{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Plotting smooth curves\n", "\n", "
" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "nbsphinx": "hidden", "tags": [] }, "outputs": [], "source": [ "#| code-fold: true\n", "\n", "# Colab setup ------------------\n", "import os, sys, subprocess\n", "if \"google.colab\" in sys.modules:\n", " cmd = \"pip install --upgrade watermark\"\n", " process = subprocess.Popen(cmd.split(), stdout=subprocess.PIPE, stderr=subprocess.PIPE)\n", " stdout, stderr = process.communicate()" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/html": [ " \n", "
\n", " \n", " Loading BokehJS ...\n", "
\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/javascript": "'use strict';\n(function(root) {\n function now() {\n return new Date();\n }\n\n const force = true;\n\n if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n root._bokeh_onload_callbacks = [];\n root._bokeh_is_loading = undefined;\n }\n\nconst JS_MIME_TYPE = 'application/javascript';\n const HTML_MIME_TYPE = 'text/html';\n const EXEC_MIME_TYPE = 'application/vnd.bokehjs_exec.v0+json';\n const CLASS_NAME = 'output_bokeh rendered_html';\n\n /**\n * Render data to the DOM node\n */\n function render(props, node) {\n const script = document.createElement(\"script\");\n node.appendChild(script);\n }\n\n /**\n * Handle when an output is cleared or removed\n */\n function handleClearOutput(event, handle) {\n function drop(id) {\n const view = Bokeh.index.get_by_id(id)\n if (view != null) {\n view.model.document.clear()\n Bokeh.index.delete(view)\n }\n }\n\n const cell = handle.cell;\n\n const id = cell.output_area._bokeh_element_id;\n const server_id = cell.output_area._bokeh_server_id;\n\n // Clean up Bokeh references\n if (id != null) {\n drop(id)\n }\n\n if (server_id !== undefined) {\n // Clean up Bokeh references\n const cmd_clean = \"from bokeh.io.state import curstate; print(curstate().uuid_to_server['\" + server_id + \"'].get_sessions()[0].document.roots[0]._id)\";\n cell.notebook.kernel.execute(cmd_clean, {\n iopub: {\n output: function(msg) {\n const id = msg.content.text.trim()\n drop(id)\n }\n }\n });\n // Destroy server and session\n const cmd_destroy = \"import bokeh.io.notebook as ion; ion.destroy_server('\" + server_id + \"')\";\n cell.notebook.kernel.execute(cmd_destroy);\n }\n }\n\n /**\n * Handle when a new output is added\n */\n function handleAddOutput(event, handle) {\n const output_area = handle.output_area;\n const output = handle.output;\n\n // limit handleAddOutput to display_data with EXEC_MIME_TYPE content only\n if ((output.output_type != \"display_data\") || (!Object.prototype.hasOwnProperty.call(output.data, EXEC_MIME_TYPE))) {\n return\n }\n\n const toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n\n if (output.metadata[EXEC_MIME_TYPE][\"id\"] !== undefined) {\n toinsert[toinsert.length - 1].firstChild.textContent = output.data[JS_MIME_TYPE];\n // store reference to embed id on output_area\n output_area._bokeh_element_id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n }\n if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n const bk_div = document.createElement(\"div\");\n bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n const script_attrs = bk_div.children[0].attributes;\n for (let i = 0; i < script_attrs.length; i++) {\n toinsert[toinsert.length - 1].firstChild.setAttribute(script_attrs[i].name, script_attrs[i].value);\n toinsert[toinsert.length - 1].firstChild.textContent = bk_div.children[0].textContent\n }\n // store reference to server id on output_area\n output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n }\n }\n\n function register_renderer(events, OutputArea) {\n\n function append_mime(data, metadata, element) {\n // create a DOM node to render to\n const toinsert = this.create_output_subarea(\n metadata,\n CLASS_NAME,\n EXEC_MIME_TYPE\n );\n this.keyboard_manager.register_events(toinsert);\n // Render to node\n const props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n render(props, toinsert[toinsert.length - 1]);\n element.append(toinsert);\n return toinsert\n }\n\n /* Handle when an output is cleared or removed */\n events.on('clear_output.CodeCell', handleClearOutput);\n events.on('delete.Cell', handleClearOutput);\n\n /* Handle when a new output is added */\n events.on('output_added.OutputArea', handleAddOutput);\n\n /**\n * Register the mime type and append_mime function with output_area\n */\n OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n /* Is output safe? */\n safe: true,\n /* Index of renderer in `output_area.display_order` */\n index: 0\n });\n }\n\n // register the mime type if in Jupyter Notebook environment and previously unregistered\n if (root.Jupyter !== undefined) {\n const events = require('base/js/events');\n const OutputArea = require('notebook/js/outputarea').OutputArea;\n\n if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n register_renderer(events, OutputArea);\n }\n }\n if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n const NB_LOAD_WARNING = {'data': {'text/html':\n \"
\\n\"+\n \"

\\n\"+\n \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n \"

\\n\"+\n \"\\n\"+\n \"\\n\"+\n \"from bokeh.resources import INLINE\\n\"+\n \"output_notebook(resources=INLINE)\\n\"+\n \"\\n\"+\n \"
\"}};\n\n function display_loaded(error = null) {\n const el = document.getElementById(\"a8f5feeb-6b53-495c-85e4-ed9477aabadd\");\n if (el != null) {\n const html = (() => {\n if (typeof root.Bokeh === \"undefined\") {\n if (error == null) {\n return \"BokehJS is loading ...\";\n } else {\n return \"BokehJS failed to load.\";\n }\n } else {\n const prefix = `BokehJS ${root.Bokeh.version}`;\n if (error == null) {\n return `${prefix} successfully loaded.`;\n } else {\n return `${prefix} encountered errors while loading and may not function as expected.