnC3+xs69T/XrxSo9Sv1P4wMhZfpIvU/GF100UUX9T9lMqsCZAv1P1gK1PqVAvU/ZqP7wIjz9D+ZtzMk5u30P0lQCHhU2/Q/2WSTTTbZ9D8aEvN2hsT0P77nl8LdwvQ/W79SoNav9D+lmWMPKqr0P5tssskmm/Q/SLy8qxKR9D/cGRLzdob0P7j+uzWQd/Q/HMdxHMdx9D8tH2cfml30P1100UUXXfQ/niExb2dI9D890kSiYUP0P97OkJi3M/Q/OttAmqgo9D8ffPDBBx/0P+fcoJtbDfQ/YClQ61cK9D+g1q8UqPXzP079546H8fM/4YMPPvjg8z/Rrd5zEdXzPyIxb2dIzPM/ru0U5s238z9i3s6QmLfzP6OLLrroovM/G6coea2Z8z/kOI7jOI7zP1w96qV8evM/JObtDIl58z9lk0022WTzPxbhyQ3dWfM/pkCtXylQ8z/m7QyJeTvzP6MxE8aKN/M/J5tssskm8z+H0UnE2RLzP2hIzNsZEvM/qPUrBWr98j+mtEXoVeryP+miiy666PI/KlDrVwrU8j9p/UqBWr/yP6jmLHTouvI/q6qqqqqq8j/rVwrU+pXyPy0Fav1KgfI/7SZNmg528j9tsskmm2zyP61fKVDrV/I/7gyJeTtD8j8vuuiiiy7yPzuS4tc7K/I/b2dIzNsZ8j9AwcBuEAfyP7AUqPUrBfI/4VnPxIn48T8s4qBomPDxP/DBBx988PE/A78emwft8T+RHqZCIOzxP8pCq4JI7fE/5abtgh/w8T/wwQcffPDxP6mJsKFj9PE/vcmtidf58T/9V2NZZgDyP7AUqPUrBfI/3A2xt/gH8j9rv5zOYRDyP+1UV6fLGfI/b2dIzNsZ8j8yDEWJ0SPyPy+66KKLLvI/TOkNtNcu8j/G1dwbYTryP+4MiXk7Q/I/tegHmtVG8j+ije8X71PyP61fKVDrV/I/pc0pTrNh8j9tsskmm2zyP7/CuYNMcPI/+Fe1aZN/8j8sBWr9SoHyP8ReY2Bqj/I/61cK1PqV8j+1VJHjCqDyP6uqqqqqqvI/Or3pAW+x8j9q/UqBWr/yP688th2Tw/I/KlDrVwrU8j8JjOTZddbyP+iiiy666PI/eYPhFRjq8j+p9SsFav3yPx9Bwvh8/vI/aEjM2xkS8z8/r8sMqhPzPyebbLLJJvM/qcEVbacp8z/m7QyJeTvzP5hR0AeAQPM/pkCtXylQ8z8afaT4QVjzP2WTTTbZZPM/Jd/a//5w8z8k5u0MiXnzP19VbhzNivM/5DiO4ziO8z+jiy666KLzP4rtpv+cpfM/Y97OkJi38z94EI6wcsHzPyIxb2dIzPM/3dTSqaTe8z/hgw8++ODzP6DWrxSo9fM/fha75P/88z9gKVDrVwr0P1DZD6DhHPQ/H3zwwQcf9D/ezpCYtzP0P3HC+mQ1PvQ/niExb2dI9D9ddNFFF130P3iiVvhbYfQ/HMdxHMdx9D/cGRLzdob0P9wZEvN2hvQ/m2yyySab9D//IbNfyq30P1q/UqDWr/Q/GhLzdobE9D9hljpj1df0P9lkk0022fQ/mbczJObt9D9YCtT6lQL1P5mF4lg5BfU/GF100UUX9T/XrxSo9Sv1P5P4GO8CN/U/lgK1fqVA9T9VVVVVVVX1PxWo9SsFavU/Hfhwq/du9T/U+pUCtX71P5RNNtlkk/U/U6DWrxSo9T//FkV6nrH1PxLzdobEvPU/0kUXXXTR9T+RmLczJOb1P0/rVwrU+vU/ED744IMP9j9cNeEeQRL2Pw==\"},\"shape\":[221],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"3A8crilf9T8VqPUrBWr1P9T6lQK1fvU/lE022WST9T9ToNavFKj1PxLzdobEvPU/mVk8ynPC9T/SRRdddNH1P3zOPCEk2/U/E6k0sz7g9T+cXrES1N31PxI157Mm1/U/0kUXXXTR9T99j88+es31P8I6m2KVwfU/EvN2hsS89T8kKCVs7LP1P1Og1q8UqPU/i1aghuOk9T+ENN+wpJT1P5RNNtlkk/U/0sLvZFSD9T/U+pUCtX71P4LOmlIccfU/Faj1KwVq9T+53uUNE171P1ZVVVVVVfU/j7a5iUpK9T+WArV+pUD1P7Qq7cnQNfU/168UqPUr9T/hCVxusCD1PxhddNFFF/U/ftOdHvEK9T9YCtT6lQL1P1TpF9yX9PQ/mbczJObt9D+esLw+p930P9lkk0022fQ/R/itnx/G9D8aEvN2hsT0P1m/UqDWr/Q/U3+4Fvyt9D+bbLLJJpv0P+/lTI83lfQ/3BkS83aG9D8NtEDhzXv0PxzHcRzHcfQ/dy5w57Vh9D9ddNFFF130P54hMW9nSPQ/G+n8MNlG9D/ezpCYtzP0P/CU/J0KK/Q/H3zwwQcf9D9juvbbVQ70P2ApUOtXCvQ/oNavFKj18z9cHoCmW/DzP+KDDz744PM/o9HDgPTQ8z8iMW9nSMzzP2LezpCYt/M/oswaGoOv8z+jiy666KLzP+Q4juM4jvM/lks8eIuL8z8k5u0MiXnzP2WTTTbZZPM/AoF3/Bxj8z+mQK1fKVDzP+btDIl5O/M/WSH6drEw8z8nm2yyySbzP2hIzNsZEvM/qPUrBWr98j/poosuuujyPypQ61cK1PI/av1KgVq/8j9V2lA6M7vyP9ad9IN0rPI/q6qqqqqq8j/LTdxMvKfyP1WqLTW0p/I/q6qqqqqq8j+rqqqqqqryP3bsiG0vsPI/KxFikWO38j9q/UqBWr/yPyayMakOwPI/hLRDaUfK8j8qUOtXCtTyP/HAujud1fI/r5hrTTDi8j/poosuuujyP0hxhWDX7/I/qPUrBWr98j8AuqnFg/7yP6OLjKU/DvM/aEjM2xkS8z9qVRCJAB/zPyebbLLJJvM/WSTykMMw8z/m7QyJeTvzP/Ql0UeLQ/M/pkCtXylQ8z/UyhZ3XFfzP2WTTTbZZPM/IPz7PD5s8z8k5u0MiXnzPxYNWDQ6gvM/5DiO4ziO8z+hFqqwXJnzP6OLLrroovM/GLGTEbWx8z9i3s6QmLfzPxfp7jFWy/M/IjFvZ0jM8z/hgw8++ODzPyl9srhp5vM/oNavFKj18z/q52KC/QL0P2ApUOtXCvQ/H3zwwQcf9D8RKH2APSH0P97OkJi3M/Q/OwVUp31B9D+eITFvZ0j0P1x00UUXXfQ/l1ITwPpj9D8cx3Ecx3H0P9wZEvN2hvQ/dk/bcB+J9D+bbLLJJpv0P1q/UqDWr/Q/TSoTkcux9D8aEvN2hsT0P9hkk0022fQ/x1UG+oHf9D+ZtzMk5u30P1gK1PqVAvU/dft0H+AU9T8YXXTRRRf1P9evFKj1K/U/lgK1fqVA9T9WVVVVVVX1P9wPHK4pX/U/\"},\"shape\":[147],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"m1/n1RGe9D9av1Kg1q/0PxoS83aGxPQ/2WSTTTbZ9D+ZtzMk5u30P1gK1PqVAvU/KM3zJR8G9T/KzN5qQQb1P1gK1PqVAvU/twL7Y3v+9D85Bn1clPL0P5m3MyTm7fQ/kQajeb/j9D/ZZJNNNtn0P7Bn63Lw0vQ/GhLzdobE9D/hco/xWMD0P1q/UqDWr/Q/UGs24Bys9D+bbLLJJpv0P+YS+HlUlvQ/3BkS83aG9D893iy7DX/0PxvHcRzHcfQ/q1y6Uk1m9D9ddNFFF130P/9L9icPTPQ/niExb2dI9D/ezpCYtzP0Py5eVyecL/Q/H3zwwQcf9D+ERXECehD0P2ApUOtXCvQ/oNavFKj18z/pnK4+S+3zP+GDDz744PM/IjFvZ0jM8z9QAzNQj8HzP2LezpCYt/M/o4suuuii8z/kOI7jOI7zPyTm7QyJefM/i7lUdR9y8z+ctWAWJm3zPxz4/i0ZcfM/2CakEwx58z8k5u0MiXnzP5Ht2ULthPM/4ziO4ziO8z88BNDxqJLzP1AkCYJmovM/o4suuuii8z+UTMmderTzP2LezpCYt/M/R2P7LVfI8z8iMW9nSMzzPw8o0YIL3vM/4YMPPvjg8z+g1q8UqPXzP6DWrxSo9fM/YClQ61cK9D9kp8odBRD0Px988MEHH/Q/ByEPB7ws9D/ezpCYtzP0P54hMW9nSPQ/Dlm47ZpM9D9ddNFFF130P/Q1TePlcPQ/HMdxHMdx9D/cGRLzdob0P5tssskmm/Q/m1/n1RGe9D8=\"},\"shape\":[73],\"dtype\":\"float64\",\"order\":\"little\"}]],[\"ys\",[{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"YSlQ61cKTUCSiRVlQANNQB05byDu+0xAVqQsxxX2TED1lXaM0fFMQPF+QYNP70xAaco+AdfuTEDBh9PJ0PBMQJjPo3DT9UxAe6HfW7b+TEBhKVDrVwpNQO+3CGH5DE1AT5wS6DklTUA/+OCDDz5NQNtJjXwmT01AHMdxHMdxTUD7lQK1fqVNQNpkk0022U1AuDMk5u0MTkCWArV+pUBOQPQTcBGJZ05AdNFFF110TkBToNavFKhOQIKcmAI1yk5AMW9nSMzbTkAQPvjggw9PQFOXSK4/G09A7gyJeTtDT0Dkk++lTGNPQM3bGRLzdk9AJ1s+01imT0CrqqqqqqpPQIl5O0Ni3k9ACOR72JjlT0A0JObtDAlQQHFYuP4VEVBAo4suuugiUED4aZlqVC5QQBLzdobEPFBAnwD9xrhKUECBWr9SoFZQQGY26sxoZlBA8MEHH3xwUEAOlMa8gYFQQGApUOtXilBAuT3mbxqcUEDPkJi3M6RQQHwmmthEtlBAPvjggw++UEDn6YccD9BQQK1fKVDr11BAA03AZoTpUEAcx3Ecx/FQQP+5wIWtAlFAjC666KILUUBmDmdjkRtRQPuVArV+JVFAqi6/YDU0UUBq/UqBWj9RQHNRvpydTFFA2WSTTTZZUUBhuQsrzWRRQEjM2xkSc1FAHEiVPsZ8UUC4MyTm7YxRQGpKtEqKlFFAJ5tsssmmUUBJJ/EcGqxRQJYCtX6lwFFAUYfx8HXDUUAFav1KgdpRQLGkun+d2lFAQ4tRFuzxUUB00UUXXfRRQHxu2iwTCVJA5DiO4zgOUkBz/RvRDSBSQFOg1q8UKFJAJxF3P9o2UkDCBx988EFSQKXCVFt2TVJAMW9nSMxbUkCt+qGv32NSQKDWrxSodVJAazi7bRN6UkAQPvjgg49SQI+b5moOkFJAWlkr+kimUkB/pUCtX6lSQPeIqxFivFJA7QyJeTvDUkBIDxRBQ9JSQF100UUX3VJAVVSvOOjnUkDM2xkS8/ZSQLdQgzxM/VJAPENi3s4QU0A3QYAaahJTQO7iNSeyJ1NAq6qqqqoqU0Barla+7DxTQBoS83aGRFNAiiMV8txRU0CJeTtDYl5TQHXIswB8ZlNA+OCDDz54U0CqCE1/wnpTQPtGjP8aj1NAaEjM2xmSU0DdhRofbaNTQNWvFKj1q1NA4gWenVy3U0BGF1100cVTQJMXx6vfylNAmNa/SCPeU0C0fqVArd9TQGjmsJiV8VNAJObtDIn5U0DWBF+higRUQJNNNtlkE1RAc2yBCvUWVED7ZIulTClUQAK1fqVALVRAmkuWEXo7VEByHMdxHEdUQIfsq6gBTVRAuUz6bCleVEDhgw8++GBUQPvJeWRAb1RAUOtXCtR6VEBAUyksi39UQJrfZYmHj1RAwFKg1q+UVEDV3boVGZ9UQJo4BjO9rVRALrrooouuVECEpumXU7xUQJ4hMW9nyFRA4UGhRb/JVEDUw2C46NZUQA2JeTtD4lRAvJkeD9DiVEDtZsjVTe5UQMYSR6d0+FRAfPDBBx/8VEC2I3IVqgFVQN/s9oaeCVVAWay+hwIQVUB3qO1WshRVQOxXCtT6FVVAJgMkCXUXVUBMVUtlxBdVQOxXCtT6FVVAn+Q4vP4UVUANpFLAKA5VQM9mbHynAVVAfPDBBx/8VEDUF5Z8/OtUQA2JeTtD4lRAnyExb2fIVEDgwvwpksNUQC666KKLrlRAwFKg1q+UVEBQ61cK1HpUQOGDDz74YFRAchzHcRxHVEACtX6lQC1UQJNNNtlkE1RAJObtDIn5U0C1fqVArd9TQNOxjAcU11NARxdddNHFU0DWrxSo9atTQGhIzNsZklNAvTgcC/yCU0D44IMPPnhTQIl5O0NiXlNAGhLzdoZEU0Ap9g983UFTQKuqqqqqKlNAPENi3s4QU0Bo3P3QQApTQM3bGRLz9lJAXXTRRRfdUkCWAq2Rd9hSQO4MiXk7w1JAypLahfaqUkB/pUCtX6lSQBA++OCDj1JAfJRsKLGAUkCg1q8UqHVSQDFvZ0jMW1JAesp4JSZZUkDCBx988EFSQDif6oO3M1JAU6DWrxQoUkAEn8IiXhBSQOQ4juM4DlJAdNFFF130UUC98Bz2fu5RQAVq/UqB2lFA0VmS0hzOUUCWArV+pcBRQHpJZqYkr1FAJ5tsssmmUUB1kjyhbJFRQLgzJObtjFFArZtvn9F0UUBHzNsZEnNRQNlkk002WVFA2WSTTTZZUUBq/UqBWj9RQOJ4GtNqPlFA+5UCtX4lUUAxb3n9iCRRQIwuuuiiC1FAq8fnY4MLUUCW9PTeI/NQQBzHcRzH8VBAwyzJlXHbUECtXylQ69dQQNNiYndrxFBAPvjggw++UEAMBVKLEK5QQM+QmLczpFBAqO5efGOYUEBgKVDrV4pQQLYk6NJqg1BA8MEHH3xwUECX6SZSMW9QQHHQlB8NW1BAgVq/UqBWUEAAbc3faEdQQBLzdobEPFBASD6Rr4I0UECjiy666CJQQLdF6MBxIlBAp+hsSBIQUEA0JObtDAlQQMPE+Fva/E9AiXk7Q2LeT0BTXHZ9Z9tPQMbG5QxfuU9Aq6qqqqqqT0BaXvyhtZhPQA3LhLmyeU9AzNsZEvN2T0DnaXIq3FlPQO4MiXk7Q09AHr/vNDY8T0A5JZ3tVx5PQBA++OCDD09AJUBCRKcBT0Aq2yA9zeVOQDFvZ0jM205A4YLIIjPKTkBiV40sALBOQFOg1q8UqE5AEyTl0KWVTkBfkuBuz3xOQHTRRRdddE5AOTUd+eZjTkCl/gszMUxOQJYCtX6lQE5Ajj9AZvc0TkASKYKhMR5OQLgzJObtDE5AWoCNLPAITkAUdADI8vJNQMtLDi0A301A2WSTTTbZTUD2otbjrcpNQMf2KI9ct01A52bzbq6lTUD7lQK1fqVNQDFkhfv1kk1AJl8pTuOBTUAjE+bVMnJNQBvHcRzHcU1AnINtKMphTUDEhea9zVJNQNJJ35kURU1APvjggw8+TUCM0XWUyDdNQMyypZn8Kk1Ah0YO4HcfTUAAavjbHhVNQADZMb/gC01AYSlQ61cKTUA=\"},\"shape\":[289],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"lgK1fqVATkBjSEUk+DpOQA+j4X7ANk5AddwcKTw1TkC1iOdREDdOQItMmT05PU5AlgK1fqVATkDNJmsYzUpOQOV580k3ZE5AdNFFF110TkCJ+YKO+J5OQFOg1q8UqE5AMW9nSMzbTkAQPvjggw9PQBDm6taVM09A7gyJeTtDT0DN2xkS83ZPQKuqqqqqqk9AC0qzAMOsT0CJeTtDYt5PQLV0geCXAFBANCTm7QwJUECjiy666CJQQN5CU1/OJVBAEvN2hsQ8UEAxaCM6b0dQQIFav1KgVlBAWwt3+iBnUEDwwQcffHBQQF8KZFJRhVBAYClQ61eKUEDmdE0nUKJQQM+QmLczpFBAPvjggw++UEBUzIfpWL5QQK1fKVDr11BAm3GGCZ3ZUEAcx3Ecx/FQQBriYhQ79FBAjC666KILUUD5/xFpSA5RQPuVArV+JVFA4bT5otUnUUBq/UqBWj9RQII9Bp7vQFFA2WSTTTZZUUBouIo4oFlRQDkt14f/cVFASMzbGRJzUUAoHGfdEYpRQLgzJObtjFFAZ7+vNtahUUAnm2yyyaZRQN34IHpPuVFAlgK1fqXAUUCdubZCf9BRQAVq/UqB2lFANfHmDGbnUUB00UUXXfRRQLQryFcD/lFA5DiO4zgOUkDK4vK8VRRSQFOg1q8UKFJAXg7zAFsqUkAKABubNkBSQMIHH3zwQVJAIOL9r/hVUkAxb2dIzFtSQGfGNVdwa1JAoNavFKh1UkBdOBWomIBSQBA++OCDj1JAr+Kt/muVUkB/pUCtX6lSQCVz5vLjqVJAcHwKF2q+UkDuDIl5O8NSQHWYGxSg0lJAXXTRRRfdUkBI9uC+cuZSQMzbGRLz9lJAo5IVwdj5UkAY1WyVGg1TQDxDYt7OEFNAYx3gYSUgU0CrqqqqqipTQDHQniCzMlNAGhLzdoZEU0CkdbWYtkRTQGyotGDBVlNAiXk7Q2JeU0AaVzgUOmhTQPjggw8+eFNAWlRPGgx5U0DLeOezwolTQGhIzNsZklNA9WfEsM2ZU0DJTQv5NalTQNavFKj1q1NAdooJPD+4U0BGF1100cVTQMYXS99axlNAYuOLpA/UU0C1fqVArd9TQHS00/S14FNA3u1Nc7XsU0AiEmGghfdTQCTm7QyJ+VNAUpLfelgBVEBXxpV9ywlUQMWcMmazEFRAk0022WQTVECe6LhV0BVUQPUd7UOlGFRAXPEW05cYVECgZcb4thRUQJNNNtlkE1RA7XkF18wKVEAj5u0MiflTQPhQJuoY91NAtX6lQK3fU0BGF1100cVTQICir7UmxVNA1q8UqPWrU0BoSMzbGZJTQPjggw8+eFNAiXk7Q2JeU0D2l3PeS1xTQBoS83aGRFNAq6qqqqoqU0A8Q2LezhBTQI35ig/SAFNAzNsZEvP2UkBddNFFF91SQO4MiXk7w1JAW7nnsxPDUkB/pUCtX6lSQIDRiuk9kFJAED744IOPUkCg1q8UqHVSQG+mF+l6Y1JAMW9nSMxbUkDCBx988EFSQOmQyQ6gOlJAU6DWrxQoUkAEJNR+5xRSQOQ4juM4DlJAdNFFF130UUC7GZeUnfFRQAVq/UqB2lFAVo74c2jQUUCWArV+pcBRQDNA9IXvsFFAJ5tsssmmUUBg6xrN/ZJRQLgzJObtjFFAyjZ5a2Z2UUBIzNsZEnNRQMT3KqUDW1FA2WSTTTZZUUCaCZIPtkBRQGr9SoFaP1FAC6GT52MnUUD6lQK1fiVRQB7Hj4r4DlFAjC666KILUUDpoe8OZPdQQBzHcRzH8VBAhqY9+prgUECtXylQ69dQQLo3xROWylBAPvjggw++UEAAJcpTUrVQQM+QmLczpFBA8OmM8NCgUECqEgji4oxQQGApUOtXilBAeQ2m8GR5UEDwwQcffHBQQLiXdOyaZlBAgVq/UqBWUEALzFN7klRQQPjQl2XOQlBAEvN2hsQ8UEBRgMaOljFQQKOLLrroIlBAA7JZEyohUEACgwBP4BBQQDQk5u0MCVBA9IYKQDgBUEDcVynxXORPQIl5O0Ni3k9AAnYnXJrGT0CrqqqqqqpPQKuqqqqqqk9AMST+xYOOT0DM2xkS83ZPQIps2BE+dE9ALNW5mAFaT0DuDIl5O0NPQC0sJm2GQU9ApWYPDgcpT0BJUznbRxJPQBA++OCDD09A2PTOTaP7TkDsryt6c+ZOQDFvZ0jM205A/TzBsQDSTkAn4gNRZL5OQDXSzVMmrE5AU6DWrxSoTkAGQYn5bppOQHrQJm3ziU5ADMFGBsF6TkB00UUXXXROQPWlxcZ/bE5ASxyP8IFfTkBMbdUA/VNOQOGSjPXySU5A0lFLXXtBTkCWArV+pUBOQA==\"},\"shape\":[221],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"q6qqqqqqT0AdtHnOPqVPQKLmlAMnnk9AYE7pscCaT0D9N37ebZxPQPeuVJKdpU9Aq6qqqqqqT0DV7il9ScJPQIl5O0Ni3k9ANCTm7QwJUECjiy666CJQQBLzdobEPFBAh82m1aRLUECBWr9SoFZQQPDBBx98cFBAnRqKQVt5UEBgKVDrV4pQQIy4YUSNnlBAz5CYtzOkUEA++OCDD75QQL6PFx7iv1BArV8pUOvXUEC99TjBYN5QQBzHcRzH8VBAFYHP2U77UECMLrroogtRQAFe+fv6FlFA+5UCtX4lUUAZY6c5njFRQGr9SoFaP1FAAZAZaGJLUUDZZJNNNllRQFeuK05mZFFASMzbGRJzUUAwTAl+wHxRQLgzJObtjFFAxo4AUIGUUUAnm2yyyaZRQL0PzUe0q1FAlgK1fqXAUUDkOjoTYcJRQGRpA/qK2FFABWr9SoHaUUCMOKsCPu5RQHTRRRdd9FFASHPI4X4DUkDkOI7jOA5SQD84beNLGFJAU6DWrxQoUkDqUXtyoSxSQPOJ4298QFJAwgcffPBBUkAdMuvK5VNSQDFvZ0jMW1JAfqcfpNRmUkCg1q8UqHVSQNQlEuU+eVJA6W5kSh+LUkAQPvjgg49SQEpObvZ2nFJAf6VArV+pUkAcKlrjNa1SQEbtEiJKvVJA7gyJeTvDUkAEM1Z4ssxSQGH+zAtZ21JAXHTRRRfdUkCEW1h/GulSQEsaeYj+9VJAy9sZEvP2UkAIeYG9qwFTQGdLdpsuDFNAPENi3s4QU0C5F6GQMBVTQE+EM9Q+HFNAIByBLg4hU0B3pHEywSJTQAptQve9H1NA87PJp+kUU0A8Q2LezhBTQMzbGRLz9lJAAw8WxSvvUkBddNFFF91SQO4MiXk7w1JAf6VArV+pUkB/pUCtX6lSQBA++OCDj1JAoNavFKh1UkAL2MzF8V1SQDFvZ0jMW1JAwgcffPBBUkDwN3iVvCtSQFOg1q8UKFJA5DiO4zgOUkAS/c2M8gFSQHTRRRdd9FFAp3sHPHjcUUAFav1KgdpRQJYCtX6lwFFAm1VdZL26UUAnm2yyyaZRQLoQCHt8m1FAuDMk5u2MUUCLwAFaMX5RQEjM2xkSc1FADx6JpphiUUDZZJNNNllRQDmUca16SFFAav1KgVo/UUBPJJHdqS9RQPuVArV+JVFAkEb5hgEYUUCMLrroogtRQEMs+dZkAVFAHMdxHMfxUEBI7osKvutQQK1fKVDr11BAh09o0v3WUEBJDTerKMNQQD744IMPvlBABN8h5hawUEDPkJi3M6RQQPhPeinAnVBA/Sg0nyqMUEBgKVDrV4pQQIHvq9ZPe1BA8MEHH3xwUEAaHsnsF2tQQECLVEGYW1BAgVq/UqBWUEBz5MVMu0xQQP1w0KaCPlBAEvN2hsQ8UEASqopw/jBQQIo77dwPJFBAo4suuugiUECpR3LB5RdQQI6iL2VWDFBANCTm7QwJUECrNyRvigFQQP5BaUAD709AiXk7Q2LeT0BhBhrIM9xPQBoclfGjy09AMg3NjcC8T0AElhU9pK9PQKuqqqqqqk9A\"},\"shape\":[147],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"z5CYtzOkUEDFGgc1gpxQQIhHW9I8lVBALTzU+mmQUEDqDjBWgJBQQLKHID7SnVBAz5CYtzOkUEA++OCDD75QQP0RmPv7yVBArV8pUOvXUEAcx3Ecx/FQQAyr6wLK+VBAjC666KILUUBYV2zEtxtRQPuVArV+JVFAE4MEVXk5UUBq/UqBWj9RQGWSktBpVFFA2WSTTTZZUUCSNhDuU21RQEjM2xkSc1FA8BoSlbOEUUC4MyTm7YxRQNxdUpDWmlFAJ5tsssmmUUDL8E8T7q9RQJYCtX6lwFFAtEY8qRjEUUAyBgPr6tZRQAVq/UqB2lFADX/EmW3oUUB00UUXXfRRQFuUr6o9+VFAgZslPYUIUkDjOI7jOA5SQFD+dT1eFlJAwncCXrQiUkBToNavFChSQNfXQBLrLFJAHwjyvOgzUkD3j72XxzZSQK9iwYGOMFJAU6DWrxQoUkDkOI7jOA5SQHTRRRdd9FFABWr9SoHaUUBg7eMWctlRQJYCtX6lwFFAOdMjIievUUAnm2yyyaZRQLgzJObtjFFAcfSVdTOMUUBIzNsZEnNRQKic93wAb1FA2WSTTTZZUUAd2wC1flRRQGr9SoFaP1FADyIZGSE8UUD7lQK1fiVRQPuVArV+JVFA0hKL7SoRUUCNLrroogtRQM7xMmcN/lBAHMdxHMfxUEDsCDlS7OtQQAH4Lzcm21BArV8pUOvXUEC4vCksG8xQQD744IMPvlBA2g0dXXm9UED1aODrW7FQQHj1xDCTpVBAz5CYtzOkUEA=\"},\"shape\":[73],\"dtype\":\"float64\",\"order\":\"little\"}]]]}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1616\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1617\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"MultiLine\",\"id\":\"p1612\",\"attributes\":{\"xs\":{\"type\":\"field\",\"field\":\"xs\"},\"ys\":{\"type\":\"field\",\"field\":\"ys\"},\"line_color\":{\"type\":\"value\",\"value\":\"white\"},\"line_width\":{\"type\":\"value\",\"value\":2}}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"MultiLine\",\"id\":\"p1613\",\"attributes\":{\"xs\":{\"type\":\"field\",\"field\":\"xs\"},\"ys\":{\"type\":\"field\",\"field\":\"ys\"},\"line_color\":{\"type\":\"value\",\"value\":\"white\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.1},\"line_width\":{\"type\":\"value\",\"value\":2}}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"MultiLine\",\"id\":\"p1614\",\"attributes\":{\"xs\":{\"type\":\"field\",\"field\":\"xs\"},\"ys\":{\"type\":\"field\",\"field\":\"ys\"},\"line_color\":{\"type\":\"value\",\"value\":\"white\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.2},\"line_width\":{\"type\":\"value\",\"value\":2}}}}}],\"toolbar\":{\"type\":\"object\",\"name\":\"Toolbar\",\"id\":\"p1571\",\"attributes\":{\"tools\":[{\"type\":\"object\",\"name\":\"PanTool\",\"id\":\"p1586\"},{\"type\":\"object\",\"name\":\"WheelZoomTool\",\"id\":\"p1587\",\"attributes\":{\"renderers\":\"auto\"}},{\"type\":\"object\",\"name\":\"BoxZoomTool\",\"id\":\"p1588\",\"attributes\":{\"overlay\":{\"type\":\"object\",\"name\":\"BoxAnnotation\",\"id\":\"p1589\",\"attributes\":{\"syncable\":false,\"level\":\"overlay\",\"visible\":false,\"left\":{\"type\":\"number\",\"value\":\"nan\"},\"right\":{\"type\":\"number\",\"value\":\"nan\"},\"top\":{\"type\":\"number\",\"value\":\"nan\"},\"bottom\":{\"type\":\"number\",\"value\":\"nan\"},\"left_units\":\"canvas\",\"right_units\":\"canvas\",\"top_units\":\"canvas\",\"bottom_units\":\"canvas\",\"line_color\":\"black\",\"line_alpha\":1.0,\"line_width\":2,\"line_dash\":[4,4],\"fill_color\":\"lightgrey\",\"fill_alpha\":0.5}}}},{\"type\":\"object\",\"name\":\"SaveTool\",\"id\":\"p1594\"},{\"type\":\"object\",\"name\":\"ResetTool\",\"id\":\"p1595\"},{\"type\":\"object\",\"name\":\"HelpTool\",\"id\":\"p1596\"}]}},\"left\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1581\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1582\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1583\"},\"axis_label\":\"b*\",\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1584\"}}}],\"below\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1576\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1577\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1578\"},\"axis_label\":\"\\u03b1*\",\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1579\"}}}],\"center\":[{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1580\",\"attributes\":{\"axis\":{\"id\":\"p1576\"}}},{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1585\",\"attributes\":{\"dimension\":1,\"axis\":{\"id\":\"p1581\"}}}],\"frame_width\":300,\"frame_height\":300}}],\"defs\":[{\"type\":\"model\",\"name\":\"ReactiveHTML1\"},{\"type\":\"model\",\"name\":\"FlexBox1\",\"properties\":[{\"name\":\"align_content\",\"kind\":\"Any\",\"default\":\"flex-start\"},{\"name\":\"align_items\",\"kind\":\"Any\",\"default\":\"flex-start\"},{\"name\":\"flex_direction\",\"kind\":\"Any\",\"default\":\"row\"},{\"name\":\"flex_wrap\",\"kind\":\"Any\",\"default\":\"wrap\"},{\"name\":\"gap\",\"kind\":\"Any\",\"default\":\"\"},{\"name\":\"justify_content\",\"kind\":\"Any\",\"default\":\"flex-start\"}]},{\"type\":\"model\",\"name\":\"FloatPanel1\",\"properties\":[{\"name\":\"config\",\"kind\":\"Any\",\"default\":{\"type\":\"map\"}},{\"name\":\"contained\",\"kind\":\"Any\",\"default\":true},{\"name\":\"position\",\"kind\":\"Any\",\"default\":\"right-top\"},{\"name\":\"offsetx\",\"kind\":\"Any\",\"default\":null},{\"name\":\"offsety\",\"kind\":\"Any\",\"default\":null},{\"name\":\"theme\",\"kind\":\"Any\",\"default\":\"primary\"},{\"name\":\"status\",\"kind\":\"Any\",\"default\":\"normalized\"}]},{\"type\":\"model\",\"name\":\"GridStack1\",\"properties\":[{\"name\":\"mode\",\"kind\":\"Any\",\"default\":\"warn\"},{\"name\":\"ncols\",\"kind\":\"Any\",\"default\":null},{\"name\":\"nrows\",\"kind\":\"Any\",\"default\":null},{\"name\":\"allow_resize\",\"kind\":\"Any\",\"default\":true},{\"name\":\"allow_drag\",\"kind\":\"Any\",\"default\":true},{\"name\":\"state\",\"kind\":\"Any\",\"default\":[]}]},{\"type\":\"model\",\"name\":\"drag1\",\"properties\":[{\"name\":\"slider_width\",\"kind\":\"Any\",\"default\":5},{\"name\":\"slider_color\",\"kind\":\"Any\",\"default\":\"black\"},{\"name\":\"value\",\"kind\":\"Any\",\"default\":50}]},{\"type\":\"model\",\"name\":\"click1\",\"properties\":[{\"name\":\"terminal_output\",\"kind\":\"Any\",\"default\":\"\"},{\"name\":\"debug_name\",\"kind\":\"Any\",\"default\":\"\"},{\"name\":\"clears\",\"kind\":\"Any\",\"default\":0}]},{\"type\":\"model\",\"name\":\"FastWrapper1\",\"properties\":[{\"name\":\"object\",\"kind\":\"Any\",\"default\":null},{\"name\":\"style\",\"kind\":\"Any\",\"default\":null}]},{\"type\":\"model\",\"name\":\"NotificationAreaBase1\",\"properties\":[{\"name\":\"js_events\",\"kind\":\"Any\",\"default\":{\"type\":\"map\"}},{\"name\":\"position\",\"kind\":\"Any\",\"default\":\"bottom-right\"},{\"name\":\"_clear\",\"kind\":\"Any\",\"default\":0}]},{\"type\":\"model\",\"name\":\"NotificationArea1\",\"properties\":[{\"name\":\"js_events\",\"kind\":\"Any\",\"default\":{\"type\":\"map\"}},{\"name\":\"notifications\",\"kind\":\"Any\",\"default\":[]},{\"name\":\"position\",\"kind\":\"Any\",\"default\":\"bottom-right\"},{\"name\":\"_clear\",\"kind\":\"Any\",\"default\":0},{\"name\":\"types\",\"kind\":\"Any\",\"default\":[{\"type\":\"map\",\"entries\":[[\"type\",\"warning\"],[\"background\",\"#ffc107\"],[\"icon\",{\"type\":\"map\",\"entries\":[[\"className\",\"fas fa-exclamation-triangle\"],[\"tagName\",\"i\"],[\"color\",\"white\"]]}]]},{\"type\":\"map\",\"entries\":[[\"type\",\"info\"],[\"background\",\"#007bff\"],[\"icon\",{\"type\":\"map\",\"entries\":[[\"className\",\"fas fa-info-circle\"],[\"tagName\",\"i\"],[\"color\",\"white\"]]}]]}]}]},{\"type\":\"model\",\"name\":\"Notification\",\"properties\":[{\"name\":\"background\",\"kind\":\"Any\",\"default\":null},{\"name\":\"duration\",\"kind\":\"Any\",\"default\":3000},{\"name\":\"icon\",\"kind\":\"Any\",\"default\":null},{\"name\":\"message\",\"kind\":\"Any\",\"default\":\"\"},{\"name\":\"notification_type\",\"kind\":\"Any\",\"default\":null},{\"name\":\"_destroyed\",\"kind\":\"Any\",\"default\":false}]},{\"type\":\"model\",\"name\":\"TemplateActions1\",\"properties\":[{\"name\":\"open_modal\",\"kind\":\"Any\",\"default\":0},{\"name\":\"close_modal\",\"kind\":\"Any\",\"default\":0}]},{\"type\":\"model\",\"name\":\"BootstrapTemplateActions1\",\"properties\":[{\"name\":\"open_modal\",\"kind\":\"Any\",\"default\":0},{\"name\":\"close_modal\",\"kind\":\"Any\",\"default\":0}]},{\"type\":\"model\",\"name\":\"TemplateEditor1\",\"properties\":[{\"name\":\"layout\",\"kind\":\"Any\",\"default\":[]}]},{\"type\":\"model\",\"name\":\"MaterialTemplateActions1\",\"properties\":[{\"name\":\"open_modal\",\"kind\":\"Any\",\"default\":0},{\"name\":\"close_modal\",\"kind\":\"Any\",\"default\":0}]},{\"type\":\"model\",\"name\":\"copy_to_clipboard1\",\"properties\":[{\"name\":\"fill\",\"kind\":\"Any\",\"default\":\"none\"},{\"name\":\"value\",\"kind\":\"Any\",\"default\":null}]}]}};\n", " const render_items = [{\"docid\":\"833b61ab-9002-4bac-a8f4-5d90c0cf4fe1\",\"roots\":{\"p1563\":\"b5ac8501-ad1a-427b-a819-1be92024c8c4\"},\"root_ids\":[\"p1563\"]}];\n", " void root.Bokeh.embed.embed_items_notebook(docs_json, render_items);\n", " }\n", " if (root.Bokeh !== undefined) {\n", " embed_document(root);\n", " } else {\n", " let attempts = 0;\n", " const timer = setInterval(function(root) {\n", " if (root.Bokeh !== undefined) {\n", " clearInterval(timer);\n", " embed_document(root);\n", " } else {\n", " attempts++;\n", " if (attempts > 100) {\n", " clearInterval(timer);\n", " console.log(\"Bokeh: ERROR: Unable to run BokehJS code because BokehJS library is missing\");\n", " }\n", " }\n", " }, 10, root)\n", " }\n", "})(window);" ], "application/vnd.bokehjs_exec.v0+json": "" }, "metadata": { "application/vnd.bokehjs_exec.v0+json": { "id": "p1563" } }, "output_type": "display_data" } ], "source": [ "p = bebi103.viz.contour(alpha, b, like, overlaid=True, x_axis_label=\"α*\", y_axis_label=\"b*\")\n", "\n", "bokeh.io.show(p)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Graphically, we can see that we appropriately found the maximum." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## A quick visualization\n", "\n", "We can do a quick visualization of our MLE to see if the model holds up. We will talk more about graphical tests of model predictive accuracy in coming lessons, but for now, we will simply overlay the theoretical CDF parametrized by the MLE. We can conveniently use the `scipy.stats` module to generate the CDF. It is probably overkill, since we have such a wide range of mRNA counts, but we will take care to make sure we plot the theoretical CDF as a staircase, since it is for a discrete distribution." ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "
