{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# 23. Introduction to Gaussian processes\n", "\n", "[Data set download](https://s3.amazonaws.com/bebi103.caltech.edu/data/wolfenden_arrhenius.csv)\n", "\n", "
" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "nbsphinx": "hidden", "tags": [] }, "outputs": [], "source": [ "# Colab setup ------------------\n", "import os, shutil, sys, subprocess, urllib.request\n", "if \"google.colab\" in sys.modules:\n", " cmd = \"pip install --upgrade iqplot colorcet bebi103 arviz cmdstanpy watermark\"\n", " process = subprocess.Popen(cmd.split(), stdout=subprocess.PIPE, stderr=subprocess.PIPE)\n", " stdout, stderr = process.communicate()\n", " from cmdstanpy.install_cmdstan import latest_version\n", " cmdstan_version = latest_version()\n", " cmdstan_url = f\"https://github.com/stan-dev/cmdstan/releases/download/v{cmdstan_version}/\"\n", " fname = f\"colab-cmdstan-{cmdstan_version}.tgz\"\n", " urllib.request.urlretrieve(cmdstan_url + fname, fname)\n", " shutil.unpack_archive(fname)\n", " os.environ[\"CMDSTAN\"] = f\"./cmdstan-{cmdstan_version}\"\n", " data_path = \"https://s3.amazonaws.com/bebi103.caltech.edu/data/\"\n", "else:\n", " data_path = \"../data/\"\n", "# ------------------------------" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "
\n", " \n", " Loading BokehJS ...\n", "
\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/javascript": [ "(function(root) {\n", " function now() {\n", " return new Date();\n", " }\n", "\n", " const force = true;\n", "\n", " if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n", " root._bokeh_onload_callbacks = [];\n", " root._bokeh_is_loading = undefined;\n", " }\n", "\n", "const JS_MIME_TYPE = 'application/javascript';\n", " const HTML_MIME_TYPE = 'text/html';\n", " const EXEC_MIME_TYPE = 'application/vnd.bokehjs_exec.v0+json';\n", " const CLASS_NAME = 'output_bokeh rendered_html';\n", "\n", " /**\n", " * Render data to the DOM node\n", " */\n", " function render(props, node) {\n", " const script = document.createElement(\"script\");\n", " node.appendChild(script);\n", " }\n", "\n", " /**\n", " * Handle when an output is cleared or removed\n", " */\n", " function handleClearOutput(event, handle) {\n", " function drop(id) {\n", " const view = Bokeh.index.get_by_id(id)\n", " if (view != null) {\n", " view.model.document.clear()\n", " Bokeh.index.delete(view)\n", " }\n", " }\n", "\n", " const cell = handle.cell;\n", "\n", " const id = cell.output_area._bokeh_element_id;\n", " const server_id = cell.output_area._bokeh_server_id;\n", "\n", " // Clean up Bokeh references\n", " if (id != null) {\n", " drop(id)\n", " }\n", "\n", " if (server_id !== undefined) {\n", " // Clean up Bokeh references\n", " const cmd_clean = \"from bokeh.io.state import curstate; print(curstate().uuid_to_server['\" + server_id + \"'].get_sessions()[0].document.roots[0]._id)\";\n", " cell.notebook.kernel.execute(cmd_clean, {\n", " iopub: {\n", " output: function(msg) {\n", " const id = msg.content.text.trim()\n", " drop(id)\n", " }\n", " }\n", " });\n", " // Destroy server and session\n", " const cmd_destroy = \"import bokeh.io.notebook as ion; ion.destroy_server('\" + server_id + \"')\";\n", " cell.notebook.kernel.execute(cmd_destroy);\n", " }\n", " }\n", "\n", " /**\n", " * Handle when a new output is added\n", " */\n", " function handleAddOutput(event, handle) {\n", " const output_area = handle.output_area;\n", " const output = handle.output;\n", "\n", " // limit handleAddOutput to display_data with EXEC_MIME_TYPE content only\n", " if ((output.output_type != \"display_data\") || (!Object.prototype.hasOwnProperty.call(output.data, EXEC_MIME_TYPE))) {\n", " return\n", " }\n", "\n", " const toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n", "\n", " if (output.metadata[EXEC_MIME_TYPE][\"id\"] !== undefined) {\n", " toinsert[toinsert.length - 1].firstChild.textContent = output.data[JS_MIME_TYPE];\n", " // store reference to embed id on output_area\n", " output_area._bokeh_element_id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n", " }\n", " if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n", " const bk_div = document.createElement(\"div\");\n", " bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n", " const script_attrs = bk_div.children[0].attributes;\n", " for (let i = 0; i < script_attrs.length; i++) {\n", " toinsert[toinsert.length - 1].firstChild.setAttribute(script_attrs[i].name, script_attrs[i].value);\n", " toinsert[toinsert.length - 1].firstChild.textContent = bk_div.children[0].textContent\n", " }\n", " // store reference to server id on output_area\n", " output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n", " }\n", " }\n", "\n", " function register_renderer(events, OutputArea) {\n", "\n", " function append_mime(data, metadata, element) {\n", " // create a DOM node to render to\n", " const toinsert = this.create_output_subarea(\n", " metadata,\n", " CLASS_NAME,\n", " EXEC_MIME_TYPE\n", " );\n", " this.keyboard_manager.register_events(toinsert);\n", " // Render to node\n", " const props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n", " render(props, toinsert[toinsert.length - 1]);\n", " element.append(toinsert);\n", " return toinsert\n", " }\n", "\n", " /* Handle when an output is cleared or removed */\n", " events.on('clear_output.CodeCell', handleClearOutput);\n", " events.on('delete.Cell', handleClearOutput);\n", "\n", " /* Handle when a new output is added */\n", " events.on('output_added.OutputArea', handleAddOutput);\n", "\n", " /**\n", " * Register the mime type and append_mime function with output_area\n", " */\n", " OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n", " /* Is output safe? */\n", " safe: true,\n", " /* Index of renderer in `output_area.display_order` */\n", " index: 0\n", " });\n", " }\n", "\n", " // register the mime type if in Jupyter Notebook environment and previously unregistered\n", " if (root.Jupyter !== undefined) {\n", " const events = require('base/js/events');\n", " const OutputArea = require('notebook/js/outputarea').OutputArea;\n", "\n", " if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n", " register_renderer(events, OutputArea);\n", " }\n", " }\n", " if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n", " root._bokeh_timeout = Date.now() + 5000;\n", " root._bokeh_failed_load = false;\n", " }\n", "\n", " const NB_LOAD_WARNING = {'data': {'text/html':\n", " \"
\\n\"+\n", " \"

\\n\"+\n", " \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n", " \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n", " \"

\\n\"+\n", " \"\\n\"+\n", " \"\\n\"+\n", " \"from bokeh.resources import INLINE\\n\"+\n", " \"output_notebook(resources=INLINE)\\n\"+\n", " \"\\n\"+\n", " \"
\"}};\n", "\n", " function display_loaded() {\n", " const el = document.getElementById(\"e6db93c3-a0ae-4e76-b90d-139a96ae20f2\");\n", " if (el != null) {\n", " el.textContent = \"BokehJS is loading...\";\n", " }\n", " if (root.Bokeh !== undefined) {\n", " if (el != null) {\n", " el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n", " }\n", " } else if (Date.now() < root._bokeh_timeout) {\n", " setTimeout(display_loaded, 100)\n", " }\n", " }\n", "\n", " function run_callbacks() {\n", " try {\n", " root._bokeh_onload_callbacks.forEach(function(callback) {\n", " if (callback != null)\n", " callback();\n", " });\n", " } finally {\n", " delete root._bokeh_onload_callbacks\n", " }\n", " console.debug(\"Bokeh: all callbacks have finished\");\n", " }\n", "\n", " function load_libs(css_urls, js_urls, callback) {\n", " if (css_urls == null) css_urls = [];\n", " if (js_urls == null) js_urls = [];\n", "\n", " root._bokeh_onload_callbacks.push(callback);\n", " if (root._bokeh_is_loading > 0) {\n", " console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n", " return null;\n", " }\n", " if (js_urls == null || js_urls.length === 0) {\n", " run_callbacks();\n", " return null;\n", " }\n", " console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n", " root._bokeh_is_loading = css_urls.length + js_urls.length;\n", "\n", " function on_load() {\n", " root._bokeh_is_loading--;\n", " if (root._bokeh_is_loading === 0) {\n", " console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n", " run_callbacks()\n", " }\n", " }\n", "\n", " function on_error(url) {\n", " console.error(\"failed to load \" + url);\n", " }\n", "\n", " for (let i = 0; i < css_urls.length; i++) {\n", " const url = css_urls[i];\n", " const element = document.createElement(\"link\");\n", " element.onload = on_load;\n", " element.onerror = on_error.bind(null, url);\n", " element.rel = \"stylesheet\";\n", " element.type = \"text/css\";\n", " element.href = url;\n", " console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n", " document.body.appendChild(element);\n", " }\n", "\n", " for (let i = 0; i < js_urls.length; i++) {\n", " const url = js_urls[i];\n", " const element = document.createElement('script');\n", " element.onload = on_load;\n", " element.onerror = on_error.bind(null, url);\n", " element.async = false;\n", " element.src = url;\n", " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", " document.head.appendChild(element);\n", " }\n", " };\n", "\n", " function inject_raw_css(css) {\n", " const element = document.createElement(\"style\");\n", " element.appendChild(document.createTextNode(css));\n", " document.body.appendChild(element);\n", " }\n", "\n", " const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.3.0.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.3.0.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.3.0.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.3.0.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.3.0.min.js\", \"https://unpkg.com/@holoviz/panel@1.3.1/dist/panel.min.js\"];\n", " const css_urls = [];\n", "\n", " const inline_js = [ function(Bokeh) {\n", " Bokeh.set_log_level(\"info\");\n", " },\n", "function(Bokeh) {\n", " }\n", " ];\n", "\n", " function run_inline_js() {\n", " if (root.Bokeh !== undefined || force === true) {\n", " for (let i = 0; i < inline_js.length; i++) {\n", " inline_js[i].call(root, root.Bokeh);\n", " }\n", "if (force === true) {\n", " display_loaded();\n", " }} else if (Date.now() < root._bokeh_timeout) {\n", " setTimeout(run_inline_js, 100);\n", " } else if (!root._bokeh_failed_load) {\n", " console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n", " root._bokeh_failed_load = true;\n", " } else if (force !== true) {\n", " const cell = $(document.getElementById(\"e6db93c3-a0ae-4e76-b90d-139a96ae20f2\")).parents('.cell').data().cell;\n", " cell.output_area.append_execute_result(NB_LOAD_WARNING)\n", " }\n", " }\n", "\n", " if (root._bokeh_is_loading === 0) {\n", " console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n", " run_inline_js();\n", " } else {\n", " load_libs(css_urls, js_urls, function() {\n", " console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n", " run_inline_js();\n", " });\n", " }\n", "}(window));" ], "application/vnd.bokehjs_load.v0+json": "(function(root) {\n function now() {\n return new Date();\n }\n\n const force = true;\n\n if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n root._bokeh_onload_callbacks = [];\n root._bokeh_is_loading = undefined;\n }\n\n\n if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n const NB_LOAD_WARNING = {'data': {'text/html':\n \"
\\n\"+\n \"

\\n\"+\n \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n \"

\\n\"+\n \"\\n\"+\n \"\\n\"+\n \"from bokeh.resources import INLINE\\n\"+\n \"output_notebook(resources=INLINE)\\n\"+\n \"\\n\"+\n \"