`;\n }\n }\n })();\n el.innerHTML = html;\n\n if (error != null) {\n const wrapper = document.createElement(\"div\");\n wrapper.style.overflow = \"auto\";\n wrapper.style.height = \"5em\";\n wrapper.style.resize = \"vertical\";\n const content = document.createElement(\"div\");\n content.style.fontFamily = \"monospace\";\n content.style.whiteSpace = \"pre-wrap\";\n content.style.backgroundColor = \"rgb(255, 221, 221)\";\n content.textContent = error.stack ?? error.toString();\n wrapper.append(content);\n el.append(wrapper);\n }\n } else if (Date.now() < root._bokeh_timeout) {\n setTimeout(() => display_loaded(error), 100);\n }\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n\n root._bokeh_onload_callbacks.push(callback);\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls == null || js_urls.length === 0) {\n run_callbacks();\n return null;\n }\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n root._bokeh_is_loading = css_urls.length + js_urls.length;\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n\n function on_error(url) {\n console.error(\"failed to load \" + url);\n }\n\n for (let i = 0; i < css_urls.length; i++) {\n const url = css_urls[i];\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n }\n\n for (let i = 0; i < js_urls.length; i++) {\n const url = js_urls[i];\n const element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.7.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.7.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.7.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.7.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.7.3.min.js\"];\n const css_urls = [];\n\n const inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {\n }\n ];\n\n function run_inline_js() {\n if (root.Bokeh !== undefined || force === true) {\n try {\n for (let i = 0; i < inline_js.length; i++) {\n inline_js[i].call(root, root.Bokeh);\n }\n\n } catch (error) {display_loaded(error);throw error;\n }if (force === true) {\n display_loaded();\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n } else if (force !== true) {\n const cell = $(document.getElementById(\"a8f5feeb-6b53-495c-85e4-ed9477aabadd\")).parents('.cell').data().cell;\n cell.output_area.append_execute_result(NB_LOAD_WARNING)\n }\n }\n\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n run_inline_js();\n } else {\n load_libs(css_urls, js_urls, function() {\n console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n run_inline_js();\n });\n }\n}(window));", "application/vnd.bokehjs_load.v0+json": "" }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import numpy as np\n", "import scipy.special\n", "\n", "import bokeh.plotting\n", "import bokeh.io\n", "bokeh.io.output_notebook()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "
\n", "\n", "Sometimes you want to plot smooth functions, as opposed to measured data like we have done so far. To do this, you can use Numpy and/or Scipy to generate arrays of values of smooth functions.\n", "\n", "We will plot the [Airy disk](https://en.wikipedia.org/wiki/Airy_disk), which we encounter in biology when doing microscopy as the diffraction pattern of light passing through a pinhole. Here is a picture of the diffraction pattern from a laser (with the main peak overexposed).\n", "\n", "
\n", "\n", "![Airy disk](airy_disk.png)\n", " \n", "
\n", "\n", "The equation for the radial light intensity of an Airy disk is\n", "\n", "\\begin{align}\n", "\\frac{I(x)}{I_0} = 4 \\left(\\frac{J_1(x)}{x}\\right)^2,\n", "\\end{align}\n", "\n", "where $I_0$ is the maximum intensity (the intensity at the center of the image) and $x$ is the radial distance from the center. Here, $J_1(x)$ is the first order Bessel function of the first kind. Yeesh. How do we plot *that*?\n", "\n", "Fortunately, SciPy has lots of special functions available. Specifically, `scipy.special.j1()` computes exactly what we are after! We pass in a NumPy array that has the values of $x$ we want to plot and then compute the $y$-values using the expression for the normalized intensity.\n", "\n", "To plot a smooth curve, we use the `np.linspace()` function with lots of points. We then connect the points with straight lines, which to the eye look like a smooth curve. Let's try it. We'll use 400 points, which I find is a good rule of thumb for not-too-quickly-oscillating functions." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "# The x-values we want\n", "x = np.linspace(-15, 15, 400)\n", "\n", "# The normalized intensity\n", "norm_I = 4 * (scipy.special.j1(x) / x) ** 2" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now that we have the values we want to plot, we could construct a Pandas `DataFrame` to pass in as the `source` to `p.line()`. We do not need to take this extra step, though. If we instead leave `source` unspecified, and pass in NumPy arrays for `x` and `y`, Bokeh will directly use those in constructing the plot." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "
\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/javascript": "(function(root) {\n function embed_document(root) {\n const docs_json = {\"2adada6f-2227-4e00-ae22-0f09103b9a19\":{\"version\":\"3.7.3\",\"title\":\"Bokeh Application\",\"roots\":[{\"type\":\"object\",\"name\":\"Figure\",\"id\":\"p1003\",\"attributes\":{\"width\":550,\"height\":250,\"x_range\":{\"type\":\"object\",\"name\":\"DataRange1d\",\"id\":\"p1004\"},\"y_range\":{\"type\":\"object\",\"name\":\"DataRange1d\",\"id\":\"p1005\"},\"x_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1012\"},\"y_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1013\"},\"title\":{\"type\":\"object\",\"name\":\"Title\",\"id\":\"p1010\"},\"renderers\":[{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1043\",\"attributes\":{\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1037\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1038\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1039\"},\"data\":{\"type\":\"map\",\"entries\":[[\"x\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAALsCYPWD2gNktwDB7wOwBsy3AyLgg44KMLcBg9oDZA2YtwPgz4c+EPy3AkHFBxgUZLcAor6G8hvIswMDsAbMHzCzAWSpiqYilLMDxZ8KfCX8swImlIpaKWCzAIeOCjAsyLMC5IOOCjAsswFFeQ3kN5SvA6Zujb46+K8CB2QNmD5grwBkXZFyQcSvAsVTEUhFLK8BJkiRJkiQrwOHPhD8T/irAeQ3lNZTXKsARS0UsFbEqwKqIpSKWiirAQsYFGRdkKsDaA2YPmD0qwHJBxgUZFyrACn8m/JnwKcCivIbyGsopwDr65uiboynA0jdH3xx9KcBqdafVnVYpwAKzB8weMCnAmvBnwp8JKcAyLsi4IOMowMprKK+hvCjAYqmIpSKWKMD65uibo28owJIkSZIkSSjAKmKpiKUiKMDCnwl/JvwnwFrdaXWn1SfA8hrKayivJ8CLWCpiqYgnwCOWilgqYifAu9PqTqs7J8BTEUtFLBUnwOtOqzut7ibAg4wLMi7IJsAbymsor6EmwLMHzB4weybAS0UsFbFUJsDjgowLMi4mwHvA7AGzBybAFP5M+DPhJcCsO63utLolwER5DeU1lCXA3LZt27ZtJcB09M3RN0clwAwyLsi4ICXApG+Ovjn6JMA8re60utMkwNTqTqs7rSTAbCivobyGJMAEZg+YPWAkwJyjb46+OSTANOHPhD8TJMDMHjB7wOwjwGRckHFBxiPA/JnwZ8KfI8CU11BeQ3kjwCwVsVTEUiPAxFIRS0UsI8BckHFBxgUjwPTN0TdH3yLAjAsyLsi4IsAlSZIkSZIiwL2G8hrKayLAVcRSEUtFIsDtAbMHzB4iwIU/E/5M+CHAHX1z9M3RIcC1utPqTqshwE34M+HPhCHA5TWU11BeIcB+c/TN0TchwBaxVMRSESHAru60utPqIMBGLBWxVMQgwN5pdafVnSDAdqfVnVZ3IMAO5TWU11AgwKYilopYKiDAPmD2gNkDIMCsO63utLofwNy2bdu2bR/ADDIuyLggH8A8re60utMewGwor6G8hh7AnKNvjr45HsDMHjB7wOwdwP2Z8GfCnx3ALRWxVMRSHcBdkHFBxgUdwI0LMi7IuBzAvYbyGsprHMDtAbMHzB4cwB59c/TN0RvATvgz4c+EG8B+c/TN0TcbwK7utLrT6hrA3ml1p9WdGsAO5TWU11AawD5g9oDZAxrAbtu2bdu2GcCeVnda3WkZwM7RN0ffHBnA/kz4M+HPGMAuyLgg44IYwF5DeQ3lNRjAkL45+uboF8DAOfrm6JsXwPC0utPqThfAIDB7wOwBF8BQqzut7rQWwIAm/JnwZxbAsKG8hvIaFsDgHH1z9M0VwBCYPWD2gBXAQBP+TPgzFcBwjr45+uYUwKAJfyb8mRTA0IQ/E/5MFMAAAAAAAAAUwDB7wOwBsxPAYPaA2QNmE8CQcUHGBRkTwMLsAbMHzBLA8mfCnwl/EsAi44KMCzISwFJeQ3kN5RHAgtkDZg+YEcCyVMRSEUsRwOLPhD8T/hDAEktFLBWxEMBCxgUZF2QQwHJBxgUZFxDARHkN5TWUD8Ckb46+OfoOwARmD5g9YA7AZFyQcUHGDcDEUhFLRSwNwChJkiRJkgzAiD8T/kz4C8DoNZTXUF4LwEgsFbFUxArAqCKWilgqCsAIGRdkXJAJwGgPmD1g9gjAyAUZF2RcCMAo/JnwZ8IHwIjyGsprKAfA6Oibo2+OBsBI3xx9c/QFwKjVnVZ3WgXACMweMHvABMBowp8JfyYEwMi4IOOCjAPAKK+hvIbyAsCMpSKWilgCwOybo2+OvgHATJIkSZIkAcCsiKUilooAwBj+TPgz4f+/2OpOqzut/r+Y11BeQ3n9v1jEUhFLRfy/GLFUxFIR+7/YnVZ3Wt35v5iKWCpiqfi/WHda3Wl1978YZFyQcUH2v9hQXkN5DfW/mD1g9oDZ879gKmKpiKXyvyAXZFyQcfG/4ANmD5g98L9A4c+EPxPuv8C60+pOq+u/QJTXUF5D6b/Abdu2bdvmv0BH3xx9c+S/wCDjgowL4r+A9M3RN0ffv4Cn1Z1Wd9q/gFrdaXWn1b+ADeU1lNfQvwCB2QNmD8i/AM7RN0ffvL8ANOHPhD+jvwA04c+EP6M/gM3RN0ffvD/AgNkDZg/IP2AN5TWU19A/YFrdaXWn1T9gp9WdVnfaP2D0zdE3R98/sCDjgowL4j8wR98cfXPkP7Bt27Zt2+Y/MJTXUF5D6T+wutPqTqvrPzDhz4Q/E+4/0ANmD5g98D8QF2RckHHxP1AqYqmIpfI/kD1g9oDZ8z/QUF5DeQ31PxBkXJBxQfY/UHda3Wl19z+QilgqYqn4P9CdVnda3fk/ELFUxFIR+z9QxFIRS0X8P5DXUF5Def0/0OpOqzut/j8Q/kz4M+H/P6iIpSKWigBASJIkSZIkAUDom6Nvjr4BQIilIpaKWAJAKK+hvIbyAkDIuCDjgowDQGjCnwl/JgRACMweMHvABECo1Z1Wd1oFQEjfHH1z9AVA6Oibo2+OBkCI8hrKaygHQCj8mfBnwgdAwAUZF2RcCEBgD5g9YPYIQAAZF2RckAlAoCKWilgqCkBALBWxVMQKQOA1lNdQXgtAgD8T/kz4C0AgSZIkSZIMQMBSEUtFLA1AYFyQcUHGDUAAZg+YPWAOQKBvjr45+g5AQHkN5TWUD0BwQcYFGRcQQEDGBRkXZBBAEEtFLBWxEEDgz4Q/E/4QQLBUxFIRSxFAgNkDZg+YEUBQXkN5DeURQCDjgowLMhJA8GfCnwl/EkDA7AGzB8wSQJBxQcYFGRNAYPaA2QNmE0Awe8DsAbMTQAAAAAAAABRA0IQ/E/5MFECgCX8m/JkUQHCOvjn65hRAQBP+TPgzFUAQmD1g9oAVQOAcfXP0zRVArKG8hvIaFkB8JvyZ8GcWQEyrO63utBZAHDB7wOwBF0DstLrT6k4XQLw5+ubomxdAjL45+uboF0BcQ3kN5TUYQCzIuCDjghhA/Ez4M+HPGEDM0TdH3xwZQJxWd1rdaRlAbNu2bdu2GUA8YPaA2QMaQAzlNZTXUBpA3Gl1p9WdGkCs7rS60+oaQHxz9M3RNxtATPgz4c+EG0AcfXP0zdEbQOwBswfMHhxAvIbyGsprHECMCzIuyLgcQFyQcUHGBR1ALBWxVMRSHUD8mfBnwp8dQMweMHvA7B1AnKNvjr45HkBsKK+hvIYeQDyt7rS60x5ADDIuyLggH0DYtm3btm0fQKg7re60uh9APGD2gNkDIECkIpaKWCogQAzlNZTXUCBAdKfVnVZ3IEDcaXWn1Z0gQEQsFbFUxCBArO60utPqIEAUsVTEUhEhQHxz9M3RNyFA5DWU11BeIUBM+DPhz4QhQLS60+pOqyFAHH1z9M3RIUCEPxP+TPghQOwBswfMHiJAVMRSEUtFIkC8hvIaymsiQCRJkiRJkiJAjAsyLsi4IkD0zdE3R98iQFyQcUHGBSNAxFIRS0UsI0AsFbFUxFIjQJTXUF5DeSNA/JnwZ8KfI0BkXJBxQcYjQMweMHvA7CNANOHPhD8TJECco2+OvjkkQARmD5g9YCRAbCivobyGJEDS6k6rO60kQDqt7rS60yRAom+Ovjn6JEAKMi7IuCAlQHL0zdE3RyVA2rZt27ZtJUBCeQ3lNZQlQKo7re60uiVAEv5M+DPhJUB6wOwBswcmQOKCjAsyLiZASkUsFbFUJkCyB8weMHsmQBrKayivoSZAgowLMi7IJkDqTqs7re4mQFIRS0UsFSdAutPqTqs7J0AilopYKmInQIpYKmKpiCdA8hrKayivJ0Ba3Wl1p9UnQMKfCX8m/CdAKmKpiKUiKECSJEmSJEkoQPrm6JujbyhAYqmIpSKWKEDKayivobwoQDIuyLgg4yhAmvBnwp8JKUACswfMHjApQGh1p9WdVilA0DdH3xx9KUA4+ubom6MpQKC8hvIayilACH8m/JnwKUBwQcYFGRcqQNgDZg+YPSpAQMYFGRdkKkCoiKUilooqQBBLRSwVsSpAeA3lNZTXKkDgz4Q/E/4qQEiSJEmSJCtAsFTEUhFLK0AYF2RckHErQIDZA2YPmCtA6Jujb46+K0BQXkN5DeUrQLgg44KMCyxAIOOCjAsyLECIpSKWilgsQPBnwp8JfyxAWCpiqYilLEDA7AGzB8wsQCivobyG8ixAkHFBxgUZLUD4M+HPhD8tQGD2gNkDZi1AyLgg44KMLUAwe8DsAbMtQJg9YPaA2S1AAAAAAAAALkA=\"},\"shape\":[400],\"dtype\":\"float64\",\"order\":\"little\"}],[\"y\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"6Y7PzJWBSD/dWgiWah9JP+UQhku2d0k/NM/7R26HST+4sMguG01JPwEduPbtyEg/WdK/Hsz8Rz8JQFeCUuxGPxA+snPOnEU/QHBC9iwVRD/UHF8q4F1CP8mWtjK7gEA/9NUVKIoRPT8skACNBgQ5P+BBbch58jQ/v8epI2/3MD/wmqKnvVsqP+JCwGktYSM/yrFZHHxmGj8ndk3yeQYQP1W0+kEQ9P8+9GUNY5nU5D66Fv/01KGhPgzzON6MnMk+3zwAVhn18j6wMjo6sREIP0Num7KbsRY/K8ssJDpTIj/udayWcuEqP8vY3EvNczI/WKFv+UAgOD8exZF9E18+Pw9RK+CbikI/nSEfnQUSRj+LWju38rRJP3h5Q+NeYU0/D3naPTmCUD881XOkc0VSP8yKs7m58FM/tqS1QJx6VT/NtToLGtpWP2x8oQbYBlg/wDTMuFf5WD9L/M7sKqtZP0loIVMjF1o/ZQzR43w5Wj82xeDiARBaP6nXd38nmlk/MrJ9JSLZWD+EbU++8M9XPxcI00deg1Y/JEeXWPn5VD8E0xtbATxTP4qU3IBJU1E/lc2LTCOWTj+QQGI0q19KP+sjj+kmHkY/dIHywhPuQT+vdHPTvdk7P2BebGKRcDQ/OZNnHv62Kz+p17ni1qYgPxS7bcyrNxA/FI0PRty+8z4ScW/4Vu6gPuMA7Oj47OI+DhcHCxIjCD/r0b3BRocdP/k7gwUxcCs/s+EyOe4ENj/7Jj/BeB1AP7rsHLW5IEY/ELrSpz/6TD+v78WOSElSP0pNbbx8ZlY//Y/itvbDWj+uoX2dx05fPzK6P1UU+WE/4PFKX+1LZD9laeJjSZRmPxYkdKo4xmg/H37pq8HVaj8gp9znJLdsP6Bn7uoiX24/BuN0KEPDbz9mO2saDW1wPyLmwe/GzXA/utgc0ooAcT88fbj1+gJxPwU+/Uy603A/LNjyv4JycD+PtwJPbcBvP/3qdeHZPW4/SeClwO5jbD+yEN4LxTtqPxdSuhPe0Gc/JawVOwgxZT+7aOnuNWxiPxrPi5aNKF8/QqlsloZ5WT+rIXRVF/VTP5x7867rjU0/Lfbz3vw3RD/3TrDxSIU4P6dbdig3Gyg/WMetX3KhDT9a70G0bJ65PoqeHgXo/fw+L9xqLnKsIj+DwBIhdxU3P+jeVcofrkU/wwgtlfGWUT+VOtwAOAlaP1AcXPqxFGI/0ZhSauT0Zz+iKuDYnZluP11joKs7+XI/gPZXEx/1dj9vistniTN7PxM0gWJRpX8/rpNDUp8cgj8CZcj1IG6EP0qVlHjdvIY/ItzAzuX9iD8hhx/82yWLP1nqAQEpKY0/5DQzMTj8jj/K+SKm20mQPyvmeUht8pA/kzzr9NFykT8WPVoclsaRP1BGvtf26ZE/VwmpCQfakT9Mw5Tb05SRPyHwZPiHGZE/Na514oxokD/UJuKFUwePP4M7/yM+3Iw/F6Kz93xZij9iKpbb/IuHP5F1qX8RhIQ/X5CJ94dVgT+hGJVEWy98P7tJCFmVynU/oVuzSz5ybz+HW0LW1HtkPyRnz8R5iFY/8j/G8wmlQT+Nxmt5X2ESP4NykETcrgw/mbiHXq8DQz/GXi2103dcP8Qe2+POpW0/2Uzo8DbheT9jyZh7R1WEP8T31+uZx40/FT65fDO7lD+yKq5FS8ebP0AdS/agDqI/NJ87OVfopj876xD3oHmsP5JXZI4eZbE/lHbM6VXwtD/raRyyBeG4P4oqadL7OL0/kaXFG5v8wD+35mTl6pDDPwbm0bEJWcY/EHOmcRtUyT8Y81xTyIDMP1Ru1Lo63c8/T0p9Q4+z0T/XurbY0I3TPz+i6Se7e9U/qtAx/Wp71z9N6FxLw4rZPzB3yEBwp9s/LAHJBuvO3T+2x3ckfv7fP8Cgzj2lGeE/ozQuaiY14j+wayf1MVDjP4sa+XUraeQ/9OXRLW5+5T8iefqfUI7mP4VB9Ecol+c/CJ1VY02X6D8ha83EHo3pPxO1eqUFd+o/Sc6qaXlT6z+OhBlOAyHsP9nn+/JB3uw/RH5uuuyJ7T8fkFLw1iLuP1dGOrLyp+4/sMy2jlMY7z/QTyzUMHPvP03YOojnt+8/MqnNAfzl7z9diPkgG/3vP12I+SAb/e8/NqnNAfzl7z9L2DqI57fvP85PLNQwc+8/sMy2jlMY7z9fRjqy8qfuPx+QUvDWIu4/R35uuuyJ7T/e5/vyQd7sP4+EGU4DIew/Ts6qaXlT6z8YtXqlBXfqPyZrzcQejek/FJ1VY02X6D+NQfRHKJfnPzF5+p9QjuY//uXRLW5+5T+TGvl1K2nkP7hrJ/UxUOM/rjQuaiY14j/EoM49pRnhP8fHdyR+/t8/OgHJBuvO3T84d8hAcKfbP13oXEvDitk/uNAx/Wp71z9Qouknu3vVP+K6ttjQjdM/W0p9Q4+z0T9ubtS6Ot3PPzLzXFPIgMw/EHOmcRtUyT8G5tGxCVnGP7fmZOXqkMM/kaXFG5v8wD+KKmnS+zi9P+tpHLIF4bg/lHbM6VXwtD+SV2SOHmWxPzvrEPegeaw/dp87OVfopj9+HUv2oA6iPxwrrkVLx5s/bj65fDO7lD9a+NfrmceNP9bJmHtHVYQ/hE3o8DbheT/JH9vjzqVtP3lfLbXTd1w/QbmHXq8DQz/ydZBE3K4MP8HEa3lfYRI/YT/G8wmlQT+zZs/EeYhWP0pbQtbUe2Q/VVuzSz5ybz+RSQhZlcp1P24YlURbL3w/R5CJ94dVgT95dal/EYSEP00qltv8i4c/AqKz93xZij96O/