\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/javascript": [ "(function(root) {\n", " function embed_document(root) {\n", " const docs_json = {\"5f2c2f63-f285-4718-8045-1582b1297837\":{\"version\":\"3.4.1\",\"title\":\"Bokeh Application\",\"roots\":[{\"type\":\"object\",\"name\":\"Figure\",\"id\":\"p1627\",\"attributes\":{\"x_range\":{\"type\":\"object\",\"name\":\"DataRange1d\",\"id\":\"p1628\"},\"y_range\":{\"type\":\"object\",\"name\":\"DataRange1d\",\"id\":\"p1629\"},\"x_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1636\"},\"y_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1637\"},\"title\":{\"type\":\"object\",\"name\":\"Title\",\"id\":\"p1634\"},\"renderers\":[{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1665\",\"attributes\":{\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1659\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1660\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1661\"},\"data\":{\"type\":\"map\",\"entries\":[[\"x\",[0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0,3.0,3.0,3.0,3.0,4.0,4.0,4.0,4.0,4.0,4.0,5.0,5.0,5.0,5.0,6.0,6.0,6.0,6.0,6.0,6.0,6.0,6.0,8.0,8.0,8.0,8.0,8.0,8.0,10.0,10.0,10.0,10.0,10.0,10.0,10.0,10.0,10.0,10.0,10.0,10.0,11.0,11.0,11.0,11.0,11.0,11.0,11.0,11.0,11.0,11.0,12.0,12.0,13.0,13.0,14.0,14.0,14.0,14.0,14.0,14.0,14.0,14.0,15.0,15.0,18.0,18.0,19.0,19.0,19.0,19.0,19.0,19.0,19.0,19.0,20.0,20.0,20.0,20.0,21.0,21.0,21.0,21.0,22.0,22.0,22.0,22.0,22.0,22.0,23.0,23.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,25.0,25.0,26.0,26.0,27.0,27.0,27.0,27.0,28.0,28.0,28.0,28.0,29.0,29.0,29.0,29.0,29.0,29.0,29.0,29.0,30.0,30.0,30.0,30.0,31.0,31.0,32.0,32.0,32.0,32.0,32.0,32.0,33.0,33.0,33.0,33.0,33.0,33.0,33.0,33.0,34.0,34.0,35.0,35.0,37.0,37.0,37.0,37.0,38.0,38.0,38.0,38.0,38.0,38.0,39.0,39.0,39.0,39.0,39.0,39.0,40.0,40.0,40.0,40.0,41.0,41.0,41.0,41.0,44.0,44.0,44.0,44.0,46.0,46.0,47.0,47.0,48.0,48.0,49.0,49.0,49.0,49.0,50.0,50.0,51.0,51.0,52.0,52.0,53.0,53.0,55.0,55.0,55.0,55.0,57.0,57.0,58.0,58.0,59.0,59.0,59.0,59.0,60.0,60.0,61.0,61.0,61.0,61.0,62.0,62.0,63.0,63.0,64.0,64.0,64.0,64.0,64.0,64.0,64.0,64.0,64.0,64.0,65.0,65.0,65.0,65.0,65.0,65.0,66.0,66.0,66.0,66.0,66.0,66.0,66.0,66.0,67.0,67.0,67.0,67.0,67.0,67.0,67.0,67.0,68.0,68.0,68.0,68.0,68.0,68.0,69.0,69.0,69.0,69.0,71.0,71.0,72.0,72.0,72.0,72.0,73.0,73.0,73.0,73.0,74.0,74.0,74.0,74.0,74.0,74.0,76.0,76.0,76.0,76.0,77.0,77.0,77.0,77.0,77.0,77.0,77.0,77.0,78.0,78.0,78.0,78.0,79.0,79.0,79.0,79.0,80.0,80.0,80.0,80.0,80.0,80.0,81.0,81.0,82.0,82.0,82.0,82.0,83.0,83.0,83.0,83.0,84.0,84.0,84.0,84.0,85.0,85.0,86.0,86.0,86.0,86.0,86.0,86.0,87.0,87.0,87.0,87.0,88.0,88.0,88.0,88.0,90.0,90.0,92.0,92.0,94.0,94.0,94.0,94.0,94.0,94.0,94.0,94.0,96.0,96.0,100.0,100.0,100.0,100.0,101.0,101.0,103.0,103.0,103.0,103.0,104.0,104.0,104.0,104.0,104.0,104.0,104.0,104.0,104.0,104.0,104.0,104.0,105.0,105.0,105.0,105.0,107.0,107.0,107.0,107.0,108.0,108.0,109.0,109.0,110.0,110.0,113.0,113.0,114.0,114.0,115.0,115.0,116.0,116.0,116.0,116.0,117.0,117.0,118.0,118.0,118.97500000000002,118.97500000000002,120.0,120.0,120.0,120.0,120.0,120.0,121.0,121.0,123.0,123.0,124.0,124.0,125.0,125.0,127.0,127.0,127.0,127.0,127.0,127.0,128.0,128.0,128.0,128.0,128.0,128.0,129.0,129.0,131.95000000000005,131.95000000000005,132.0,132.0,132.0,132.0,134.0,134.0,134.0,134.0,136.0,136.0,137.0,137.0,138.0,138.0,139.0,139.0,140.0,140.0,141.0,141.0,141.0,141.0,143.0,143.0,143.0,143.0,144.0,144.0,145.0,145.0,148.0,148.0,149.0,149.0,153.0,153.0,153.0,153.0,154.0,154.0,154.0,154.0,155.0,155.0,156.0,156.0,156.0,156.0,156.0,156.0,160.0,160.0,162.0,162.0,168.0,168.0,171.0,171.0,174.0,174.0,175.0,175.0,176.0,176.0,177.0,177.0,181.0,181.0,186.0,186.0,187.0,187.0,191.0,191.0,193.0,193.0,194.0,194.0,195.0,195.0,196.0,196.0,200.0,200.0,202.0,202.0,212.0,212.0,227.0,227.0,228.0,228.0,231.0,231.0,239.0,239.0,246.0,246.0,252.0,252.0,263.0,263.0,408.0,408.0,408.0,408.0,408.0,408.0,293.0,293.0,293.0,293.0,274.0,274.0,274.0,274.0,263.0,263.0,263.0,263.0,263.0,263.0,252.0,252.0,251.0,251.0,251.0,251.0,246.0,246.0,239.0,239.0,236.0,236.0,231.0,231.0,231.0,231.0,228.0,228.0,227.0,227.0,216.0,216.0,216.0,216.0,212.0,212.0,202.0,202.0,200.0,200.0,198.0,198.0,196.0,196.0,195.02499999999964,195.02499999999964,195.0,195.0,194.0,194.0,193.0,193.0,191.0,191.0,190.0,190.0,187.0,187.0,187.0,187.0,186.0,186.0,181.0,181.0,177.0,177.0,176.0,176.0,175.0,175.0,175.0,175.0,175.0,175.0,174.0,174.0,171.0,171.0,168.0,168.0,162.0,162.0,162.0,162.0,160.0,160.0,156.0,156.0,156.0,156.0,156.0,156.0,156.0,156.0,155.0,155.0,154.0,154.0,154.0,154.0,153.0,153.0,153.0,153.0,153.0,153.0,149.0,149.0,148.0,148.0,145.0,145.0,145.0,145.0,144.0,144.0,143.0,143.0,143.0,143.0,141.0,141.0,141.0,141.0,140.0,140.0,140.0,140.0,139.0,139.0,138.0,138.0,138.0,138.0,137.0,137.0,136.0,136.0,134.0,134.0,134.0,134.0,132.0,132.0,132.0,132.0,132.0,132.0,130.0,130.0,129.0,129.0,128.0,128.0,128.0,128.0,128.0,128.0,127.0,127.0,127.0,127.0,127.0,127.0,127.0,127.0,125.0,125.0,124.0,124.0,123.0,123.0,121.0,121.0,120.0,120.0,120.0,120.0,120.0,120.0,119.0,119.0,118.0,118.0,118.0,118.0,117.0,117.0,116.0,116.0,116.0,116.0,115.0,115.0,114.0,114.0,113.0,113.0,110.0,110.0,109.0,109.0,108.0,108.0,107.0,107.0,107.0,107.0,105.04999999999927,105.04999999999927,105.0,105.0,105.0,105.0,104.0,104.0,104.0,104.0,104.0,104.0,104.0,104.0,104.0,104.0,104.0,104.0,103.0,103.0,103.0,103.0,101.0,101.0,101.0,101.0,100.0,100.0,97.0,97.0,96.0,96.0,94.0,94.0,94.0,94.0,94.0,94.0,94.0,94.0,92.0,92.0,90.0,90.0,88.0,88.0,88.0,88.0,87.0,87.0,87.0,87.0,86.0,86.0,86.0,86.0,85.0,85.0,84.0,84.0,84.0,84.0,84.0,84.0,83.0,83.0,83.0,83.0,82.0,82.0,82.0,82.0,81.0,81.0,80.0,80.0,80.0,80.0,80.0,80.0,79.0,79.0,79.0,79.0,78.0,78.0,78.0,78.0,77.0,77.0,77.0,77.0,77.0,77.0,77.0,77.0,77.0,77.0,76.0,76.0,74.0,74.0,74.0,74.0,74.0,74.0,73.0,73.0,73.0,73.0,72.0,72.0,72.0,72.0,71.0,71.0,69.0,69.0,69.0,69.0,68.0,68.0,68.0,68.0,68.0,68.0,67.0,67.0,67.0,67.0,67.0,67.0,67.0,67.0,66.0,66.0,66.0,66.0,66.0,66.0,66.0,66.0,65.0,65.0,65.0,65.0,65.0,65.0,64.0,64.0,64.0,64.0,64.0,64.0,64.0,64.0,63.0,63.0,62.0,62.0,61.0,61.0,61.0,61.0,60.0,60.0,59.0,59.0,59.0,59.0,58.0,58.0,57.0,57.0,55.0,55.0,55.0,55.0,53.0,53.0,52.0,52.0,50.0,50.0,49.0,49.0,49.0,49.0,48.0,48.0,47.0,47.0,46.0,46.0,44.0,44.0,44.0,44.0,41.0,41.0,41.0,41.0,40.0,40.0,40.0,40.0,39.0,39.0,39.0,39.0,38.0,38.0,38.0,38.0,37.0,37.0,37.0,37.0,35.0,35.0,34.0,34.0,33.0,33.0,33.0,33.0,33.0,33.0,33.0,33.0,32.0,32.0,32.0,32.0,31.0,31.0,30.0,30.0,30.0,30.0,29.0,29.0,29.0,29.0,29.0,29.0,29.0,29.0,28.0,28.0,27.0,27.0,27.0,27.0,26.0,26.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,23.0,23.0,22.0,22.0,22.0,22.0,21.0,21.0,21.0,21.0,20.0,20.0,19.0,19.0,19.0,19.0,19.0,19.0,19.0,19.0,18.0,18.0,15.0,15.0,14.0,14.0,14.0,14.0,13.0,13.0,12.0,12.0,11.0,11.0,11.0,11.0,11.0,11.0,10.0,10.0,10.0,10.0,10.0,10.0,10.0,10.0,8.049999999999272,8.049999999999272,8.0,8.0,8.0,8.0,6.0,6.0,6.0,6.0,5.0,5.0,5.0,5.0,4.0,4.0,3.0,3.0,3.0,3.0,2.0,2.0,2.0,2.0,1.0,1.0,1.0,1.0,0.0,0.0]],[\"y\",[0.0,0.0035842293906810036,0.0035842293906810036,0.007168458781362007,0.007168458781362007,0.010752688172043012,0.010752688172043012,0.014336917562724014,0.014336917562724014,0.017921146953405017,0.017921146953405017,0.021505376344086023,0.021505376344086023,0.025089605734767026,0.025089605734767026,0.02867383512544803,0.02867383512544803,0.03225806451612903,0.03225806451612903,0.035842293906810034,0.035842293906810034,0.03942652329749104,0.03942652329749104,0.043010752688172046,0.043010752688172046,0.04659498207885305,0.04659498207885305,0.05017921146953405,0.05017921146953405,0.053763440860215055,0.053763440860215055,0.05734767025089606,0.05734767025089606,0.06093189964157706,0.06093189964157706,0.06451612903225806,0.06451612903225806,0.06810035842293907,0.06810035842293907,0.07168458781362007,0.07168458781362007,0.07526881720430108,0.07526881720430108,0.07885304659498207,0.07885304659498207,0.08243727598566308,0.08243727598566308,0.08602150537634409,0.08602150537634409,0.08960573476702509,0.08960573476702509,0.0931899641577061,0.0931899641577061,0.0967741935483871,0.0967741935483871,0.1003584229390681,0.1003584229390681,0.1039426523297491,0.1039426523297491,0.10752688172043011,0.10752688172043011,0.1111111111111111,0.1111111111111111,0.11469534050179211,0.11469534050179211,0.11827956989247312,0.11827956989247312,0.12186379928315412,0.12186379928315412,0.12544802867383512,0.12544802867383512,0.12903225806451613,0.12903225806451613,0.13261648745519714,0.13261648745519714,0.13620071684587814,0.13620071684587814,0.13978494623655913,0.13978494623655913,0.14336917562724014,0.14336917562724014,0.14695340501792115,0.14695340501792115,0.15053763440860216,0.15053763440860216,0.15412186379928317,0.15412186379928317,0.15770609318996415,0.15770609318996415,0.16129032258064516,0.16129032258064516,0.16487455197132617,0.16487455197132617,0.16845878136200718,0.16845878136200718,0.17204301075268819,0.17204301075268819,0.17562724014336917,0.17562724014336917,0.17921146953405018,0.17921146953405018,0.1827956989247312,0.1827956989247312,0.1863799283154122,0.1863799283154122,0.18996415770609318,0.18996415770609318,0.1935483870967742,0.1935483870967742,0.1971326164874552,0.1971326164874552,0.2007168458781362,0.2007168458781362,0.20430107526881722,0.20430107526881722,0.2078853046594982,0.2078853046594982,0.2114695340501792,0.2114695340501792,0.21505376344086022,0.21505376344086022,0.21863799283154123,0.21863799283154123,0.2222222222222222,0.2222222222222222,0.22580645161290322,0.22580645161290322,0.22939068100358423,0.22939068100358423,0.23297491039426524,0.23297491039426524,0.23655913978494625,0.23655913978494625,0.24014336917562723,0.24014336917562723,0.24372759856630824,0.24372759856630824,0.24731182795698925,0.24731182795698925,0.25089605734767023,0.25089605734767023,0.25448028673835127,0.25448028673835127,0.25806451612903225,0.25806451612903225,0.2616487455197133,0.2616487455197133,0.26523297491039427,0.26523297491039427,0.26881720430107525,0.26881720430107525,0.2724014336917563,0.2724014336917563,0.27598566308243727,0.27598566308243727,0.27956989247311825,0.27956989247311825,0.2831541218637993,0.2831541218637993,0.2867383512544803,0.2867383512544803,0.2903225806451613,0.2903225806451613,0.2939068100358423,0.2939068100358423,0.2974910394265233,0.2974910394265233,0.3010752688172043,0.3010752688172043,0.3046594982078853,0.3046594982078853,0.30824372759856633,0.30824372759856633,0.3118279569892473,0.3118279569892473,0.3154121863799283,0.3154121863799283,0.31899641577060933,0.31899641577060933,0.3225806451612903,0.3225806451612903,0.32616487455197135,0.32616487455197135,0.32974910394265233,0.32974910394265233,0.3333333333333333,0.3333333333333333,0.33691756272401435,0.33691756272401435,0.34050179211469533,0.34050179211469533,0.34408602150537637,0.34408602150537637,0.34767025089605735,0.34767025089605735,0.35125448028673834,0.35125448028673834,0.3548387096774194,0.3548387096774194,0.35842293906810035,0.35842293906810035,0.36200716845878134,0.36200716845878134,0.3655913978494624,0.3655913978494624,0.36917562724014336,0.36917562724014336,0.3727598566308244,0.3727598566308244,0.3763440860215054,0.3763440860215054,0.37992831541218636,0.37992831541218636,0.3835125448028674,0.3835125448028674,0.3870967741935484,0.3870967741935484,0.3906810035842294,0.3906810035842294,0.3942652329749104,0.3942652329749104,0.3978494623655914,0.3978494623655914,0.4014336917562724,0.4014336917562724,0.4050179211469534,0.4050179211469534,0.40860215053763443,0.40860215053763443,0.4121863799283154,0.4121863799283154,0.4157706093189964,0.4157706093189964,0.41935483870967744,0.41935483870967744,0.4229390681003584,0.4229390681003584,0.4265232974910394,0.4265232974910394,0.43010752688172044,0.43010752688172044,0.4336917562724014,0.4336917562724014,0.43727598566308246,0.43727598566308246,0.44086021505376344,0.44086021505376344,0.4444444444444444,0.4444444444444444,0.44802867383512546,0.44802867383512546,0.45161290322580644,0.45161290322580644,0.4551971326164875,0.4551971326164875,0.45878136200716846,0.45878136200716846,0.46236559139784944,0.46236559139784944,0.4659498207885305,0.4659498207885305,0.46953405017921146,0.46953405017921146,0.4731182795698925,0.4731182795698925,0.4767025089605735,0.4767025089605735,0.48028673835125446,0.48028673835125446,0.4838709677419355,0.4838709677419355,0.4874551971326165,0.4874551971326165,0.4910394265232975,0.4910394265232975,0.4946236559139785,0.4946236559139785,0.4982078853046595,0.4982078853046595,0.5017921146953405,0.5017921146953405,0.5053763440860215,0.5053763440860215,0.5089605734767025,0.5089605734767025,0.5125448028673835,0.5125448028673835,0.5161290322580645,0.5161290322580645,0.5197132616487455,0.5197132616487455,0.5232974910394266,0.5232974910394266,0.5268817204301075,0.5268817204301075,0.5304659498207885,0.5304659498207885,0.5340501792114696,0.5340501792114696,0.5376344086021505,0.5376344086021505,0.5412186379928315,0.5412186379928315,0.5448028673835126,0.5448028673835126,0.5483870967741935,0.5483870967741935,0.5519713261648745,0.5519713261648745,0.5555555555555556,0.5555555555555556,0.5591397849462365,0.5591397849462365,0.5627240143369175,0.5627240143369175,0.5663082437275986,0.5663082437275986,0.5698924731182796,0.5698924731182796,0.5734767025089605,0.5734767025089605,0.5770609318996416,0.5770609318996416,0.5806451612903226,0.5806451612903226,0.5842293906810035,0.5842293906810035