{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Homework 5.1: MCMC with Boolean data with Stan (25 pts)\n",
"\n",
"
"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**a)** In [Problem 4.1](../04/hw4.1.ipynb), you got samples out of a bivariate Normal distribution with mean $\\boldsymbol{\\mu} = (10, 20)$ and a covariance matrix of\n",
"\n",
"\\begin{align}\n",
"\\mathsf{\\Sigma} = \\begin{pmatrix}\n",
"4 & -2 \\\\\n",
"-2 & 6\n",
"\\end{pmatrix}\n",
"\\end{align}\n",
"\n",
"using your own sampler. Now, draw 1000 samples out of that distribution using Stan and plot the samples. First do it using Stan's built-in random number generator. Then, do it using Stan's MCMC sampler.\n",
"\n",
"**b)** In [Problem 4.2](../04/hw4.2.ipynb) part (c), we asked you to do the problem using Stan for practice. Now it is real! Repeat [Problem 4.2](../04/hw4.2.ipynb), but use Stan to do it. You do not need to do prior predictive checks nor posterior predictive checks for this problem; you may simply acquire the necessary samples."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.5"
}
},
"nbformat": 4,
"nbformat_minor": 4
}