8jPtyMP9Qm4oVTB48/Na514oxokD8h8GT4hxmRP0zDlNvTlJE/VwmpCQfakT9QRr7X9umRPxY9WhyWxpE/kzzr9NFykT8r5nlIbfKQP8r5IqbbSZA/9jQzMTj8jj9u6gEBKSmNPzyHH/zbJYs/O9zAzuX9iD9rlZR43byGPyVlyPUgboQ/0ZNDUp8cgj8qNIFiUaV/P4yKy2eJM3s/mvZXEx/1dj93Y6CrO/lyP9Eq4NidmW4/AplSauT0Zz91HFz6sRRiP9I63AA4CVo/8wgtlfGWUT8w31XKH65FP+zAEiF3FTc/utxqLnKsIj9voB4F6P38Pt3rQbRsnrk+tcatX3KhDT9eW3YoNxsoP8NOsPFIhTg/D/bz3vw3RD96e/Ou641NP6shdFUX9VM/QqlsloZ5WT8az4uWjShfP7to6e41bGI/JawVOwgxZT/xUboT3tBnP5AQ3gvFO2o/L+ClwO5jbD/n6nXh2T1uP3+3Ak9twG8/JNjyv4JycD8BPv1MutNwPzl9uPX6AnE/utgc0ooAcT8m5sHvxs1wP247axoNbXA/EON0KEPDbz+uZ+7qIl9uPymn3Ockt2w/JX7pq8HVaj8kJHSqOMZoP3lp4mNJlGY/7fFKX+1LZD9Buj9VFPlhP8qhfZ3HTl8//Y/itvbDWj9KTW28fGZWP6/vxY5ISVI/ELrSpz/6TD+67By1uSBGP/smP8F4HUA/s+EyOe4ENj/5O4MFMXArP+vRvcFGhx0/DhcHCxIjCD/jAOzo+OziPhJxb/hW7qA+FI0PRty+8z5Vum3MqzcQPyTXueLWpiA/k5JnHv62Kz8BXmxikXA0P0B0c9O92Ts/PIHywhPuQT+xI4/pJh5GP1dAYjSrX0o/Ys2LTCOWTj+MlNyASVNRPwbTG1sBPFM/JkeXWPn5VD8ZCNNHXoNWP4ZtT77wz1c/NLJ9JSLZWD+u13d/J5pZPzbF4OIBEFo/ZwzR43w5Wj9OaCFTIxdaP1D8zuwqq1k/wDTMuFf5WD9sfKEG2AZYP821Ogsa2lY/tqS1QJx6VT/MirO5ufBTPzzVc6RzRVI/D3naPTmCUD94eUPjXmFNP4taO7fytEk/nSEfnQUSRj8PUSvgm4pCP3PFkX0TXz4/pKFv+UAgOD8V2dxLzXMyP2l2rJZy4So/kcssJDpTIj/lbpuym7EWP6EzOjqxEQg/Bz4AVhn18j7U9jjejJzJPr8W//TUoaE+9mUNY5nU5D5YtPpBEPT/Pit2TfJ5BhA/z7FZHHxmGj/jQsBpLWEjP/Saoqe9Wyo/wcepI2/3MD/lQW3IefI0Py+QAI0GBDk/9NUVKIoRPT/MlrYyu4BAP9ccXyrgXUI/RHBC9iwVRD8QPrJzzpxFPwlAV4JS7EY/WdK/Hsz8Rz8BHbj27chIP7iwyC4bTUk/NM/7R26HST/lEIZLtndJP91aCJZqH0k/6Y7PzJWBSD8=\"},\"shape\":[400],\"dtype\":\"float64\",\"order\":\"little\"}]]}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1044\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1045\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1040\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":\"#1f77b4\",\"line_width\":2}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1041\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":\"#1f77b4\",\"line_alpha\":0.1,\"line_width\":2}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1042\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":\"#1f77b4\",\"line_alpha\":0.2,\"line_width\":2}}}}],\"toolbar\":{\"type\":\"object\",\"name\":\"Toolbar\",\"id\":\"p1011\",\"attributes\":{\"tools\":[{\"type\":\"object\",\"name\":\"PanTool\",\"id\":\"p1024\"},{\"type\":\"object\",\"name\":\"WheelZoomTool\",\"id\":\"p1025\",\"attributes\":{\"renderers\":\"auto\"}},{\"type\":\"object\",\"name\":\"BoxZoomTool\",\"id\":\"p1026\",\"attributes\":{\"dimensions\":\"both\",\"overlay\":{\"type\":\"object\",\"name\":\"BoxAnnotation\",\"id\":\"p1027\",\"attributes\":{\"syncable\":false,\"line_color\":\"black\",\"line_alpha\":1.0,\"line_width\":2,\"line_dash\":[4,4],\"fill_color\":\"lightgrey\",\"fill_alpha\":0.5,\"level\":\"overlay\",\"visible\":false,\"left\":{\"type\":\"number\",\"value\":\"nan\"},\"right\":{\"type\":\"number\",\"value\":\"nan\"},\"top\":{\"type\":\"number\",\"value\":\"nan\"},\"bottom\":{\"type\":\"number\",\"value\":\"nan\"},\"left_units\":\"canvas\",\"right_units\":\"canvas\",\"top_units\":\"canvas\",\"bottom_units\":\"canvas\",\"handles\":{\"type\":\"object\",\"name\":\"BoxInteractionHandles\",\"id\":\"p1033\",\"attributes\":{\"all\":{\"type\":\"object\",\"name\":\"AreaVisuals\",\"id\":\"p1032\",\"attributes\":{\"fill_color\":\"white\",\"hover_fill_color\":\"lightgray\"}}}}}}}},{\"type\":\"object\",\"name\":\"SaveTool\",\"id\":\"p1034\"},{\"type\":\"object\",\"name\":\"ResetTool\",\"id\":\"p1035\"},{\"type\":\"object\",\"name\":\"HelpTool\",\"id\":\"p1036\"}]}},\"left\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1019\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1020\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1021\"},\"axis_label\":\"I(x)/I\\u2080\",\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1022\"}}}],\"below\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1014\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1015\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1016\"},\"axis_label\":\"x\",\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1017\"}}}],\"center\":[{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1018\",\"attributes\":{\"axis\":{\"id\":\"p1014\"}}},{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1023\",\"attributes\":{\"dimension\":1,\"axis\":{\"id\":\"p1019\"}}}]}}]}};\n const render_items = [{\"docid\":\"2adada6f-2227-4e00-ae22-0f09103b9a19\",\"roots\":{\"p1003\":\"e38b2437-8db0-4f0b-a648-9bc1c7fa1900\"},\"root_ids\":[\"p1003\"]}];\n void root.Bokeh.embed.embed_items_notebook(docs_json, render_items);\n }\n if (root.Bokeh !== undefined) {\n embed_document(root);\n } else {\n let attempts = 0;\n const timer = setInterval(function(root) {\n if (root.Bokeh !== undefined) {\n clearInterval(timer);\n embed_document(root);\n } else {\n attempts++;\n if (attempts > 100) {\n clearInterval(timer);\n console.log(\"Bokeh: ERROR: Unable to run BokehJS code because BokehJS library is missing\");\n }\n }\n }, 10, root)\n }\n})(window);", "application/vnd.bokehjs_exec.v0+json": "" }, "metadata": { "application/vnd.bokehjs_exec.v0+json": { "id": "p1003" } }, "output_type": "display_data" } ], "source": [ "p = bokeh.plotting.figure(\n", " height=250, \n", " width=550, \n", " x_axis_label=\"x\", \n", " y_axis_label=\"I(x)/I₀\",\n", ")\n", "\n", "p.line(\n", " x=x, \n", " y=norm_I, \n", " line_width=2,\n", ")\n", "\n", "bokeh.io.show(p)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We could also plot dots (which doesn't make sense here, but we'll show it just to see who the line joining works to make a plot of a smooth function)." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "
\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/javascript": "(function(root) {\n function embed_document(root) {\n const docs_json = {\"c52c3e40-218c-4595-b7d9-a1f482c8e9e7\":{\"version\":\"3.7.3\",\"title\":\"Bokeh Application\",\"roots\":[{\"type\":\"object\",\"name\":\"Figure\",\"id\":\"p1003\",\"attributes\":{\"width\":550,\"height\":250,\"x_range\":{\"type\":\"object\",\"name\":\"DataRange1d\",\"id\":\"p1004\"},\"y_range\":{\"type\":\"object\",\"name\":\"DataRange1d\",\"id\":\"p1005\"},\"x_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1012\"},\"y_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1013\"},\"title\":{\"type\":\"object\",\"name\":\"Title\",\"id\":\"p1010\"},\"renderers\":[{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1043\",\"attributes\":{\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1037\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1038\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1039\"},\"data\":{\"type\":\"map\",\"entries\":[[\"x\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAALsCYPWD2gNktwDB7wOwBsy3AyLgg44KMLcBg9oDZA2YtwPgz4c+EPy3AkHFBxgUZLcAor6G8hvIswMDsAbMHzCzAWSpiqYilLMDxZ8KfCX8swImlIpaKWCzAIeOCjAsyLMC5IOOCjAsswFFeQ3kN5SvA6Zujb46+K8CB2QNmD5grwBkXZFyQcSvAsVTEUhFLK8BJkiRJkiQrwOHPhD8T/irAeQ3lNZTXKsARS0UsFbEqwKqIpSKWiirAQsYFGRdkKsDaA2YPmD0qwHJBxgUZFyrACn8m/JnwKcCivIbyGsopwDr65uiboynA0jdH3xx9KcBqdafVnVYpwAKzB8weMCnAmvBnwp8JKcAyLsi4IOMowMprKK+hvCjAYqmIpSKWKMD65uibo28owJIkSZIkSSjAKmKpiKUiKMDCnwl/JvwnwFrdaXWn1SfA8hrKayivJ8CLWCpiqYgnwCOWilgqYifAu9PqTqs7J8BTEUtFLBUnwOtOqzut7ibAg4wLMi7IJsAbymsor6EmwLMHzB4weybAS0UsFbFUJsDjgowLMi4mwHvA7AGzBybAFP5M+DPhJcCsO63utLolwER5DeU1lCXA3LZt27ZtJcB09M3RN0clwAwyLsi4ICXApG+Ovjn6JMA8re60utMkwNTqTqs7rSTAbCivobyGJMAEZg+YPWAkwJyjb46+OSTANOHPhD8TJMDMHjB7wOwjwGRckHFBxiPA/JnwZ8KfI8CU11BeQ3kjwCwVsVTEUiPAxFIRS0UsI8BckHFBxgUjwPTN0TdH3yLAjAsyLsi4IsAlSZIkSZIiwL2G8hrKayLAVcRSEUtFIsDtAbMHzB4iwIU/E/5M+CHAHX1z9M3RIcC1utPqTqshwE34M+HPhCHA5TWU11BeIcB+c/TN0TchwBaxVMRSESHAru60utPqIMBGLBWxVMQgwN5pdafVnSDAdqfVnVZ3IMAO5TWU11AgwKYilopYKiDAPmD2gNkDIMCsO63utLofwNy2bdu2bR/ADDIuyLggH8A8re60utMewGwor6G8hh7AnKNvjr45HsDMHjB7wOwdwP2Z8GfCnx3ALRWxVMRSHcBdkHFBxgUdwI0LMi7IuBzAvYbyGsprHMDtAbMHzB4cwB59c/TN0RvATvgz4c+EG8B+c/TN0TcbwK7utLrT6hrA3ml1p9WdGsAO5TWU11AawD5g9oDZAxrAbtu2bdu2GcCeVnda3WkZwM7RN0ffHBnA/kz4M+HPGMAuyLgg44IYwF5DeQ3lNRjAkL45+uboF8DAOfrm6JsXwPC0utPqThfAIDB7wOwBF8BQqzut7rQWwIAm/JnwZxbAsKG8hvIaFsDgHH1z9M0VwBCYPWD2gBXAQBP+TPgzFcBwjr45+uYUwKAJfyb8mRTA0IQ/E/5MFMAAAAAAAAAUwDB7wOwBsxPAYPaA2QNmE8CQcUHGBRkTwMLsAbMHzBLA8mfCnwl/EsAi44KMCzISwFJeQ3kN5RHAgtkDZg+YEcCyVMRSEUsRwOLPhD8T/hDAEktFLBWxEMBCxgUZF2QQwHJBxgUZFxDARHkN5TWUD8Ckb46+OfoOwARmD5g9YA7AZFyQcUHGDcDEUhFLRSwNwChJkiRJkgzAiD8T/kz4C8DoNZTXUF4LwEgsFbFUxArAqCKWilgqCsAIGRdkXJAJwGgPmD1g9gjAyAUZF2RcCMAo/JnwZ8IHwIjyGsprKAfA6Oibo2+OBsBI3xx9c/QFwKjVnVZ3WgXACMweMHvABMBowp8JfyYEwMi4IOOCjAPAKK+hvIbyAsCMpSKWilgCwOybo2+OvgHATJIkSZIkAcCsiKUilooAwBj+TPgz4f+/2OpOqzut/r+Y11BeQ3n9v1jEUhFLRfy/GLFUxFIR+7/YnVZ3Wt35v5iKWCpiqfi/WHda3Wl1978YZFyQcUH2v9hQXkN5DfW/mD1g9oDZ879gKmKpiKXyvyAXZFyQcfG/4ANmD5g98L9A4c+EPxPuv8C60+pOq+u/QJTXUF5D6b/Abdu2bdvmv0BH3xx9c+S/wCDjgowL4r+A9M3RN0ffv4Cn1Z1Wd9q/gFrdaXWn1b+ADeU1lNfQvwCB2QNmD8i/AM7RN0ffvL8ANOHPhD+jvwA04c+EP6M/gM3RN0ffvD/AgNkDZg/IP2AN5TWU19A/YFrdaXWn1T9gp9WdVnfaP2D0zdE3R98/sCDjgowL4j8wR98cfXPkP7Bt27Zt2+Y/MJTXUF5D6T+wutPqTqvrPzDhz4Q/E+4/0ANmD5g98D8QF2RckHHxP1AqYqmIpfI/kD1g9oDZ8z/QUF5DeQ31PxBkXJBxQfY/UHda3Wl19z+QilgqYqn4P9CdVnda3fk/ELFUxFIR+z9QxFIRS0X8P5DXUF5Def0/0OpOqzut/j8Q/kz4M+H/P6iIpSKWigBASJIkSZIkAUDom6Nvjr4BQIilIpaKWAJAKK+hvIbyAkDIuCDjgowDQGjCnwl/JgRACMweMHvABECo1Z1Wd1oFQEjfHH1z9AVA6Oibo2+OBkCI8hrKaygHQCj8mfBnwgdAwAUZF2RcCEBgD5g9YPYIQAAZF2RckAlAoCKWilgqCkBALBWxVMQKQOA1lNdQXgtAgD8T/kz4C0AgSZIkSZIMQMBSEUtFLA1AYFyQcUHGDUAAZg+YPWAOQKBvjr45+g5AQHkN5TWUD0BwQcYFGRcQQEDGBRkXZBBAEEtFLBWxEEDgz4Q/E/4QQLBUxFIRSxFAgNkDZg+YEUBQXkN5DeURQCDjgowLMhJA8GfCnwl/EkDA7AGzB8wSQJBxQcYFGRNAYPaA2QNmE0Awe8DsAbMTQAAAAAAAABRA0IQ/E/5MFECgCX8m/JkUQHCOvjn65hRAQBP+TPgzFUAQmD1g9oAVQOAcfXP0zRVArKG8hvIaFkB8JvyZ8GcWQEyrO63utBZAHDB7wOwBF0DstLrT6k4XQLw5+ubomxdAjL45+uboF0BcQ3kN5TUYQCzIuCDjghhA/Ez4M+HPGEDM0TdH3xwZQJxWd1rdaRlAbNu2bdu2GUA8YPaA2QMaQAzlNZTXUBpA3Gl1p9WdGkCs7rS60+oaQHxz9M3RNxtATPgz4c+EG0AcfXP0zdEbQOwBswfMHhxAvIbyGsprHECMCzIuyLgcQFyQcUHGBR1ALBWxVMRSHUD8mfBnwp8dQMweMHvA7B1AnKNvjr45HkBsKK+hvIYeQDyt7rS60x5ADDIuyLggH0DYtm3btm0fQKg7re60uh9APGD2gNkDIECkIpaKWCogQAzlNZTXUCBAdKfVnVZ3IEDcaXWn1Z0gQEQsFbFUxCBArO60utPqIEAUsVTEUhEhQHxz9M3RNyFA5DWU11BeIUBM+DPhz4QhQLS60+pOqyFAHH1z9M3RIUCEPxP+TPghQOwBswfMHiJAVMRSEUtFIkC8hvIaymsiQCRJkiRJkiJAjAsyLsi4IkD0zdE3R98iQFyQcUHGBSNAxFIRS0UsI0AsFbFUxFIjQJTXUF5DeSNA/JnwZ8KfI0BkXJBxQcYjQMweMHvA7CNANOHPhD8TJECco2+OvjkkQARmD5g9YCRAbCivobyGJEDS6k6rO60kQDqt7rS60yRAom+Ovjn6JEAKMi7IuCAlQHL0zdE3RyVA2rZt27ZtJUBCeQ3lNZQlQKo7re60uiVAEv5M+DPhJUB6wOwBswcmQOKCjAsyLiZASkUsFbFUJkCyB8weMHsmQBrKayivoSZAgowLMi7IJkDqTqs7re4mQFIRS0UsFSdAutPqTqs7J0AilopYKmInQIpYKmKpiCdA8hrKayivJ0Ba3Wl1p9UnQMKfCX8m/CdAKmKpiKUiKECSJEmSJEkoQPrm6JujbyhAYqmIpSKWKEDKayivobwoQDIuyLgg4yhAmvBnwp8JKUACswfMHjApQGh1p9WdVilA0DdH3xx9KUA4+ubom6MpQKC8hvIayilACH8m/JnwKUBwQcYFGRcqQNgDZg+YPSpAQMYFGRdkKkCoiKUilooqQBBLRSwVsSpAeA3lNZTXKkDgz4Q/E/4qQEiSJEmSJCtAsFTEUhFLK0AYF2RckHErQIDZA2YPmCtA6Jujb46+K0BQXkN5DeUrQLgg44KMCyxAIOOCjAsyLECIpSKWilgsQPBnwp8JfyxAWCpiqYilLEDA7AGzB8wsQCivobyG8ixAkHFBxgUZLUD4M+HPhD8tQGD2gNkDZi1AyLgg44KMLUAwe8DsAbMtQJg9YPaA2S1AAAAAAAAALkA=\"},\"shape\":[400],\"dtype\":\"float64\",\"order\":\"little\"}],[\"y\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"6Y7PzJWBSD/dWgiWah9JP+UQhku2d0k/NM/7R26HST+4sMguG01JPwEduPbtyEg/WdK/Hsz8Rz8JQFeCUuxGPxA+snPOnEU/QHBC9iwVRD/UHF8q4F1CP8mWtjK7gEA/9NUVKIoRPT8skACNBgQ5P+BBbch58jQ/v8epI2/3MD/wmqKnvVsqP+JCwGktYSM/yrFZHHxmGj8ndk3yeQYQP1W0+kEQ9P8+9GUNY5nU5D66Fv/01KGhPgzzON6MnMk+3zwAVhn18j6wMjo6sREIP0Num7KbsRY/K8ssJDpTIj/udayWcuEqP8vY3EvNczI/WKFv+UAgOD8exZF9E18+Pw9RK+CbikI/nSEfnQUSRj+LWju38rRJP3h5Q+NeYU0/D3naPTmCUD881XOkc0VSP8yKs7m58FM/tqS1QJx6VT/NtToLGtpWP2x8oQbYBlg/wDTMuFf5WD9L/M7sKqtZP0loIVMjF1o/ZQzR43w5Wj82xeDiARBaP6nXd38nmlk/MrJ9JSLZWD+EbU++8M9XPxcI00deg1Y/JEeXWPn5VD8E0xtbATxTP4qU3IBJU1E/lc2LTCOWTj+QQGI0q19KP+sjj+kmHkY/dIHywhPuQT+vdHPTvdk7P2BebGKRcDQ/OZNnHv62Kz+p17ni1qYgPxS7bcyrNxA/FI0PRty+8z4ScW/4Vu6gPuMA7Oj47OI+DhcHCxIjCD/r0b3BRocdP/k7gwUxcCs/s+EyOe4ENj/7Jj/BeB1AP7rsHLW5IEY/ELrSpz/6TD+v78WOSElSP0pNbbx8ZlY//Y/itvbDWj+uoX2dx05fPzK6P1UU+WE/4PFKX+1LZD9laeJjSZRmPxYkdKo4xmg/H37pq8HVaj8gp9znJLdsP6Bn7uoiX24/BuN0KEPDbz9mO2saDW1wPyLmwe/GzXA/utgc0ooAcT88fbj1+gJxPwU+/Uy603A/LNjyv4JycD+PtwJPbcBvP/3qdeHZPW4/SeClwO5jbD+yEN4LxTtqPxdSuhPe0Gc/JawVOwgxZT+7aOnuNWxiPxrPi5aNKF8/QqlsloZ5WT+rIXRVF/VTP5x7867rjU0/Lfbz3vw3RD/3TrDxSIU4P6dbdig3Gyg/WMetX3KhDT9a70G0bJ65PoqeHgXo/fw+L9xqLnKsIj+DwBIhdxU3P+jeVcofrkU/wwgtlfGWUT+VOtwAOAlaP1AcXPqxFGI/0ZhSauT0Zz+iKuDYnZluP11joKs7+XI/gPZXEx/1dj9vistniTN7PxM0gWJRpX8/rpNDUp8cgj8CZcj1IG6EP0qVlHjdvIY/ItzAzuX9iD8hhx/82yWLP1nqAQEpKY0/5DQzMTj8jj/K+SKm20mQPyvmeUht8pA/kzzr9NFykT8WPVoclsaRP1BGvtf26ZE/VwmpCQfakT9Mw5Tb05SRPyHwZPiHGZE/Na514oxokD/UJuKFUwePP4M7/yM+3Iw/F6Kz93xZij9iKpbb/IuHP5F1qX8RhIQ/X5CJ94dVgT+hGJVEWy98P7tJCFmVynU/oVuzSz5ybz+HW0LW1HtkPyRnz8R5iFY/8j/G8wmlQT+Nxmt5X2ESP4NykETcrgw/mbiHXq8DQz/GXi2103dcP8