,0.5878136200716846,0.5878136200716846,0.5913978494623656,0.5913978494623656,0.5949820788530465,0.5949820788530465,0.5985663082437276,0.5985663082437276,0.6021505376344086,0.6021505376344086,0.6057347670250897,0.6057347670250897,0.6093189964157706,0.6093189964157706,0.6129032258064516,0.6129032258064516,0.6164874551971327,0.6164874551971327,0.6200716845878136,0.6200716845878136,0.6236559139784946,0.6236559139784946,0.6272401433691757,0.6272401433691757,0.6308243727598566,0.6308243727598566,0.6344086021505376,0.6344086021505376,0.6379928315412187,0.6379928315412187,0.6415770609318996,0.6415770609318996,0.6451612903225806,0.6451612903225806,0.6487455197132617,0.6487455197132617,0.6523297491039427,0.6523297491039427,0.6559139784946236,0.6559139784946236,0.6594982078853047,0.6594982078853047,0.6630824372759857,0.6630824372759857,0.6666666666666666,0.6666666666666666,0.6702508960573477,0.6702508960573477,0.6738351254480287,0.6738351254480287,0.6774193548387096,0.6774193548387096,0.6810035842293907,0.6810035842293907,0.6845878136200717,0.6845878136200717,0.6881720430107527,0.6881720430107527,0.6917562724014337,0.6917562724014337,0.6953405017921147,0.6953405017921147,0.6989247311827957,0.6989247311827957,0.7025089605734767,0.7025089605734767,0.7060931899641577,0.7060931899641577,0.7096774193548387,0.7096774193548387,0.7132616487455197,0.7132616487455197,0.7168458781362007,0.7168458781362007,0.7204301075268817,0.7204301075268817,0.7240143369175627,0.7240143369175627,0.7275985663082437,0.7275985663082437,0.7311827956989247,0.7311827956989247,0.7347670250896058,0.7347670250896058,0.7383512544802867,0.7383512544802867,0.7419354838709677,0.7419354838709677,0.7455197132616488,0.7455197132616488,0.7491039426523297,0.7491039426523297,0.7526881720430108,0.7526881720430108,0.7562724014336918,0.7562724014336918,0.7598566308243727,0.7598566308243727,0.7634408602150538,0.7634408602150538,0.7670250896057348,0.7670250896057348,0.7706093189964157,0.7706093189964157,0.7741935483870968,0.7741935483870968,0.7777777777777778,0.7777777777777778,0.7813620071684588,0.7813620071684588,0.7849462365591398,0.7849462365591398,0.7885304659498208,0.7885304659498208,0.7921146953405018,0.7921146953405018,0.7956989247311828,0.7956989247311828,0.7992831541218638,0.7992831541218638,0.8028673835125448,0.8028673835125448,0.8064516129032258,0.8064516129032258,0.8100358422939068,0.8100358422939068,0.8136200716845878,0.8136200716845878,0.8172043010752689,0.8172043010752689,0.8207885304659498,0.8207885304659498,0.8243727598566308,0.8243727598566308,0.8279569892473119,0.8279569892473119,0.8315412186379928,0.8315412186379928,0.8351254480286738,0.8351254480286738,0.8387096774193549,0.8387096774193549,0.8422939068100358,0.8422939068100358,0.8458781362007168,0.8458781362007168,0.8494623655913979,0.8494623655913979,0.8530465949820788,0.8530465949820788,0.8566308243727598,0.8566308243727598,0.8602150537634409,0.8602150537634409,0.8637992831541219,0.8637992831541219,0.8673835125448028,0.8673835125448028,0.8709677419354839,0.8709677419354839,0.8745519713261649,0.8745519713261649,0.8781362007168458,0.8781362007168458,0.8817204301075269,0.8817204301075269,0.8853046594982079,0.8853046594982079,0.8888888888888888,0.8888888888888888,0.8924731182795699,0.8924731182795699,0.8960573476702509,0.8960573476702509,0.899641577060932,0.899641577060932,0.9032258064516129,0.9032258064516129,0.9068100358422939,0.9068100358422939,0.910394265232975,0.910394265232975,0.9139784946236559,0.9139784946236559,0.9175627240143369,0.9175627240143369,0.921146953405018,0.921146953405018,0.9247311827956989,0.9247311827956989,0.9283154121863799,0.9283154121863799,0.931899641577061,0.931899641577061,0.9354838709677419,0.9354838709677419,0.9390681003584229,0.9390681003584229,0.942652329749104,0.942652329749104,0.946236559139785,0.946236559139785,0.9498207885304659,0.9498207885304659,0.953405017921147,0.953405017921147,0.956989247311828,0.956989247311828,0.9605734767025089,0.9605734767025089,0.96415770609319,0.96415770609319,0.967741935483871,0.967741935483871,0.9713261648745519,0.9713261648745519,0.974910394265233,0.974910394265233,0.978494623655914,0.978494623655914,0.982078853046595,0.982078853046595,0.985663082437276,0.985663082437276,0.989247311827957,0.989247311827957,0.992831541218638,0.992831541218638,0.996415770609319,0.996415770609319,1.0,1.0,0.996415770609319,0.996415770609319,0.992831541218638,0.992831541218638,0.989247311827957,0.989247311827957,0.985663082437276,0.985663082437276,0.982078853046595,0.982078853046595,0.978494623655914,0.978494623655914,0.974910394265233,0.974910394265233,0.9713261648745519,0.9713261648745519,0.967741935483871,0.967741935483871,0.96415770609319,0.96415770609319,0.9605734767025089,0.9605734767025089,0.956989247311828,0.956989247311828,0.953405017921147,0.953405017921147,0.9498207885304659,0.9498207885304659,0.946236559139785,0.946236559139785,0.942652329749104,0.942652329749104,0.9390681003584229,0.9390681003584229,0.9354838709677419,0.9354838709677419,0.931899641577061,0.931899641577061,0.9283154121863799,0.9283154121863799,0.9247311827956989,0.9247311827956989,0.921146953405018,0.921146953405018,0.9175627240143369,0.9175627240143369,0.9139784946236559,0.9139784946236559,0.910394265232975,0.910394265232975,0.9068100358422939,0.9068100358422939,0.9032258064516129,0.9032258064516129,0.899641577060932,0.899641577060932,0.8960573476702509,0.8960573476702509,0.8924731182795699,0.8924731182795699,0.8888888888888888,0.8888888888888888,0.8853046594982079,0.8853046594982079,0.8817204301075269,0.8817204301075269,0.8781362007168458,0.8781362007168458,0.8745519713261649,0.8745519713261649,0.8709677419354839,0.8709677419354839,0.8673835125448028,0.8673835125448028,0.8637992831541219,0.8637992831541219,0.8602150537634409,0.8602150537634409,0.8566308243727598,0.8566308243727598,0.8530465949820788,0.8530465949820788,0.8494623655913979,0.8494623655913979,0.8458781362007168,0.8458781362007168,0.8422939068100358,0.8422939068100358,0.8387096774193549,0.8387096774193549,0.8351254480286738,0.8351254480286738,0.8315412186379928,0.8315412186379928,0.8279569892473119,0.8279569892473119,0.8243727598566308,0.8243727598566308,0.8207885304659498,0.8207885304659498,0.8172043010752689,0.8172043010752689,0.8136200716845878,0.8136200716845878,0.8100358422939068,0.8100358422939068,0.8064516129032258,0.8064516129032258,0.8028673835125448,0.8028673835125448,0.7992831541218638,0.7992831541218638,0.7956989247311828,0.7956989247311828,0.7921146953405018,0.7921146953405018,0.7885304659498208,0.7885304659498208,0.7849462365591398,0.7849462365591398,0.7813620071684588,0.7813620071684588,0.7777777777777778,0.7777777777777778,0.7741935483870968,0.7741935483870968,0.7706093189964157,0.7706093189964157,0.7670250896057348,0.7670250896057348,0.7634408602150538,0.7634408602150538,0.7598566308243727,0.7598566308243727,0.7562724014336918,0.7562724014336918,0.7526881720430108,0.7526881720430108,0.7491039426523297,0.7491039426523297,0.7455197132616488,0.7455197132616488,0.7419354838709677,0.7419354838709677,0.7383512544802867,0.7383512544802867,0.7347670250896058,0.7347670250896058,0.7311827956989247,0.7311827956989247,0.7275985663082437,0.7275985663082437,0.7240143369175627,0.7240143369175627,0.7204301075268817,0.7204301075268817,0.7168458781362007,0.7168458781362007,0.7132616487455197,0.7132616487455197,0.7096774193548387,0.7096774193548387,0.7060931899641577,0.7060931899641577,0.7025089605734767,0.7025089605734767,0.6989247311827957,0.6989247311827957,0.6953405017921147,0.6953405017921147,0.6917562724014337,0.6917562724014337,0.6881720430107527,0.6881720430107527,0.6845878136200717,0.6845878136200717,0.6810035842293907,0.6810035842293907,0.6774193548387096,0.6774193548387096,0.6738351254480287,0.6738351254480287,0.6702508960573477,0.6702508960573477,0.6666666666666666,0.6666666666666666,0.6630824372759857,0.6630824372759857,0.6594982078853047,0.6594982078853047,0.6559139784946236,0.6559139784946236,0.6523297491039427,0.6523297491039427,0.6487455197132617,0.6487455197132617,0.6451612903225806,0.6451612903225806,0.6415770609318996,0.6415770609318996,0.6379928315412187,0.6379928315412187,0.6344086021505376,0.6344086021505376,0.6308243727598566,0.6308243727598566,0.6272401433691757,0.6272401433691757,0.6236559139784946,0.6236559139784946,0.6200716845878136,0.6200716845878136,0.6164874551971327,0.6164874551971327,0.6129032258064516,0.6129032258064516,0.6093189964157706,0.6093189964157706,0.6057347670250897,0.6057347670250897,0.6021505376344086,0.6021505376344086,0.5985663082437276,0.5985663082437276,0.5949820788530465,0.5949820788530465,0.5913978494623656,0.5913978494623656,0.5878136200716846,0.5878136200716846,0.5842293906810035,0.5842293906810035,0.5806451612903226,0.5806451612903226,0.5770609318996416,0.5770609318996416,0.5734767025089605,0.5734767025089605,0.5698924731182796,0.5698924731182796,0.5663082437275986,0.5663082437275986,0.5627240143369175,0.5627240143369175,0.5591397849462365,0.5591397849462365,0.5555555555555556,0.5555555555555556,0.5519713261648745,0.5519713261648745,0.5483870967741935,0.5483870967741935,0.5448028673835126,0.5448028673835126,0.5412186379928315,0.5412186379928315,0.5376344086021505,0.5376344086021505,0.5340501792114696,0.5340501792114696,0.5304659498207885,0.5304659498207885,0.5268817204301075,0.5268817204301075,0.5232974910394266,0.5232974910394266,0.5197132616487455,0.5197132616487455,0.5161290322580645,0.5161290322580645,0.5125448028673835,0.5125448028673835,0.5089605734767025,0.5089605734767025,0.5053763440860215,0.5053763440860215,0.5017921146953405,0.5017921146953405,0.4982078853046595,0.4982078853046595,0.4946236559139785,0.4946236559139785,0.4910394265232975,0.4910394265232975,0.4874551971326165,0.4874551971326165,0.4838709677419355,0.4838709677419355,0.48028673835125446,0.48028673835125446,0.4767025089605735,0.4767025089605735,0.4731182795698925,0.4731182795698925,0.46953405017921146,0.46953405017921146,0.4659498207885305,0.4659498207885305,0.46236559139784944,0.46236559139784944,0.45878136200716846,0.45878136200716846,0.4551971326164875,0.4551971326164875,0.45161290322580644,0.45161290322580644,0.44802867383512546,0.44802867383512546,0.4444444444444444,0.4444444444444444,0.44086021505376344,0.44086021505376344,0.43727598566308246,0.43727598566308246,0.4336917562724014,0.4336917562724014,0.43010752688172044,0.43010752688172044,0.4265232974910394,0.4265232974910394,0.4229390681003584,0.4229390681003584,0.41935483870967744,0.41935483870967744,0.4157706093189964,0.4157706093189964,0.4121863799283154,0.4121863799283154,0.40860215053763443,0.40860215053763443,0.4050179211469534,0.4050179211469534,0.4014336917562724,0.4014336917562724,0.3978494623655914,0.3978494623655914,0.3942652329749104,0.3942652329749104,0.3906810035842294,0.3906810035842294,0.3870967741935484,0.3870967741935484,0.3835125448028674,0.3835125448028674,0.37992831541218636,0.37992831541218636,0.3763440860215054,0.3763440860215054,0.3727598566308244,0.3727598566308244,0.36917562724014336,0.36917562724014336,0.3655913978494624,0.3655913978494624,0.36200716845878134,0.36200716845878134,0.35842293906810035,0.35842293906810035,0.3548387096774194,0.3548387096774194,0.35125448028673834,0.35125448028673834,0.34767025089605735,0.34767025089605735,0.34408602150537637,0.34408602150537637,0.34050179211469533,0.34050179211469533,0.33691756272401435,0.33691756272401435,0.3333333333333333,0.3333333333333333,0.32974910394265233,0.32974910394265233,0.32616487455197135,0.32616487455197135,0.3225806451612903,0.3225806451612903,0.31899641577060933,0.31899641577060933,0.3154121863799283,0.3154121863799283,0.3118279569892473,0.3118279569892473,0.30824372759856633,0.30824372759856633,0.3046594982078853,0.3046594982078853,0.3