\"}};\n\n function display_loaded() {\n const el = document.getElementById(\"e6db93c3-a0ae-4e76-b90d-139a96ae20f2\");\n if (el != null) {\n el.textContent = \"BokehJS is loading...\";\n }\n if (root.Bokeh !== undefined) {\n if (el != null) {\n el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n }\n } else if (Date.now() < root._bokeh_timeout) {\n setTimeout(display_loaded, 100)\n }\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n\n root._bokeh_onload_callbacks.push(callback);\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls == null || js_urls.length === 0) {\n run_callbacks();\n return null;\n }\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n root._bokeh_is_loading = css_urls.length + js_urls.length;\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n\n function on_error(url) {\n console.error(\"failed to load \" + url);\n }\n\n for (let i = 0; i < css_urls.length; i++) {\n const url = css_urls[i];\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n }\n\n for (let i = 0; i < js_urls.length; i++) {\n const url = js_urls[i];\n const element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.3.0.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.3.0.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.3.0.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.3.0.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.3.0.min.js\", \"https://unpkg.com/@holoviz/panel@1.3.1/dist/panel.min.js\"];\n const css_urls = [];\n\n const inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {\n }\n ];\n\n function run_inline_js() {\n if (root.Bokeh !== undefined || force === true) {\n for (let i = 0; i < inline_js.length; i++) {\n inline_js[i].call(root, root.Bokeh);\n }\nif (force === true) {\n display_loaded();\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n } else if (force !== true) {\n const cell = $(document.getElementById(\"e6db93c3-a0ae-4e76-b90d-139a96ae20f2\")).parents('.cell').data().cell;\n cell.output_area.append_execute_result(NB_LOAD_WARNING)\n }\n }\n\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n run_inline_js();\n } else {\n load_libs(css_urls, js_urls, function() {\n console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n run_inline_js();\n });\n }\n}(window));" }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import numpy as np\n", "import pandas as pd\n", "\n", "import cmdstanpy\n", "import arviz as az\n", "\n", "import bebi103\n", "\n", "import bokeh.io\n", "bokeh.io.output_notebook()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "
\n", "\n", "## Predicting using posterior estimates\n", "\n", "The following happens a lot in science. We vary variables $\\mathbf{x}$ (like time, pH, etc.) and make observations $\\mathbf{y}$. We perform a regression using some theoretical function $f(\\mathbf{x})$, which describes how we expect $y$ to vary with $\\mathbf{x}$. We then can have a pretty good idea what we would measure for some other value of $\\mathbf{x}$. By making a few measurements, the regression helps us say things more generally, even for $\\mathbf{x}$ values we didn't explicitly use in an experiment.\n", "\n", "We have seen this in this class. We perform a regression, getting samples from the posterior distribution. We then sample out of the posterior predictive distribution to get what we might expect for performing an experiment, perhaps with a difference $x$ values. In practice, this is performing a posterior predictive check with some values of $x$ that we hadn't used in a measurement.\n", "\n", "This is an example of **parametric inference**, in which we have a specific mathematical model in mind, complete with parameters. But what if we did not have a specific function in mind? Rather, we just would like to be able to *predict* what value of $y$ we might get for some untested $x$ value and we do not really care what the underlying model is. In other words, we just would like to consider a family of functions that do not vary too rapidly or with too large of amplitude. There are an infinity of such functions. This is an example of **nonparametric inference**. In a Bayesian context, nonparametric inference involves consideration of an infinite number of models. We will explore nonparametric inference in the context of **Gaussian processes**.\n", "\n", "As we go about this, it will be useful to have a concrete example in mind." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## An example data set\n", "\n", "For concreteness, let's consider a specific example, the breakdown of $\\alpha$-1-methylglucopyranoside, a key step in the hydrolysis of cellulose. This is featured in a [nice paper by Wolfenden and Snider](https://dx.doi.org/10.1021/ar000058i) about the power of enzymes as catalysts. This example shows that glucoside hydrolysis is incredibly slow in the absence of enzymes. Let's take a quick look at measured rate constants $k$ as a function of temperature." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "
\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/javascript": [ "(function(root) {\n", " function embed_document(root) {\n", " const docs_json = {\"3ebc1f02-0835-4d63-a80b-5cbac0a7b15a\":{\"version\":\"3.3.0\",\"title\":\"Bokeh Application\",\"roots\":[{\"type\":\"object\",\"name\":\"Figure\",\"id\":\"p1002\",\"attributes\":{\"x_range\":{\"type\":\"object\",\"name\":\"DataRange1d\",\"id\":\"p1003\"},\"y_range\":{\"type\":\"object\",\"name\":\"DataRange1d\",\"id\":\"p1004\"},\"x_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1011\"},\"y_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1012\"},\"title\":{\"type\":\"object\",\"name\":\"Title\",\"id\":\"p1009\"},\"renderers\":[{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1039\",\"attributes\":{\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1030\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1031\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1032\"},\"data\":{\"type\":\"map\",\"entries\":[[\"index\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAEAAAACAAAAAwAAAAQAAAAFAAAABgAAAAcAAAAIAAAACQAAAA==\"},\"shape\":[10],\"dtype\":\"int32\",\"order\":\"little\"}],[\"1000/T (1/K)\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"/vg27rJc/j86Aw6SI5r+PyDmj2/jLv8/ZhNUbNWc/z9mE1Rs1Zz/P1Zznq70TgBARzSNDj+RAEDWSZUxLOoAQOz+pST0IQFAoAjQ2l5wAUA=\"},\"shape\":[10],\"dtype\":\"float64\",\"order\":\"little\"}],[\"ln k (1/s)\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"oKpBtYqeEsAcGcsISvYSwOwePvKkURPAXR21T4YpFMBPOH+7rlgUwLLb/8QfoBXAJHeYwZfqFsDA+xW5w0wYwColYnwf8hjAAbGgH2XDGcA=\"},\"shape\":[10],\"dtype\":\"float64\",\"order\":\"little\"}],[\"T (K)\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"Ks3HDMh3gEDFiyABuFaAQPUJEKjHCIBAUvlsXQeif0BS+WxdB6J/QIDotbO0qH5ACsWq5wcufkBPkdOgXY99QEjCMIUfL31Aud2lfuSrfEA=\"},\"shape\":[10],\"dtype\":\"float64\",\"order\":\"little\"}],[\"k (1/s)\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"4uhEBeZ8gz9Q0X9BM+OBP4q2XFxdXIA/WYQTmXmAej869/QGHk95P726YoXmYXI/jATFgMifaj/BO07l39ZiP6NiuGKxB2A//o+RalsiWj8=\"},\"shape\":[10],\"dtype\":\"float64\",\"order\":\"little\"}]]}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1040\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1041\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Circle\",\"id\":\"p1036\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"T (K)\"},\"y\":{\"type\":\"field\",\"field\":\"k (1/s)\"},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b4\"},\"fill_color\":{\"type\":\"value\",\"value\":\"#1f77b4\"}}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Circle\",\"id\":\"p1037\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"T (K)\"},\"y\":{\"type\":\"field\",\"field\":\"k (1/s)\"},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b4\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.1},\"fill_color\":{\"type\":\"value\",\"value\":\"#1f77b4\"},\"fill_alpha\":{\"type\":\"value\",\"value\":0.1},\"hatch_alpha\":{\"type\":\"value\",\"value\":0.1}}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Circle\",\"id\":\"p1038\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"T (K)\"},\"y\":{\"type\":\"field\",\"field\":\"k (1/s)\"},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b4\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.2},\"fill_color\":{\"type\":\"value\",\"value\":\"#1f77b4\"},\"fill_alpha\":{\"type\":\"value\",\"value\":0.2},\"hatch_alpha\":{\"type\":\"value\",\"value\":0.2}}}}}],\"toolbar\":{\"type\":\"object\",\"name\":\"Toolbar\",\"id\":\"p1010\",\"attributes\":{\"tools\":[{\"type\":\"object\",\"name\":\"PanTool\",\"id\":\"p1023\"},{\"type\":\"object\",\"name\":\"WheelZoomTool\",\"id\":\"p1024\",\"attributes\":{\"renderers\":\"auto\"}},{\"type\":\"object\",\"name\":\"BoxZoomTool\",\"id\":\"p1025\",\"attributes\":{\"overlay\":{\"type\":\"object\",\"name\":\"BoxAnnotation\",\"id\":\"p1026\",\"attributes\":{\"syncable\":false,\"level\":\"overlay\",\"visible\":false,\"left_units\":\"canvas\",\"right_units\":\"canvas\",\"top_units\":\"canvas\",\"bottom_units\":\"canvas\",\"line_color\":\"black\",\"line_alpha\":1.0,\"line_width\":2,\"line_dash\":[4,4],\"fill_color\":\"lightgrey\",\"fill_alpha\":0.5}}}},{\"type\":\"object\",\"name\":\"SaveTool\",\"id\":\"p1027\"},{\"type\":\"object\",\"name\":\"ResetTool\",\"id\":\"p1028\"},{\"type\":\"object\",\"name\":\"HelpTool\",\"id\":\"p1029\"}]}},\"left\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1018\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1019\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1020\"},\"axis_label\":\"k (1/s)\",\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1021\"}}}],\"below\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1013\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1014\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1015\"},\"axis_label\":\"T (K)\",\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1016\"}}}],\"center\":[{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1017\",\"attributes\":{\"axis\":{\"id\":\"p1013\"}}},{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1022\",\"attributes\":{\"dimension\":1,\"axis\":{\"id\":\"p1018\"}}}],\"frame_width\":350,\"frame_height\":250}}],\"defs\":[{\"type\":\"model\",\"name\":\"ReactiveHTML1\"},{\"type\":\"model\",\"name\":\"FlexBox1\",\"properties\":[{\"name\":\"align_content\",\"kind\":\"Any\",\"default\":\"flex-start\"},{\"name\":\"align_items\",\"kind\":\"Any\",\"default\":\"flex-start\"},{\"name\":\"flex_direction\",\"kind\":\"Any\",\"default\":\"row\"},{\"name\":\"flex_wrap\",\"kind\":\"Any\",\"default\":\"wrap\"},{\"name\":\"justify_content\",\"kind\":\"Any\",\"default\":\"flex-start\"}]},{\"type\":\"model\",\"name\":\"FloatPanel1\",\"properties\":[{\"name\":\"config\",\"kind\":\"Any\",\"default\":{\"type\":\"map\"}},{\"name\":\"contained\",\"kind\":\"Any\",\"default\":true},{\"name\":\"position\",\"kind\":\"Any\",\"default\":\"right-top\"},{\"name\":\"offsetx\",\"kind\":\"Any\",\"default\":null},{\"name\":\"offsety\",\"kind\":\"Any\",\"default\":null},{\"name\":\"theme\",\"kind\":\"Any\",\"default\":\"primary\"},{\"name\":\"status\",\"kind\":\"Any\",\"default\":\"normalized\"}]},{\"type\":\"model\",\"name\":\"GridStack1\",\"properties\":[{\"name\":\"mode\",\"kind\":\"Any\",\"default\":\"warn\"},{\"name\":\"ncols\",\"kind\":\"Any\",\"default\":null},{\"name\":\"nrows\",\"kind\":\"Any\",\"default\":null},{\"name\":\"allow_resize\",\"kind\":\"Any\",\"default\":true},{\"name\":\"allow_drag\",\"kind\":\"Any\",\"default\":true},{\"name\":\"state\",\"kind\":\"Any\",\"default\":[]}]},{\"type\":\"model\",\"name\":\"drag1\",\"properties\":[{\"name\":\"slider_width\",\"kind\":\"Any\",\"default\":5},{\"name\":\"slider_color\",\"kind\":\"Any\",\"default\":\"black\"},{\"name\":\"value\",\"kind\":\"Any\",\"default\":50}]},{\"type\":\"model\",\"name\":\"click1\",\"properties\":[{\"name\":\"terminal_output\",\"kind\":\"Any\",\"default\":\"\"},{\"name\":\"debug_name\",\"kind\":\"Any\",\"default\":\"\"},{\"name\":\"clears\",\"kind\":\"Any\",\"default\":0}]},{\"type\":\"model\",\"name\":\"toggle_value1\",\"properties\":[{\"name\":\"active_icons\",\"kind\":\"Any\",\"default\":{\"type\":\"map\"}},{\"name\":\"options\",\"kind\":\"Any\",\"default\":{\"type\":\"map\",\"entries\":[[\"favorite\",\"heart\"]]}},{\"name\":\"value\",\"kind\":\"Any\",\"default\":[]},{\"name\":\"_reactions\",\"kind\":\"Any\",\"default\":[]},{\"name\":\"_base_url\",\"kind\":\"Any\",\"default\":\"https://tabler-icons.io/static/tabler-icons/icons/\"}]},{\"type\":\"model\",\"name\":\"copy_to_clipboard1\",\"properties\":[{\"name\":\"value\",\"kind\":\"Any\",\"default\":null},{\"name\":\"fill\",\"kind\":\"Any\",\"default\":\"none\"}]},{\"type\":\"model\",\"name\":\"FastWrapper1\",\"properties\":[{\"name\":\"object\",\"kind\":\"Any\",\"default\":null},{\"name\":\"style\",\"kind\":\"Any\",\"default\":null}]},{\"type\":\"model\",\"name\":\"NotificationAreaBase1\",\"properties\":[{\"name\":\"js_events\",\"kind\":\"Any\",\"default\":{\"type\":\"map\"}},{\"name\":\"position\",\"kind\":\"Any\",\"default\":\"bottom-right\"},{\"name\":\"_clear\",\"kind\":\"Any\",\"default\":0}]},{\"type\":\"model\",\"name\":\"NotificationArea1\",\"properties\":[{\"name\":\"js_events\",\"kind\":\"Any\",\"default\":{\"type\":\"map\"}},{\"name\":\"notifications\",\"kind\":\"Any\",\"default\":[]},{\"name\":\"position\",\"kind\":\"Any\",\"default\":\"bottom-right\"},{\"name\":\"_clear\",\"kind\":\"Any\",\"default\":0},{\"name\":\"types\",\"kind\":\"Any\",\"default\":[{\"type\":\"map\",\"entries\":[[\"type\",\"warning\"],[\"background\",\"#ffc107\"],[\"icon\",{\"type\":\"map\",\"entries\":[[\"className\",\"fas