Qe2+POpW0/2Uzo8DbheT9jyZh7R1WEP8T31+uZx40/FT65fDO7lD+yKq5FS8ebP0AdS/agDqI/NJ87OVfopj876xD3oHmsP5JXZI4eZbE/lHbM6VXwtD/raRyyBeG4P4oqadL7OL0/kaXFG5v8wD+35mTl6pDDPwbm0bEJWcY/EHOmcRtUyT8Y81xTyIDMP1Ru1Lo63c8/T0p9Q4+z0T/XurbY0I3TPz+i6Se7e9U/qtAx/Wp71z9N6FxLw4rZPzB3yEBwp9s/LAHJBuvO3T+2x3ckfv7fP8Cgzj2lGeE/ozQuaiY14j+wayf1MVDjP4sa+XUraeQ/9OXRLW5+5T8iefqfUI7mP4VB9Ecol+c/CJ1VY02X6D8ha83EHo3pPxO1eqUFd+o/Sc6qaXlT6z+OhBlOAyHsP9nn+/JB3uw/RH5uuuyJ7T8fkFLw1iLuP1dGOrLyp+4/sMy2jlMY7z/QTyzUMHPvP03YOojnt+8/MqnNAfzl7z9diPkgG/3vP12I+SAb/e8/NqnNAfzl7z9L2DqI57fvP85PLNQwc+8/sMy2jlMY7z9fRjqy8qfuPx+QUvDWIu4/R35uuuyJ7T/e5/vyQd7sP4+EGU4DIew/Ts6qaXlT6z8YtXqlBXfqPyZrzcQejek/FJ1VY02X6D+NQfRHKJfnPzF5+p9QjuY//uXRLW5+5T+TGvl1K2nkP7hrJ/UxUOM/rjQuaiY14j/EoM49pRnhP8fHdyR+/t8/OgHJBuvO3T84d8hAcKfbP13oXEvDitk/uNAx/Wp71z9Qouknu3vVP+K6ttjQjdM/W0p9Q4+z0T9ubtS6Ot3PPzLzXFPIgMw/EHOmcRtUyT8G5tGxCVnGP7fmZOXqkMM/kaXFG5v8wD+KKmnS+zi9P+tpHLIF4bg/lHbM6VXwtD+SV2SOHmWxPzvrEPegeaw/dp87OVfopj9+HUv2oA6iPxwrrkVLx5s/bj65fDO7lD9a+NfrmceNP9bJmHtHVYQ/hE3o8DbheT/JH9vjzqVtP3lfLbXTd1w/QbmHXq8DQz/ydZBE3K4MP8HEa3lfYRI/YT/G8wmlQT+zZs/EeYhWP0pbQtbUe2Q/VVuzSz5ybz+RSQhZlcp1P24YlURbL3w/R5CJ94dVgT95dal/EYSEP00qltv8i4c/AqKz93xZij96O/8jPtyMP9Qm4oVTB48/Na514oxokD8h8GT4hxmRP0zDlNvTlJE/VwmpCQfakT9QRr7X9umRPxY9WhyWxpE/kzzr9NFykT8r5nlIbfKQP8r5IqbbSZA/9jQzMTj8jj9u6gEBKSmNPzyHH/zbJYs/O9zAzuX9iD9rlZR43byGPyVlyPUgboQ/0ZNDUp8cgj8qNIFiUaV/P4yKy2eJM3s/mvZXEx/1dj93Y6CrO/lyP9Eq4NidmW4/AplSauT0Zz91HFz6sRRiP9I63AA4CVo/8wgtlfGWUT8w31XKH65FP+zAEiF3FTc/utxqLnKsIj9voB4F6P38Pt3rQbRsnrk+tcatX3KhDT9eW3YoNxsoP8NOsPFIhTg/D/bz3vw3RD96e/Ou641NP6shdFUX9VM/QqlsloZ5WT8az4uWjShfP7to6e41bGI/JawVOwgxZT/xUboT3tBnP5AQ3gvFO2o/L+ClwO5jbD/n6nXh2T1uP3+3Ak9twG8/JNjyv4JycD8BPv1MutNwPzl9uPX6AnE/utgc0ooAcT8m5sHvxs1wP247axoNbXA/EON0KEPDbz+uZ+7qIl9uPymn3Ockt2w/JX7pq8HVaj8kJHSqOMZoP3lp4mNJlGY/7fFKX+1LZD9Buj9VFPlhP8qhfZ3HTl8//Y/itvbDWj9KTW28fGZWP6/vxY5ISVI/ELrSpz/6TD+67By1uSBGP/smP8F4HUA/s+EyOe4ENj/5O4MFMXArP+vRvcFGhx0/DhcHCxIjCD/jAOzo+OziPhJxb/hW7qA+FI0PRty+8z5Vum3MqzcQPyTXueLWpiA/k5JnHv62Kz8BXmxikXA0P0B0c9O92Ts/PIHywhPuQT+xI4/pJh5GP1dAYjSrX0o/Ys2LTCOWTj+MlNyASVNRPwbTG1sBPFM/JkeXWPn5VD8ZCNNHXoNWP4ZtT77wz1c/NLJ9JSLZWD+u13d/J5pZPzbF4OIBEFo/ZwzR43w5Wj9OaCFTIxdaP1D8zuwqq1k/wDTMuFf5WD9sfKEG2AZYP821Ogsa2lY/tqS1QJx6VT/MirO5ufBTPzzVc6RzRVI/D3naPTmCUD94eUPjXmFNP4taO7fytEk/nSEfnQUSRj8PUSvgm4pCP3PFkX0TXz4/pKFv+UAgOD8V2dxLzXMyP2l2rJZy4So/kcssJDpTIj/lbpuym7EWP6EzOjqxEQg/Bz4AVhn18j7U9jjejJzJPr8W//TUoaE+9mUNY5nU5D5YtPpBEPT/Pit2TfJ5BhA/z7FZHHxmGj/jQsBpLWEjP/Saoqe9Wyo/wcepI2/3MD/lQW3IefI0Py+QAI0GBDk/9NUVKIoRPT/MlrYyu4BAP9ccXyrgXUI/RHBC9iwVRD8QPrJzzpxFPwlAV4JS7EY/WdK/Hsz8Rz8BHbj27chIP7iwyC4bTUk/NM/7R26HST/lEIZLtndJP91aCJZqH0k/6Y7PzJWBSD8=\"},\"shape\":[400],\"dtype\":\"float64\",\"order\":\"little\"}]]}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1044\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1045\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1040\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":\"#1f77b4\",\"line_width\":2}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1041\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":\"#1f77b4\",\"line_alpha\":0.1,\"line_width\":2}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1042\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":\"#1f77b4\",\"line_alpha\":0.2,\"line_width\":2}}}},{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1054\",\"attributes\":{\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1048\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1049\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1050\"},\"data\":{\"type\":\"map\",\"entries\":[[\"x\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAALsCYPWD2gNktwDB7wOwBsy3AyLgg44KMLcBg9oDZA2YtwPgz4c+EPy3AkHFBxgUZLcAor6G8hvIswMDsAbMHzCzAWSpiqYilLMDxZ8KfCX8swImlIpaKWCzAIeOCjAsyLMC5IOOCjAsswFFeQ3kN5SvA6Zujb46+K8CB2QNmD5grwBkXZFyQcSvAsVTEUhFLK8BJkiRJkiQrwOHPhD8T/irAeQ3lNZTXKsARS0UsFbEqwKqIpSKWiirAQsYFGRdkKsDaA2YPmD0qwHJBxgUZFyrACn8m/JnwKcCivIbyGsopwDr65uiboynA0jdH3xx9KcBqdafVnVYpwAKzB8weMCnAmvBnwp8JKcAyLsi4IOMowMprKK+hvCjAYqmIpSKWKMD65uibo28owJIkSZIkSSjAKmKpiKUiKMDCnwl/JvwnwFrdaXWn1SfA8hrKayivJ8CLWCpiqYgnwCOWilgqYifAu9PqTqs7J8BTEUtFLBUnwOtOqzut7ibAg4wLMi7IJsAbymsor6EmwLMHzB4weybAS0UsFbFUJsDjgowLMi4mwHvA7AGzBybAFP5M+DPhJcCsO63utLolwER5DeU1lCXA3LZt27ZtJcB09M3RN0clwAwyLsi4ICXApG+Ovjn6JMA8re60utMkwNTqTqs7rSTAbCivobyGJMAEZg+YPWAkwJyjb46+OSTANOHPhD8TJMDMHjB7wOwjwGRckHFBxiPA/JnwZ8KfI8CU11BeQ3kjwCwVsVTEUiPAxFIRS0UsI8BckHFBxgUjwPTN0TdH3yLAjAsyLsi4IsAlSZIkSZIiwL2G8hrKayLAVcRSEUtFIsDtAbMHzB4iwIU/E/5M+CHAHX1z9M3RIcC1utPqTqshwE34M+HPhCHA5TWU11BeIcB+c/TN0TchwBaxVMRSESHAru60utPqIMBGLBWxVMQgwN5pdafVnSDAdqfVnVZ3IMAO5TWU11AgwKYilopYKiDAPmD2gNkDIMCsO63utLofwNy2bdu2bR/ADDIuyLggH8A8re60utMewGwor6G8hh7AnKNvjr45HsDMHjB7wOwdwP2Z8GfCnx3ALRWxVMRSHcBdkHFBxgUdwI0LMi7IuBzAvYbyGsprHMDtAbMHzB4cwB59c/TN0RvATvgz4c+EG8B+c/TN0TcbwK7utLrT6hrA3ml1p9WdGsAO5TWU11AawD5g9oDZAxrAbtu2bdu2GcCeVnda3WkZwM7RN0ffHBnA/kz4M+HPGMAuyLgg44IYwF5DeQ3lNRjAkL45+uboF8DAOfrm6JsXwPC0utPqThfAIDB7wOwBF8BQqzut7rQWwIAm/JnwZxbAsKG8hvIaFsDgHH1z9M0VwBCYPWD2gBXAQBP+TPgzFcBwjr45+uYUwKAJfyb8mRTA0IQ/E/5MFMAAAAAAAAAUwDB7wOwBsxPAYPaA2QNmE8CQcUHGBRkTwMLsAbMHzBLA8mfCnwl/EsAi44KMCzISwFJeQ3kN5RHAgtkDZg+YEcCyVMRSEUsRwOLPhD8T/hDAEktFLBWxEMBCxgUZF2QQwHJBxgUZFxDARHkN5TWUD8Ckb46+OfoOwARmD5g9YA7AZFyQcUHGDcDEUhFLRSwNwChJkiRJkgzAiD8T/kz4C8DoNZTXUF4LwEgsFbFUxArAqCKWilgqCsAIGRdkXJAJwGgPmD1g9gjAyAUZF2RcCMAo/JnwZ8IHwIjyGsprKAfA6Oibo2+OBsBI3xx9c/QFwKjVnVZ3WgXACMweMHvABMBowp8JfyYEwMi4IOOCjAPAKK+hvIbyAsCMpSKWilgCwOybo2+OvgHATJIkSZIkAcCsiKUilooAwBj+TPgz4f+/2OpOqzut/r+Y11BeQ3n9v1jEUhFLRfy/GLFUxFIR+7/YnVZ3Wt35v5iKWCpiqfi/WHda3Wl1978YZFyQcUH2v9hQXkN5DfW/mD1g9oDZ879gKmKpiKXyvyAXZFyQcfG/4ANmD5g98L9A4c+EPxPuv8C60+pOq+u/QJTXUF5D6b/Abdu2bdvmv0BH3xx9c+S/wCDjgowL4r+A9M3RN0ffv4Cn1Z1Wd9q/gFrdaXWn1b+ADeU1lNfQvwCB2QNmD8i/AM7RN0ffvL8ANOHPhD+jvwA04c+EP6M/gM3RN0ffvD/AgNkDZg/IP2AN5TWU19A/YFrdaXWn1T9gp9WdVnfaP2D0zdE3R98/sCDjgowL4j8wR98cfXPkP7Bt27Zt2+Y/MJTXUF5D6T+wutPqTqvrPzDhz4Q/E+4/0ANmD5g98D8QF2RckHHxP1AqYqmIpfI/kD1g9oDZ8z/QUF5DeQ31PxBkXJBxQfY/UHda3Wl19z+QilgqYqn4P9CdVnda3fk/ELFUxFIR+z9QxFIRS0X8P5DXUF5Def0/0OpOqzut/j8Q/kz4M+H/P6iIpSKWigBASJIkSZIkAUDom6Nvjr4BQIilIpaKWAJAKK+hvIbyAkDIuCDjgowDQGjCnwl/JgRACMweMHvABECo1Z1Wd1oFQEjfHH1z9AVA6Oibo2+OBkCI8hrKaygHQCj8mfBnwgdAwAUZF2RcCEBgD5g9YPYIQAAZF2RckAlAoCKWilgqCkBALBWxVMQKQOA1lNdQXgtAgD8T/kz4C0AgSZIkSZIMQMBSEUtFLA1AYFyQcUHGDUAAZg+YPWAOQKBvjr45+g5AQHkN5TWUD0BwQcYFGRcQQEDGBRkXZBBAEEtFLBWxEEDgz4Q/E/4QQLBUxFIRSxFAgNkDZg+YEUBQXkN5DeURQCDjgowLMhJA8GfCnwl/EkDA7AGzB8wSQJBxQcYFGRNAYPaA2QNmE0Awe8DsAbMTQAAAAAAAABRA0IQ/E/5MFECgCX8m/JkUQHCOvjn65hRAQBP+TPgzFUAQmD1g9oAVQOAcfXP0zRVArKG8hvIaFkB8JvyZ8GcWQEyrO63utBZAHDB7wOwBF0DstLrT6k4XQLw5+ubomxdAjL45+uboF0BcQ3kN5TUYQCzIuCDjghhA/Ez4M+HPGEDM0TdH3xwZQJxWd1rdaRlAbNu2bdu2GUA8YPaA2QMaQAzlNZTXUBpA3Gl1p9WdGkCs7rS60+oaQHxz9M3RNxtATPgz4c+EG0AcfXP0zdEbQOwBswfMHhxAvIbyGsprHECMCzIuyLgcQFyQcUHGBR1ALBWxVMRSHUD8mfBnwp8dQMweMHvA7B1AnKNvjr45HkBsKK+hvIYeQDyt7rS60x5ADDIuyLggH0DYtm3btm0fQKg7re60uh9APGD2gNkDIECkIpaKWCogQAzlNZTXUCBAdKfVnVZ3IEDcaXWn1Z0gQEQsFbFUxCBArO60utPqIEAUsVTEUhEhQHxz9M3RNyFA5DWU11BeIUBM+DPhz4QhQLS60+pOqyFAHH1z9M3RIUCEPxP+TPghQOwBswfMHiJAVMRSEUtFIkC8hvIaymsiQCRJkiRJkiJAjAsyLsi4IkD0zdE3R98iQFyQcUHGBSNAxFIRS0UsI0AsFbFUxFIjQJTXUF5DeSNA/JnwZ8KfI0BkXJBxQcYjQMweMHvA7CNANOHPhD8TJECco2+OvjkkQARmD5g9YCRAbCivobyGJEDS6k6rO60kQDqt7rS60yRAom+Ovjn6JEAKMi7IuCAlQHL0zdE3RyVA2rZt27ZtJUBCeQ3lNZQlQKo7re60uiVAEv5M+DPhJUB6wOwBswcmQOKCjAsyLiZASkUsFbFUJkCyB8weMHsmQBrKayivoSZAgowLMi7IJkDqTqs7re4mQFIRS0UsFSdAutPqTqs7J0AilopYKmInQIpYKmKpiCdA8hrKayivJ0Ba3Wl1p9UnQMKfCX8m/CdAKmKpiKUiKECSJEmSJEkoQPrm6JujbyhAYqmIpSKWKEDKayivobwoQDIuyLgg4yhAmvBnwp8JKUACswfMHjApQGh1p9WdVilA0DdH3xx9KUA4+ubom6MpQKC8hvIayilACH8m/JnwKUBwQcYFGRcqQNgDZg+YPSpAQMYFGRdkKkCoiKUilooqQBBLRSwVsSpAeA3lNZTXKkDgz4Q/E/4qQEiSJEmSJCtAsFTEUhFLK0AYF2RckHErQIDZA2YPmCtA6Jujb46+K0BQXkN5DeUrQLgg44KMCyxAIOOCjAsyLECIpSKWilgsQPBnwp8JfyxAWCpiqYilLEDA7AGzB8wsQCivobyG8ixAkHFBxgUZLUD4M+HPhD8tQGD2gNkDZi1AyLgg44KMLUAwe8DsAbMtQJg9YPaA2S1AAAAAAAAALkA=\"},\"shape\":[400],\"dtype\":\"float64\",\"order\":\"little\"}],[\"y\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"6Y7PzJWBSD/dWgiWah9JP+UQhku2d0k/NM/7R26HST+4sMguG01JPwEduPbtyEg/WdK/Hsz8Rz8JQFeCUuxGPxA+snPOnEU/QHBC9iwVRD/UHF8q4F1CP8mWtjK7gEA/9NUVKIoRPT8skACNBgQ5P+BBbch58jQ/v8epI2/3MD/wmqKnvVsqP+JCwGktYSM/yrFZHHxmGj8ndk3yeQYQP1W0+kEQ9P8+9GUNY5nU5D66Fv/01KGhPgzzON6MnMk+3zwAVhn18j6wMjo6sREIP0Num7KbsRY/K8ssJDpTIj/udayWcuEqP8vY3EvNczI/WKFv+UAgOD8exZF9E18+Pw9RK+CbikI/nSEfnQUSRj+LWju38rRJP3h5Q+NeYU0/D3naPTmCUD881XOkc0VSP8yKs7m58FM/tqS1QJx6VT/NtToLGtpWP2x8oQbYBlg/wDTMuFf5WD9L/M7sKqtZP0loIVMjF1o/ZQzR43w5Wj82xeDiARBaP6nXd38nmlk/MrJ9JSLZWD+EbU++8M9XPxcI00deg1Y/JEeXWPn5VD8E0xtbATxTP4qU3IBJU1E/lc2LTCOWTj+QQGI0q19KP+sjj+kmHkY/dIHywhPuQT+vdHPTvdk7P2BebGKRcDQ/OZNnHv62Kz+p17ni1qYgPxS7bcyrNxA/FI0PRty+8z4ScW/4Vu6gPuMA7Oj47OI+DhcHCxIjCD/r0b3BRocdP/k7gwUxcCs/s+EyOe4ENj/7Jj/BeB1AP7rsHLW5IEY/ELrSpz/6TD+v78WOSElSP0pNbbx8ZlY//Y/itvbDWj+uoX2dx05fPzK6P1UU+WE/4PFKX+1LZD9laeJjSZRmPxYkdKo4xmg/H37pq8HVaj8gp9znJLdsP6Bn7uoiX24/BuN0KEPDbz9mO2saDW1wPyLmwe/GzXA/utgc0ooAcT88fbj1+gJxPwU+/Uy603A/LNjyv4JycD+PtwJPbcBvP/3qdeHZPW4/SeClwO5jbD+yEN4LxTtqPxdSuhPe0Gc/JawVOwgxZT+7aOnuNWxiPxrPi5aNKF8/QqlsloZ5WT+rIXRVF/VTP5x7867rjU0/Lfbz3vw3RD/3TrDxSIU4P6dbdig3Gyg/WMetX3KhDT9a70G0bJ65PoqeHgXo/fw+L9xqLnKsIj+DwBIhdxU3P+jeVcofrkU/wwgtlfGWUT+VOtwAOAlaP1AcXPqxFGI/0ZhSauT0Zz+iKuDYnZluP11joKs7+XI/gPZXEx/1dj9vistniTN7PxM0gWJRpX8/rpNDUp8cgj8CZcj1IG6EP0qVlHjdvIY/ItzAzuX9iD8hhx/82yWLP1nqAQEpKY0/5DQzMTj8jj/K+SKm20mQPyvmeUht8pA/kzzr9NFykT8WPVoclsaRP1BGvtf26ZE/VwmpCQfakT9Mw5Tb05SRPyHwZPiHGZE/Na514oxokD/UJuKFUwePP4M7/yM+3Iw/F6Kz93xZij9iKpbb/IuHP5F1qX8RhIQ/X5CJ94dVgT+hGJVEWy98P7tJCFmVynU/oVuzSz5ybz+HW0LW1HtkPyRnz8R5iFY/8j/G8wmlQT+Nxmt5X2ESP4NykETcrgw/mbiHXq8DQz/GXi2103dcP8Qe2+POpW0/2Uzo8DbheT9jyZh7R1WEP8T31+uZx40/FT65fDO7lD+yKq5FS8ebP0AdS/agDqI/NJ87OVfopj876xD3oHmsP5JXZI4eZbE/lHbM6VXwtD/raRyyBeG4P4oqadL7OL0/kaXFG5v8wD+35mTl6pDDPwbm0bEJWcY/EHOmcRtUyT8Y81xTyIDMP1Ru1Lo63c8/T0p9Q4+z0T/XurbY0I3TPz+i6Se7e9U/qtAx/Wp71z9N6FxLw4rZPzB3yEBwp9s/LAHJBuvO3T+2x3ckfv7fP8Cgzj2lGeE/ozQuaiY14j+wayf1MVDjP4sa+XUraeQ/9OXRLW5+5T8iefqfUI7mP4VB9Ecol+c/CJ1VY02X6D8ha83EHo3pPxO1eqUFd+o/Sc6qaXlT6z+OhBlOAyHsP9nn+/JB3uw/RH5uuuyJ7T8fkFLw1iLuP1dGOrLyp+4/sMy2jlMY7z/QTyzUMHPvP03YOojnt+8/MqnNAfzl7z9diPkgG/3vP12I+SAb/e8/NqnNAfzl7z9L2DqI57fvP85PLNQwc+8/sMy2jlMY7z9fRjqy8qfuPx+QUvDWIu4/R35uuuyJ7T/e5/vyQd7sP4+EGU4DIew/Ts6qaXlT6z8YtXqlBXfqPyZrzcQejek/FJ1VY02X6D+NQfRHKJfnPzF5+p9QjuY//uXRLW5+5T+TGvl1K2nkP7hrJ/UxUOM/rjQuaiY14j/EoM49pRnhP8fHdyR+/t8/OgHJBuvO3T84d8hAcKfbP13oXEvDitk/uNAx/Wp71z9Qouknu3vVP+K6ttjQjdM/W0p9Q4+z0T9ubtS6Ot3PPzLzXFPIgMw/EHOmcRtUyT8G5tGxCVnGP7fmZOXqkMM/kaXFG5v8wD+KKmnS+zi9P+tpHLIF4bg/lHbM6VXwtD+SV2SOHmWxPzvrEPegeaw/dp87OVfopj9+HUv2oA6iPxwrrkVLx5s/bj65fDO7lD9a+NfrmceNP9bJmHtHVYQ/hE3o8DbheT/JH9vjzqVtP3lfLbXTd1w/QbmHXq8DQz/ydZBE3K4MP8HEa3lfYRI/YT/G8wmlQT+zZs/EeYhWP0pbQtbUe2Q/VVuzSz5ybz+RSQhZlcp1P24YlURbL3w/R5CJ94dVgT95dal/EYSEP00qltv8i4c/AqKz93xZij96O/8jPtyMP9Qm4oVTB48/Na514oxokD8h8GT4hxmRP0zDlNvTlJE/VwmpCQfakT9QRr7X9umRPxY9WhyWxpE/kzzr9NFykT8r5nlIbfKQP8r5IqbbSZA/9jQzMTj8jj9u6gEBKSmNPzyHH/zbJYs/O9zAzuX9iD9rlZR43byGPyVlyPUgboQ/0ZNDUp8cgj8qNIFiUaV/P4yKy2eJM3s/mvZXEx/1dj93Y6CrO/lyP9Eq4NidmW4/AplSauT0Zz91HFz6sRRiP9I63AA4CVo/8wgtlfGWUT8w31XKH65FP+zAEiF3FTc/utxqLnKsIj9voB4F6P38Pt3rQbRsnrk+tcatX3KhDT9eW3YoNxsoP8NOsPFIhTg/D/bz3vw3RD96e/Ou641NP6shdFUX9VM/QqlsloZ5WT8az4uWjShfP7to6e41bGI/JawVOwgxZT/xUboT3tBnP5AQ3gvFO2o/L+ClwO5jbD/n6nXh2T1uP3+3Ak9twG8/JNjyv4JycD8BPv1MutNwPzl9uPX6AnE/utgc0ooAcT8m5sHvxs1wP247axoNbXA/EON0KEPDbz+uZ+7qIl9uPymn3Ockt2w/JX7pq8HVaj8kJHSqOMZoP3lp4mNJlGY/7fFKX+1LZD9Buj9VFPlhP8qhfZ3HTl8//Y/itvbDWj9KTW28fGZWP6/vxY5ISVI/ELrSpz/6TD+67By1uSBGP/smP8F4HUA/s+EyOe4ENj/5O4MFMXArP+vRvcFGhx0/DhcHCxIjCD/jAOzo+OziPhJxb/hW7qA+FI0PRty+8z5Vum3MqzcQPyTXueLWpiA/k5JnHv62Kz8BXmxikXA0P0B0c9O92Ts/PIHywhPuQT+xI4/pJh5GP1dAYjSrX0o/Ys2LTCOWTj+MlNyASVNRPwbTG1sBPFM/JkeXWPn5VD8ZCNNHXoNWP4ZtT77wz1c/NLJ9JSLZWD+u13d/J5pZPzbF4OIBEFo/ZwzR43w5Wj9OaCFTIxdaP1D8zuwqq1k/wDTMuFf5WD9sfKEG2AZYP821Ogsa2lY/tqS1QJx6VT/MirO5ufBTPzzVc6RzRVI/D3naPTmCUD94eUPjXmFNP4taO7fytEk/nSEfnQUSRj8PUSvgm4pCP3PFkX0TXz4/pKFv+UAgOD8V2dxLzXMyP2l2rJZy4So/kcssJDpTIj/lbpuym7EWP6EzOjqxEQg/Bz4AVhn18j7U9jjejJzJPr8W//TUoaE+9mUNY5nU5D5YtPpBEPT/Pit2TfJ5BhA/z7FZHHxmGj/jQsBpLWEjP/Saoqe9Wyo/wcepI2/3MD/lQW3IefI0Py+QAI0GBDk/9NUVKIoRPT/MlrYyu4BAP9ccXyrgXUI/RHBC9iwVRD8QPrJzzpxFPwlAV4JS7EY/WdK/Hsz8Rz8BHbj27chIP7iwyC4bTUk/NM/7R26HST/lEIZLtndJP91aCJZqH0k/6Y7PzJWBSD8=\"},\"shape\":[400],\"dtype\":\"float64\",\"order\":\"little\"}]]}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1055\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1056\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Scatter\",\"id\":\"p1051\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"size\":{\"type\":\"value\",\"value\":2},\"line_color\":{\"type\":\"value\",\"value\":\"orange\"},\"fill_color