010752688172043,0.3010752688172043,0.2974910394265233,0.2974910394265233,0.2939068100358423,0.2939068100358423,0.2903225806451613,0.2903225806451613,0.2867383512544803,0.2867383512544803,0.2831541218637993,0.2831541218637993,0.27956989247311825,0.27956989247311825,0.27598566308243727,0.27598566308243727,0.2724014336917563,0.2724014336917563,0.26881720430107525,0.26881720430107525,0.26523297491039427,0.26523297491039427,0.2616487455197133,0.2616487455197133,0.25806451612903225,0.25806451612903225,0.25448028673835127,0.25448028673835127,0.25089605734767023,0.25089605734767023,0.24731182795698925,0.24731182795698925,0.24372759856630824,0.24372759856630824,0.24014336917562723,0.24014336917562723,0.23655913978494625,0.23655913978494625,0.23297491039426524,0.23297491039426524,0.22939068100358423,0.22939068100358423,0.22580645161290322,0.22580645161290322,0.2222222222222222,0.2222222222222222,0.21863799283154123,0.21863799283154123,0.21505376344086022,0.21505376344086022,0.2114695340501792,0.2114695340501792,0.2078853046594982,0.2078853046594982,0.20430107526881722,0.20430107526881722,0.2007168458781362,0.2007168458781362,0.1971326164874552,0.1971326164874552,0.1935483870967742,0.1935483870967742,0.18996415770609318,0.18996415770609318,0.1863799283154122,0.1863799283154122,0.1827956989247312,0.1827956989247312,0.17921146953405018,0.17921146953405018,0.17562724014336917,0.17562724014336917,0.17204301075268819,0.17204301075268819,0.16845878136200718,0.16845878136200718,0.16487455197132617,0.16487455197132617,0.16129032258064516,0.16129032258064516,0.15770609318996415,0.15770609318996415,0.15412186379928317,0.15412186379928317,0.15053763440860216,0.15053763440860216,0.14695340501792115,0.14695340501792115,0.14336917562724014,0.14336917562724014,0.13978494623655913,0.13978494623655913,0.13620071684587814,0.13620071684587814,0.13261648745519714,0.13261648745519714,0.12903225806451613,0.12903225806451613,0.12544802867383512,0.12544802867383512,0.12186379928315412,0.12186379928315412,0.11827956989247312,0.11827956989247312,0.11469534050179211,0.11469534050179211,0.1111111111111111,0.1111111111111111,0.10752688172043011,0.10752688172043011,0.1039426523297491,0.1039426523297491,0.1003584229390681,0.1003584229390681,0.0967741935483871,0.0967741935483871,0.0931899641577061,0.0931899641577061,0.08960573476702509,0.08960573476702509,0.08602150537634409,0.08602150537634409,0.08243727598566308,0.08243727598566308,0.07885304659498207,0.07885304659498207,0.07526881720430108,0.07526881720430108,0.07168458781362007,0.07168458781362007,0.06810035842293907,0.06810035842293907,0.06451612903225806,0.06451612903225806,0.06093189964157706,0.06093189964157706,0.05734767025089606,0.05734767025089606,0.053763440860215055,0.053763440860215055,0.05017921146953405,0.05017921146953405,0.04659498207885305,0.04659498207885305,0.043010752688172046,0.043010752688172046,0.03942652329749104,0.03942652329749104,0.035842293906810034,0.035842293906810034,0.03225806451612903,0.03225806451612903,0.02867383512544803,0.02867383512544803,0.025089605734767026,0.025089605734767026,0.021505376344086023,0.021505376344086023,0.017921146953405017,0.017921146953405017,0.014336917562724014,0.014336917562724014,0.010752688172043012,0.010752688172043012,0.007168458781362007,0.007168458781362007,0.0035842293906810036,0.0035842293906810036,0.0]]]}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1666\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1667\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Patch\",\"id\":\"p1662\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":\"#1f77b4\",\"line_alpha\":0,\"fill_color\":\"#1f77b3\",\"fill_alpha\":0.3}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Patch\",\"id\":\"p1663\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":\"#1f77b4\",\"line_alpha\":0.1,\"fill_color\":\"#1f77b3\",\"fill_alpha\":0.1,\"hatch_alpha\":0.1}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Patch\",\"id\":\"p1664\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":\"#1f77b4\",\"line_alpha\":0.2,\"fill_color\":\"#1f77b3\",\"fill_alpha\":0.2,\"hatch_alpha\":0.2}}}},{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1674\",\"attributes\":{\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1668\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1669\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1670\"},\"data\":{\"type\":\"map\",\"entries\":[[\"x\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAAAAQAAAAAAAAABAAAAAAAAAAEAAAAAAAAAAQAAAAAAAAABAAAAAAAAAAEAAAAAAAAAIQAAAAAAAAAhAAAAAAAAACEAAAAAAAAAIQAAAAAAAABBAAAAAAAAAEEAAAAAAAAAQQAAAAAAAABBAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAYQAAAAAAAABhAAAAAAAAAGEAAAAAAAAAYQAAAAAAAABhAAAAAAAAAGEAAAAAAAAAgQAAAAAAAACBAAAAAAAAAIEAAAAAAAAAgQAAAAAAAACBAAAAAAAAAIEAAAAAAAAAkQAAAAAAAACRAAAAAAAAAJEAAAAAAAAAkQAAAAAAAACRAAAAAAAAAJEAAAAAAAAAkQAAAAAAAACRAAAAAAAAAJEAAAAAAAAAkQAAAAAAAACZAAAAAAAAAJkAAAAAAAAAmQAAAAAAAACZAAAAAAAAAJkAAAAAAAAAmQAAAAAAAACZAAAAAAAAAJkAAAAAAAAAoQAAAAAAAAChAAAAAAAAAKkAAAAAAAAAqQAAAAAAAACxAAAAAAAAALEAAAAAAAAAsQAAAAAAAACxAAAAAAAAALEAAAAAAAAAsQAAAAAAAAC5AAAAAAAAALkAAAAAAAAAyQAAAAAAAADJAAAAAAAAAM0AAAAAAAAAzQAAAAAAAADNAAAAAAAAAM0AAAAAAAAAzQAAAAAAAADNAAAAAAAAAM0AAAAAAAAAzQAAAAAAAADRAAAAAAAAANEAAAAAAAAA0QAAAAAAAADRAAAAAAAAANUAAAAAAAAA1QAAAAAAAADVAAAAAAAAANUAAAAAAAAA2QAAAAAAAADZAAAAAAAAANkAAAAAAAAA2QAAAAAAAADdAAAAAAAAAN0AAAAAAAAA4QAAAAAAAADhAAAAAAAAAOEAAAAAAAAA4QAAAAAAAADhAAAAAAAAAOEAAAAAAAAA4QAAAAAAAADhAAAAAAAAAOUAAAAAAAAA5QAAAAAAAADpAAAAAAAAAOkAAAAAAAAA7QAAAAAAAADtAAAAAAAAAO0AAAAAAAAA7QAAAAAAAADxAAAAAAAAAPEAAAAAAAAA9QAAAAAAAAD1AAAAAAAAAPUAAAAAAAAA9QAAAAAAAAD1AAAAAAAAAPUAAAAAAAAA9QAAAAAAAAD1AAAAAAAAAPkAAAAAAAAA+QAAAAAAAAD5AAAAAAAAAPkAAAAAAAAA/QAAAAAAAAD9AAAAAAAAAQEAAAAAAAABAQAAAAAAAAEBAAAAAAAAAQEAAAAAAAABAQAAAAAAAAEBAAAAAAACAQEAAAAAAAIBAQAAAAAAAgEBAAAAAAACAQEAAAAAAAIBAQAAAAAAAgEBAAAAAAACAQEAAAAAAAIBAQAAAAAAAAEFAAAAAAAAAQUAAAAAAAIBBQAAAAAAAgEFAAAAAAACAQkAAAAAAAIBCQAAAAAAAgEJAAAAAAACAQkAAAAAAAABDQAAAAAAAAENAAAAAAAAAQ0AAAAAAAABDQAAAAAAAgENAAAAAAACAQ0AAAAAAAIBDQAAAAAAAgENAAAAAAACAQ0AAAAAAAIBDQAAAAAAAAERAAAAAAAAAREAAAAAAAABEQAAAAAAAAERAAAAAAACAREAAAAAAAIBEQAAAAAAAgERAAAAAAACAREAAAAAAAABGQAAAAAAAAEZAAAAAAAAARkAAAAAAAABGQAAAAAAAAEdAAAAAAAAAR0AAAAAAAIBHQAAAAAAAgEdAAAAAAAAASEAAAAAAAABIQAAAAAAAgEhAAAAAAACASEAAAAAAAIBIQAAAAAAAgEhAAAAAAAAASUAAAAAAAABJQAAAAAAAgElAAAAAAACASUAAAAAAAABKQAAAAAAAAEpAAAAAAACASkAAAAAAAIBKQAAAAAAAgEtAAAAAAACAS0AAAAAAAIBLQAAAAAAAgEtAAAAAAACATEAAAAAAAIBMQAAAAAAAAE1AAAAAAAAATUAAAAAAAIBNQAAAAAAAgE1AAAAAAACATUAAAAAAAIBNQAAAAAAAAE5AAAAAAAAATkAAAAAAAIBOQAAAAAAAgE5AAAAAAACATkAAAAAAAIBOQAAAAAAAAE9AAAAAAAAAT0AAAAAAAIBPQAAAAAAAgE9AAAAAAAAAUEAAAAAAAABQQAAAAAAAAFBAAAAAAAAAUEAAAAAAAABQQAAAAAAAAFBAAAAAAAAAUEAAAAAAAABQQAAAAAAAQFBAAAAAAABAUEAAAAAAAEBQQAAAAAAAQFBAAAAAAABAUEAAAAAAAEBQQAAAAAAAgFBAAAAAAACAUEAAAAAAAIBQQAAAAAAAgFBAAAAAAACAUEAAAAAAAIBQQAAAAAAAgFBAAAAAAACAUEAAAAAAAMBQQAAAAAAAwFBAAAAAAADAUEAAAAAAAMBQQAAAAAAAwFBAAAAAAADAUEAAAAAAAMBQQAAAAAAAwFBAAAAAAAAAUUAAAAAAAABRQAAAAAAAAFFAAAAAAAAAUUAAAAAAAABRQAAAAAAAAFFAAAAAAABAUUAAAAAAAEBRQAAAAAAAQFFAAAAAAABAUUAAAAAAAMBRQAAAAAAAwFFAAAAAAAAAUkAAAAAAAABSQAAAAAAAAFJAAAAAAAAAUkAAAAAAAEBSQAAAAAAAQFJAAAAAAABAUkAAAAAAAEBSQAAAAAAAgFJAAAAAAACAUkAAAAAAAIBSQAAAAAAAgFJAAAAAAACAUkAAAAAAAIBSQAAAAAAAAFNAAAAAAAAAU0AAAAAAAABTQAAAAAAAAFNAAAAAAABAU0AAAAAAAEBTQAAAAAAAQFNAAAAAAABAU0AAAAAAAEBTQAAAAAAAQFNAAAAAAABAU0AAAAAAAEBTQAAAAAAAgFNAAAAAAACAU0AAAAAAAIBTQAAAAAAAgFNAAAAAAADAU0AAAAAAAMBTQAAAAAAAwFNAAAAAAADAU0AAAAAAAABUQAAAAAAAAFRAAAAAAAAAVEAAAAAAAABUQAAAAAAAAFRAAAAAAAAAVEAAAAAAAEBUQAAAAAAAQFRAAAAAAACAVEAAAAAAAIBUQAAAAAAAgFRAAAAAAACAVEAAAAAAAMBUQAAAAAAAwFRAAAAAAADAVEAAAAAAAMBUQAAAAAAAAFVAAAAAAAAAVUAAAAAAAABVQAAAAAAAAFVAAAAAAAAAVUAAAAAAAABVQAAAAAAAQFVAAAAAAABAVUAAAAAAAIBVQAAAAAAAgFVAAAAAAACAVUAAAAAAAIBVQAAAAAAAwFVAAAAAAADAVUAAAAAAAMBVQAAAAAAAwFVAAAAAAAAAVkAAAAAAAABWQAAAAAAAAFZAAAAAAAAAVkAAAAAAAIBWQAAAAAAAgFZAAAAAAAAAV0AAAAAAAABXQAAAAAAAgFdAAAAAAACAV0AAAAAAAIBXQAAAAAAAgFdAAAAAAACAV0AAAAAAAIBXQAAAAAAAgFdAAAAAAACAV0AAAAAAAABYQAAAAAAAAFhAAAAAAABAWEAAAAAAAEBYQAAAAAAAAFlAAAAAAAAAWUAAAAAAAEBZQAAAAAAAQFlAAAAAAABAWUAAAAAAAEBZQAAAAAAAwFlAAAAAAADAWUAAAAAAAMBZQAAAAAAAwFlAAAAAAAAAWkAAAAAAAABaQAAAAAAAAFpAAAAAAAAAWkAAAAAAAABaQAAAAAAAAFpAAAAAAAAAWkAAAAAAAABaQAAAAAAAAFpAAAAAAAAAWkAAAAAAAABaQAAAAAAAAFpAAAAAAABAWkAAAAAAAEBaQAAAAAAAQFpAAAAAAABAWkAAAAAAAMBaQAAAAAAAwFpAAAAAAADAWkAAAAAAAMBaQAAAAAAAAFtAAAAAAAAAW0AAAAAAAEBbQAAAAAAAQFtAAAAAAACAW0AAAAAAAIBbQAAAAAAAQFxAAAAAAABAXEAAAAAAAIBcQAAAAAAAgFxAAAAAAADAXEAAAAAAAMBcQAAAAAAAAF1AAAAAAAAAXUAAAAAAAABdQAAAAAAAAF1AAAAAAABAXUAAAAAAAEBdQAAAAAAAgF1AAAAAAACAXUAAAAAAAIBdQAAAAAAAgF1AAAAAAADAXUAAAAAAAMBdQAAAAAAAAF5AAAAAAAAAXkAAAAAAAABeQAAAAAAAAF5AAAAAAAAAXkAAAAAAAABeQAAAAAAAQF5AAAAAAABAXkAAAAAAAMBeQAAAAAAAwF5AAAAAAAAAX0AAAAAAAABfQAAAAAAAQF9AAAAAAABAX0AAAAAAAMBfQAAAAAAAwF9AAAAAAADAX0AAAAAAAMBfQAAAAAAAwF9AAAAAAADAX0AAAAAAAABgQAAAAAAAAGBAAAAAAAAAYEAAAAAAAABgQAAAAAAAAGBAAAAAAAAAYEAAAAAAACBgQAAAAAAAIGBAAAAAAABAYEAAAAAAAEBgQAAAAAAAgGBAAAAAAACAYEAAAAAAAIBgQAAAAAAAgGBAAAAAAACAYEAAAAAAAIBgQAAAAAAAwGBAAAAAAADAYEAAAAAAAMBgQAAAAAAAwGBAAAAAAAAAYUAAAAAAAABhQAAAAAAAIGFAAAAAAAAgYUAAAAAAAEBhQAAAAAAAQGFAAAAAAABgYUAAAAAAAGBhQAAAAAAAgGFAAAAAAACAYUAAAAAAAIBhQAAAAAAAgGFAAAAAAACgYUAAAAAAAKBhQAAAAAAAoGFAAAAAAACgYUAAAAAAAOBhQAAAAAAA4GFAAAAAAADgYUAAAAAAAOBhQAAAAAAAAGJAAAAAAAAAYkAAAAAAACBiQAAAAAAAIGJAAAAAAACAYkAAAAAAAIBiQAAAAAAAoGJAAAAAAACgYkAAAAAAACBjQAAAAAAAIGNAAAAAAAAgY0AAAAAAACBjQAAAAAAAIGNAAAAAAAAgY0AAAAAAAEBjQAAAAAAAQGNAAAAAAABAY0AAAAAAAEBjQAAAAAAAYGNAAAAAAABgY0AAAAAAAIBjQAAAAAAAgGNAAAAAAACAY0AAAAAAAIBjQAAAAAAAgGNAAAAAAACAY0AAAAAAAABkQAAAAAAAAGRAAAAAAABAZEAAAAAAAEBkQAAAAAAAQGRAAAAAAABAZEAAAAAAAABlQAAAAAAAAGVAAAAAAABgZUAAAAAAAGBlQAAAAAAAwGVAAAAAAADAZUAAAAAAAOBlQAAAAAAA4GVAAAAAAADgZUAAAAAAAOBlQAAAAAAAAGZAAAAAAAAAZkAAAAAAACBmQAAAAAAAIGZAAAAAAACgZkAAAAAAAKBmQAAAAAAAQGdAAAAAAABAZ0AAAAAAAGBnQAAAAAAAYGdAAAAAAADAZ0AAAAAAAMBnQAAAAAAA4GdAAAAAAADgZ0AAAAAAACBoQAAAAAAAIGhAAAAAAABAaEAAAAAAAEBoQAAAAAAAYGhAAAAAAABgaEAAAAAAAIBoQAAAAAAAgGhAAAAAAADAaEAAAAAAAMBoQAAAAAAAAGlAAAAAAAAAaUAAAAAAAEBpQAAAAAAAQGlAAAAAAACAakAAAAAAAIBqQAAAAAAAAGtAAAAAAAAAa0AAAAAAAGBsQAAAAAAAYGxAAAAAAACAbEAAAAAAAIBsQAAAAAAA4GxAAAAAAADgbEAAAAAAAIBtQAAAAAAAgG1AAAAAAADgbUAAAAAAAOBtQAAAAAAAwG5AAAAAAADAbkAAAAAAAGBvQAAAAAAAYG9AAAAAAACAb0AAAAAAAIBvQAAAAAAAcHBAAAAAAABwcEAAAAAAAHBwQAAAAAAAcHBAAAAAAAAgcUAAAAAAACBxQAAAAAAAUHJAAAAAAABQckAAAAAAAIB5QAAAAAAAgHlA\"},\"shape\":[558],\"dtype\":\"float64\",\"order\":\"little\"}],[\"y\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAAACycnWArFxtP7JydYCsXG0/snJ1gKxcfT+ycnWArFx9PwYWWGCBBYY/BhZYYIEFhj+ycnWArFyNP7JydYCsXI0/r2dJ0OtZkj+vZ0nQ61mSPwYWWGCBBZY/BhZYYIEFlj9cxGbwFrGZP1zEZvAWsZk/snJ1gKxcnT+ycnWArFydP4QQQgghhKA/hBBCCCGEoD+vZ0nQ61miP69nSdDrWaI/2r5QmLYvpD/avlCYti+kPwYWWGCBBaY/BhZYYIEFpj8xbV8oTNunPzFtXyhM26c/XMRm8BaxqT9cxGbwFrGpP4cbbrjhhqs/hxtuuOGGqz+ycnWArFytP7JydYCsXK0/3cl8SHcyrz/dyXxIdzKvP4QQQgghhLA/hBBCCCGEsD8avEVsBm+xPxq8RWwGb7E/r2dJ0OtZsj+vZ0nQ61myP0UTTTTRRLM/RRNNNNFEsz/avlCYti+0P9q+UJi2L7Q/cGpU/JsatT9walT8mxq1PwYWWGCBBbY/BhZYYIEFtj+bwVvEZvC2P5vBW8Rm8LY/MW1fKEzbtz8xbV8oTNu3P8YYY4wxxrg/xhhjjDHGuD9cxGbwFrG5P1zEZvAWsbk/8W9qVPybuj/xb2pU/Ju6P4cbbrjhhrs/hxtuuOGGuz8cx3Ecx3G8PxzHcRzHcbw/snJ1gKxcvT+ycnWArFy9P0geeeSRR74/SB555JFHvj/dyXxIdzK/P93JfEh3Mr8/uTpAVq4OwD+5OkBWrg7AP4QQQgghhMA/hBBCCCGEwD9P5kO6k/nAP0/mQ7qT+cA/GrxFbAZvwT8avEVsBm/BP+SRRx555ME/5JFHHnnkwT+vZ0nQ61nCP69nSdDrWcI/ej1Lgl7Pwj96PUuCXs/CP0UTTTTRRMM/RRNNNNFEwz8Q6U7mQ7rDPxDpTuZDusM/2r5QmLYvxD/avlCYti/EP6WUUkoppcQ/pZRSSimlxD9walT8mxrFP3BqVPybGsU/O0BWrg6QxT87QFauDpDFPwYWWGCBBcY/BhZYYIEFxj/Q61kS9HrGP9DrWRL0esY/m8FbxGbwxj+bwVvEZvDGP2aXXXbZZcc/Zpdddtllxz8xbV8oTNvHPzFtXyhM28c/+0Jh2r5QyD/7QmHavlDIP8YYY4wxxsg/xhhjjDHGyD+R7mQ+pDvJP5HuZD6kO8k/XMRm8BaxyT9cxGbwFrHJPyeaaKKJJso/J5poookmyj/xb2pU/JvKP/FvalT8m8o/vEVsBm8Ryz+8RWwGbxHLP4cbbrjhhss/hxtuuOGGyz9S8W9qVPzLP1Lxb2pU/Ms/HMdxHMdxzD8cx3Ecx3HMP+ecc84558w/55xzzjnnzD+ycnWArFzNP7JydYCsXM0/fUh3Mh/SzT99SHcyH9LNP0geeeSRR84/SB555JFHzj8S9HqWBL3OPxL0epYEvc4/3cl8SHcyzz/dyXxIdzLPP6iffvrpp88/qJ9++umnzz+5OkBWrg7QP7k6QFauDtA/nyVBr2dJ0D+fJUGvZ0nQP4QQQgghhNA/hBBCCCGE0D9q+0Jh2r7QP2r7QmHavtA/T+ZDupP50D9P5kO6k/nQPzTRRBNNNNE/NNFEE0000T8avEVsBm/RPxq8RWwGb9E//6ZGxb+p0T//pkbFv6nRP+SRRx555NE/5JFHHnnk0T/KfEh3Mh/SP8p8SHcyH9I/r2dJ0OtZ0j+vZ0nQ61nSP5VSSimllNI/lVJKKaWU0j96PUuCXs/SP3o9S4Jez9I/XyhM2xcK0z9fKEzbFwrTP0UTTTTRRNM/RRNNNNFE0z8q/k2Nin/TPyr+TY2Kf9M/EOlO5kO60z8Q6U7mQ7rTP/XTTz/99NM/9dNPP/300z/avlCYti/UP9q+UJi2L9Q/wKlR8W9q1D/AqVHxb2rUP6WUUkoppdQ/pZRSSiml1D+Lf1Oj4t/UP4t/U6Pi39Q/cGpU/Jsa1T9walT8mxrVP1VVVVVVVdU/VVVVVVVV1T87QFauDpDVPztAVq4OkNU/ICtXB8jK1T8gK1cHyMrVPwYWWGCBBdY/BhZYYIEF1j/rAFm5OkDWP+sAWbk6QNY/0OtZEvR61j/Q61kS9HrWP7bWWmuttdY/ttZaa6211j+bwVvEZvDWP5vBW8Rm8NY/gKxcHSAr1z+ArFwdICvXP2aXXXbZZdc/Zpdddtll1z9Lgl7PkqDXP0uCXs+SoNc/MW1fKEzb1z8xbV8oTNvXPxZYYIEFFtg/FlhggQUW2D/7QmHavlDYP/tCYdq+UNg/4S1iM3iL2D/hLWIzeIvYP8YYY4wxxtg/xhhjjDHG2D+sA2Tl6gDZP6wDZOXqANk/ke5kPqQ72T+R7mQ+pDvZP3bZZZdddtk/dtlll1122T9cxGbwFrHZP1zEZvAWsdk/Qa9nSdDr2T9Br2dJ0OvZPyeaaKKJJto/J5poookm2j8MhWn7QmHaPwyFaftCYdo/8W9qVPyb2j/xb2pU/JvaP9daa6211to/11prrbXW2j+8RWwGbxHbP7xFbAZvEds/oTBtXyhM2z+hMG1fKEzbP4cbbrjhhts/hxtuuOGG2z9sBm8Rm8HbP2wGbxGbwds/UvFvalT82z9S8W9qVPzbPzfccMMNN9w/N9xwww033D8cx3Ecx3HcPxzHcRzHcdw/ArJydYCs3D8CsnJ1gKzcP+ecc84559w/55xzzjnn3D/Nh3Qn8yHdP82HdCfzId0/snJ1gKxc3T+ycnWArFzdP5dddtlll90/l1122WWX3T99SHcyH9LdP31IdzIf0t0/YjN4i9gM3j9iM3iL2AzeP0geeeSRR94/SB555JFH3j8tCXo9S4LePy0Jej1Lgt4/EvR6lgS93j8S9HqWBL3eP/jee++9994/+N5777333j/dyXxIdzLfP93JfEh3Mt8/w7R9oTBt3z/DtH2hMG3fP6iffvrpp98/qJ9++umn3z+Nin9To+LfP42Kf1Oj4t8/uTpAVq4O4D+5OkBWrg7gPyywwAILLOA/LLDAAgss4D+fJUGvZ0ngP58lQa9nSeA/EZvBW8Rm4D8Rm8FbxGbgP4QQQgghhOA/hBBCCCGE4D/3hcK0faHgP/eFwrR9oeA/avtCYdq+4D9q+0Jh2r7gP9xwww033OA/3HDDDTfc4D9P5kO6k/ngP0/mQ7qT+eA/wlvEZvAW4T/CW8Rm8BbhPzTRRBNNNOE/NNFEE0004T+nRsW/qVHhP6dGxb+pUeE/GrxFbAZv4T8avEVsBm/hP4wxxhhjjOE/jDHGGGOM4T//pkbFv6nhP/+mRsW/qeE/chzHcRzH4T9yHMdxHMfhP+SRRx555OE/5JFHHnnk4T9XB8jK1QHiP1cHyMrVAeI/ynxIdzIf4j/KfEh3Mh/iPz3yyCOPPOI/PfLII4884j+vZ0nQ61niP69nSdDrWeI/It3JfEh34j8i3cl8SHfiP5VSSimllOI/lVJKKaWU4j8HyMrVAbLiPwfIytUBsuI/ej1Lgl7P4j96PUuCXs/iP+2yyy677OI/7bLLLrvs4j9fKEzbFwrjP18oTNsXCuM/0p3Mh3Qn4z/SncyHdCfjP0UTTTTRROM/RRNNNNFE4z+4iM3gLWLjP7iIzeAtYuM/Kv5NjYp/4z8q/k2Nin/jP51zzjnnnOM/nXPOOeec4z8Q6U7mQ7rjPxDpTuZDuuM/gl7PkqDX4z+CXs+SoNfjP/XTTz/99OM/9dNPP/304z9oSdDrWRLkP2hJ0OtZEuQ/2r5QmLYv5D/avlCYti/kP0000UQTTeQ/TTTRRBNN5D/AqVHxb2rkP8CpUfFvauQ/Mh/SncyH5D8yH9KdzIfkP6WUUkoppeQ/pZRSSiml5D8YCtP2hcLkPxgK0/aFwuQ/i39To+Lf5D+Lf1Oj4t/kP/30008//eQ//fTTTz/95D9walT8mxrlP3BqVPybGuU/49/UqPg35T/j39So+DflP1VVVVVVVeU/VVVVVVVV5T/IytUBsnLlP8jK1QGycuU/O0BWrg6Q5T87QFauDpDlP6211lprreU/rbXWWmut5T8gK1cHyMrlPyArVwfIyuU/k6DXsyTo5T+ToNezJOjlPwYWWGCBBeY/BhZYYIEF5j94i9gM3iLmP3iL2AzeIuY/6wBZuTpA5j/rAFm5OkDmP1522WWXXeY/XnbZZZdd5j/Q61kS9HrmP9DrWRL0euY/Q2HavlCY5j9DYdq+UJjmP7bWWmutteY/ttZaa6215j8oTNsXCtPmPyhM2xcK0+Y/m8FbxGbw5j+bwVvEZvDmPw433HDDDec/DjfccMMN5z+ArFwdICvnP4CsXB0gK+c/8yHdyXxI5z/zId3JfEjnP2aXXXbZZec/Zpdddtll5z/ZDN4iNoPnP9kM3iI2g+c/S4Jez5Kg5z9Lgl7PkqDnP7733nvvvec/vvfee++95z8xbV8oTNvnPzFtXyhM2+c/o+Lf1Kj45z+j4t/UqPjnPxZYYIEFFug/FlhggQUW6D+JzeAtYjPoP4nN4C1iM+g/+0Jh2r5Q6D/7QmHavlDoP2644YYbbug/brjhhhtu6D/hLWIzeIvoP+EtYjN4i+g/U6Pi39So6D9To+Lf1KjoP8YYY4wxxug/xhhjjDHG6D85juM4juPoPzmO4ziO4+g/rANk5eoA6T+sA2Tl6gDpPx555JFHHuk/HnnkkUce6T+R7mQ+pDvpP5HuZD6kO+k/BGTl6gBZ6T8EZOXqAFnpP3bZZZddduk/dtlll1126T/pTuZDupPpP+lO5kO6k+k/XMRm8Bax6T9cxGbwFrHpP84555xzzuk/zjnnnHPO6T9Br2dJ0OvpP0GvZ0nQ6+k/tCTo9SwJ6j+0JOj1LAnqPyeaaKKJJuo/J5poookm6j+ZD+lO5kPqP5kP6U7mQ+o/DIVp+0Jh6j8MhWn7QmHqP3/66aeffuo/f/rpp59+6j/xb2pU/JvqP/FvalT8m+o/ZOXqAFm56j9k5eoAWbnqP9daa6211uo/11prrbXW6j9J0OtZEvTqP0nQ61kS9Oo/vEVsBm8R6z+8RWwGbxHrPy+77LLLLus/L7vssssu6z+hMG1fKEzrP6EwbV8oTOs/FKbtC4Vp6z8Upu0LhWnrP4cbbrjhhus/hxtuuOGG6z/6kO5kPqTrP/qQ7mQ+pOs/bAZvEZvB6z9sBm8Rm8HrP99777333us/33vvvffe6z9S8W9qVPzrP1Lxb2pU/Os/xGbwFrEZ7D/EZvAWsRnsPzfccMMNN+w/N9xwww037D+qUfFvalTsP6pR8W9qVOw/HMdxHMdx7D8cx3Ecx3HsP4888sgjj+w/jzzyyCOP7D8CsnJ1gKzsPwKycnWArOw/dSfzId3J7D91J/Mh3cnsP+ecc8455+w/55xzzjnn7D9aEvR6lgTtP1oS9HqWBO0/zYd0J/Mh7T/Nh3Qn8yHtPz/99NNPP+0/P/30008/7T+ycnWArFztP7JydYCsXO0/Jej1LAl67T8l6PUsCXrtP5dddtlll+0/l1122WWX7T8K0/aFwrTtPwrT9oXCtO0/fUh3Mh/S7T99SHcyH9LtP++999577+0/77333nvv7T9iM3iL2AzuP2IzeIvYDO4/1aj4NzUq7j/VqPg3NSruP0geeeSRR+4/SB555JFH7j+6k/mQ7mTuP7qT+ZDuZO4/LQl6PUuC7j8tCXo9S4LuP6B++umnn+4/oH766aef7j8S9HqWBL3uPxL0epYEve4/hWn7QmHa7j+FaftCYdruP/jee++99+4/+N5777337j9qVPybGhXvP2pU/JsaFe8/3cl8SHcy7z/dyXxIdzLvP1A//fTTT+8/UD/99NNP7z/DtH2hMG3vP8O0faEwbe8/NSr+TY2K7z81Kv5NjYrvP6iffvrpp+8/qJ9++umn7z8bFf+mRsXvPxsV/6ZGxe8/jYp/U6Pi7z+Nin9To+LvPwAAAAAAAPA/\"},\"shape\":[558],\"dtype\":\"float64\",\"order\":\"little\"}]]}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1675\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1676\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1671\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":\"#1f77b3\",\"line_width\":2}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1672\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":\"#1f77b3\",\"line_alpha\":0.1,\"line_width\":2}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1673\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":\"#1f77b3\",\"line_alpha\":0.2,\"line_width\":2}}}},{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1683\",\"attributes\":{\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1677\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1678\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1679\"},\"data\":{\"type\":\"map\"}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1684\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1685\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Ray\",\"id\":\"p1680\",\"attributes\":{\"x\":{\"type\":\"value\",\"value\":0.0},\"y\":{\"type\":\"value\",\"value\":0},\"angle\":{\"type\":\"value\",\"value\":3.141592653589793},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"line_width\":{\"type\":\"value\",\"value\":2}}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Ray\",\"id\":\"p1681\",\"attributes\":{\"x\":{\"type\":\"value\",\"value\":0.0},\"y\":{\"type\":\"value\",\"value\":0},\"angle\":{\"type\":\"value\",\"value\":3.141592653589793},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.1},\"line_width\":{\"type\":\"value\",\"value\":2}}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Ray\",\"id\":\"p1682\",\"attributes\":{\"x\":{\"type\":\"value\",\"value\":0.0},\"y\":{\"type\":\"value\",\"value\":0},\"angle\":{\"type\":\"value\",\"value\":3.141592653589793},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.2},\"line_width\":{\"type\":\"value\",\"value\":2}}}}},{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1692\",\"attributes\":{\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1686\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1687\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1688\"},\"data\":{\"type\":\"map\"}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1693\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1694\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Ray\",\"id\":\"p1689\",\"attributes\":{\"x\":{\"type\":\"value\",\"value\":408.0},\"y\":{\"type\":\"value\",\"value\":1},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"line_width\":{\"type\":\"value\",\"value\":2}}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Ray\",\"id\":\"p1690\",\"attributes\":{\"x\":{\"type\":\"value\",\"value\":408.0},\"y\":{\"type\":\"value\",\"value\":1},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.1},\"line_width\":{\"type\":\"value\",\"value\":2}}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Ray\",\"id\":\"p1691\",\"attributes\":{\"x\":{\"type\":\"value\",\"value\":408.0},\"y\":{\"type\":\"value\",\"value\":1},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.2},\"line_width\":{\"type\":\"value\",\"value\":2}}}}},{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1701\",\"attributes\":{\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1695\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1696\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1697\"},\"data\":{\"type\":\"map\",\"entries\":[[\"x\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAPA/AAAAAAAA8D8AAAAAAAAAQAAAAAAAAABAAAAAAAAACEAAAAAAAAAIQAAAAAAAABBAAAAAAAAAEEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAGEAAAAAAAAAYQAAAAAAAABxAAAAAAAAAHEAAAAAAAAAgQAAAAAAAACBAAAAAAAAAIkAAAAAAAAAiQAAAAAAAACRAAAAAAAAAJEAAAAAAAAAmQAAAAAAAACZAAAAAAAAAKEAAAAAAAAAoQAAAAAAAACpAAAAAAAAAKkAAAAAAAAAsQAAAAAAAACxAAAAAAAAALkAAAAAAAAAuQAAAAAAAADBAAAAAAAAAMEAAAAAAAAAxQAAAAAAAADFAAAAAAAAAMkAAAAAAAAAyQAAAAAAAADNAAAAAAAAAM0AAAAAAAAA0QAAAAAAAADRAAAAAAAAANUAAAAAAAAA1QAAAAAAAADZAAAAAAAAANkAAAAAAAAA3QAAAAAAAADdAAAAAAAAAOEAAAAAAAAA4QAAAAAAAADlAAAAAAAAAOUAAAAAAAAA6QAAAAAAAADpAAAAAAAAAO0AAAAAAAAA7QAAAAAAAADxAAAAAAAAAPEAAAAAAAAA9QAAAAAAAAD1AAAAAAAAAPkAAAAAAAAA+QAAAAAAAAD9AAAAAAAAAP0AAAAAAAABAQAAAAAAAAEBAAAAAAACAQEAAAAAAAIBAQAAAAAAAAEFAAAAAAAAAQUAAAAAAAIBBQAAAAAAAgEFAAAAAAAAAQkAAAAAAAABCQAAAAAAAgEJAAAAAAACAQkAAAAAAAABDQAAAAAAAAENAAAAAAACAQ0AAAAAAAIBDQAAAAAAAAERAAAAAAAAAREAAAAAAAIBEQAAAAAAAgERAAAAAAAAARUAAAAAAAABFQAAAAAAAgEVAAAAAAACARUAAAAAAAABGQAAAAAAAAEZAAAAAAACARkAAAAAAAIBGQAAAAAAAAEdAAAAAAAAAR0AAAAAAAIBHQAAAAAAAgEdAAAAAAAAASEAAAAAAAABIQAAAAAAAgEhAAAAAAACASEAAAAAAAABJQAAAAAAAAElAAAAAAACASUAAAAAAAIBJQAAAAAAAAEpAAAAAAAAASkAAAAAAAIBKQAAAAAAAgEpAAAAAAAAAS0AAAAAAAABLQAAAAAAAgEtAAAAAAACAS0AAAAAAAABMQAAAAAAAAExAAAAAAACATEAAAAAAAIBMQAAAAAAAAE1AAAAAAAAATUAAAAAAAIBNQAAAAAAAgE1AAAAAAAAATkAAAAAAAABOQAAAAAAAgE5AAAAAAACATkAAAAAAAABPQAAAAAAAAE9AAAAAAACAT0AAAAAAAIBPQAAAAAAAAFBAAAAAAAAAUEAAAAAAAEBQQAAAAAAAQFBAAAAAAACAUEAAAAAAAIBQQAAAAAAAwFBAAAAAAADAUEAAAAAAAABRQAAAAAAAAFFAAAAAAABAUUAAAAAAAEBRQAAAAAAAgFFAAAAAAACAUUAAAAAAAMBRQAAAAAAAwFFAAAAAAAAAUkAAAAAAAABSQAAAAAAAQFJAAAAAAABAUkAAAAAAAIBSQAAAAAAAgFJAAAAAAADAUkAAAAAAAMBSQAAAAAAAAFNAAAAAAAAAU0AAAAAAAEBTQAAAAAAAQFNAAAAAAACAU0AAAAAAAIBTQAAAAAAAwFNAAAAAAADAU0AAAAAAAABUQAAAAAAAAFRAAAAAAABAVEAAAAAAAEBUQAAAAAAAgFRAAAAAAACAVEAAAAAAAMBUQAAAAAAAwFRAAAAAAAAAVUAAAAAAAABVQAAAAAAAQFVAAAAAAABAVUAAAAAAAIBVQAAAAAAAgFVAAAAAAADAVUAAAAAAAMBVQAAAAAAAAFZAAAAAAAAAVkAAAAAAAEBWQAAAAAAAQFZAAAAAAACAVkAAAAAAAIBWQAAAAAAAwFZAAAAAAADAVkAAAAAAAABXQAAAAAAAAFdAAAAAAABAV0AAAAAAAEBXQAAAAAAAgFdAAAAAAACAV0AAAAAAAMBXQAAAAAAAwFdAAAAAAAAAWEAAAAAAAABYQAAAAAAAQFhAAAAAAABAWEAAAAAAAIBYQAAAAAAAgFhAAAAAAADAWEAAAAAAAMBYQAAAAAAAAFlAAAAAAAAAWUAAAAAAAEBZQAAAAAAAQFlAAAAAAACAWUAAAAAAAIBZQAAAAAAAwFlAAAAAAADAWUAAAAAAAABaQAAAAAAAAFpAAAAAAABAWkAAAAAAAEBaQAAAAAAAgFpAAAAAAACAWkAAAAAAAMBaQAAAAAAAwFpAAAAAAAAAW0AAAAAAAABbQAAAAAAAQFtAAAAAAABAW0AAAAAAAIBbQAAAAAAAgFtAAAAAAADAW0AAAAAAAMBbQAAAAAAAAFxAAAAAAAAAXEAAAAAAAEBcQAAAAAAAQFxAAAAAAACAXEAAAAAAAIBcQAAAAAAAwFxAAAAAAADAXEAAAAAAAABdQAAAAAAAAF1AAAAAAABAXUAAAAAAAEBdQAAAAAAAgF1AAAAAAACAXUAAAAAAAMBdQAAAAAAAwF1AAAAAAAAAXkAAAAAAAABeQAAAAAAAQF5AAAAAAABAXkAAAAAAAIBeQAAAAAAAgF5AAAAAAADAXkAAAAAAAMBeQAAAAAAAAF9AAAAAAAAAX0AAAAAAAEBfQAAAAAAAQF9AAAAAAACAX0AAAAAAAIBfQAAAAAAAwF9AAAAAAADAX0AAAAAAAABgQAAAAAAAAGBAAAAAAAAgYEAAAAAAACBgQAAAAAAAQGBAAAAAAABAYEAAAAAAAGBgQAAAAAAAYGBAAAAAAACAYEAAAAAAAIBgQAAAAAAAoGBAAAAAAACgYEAAAAAAAMBgQAAAAAAAwGBAAAAAAADgYEAAAAAAAOBgQAAAAAAAAGFAAAAAAAAAYUAAAAAAACBhQAAAAAAAIGFAAAAAAABAYUAAAAAAAEBhQAAAAAAAYGFAAAAAAABgYUAAAAAAAIBhQAAAAAAAgGFAAAAAAACgYUAAAAAAAKBhQAAAAAAAwGFAAAAAAADAYUAAAAAAAOBhQAAAAAAA4GFAAAAAAAAAYkAAAAAAAABiQAAAAAAAIGJAAAAAAAAgYkAAAAAAAEBiQAAAAAAAQGJAAAAAAABgYkAAAAAAAGBiQAAAAAAAgGJAAAAAAACAYkAAAAAAAKBiQAAAAAAAoGJAAAAAAADAYkAAAAAAAMBiQAAAAAAA4GJAAAAAAADgYkAAAAAAAABjQAAAAAAAAGNAAAAAAAAgY0AAAAAAACBjQAAAAAAAQGNAAAAAAABAY0AAAAAAAGBjQAAAAAAAYGNAAAAAAACAY0AAAAAAAIBjQAAAAAAAoGNAAAAAAACgY0AAAAAAAMBjQAAAAAAAwGNAAAAAAADgY0AAAAAAAOBjQAAAAAAAAGRAAAAAAAAAZEAAAAAAACBkQAAAAAAAIGRAAAAAAABAZEAAAAAAAEBkQAAAAAAAYGRAAAAAAABgZEAAAAAAAIBkQAAAAAAAgGRAAAAAAACgZEAAAAAAAKBkQAAAAAAAwGRAAAAAAADAZEAAAAAAAOBkQAAAAAAA4GRAAAAAAAAAZUAAAAAAAABlQAAAAAAAIGVAAAAAAAAgZUAAAAAAAEBlQAAAAAAAQGVAAAAAAABgZUAAAAAAAGBlQAAAAAAAgGVAAAAAAACAZUAAAAAAAKBlQAAAAAAAoGVAAAAAAADAZUAAAAAAAMBlQAAAAAAA4GVAAAAAAADgZUAAAAAAAABmQAAAAAAAAGZAAAAAAAAgZkAAAAAAACBmQAAAAAAAQGZAAAAAAABAZkAAAAAAAGBmQAAAAAAAYGZAAAAAAACAZkAAAAAAAIBmQAAAAAAAoGZAAAAAAACgZkAAAAAAAMBmQAAAAAAAwGZAAAAAAADgZkAAAAAAAOBmQAAAAAAAAGdAAAAAAAAAZ0AAAAAAACBnQAAAAAAAIGdAAAAAAABAZ0AAAAAAAEBnQAAAAAAAYGdAAAAAAABgZ0AAAAAAAIBnQAAAAAAAgGdAAAAAAACgZ0AAAAAAAKBnQAAAAAAAwGdAAAAAAADAZ0AAAAAAAOBnQAAAAAAA4GdAAAAAAAAAaEAAAAAAAABoQAAAAAAAIGhAAAAAAAAgaEAAAAAAAEBoQAAAAAAAQGhAAAAAAABgaEAAAAAAAGBoQAAAAAAAgGhAAAAAAACAaEAAAAAAAKBoQAAAAAAAoGhAAAAAAADAaEAAAAAAAMBoQAAAAAAA4GhAAAAAAADgaEAAAAAAAABpQAAAAAAAAGlAAAAAAAAgaUAAAAAAACBpQAAAAAAAQGlAAAAAAABAaUAAAAAAAGBpQAAAAAAAYGlAAAAAAACAaUAAAAAAAIBpQAAAAAAAoGlAAAAAAACgaUAAAAAAAMBpQAAAAAAAwGlAAAAAAADgaUAAAAAAAOBpQAAAAAAAAGpAAAAAAAAAakAAAAAAACBqQAAAAAAAIGpAAAAAAABAakAAAAAAAEBqQAAAAAAAYGpAAAAAAABgakAAAAAAAIBqQAAAAAAAgGpAAAAAAACgakAAAAAAAKBqQAAAAAAAwGpAAAAAAADAakAAAAAAAOBqQAAAAAAA4GpAAAAAAAAAa0AAAAAAAABrQAAAAAAAIGtAAAAAAAAga0AAAAAAAEBrQAAAAAAAQGtAAAAAAABga0AAAAAAAGBrQAAAAAAAgGtAAAAAAACAa0AAAAAAAKBrQAAAAAAAoGtAAAAAAADAa0AAAAAAAMBrQAAAAAAA4GtAAAAAAADga0AAAAAAAABsQAAAAAAAAGxAAAAAAAAgbEAAAAAAACBsQAAAAAAAQGxAAAAAAABAbEAAAAAAAGBsQAAAAAAAYGxAAAAAAACAbEAAAAAAAIBsQAAAAAAAoGxAAAAAAACgbEAAAAAAAMBsQAAAAAAAwGxAAAAAAADgbEAAAAAAAOBsQAAAAAAAAG1AAAAAAAAAbUAAAAAAACBtQAAAAAAAIG1AAAAAAABAbUAAAAAAAEBtQAAAAAAAYG1AAAAAAABgbUAAAAAAAIBtQAAAAAAAgG1AAAAAAACgbUAAAAAAAKBtQAAAAAAAwG1AAAAAAADAbUAAAAAAAOBtQAAAAAAA4G1AAAAAAAAAbkAAAAAAAABuQAAAAAAAIG5AAAAAAAAgbkAAAAAAAEBuQAAAAAAAQG5AAAAAAABgbkAAAAAAAGBuQAAAAAAAgG5AAAAAAACAbkAAAAAAAKBuQAAAAAAAoG5AAAAAAADAbkAAAAAAAMBuQAAAAAAA4G5AAAAAAADgbkAAAAAAAABvQAAAAAAAAG9AAAAAAAAgb0AAAAAAACBvQAAAAAAAQG9AAAAAAABAb0AAAAAAAGBvQAAAAAAAYG9AAAAAAACAb0AAAAAAAIBvQAAAAAAAoG9AAAAAAACgb0AAAAAAAMBvQAAAAAAAwG9AAAAAAADgb0AAAAAAAOBvQAAAAAAAAHBAAAAAAAAAcEAAAAAAABBwQAAAAAAAEHBAAAAAAAAgcEAAAAAAACBwQAAAAAAAMHBAAAAAAAAwcEAAAAAAAEBwQAAAAAAAQHBAAAAAAABQcEAAAAAAAFBwQAAAAAAAYHBAAAAAAABgcEAAAAAAAHBwQAAAAAAAcHBAAAAAAACAcEAAAAAAAIBwQAAAAAAAkHBAAAAAAACQcEAAAAAAAKBwQAAAAAAAoHBAAAAAAACwcEAAAAAAALBwQAAAAAAAwHBAAAAAAADAcEAAAAAAANBwQAAAAAAA0HBAAAAAAADgcEAAAAAAAOBwQAAAAAAA8HBAAAAAAADwcEAAAAAAAABxQAAAAAAAAHFAAAAAAAAQcUAAAAAAABBxQAAAAAAAIHFAAAAAAAAgcUAAAAAAADBxQAAAAAAAMHFAAAAAAABAcUAAAAAAAEBxQAAAAAAAUHFAAAAAAABQcUAAAAAAAGBxQAAAAAAAYHFAAAAAAABwcUAAAAAAAHBxQAAAAAAAgHFAAAAAAACAcUAAAAAAAJBxQAAAAAAAkHFAAAAAAACgcUAAAAAAAKBxQAAAAAAAsHFAAAAAAACwcUAAAAAAAMBxQAAAAAAAwHFAAAAAAADQcUAAAAAAANBxQAAAAAAA4HFAAAAAAADgcUAAAAAAAPBxQAAAAAAA8HFAAAAAAAAAckAAAAAAAAByQAAAAAAAEHJAAAAAAAAQckAAAAAAACByQAAAAAAAIHJAAAAAAAAwckAAAAAAADByQAAAAAAAQHJAAAAAAABAckAAAAAAAFByQAAAAAAAUHJAAAAAAABgckAAAAAAAGByQAAAAAAAcHJAAAAAAABwckAAAAAAAIByQAAAAAAAgHJAAAAAAACQckAAAAAAAJByQAAAAAAAoHJAAAAAAACgckAAAAAAALByQAAAAAAAsHJAAAAAAADAckAAAAAAAMByQAAAAAAA0HJAAAAAAADQckAAAAAAAOByQAAAAAAA4HJAAAAAAADwckAAAAAAAPByQAAAAAAAAHNAAAAAAAAAc0AAAAAAABBzQAAAAAAAEHNAAAAAAAAgc0AAAAAAACBzQAAAAAAAMHNAAAAAAAAwc0AAAAAAAEBzQAAAAAAAQHNAAAAAAABQc0AAAAAAAFBzQAAAAAAAYHNAAAAAAABgc0AAAAAAAHBzQAAAAAAAcHNAAAAAAACAc0AAAAAAAIBzQAAAAAAAkHNAAAAAAACQc0AAAAAAAKBzQAAAAAAAoHNAAAAAAACwc0AAAAAAALBzQAAAAAAAwHNAAAAAAADAc0AAAAAAANBzQAAAAAAA0HNAAAAAAADgc0AAAAAAAOBzQAAAAAAA8HNAAAAAAADwc0AAAAAAAAB0QAAAAAAAAHRAAAAAAAAQdEAAAAAAABB0QAAAAAAAIHRAAAAAAAAgdEAAAAAAADB0QAAAAAAAMHRAAAAAAABAdEAAAAAAAEB0QAAAAAAAUHRAAAAAAABQdEAAAAAAAGB0QAAAAAAAYHRAAAAAAABwdEAAAAAAAHB0QAAAAAAAgHRAAAAAAACAdEAAAAAAAJB0QAAAAAAAkHRAAAAAAACgdEAAAAAAAKB0QAAAAAAAsHRAAAAAAACwdEAAAAAAAMB0QAAAAAAAwHRAAAAAAADQdEAAAAAAANB0QAAAAAAA4HRAAAAAAADgdEAAAAAAAPB0QAAAAAAA8HRAAAAAAAAAdUAAAAAAAAB1QAAAAAAAEHVAAAAAAAAQdUAAAAAAACB1QAAAAAAAIHVAAAAAAAAwdUAAAAAAADB1QAAAAAAAQHVAAAAAAABAdUAAAAAAAFB1QAAAAAAAUHVAAAAAAABgdUAAAAAAAGB1QAAAAAAAcHVAAAAAAABwdUAAAAAAAIB1QAAAAAAAgHVAAAAAAACQdUAAAAAAAJB1QAAAAAAAoHVAAAAAAACgdUAAAAAAALB1QAAAAAAAsHVAAAAAAADAdUAAAAAAAMB1QAAAAAAA0HVAAAAAAADQdUAAAAAAAOB1QAAAAAAA4HVAAAAAAADwdUAAAAAAAPB1QAAAAAAAAHZAAAAAAAAAdkAAAAAAABB2QAAAAAAAEHZAAAAAAAAgdkAAAAAAACB2QAAAAAAAMHZAAAAAAAAwdkAAAAAAAEB2QAAAAAAAQHZAAAAAAABQdkAAAAAAAFB2QAAAAAAAYHZAAAAAAABgdkAAAAAAAHB2QAAAAAAAcHZAAAAAAACAdkAAAAAAAIB2QAAAAAAAkHZAAAAAAACQdkAAAAAAAKB2QAAAAAAAoHZAAAAAAACwdkAAAAAAALB2QAAAAAAAwHZAAAAAAADAdkAAAAAAANB2QAAAAAAA0HZAAAAAAADgdkAAAAAAAOB2QAAAAAAA8HZAAAAAAADwdkAAAAAAAAB3QAAAAAAAAHdAAAAAAAAQd0AAAAAAABB3QAAAAAAAIHdAAAAAAAAgd0AAAAAAADB3QAAAAAAAMHdAAAAAAABAd0AAAAAAAEB3QAAAAAAAUHdAAAAAAABQd0AAAAAAAGB3QAAAAAAAYHdAAAAAAABwd0AAAAAAAHB3QAAAAAAAgHdAAAAAAACAd0AAAAAAAJB3QAAAAAAAkHdAAAAAAACgd0AAAAAAAKB3QAAAAAAAsHdAAAAAAACwd0AAAAAAAMB3QAAAAAAAwHdAAAAAAADQd0AAAAAAANB3QAAAAAAA4HdAAAAAAADgd0AAAAAAAPB3QAAAAAAA8HdAAAAAAAAAeEAAAAAAAAB4QAAAAAAAEHhAAAAAAAAQeEAAAAAAACB4QAAAAAAAIHhAAAAAAAAweEAAAAAAADB4QAAAAAAAQHhAAAAAAABAeEAAAAAAAFB4QAAAAAAAUHhAAAAAAABgeEAAAAAAAGB4QAAAAAAAcHhAAAAAAABweEAAAAAAAIB4QAAAAAAAgHhAAAAAAACQeEAAAAAAAJB4QAAAAAAAoHhAAAAAAACgeEAAAAAAALB4QAAAAAAAsHhAAAAAAADAeEAAAAAAAMB4QAAAAAAA0HhAAAAAAADQeEAAAAAAAOB4QAAAAAAA4HhAAAAAAADweEAAAAAAAPB4QAAAAAAAAHlAAAAAAAAAeUAAAAAAABB5QAAAAAAAEHlAAAAAAAAgeUAAAAAAACB5QAAAAAAAMHlAAAAAAAAweUAAAAAAAEB5QAAAAAAAQHlAAAAAAABQeUAAAAAAAFB5QAAAAAAAYHlAAAAAAABgeUAAAAAAAHB5QAAAAAAAcHlAAAAAAACAeUAAAAAAAIB5QA==\"},\"shape\":[818],\"dtype\":\"float64\",\"order\":\"little\"}],[\"y\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAAADkLR3ti/RyP+QtHe2L9HI/OQeh+zBIhT85B6H7MEiFP+2+Q3zMOZE/7b5DfMw5kT9RR7OKfkmYP1FHs4p+SZg/3rN04uO0nz/es3Ti47SfP0tyS9D8s6M/S3JL0Pyzoz8P5B82MqqnPw/kHzYyqqc/9xJ5NKK3qz/3Enk0orerP1q3pGAF2K8/WrekYAXYrz926Ot18gOyP3bo63XyA7I/ftWCljEitD9+1YKWMSK0Px16Ll6LRbY/HXouXotFtj91SI1t+Gy4P3VIjW34bLg/3cPFiZWXuj/dw8WJlZe6PxCWONOcxLw/EJY405zEvD9FtAmjYPO+P0W0CaNg874/u1L3yaORwD+7UvfJo5HAP14wBrLkqcE/XjAGsuSpwT/NgNM7NsLCP82A0zs2wsI/zFub6mHawz/MW5vqYdrDP+wBU7828sQ/7AFTvzbyxD9A0Y6JiAnGP0DRjomICcY/N8sIVS8gxz83ywhVLyDHP6WMA+4GNsg/pYwD7gY2yD9pmiF47krJP2maIXjuSsk/sv9HFMheyj+y/0cUyF7KP+bj4JJ4ccs/5uPgknhxyz8alGEw54LMPxqUYTDngsw/KVVkWv2SzT8pVWRa/ZLNPyku+numoc4/KS76e6ahzj/IHBrQz67PP8gcGtDPrs8/BTOjHDRd0D8FM6McNF3QPxap1A4w4tA/FqnUDjDi0D+HiIWjVGbRP4eIhaNUZtE/r08OY5vp0T+vTw5jm+nRP4xVVGz+a9I/jFVUbP5r0j8bXCZpeO3SPxtcJml47dI/Dnm1gwRu0z8OebWDBG7TP39jCF2e7dM/f2MIXZ7t0z9rEUwEQmzUP2sRTARCbNQ/6pzo7uvp1D/qnOju6+nUP83PRPGYZtU/zc9E8Zhm1T/LkSU4RuLVP8uRJThG4tU/wuGYQvFc1j/C4ZhC8VzWP9cTXtyX1tY/1xNe3JfW1j/Pzr4YOE/XP8/Ovhg4T9c/ucbNTdDG1z+5xs1N0MbXPy9+ARBfPdg/L34BEF892D+tdSIu47LYP611Ii7jstg/QimFrVsn2T9CKYWtWyfZP3kTicbHmtk/eROJxsea2T8KqVbhJg3aPwqpVuEmDdo/0ePWknh+2j/R49aSeH7aPw6E35m87to/DoTfmbzu2j9+rY/c8l3bP36tj9zyXds/3vPYZRvM2z/e89hlG8zbP2lOMWM2Odw/aU4xYzY53D9Fv2oiRKXcP0W/aiJEpdw/psqtD0UQ3T+myq0PRRDdP1wclLM5et0/XByUszl63T+l+WCxIuPdP6X5YLEi490/5FFVxQBL3j/kUVXFAEveP2FzHcPUsd4/YXMdw9Sx3j8DlFaUnxffPwOUVpSfF98/RIYqN2J83z9Ehio3YnzfPwEVAL0d4N8/ARUAvR3g3z8TUZ+kaSHgPxNRn6RpIeA/+98RCEJS4D/73xEIQlLgP7TL1KqYguA/tMvUqpiC4D/Agj42brLgP8CCPjZusuA/1TeBWsPh4D/VN4Faw+HgP6gwNM6YEOE/qDA0zpgQ4T9OjONN7z7hP06M403vPuE/VRumm8ds4T9VG6abx2zhP73ruH4imuE/veu4fiKa4T9+MSDDAMfhP34xIMMAx+E/pzpNOWPz4T+nOk05Y/PhP0gjybVKH+I/SCPJtUof4j+vA+QQuEriP68D5BC4SuI/xFZoJqx14j/EVmgmrHXiPwZcUtUnoOI/BlxS1Seg4j8ZPIv/K8riPxk8i/8ryuI/lrqnibnz4j+WuqeJufPiP15DqlrRHOM/XkOqWtEc4z8LJchbdEXjPwslyFt0ReM/hMwxeKNt4z+EzDF4o23jPy3Z3ZxfleM/LdndnF+V4z8G41a4qbzjPwbjVripvOM/us6LuoLj4z+6zou6guPjPwCOopTrCeQ/AI6ilOsJ5D8wLM045S/kPzAszTjlL+Q/HAkhmnBV5D8cCSGacFXkPykmcKyOeuQ/KSZwrI565D/eaiRkQJ/kP95qJGRAn+Q/9scctobD5D/2xxy2hsPkP1IhjJdi5+Q/UiGMl2Ln5D9W6Nn91ArlP1bo2f3UCuU/3lGE3t4t5T/eUYTe3i3lP5cTBC+BUOU/lxMEL4FQ5T8dlrHkvHLlPx2WseS8cuU/6omr9JKU5T/qiav0kpTlP0rOvlMEtuU/Ss6+UwS25T9Ymk/2EdflP1iaT/YR1+U/zthD0Lz35T/O2EPQvPflP2Oo7tQFGOY/Y6ju1AUY5j8Q8/z27TfmPxDz/PbtN+Y/Vg9jKHZX5j9WD2ModlfmP0BfS1qfduY/QF9LWp925j9k4QV9apXmP2ThBX1qleY/Dqn4f9iz5j8Oqfh/2LPmP8QykVHq0eY/xDKRUerR5j9ZizbfoO/mP1mLNt+g7+Y/+j88Ff0M5z/6PzwV/QznPyQO1t7/Kec/JA7W3v8p5z/SSgwmqkbnP9JKDCaqRuc/5Piw0/xi5z/k+LDT/GLnP6aGVc/4fuc/poZVz/h+5z8yK0H/nprnPzIrQf+emuc/jNxnSPC15z+M3GdI8LXnP5bXYY7t0Oc/ltdhju3Q5z98s2Ozl+vnP3yzY7OX6+c/evo2mO8F6D96+jaY7wXoP+NBMxz2H+g/40EzHPYf6D8GvDcdrDnoPwa8Nx2sOeg/cT6ldxJT6D9xPqV3ElPoP2i3WAYqbOg/aLdYBips6D/SDaai84ToP9INpqLzhOg/tmZTJHCd6D+2ZlMkcJ3oP/jLlGGgteg/+MuUYaC16D/9Lwgvhc3oP/0vCC+Fzeg/GsqxXx/l6D8ayrFfH+XoP9zH+MRv/Og/3Mf4xG/86D+KT6QudxPpP4pPpC53E+k/FdDYajYq6T8V0NhqNirpPzSbFUauQOk/NJsVRq5A6T9KxjKL31bpP0rGMovfVuk/905fA8ts6T/3Tl8Dy2zpP0aAH3Zxguk/RoAfdnGC6T+alUup05fpP5qVS6nTl+k/npgOYfKs6T+emA5h8qzpP3x35V/Owek/fHflX87B6T/QUJ5maNbpP9BQnmZo1uk/B/NXNMHq6T8H81c0werpP6SMgYbZ/uk/pIyBhtn+6T9Ji9oYshLqP0mL2hiyEuo/YKdypUsm6j9gp3KlSybqPz0aquSmOeo/PRqq5KY56j/Q/DGNxEzqP9D8MY3ETOo//swMVKVf6j/+zAxUpV/qP8sXj+xJcuo/yxeP7Ely6j+WRmAIs4TqP5ZGYAizhOo/so17V+GW6j+yjXtX4ZbqP9f6MIjVqOo/1/owiNWo6j/AoSZHkLrqP8ChJkeQuuo/kuVZPxLM6j+S5Vk/EszqP4rdIBpc3eo/it0gGlzd6j+30yt/bu7qP7fTK39u7uo/PNyGFEr/6j883IYUSv/qPwuEm37vD+s/C4Sbfu8P6z/AlTJgXyDrP8CVMmBfIOs/g/N1Wpow6z+D83VamjDrP8WE8gyhQOs/xYTyDKFA6z/kNpoVdFDrP+Q2mhV0UOs/gA/GEBRg6z+AD8YQFGDrP7BPOJmBb+s/sE84mYFv6z8Ipx5IvX7rPwinHki9fus/kHUUtceN6z+QdRS1x43rP9cbJXahnOs/1xsldqGc6z8rWM4fS6vrPytYzh9Lq+s/ULACRcW56z9QsAJFxbnrP9TmK3cQyOs/1OYrdxDI6z88ey1GLdbrPzx7LUYt1us/fDRnQBzk6z98NGdAHOTrP9S0t/Ld8es/1LS38t3x6z+NFn/ocv/rP40Wf+hy/+s/8pChq9sM7D/ykKGr2wzsP9MkisQYGuw/0ySKxBga7D8cUC26KifsPxxQLboqJ+w/0ccLEhI07D/RxwsSEjTsPwI4NVDPQOw/Ajg1UM9A7D8lCUv3Yk3sPyUJS/diTew/TiqDiM1Z7D9OKoOIzVnsP+PfqoMPZuw/49+qgw9m7D9ElilnKXLsP0SWKWcpcuw/A7gDsBt+7D8DuAOwG37sPzqH3dnmiew/Oofd2eaJ7D+V+f1ei5XsP5X5/V6Llew/wJZRuAmh7D/AllG4CaHsP8JYbV1irOw/wlhtXWKs7D/6jZHElbfsP/qNkcSVt+w/Z7ysYqTC7D9nvKxipMLsP+KFXquOzew/4oVeq47N7D/3jPoQVdjsP/eM+hBV2Ow/J1qLBPji7D8nWosE+OLsPytB1fV37ew/K0HV9Xft7D8ERllT1ffsPwRGWVPV9+w/nwFYihAC7T+fAViKEALtP6+F1AYqDO0/r4XUBioM7T+iP5czIhbtP6I/lzMiFu0/XNowevkf7T9c2jB6+R/tP5Qe/UKwKe0/lB79QrAp7T+L0SX1RjPtP4vRJfVGM+0/ApKl9r087T8CkqX2vTztPyCzSqwVRu0/ILNKrBVG7T89Fbp5Tk/tPz0VunlOT+0/RfxxwWhY7T9F/HHBaFjtP6TjzORkYe0/pOPM5GRh7T92TwREQ2rtP3ZPBERDau0/AJszPgRz7T8AmzM+BHPtPx3EWjGoe+0/HcRaMah77T+XM2F6L4TtP5czYXovhO0/VoIYdZqM7T9Wghh1moztPy47P3zplO0/Ljs/fOmU7T8ymYPpHJ3tPzKZg+kcne0/hkKGFTWl7T+GQoYVNaXtP37/3Fcyre0/fv/cVzKt7T/4bRUHFbXtP/htFQcVte0/47C3eN287T/jsLd43bztP8wbSQGMxO0/zBtJAYzE7T9t2k70IMztP23aTvQgzO0/IJRQpJzT7T8glFCknNPtPyML22L/2u0/IwvbYv/a7T+it4KASeLtP6K3goBJ4u0/d17mTHvp7T93XuZMe+ntP4GjsRaV8O0/gaOxFpXw7T+jl58rl/ftP6OXnyuX9+0/OUJ92IH+7T85Qn3Ygf7tPxUmLGlVBe4/FSYsaVUF7j/nwaQoEgzuP+fBpCgSDO4/DQz5YLgS7j8NDPlguBLuP73pVltIGe4/velWW0gZ7j+GoQpgwh/uP4ahCmDCH+4/IUmBtiYm7j8hSYG2JibuP3cuS6V1LO4/dy5LpXUs7j/2Ox5yrzLuP/Y7HnKvMu4/FljYYdQ47j8WWNhh1DjuPw/AgbjkPu4/D8CBuOQ+7j/FXU+54ETuP8VdT7ngRO4/1xilpshK7j/XGKWmyEruP9ciGMKcUO4/1yIYwpxQ7j+rPnFMXVbuP6s+cUxdVu4/BwOvhQpc7j8HA6+FClzuPxIYCK2kYe4/EhgIraRh7j8hcO0ALGfuPyFw7QAsZ+4/lnsMv6Bs7j+Wewy/oGzuP9tXUSQDcu4/21dRJANy7j98+ehsU3fuP3z56GxTd+4/XlFD1JF87j9eUUPUkXzuPxxtFZW+ge4/HG0Vlb6B7j98klvp2YbuP3ySW+nZhu4/D1ZbCuSL7j8PVlsK5IvuP/KspTDdkO4/8qylMN2Q7j+7+RiUxZXuP7v5GJTFle4/iRTja52a7j+JFONrnZruP0pOg+5kn+4/Sk6D7mSf7j8ub8xRHKTuPy5vzFEcpO4/S7DmysOo7j9LsObKw6juP4SwUY5bre4/hLBRjlut7j+iZObP47HuP6Jk5s/jse4/tgLZwly27j+2AtnCXLbuP7roupnGuu4/uui6mca67j+JfnyGIb/uP4l+fIYhv+4/FRNvum3D7j8VE2+6bcPuPwa1Rmarx+4/BrVGZqvH7j+pBhy62svuP6kGHLray+4/Pg1u5fvP7j8+DW7l+8/uP7f7IxcP1O4/t/sjFw/U7j/X+I59FNjuP9f4jn0U2O4/0+BrRgzc7j/T4GtGDNzuP10C5Z723+4/XQLlnvbf7j8615Oz0+PuPzrXk7PT4+4/WriCsKPn7j9auIKwo+fuP4GNLsFm6+4/gY0uwWbr7j99eIgQHe/uP314iBAd7+4/Anz3yMby7j8CfPfIxvLuPxweWhRk9u4/HB5aFGT27j9cBggc9fnuP1wGCBz1+e4/npfTCHr97j+el9MIev3uP6GFCwPzAO8/oYULA/MA7z9MZnwyYATvP0xmfDJgBO8/xj5yvsEH7z/GPnK+wQfvP1MMus0XC+8/Uwy6zRcL7z8SSaOGYg7vPxJJo4ZiDu8/lGwBD6IR7z+UbAEPohHvP1hoLYzWFO8/WGgtjNYU7z85IAcjABjvPzkgByMAGO8/zt729x4b7z/O3vb3HhvvP9DF7i4zHu8/0MXuLjMe7z93OmzrPCHvP3c6bOs8Ie8/9k15UDwk7z/2TXlQPCTvPwEiroAxJ+8/ASKugDEn7z91STKeHCrvP3VJMp4cKu8/JyW+yv0s7z8nJb7K/SzvP+A8nCfVL+8/4DycJ9Uv7z+MlKrVojLvP4yUqtWiMu8/sf1b9WY17z+x/Vv1ZjXvPx9luaYhOO8/H2W5piE47z/3HGMJ0zrvP/ccYwnTOu8/CyOSPHs97z8LI5I8ez