fa-exclamation-triangle\"],[\"tagName\",\"i\"],[\"color\",\"white\"]]}]]},{\"type\":\"map\",\"entries\":[[\"type\",\"info\"],[\"background\",\"#007bff\"],[\"icon\",{\"type\":\"map\",\"entries\":[[\"className\",\"fas fa-info-circle\"],[\"tagName\",\"i\"],[\"color\",\"white\"]]}]]}]}]},{\"type\":\"model\",\"name\":\"Notification\",\"properties\":[{\"name\":\"background\",\"kind\":\"Any\",\"default\":null},{\"name\":\"duration\",\"kind\":\"Any\",\"default\":3000},{\"name\":\"icon\",\"kind\":\"Any\",\"default\":null},{\"name\":\"message\",\"kind\":\"Any\",\"default\":\"\"},{\"name\":\"notification_type\",\"kind\":\"Any\",\"default\":null},{\"name\":\"_destroyed\",\"kind\":\"Any\",\"default\":false}]},{\"type\":\"model\",\"name\":\"TemplateActions1\",\"properties\":[{\"name\":\"open_modal\",\"kind\":\"Any\",\"default\":0},{\"name\":\"close_modal\",\"kind\":\"Any\",\"default\":0}]},{\"type\":\"model\",\"name\":\"BootstrapTemplateActions1\",\"properties\":[{\"name\":\"open_modal\",\"kind\":\"Any\",\"default\":0},{\"name\":\"close_modal\",\"kind\":\"Any\",\"default\":0}]},{\"type\":\"model\",\"name\":\"MaterialTemplateActions1\",\"properties\":[{\"name\":\"open_modal\",\"kind\":\"Any\",\"default\":0},{\"name\":\"close_modal\",\"kind\":\"Any\",\"default\":0}]}]}};\n", " const render_items = [{\"docid\":\"3ebc1f02-0835-4d63-a80b-5cbac0a7b15a\",\"roots\":{\"p1002\":\"e92dfd2a-a17d-48fb-b44a-8e193654ab6b\"},\"root_ids\":[\"p1002\"]}];\n", " root.Bokeh.embed.embed_items_notebook(docs_json, render_items);\n", " }\n", " if (root.Bokeh !== undefined) {\n", " embed_document(root);\n", " } else {\n", " let attempts = 0;\n", " const timer = setInterval(function(root) {\n", " if (root.Bokeh !== undefined) {\n", " clearInterval(timer);\n", " embed_document(root);\n", " } else {\n", " attempts++;\n", " if (attempts > 100) {\n", " clearInterval(timer);\n", " console.log(\"Bokeh: ERROR: Unable to run BokehJS code because BokehJS library is missing\");\n", " }\n", " }\n", " }, 10, root)\n", " }\n", "})(window);" ], "application/vnd.bokehjs_exec.v0+json": "" }, "metadata": { "application/vnd.bokehjs_exec.v0+json": { "id": "p1002" } }, "output_type": "display_data" } ], "source": [ "df = pd.read_csv(os.path.join(data_path, 'wolfenden_arrhenius.csv'))\n", "df['T (K)'] = 1000 / df['1000/T (1/K)']\n", "df['k (1/s)'] = np.exp(df['ln k (1/s)'])\n", "\n", "p = bokeh.plotting.figure(\n", " frame_height=250,\n", " frame_width=350,\n", " x_axis_label='T (K)',\n", " y_axis_label='k (1/s)'\n", ")\n", "p.circle(source=df, x='T (K)', y='k (1/s)')\n", "\n", "bokeh.io.show(p)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The chemical rate constant is often well described by the **Arrhenius relation**,\n", "\n", "\\begin{align}\n", "k = A \\mathrm{e}^{-E_a/k_BT},\n", "\\end{align}\n", "\n", "where $E_a$ is the activation energy that catalysts serve to decrease. For ease of notation, I will define units such that $k_B = 1$, and will convert back to familiar units when needed. So, we can write the Arrhenius rate law as\n", "\n", "\\begin{align}\n", "k = A \\mathrm{e}^{-E_a/T}.\n", "\\end{align}\n", "\n", "In an experiment, we can vary (and exactly measure) $T$, so there are two parameters, $A$ and $E_a$. A generative model for this might be (where the units of $A$ are in seconds and we again abuse a logarithm to make specification of the prior easier)\n", "\n", "\\begin{align}\n", "&\\log_{10}E_a \\sim \\text{Normal}(-6, 6),\\\\[1em]\n", "&E_a = 10^{\\log_{10} E_a},\\\\[1em]\n", "&\\log_{10} A \\sim \\text{Normal}(-6, 6), \\\\[1em]\n", "&A = 10^{\\log_{10} A}, \\\\[1em]\n", "&\\sigma \\sim \\text{HalfNorm}(0.01), \\\\[1em]\n", "&\\mu_i = A \\mathrm{e}^{-E_a/T_i}\\;\\forall i,\\\\[1em]\n", "&k_i \\sim \\text{Norm}(\\mu_i, \\sigma)\\;\\forall i.\n", "\\end{align}\n", "\n", "Just for fun, we can perform parameter estimation for this model. The Stan code is\n", "\n", "```stan\n", "data {\n", " int N;\n", " array[N] real T;\n", " array[N] real k;\n", "\n", " int N_ppc;\n", " array[N_ppc] real T_ppc;\n", "}\n", "\n", "\n", "parameters {\n", " real log10_Ea;\n", " real log10_A;\n", " real sigma;\n", "}\n", "\n", "\n", "transformed parameters {\n", " real Ea = 10^log10_Ea;\n", " real A = 10^log10_A;\n", "\n", " array[N] real mu;\n", " for (i in 1:N) {\n", " mu[i] = A * exp(-Ea / T[i]);\n", " } \n", "}\n", "\n", "\n", "model {\n", " sigma ~ normal(0.0, 0.01);\n", " log10_Ea ~ normal(1.0, 6.0);\n", " log10_A ~ normal(1.0, 6.0);\n", "\n", " k ~ normal(mu, sigma);\n", "}\n", "\n", "\n", "generated quantities {\n", " array[N_ppc] real k_ppc;\n", " for (i in 1:N_ppc) {\n", " k_ppc[i] = normal_rng(A * exp(-Ea / T_ppc[i]), sigma);\n", " }\n", "}\n", "```\n", "\n", "Note that we have chosen a prior on the activation energy to allow for very large values, which is what we might expect for uncatalyzed reactions. Let's perform the inference." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "5dd69d0cf85a4fa38b168819643fc856", "version_major": 2, "version_minor": 0 }, "text/plain": [ "chain 1 | | 00:00 Status" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "5b98f15a867b41b886e259f95a5e3958", "version_major": 2, "version_minor": 0 }, "text/plain": [ "chain 2 | | 00:00 Status" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "249a8dcbc5f64c58bce35e6a93e72d3c", "version_major": 2, "version_minor": 0 }, "text/plain": [ "chain 3 | | 00:00 Status" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "b5187da66e334548bcadbf15d4d14e29", "version_major": 2, "version_minor": 0 }, "text/plain": [ "chain 4 | | 00:00 Status" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ " \n" ] } ], "source": [ "# Generate data dictionary\n", "T = df[\"T (K)\"].values\n", "k = df[\"k (1/s)\"].values\n", "N = len(T)\n", "T_ppc = np.linspace(450, 530, 200)\n", "N_ppc = len(T_ppc)\n", "\n", "data = dict(N=N, N_ppc=N_ppc, T=T, T_ppc=T_ppc, k=k)\n", "\n", "# Compile and sample\n", "with bebi103.stan.disable_logging():\n", " sm_parametric = cmdstanpy.CmdStanModel(stan_file=\"parametric.stan\")\n", "\n", " samples = sm_parametric.sample(\n", " data=data,\n", " adapt_delta=0.99,\n", " max_treedepth=15,\n", " iter_warmup=4000,\n", " iter_sampling=4000,\n", " )\n", " \n", "samples = az.from_cmdstanpy(posterior=samples, posterior_predictive=\"k_ppc\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As usual, we should check the diagnostics. (I actually did this with the default sampling settings, and found that I needed to take more samples and increase `adapt_delta` and the maximum tree depth.)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Effective sample size looks reasonable for all parameters.\n", "\n", "Rhat looks reasonable for all parameters.\n", "\n", "0 of 16000 (0.0%) iterations ended with a divergence.\n", "\n", "0 of 16000 (0.0%) iterations saturated the maximum tree depth of 15.\n", "\n", "E-BFMI indicated no pathological behavior.\n" ] }, { "data": { "text/plain": [ "0" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "bebi103.stan.check_all_diagnostics(samples, max_treedepth=15)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We're ok on the diagnostics. Let's take a look at posterior predictive checks to see how the model performed." ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "
\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/javascript": [ "(function(root) {\n", " function embed_document(root) {\n", " const docs_json = {\"388986c0-e6dd-4875-bc9c-fd713f9f654f\":{\"version\":\"3.3.0\",\"title\":\"Bokeh Application\",\"roots\":[{\"type\":\"object\",\"name\":\"Figure\",\"id\":\"p1047\",\"attributes\":{\"x_range\":{\"type\":\"object\",\"name\":\"Range1d\",\"id\":\"p1056\",\"attributes\":{\"start\":450.0,\"end\":530.0}},\"y_range\":{\"type\":\"object\",\"name\":\"DataRange1d\",\"id\":\"p1049\"},\"x_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1057\"},\"y_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1058\"},\"title\":{\"type\":\"object\",\"name\":\"Title\",\"id\":\"p1054\"},\"renderers\":[{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1082\",\"attributes\":{\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1076\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1077\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1078\"},\"data\":{\"type\":\"map\",\"entries\":[[\"x\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAgfEDhJxeibiZ8QMJPLkTdLHxAo3dF5kszfECFn1yIujl8QGbHcyopQHxAR++KzJdGfEAoF6JuBk18QAk/uRB1U3xA6mbQsuNZfEDLjudUUmB8QKy2/vbAZnxAjt4VmS9tfEBvBi07nnN8QFAuRN0MenxAMVZbf3uAfEASfnIh6oZ8QPOlicNYjXxA1M2gZceTfEC19bcHNpp8QJcdz6mkoHxAeEXmSxOnfEBZbf3tga18QDqVFJDws3xAG70rMl+6fED85ELUzcB8QN0MWnY8x3xAvjRxGKvNfECgXIi6GdR8QIGEn1yI2nxAYqy2/vbgfEBD1M2gZed8QCT85ELU7XxABST85EL0fEDmSxOHsfp8QMdzKikgAX1AqZtBy44HfUCKw1ht/Q19QGvrbw9sFH1ATBOHsdoafUAtO55TSSF9QA5jtfW3J31A74rMlyYufUDQsuM5lTR9QLLa+tsDO31AkwISfnJBfUB0Kikg4Ud9QFVSQMJPTn1ANnpXZL5UfUAXom4GLVt9QPjJhaibYX1A2fGcSgpofUC7GbTseG59QJxBy47ndH1AfWniMFZ7fUBekfnSxIF9QD+5EHUziH1AIOEnF6KOfUABCT+5EJV9QOIwVlt/m31AxFht/e2hfUClgISfXKh9QIaom0HLrn1AZ9Cy4zm1fUBI+MmFqLt9QCkg4ScXwn1ACkj4yYXIfUDrbw9s9M59QM2XJg5j1X1Arr89sNHbfUCP51RSQOJ9QHAPbPSu6H1AUTeDlh3vfUAyX5o4jPV9QBOHsdr6+31A9K7IfGkCfkDW1t8e2Ah+QLf+9sBGD35AmCYOY7UVfkB5TiUFJBx+QFp2PKeSIn5AO55TSQEpfkAcxmrrby9+QP7tgY3eNX5A3xWZL008fkDAPbDRu0J+QKFlx3MqSX5Ago3eFZlPfkBjtfW3B1Z+QETdDFp2XH5AJQUk/ORifkAGLTueU2l+QOhUUkDCb35AyXxp4jB2fkCqpICEn3x+QIvMlyYOg35AbPSuyHyJfkBNHMZq649+QC5E3Qxaln5AEGz0rsicfkDxkwtRN6N+QNK7IvOlqX5As+M5lRSwfkCUC1E3g7Z+QHUzaNnxvH5AVlt/e2DDfkA3g5Ydz8l+QBirrb890H5A+tLEYazWfkDb+tsDG91+QLwi86WJ435AnUoKSPjpfkB+ciHqZvB+QF+aOIzV9n5AQMJPLkT9fkAi6mbQsgN/QAMSfnIhCn9A5DmVFJAQf0DFYay2/hZ/QKaJw1htHX9Ah7Ha+tsjf0Bo2fGcSip/QEkBCT+5MH9AKikg4Sc3f0AMUTeDlj1/QO14TiUFRH9AzqBlx3NKf0CvyHxp4lB/QJDwkwtRV39AcRirrb9df0BSQMJPLmR/QDRo2fGcan9AFZDwkwtxf0D2twc2end/QNffHtjofX9AuAc2eleEf0CZL00cxop/QHpXZL40kX9AW397YKOXf0A8p5ICEp5/QB7PqaSApH9A//bARu+qf0DgHtjoXbF/QMFG74rMt39Aom4GLTu+f0CDlh3PqcR/QGS+NHEYy39ARuZLE4fRf0AnDmO19dd/QAg2eldk3n9A6V2R+dLkf0DKhaibQet/QKutvz2w8X9AjNXW3x74f0Bt/e2Bjf5/QKeSAhJ+AoBAmCYOY7UFgECIuhm07AiAQHlOJQUkDIBAauIwVlsPgEBadjynkhKAQEsKSPjJFYBAO55TSQEZgEAsMl+aOByAQBzGautvH4BADVp2PKcigED+7YGN3iWAQO6Bjd4VKYBA3xWZL00sgEDPqaSAhC+AQMA9sNG7MoBAsNG7IvM1gEChZcdzKjmAQJH50sRhPIBAgo3eFZk/gEByIepm0EKAQGO19bcHRoBAVEkBCT9JgEBE3QxadkyAQDVxGKutT4BAJQUk/ORSgEAWmS9NHFaAQAYtO55TWYBA98BG74pcgEDoVFJAwl+AQNjoXZH5YoBAyXxp4jBmgEC5EHUzaGmAQKqkgISfbIBAmjiM1dZvgECLzJcmDnOAQHxgo3dFdoBAbPSuyHx5gEBdiLoZtHyAQE0cxmrrf4BAPrDRuyKDgEAuRN0MWoaAQB/Y6F2RiYBAEGz0rsiMgEAAAAAAAJCAQAAAAAAAkIBAEGz0rsiMgEAf2OhdkYmAQC5E3QxahoBAPrDRuyKDgEBNHMZq63+AQF2Iuhm0fIBAbPSuyHx5gEB8YKN3RXaAQIvMlyYOc4BAmjiM1dZvgECqpICEn2yAQLkQdTNoaYBAyXxp4jBmgEDY6F2R+WKAQOhUUkDCX4BA98BG74pcgEAGLTueU1mAQBaZL00cVoBAJQUk/ORSgEA1cRirrU+AQETdDFp2TIBAVEkBCT9JgEBjtfW3B0aAQHIh6mbQQoBAgo3eFZk/gECR+dLEYTyAQKFlx3MqOYBAsNG7IvM1gEDAPbDRuzKAQM+ppICEL4BA3xWZL00sgEDugY3eFSmAQP7tgY3eJYBADVp2PKcigEAcxmrrbx+AQCwyX5o4HIBAO55TSQEZgEBLCkj4yRWAQFp2PKeSEoBAauIwVlsPgEB5TiUFJAyAQIi6GbTsCIBAmCYOY7UFgECnkgISfgKAQG397YGN/n9AjNXW3x74f0Crrb89sPF/QMqFqJtB639A6V2R+dLkf0AINnpXZN5/QCcOY7X1139ARuZLE4fRf0BkvjRxGMt/QIOWHc+pxH9Aom4GLTu+f0DBRu+KzLd/QOAe2OhdsX9A//bARu+qf0Aez6mkgKR/QDynkgISnn9AW397YKOXf0B6V2S+NJF/QJkvTRzGin9AuAc2eleEf0DX3x7Y6H1/QPa3BzZ6d39AFZDwkwtxf0A0aNnxnGp/QFJAwk8uZH9AcRirrb9df0CQ8JMLUVd/QK/IfGniUH9AzqBlx3NKf0DteE4lBUR/QAxRN4OWPX9AKikg4Sc3f0BJAQk/uTB/QGjZ8ZxKKn9Ah7Ha+tsjf0CmicNYbR1/QMVhrLb+Fn9A5DmVFJAQf0ADEn5yIQp/QCLqZtCyA39AQMJPLkT9fkBfmjiM1fZ+QH5yIepm8H5AnUoKSPjpfkC8IvOlieN+QNv62wMb3X5A+tLEYazWfkAYq62/PdB+QDeDlh3PyX5AVlt/e2DDfkB1M2jZ8bx+QJQLUTeDtn5As+M5lRSwfkDSuyLzpal+QPGTC1E3o35AEGz0rsicfkAuRN0MWpZ+QE0cxmrrj35AbPSuyHyJfkCLzJcmDoN+QKqkgISffH5AyXxp4jB2fkDoVFJAwm9+QAYtO55TaX5AJQUk/ORifkBE3Qxadlx+QGO19bcHVn5Ago3eFZlPfkChZcdzKkl+QMA9sNG7Qn5A3xWZL008fkD+7YGN3jV+QBzGautvL35AO55TSQEpfkBadjynkiJ+QHlOJQUkHH5AmCYOY7UVfkC3/vbARg9+QNbW3x7YCH5A9K7IfGkCfkATh7Ha+vt9QDJfmjiM9X1AUTeDlh3vfUBwD2z0ruh9QI/nVFJA4n1Arr89sNHbfUDNlyYOY9V9QOtvD2z0zn1ACkj4yYXIfUApIOEnF8J9QEj4yYWou31AZ9Cy4zm1fUCGqJtBy659QKWAhJ9cqH1AxFht/e2hfUDiMFZbf5t9QAEJP7kQlX1AIOEnF6KOfUA/uRB1M4h9QF6R+dLEgX1AfWniMFZ7fUCcQcuO53R9QLsZtOx4bn1A2fGcSgpofUD4yYWom2F9QBeibgYtW31ANnpXZL5UfUBVUkDCT059QHQqKSDhR31AkwISfnJBfUCy2vrbAzt9QNCy4zmVNH1A74rMlyYufUAOY7X1tyd9QC07nlNJIX1ATBOHsdoafUBr628PbBR9QIrDWG39DX1AqZtBy44HfUDHcyopIAF9QOZLE4ex+nxABST85EL0fEAk/ORC1O18QEPUzaBl53xAYqy2/vbgfECBhJ9ciNp8QKBciLoZ1HxAvjRxGKvNfEDdDFp2PMd8QPzkQtTNwHxAG70rMl+6fEA6lRSQ8LN8QFlt/e2BrXxAeEXmSxOnfECXHc+ppKB8QLX1twc2mnxA1M2gZceTfEDzpYnDWI18QBJ+ciHqhnxAMVZbf3uAfEBQLkTdDHp8QG8GLTuec3xAjt4VmS9tfECstv72wGZ8QMuO51RSYHxA6mbQsuNZfEAJP7kQdVN8QCgXom4GTXxAR++KzJdGfEBmx3MqKUB8QIWfXIi6OXxAo3dF5kszfEDCTy5E3Sx8QOEnF6JuJnxAAAAAAAAgfEA=\"},\"shape\":[400],\"dtype\":\"float64\",\"order\":\"little\"}],[\"y\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"xqM+lOJGNT+iMvAun702PytOrziH8Dk/EoU5ckJ3OT8sP96fmmg6P9ebJwbgmTs/hbFAlcUGPD896ZUSyLw8P6VsdDrHej4/wmvQBaBSPz+/v/I0ISxBP07lTTK06UA/vqgRfa35QD+d+cHvGR9DPy7SlLmKYEM/VTx4pSH1Qj96V0RjIitEP52IZGIYy0M/lXZEsLNiRT/Dbkh5p+9GP8uBgrm74UY/TgXliWrJRz9VNkvJuzFIP06qEQw0F0g/vfuo7bvuST+FcvLIfqJKP0M8g18SQko/OEbLLWj7Sj+UuQZxdk9MP+pVFXeLIk0/VCIYLoNWTT/SnpUr8b1NP5vZqWBtOE8/o/maKPTITz+dbFXjxBZQP7HIN6N7WVA/eXHd8mNcUT+Y5dSWhlZRP/mFa3YjelE/cNqgt/f3UT+aeIuwdk5SP2LFS2XBLFM/wfug6jQrUz9BqtBcgcpTPzKTrdA1A1Q/tw/FWRunVD8jlq4P1PFUP35SvZrbO1U/sBVY8ygEVj+rQuwU95RWP7ogmvryYlY/DIS7uC+VVj+IqVU9Xh1XP8GRRTwHBlg/2NRqKc+lWD/WyZoKUbtYP2f6ig2UFlk/70G5gcOKWT9J123MwglaP9dLn5J91Fo/4RLy1DI4Wz+PFeOZI21bP/BmGghaZVw/CusQST7AXD+s6WMGdnFdP/EVXvti7F0/tgAtkLLbXT+eijULnZ9eP1qHDZAUA18/l9+Azli/Xz+BkA4KqEJgP0jY5ctzk2A/bR1Cs/CXYD//h99AjepgP4rfmI7OM2E/F2bbSF1bYT9omGCM1r5hP6lXcXp8GmI/PicYKe8+Yj95FBQqK5JiPzrXIxnhCWM/O2aj6owsYz8oi7a765JjPyT8s2j/2GM/PNthGwoCZD9a0Dz/xGhkP6CSqFTfsmQ/L+JragEjZT90vvEYklFlPwMvctDXjGU/iJZOgVIIZj+vViVF70pmP/9xqecwoWY/St04o5KsZj+TW+4nvjVnPy+9RI/0dmc/M00sfsD0Zz8M0Uc3x1toP2bJOiEWX2g/yqajtuncaD8nVtbO4W5pP9Kqa/Q3j2k/rB4wD5nyaT/M+Ds3FA5qP4zaSbkFj2o/s+FYMwwBaz8zCeQAZGJrP9aCLWIXxms/wkWEBUsDbD/Umf+AnGpsP3SxXzOd9mw/GdEiTU9nbT+oPlgSFbRtP/GZsvQd020/2LSclf5vbj/biHNJ3+huP1XTbwsIQG8/R001X5d0bz+YIPogkddvPz+UR7v6RnA/QXAExWlqcD9yFfh7Q5BwP61DqjLQ2HA/lZ4/Jn8bcT8akEMYzTdxP0oM3GPkinE/WC0tRgSzcT+1aiMT+t1xP8xi9VZDM3I/iNTQ4Jhgcj8ovdSn07xyP5VhMA0w5HI/qENdWsP7cj8ySqyZcEBzP8JKIWqEeXM/aW6rd73Wcz9X0yV+7eJzP7N8edsuL3Q/Vbneo+9PdD8szSIezbR0PzaUd2Gt0nQ/0MaBv64SdT+aPJgmAlt1Py189LvtmHU/RJVGPkLcdT9gb0mrrRp2P0wA543fUHY/+fT5pOqJdj/eDnwoq8t2P6/i7z9783Y/AsKqIUFWdz9hocJQCJZ3PwY57f64ync/L1d+mgwneD+WSdAJ6Fh4P3Dv5wIBrHg/aoUKivbjeD/GB/TEnjZ5P5qxy2T2gXk/0uJrU2WteT8AvUgf9QJ6Pxk+XFHOQHo/j1SOskaJej9qSFYqGv56P7NaOsjmCHs/WUDYkTmCez9yCaukWrN7PxNYEjbC9ns/qzhPIck/fD945Ta+T4V8P3HKU4vFxXw/sIT/vpAffT9M4tJPPXR9P6sgqwCEtH0/hPpjSLgKfj+dqy8Q2Ud+P8Sk+vmvpn4/Q3A7uGTqfj8cdn+/Dzx/P4fMl0Lge38/MFn7jCKjfz8j5izIow+AP1kNNjMCQ4A/TxcsTBRegD+ppQWkB4KAP5b+kERQsYA/PegRV1nRgD99fPMvCgGBPw++STbLI4E/jIm2K0BQgT+ZnMvueHyBPxNzzFa3qoE/LCJLZdjIgT8cdzFqSvSBP3Wh/iKEIYI/Vkm6Hx1Cgj82gqtBOmqCP0FFjtroj4I/RiUz5sfCgj/C3/8sNfmCP/Xr870rJ4g/LPKIXR34hz/ZY7cJ1ryHPwrjwA4Qioc/yolVB2lbhz+XvI0PqyaHPy//vtI7DYc/oaRd2NzJhj/XHWLuIJeGP3lRHorAYIY/OWXJd4Quhj/EZGDTOfWFP1JkKWkw04U/2q/5wKechT9CwffEW2OFP/k9+9uvTIU/s0EmGTkLhT9nUGX/2eKEPzdzoyMUtoQ/Zb052HKZhD/7OQBAIGCEPyEEcva/PYQ/iCgAqN0NhD9Nb9+gRuyDP1P3xuV/v4M/vZXMgYOVgz/yY2kzkF+DP2kMWS4yOYM//MG2AXwQgz/v32Y4OO2CP4+Jui2WxII/uPhL892Zgj9988cmjHWCP1j0wxJTRYI/exMs1rwfgj8uNk2i1f6BP67J7XOJ3oE/j5zTzF3CgT9l1UAjc42BPyb4Z4VwbIE/Vx8wi2BOgT9uBS4+7iOBP5bXCs2H/YA/MTyv3szbgD+Z9tdvSbWAP96rw8IqjYA/Z8YzTJNwgD/7Js4DuFaAP2+I85uCL4A/QwQ6mO8OgD9BU2qHo9F/Pzxy2yYrcn8/+SUfEQxNfz8altn8zBR/P9kQsftt034/TjwC4CGKfj+vxVUCtVp+P7NG6UQVDX4/JBncUN3OfT8qmKCixJB9PxD+Zt6BbH0/7Hp2tAInfT/70CNLiOd8P05qp2fzmHw/kZ4s+ftsfD/SFTcxziZ8PyyaFSSS9Xs/QQmR3gDLez9dcogqj317P5LE8OP4OXs/FECC+WMOez+YBYfVJ9J6Pws3sLqtq3o/0sRr+alzej/e3Qd2tUJ6P8XXkuZzFHo/OC+IJz/SeT9ycNe1N6R5PwRFPY4wVnk/y5Ik+yw+eT/8k7MIqQF5PyvSGDtOwng/4a/EYTuoeD/EJ+6PL1V4P7pwX4hOL3g/pCo4f70JeD/mIVj3vb13P1D/XqydmHc/kL7rYZ9odz8qWdR7uFF3P+WVSd80FXc/M3B69uDedj+r+gG0Uq12P251Nm2Rd3Y/b+DTcTxsdj9sH1AIrR92P+ywZr1IA3Y/7AxWE3nPdT8FVPsePK11P7T4Xo39dnU/vtl5KsZKdT9kZD1z3hh1P1NdKK+B7HQ/Q8fMDZ/XdD9rMXAnrrZ0P3u8fitTeHQ/Aai8/4padD8dP1nT6ht0P4DIs69iD3Q/+GsknCXncz81OozuxbxzP+Qm81rMeXM/vLdrB/h1cz+sjZp36DBzP6n8qt0oEnM/kzJToVTXcj8qSFIjC9ByP/Ye6hvxlHI/XfA+zgFwcj9OhU+lLGRyP30BSxv/H3I/EKdH3i8icj/gCiMbGt9xPxqo5zgSw3E/5kcLtmKWcT8m3gGetHBxP6v6HQmCZ3E/a3jYFi5DcT8bC7k7Mw1xP+FJ59DdBnE/N7fm57bfcD8WDJ+OdsVwPyQgiQv+hnA/4/+ijDeAcD8Iutf4NVpwP453+H+WLXA/2Ba87eQBcD9iIqiRy7xvP4GHq/uupW8/+aFdeyIsbz8hePhCMxVvP8a0nG83zW4/ZQ0WAkS3bj+uF3C6WF1uPw0VJxpLKG4/sQh3x1/jbT+HwGt54MFtP86B8jIbSG0/YGyOZHBDbT/1AxwXFT5tP8v8hGIUzGw/W/Xc6Z7abD+R5NjLzW9sP7PwuFIWWGw/pxo34dDuaz+AiDAlYq9rPzyc/ddylGs/Sc0W97xuaz+KTyyw+jVrP/UNyDVwzWo/wS8CHqmiaj9ogqFBHIFqP7FaLlVIfWo/nczazkAqaj8n5jWDs+xpP1/7irTbzmk/RtqBy0d4aT+POH2giW5pP3+IPU9kL2k/rGugOAH/aD/qj9CZK7hoPzfvDA6HiWg/wifsjgSbaD94D+7TkydoPwieODxh4mc/AospfKnkZz9Y4eyPXY1nPxaPszLflmc/7wLC2lpXZz+yq984aDBnPxwVrjBFBWc/xS6Ertq7Zj9cHE7GHPdmP0fwKXqMZGY/EWLR7jxjZj8LAlFOuWRmPxDpxtowIWY/+MQjuUgWZj/CbCJjUM5lPx/Lx12gfmU/LiDuyUd7ZT9F8XuymmJlPx0xpe79H2U/Xl+fxN3cZD8yHi4E/MRkP/frGM5qvmQ/Tj5ZC5V6ZD/9REdtQFZkP43Tlo7HeWQ/5tr5ebECZD8=\"},\"shape\":[400],\"dtype\":\"float64\",\"order\":\"little\"}]]}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1083\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1084\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Patch\",\"id\":\"p1079\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":\"#1f77b4\",\"line_alpha\":0,\"line_width\":0,\"fill_color\":\"#9ecae1\"}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Patch\",\"id\":\"p1080\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":\"#1f77b4\",\"line_alpha\":0.1,\"line_width\":0,\"fill_color\":\"#9ecae1\",\"fill_alpha\":0.1,\"hatch_alpha\":0.1}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Patch\",\"id\":\"p1081\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":\"#1f77b4\",\"line_alpha\":0.2,\"line_width\":0,\"fill_color\":\"#9ecae1\",\"fill_alpha\":0.2,\"hatch_alpha\":0.2}}}},{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1091\",\"attributes\":{\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1085\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1086\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1087\"},\"data\":{\"type\":\"map\",\"entries\":[[\"x\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAgfEDhJxeibiZ8QMJPLkTdLHxAo3dF5kszfECFn1yIujl8QGbHcyopQHxAR++KzJdGfEAoF6JuBk18QAk/uRB1U3xA6mbQsuNZfEDLjudUUmB8QKy2/vbAZnxAjt4VmS9tfEBvBi07nnN8QFAuRN0MenxAMVZbf3uAfEASfnIh6oZ8QPOlicNYjXxA1M2gZceTfEC19bcHNpp8QJcdz6mkoHxAeEXmSxOnfEBZbf3tga18QDqVFJDws3xAG70rMl+6fED85ELUzcB8QN0MWnY8x3xAvjRxGKvNfECgXIi6GdR8QIGEn1yI2nxAYqy2/vbgfEBD1M2gZed8QCT85ELU7XxABST85EL0fEDmSxOHsfp8QMdzKikgAX1AqZtBy44HfUCKw1ht/Q19QGvrbw9sFH1ATBOHsdoafUAtO55TSSF9QA5jtfW3J31A74rMlyYufUDQsuM5lTR9QLLa+tsDO31AkwISfnJBfUB0Kikg4Ud9QFVSQMJPTn1ANnpXZL5UfUAXom4GLVt9QPjJhaibYX1A2fGcSgpofUC7GbTseG59QJxBy47ndH1AfWniMFZ7fUBekfnSxIF9QD+5EHUziH1AIOEnF6KOfUABCT+5EJV9QOIwVlt/m31AxFht/e2hfUClgISfXKh9QIaom0HLrn1AZ9Cy4zm1fUBI+MmFqLt9QCkg4ScXwn1ACkj4yYXIfUDrbw9s9M59QM2XJg5j1X1Arr89sNHbfUCP51RSQOJ9QHAPbPSu6H1AUTeDlh3vfUAyX5o4jPV9QBOHsdr6+31A9K7IfGkCfkDW1t8e2Ah+QLf+9sBGD35AmCYOY7UVfkB5TiUFJBx+QFp2PKeSIn5AO55TSQEpfkAcxmrrby9+QP7tgY3eNX5A3xWZL008fkDAPbDRu0J+QKFlx3MqSX5Ago3eFZlPfkBjtfW3B1Z+QETdDFp2XH5AJQUk/ORifkAGLTueU2l+QOhUUkDCb35AyXxp4jB2fkCqpICEn3x+QIvMlyYOg35AbPSuyHyJfkBNHMZq649+QC5E3Qxaln5AEGz0rsicfkDxkwtRN6N+QNK7IvOlqX5As+M5lRSwfkCUC1E3g7Z+QHUzaNnxvH5AVlt/e2DDfkA3g5Ydz8l+QBirrb890H5A+tLEYazWfkDb+tsDG91+QLwi86WJ435AnUoKSPjpfkB+ciHqZvB+QF+aOIzV9n5AQMJPLkT9fkAi6mbQsgN/QAMSfnIhCn9A5DmVFJAQf0DFYay2/hZ/QKaJw1htHX9Ah7Ha+tsjf0Bo2fGcSip/QEkBCT+5MH9AKikg4Sc3f0AMUTeDlj1/QO14TiUFRH9AzqBlx3NKf0CvyHxp4lB/QJDwkwtRV39AcRirrb9df0BSQMJPLmR/QDRo2fGcan9AFZDwkwtxf0D2twc2end/QNffHtjofX9AuAc2eleEf0CZL00cxop/QHpXZL40kX9AW397YKOXf0A8p5ICEp5/QB7PqaSApH9A//bARu+qf0DgHtjoXbF/QMFG74rMt39Aom4GLTu+f0CDlh3PqcR/QGS+NHEYy39ARuZLE4fRf0AnDmO19dd/QAg2eldk3n9A6V2R+dLkf0DKhaibQet/QKutvz2w8X9AjNXW3x74f0Bt/e2Bjf5/QKeSAhJ+AoBAmCYOY7UFgECIuhm07AiAQHlOJQUkDIBAauIwVlsPgEBadjynkhKAQEsKSPjJFYBAO55TSQEZgEAsMl+aOByAQBzGautvH4BADVp2PKcigED+7YGN3iWAQO6Bjd4VKYBA3xWZL00sgEDPqaSAhC+AQMA9sNG7MoBAsNG7IvM1gEChZcdzKjmAQJH50sRhPIBAgo3eFZk/gEByIepm0EKAQGO19bcHRoBAVEkBCT9JgEBE3QxadkyAQDVxGKutT4BAJQUk/ORSgEAWmS9NHFaAQAYtO55TWYBA98BG74pcgEDoVFJAwl+AQNjoXZH5YoBAyXxp4jBmgEC5EHUzaGmAQKqkgISfbIBAmjiM1dZvgECLzJcmDnOAQHxgo3dFdoBAbPSuyHx5gEBdiLoZtHyAQE0cxmrrf4BAPrDRuyKDgEAuRN0MWoaAQB/Y6F2RiYBAEGz0rsiMgEAAAAAAAJCAQAAAAAAAkIBAEGz0rsiMgEAf2OhdkYmAQC5E3QxahoBAPrDRuyKDgEBNHMZq63+AQF2Iuhm0fIBAbPSuyHx5gEB8YKN3RXaAQIvMlyYOc4BAmjiM1dZvgECqpICEn2yAQLkQdTNoaYBAyXxp4jBmgEDY6F2R+WKAQOhUUkDCX4BA98BG74pcgEAGLTueU1mAQBaZL00cVoBAJQUk/ORSgEA1cRirrU+AQETdDFp2TIBAVEkBCT9JgEBjtfW3B0aAQHIh6mbQQoBAgo3eFZk/gECR+dLEYTyAQKFlx3MqOYBAsNG7IvM1gEDAPbDRuzKAQM+ppICEL4BA3xWZL00sgEDugY3eFSmAQP7tgY3eJYBADVp2PKcigEAcxmrrbx+AQCwyX5o4HIBAO55TSQEZgEBLCkj4yRWAQFp2PKeSEoBAauIwVlsPgEB5TiUFJAyAQIi6GbTsCIBAmCYOY7UFgECnkgISfgKAQG397YGN/n9AjNXW3x74f0Crrb89sPF/QMqFqJtB639A6V2R+dLkf0AINnpXZN5/QCcOY7X1139ARuZLE4fRf0BkvjRxGMt/QIOWHc+pxH9Aom4GLTu+f0DBRu+KzLd/QOAe2OhdsX9A//bARu+qf0Aez6mkgKR/QDynkgISnn9AW397YKOXf0B6V2S+NJF/QJkvTRzGin9AuAc2eleEf0DX3x7Y6H1/QPa3BzZ6d39AFZDwkwtxf0A0aNnxnGp/QFJAwk8uZH9AcRirrb9df0CQ8JMLUVd/QK/IfGniUH9AzqBlx3NKf0DteE4lBUR/QAxRN4OWPX9AKikg4Sc3f0BJAQk/uTB/QGjZ8ZxKKn9Ah7Ha+tsjf0CmicNYbR1/QMVhrLb+Fn9A5DmVFJAQf0ADEn5yIQp/QCLqZtCyA39AQMJPLkT9fkBfmjiM1fZ+QH5yIepm8H5AnUoKSPjpfkC8IvOlieN+QNv62wMb3X5A+tLEYazWfkAYq62/PdB+QDeDlh3PyX5AVlt/e2DDfkB1M2jZ8bx+QJQLUTeDtn5As+M5lRSwfkDSuyLzpal+QPGTC1E3o35AEGz0rsicfkAuRN0MWpZ+QE0cxmrrj35AbPSuyHyJfkCLzJcmDoN+QKqkgISffH5AyXxp4jB2fkDoVFJAwm9+QAYtO55TaX5AJQUk/ORifkBE3Qxadlx+QGO19bcHVn5Ago3eFZlPfkChZcdzKkl+QMA9sNG7Qn5A3xWZL008fkD+7YGN3jV+QBzGautvL35AO55TSQEpfkBadjynkiJ+QHlOJQUkHH5AmCYOY7UVfkC3/vbARg9+QNbW3x7YCH5A9K7IfGkCfkATh7Ha+vt9QDJfmjiM9X1AUTeDlh3vfUBwD2z0ruh9QI/nVFJA4n1Arr89sNHbfUDNlyYOY9V9QOtvD2z0zn1ACkj4yYXIfUApIOEnF8J9QEj4yYWou31AZ9Cy4zm1fUCGqJtBy659QKWAhJ9cqH1AxFht/e2hfUDiMFZbf5t9QAEJP7kQlX1AIOEnF6KOfUA/uRB1M4h9QF6R+dLEgX1AfWniMFZ7fUCcQcuO53R9QLsZtOx4bn1A2fGcSgpofUD4yYWom2F9QBeibgYtW31ANnpXZL5UfUBVUkDCT059QHQqKSDhR31AkwISfnJBfUCy2vrbAzt9QNCy4zmVNH1A74rMlyYufUAOY7X1tyd9QC07nlNJIX1ATBOHsdoafUBr628PbBR9QIrDWG39DX1AqZtBy44HfUDHcyopIAF9QOZLE4ex+nxABST85EL0fEAk/ORC1O18QEPUzaBl53xAYqy2/vbgfECBhJ9ciNp8QKBciLoZ1HxAvjRxGKvNfEDdDFp2PMd8QPzkQtTNwHxAG70rMl+6fEA6lRSQ8LN8QFlt/e2BrXxAeEXmSxOnfECXHc+ppKB8QLX1twc2mnxA1M2gZceTfEDzpYnDWI18QBJ+ciHqhnxAMVZbf3uAfEBQLkTdDHp8QG8GLTuec3xAjt4VmS9tfECstv72wGZ8QMuO51RSYHxA6mbQsuNZfEAJP7kQdVN8QCgXom4GTXxAR++KzJdGfEBmx3MqKUB8QIWfXIi6OXxAo3dF5kszfEDCTy5E3Sx8QOEnF6JuJnxAAAAAAAAgfEA=\"},\"shape\":[400],\"dtype\":\"float64\",\"order\":\"little\"}],[\"y\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"IVmCZqPaTT8mesS2TLJOP31GIr9I/E4/kYTAkg10Tz8ktFulsyJQP3ITKR0JTFA/llYraqOHUD/SyfbDRtdQP0tQ8e+bEVE/S2uC2n5hUT+yLSdLq61RP1LqEzvBF1I/LvzuyxEhUj/6w4c8P5FSP8R2vDAuIVM/x1ATm91DUz8jnMHgVItTPx96iatu4FM/A19XMMYQVD+SrPyg2XZUPy1Ntm+hs1Q/bI+joHBCVT9G0Wrd0p5VP+ooxZY36lU/s2CbuhYgVj8FqXXSa4lWP4xmd95MoFY/zmcqj+gBVz+cMoW3GJZXP+qEraBE51c/cvjy65hNWD/mUkFuC8JYPwhk9LmhBFk/k1HDiXiDWT92Tmn8v7xZP8E90emAOlo/sw+lApZ4Wj8wj4BDhNVaPxw28+fAUls/slsUzS2zWz/E/L56OilcP+Prau8lZlw/T+gzsC7fXD9bodUzR0ldP/iF2YCW0l0/Ql/DGkoQXj+Z+VTlKZFeP3QS9l96Cl8/moPE145SXz/R7oDJDuxfP1GdRg6cKWA/vl8b3YBQYD9EGJRoD5RgP3Ww008FymA/4ai2xqkXYT+G5FJIui5hPyBz4DvDcmE/TXPDV0GxYT84OoHF7vZhP7LZxbfmPGI/ngStPqJ7Yj+uRdlMVq1iP49rw2lI6mI/Cg/QvQs7Yz8f2anoOXFjP5MitFEds2M/Utu0QNwIZD8ebmxWuzZkPydHUOg0jGQ/cLSnSOy4ZD82LAGJCvtkP53hRyoMQGU/8tgzaepsZT+VqVeIzdJlP3GyTWXqGWY/aRKdpg1OZj/ChR2+fJZmP/ymnZN/6mY/Y9Ezf4U6Zz/7V0+XkIlnPzRzSv0Ky2c/jOLbDwYLaD+APVSKhXBoP2Cvj9KVnWg/n3Xx5ePtaD9VNnrdrEZpP4lMxh+vgWk/lrIfMG7maT8GbTyYkC9qP7BXTLSBfmo/UhdxRRfQaj+PM3FV1y1rP/U95BqYfWs/bqu7I/Opaz89tTBLvyRsP3rH44krZWw/arGG1SDPbD+zHISb9TJtP8DAGaSzX20/UDCfSMnNbT81JtiJWC5uP2+yWtgLcG4/DPMeHnvabj8hth/pBhxvP2Sj6bAmfW8/+YNEhMbmbz+BIHp6NyJwPxIqaD5WVXA/dEzqCH+GcD9ULjthFbFwP9V9zDvR5HA/lrliBu8ScT8orBFYeT1xP+qsEPqEcXE/UBosjFSncT/s6bcvX9dxP/M/bVuqB3I/qNZ2540ycj8eV9R0/mxyP52v1Blxn3I/H88S0+rMcj8khW5BuglzP9v08DCwOHM/xq5QzzJ3cz9ZPJpG8bNzP+c+eZN45HM/NeZ5odURdD/LXsURA1d0PzuULB0vgXQ/3a08asu+dD8NRM63UP10P+vWKRVfNHU/DtS9YIRodT9oSKHcWaN1P07y/ttH13U/jIq7Z8QYdj/QYogo1kx2PwG+gk1JkXY//smboKbGdj9x4u+D4Q93P0DSVA3KTXc/0eWALvCNdz9iMHwWXb13P2t0YiGHAHg/6EMSZB06eD/39dTOVnx4P1qqW1FUw3g/YML8J8zzeD/DeGdbL0B5P/6A67Dgg3k/NlZ4Fea9eT9tcNr/BP95P7gZp49rRHo/vk4z66iNej+B9NT4+tJ6P+Hlr7HHG3s/AaF2uppVez/iOGkMxaV7P1/2IouR9Hs/wzxaxtUifD9y8SQjj3J8P9yvXuyNv3w/OB23ThIBfT9PLoDHtFF9PzkvY4XBjn0/chmoZZPXfT9bkDQX+zR+P9sBf4IQc34/BWghIrG0fj9AsHba8v9+P2KAK3aHVn8/1exgSHelfz+GsjPujeZ/P4yOy8NAGoA/Y/hOpGlEgD+Qn6KuYmaAP2MSlVlCj4A/no7vZmC4gD/eppVEauGAP3Ny5JyvDYE/zEUcbBotgT+VDGunwGKBP6wWbDU4iYE/sW+mR6ysgT9SHtQEXNeBP0vQrJt8AoI/4e2ESb8lgj8YzAyQKVWCP/WTsL22gYI/bVk50fmrgj9QCbARhtaCP8jznT/0+4I/npUzYgYtgz/2La1ltlSDP31/l9rRhoM/cKk0LSuwgz+/71I3RtyDP4LNJnBFA4Q/KFssXo82hD82lrvNXmiEP76nzZPGw4Y/ckCPdK2Nhj+YVNJip1qGP2SEptvIK4Y/Pw3OlmL9hT/V9mUfGsyFP51XoteSmoU/s8dVdgtuhT+qtGp8y0GFP5WZBewADoU/T//+OXHehD9f3Px1Xa6EP10+1q8bhoQ/0jT4YPFShD9Ni/ds6CmEP0VvdgVJAYQ/YWWo2svOgz/dL+rMGaeDP5qh9rSqeYM/b9R+cipOgz975KH7KiODP/lD+aMk+4I/yr6Nh5XOgj85oSrDTKSCP9QVLXY7f4I/Mw4ap01Pgj9Lm9D55yiCPx9jICfCAYI/KZeq2ozYgT+1gFiQULWBP3XrAAI5jIE/PjZ/lBxlgT91SmbKRTuBPwnU2mwXF4E/9/Za1A/4gD9lvLaKSMyAP8lJFiykp4A/FHNxVCWDgD8n8DR8d2KAP37IiZ1KOYA/OJvscW8WgD/OWNKXB+x/P8A1oHPxln8/6XRKjwBYfz+T0cScoAR/PzIPyyxjv34/Ai4kdX2Ffj8ac3mh8EF+P3NP3bD7+30/nwxeECK0fT9Xeh45oXJ9P+c8Tg2HMH0/nSkJDH/tfD8dPxMjhLV8P5ZNimWrcXw/06U6vug0fD+Jg+lTRfN7P29hGJJFsXs/+DSc84l8ez8FcPCSqjd7P0CHRYFIA3s/Uyeq+yOzej86nOEUgoZ6P43RfzXcPno/2uQNxHsUej+BsBPaks55P4ZPBHprnHk/YyUHaDJOeT994FPOUSZ5P3TJ1ok7/Xg/YQ2vHlKweD/wyAWTlXl4PzW2dqJtQ3g/Zn4rlZQUeD9gqUV829d3P1ZuBFNdoXc/yv0L1hFmdz8pjL5m3zN3P5knZJq6AXc/n8AF4v/Kdj/jBjVgbZx2P360ES6xaXY/mEIr5bE1dj+R4InC7gB2PzZXWvk203U/pkU5LB+WdT9cL+MsQGl1P6+DKeAcQnU/gtQHQTAPdT9dbDtlZd90P8pazFH8pnQ/gu2blO13dD+1R0bLnE50PxDuTOwTHHQ/778pvu7scz/kGdenc7hzPxord8jQlnM/ILz0emlmcz9x5jZllz1zPxmeYgZ/B3M/aj4JWcbgcj8luEhKUL1yP9En3K2YkXI/ZKj4s2dscj/gkLfs8TpyP31Cg7+pEHI/5pHPDNrbcT/k1B6crrNxP5voAn1zlnE/oEvqG4dncT86n35zJj1xPz5Xkjb5GHE/XGyEzVr0cD8z4Nvdy8lwPxf2xl38pXA/NX7udgd5cD+panzKHFBwPzZfy0FOLHA/T4hYe9oMcD9zihLUd9VvP+g50U6Hfm8/xwot1GI8bz/LIqJOeAZvPwhNaJSinG4/XZx9yBBFbj9jPOBAnBVuP/Ldobkyzm0/MZEMYceLbT+2Ja3a50htP9QaXmNrA20/jN7jKwXNbD9TlyfvHoJsPwforkyHLGw/4am/lsIAbD/7wNtpTsprP0TuJpfGeGs/9NISACM1az8Y7EHiSRRrPyxOqjausWo/ilPufAZmaj/FDJBN0jpqP6IggO3D7mk/h3YtXDjCaT+AJ/TV8XppP7VYFde0L2k/zNDdlo3saD8o1RJ4Dd1oP5BG08pVlGg/A/avLf5daD+7HhZzmkFoP7KigpqM8Gc/BqKcKaq+Zz+5AT9k+ndnP/3UOGC+UWc/xbKy4PIWZz9xqznsedhmP89c4c5epWY/FpY22+d4Zj8VH3nJ+itmP4rq9XteCWY/2mH7aV3TZT8MU0JNgKNlP7079heoamU/qo9bYlkvZT9ZkQut0gZlP67gqvfD62Q/crmc9yioZD//M4mNgGlkP91UiLbIXmQ/NecwBcoyZD/CRaTuDt5jP+toUABCtWM/WQaMnjGNYz+JkCw8hV5jP6c3qOiEI2M/ejBYm04MYz9X2WxlONBiP9IJZiFBvmI/YdE8XhJwYj/mnF1YpVZiP+hmdlOOLWI/AuQLH3gRYj/9slaZUuNhP+IL7mL1omE/ZaKQdRSGYT/8pi/SK2hhPzoPlIOsOmE/DO0Vv20SYT+H9anX6+VgPyq8bPh0tWA/8G6Ov+CWYD+KLPhCv3VgP1+tUGi9RmA/QYt2660nYD+OJy45gfhfP+bfzWMkpV8/JVvQyBZzXz+fYRQCRSVfP5GrK3sfAl8/A9RHLcOpXj8=\"},\"shape\":[400],\"dtype\":\"float64\",\"order\":\"little\"}]]}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1092\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1093\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Patch\",\"id\":\"p1088\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":\"#1f77b4\",\"line_alpha\":0,\"line_width\":0,\"fill_color\":\"#6baed6\"}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Patch\",\"id\":\"p1089\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":\"#1f77b4\",\"line_alpha\":0.1,\"line_width\":0,\"fill_color\":\"#6baed6\",\"fill_alpha\":0.1,\"hatch_alpha\":0.1}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Patch\",\"id\":\"p1090\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":\"#1f77b4\",\"line_alpha\":0.2,\"line_width\":0,\"fill_color\":\"#6baed6\",\"fill_alpha\":0.2,\"hatch_alpha\":0.2}}}},{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1100\",\"attributes\":{\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1094\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1095\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1096\"},\"data\":{\"type\":\"map\",\"entries\":[[\"x\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAgfEDhJxeibiZ8QMJPLkTdLHxAo3dF5kszfECFn1yIujl8QGbHcyopQHxAR++KzJdGfEAoF6JuBk18QAk/uRB1U3xA6mbQsuNZfEDLjudUUmB8QKy2/vbAZnxAjt4VmS9tfEBvBi07nnN8QFAuRN0MenxAMVZbf3uAfEASfnIh6oZ8QPOlicNYjXxA1M2gZceTfEC19bcHNpp8QJcdz6mkoHxAeEXmSxOnfEBZbf3tga18QDqVFJDws3xAG70rMl+6fED85ELUzcB8QN0MWnY8x3xAvjRxGKvNfECgXIi6GdR8QIGEn1yI2nxAYqy2/vbgfEBD1M2gZed8QCT85ELU7XxABST85EL0fEDmSxOHsfp8QMdzKikgAX1AqZtBy44HfUCKw1ht/Q19QGvrbw9sFH1ATBOHsdoafUAtO55TSSF9QA5jtfW3J31A74rMlyYufUDQsuM5lTR9QLLa+tsDO31AkwISfnJBfUB0Kikg4Ud9QFVSQMJPTn1ANnpXZL5UfUAXom4GLVt9QPjJhaibYX1A2fGcSgpofUC7GbTseG59QJxBy47ndH1AfWniMFZ7fUBekfnSxIF9QD+5EHUziH1AIOEnF6KOfUABCT+5EJV9QOIwVlt/m31AxFht/e2hfUClgISfXKh9QIaom0HLrn1AZ9Cy4zm1fUBI+MmFqLt9QCkg4ScXwn1ACkj4yYXIfUDrbw9s9M59QM2XJg5j1X1Arr89sNHbfUCP51RSQOJ9QHAPbPSu6H1AUTeDlh3vfUAyX5o4jPV9QBOHsdr6+31A9K7IfGkCfkDW1t8e2Ah+QLf+9sBGD35AmCYOY7UVfkB5TiUFJBx+QFp2PKeSIn5AO55TSQEpfkAcxmrrby9+QP7tgY3eNX5A3xWZL008fkDAPbDRu0J+QKFlx3MqSX5Ago3eFZlPfkBjtfW3B1Z+QETdDFp2XH5AJQUk/ORifkAGLTueU2l+QOhUUkDCb35AyXxp4jB2fkCqpICEn3x+QIvMlyYOg35AbPSuyHyJfkBNHMZq649+QC5E3Qxaln5AEGz0rsicfkDxkwtRN6N+QNK7IvOlqX5As+M5lRSwfkCUC1E3g7Z+QHUzaNnxvH5AVlt/e2DDfkA3g5Ydz8l+QBirrb890H5A+tLEYazWfkDb+tsDG91+QLwi86WJ435AnUoKSPjpfkB+ciHqZvB+QF+aOIzV9n5AQMJPLkT9fkAi6mbQsgN/QAMSfnIhCn9A5DmVFJAQf0DFYay2/hZ/QKaJw1htHX9Ah7Ha+tsjf0Bo2fGcSip/QEkBCT+5MH9AKikg4Sc3f0AMUTeDlj1/QO14TiUFRH9AzqBlx3NKf0CvyHxp4lB/QJDwkwtRV39AcRirrb9df0BSQMJPLmR/QDRo2fGcan9AFZDwkwtxf0D2twc2end/QNffHtjofX9AuAc2eleEf0CZL00cxop/QHpXZL40kX9AW397YKOXf0A8p5ICEp5/QB7PqaSApH9A//bARu+qf0DgHtjoXbF/QMFG74rMt39Aom4GLTu+f0CDlh3PqcR/QGS+NHEYy39ARuZLE4fRf0AnDmO19dd/QAg2eldk3n9A6V2R+dLkf0DKhaibQet/QKutvz2w8X9AjNXW3x74f0Bt/e2Bjf5/QKeSAhJ+AoBAmCYOY7UFgECIuhm07AiAQHlOJQUkDIBAauIwVlsPgEBadjynkhKAQEsKSPjJFYBAO55TSQEZgEAsMl+aOByAQBzGautvH4BADVp2PKcigED+7YGN3iWAQO6Bjd4VKYBA3xWZL00sgEDPqaSAhC+AQMA9sNG7MoBAsNG7IvM1gEChZcdzKjmAQJH50sRhPIBAgo3eFZk/gEByIepm0EKAQGO19bcHRoBAVEkBCT9JgEBE3QxadkyAQDVxGKutT4BAJQUk/ORSgEAWmS9NHFaAQAYtO55TWYBA98BG74pcgEDoVFJAwl+AQNjoXZH5YoBAyXxp4jBmgEC5EHUzaGmAQKqkgISfbIBAmjiM1dZvgECLzJcmDnOAQHxgo3dFdoBAbPSuyHx5gEBdiLoZtHyAQE0cxmrrf4BAPrDRuyKDgEAuRN0MWoaAQB/Y6F2RiYBAEGz0rsiMgEAAAAAAAJCAQA==\"},\"shape\":[200],\"dtype\":\"float64\",\"order\":\"little\"}],[\"y\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"gqwKgRrGVj80jkdf9wxXPzBLXEOAPlc/2cbIJ56SVz8gCFb22dhXP+vcm3wGFlg/oqiekpRwWD/cG9capaZYP9r9jeoyBFk//fcBxDQ+WT9JJ9igq4RZP5pGtJka01k/ekuciacmWj9IkGNORH1aPycRRIq/9Vo/lh+4yhMIWz/8MZSwwm9bPwraotR34Vs/epm069YZXD+k8fIRhG1cP5yu/jr9wVw/ro81wFghXT8alN2KzHVdP4/+VU//vF0/SMibV9APXj+LysDgHnReP7Jvm2f0vF4/hChnQYsZXz8DJk/dhXtfP/aj8sAR7l8/+QaR0o0sYD8W4NzbBEpgPyYVUwo2hWA/NRBHLmq9YD/hlBwkAt1gP3cYrJv/FWE/lupdF9kpYT+2KssIVnJhP05zfsz/kmE/88KlfGvUYT9YowUFMRJiP64A8Jk2LWI/pMs4mfpxYj8/BPJ4nJpiP+7yCMld32I/16vAdzgNYz/N+EpiQUhjPwikSOeReWM/VlVgr022Yz9TyPik0exjP3VGa3fVJGQ/HFV2j6ZZZD8+kWllqZJkP5lW2EYby2Q/KG39NrwHZT9GPenpyDZlPx/dY0T9iWU/cr+me1u4ZT96jI+iEPllP9aOoACjLmY/sq6fOF9wZj9c7A/3BbJmP8DI7KhBA2c/yti3MF41Zz+Lzkso8XdnP3Z85nKkr2c/zr1NoAQNaD+u1xWviTdoP1pGqCHDjWg/9AQdCCS8aD+ygGwGdgRpP7KjSCmuS2k/QEZpBFWCaT9gwFgAz81pP5ayqUbxImo/LDlZMBJWaj9TJvOXL5JqPzNp160z+Go/bFSOZrhDaz828nFUC3hrP64NkapYwms/lAi/miQSbD+cUEZkcWJsPzh/PIlCqmw/w1w5GD35bD8SgfKQjEltP1YM/E3Nim0/sv9sca7dbT/ZZ6V7YyluP1K/A+pqfm4/fBdCEBjSbj9Oi257ijVvPw2G3/L9eW8/WjG31nLCbz9Otv0CrBtwP3wXpTrTOnA/QmbCiq5mcD/OK2TPGpNwP5a1Zo5ZtHA/Sh8lPMLlcD85ZahpmwtxP2KQR7I/N3E/Ctz0RjFpcT84WXqfcJdxP+52/1AXxnE/BN9d/Kf6cT+eWZbYSiJyPywcGKuTVHI/xZgNlfODcj/AuiLfQqpyP0pF37RL4XI/iErAOzsRcz/KpKdE6T1zP3j+/t63a3M/DgaNT7eicz9auyfu/MtzP6566buVBHQ/8W0TUcA0dD9CT/MjuHB0P8JCvUtvoHQ/NJlU4Y3UdD9J5HEHoAd1P/4mNTDJM3U/s+e2ba1pdT83hudCOKh1Py+sdqgB3nU/Mg1YrMAUdj+A3BNeYUV2PziVmKlBf3Y/jqMgFVLAdj8iUcuDsvh2P7Y7GG8zLnc/2nIuxVVldz+e/0c7qKN3P1qpNQfn13c/zAGKqsITeD+8IWz8skl4PwaYnlULkXg/dEJs2e/DeD9gymVIugt5P5o1od7GRXk/VhvOwr+EeT9sRM3jcrR5P46cntqN/Hk/YB2ucvQ6ej/WJqmn6nl6P25AWzlBvHo/FonoWw/0ej/eRGd4Nz97P+T8Cwxyens/S3OOrpDBez+ZwAh17Pt7P9EsnrRPS3w/RjhW9wKSfD+KhAAqZs58P6zf8ZKkEH0/vsmIbmpefT/Ztw9QTKR9P4Q035jQ6n0/hnI/M8orfj+g5oEba3d+P4xJPROzwX4/b0+IZ6YHfz+C28ElU0d/P/UnlgChmn8/QvWL6XTmfz95vvJiWReAPy4E1v2lPYA/cvhi9zZggD9FTyVe+YeAP2juW4wFroA/wj0JS8DYgD9kTp82Df6AP06aJ1PcI4E/elxMGkBLgT+cXyBKrHOBPypiZAs5nYE/Ih7kUBrFgT9EMkcDNu+BP3Qyo+VhHYI/OC0dGOU+gj+uGjosw26CP0AwBXMNloI/6gmm9RK+gj++eolvMO2CPxB9LZ4wF4M/cNqEYsg9gz9nVkK5ZW6DP+1PufT1nYM/SNwIMNHFgz+8cmK0M/GDP8zvl8OsH4Q/nBcnvtpRhD+FFX7b2XiEPzXGmAUkq4Q/3vJHB9rThD9U4GQbuAOFP0beKGhJNoU/1jcwuVFkhT8m4q3zb5eFPw==\"},\"shape\":[200],\"dtype\":\"float64\",\"order\":\"little\"}]]}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1101\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1102\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1097\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":\"#084594\",\"line_width\":2}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1098\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":\"#084594\",\"line_alpha\":0.1,\"line_width\":2}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1099\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":\"#084594\",\"line_alpha\":0.2,\"line_width\":2}}}},{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1109\",\"attributes\":{\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1103\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1104\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1105\"},\"data\":{\"type\":\"map\",\"entries\":[[\"x\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"ud2lfuSrfEBIwjCFHy99QE+R06Bdj31ACsWq5wcufkCA6LWztKh+QFL5bF0Hon9AUvlsXQeif0D1CRCoxwiAQMWLIAG4VoBAKs3HDMh3gEA=\"},\"shape\":[10],\"dtype\":\"float64\",\"order\":\"little\"}],[\"y\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"/o+RalsiWj+jYrhisQdgP8E7TuXf1mI/jATFgMifaj+9umKF5mFyP1mEE5l5gHo/Ovf0Bh5PeT+KtlxcXVyAP1DRf0Ez44E/4uhEBeZ8gz8=\"},\"shape\":[10],\"dtype\":\"float64\",\"order\":\"little\"}]]}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1110\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1111\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Circle\",\"id\":\"p1106\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"size\":{\"type\":\"value\",\"value\":2},\"line_color\":{\"type\":\"value\",\"value\":\"orange\"},\"fill_color\":{\"type\":\"value\",\"value\":\"orange\"},\"hatch_color\":{\"type\":\"value\",\"value\":\"orange\"}}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Circle\",\"id\":\"p1107\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"size\":{\"type\":\"value\",\"value\":2},\"line_color\":{\"type\":\"value\",\"value\":\"orange\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.1},\"fill_color\":{\"type\":\"value\",\"value\":\"orange\"},\"fill_alpha\":{\"type\":\"value\",\"value\":0.1},\"hatch_color\":{\"type\":\"value\",\"value\":\"orange\"},\"hatch_alpha\":{\"type\":\"value\",\"value\":0.1}}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Circle\",\"id\":\"p1108\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"size\":{\"type\":\"value\",\"value\":2},\"line_color\":{\"type\":\"value\",\"value\":\"orange\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.2},\"fill_color\":{\"type\":\"value\",\"value\":\"orange\"},\"fill_alpha\":{\"type\":\"value\",\"value\":0.2},\"hatch_color\":{\"type\":\"value\",\"value\":\"orange\"},\"hatch_alpha\":{\"type\":\"value\",\"value\":0.2}}}}}],\"toolbar\":{\"type\":\"object\",\"name\":\"Toolbar\",\"id\":\"p1055\",\"attributes\":{\"tools\":[{\"type\":\"object\",\"name\":\"PanTool\",\"id\":\"p1069\"},{\"type\":\"object\",\"name\":\"WheelZoomTool\",\"id\":\"p1070\",\"attributes\":{\"renderers\":\"auto\"}},{\"type\":\"object\",\"name\":\"BoxZoomTool\",\"id\":\"p1071\",\"attributes\":{\"overlay\":{\"type\":\"object\",\"name\":\"BoxAnnotation\",\"id\":\"p1072\",\"attributes\":{\"syncable\":false,\"level\":\"overlay\",\"visible\":false,\"left_units\":\"canvas\",\"right_units\":\"canvas\",\"top_units\":\"canvas\",\"bottom_units\":\"canvas\",\"line_color\":\"black\",\"line_alpha\":1.0,\"line_width\":2,\"line_dash\":[4,4],\"fill_color\":\"lightgrey\",\"fill_alpha\":0.5}}}},{\"type\":\"object\",\"name\":\"SaveTool\",\"id\":\"p1073\"},{\"type\":\"object\",\"name\":\"ResetTool\",\"id\":\"p1074\"},{\"type\":\"object\",\"name\":\"HelpTool\",\"id\":\"p1075\"}]}},\"left\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1064\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1065\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1066\"},\"axis_label\":\"k (1/sec)\",\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1067\"}}}],\"below\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1059\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1060\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1061\"},\"axis_label\":\"T (K)\",\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1062\"}}}],\"center\":[{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1063\",\"attributes\":{\"axis\":{\"id\":\"p1059\"}}},{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1068\",\"attributes\":{\"dimension\":1,\"axis\":{\"id\":\"p1064\"}}}],\"frame_width\":400,\"frame_height\":325}}],\"defs\":[{\"type\":\"model\",\"name\":\"ReactiveHTML1\"},{\"type\":\"model\",\"name\":\"FlexBox1\",\"properties\":[{\"name\":\"align_content\",\"kind\":\"Any\",\"default\":\"flex-start\"},{\"name\":\"align_items\",\"kind\":\"Any\",\"default\":\"flex-start\"},{\"name\":\"flex_direction\",\"kind\":\"Any\",\"default\":\"row\"},{\"name\":\"flex_wrap\",\"kind\":\"Any\",\"default\":\"wrap\"},{\"name\":\"justify_content\",\"kind\":\"Any\",\"default\":\"flex-start\"}]},{\"type\":\"model\",\"name\":\"FloatPanel1\",\"properties\":[{\"name\":\"config\",\"kind\":\"Any\",\"default\":{\"type\":\"map\"}},{\"name\":\"contained\",\"kind\":\"Any\",\"default\":true},{\"name\":\"position\",\"kind\":\"Any\",\"default\":\"right-top\"},{\"name\":\"offsetx\",\"kind\":\"Any\",\"default\":null},{\"name\":\"offsety\",\"kind\":\"Any\",\"default\":null},{\"name\":\"theme\",\"kind\":\"Any\",\"default\":\"primary\"},{\"name\":\"status\",\"kind\":\"Any\",\"default\":\"normalized\"}]},{\"type\":\"model\",\"name\":\"GridStack1\",\"properties\":[{\"name\":\"mode\",\"kind\":\"Any\",\"default\":\"warn\"},{\"name\":\"ncols\",\"kind\":\"Any\",\"default\":null},{\"name\":\"nrows\",\"kind\":\"Any\",\"default\":null},{\"name\":\"allow_resize\",\"kind\":\"Any\",\"default\":true},{\"name\":\"allow_drag\",\"kind\":\"Any\",\"default\":true},{\"name\":\"state\",\"kind\":\"Any\",\"default\":[]}]},{\"type\":\"model\",\"name\":\"drag1\",\"properties\":[{\"name\":\"slider_width\",\"kind\":\"Any\",\"default\":5},{\"name\":\"slider_color\",\"kind\":\"Any\",\"default\":\"black\"},{\"name\":\"value\",\"kind\":\"Any\",\"default\":50}]},{\"type\":\"model\",\"name\":\"click1\",\"properties\":[{\"name\":\"terminal_output\",\"kind\":\"Any\",\"default\":\"\"},{\"name\":\"debug_name\",\"kind\":\"Any\",\"default\":\"\"},{\"name\":\"clears\",\"kind\":\"Any\",\"default\":0}]},{\"type\":\"model\",\"name\":\"toggle_value1\",\"properties\":[{\"name\":\"active_icons\",\"kind\":\"Any\",\"default\":{\"type\":\"map\"}},{\"name\":\"options\",\"kind\":\"Any\",\"default\":{\"type\":\"map\",\"entries\":[[\"favorite\",\"heart\"]]}},{\"name\":\"value\",\"kind\":\"Any\",\"default\":[]},{\"name\":\"_reactions\",\"kind\":\"Any\",\"default\":[]},{\"name\":\"_base_url\",\"kind\":\"Any\",\"default\":\"https://tabler-icons.io/static/tabler-icons/icons/\"}]},{\"type\":\"model\",\"name\":\"copy_to_clipboard1\",\"properties\":[{\"name\":\"value\",\"kind\":\"Any\",\"default\":null},{\"name\":\"fill\",\"kind\":\"Any\",\"default\":\"none\"}]},{\"type\":\"model\",\"name\":\"FastWrapper1\",\"properties\":[{\"name\":\"object\",\"kind\":\"Any\",\"default\":null},{\"name\":\"style\",\"kind\":\"Any\",\"default\":null}]},{\"type\":\"model\",\"name\":\"NotificationAreaBase1\",\"properties\":[{\"name\":\"js_events\",\"kind\":\"Any\",\"default\":{\"type\":\"map\"}},{\"name\":\"position\",\"kind\":\"Any\",\"default\":\"bottom-right\"},{\"name\":\"_clear\",\"kind\":\"Any\",\"default\":0}]},{\"type\":\"model\",\"name\":\"NotificationArea1\",\"properties\":[{\"name\":\"js_events\",\"kind\":\"Any\",\"default\":{\"type\":\"map\"}},{\"name\":\"notifications\",\"kind\":\"Any\",\"default\":[]},{\"name\":\"position\",\"kind\":\"Any\",\"default\":\"bottom-right\"},{\"name\":\"_clear\",\"kind\":\"Any\",\"default\":0},{\"name\":\"types\",\"kind\":\"Any\",\"default\":[{\"type\":\"map\",\"entries\":[[\"type\",\"warning\"],[\"background\",\"#ffc107\"],[\"icon\",{\"type\":\"map\",\"entries\":[[\"className\",\"fas fa-exclamation-triangle\"],[\"tagName\",\"i\"],[\"color\",\"white\"]]}]]},{\"type\":\"map\",\"entries\":[[\"type\",\"info\"],[\"background\",\"#007bff\"],[\"icon\",{\"type\":\"map\",\"entries\":[[\"className\",\"fas fa-info-circle\"],[\"tagName\",\"i\"],[\"color\",\"white\"]]}]]}]}]},{\"type\":\"model\",\"name\":\"Notification\",\"properties\":[{\"name\":\"background\",\"kind\":\"Any\",\"default\":null},{\"name\":\"duration\",\"kind\":\"Any\",\"default\":3000},{\"name\":\"icon\",\"kind\":\"Any\",\"default\":null},{\"name\":\"message\",\"kind\":\"Any\",\"default\":\"\"},{\"name\":\"notification_type\",\"kind\":\"Any\",\"default\":null},{\"name\":\"_destroyed\",\"kind\":\"Any\",\"default\":false}]},{\"type\":\"model\",\"name\":\"TemplateActions1\",\"properties\":[{\"name\":\"open_modal\",\"kind\":\"Any\",\"default\":0},{\"name\":\"close_modal\",\"kind\":\"Any\",\"default\":0}]},{\"type\":\"model\",\"name\":\"BootstrapTemplateActions1\",\"properties\":[{\"name\":\"open_modal\",\"kind\":\"Any\",\"default\":0},{\"name\":\"close_modal\",\"kind\":\"Any\",\"default\":0}]},{\"type\":\"model\",\"name\":\"MaterialTemplateActions1\",\"properties\":[{\"name\":\"open_modal\",\"kind\":\"Any\",\"default\":0},{\"name\":\"close_modal\",\"kind\":\"Any\",\"default\":0}]}]}};\n", " const render_items = [{\"docid\":\"388986c0-e6dd-4875-bc9c-fd713f9f654f\",\"roots\":{\"p1047\":\"efeca8d7-f22d-4031-a45b-a58aa88c7f34\"},\"root_ids\":[\"p1047\"]}];\n", " root.Bokeh.embed.embed_items_notebook(docs_json, render_items);\n", " }\n", " if (root.Bokeh !== undefined) {\n", " embed_document(root);\n", " } else {\n", " let attempts = 0;\n", " const timer = setInterval(function(root) {\n", " if (root.Bokeh !== undefined) {\n", " clearInterval(timer);\n", " embed_document(root);\n", " } else {\n", " attempts++;\n", " if (attempts > 100) {\n", " clearInterval(timer);\n", " console.log(\"Bokeh: ERROR: Unable to run BokehJS code because BokehJS library is missing\");\n", " }\n", " }\n", " }, 10, root)\n", " }\n", "})(window);" ], "application/vnd.bokehjs_exec.v0+json": "" }, "metadata": { "application/vnd.bokehjs_exec.v0+json": { "id": "p1047" } }, "output_type": "display_data" } ], "source": [ "k_ppc = samples.posterior_predictive['k_ppc'].stack(\n", " {\"sample\": (\"chain\", \"draw\")}\n", ").transpose(\"sample\", \"k_ppc_dim_0\")\n", "\n", "bokeh.io.show(\n", " bebi103.viz.predictive_regression(\n", " k_ppc,\n", " samples_x=T_ppc,\n", " data=np.vstack((T, k)).transpose(),\n", " x_axis_label='T (K)',\n", " y_axis_label='k (1/sec)',\n", " x_range=[T_ppc.min(), T_ppc.max()],\n", " )\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "These look good; the model can generate the data set. Now, let's look at the parameter values. It is better to look at $A$ on a logarithmic scale." ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "
\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/javascript": [ "(function(root) {\n", " function embed_document(root) {\n", " const docs_json = {\"180d73ae-f3f8-4656-9cab-f60f1eb94a3a\":{\"version\":\"3.3.0\",\"title\":\"Bokeh Application\",\"roots\":[{\"type\":\"object\",\"name\":\"Row\",\"id\":\"p1417\",\"attributes\":{\"children\":[{\"type\":\"object\",\"name\":\"Toolbar\",\"id\":\"p1412\",\"attributes\":{\"styles\":{\"type\":\"map\",\"entries\":[[\"orientation\",\"horizontal\"]]},\"tools\":[{\"type\":\"object\",\"name\":\"ToolProxy\",\"id\":\"p1405\",\"attributes\":{\"tools\":[{\"type\":\"object\",\"name\":\"PanTool\",\"id\":\"p1149\"},{\"type\":\"object\",\"name\":\"PanTool\",\"id\":\"p1191\"},{\"type\":\"object\",\"name\":\"PanTool\",\"id\":\"p1242\"},{\"type\":\"object\",\"name\":\"PanTool\",\"id\":\"p1284\"},{\"type\":\"object\",\"name\":\"PanTool\",\"id\":\"p1335\"},{\"type\":\"object\",\"name\":\"PanTool\",\"id\":\"p1386\"}]}},{\"type\":\"object\",\"name\":\"ToolProxy\",\"id\":\"p1406\",\"attributes\":{\"tools\":[{\"type\":\"object\",\"name\":\"BoxZoomTool\",\"id\":\"p1150\",\"attributes\":{\"overlay\":{\"type\":\"object\",\"name\":\"BoxAnnotation\",\"id\":\"p1151\",\"attributes\":{\"syncable\":false,\"level\":\"overlay\",\"visible\":false,\"left_units\":\"canvas\",\"right_units\":\"canvas\",\"top_units\":\"canvas\",\"bottom_units\":\"canvas\",\"line_color\":\"black\",\"line_alpha\":1.0,\"line_width\":2,\"line_dash\":[4,4],\"fill_color\":\"lightgrey\",\"fill_alpha\":0.5}}}},{\"type\":\"object\",\"name\":\"BoxZoomTool\",\"id\":\"p1192\",\"attributes\":{\"overlay\":{\"type\":\"object\",\"name\":\"BoxAnnotation\",\"id\":\"p1193\",\"attributes\":{\"syncable\":false,\"level\":\"overlay\",\"visible\":false,\"left_units\":\"canvas\",\"right_units\":\"canvas\",\"top_units\":\"canvas\",\"bottom_units\":\"canvas\",\"line_color\":\"black\",\"line_alpha\":1.0,\"line_width\":2,\"line_dash\":[4,4],\"fill_color\":\"lightgrey\",\"fill_alpha\":0.5}}}},{\"type\":\"object\",\"name\":\"BoxZoomTool\",\"id\":\"p1243\",\"attributes\":{\"overlay\":{\"type\":\"object\",\"name\":\"BoxAnnotation\",\"id\":\"p1244\",\"attributes\":{\"syncable\":false,\"level\":\"overlay\",\"visible\":false,\"left_units\":\"canvas\",\"right_units\":\"canvas\",\"top_units\":\"canvas\",\"bottom_units\":\"canvas\",\"line_color\":\"black\",\"line_alpha\":1.0,\"line_width\":2,\"line_dash\":[4,4],\"fill_color\":\"lightgrey\",\"fill_alpha\":0.5}}}},{\"type\":\"object\",\"name\":\"BoxZoomTool\",\"id\":\"p1285\",\"attributes\":{\"overlay\":{\"type\":\"object\",\"name\":\"BoxAnnotation\",\"id\":\"p1286\",\"attributes\":{\"syncable\":false,\"level\":\"overlay\",\"visible\":false,\"left_units\":\"canvas\",\"right_units\":\"canvas\",\"top_units\":\"canvas\",\"bottom_units\":\"canvas\",\"line_color\":\"black\",\"line_alpha\":1.0,\"line_width\":2,\"line_dash\":[4,4],\"fill_color\":\"lightgrey\",\"fill_alpha\":0.5}}}},{\"type\":\"object\",\"name\":\"BoxZoomTool\",\"id\":\"p1336\",\"attributes\":{\"overlay\":{\"type\":\"object\",\"name\":\"BoxAnnotation\",\"id\":\"p1337\",\"attributes\":{\"syncable\":false,\"level\":\"overlay\",\"visible\":false,\"left_units\":\"canvas\",\"right_units\":\"canvas\",\"top_units\":\"canvas\",\"bottom_units\":\"canvas\",\"line_color\":\"black\",\"line_alpha\":1.0,\"line_width\":2,\"line_dash\":[4,4],\"fill_color\":\"lightgrey\",\"fill_alpha\":0.5}}}},{\"type\":\"object\",\"name\":\"BoxZoomTool\",\"id\":\"p1387\",\"attributes\":{\"overlay\":{\"type\":\"object\",\"name\":\"BoxAnnotation\",\"id\":\"p1388\",\"attributes\":{\"syncable\":false,\"level\":\"overlay\",\"visible\":false,\"left_units\":\"canvas\",\"right_units\":\"canvas\",\"top_units\":\"canvas\",\"bottom_units\":\"canvas\",\"line_color\":\"black\",\"line_alpha\":1.0,\"line_width\":2,\"line_dash\":[4,4],\"fill_color\":\"lightgrey\",\"fill_alpha\":0.5}}}}]}},{\"type\":\"object\",\"name\":\"ToolProxy\",\"id\":\"p1407\",\"attributes\":{\"tools\":[{\"type\":\"object\",\"name\":\"WheelZoomTool\",\"id\":\"p1152\",\"attributes\":{\"renderers\":\"auto\"}},{\"type\":\"object\",\"name\":\"WheelZoomTool\",