\":{\"type\":\"value\",\"value\":\"orange\"},\"hatch_color\":{\"type\":\"value\",\"value\":\"orange\"}}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Scatter\",\"id\":\"p1052\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"size\":{\"type\":\"value\",\"value\":2},\"line_color\":{\"type\":\"value\",\"value\":\"orange\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.1},\"fill_color\":{\"type\":\"value\",\"value\":\"orange\"},\"fill_alpha\":{\"type\":\"value\",\"value\":0.1},\"hatch_color\":{\"type\":\"value\",\"value\":\"orange\"},\"hatch_alpha\":{\"type\":\"value\",\"value\":0.1}}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Scatter\",\"id\":\"p1053\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"size\":{\"type\":\"value\",\"value\":2},\"line_color\":{\"type\":\"value\",\"value\":\"orange\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.2},\"fill_color\":{\"type\":\"value\",\"value\":\"orange\"},\"fill_alpha\":{\"type\":\"value\",\"value\":0.2},\"hatch_color\":{\"type\":\"value\",\"value\":\"orange\"},\"hatch_alpha\":{\"type\":\"value\",\"value\":0.2}}}}}],\"toolbar\":{\"type\":\"object\",\"name\":\"Toolbar\",\"id\":\"p1011\",\"attributes\":{\"tools\":[{\"type\":\"object\",\"name\":\"PanTool\",\"id\":\"p1024\"},{\"type\":\"object\",\"name\":\"WheelZoomTool\",\"id\":\"p1025\",\"attributes\":{\"renderers\":\"auto\"}},{\"type\":\"object\",\"name\":\"BoxZoomTool\",\"id\":\"p1026\",\"attributes\":{\"dimensions\":\"both\",\"overlay\":{\"type\":\"object\",\"name\":\"BoxAnnotation\",\"id\":\"p1027\",\"attributes\":{\"syncable\":false,\"line_color\":\"black\",\"line_alpha\":1.0,\"line_width\":2,\"line_dash\":[4,4],\"fill_color\":\"lightgrey\",\"fill_alpha\":0.5,\"level\":\"overlay\",\"visible\":false,\"left\":{\"type\":\"number\",\"value\":\"nan\"},\"right\":{\"type\":\"number\",\"value\":\"nan\"},\"top\":{\"type\":\"number\",\"value\":\"nan\"},\"bottom\":{\"type\":\"number\",\"value\":\"nan\"},\"left_units\":\"canvas\",\"right_units\":\"canvas\",\"top_units\":\"canvas\",\"bottom_units\":\"canvas\",\"handles\":{\"type\":\"object\",\"name\":\"BoxInteractionHandles\",\"id\":\"p1033\",\"attributes\":{\"all\":{\"type\":\"object\",\"name\":\"AreaVisuals\",\"id\":\"p1032\",\"attributes\":{\"fill_color\":\"white\",\"hover_fill_color\":\"lightgray\"}}}}}}}},{\"type\":\"object\",\"name\":\"SaveTool\",\"id\":\"p1034\"},{\"type\":\"object\",\"name\":\"ResetTool\",\"id\":\"p1035\"},{\"type\":\"object\",\"name\":\"HelpTool\",\"id\":\"p1036\"}]}},\"left\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1019\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1020\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1021\"},\"axis_label\":\"I(x)/I\\u2080\",\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1022\"}}}],\"below\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1014\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1015\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1016\"},\"axis_label\":\"x\",\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1017\"}}}],\"center\":[{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1018\",\"attributes\":{\"axis\":{\"id\":\"p1014\"}}},{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1023\",\"attributes\":{\"dimension\":1,\"axis\":{\"id\":\"p1019\"}}}]}}]}};\n const render_items = [{\"docid\":\"c52c3e40-218c-4595-b7d9-a1f482c8e9e7\",\"roots\":{\"p1003\":\"ff081dd1-e6fd-48b3-9197-5f350cbc5514\"},\"root_ids\":[\"p1003\"]}];\n void root.Bokeh.embed.embed_items_notebook(docs_json, render_items);\n }\n if (root.Bokeh !== undefined) {\n embed_document(root);\n } else {\n let attempts = 0;\n const timer = setInterval(function(root) {\n if (root.Bokeh !== undefined) {\n clearInterval(timer);\n embed_document(root);\n } else {\n attempts++;\n if (attempts > 100) {\n clearInterval(timer);\n console.log(\"Bokeh: ERROR: Unable to run BokehJS code because BokehJS library is missing\");\n }\n }\n }, 10, root)\n }\n})(window);", "application/vnd.bokehjs_exec.v0+json": "" }, "metadata": { "application/vnd.bokehjs_exec.v0+json": { "id": "p1003" } }, "output_type": "display_data" } ], "source": [ "p.scatter(\n", " x=x, \n", " y=norm_I, \n", " size=2, \n", " color=\"orange\"\n", ")\n", "\n", "bokeh.io.show(p)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "There is one detail I swept under the rug here. What happens if we compute the function for $x = 0$?" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/var/folders/8h/qwnxpqcx6vldhxr71n1582d00000gn/T/ipykernel_74974/557033242.py:1: RuntimeWarning: invalid value encountered in scalar divide\n", " 4 * (scipy.special.j1(0) / 0) ** 2\n" ] }, { "data": { "text/plain": [ "np.float64(nan)" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "4 * (scipy.special.j1(0) / 0) ** 2" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We get a `RuntimeWarning` because we divided by zero. We know that\n", "\n", "\\begin{align}\n", "\\lim_{x\\to 0} \\frac{J_1(x)}{x} = \\frac{1}{2},\n", "\\end{align}\n", "\n", "so we could write a new function that checks if $x = 0$ and returns the appropriate limit for $x = 0$. In the `x` array I constructed for the plot, we hopped over zero, so it was never evaluated. If we were being careful, we could write our own Airy function that deals with this." ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "def airy_disk(x):\n", " \"\"\"Compute the Airy disk.\"\"\"\n", " # Set up output array\n", " res = np.empty_like(x)\n", "\n", " # Where x is very close to zero (use np.isclose)\n", " near_zero = np.isclose(x, 0)\n", "\n", " # Compute values where x is close to zero\n", " res[near_zero] = 1.0\n", "\n", " # Everywhere else\n", " x_vals = x[~near_zero]\n", " res[~near_zero] = 4 * (scipy.special.j1(x_vals) / x_vals) ** 2\n", "\n", " return res" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Computing environment" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Python implementation: CPython\n", "Python version : 3.13.7\n", "IPython version : 9.5.0\n", "\n", "numpy : 2.2.6\n", "scipy : 1.16.1\n", "bokeh : 3.7.3\n", "jupyterlab: 4.4.7\n", "\n" ] } ], "source": [ "%load_ext watermark\n", "%watermark -v -p numpy,scipy,bokeh,jupyterlab" ] } ], "metadata": { "kernelspec": { "display_name": "default", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.13.7" } }, "nbformat": 4, "nbformat_minor": 4 }