3vP5RjGV8aQO8/lGMZXxpA7z9U+GaPsELvP1T4Zo+wQu8/LGSF6z1F7z8sZIXrPUXvPxrLHJHCR+8/GssckcJH7z/HJnSdPkrvP8cmdJ0+Su8/lHdyLbJM7z+Ud3ItskzvPzTyn10dT+8/NPKfXR1P7z/iKSdKgFHvP+IpJ0qAUe8/NTfWDttT7z81N9YO21PvP5rbH8ctVu8/mtsfxy1W7z+AoRyOeFjvP4ChHI54WO8/NfmLfrta7z81+Yt+u1rvP4tS1bL2XO8/i1LVsvZc7z8/MwlFKl/vPz8zCUUqX+8/KkriTlZh7z8qSuJOVmHvP1V/xul6Y+8/VX/G6Xpj7z/eAMgumGXvP94AyC6YZe8/0EymNq5n7z/QTKY2rmfvP9s3zxm9ae8/2zfPGb1p7z8R8V/wxGvvPxHxX/DEa+8/kQIm0sVt7z+RAibSxW3vP0RPoNa/b+8/RE+g1r9v7z+fDQAVs3HvP58NABWzce8/eL8ppJ9z7z94vymkn3PvP/0mtpqFde8//Sa2moV17z/JOPMOZXfvP8k48w5ld+8/JQvlFj557z8lC+UWPnnvP3bCRsgQe+8/dsJGyBB77z/weos43XzvP/B6izjdfO8/ei/ffKN+7z96L998o37vP+WdJ6pjgO8/5Z0nqmOA7z9tKAXVHYLvP20oBdUdgu8/kLTTEdKD7z+QtNMR0oPvP0SHq3SAhe8/RIerdICF7z+KHmIRKYfvP4oeYhEph+8/eQiL+8uI7z95CIv7y4jvP663eEZpiu8/rrd4RmmK7z87VT0FAYzvPztVPQUBjO8/EpCrSpON7z8SkKtKk43vP/5pVykgj+8//mlXKSCP7z8gApezp5DvPyACl7OnkO8/A12D+ymS7z8DXYP7KZLvP08q+RKnk+8/Tyr5EqeT7z8UiJkLH5XvPxSImQsfle8/xMPK9pGW7z/Ew8r2kZbvP9sYueX/l+8/2xi55f+X7z80bVfpaJnvPzRtV+lome8/JAtgEs2a7z8kC2ASzZrvP0dZVXEsnO8/R1lVcSyc7z8okIIWh53vPyiQghaHne8/pW38Ed2e7z+lbfwR3Z7vPy/moXMuoO8/L+ahcy6g7z/n0xxLe6HvP+fTHEt7oe8/kaPip8Oi7z+Ro+Knw6LvP3X/NJkHpO8/df80mQek7z8teCIuR6XvPy14Ii5Hpe8/XiuHdYKm7z9eK4d1gqbvP25oDX65p+8/bmgNfrmn7z80Uy5W7KjvPzRTLlbsqO8/soQyDBuq7z+yhDIMG6rvP9CpMq5Fq+8/0KkyrkWr7z8nIBhKbKzvPycgGEpsrO8/6ZCd7Y6t7z/pkJ3tjq3vP9aJT6atru8/1olPpq2u7z9aFI2ByK/vP1oUjYHIr+8/yEqIjN+w7z/ISoiM37DvP8vrRtTyse8/y+tG1PKx7z/166JlArPvP/XromUCs+8/lwVLTQ607z+XBUtNDrTvP8FGw5cWte8/wUbDlxa17z+MnWVRG7bvP4ydZVEbtu8/pWJihhy37z+lYmKGHLfvPyPiwEIauO8/I+LAQhq47z+p4l+SFLnvP6niX5IUue8/3Sr2gAu67z/dKvaAC7rvPzcFExr/uu8/NwUTGv+67z8vwh5p77vvPy/CHmnvu+8/zThbedy87z/NOFt53LzvP5pF5FXGve8/mkXkVca97z8HSLAJrb7vPwdIsAmtvu8/Pp6Qn5C/7z8+npCfkL/vP2gfMiJxwO8/aB8yInHA7z9ulB2cTsHvP26UHZxOwe8/Oi+4FynC7z86L7gXKcLvP3oARJ8Aw+8/egBEnwDD7z/la+A81cPvP+Vr4DzVw+8/GJuK+qbE7z8Ym4r6psTvP/LuHeJ1xe8/8u4d4nXF7z+Yb1T9QcbvP5hvVP1Bxu8//zrHVQvH7z//OsdVC8fvPyLy7vTRx+8/IvLu9NHH7z/PJCTklcjvP88kJOSVyO8/HryfLFfJ7z8evJ8sV8nvP5Nje9cVyu8/k2N71xXK7z/p8LHt0crvP+nwse3Ryu8/kcofeIvL7z+Ryh94i8vvP+dMg39CzO8/50yDf0LM7z8hLn0M98zvPyEufQz3zO8/9+CQJ6nN7z/34JAnqc3vPxX2JNlYzu8/FfYk2VjO7z9FfIMpBs/vP0V8gykGz+8/c1/aILHP7z9zX9ogsc/vP2zGO8dZ0O8/bMY7x1nQ7z95b54kANHvP3lvniQA0e8/ygveQKTR7z/KC95ApNHvP7qZuyNG0u8/upm7I0bS7z/rvd3U5dLvP+u93dTl0u8/QxvRW4PT7z9DG9Fbg9PvP82pCMAe1O8/zakIwB7U7z99DN4IuNTvPw==\"},\"shape\":[818],\"dtype\":\"float64\",\"order\":\"little\"}]]}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1702\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1703\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1698\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":\"orange\",\"line_width\":2}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1699\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":\"orange\",\"line_alpha\":0.1,\"line_width\":2}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1700\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":\"orange\",\"line_alpha\":0.2,\"line_width\":2}}}}],\"toolbar\":{\"type\":\"object\",\"name\":\"Toolbar\",\"id\":\"p1635\",\"attributes\":{\"tools\":[{\"type\":\"object\",\"name\":\"PanTool\",\"id\":\"p1648\"},{\"type\":\"object\",\"name\":\"WheelZoomTool\",\"id\":\"p1649\",\"attributes\":{\"renderers\":\"auto\"}},{\"type\":\"object\",\"name\":\"BoxZoomTool\",\"id\":\"p1650\",\"attributes\":{\"overlay\":{\"type\":\"object\",\"name\":\"BoxAnnotation\",\"id\":\"p1651\",\"attributes\":{\"syncable\":false,\"level\":\"overlay\",\"visible\":false,\"left\":{\"type\":\"number\",\"value\":\"nan\"},\"right\":{\"type\":\"number\",\"value\":\"nan\"},\"top\":{\"type\":\"number\",\"value\":\"nan\"},\"bottom\":{\"type\":\"number\",\"value\":\"nan\"},\"left_units\":\"canvas\",\"right_units\":\"canvas\",\"top_units\":\"canvas\",\"bottom_units\":\"canvas\",\"line_color\":\"black\",\"line_alpha\":1.0,\"line_width\":2,\"line_dash\":[4,4],\"fill_color\":\"lightgrey\",\"fill_alpha\":0.5}}}},{\"type\":\"object\",\"name\":\"SaveTool\",\"id\":\"p1656\"},{\"type\":\"object\",\"name\":\"ResetTool\",\"id\":\"p1657\"},{\"type\":\"object\",\"name\":\"HelpTool\",\"id\":\"p1658\"}]}},\"toolbar_location\":\"above\",\"left\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1643\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1644\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1645\"},\"axis_label\":\"ECDF\",\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1646\"}}}],\"below\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1638\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1639\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1640\"},\"axis_label\":\"Nanog\",\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1641\"}}}],\"center\":[{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1642\",\"attributes\":{\"axis\":{\"id\":\"p1638\"}}},{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1647\",\"attributes\":{\"dimension\":1,\"axis\":{\"id\":\"p1643\"}}}],\"frame_width\":375,\"frame_height\":275}}],\"defs\":[{\"type\":\"model\",\"name\":\"ReactiveHTML1\"},{\"type\":\"model\",\"name\":\"FlexBox1\",\"properties\":[{\"name\":\"align_content\",\"kind\":\"Any\",\"default\":\"flex-start\"},{\"name\":\"align_items\",\"kind\":\"Any\",\"default\":\"flex-start\"},{\"name\":\"flex_direction\",\"kind\":\"Any\",\"default\":\"row\"},{\"name\":\"flex_wrap\",\"kind\":\"Any\",\"default\":\"wrap\"},{\"name\":\"gap\",\"kind\":\"Any\",\"default\":\"\"},{\"name\":\"justify_content\",\"kind\":\"Any\",\"default\":\"flex-start\"}]},{\"type\":\"model\",\"name\":\"FloatPanel1\",\"properties\":[{\"name\":\"config\",\"kind\":\"Any\",\"default\":{\"type\":\"map\"}},{\"name\":\"contained\",\"kind\":\"Any\",\"default\":true},{\"name\":\"position\",\"kind\":\"Any\",\"default\":\"right-top\"},{\"name\":\"offsetx\",\"kind\":\"Any\",\"default\":null},{\"name\":\"offsety\",\"kind\":\"Any\",\"default\":null},{\"name\":\"theme\",\"kind\":\"Any\",\"default\":\"primary\"},{\"name\":\"status\",\"kind\":\"Any\",\"default\":\"normalized\"}]},{\"type\":\"model\",\"name\":\"GridStack1\",\"properties\":[{\"name\":\"mode\",\"kind\":\"Any\",\"default\":\"warn\"},{\"name\":\"ncols\",\"kind\":\"Any\",\"default\":null},{\"name\":\"nrows\",\"kind\":\"Any\",\"default\":null},{\"name\":\"allow_resize\",\"kind\":\"Any\",\"default\":true},{\"name\":\"allow_drag\",\"kind\":\"Any\",\"default\":true},{\"name\":\"state\",\"kind\":\"Any\",\"default\":[]}]},{\"type\":\"model\",\"name\":\"drag1\",\"properties\":[{\"name\":\"slider_width\",\"kind\":\"Any\",\"default\":5},{\"name\":\"slider_color\",\"kind\":\"Any\",\"default\":\"black\"},{\"name\":\"value\",\"kind\":\"Any\",\"default\":50}]},{\"type\":\"model\",\"name\":\"click1\",\"properties\":[{\"name\":\"terminal_output\",\"kind\":\"Any\",\"default\":\"\"},{\"name\":\"debug_name\",\"kind\":\"Any\",\"default\":\"\"},{\"name\":\"clears\",\"kind\":\"Any\",\"default\":0}]},{\"type\":\"model\",\"name\":\"FastWrapper1\",\"properties\":[{\"name\":\"object\",\"kind\":\"Any\",\"default\":null},{\"name\":\"style\",\"kind\":\"Any\",\"default\":null}]},{\"type\":\"model\",\"name\":\"NotificationAreaBase1\",\"properties\":[{\"name\":\"js_events\",\"kind\":\"Any\",\"default\":{\"type\":\"map\"}},{\"name\":\"position\",\"kind\":\"Any\",\"default\":\"bottom-right\"},{\"name\":\"_clear\",\"kind\":\"Any\",\"default\":0}]},{\"type\":\"model\",\"name\":\"NotificationArea1\",\"properties\":[{\"name\":\"js_events\",\"kind\":\"Any\",\"default\":{\"type\":\"map\"}},{\"name\":\"notifications\",\"kind\":\"Any\",\"default\":[]},{\"name\":\"position\",\"kind\":\"Any\",\"default\":\"bottom-right\"},{\"name\":\"_clear\",\"kind\":\"Any\",\"default\":0},{\"name\":\"types\",\"kind\":\"Any\",\"default\":[{\"type\":\"map\",\"entries\":[[\"type\",\"warning\"],[\"background\",\"#ffc107\"],[\"icon\",{\"type\":\"map\",\"entries\":[[\"className\",\"fas fa-exclamation-triangle\"],[\"tagName\",\"i\"],[\"color\",\"white\"]]}]]},{\"type\":\"map\",\"entries\":[[\"type\",\"info\"],[\"background\",\"#007bff\"],[\"icon\",{\"type\":\"map\",\"entries\":[[\"className\",\"fas fa-info-circle\"],[\"tagName\",\"i\"],[\"color\",\"white\"]]}]]}]}]},{\"type\":\"model\",\"name\":\"Notification\",\"properties\":[{\"name\":\"background\",\"kind\":\"Any\",\"default\":null},{\"name\":\"duration\",\"kind\":\"Any\",\"default\":3000},{\"name\":\"icon\",\"kind\":\"Any\",\"default\":null},{\"name\":\"message\",\"kind\":\"Any\",\"default\":\"\"},{\"name\":\"notification_type\",\"kind\":\"Any\",\"default\":null},{\"name\":\"_destroyed\",\"kind\":\"Any\",\"default\":false}]},{\"type\":\"model\",\"name\":\"TemplateActions1\",\"properties\":[{\"name\":\"open_modal\",\"kind\":\"Any\",\"default\":0},{\"name\":\"close_modal\",\"kind\":\"Any\",\"default\":0}]},{\"type\":\"model\",\"name\":\"BootstrapTemplateActions1\",\"properties\":[{\"name\":\"open_modal\",\"kind\":\"Any\",\"default\":0},{\"name\":\"close_modal\",\"kind\":\"Any\",\"default\":0}]},{\"type\":\"model\",\"name\":\"TemplateEditor1\",\"properties\":[{\"name\":\"layout\",\"kind\":\"Any\",\"default\":[]}]},{\"type\":\"model\",\"name\":\"MaterialTemplateActions1\",\"properties\":[{\"name\":\"open_modal\",\"kind\":\"Any\",\"default\":0},{\"name\":\"close_modal\",\"kind\":\"Any\",\"default\":0}]},{\"type\":\"model\",\"name\":\"copy_to_clipboard1\",\"properties\":[{\"name\":\"fill\",\"kind\":\"Any\",\"default\":\"none\"},{\"name\":\"value\",\"kind\":\"Any\",\"default\":null}]}]}};\n", " const render_items = [{\"docid\":\"5f2c2f63-f285-4718-8045-1582b1297837\",\"roots\":{\"p1627\":\"be92e750-bd54-4e96-b1e1-2f1f614c30d7\"},\"root_ids\":[\"p1627\"]}];\n", " void root.Bokeh.embed.embed_items_notebook(docs_json, render_items);\n", " }\n", " if (root.Bokeh !== undefined) {\n", " embed_document(root);\n", " } else {\n", " let attempts = 0;\n", " const timer = setInterval(function(root) {\n", " if (root.Bokeh !== undefined) {\n", " clearInterval(timer);\n", " embed_document(root);\n", " } else {\n", " attempts++;\n", " if (attempts > 100) {\n", " clearInterval(timer);\n", " console.log(\"Bokeh: ERROR: Unable to run BokehJS code because BokehJS library is missing\");\n", " }\n", " }\n", " }, 10, root)\n", " }\n", "})(window);" ], "application/vnd.bokehjs_exec.v0+json": "" }, "metadata": { "application/vnd.bokehjs_exec.v0+json": { "id": "p1627" } }, "output_type": "display_data" } ], "source": [ "p = iqplot.ecdf(data=df['Nanog'], q='Nanog', conf_int=True)\n", "n_theor = np.arange(0, df['Nanog'].max()+1)\n", "cdf_theor = st.nbinom.cdf(n_theor, alpha_mle, 1/(1+b_mle))\n", "\n", "# Weave together to make staircase for discrete distribution\n", "n_plot = np.empty(2 * len(n_theor))\n", "cdf_plot = np.empty(2 * len(n_theor))\n", "cdf_plot[0] = 0\n", "cdf_plot[1::2] = cdf_theor\n", "cdf_plot[2::2] = cdf_theor[:-1]\n", "n_plot[::2] = n_theor\n", "n_plot[1::2] = n_theor\n", "\n", "p.line(n_plot, cdf_plot, line_color='orange', line_width=2)\n", "bokeh.io.show(p)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The MLE curve deviates from the nonparametric ECDF 95% confidence interval. This suggests we may be missing something in our model. We will cover this in more depth in future lessons." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Computing environment" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Python implementation: CPython\n", "Python version : 3.12.3\n", "IPython version : 8.25.0\n", "\n", "numpy : 1.26.4\n", "scipy : 1.13.1\n", "polars : 1.1.0\n", "bokeh : 3.4.1\n", "iqplot : 0.3.7\n", "bebi103 : 0.1.21\n", "jupyterlab: 4.0.13\n", "\n" ] } ], "source": [ "%load_ext watermark\n", "%watermark -v -p numpy,scipy,polars,bokeh,iqplot,bebi103,jupyterlab" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.3" } }, "nbformat": 4, "nbformat_minor": 4 }