\"id\":\"p1194\",\"attributes\":{\"renderers\":\"auto\"}},{\"type\":\"object\",\"name\":\"WheelZoomTool\",\"id\":\"p1245\",\"attributes\":{\"renderers\":\"auto\"}},{\"type\":\"object\",\"name\":\"WheelZoomTool\",\"id\":\"p1287\",\"attributes\":{\"renderers\":\"auto\"}},{\"type\":\"object\",\"name\":\"WheelZoomTool\",\"id\":\"p1338\",\"attributes\":{\"renderers\":\"auto\"}},{\"type\":\"object\",\"name\":\"WheelZoomTool\",\"id\":\"p1389\",\"attributes\":{\"renderers\":\"auto\"}}]}},{\"type\":\"object\",\"name\":\"ToolProxy\",\"id\":\"p1408\",\"attributes\":{\"tools\":[{\"type\":\"object\",\"name\":\"BoxSelectTool\",\"id\":\"p1153\",\"attributes\":{\"renderers\":\"auto\",\"overlay\":{\"type\":\"object\",\"name\":\"BoxAnnotation\",\"id\":\"p1154\",\"attributes\":{\"syncable\":false,\"level\":\"overlay\",\"visible\":false,\"editable\":true,\"line_color\":\"black\",\"line_alpha\":1.0,\"line_width\":2,\"line_dash\":[4,4],\"fill_color\":\"lightgrey\",\"fill_alpha\":0.5}}}},{\"type\":\"object\",\"name\":\"BoxSelectTool\",\"id\":\"p1195\",\"attributes\":{\"renderers\":\"auto\",\"overlay\":{\"type\":\"object\",\"name\":\"BoxAnnotation\",\"id\":\"p1196\",\"attributes\":{\"syncable\":false,\"level\":\"overlay\",\"visible\":false,\"editable\":true,\"line_color\":\"black\",\"line_alpha\":1.0,\"line_width\":2,\"line_dash\":[4,4],\"fill_color\":\"lightgrey\",\"fill_alpha\":0.5}}}},{\"type\":\"object\",\"name\":\"BoxSelectTool\",\"id\":\"p1246\",\"attributes\":{\"renderers\":\"auto\",\"overlay\":{\"type\":\"object\",\"name\":\"BoxAnnotation\",\"id\":\"p1247\",\"attributes\":{\"syncable\":false,\"level\":\"overlay\",\"visible\":false,\"editable\":true,\"line_color\":\"black\",\"line_alpha\":1.0,\"line_width\":2,\"line_dash\":[4,4],\"fill_color\":\"lightgrey\",\"fill_alpha\":0.5}}}},{\"type\":\"object\",\"name\":\"BoxSelectTool\",\"id\":\"p1288\",\"attributes\":{\"renderers\":\"auto\",\"overlay\":{\"type\":\"object\",\"name\":\"BoxAnnotation\",\"id\":\"p1289\",\"attributes\":{\"syncable\":false,\"level\":\"overlay\",\"visible\":false,\"editable\":true,\"line_color\":\"black\",\"line_alpha\":1.0,\"line_width\":2,\"line_dash\":[4,4],\"fill_color\":\"lightgrey\",\"fill_alpha\":0.5}}}},{\"type\":\"object\",\"name\":\"BoxSelectTool\",\"id\":\"p1339\",\"attributes\":{\"renderers\":\"auto\",\"overlay\":{\"type\":\"object\",\"name\":\"BoxAnnotation\",\"id\":\"p1340\",\"attributes\":{\"syncable\":false,\"level\":\"overlay\",\"visible\":false,\"editable\":true,\"line_color\":\"black\",\"line_alpha\":1.0,\"line_width\":2,\"line_dash\":[4,4],\"fill_color\":\"lightgrey\",\"fill_alpha\":0.5}}}},{\"type\":\"object\",\"name\":\"BoxSelectTool\",\"id\":\"p1390\",\"attributes\":{\"renderers\":\"auto\",\"overlay\":{\"type\":\"object\",\"name\":\"BoxAnnotation\",\"id\":\"p1391\",\"attributes\":{\"syncable\":false,\"level\":\"overlay\",\"visible\":false,\"editable\":true,\"line_color\":\"black\",\"line_alpha\":1.0,\"line_width\":2,\"line_dash\":[4,4],\"fill_color\":\"lightgrey\",\"fill_alpha\":0.5}}}}]}},{\"type\":\"object\",\"name\":\"ToolProxy\",\"id\":\"p1409\",\"attributes\":{\"tools\":[{\"type\":\"object\",\"name\":\"LassoSelectTool\",\"id\":\"p1155\",\"attributes\":{\"renderers\":\"auto\",\"overlay\":{\"type\":\"object\",\"name\":\"PolyAnnotation\",\"id\":\"p1156\",\"attributes\":{\"syncable\":false,\"level\":\"overlay\",\"visible\":false,\"xs\":[],\"ys\":[],\"editable\":true,\"line_color\":\"black\",\"line_alpha\":1.0,\"line_width\":2,\"line_dash\":[4,4],\"fill_color\":\"lightgrey\",\"fill_alpha\":0.5}}}},{\"type\":\"object\",\"name\":\"LassoSelectTool\",\"id\":\"p1197\",\"attributes\":{\"renderers\":\"auto\",\"overlay\":{\"type\":\"object\",\"name\":\"PolyAnnotation\",\"id\":\"p1198\",\"attributes\":{\"syncable\":false,\"level\":\"overlay\",\"visible\":false,\"xs\":[],\"ys\":[],\"editable\":true,\"line_color\":\"black\",\"line_alpha\":1.0,\"line_width\":2,\"line_dash\":[4,4],\"fill_color\":\"lightgrey\",\"fill_alpha\":0.5}}}},{\"type\":\"object\",\"name\":\"LassoSelectTool\",\"id\":\"p1248\",\"attributes\":{\"renderers\":\"auto\",\"overlay\":{\"type\":\"object\",\"name\":\"PolyAnnotation\",\"id\":\"p1249\",\"attributes\":{\"syncable\":false,\"level\":\"overlay\",\"visible\":false,\"xs\":[],\"ys\":[],\"editable\":true,\"line_color\":\"black\",\"line_alpha\":1.0,\"line_width\":2,\"line_dash\":[4,4],\"fill_color\":\"lightgrey\",\"fill_alpha\":0.5}}}},{\"type\":\"object\",\"name\":\"LassoSelectTool\",\"id\":\"p1290\",\"attributes\":{\"renderers\":\"auto\",\"overlay\":{\"type\":\"object\",\"name\":\"PolyAnnotation\",\"id\":\"p1291\",\"attributes\":{\"syncable\":false,\"level\":\"overlay\",\"visible\":false,\"xs\":[],\"ys\":[],\"editable\":true,\"line_color\":\"black\",\"line_alpha\":1.0,\"line_width\":2,\"line_dash\":[4,4],\"fill_color\":\"lightgrey\",\"fill_alpha\":0.5}}}},{\"type\":\"object\",\"name\":\"LassoSelectTool\",\"id\":\"p1341\",\"attributes\":{\"renderers\":\"auto\",\"overlay\":{\"type\":\"object\",\"name\":\"PolyAnnotation\",\"id\":\"p1342\",\"attributes\":{\"syncable\":false,\"level\":\"overlay\",\"visible\":false,\"xs\":[],\"ys\":[],\"editable\":true,\"line_color\":\"black\",\"line_alpha\":1.0,\"line_width\":2,\"line_dash\":[4,4],\"fill_color\":\"lightgrey\",\"fill_alpha\":0.5}}}},{\"type\":\"object\",\"name\":\"LassoSelectTool\",\"id\":\"p1392\",\"attributes\":{\"renderers\":\"auto\",\"overlay\":{\"type\":\"object\",\"name\":\"PolyAnnotation\",\"id\":\"p1393\",\"attributes\":{\"syncable\":false,\"level\":\"overlay\",\"visible\":false,\"xs\":[],\"ys\":[],\"editable\":true,\"line_color\":\"black\",\"line_alpha\":1.0,\"line_width\":2,\"line_dash\":[4,4],\"fill_color\":\"lightgrey\",\"fill_alpha\":0.5}}}}]}},{\"type\":\"object\",\"name\":\"SaveTool\",\"id\":\"p1410\"},{\"type\":\"object\",\"name\":\"ToolProxy\",\"id\":\"p1411\",\"attributes\":{\"tools\":[{\"type\":\"object\",\"name\":\"ResetTool\",\"id\":\"p1158\"},{\"type\":\"object\",\"name\":\"ResetTool\",\"id\":\"p1200\"},{\"type\":\"object\",\"name\":\"ResetTool\",\"id\":\"p1251\"},{\"type\":\"object\",\"name\":\"ResetTool\",\"id\":\"p1293\"},{\"type\":\"object\",\"name\":\"ResetTool\",\"id\":\"p1344\"},{\"type\":\"object\",\"name\":\"ResetTool\",\"id\":\"p1395\"}]}}]}},{\"type\":\"object\",\"name\":\"Column\",\"id\":\"p1416\",\"attributes\":{\"children\":[{\"type\":\"object\",\"name\":\"Row\",\"id\":\"p1413\",\"attributes\":{\"children\":[{\"type\":\"object\",\"name\":\"Figure\",\"id\":\"p1127\",\"attributes\":{\"align\":\"end\",\"x_range\":{\"type\":\"object\",\"name\":\"Range1d\",\"id\":\"p1136\",\"attributes\":{\"start\":3585.46,\"end\":9043.38}},\"y_range\":{\"type\":\"object\",\"name\":\"DataRange1d\",\"id\":\"p1126\",\"attributes\":{\"start\":0.0}},\"x_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1137\"},\"y_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1138\"},\"title\":{\"type\":\"object\",\"name\":\"Title\",\"id\":\"p1134\"},\"renderers\":[{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1165\",\"attributes\":{\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1159\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1160\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1161\"},\"data\":{\"type\":\"map\",\"entries\":[[\"x\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"pHA9CtfUrECkcD0K19SsQLAtDhaUJa1AsC0OFpQlrUC86t4hUXatQLzq3iFRdq1Ax6evLQ7HrUDHp68tDsetQNNkgDnLF65A02SAOcsXrkDfIVFFiGiuQN8hUUWIaK5A694hUUW5rkDr3iFRRbmuQPeb8lwCCq9A95vyXAIKr0ACWcNov1qvQAJZw2i/Wq9ADhaUdHyrr0AOFpR0fKuvQBrTZIA5/K9AGtNkgDn8r0ATyBpGeyawQBPIGkZ7JrBAmSYDzNlOsECZJgPM2U6wQB+F61E4d7BAH4XrUTh3sECl49PXlp+wQKXj09eWn7BAK0K8XfXHsEArQrxd9cewQLCgpONT8LBAsKCk41PwsEA2/4xpshixQDb/jGmyGLFAvF117xBBsUC8XXXvEEGxQEK8XXVvabFAQrxddW9psUDIGkb7zZGxQMgaRvvNkbFATnkugSy6sUBOeS6BLLqxQNTXFgeL4rFA1NcWB4visUBaNv+M6QqyQFo2/4zpCrJA4JTnEkgzskDglOcSSDOyQGbzz5imW7JAZvPPmKZbskDsUbgeBYSyQOxRuB4FhLJAcrCgpGOsskBysKCkY6yyQPgOiSrC1LJA+A6JKsLUskB9bXGwIP2yQH1tcbAg/bJAA8xZNn8ls0ADzFk2fyWzQIkqQrzdTbNAiSpCvN1Ns0APiSpCPHazQA+JKkI8drNAlecSyJqes0CV5xLImp6zQBtG+035xrNAG0b7TfnGs0ChpOPTV++zQKGk49NX77NAJgPMWbYXtEAmA8xZthe0QKxhtN8UQLRArGG03xRAtEAywJxlc2i0QDLAnGVzaLRAuB6F69GQtEC4HoXr0ZC0QD59bXEwubRAPn1tcTC5tEDE21X3juG0QMTbVfeO4bRASjo+fe0JtUBKOj597Qm1QNCYJgNMMrVA0JgmA0wytUBW9w6Jqlq1QFb3DomqWrVA3FX3DgmDtUDcVfcOCYO1QGK035Rnq7VAYrTflGertUDoEsgaxtO1QOgSyBrG07VAbnGwoCT8tUBucbCgJPy1QPTPmCaDJLZA9M+YJoMktkB5LoGs4Uy2QHkugazhTLZA/4xpMkB1tkD/jGkyQHW2QIXrUbienbZAhetRuJ6dtkALSjo+/cW2QAtKOj79xbZAkagixFvutkCRqCLEW+62QBcHC0q6FrdAFwcLSroWt0CdZfPPGD+3QJ1l888YP7dAIsTbVXdnt0AixNtVd2e3QKgixNvVj7dAqCLE29WPt0AugaxhNLi3QC6BrGE0uLdAtN+U55Lgt0C035TnkuC3QDo+fW3xCLhAOj59bfEIuEDAnGXzTzG4QMCcZfNPMbhARvtNea5ZuEBG+015rlm4QMxZNv8MgrhAzFk2/wyCuEBSuB6Fa6q4QFK4HoVrqrhA2BYHC8rSuEDYFgcLytK4QF5175Ao+7hAXnXvkCj7uEDk09cWhyO5QOTT1xaHI7lAajLAnOVLuUBqMsCc5Uu5QPCQqCJEdLlA8JCoIkR0uUB275Coopy5QHbvkKiinLlA+015LgHFuUD7TXkuAcW5QIGsYbRf7blAgaxhtF/tuUAHC0o6vhW6QAcLSjq+FbpAjWkywBw+ukCNaTLAHD66QBPIGkZ7ZrpAE8gaRntmukCZJgPM2Y66QJkmA8zZjrpAHoXrUTi3ukAehetROLe6QKTj09eW37pApOPT15bfukAqQrxd9Qe7QCpCvF31B7tAsKCk41Mwu0CwoKTjUzC7QDb/jGmyWLtANv+MabJYu0C8XXXvEIG7QLxdde8QgbtAQrxddW+pu0BCvF11b6m7QMgaRvvN0btAyBpG+83Ru0BOeS6BLPq7QE55LoEs+rtA1NcWB4sivEDU1xYHiyK8QFo2/4zpSrxAWjb/jOlKvEDglOcSSHO8QOCU5xJIc7xAZvPPmKabvEBm88+Yppu8QOxRuB4FxLxA7FG4HgXEvEBysKCkY+y8QHKwoKRj7LxA+A6JKsIUvUD4DokqwhS9QH1tcbAgPb1AfW1xsCA9vUADzFk2f2W9QAPMWTZ/Zb1AiSpCvN2NvUCJKkK83Y29QA+JKkI8tr1AD4kqQjy2vUCV5xLImt69QJXnEsia3r1AGkb7TfkGvkAaRvtN+Qa+QKCk49NXL75AoKTj01cvvkAmA8xZtle+QCYDzFm2V75ArGG03xSAvkCsYbTfFIC+QDLAnGVzqL5AMsCcZXOovkC4HoXr0dC+QLgehevR0L5APn1tcTD5vkA+fW1xMPm+QMTbVfeOIb9AxNtV944hv0BKOj597Um/QEo6Pn3tSb9A0JgmA0xyv0DQmCYDTHK/QFb3Domqmr9AVvcOiaqav0DcVfcOCcO/QNxV9w4Jw79AYrTflGfrv0BitN+UZ+u/QHQJZA3jCcBAdAlkDeMJwEC2OFhQEh7AQLY4WFASHsBA+mdMk0EywED6Z0yTQTLAQDyXQNZwRsBAPJdA1nBGwECAxjQZoFrAQIDGNBmgWsBAwvUoXM9uwEDC9Shcz27AQAYlHZ/+gsBABiUdn/6CwEBIVBHiLZfAQEhUEeItl8BAjIMFJV2rwECMgwUlXavAQM6y+WeMv8BAzrL5Z4y/wEAS4u2qu9PAQBLi7aq708BAVBHi7ernwEBUEeLt6ufAQJdA1jAa/MBAl0DWMBr8wEDab8pzSRDBQNpvynNJEMFAHZ++tngkwUAdn762eCTBQGDOsvmnOMFAYM6y+ac4wUCj/aY810zBQKP9pjzXTMFA5iybfwZhwUDmLJt/BmHBQClcj8I1dcFAKVyPwjV1wUA=\"},\"shape\":[262],\"dtype\":\"float64\",\"order\":\"little\"}],[\"y\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAAADqGZifgfm5PuoZmJ+B+bk+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqGZifgfm5PuoZmJ+B+bk+6hmYn4H5uT7qGZifgfm5PgAAAAAAAAAAAAAAAAAAAADqGZifgfm5PuoZmJ+B+bk+PBqYn4H5uT48Gpifgfm5PnATsjche9M+cBOyNyF70z4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqGZifgfnJPuoZmJ+B+ck+6hmYn4H5uT7qGZifgfm5PuoZmJ+B+ck+6hmYn4H5yT6PGpifgfm5Po8amJ+B+bk+6hmYn4H5uT7qGZifgfm5PnATsjche9M+cBOyNyF70z7qGZifgfm5PuoZmJ+B+bk+AAAAAAAAAAAAAAAAAAAAAOoZmJ+B+bk+6hmYn4H5uT7qGZifgfm5PuoZmJ+B+bk+6hmYn4H5yT7qGZifgfnJPuoZmJ+B+dk+6hmYn4H52T7qGZifgfnpPuoZmJ+B+ek+6hmYn4H5yT7qGZifgfnJPjMQvwPxO/A+MxC/A/E78D7RkbgdidvxPtGRuB2J2/E+Q5K4HYnb8T5DkrgdidvxPseehO1J2P4+x56E7UnY/j5MmJ6F6Vn4PkyYnoXpWfg+fNeheB2KBz9816F4HYoHP5ZfgfoVqA8/ll+B+hWoDz848jYkb0MSPzjyNiRvQxI/MxC/A/E7ED8zEL8D8TsQP+aYnoXpWRg/5piehelZGD+tFqVrUboWP60WpWtRuhY/x56E7UnYHj/HnoTtSdgeP0a2JmVrUhY/RrYmZWtSFj8IszMxOxMjPwizMzE7EyM/pzQtS9OyJD+nNC1L07IkP8eehO1J2C4/x56E7UnYLj/ErUjditQtP8StSN2K1C0/H1qXonUpMj8fWpeidSkyP3b1KVifgjU/dvUpWJ+CNT+wB+F7EL43P7AH4XsQvjc/zZC8DcnbOD/NkLwNyds4PwysT8H6FEA/DKxPwfoUQD9fVqZmZWpCP19WpmZlakI/Rc3MzMzMRD9FzczMzMxEP7fxOByPw0U/t/E4HI/DRT9ZZG5G5mZIP1lkbkbmZkg/bBK2J2F7Sj9sErYnYXtKPx5C9yJ0L04/HkL3InQvTj+FonUpWpdOP4WidSlal04/5zgcj8PxUD/nOByPw/FQPyEUsTsRu1E/IRSxOxG7UT/kQ/A+BO9RP+RD8D4E71E/zpyMzcnYUj/OnIzNydhSP2ZA/gbkb1A/ZkD+BuRvUD8/3I7E7UhQPz/cjsTtSFA/OsvStCxNTz86y9K0LE1PP6/3IHwPwk8/r/cgfA/CTz+v9yB8D8JPP6/3IHwPwk8/5yhcj8L1SD/nKFyPwvVIP0yYnoXpWUg/TJiehelZSD+Xb0H6FqRHP5dvQfoWpEc/CLMzMTsTQz8IszMxOxNDP9tsTM7G5EA/22xMzsbkQD9YXI7G5Wg8P1hcjsblaDw/Yj8C9yNwNz9iPwL3I3A3P2qRvA3J2zg/apG8DcnbOD9DxepUrE41P0PF6lSsTjU/AtG7EL0LMT8C0bsQvQsxP9GRuB2J2zE/0ZG4HYnbMT/uCtSvQP0qP+4K1K9A/So/6hmYn4H5KT/qGZifgfkpPwjnZWhehiY/COdlaF6GJj9wE7I3IXsjP3ATsjcheyM/IjsTszMxGz8iOxOzMzEbP9GRuB2J2xE/0ZG4HYnbET8IszMxOxMTPwizMzE7ExM/CLMzMTsTEz8IszMxOxMTP2kxOhejcxE/aTE6F6NzET9816F4HYoHP3zXoXgdigc/G1mbkrUpCT8bWZuStSkJP9GRuB2J2wE/0ZG4HYnbAT+tFqVrUboGP60WpWtRugY/rRala1G69j6tFqVrUbr2PombkbkZmfs+iZuRuRmZ+z4oHYvTsTjtPigdi9OxOO0+0ZG4HYnbAT/RkbgdidsBPzMQvwPxO/A+MxC/A/E78D7hHYvTsTjtPuEdi9OxOO0+6hmYn4H56T7qGZifgfnpPnATsjche+M+cBOyNyF74z4zEL8D8TvgPjMQvwPxO+A+MxC/A/E74D4zEL8D8TvgPuwTsjche9M+7BOyNyF70z5wE7I3IXvjPnATsjche+M+6hmYn4H52T7qGZifgfnZPuoZmJ+B+dk+6hmYn4H52T7qGZifgfnJPuoZmJ+B+ck+cBOyNyF74z5wE7I3IXvjPuoZmJ+B+bk+6hmYn4H5uT7qGZifgfnJPuoZmJ+B+ck+cBOyNyF74z5wE7I3IXvjPuoZmJ+B+bk+6hmYn4H5uT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqGZifgfnJPuoZmJ+B+ck+AAAAAAAAAAAAAAAAAAAAAKEYmJ+B+bk+oRiYn4H5uT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQbmJ+B+ck+NBuYn4H5yT6hGJifgfm5PqEYmJ+B+bk+NBuYn4H5uT40G5ifgfm5PqEYmJ+B+ck+oRiYn4H5yT40G5ifgfm5PjQbmJ+B+bk+oRiYn4H5uT6hGJifgfm5PjQbmJ+B+bk+NBuYn4H5uT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqGZifgfm5PuoZmJ+B+bk+AAAAAAAAAAA=\"},\"shape\":[262],\"dtype\":\"float64\",\"order\":\"little\"}]]}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1166\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1167\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1162\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_width\":2}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1163\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_alpha\":0.1,\"line_width\":2}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1164\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_alpha\":0.2,\"line_width\":2}}}}],\"toolbar\":{\"type\":\"object\",\"name\":\"Toolbar\",\"id\":\"p1135\",\"attributes\":{\"tools\":[{\"id\":\"p1149\"},{\"id\":\"p1150\"},{\"id\":\"p1152\"},{\"id\":\"p1153\"},{\"id\":\"p1155\"},{\"type\":\"object\",\"name\":\"SaveTool\",\"id\":\"p1157\"},{\"id\":\"p1158\"}]}},\"toolbar_location\":null,\"left\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1144\",\"attributes\":{\"visible\":false,\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1145\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1146\"},\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1147\"}}}],\"below\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1139\",\"attributes\":{\"visible\":false,\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1140\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1141\"},\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1142\"}}}],\"center\":[{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1143\",\"attributes\":{\"axis\":{\"id\":\"p1139\"}}},{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1148\",\"attributes\":{\"dimension\":1,\"axis\":{\"id\":\"p1144\"}}}],\"frame_width\":150,\"frame_height\":150,\"min_border_left\":80}}]}},{\"type\":\"object\",\"name\":\"Row\",\"id\":\"p1414\",\"attributes\":{\"children\":[{\"type\":\"object\",\"name\":\"Figure\",\"id\":\"p1168\",\"attributes\":{\"align\":\"end\",\"x_range\":{\"id\":\"p1136\"},\"y_range\":{\"type\":\"object\",\"name\":\"Range1d\",\"id\":\"p1229\",\"attributes\":{\"start\":0.86763322,\"end\":5.5131977800000005}},\"x_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1179\"},\"y_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1180\"},\"title\":{\"type\":\"object\",\"name\":\"Title\",\"id\":\"p1175\"},\"renderers\":[{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1207\",\"attributes\":{\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1120\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1121\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1122\"},\"data\":{\"type\":\"map\",\"entries\":[[\"index\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"+h4AAIogAACQIgAASAsAACcrAACAGAAA8RsAALUcAACDOQAANhcAADorAABVDwAAQTkAADMtAABROAAA2R8AAJEHAADCJQAAsx0AACUKAAABJwAAcS0AADoUAAAICQAARBUAADclAAAIGgAAGCEAAGonAACbGgAA2AUAAPIiAABwFgAAqCQAAOYHAADdCAAA0jwAAE06AADoCAAAbCgAAAE0AABYLgAAJDsAAAAjAADLEgAAPTYAAE4iAAA/HgAA0iYAAMMYAAChBgAAQg8AALUhAAA2FgAAgyAAAFsjAADzPQAA9C0AAPUDAADwAQAAox4AAHkQAAB/CgAAgCYAAFwZAAA0GgAAPTgAAPsNAAB3HwAA+xEAAM4dAACOJwAAHDkAAAotAAB3CQAAqRsAACkmAADOBQAAQy4AAIE3AACXAgAAgQcAAJYBAAAOFgAAFyMAAIkXAAA3CwAAiDgAAAg4AAACCAAAgQEAALQPAAAvGwAA/QEAAAQYAADUCQAAQRoAAIcNAAChPQAA4hMAAHMCAAD6CQAAchsAAG0LAAB8OQAA7R4AALgpAAAjFgAA+iMAANwlAAC8HgAAyiwAAL8RAACIAAAASjcAANoLAAAlHQAAwSwAAEETAAB5DAAAfzYAAF4hAABqGQAApzoAAFgUAABOAAAAZwcAAL0pAAA6DgAAAhwAAEMwAAB+LAAAUhEAAHMEAABbLQAAaiIAAJwBAABxBQAA9AcAAD8TAADGDQAAhiAAAEg0AACoIgAAsRwAAPUGAAA6BgAAqiMAAGQuAACEGwAAfxwAAPgaAABwGQAAmTgAAFUBAADSGgAA+wIAAOI8AABdFQAArgkAABYqAAB7BAAAsQUAAHYmAAD+NQAA9AEAAL82AAA3MgAAVxQAAD4mAADqMgAAawgAAFkQAADSNQAAiRwAALokAABkKAAAQCAAACQdAAApGgAAZjoAAGMuAABzPAAAozwAAMECAACZLwAAyiUAANgxAAA/AQAAlBQAAEQDAAD/CwAA9wEAAPAuAACIAQAAuykAAGEJAAC2AAAAOjAAAH0jAABdOwAANjAAAL42AADbGAAAkBYAADEqAACtPAAAYCQAABwLAADOJwAAviwAABATAACLOgAAEB4AAMckAADVMgAAvDwAAJ4GAAA5IQAAAAgAAMQqAAD+LQAARiwAALMXAACeLgAAogUAADY8AAAqDQAAawwAAEc0AABFKQAA0zoAALQKAABrFwAAwyIAAPcmAABIDAAAFhYAAAQgAACZDwAA8gkAAIEYAADmPAAAbDkAAL87AAC8EAAAMBIAAHMUAAAGEwAAoCgAAD0sAAD2LAAAUBkAAC4nAAByIgAA4xQAADE6AADyBgAAIAUAABk2AADqFwAAGSgAAAsgAACgOAAAMCwAADw4AACQFwAAWTYAAFsyAAC1DAAAqiIAAMQKAABDMwAA9hQAAEITAAADOAAA8BkAAHwOAAALMgAA0SEAAGsCAABMEQAAyh8AACgxAAC8GQAAnjkAAF41AADVJgAA9DcAAIUZAABaNgAAwy0AADoJAABkMwAASi4AAF08AAAsAAAA/RMAANAuAACrAgAAUQ8AALQbAAAVIQAAyDwAAIYvAABoLQAAnz0AADs5AACyPQAAkhIAAEoVAACNAAAAsxUAAEgGAABKAwAAtQQAAE4wAABRBAAAUSMAACMlAAD7EAAAXBYAAKgaAAAPGgAAQggAAL8TAACmMQAA+gwAAAUgAAB3EgAA7iEAAOE6AAClNQAARxwAAD00AABHOgAALgAAAEsZAAApMgAA7Q4AAGEPAADwFQAAARgAAGoyAAAcDQAA5xYAABIDAAAuLwAAbyAAAIUWAACeDAAAzhoAAHQTAAB0AQAAVCwAAMMOAACuBAAA5zUAADQAAADPAQAAmwMAAFISAADHMQAAFREAAK0sAACFMQAALiwAAFoUAACOHAAAlQcAAOwpAAC1IgAAEjEAADkLAABtOAAA6S8AAK8LAAC5HgAAlQIAAKIvAAAxLwAAZikAAAolAAA0EQAALAIAAAU1AADxBwAA2RQAALY1AABRGgAA6AMAAE0MAADwIQAARDwAAAMaAACyFwAAFQQAALQgAABOOwAA3SsAAC4pAABnJQAALwQAAJwoAABUOAAAAQwAAJArAAAqJQAAlQkAAMY2AAAoFwAA1CYAALI4AADlNwAA+B8AAAwFAABcFQAAHyEAAIcGAAD2DgAAzwUAAHUAAABwNgAAhiEAAPoDAADjBAAAGTIAAHkEAABeEQAAKhsAADAZAACsEQAAEzEAAPQMAACVHQAARxgAAHARAADdDQAAxTAAALM2AADnHgAA5SoAAKMSAAARCgAAoTcAACcNAADSKwAARRQAAJYqAABPAAAAGgYAANkoAACiAwAADgwAAMQLAABQJwAAIygAAKM9AABSFwAAJSkAADgtAADPMgAAfg4AAGUfAAB8IgAAuhkAAK8oAADjOgAAuyQAAJQIAAD0JwAA0hQAAPc3AABsPAAADzIAANsgAACDCgAADRsAAGAxAABSDAAA9jsAANcHAAA7HQAA0AoAAHIjAABiJgAAUCIAAPsqAACuMAAAMDkAAB85AAAbGgAArzIAAHI5AADtCgAA2QwAAGc4AABnFQAAQjwAAJc3AAB4MQAAHRwAAGwIAAAqGAAA0AYAABIrAADFBQAA3ggAAN8oAAArCwAA8zoAAG0UAADcPQAADS0AAEASAADgJgAAeDgAAMsVAAC+LQAAaAgAALIdAABaAQAAXx4AAHUpAAA0JwAA3g0AALo1AACvOwAACxoAAIopAACBKwAARzAAAD0aAACYHwAAXD4AAHECAAAzAgAAMTgAAHcEAADrBQAAXjcAALQIAADoKAAA6AsAAGo9AAD3BgAAtBMAAGooAAC2CwAAfh4AAOoDAABnDQAAND4AANMZAADnMwAA8TwAAC89AAAyMgAAMAIAAO4RAAD6MQAA+BgAACISAAAkAgAAti0AAMIoAABXMAAAVhAAAKIVAAASCQAAUgsAAPwMAACaAQAAfAMAALomAACvAgAAoDEAADEOAADdGwAA7TIAAM4xAABPLQAAGgoAAEoSAAARKAAAHTcAAFsnAABSFgAA9jwAAKIJAADQIwAAPDsAALglAAAGAAAAOi4AAOIjAACBDAAA1REAAAEJAACBOAAAZioAAKASAABsAAAAay0AAKoqAABJOQAAkQ4AABkIAABXKQAA2gwAAMsnAAB7AQAAfCoAADMvAADSIwAAiwEAAPIBAADMOQAAwCkAAI8qAADrLAAAFzoAAPg7AACoHQAAPx8AADgGAAA+NQAAkh8AALUwAAC9PAAAbBkAAHgwAADaPQAA9iEAANMAAADjAAAACSEAAAsjAACcIgAAvBEAAEQzAADZKQAA1hAAAGY4AACsPQAA7wIAAJs7AABTIwAAYAoAAH4RAADcGwAAPwMAACcoAABEAgAAhhUAAFQ8AADgJQAADh0AAHAkAAAzNgAAKBAAAMkUAACQGwAA3xMAABU+AABbCAAAwj0AANs2AACMAwAAVDEAAGgTAADRKwAA0yAAAMcdAAA0DwAAsikAAE8JAABbDgAA1D0AAFIhAADmFQAANhoAADsbAABtJgAA/TEAABkMAADQIAAAJxQAAKMFAACTNAAA6RQAADQ8AAAlLgAAny4AAG8pAABOKAAAUToAADENAABNBwAAEjgAAG8UAAD9OAAAgTMAANEdAAB8OwAAlgcAAGwYAACiLAAA8yQAAPMcAAAlPgAAdjwAAL8CAAC7BQAA1BEAAPgXAADBIgAA8DYAAJUxAACGAAAAGz4AAOogAACkOgAAciEAABQ5AABOIQAAmCUAAOI2AADhAAAA5SYAADsMAAA4HwAAbBsAAKQOAAB4AgAAljcAAJQOAAAwFAAAjg0AABUyAADkCwAAkhQAABMKAADfGgAAJzIAAFsHAAAUNgAALDoAAEgRAAB6KAAAnCYAAFIfAADiMQAAwSsAAHcvAADBDAAA9jgAAEgwAACSMwAAeQEAAC8vAAAaIgAAcTIAACINAACsBwAARRcAAFACAADmAgAAixIAAA4jAAB4AwAAKB4AAB0AAAAIGQAA1wQAANYnAADnGgAABQQAAIo5AACsNAAASgoAAIQaAACnOwAA7wQAAJgjAAAfIgAAEjMAAPInAAC6OAAAWA4AAC0+AACFLwAAUwoAAAgKAAA8MAAAOTEAAAo2AACkKQAAcxEAABw8AABYAwAA+TcAAIYsAAABHwAAPQYAANgnAABHIgAAWTAAABECAAC/NwAAfSAAABYdAADKMAAApTAAALMiAADALgAA6AkAAJEzAADcDwAAvAsAAGgXAACqNwAABCcAALY6AAB+OAAASykAAEQLAAC1DgAA9C8AAPovAAAkGQAACQQAAJMLAABGHAAAugEAANwnAAAAOAAAsxAAABgyAABVPQAABz4AALAsAADFNQAApy8AAFYJAABINgAA9SUAAEgSAAAkBwAAaygAADEHAACIKQAAlCsAAHkWAAAnIwAAoAAAAAQUAABLLgAA2QcAABYQAACALAAAJB8AANEzAABIKwAAcwgAAFsxAACyEQAA+g8AAG8+AADbMQAAgxAAAA4uAABqCAAAjCEAALo3AAAfCwAAxyMAADYAAABMPAAAZgYAAIUUAADVLwAAxCgAABMZAAB2GAAAdBYAAGUVAAAPLAAAqAIAAGEpAACuEQAA+jgAAGYHAAAqCgAAPh0AAIwgAAA5EQAAbQAAAOUkAABaOAAAuTUAAGwfAAD2JQAAYBwAAAkZAABfBwAAQjoAABkxAAAnBQAAdjcAAOMuAABNGAAAGjkAAAk9AACOKgAATDoAAGorAADBEwAAkjIAABsjAAASBgAApwkAAKI1AAApOgAAuAsAAKIIAACYLQAAxDoAANgPAABsIQAAIA0AALssAAAJKQAAAgcAAC8TAACmIQAANgMAAAkYAACPKQAAfikAABMnAAA8AgAACgIAAIEyAABFDQAAbyUAAEUDAABEKAAAiREAADY2AADXGQAA4zcAAKQiAAAKFwAAfTEAANw1AACHGgAAMQQAAAcMAABZNwAAIDcAAF0zAAD1CgAASg4AAPEhAADwBwAA5wwAAJ4YAABtBwAA4BUAAHQfAACRCAAAAxEAAF0GAAAKJwAAPRcAAC8jAABBOgAATw8AAOsDAAAwKAAA5xUAANkcAADpGQAAJhoAALoyAAAfHQAA/g8AANULAAAXHQAAMwgAANgOAACKBgAAmCoAAOMJAACBJAAA+BAAAMcIAABGCgAAJC4AAGs4AAATHgAAzRIAABkZAAD+GQAAUxsAAK4MAADnHAAAExIAALQrAAC4CgAAhTsAAMkyAACyNwAAKC0AAEcpAAB4CgAAmDcAACcLAAAPOwAAoRoAAP0HAAC/KgAAYxgAABEfAADwBgAAihYAAJExAADgEgAAkQwAACs5AAC3JAAAziUAABMYAACtBQAA7S4AAK0lAAChNgAAlBUAAEAQAADZFQAAXyEAAOApAADkDgAA/S4AAHEjAAAgAwAAwDYAAK4jAADRLAAAUikAABsNAACjGwAAeRIAAN8iAAAuBgAAkwgAALIsAABFMwAAiDwAAFIqAADwMQAAsjkAAKgQAAD6MgAAWxQAAAE2AACuFwAAVw8AABUMAACiOwAAzQkAAC8iAABXEwAAkRQAALYbAADQBQAA6DsAANkxAABJAQAAtTEAACI4AACCOwAAagEAAA0gAACBFQAAbBUAAD8lAAAvMwAAWDEAAKwVAAAMMwAAiS4AAMkvAADZFgAALgEAAH80AACoFQAA0hgAAGkDAACqGgAAZQUAABozAAD0NgAAXiwAAPsiAABuAgAAnDUAAFYzAAA1GwAA4wUAALMoAACdEgAA5yMAAIwHAAA3EwAA6AIAAIo6AABGKgAALDYAALIzAAAoJgAADRAAAAkBAAA0EAAAkgoAAC0xAADUPAAAVwYAANEYAABCBAAAKS0AAJ0XAACVKwAAiwYAAB0lAABfOAAAXSsAAPsVAAAlBQAAfwYAABoAAAC2KwAALBgAAK4kAACsMQAA+hMAAEQfAAA5FAAAbCMAAKAWAACLJwAAmwkAAI0fAADzKQAA7i0AAHI1AAARIAAAYgsAAJMvAADiEAAAjyUAAD0IAABaOwAAHhUAAC4fAABqGAAAfwkAAKYHAACxGAAAOD0AAPEBAACMAQAAPTMAAKkTAAD5CgAAECUAAE4mAABCLgAAZQsAAKYEAAC4KAAAdAgAAEcbAABZFgAAgS0AAO87AAAIMgAAmRMAAGc6AAAvCgAAEzMAAGgMAAAZKgAAShwAAIQHAAB5NQAAUyYAAFg7AABjMwAAVQcAAH8bAAD2NgAAbxUAAGU7AACAJQAA7ysAABkpAACXJgAAgRsAALQaAABaKwAAtBUAAPoEAADeMAAAWgoAAEUaAACrOAAAPxIAAKEtAABHEQAAzjQAAH8yAABnCAAAzDoAAKcsAAAfMQAA/yQAAMwuAACdBAAASgQAAEQ5AAAdGwAACCEAAHMzAADFGQAACysAAK4tAABcCgAACzUAAMwRAABNGgAAcQ0AAKAjAACnFQAANgIAAJMNAADdEQAA4BYAAH0uAAARLQAAACAAAIYMAABMJQAA/joAACckAACJDgAALgQAADUqAAAFIQAAzAYAAA0MAAD/EgAA0goAAP4BAAAgFAAAkgQAABszAACvOgAAAwYAAP8RAACgLwAAZRoAADUeAAD1AQAAax4AAOgAAAD8DQAAdAkAAKQnAACbIwAAVREAAGY+AAD1FAAAGiEAAFY9AABuOAAAyBwAAA0AAAAgOwAAMQUAAGAOAADXIgAAQT4AAIQKAABXFwAA5DwAACQDAACnOQAA6QcAAN0HAACzCgAAQT0AAM8rAADPHgAATQ8AAHQ0AACIHQAA+jwAAEw4AABwCwAA2TYAAHE5AACOMQAAJDIAANQDAAAHIAAAuRkAANE5AADKPQAA9SEAAEYhAAB7EAAA9z0AAKYgAAAsBwAA9yoAAEAlAACKCgAATBQAAHgoAAAfKQAAJCAAAMM9AAD7LAAAwwQAAFgKAABgKgAAKQ4AAMUkAABEAQAAKi0AAJY5AABZEgAAmw8AAL0IAADYFQAA9B8AAFYWAACpHQAARwgAAP8oAADsEgAA/ykAANU1AAD0LAAAYAsAALwNAACWLgAAmD0AABo0AAAeBwAAeSMAALwCAAANLAAA8ywAAEEeAAAwBQAA5QQAACgBAADvJAAA+goAANYTAACCBAAAuQUAAAAVAACwLwAAUBYAAOwuAABuCAAA4QMAAJ4yAABiCAAAryUAAEwkAAAoFAAAvTMAAGMnAAB0MAAA/ywAALk8AAAhPgAA0AwAAJksAAAyPQAAixAAAF0xAAC+FgAAWQkAAPg8AABfEAAA6h4AAP4kAAAZOwAAKRgAAGw4AAAqIQAApRgAAE86AADqFAAA1DUAALk6AAB9AQAA4SwAAHkpAAD9EgAAgzEAAJUlAAD7LgAAZQgAAOclAABvDAAA0xsAALgBAABWJwAABh4AAAIYAACyNgAA8xIAAM8VAABLAgAAwhEAAFUKAAB0NQAA8wAAACMbAACcFQAA+TUAAEMVAACAMAAA4hsAANwiAACtJgAA+DkAAIQgAACqDgAAGiAAAD4qAAA1CgAAOhAAAFscAABiHwAAbgcAALoRAABDCAAAKRwAALAfAAARNQAAPDkAALYgAAARJQAAtBEAAKolAAB+EwAAhSoAAOQWAABBHAAADzAAAAUMAAARAQAA1QwAAGowAACMHgAAIQAAAL0kAABaDgAAZT4AACACAABYFgAASwMAAHIwAABOAgAAmCwAAM0eAADeIgAAMgsAAM03AADlLwAAYw0AADUdAACHFAAAvB8AAHAYAAABHgAAJjcAAEkkAADeHAAAODkAAJkKAAA3CgAA7TQAAE08AAD/HAAAGQoAAIMWAAD7IAAAxxAAACAgAADdEwAARxMAAIEvAAACMwAACzkAAG8kAACWLQAAhA4AAAMkAAAhKwAAwCoAAH4CAACRIAAAxw4AAIEwAADNBQAAJwEAAGYSAABPMAAAFC4AADsfAAD9BgAAKikAAM4zAADRCAAAPjwAAPwQAAAWFQAAMxQAAPQkAACGGAAADTUAAEUTAACsHgAAejIAAG8oAAB9EwAAFiMAAN4PAACdAwAASBwAAMgXAAAeJAAAtDMAAIIyAAC+MgAAPQUAAIgSAADGBAAA5RsAAFYaAAC9DgAAiSgAAD8QAABzMgAAywQAABMcAAA2OgAAfxQAAIAOAAAnOAAAXToAABUDAACmOgAAQS4AAGsBAACbEwAAMQMAAIAbAAAmAQAAsDEAAIUsAACxJwAATAEAAGE9AABqNQAAViYAAMAvAAAtOgAAvSsAAG4qAADZAgAAWCwAAGMwAACuMwAA/jYAAD4XAAC2CAAAuBEAAHMGAADfIAAAxxgAALwBAACyMQAA1BgAAPYKAABQMQAAnQAAAGQZAAAREQAA2BsAAMEEAAB8JAAAdSoAAG0kAAAZGgAAvgkAAFU+AACGNwAAADIAAN0xAADzLQAAJBAAAF0UAAArGgAAFgoAADQVAACuHAAApRkAAGIQAABlJwAAHzIAAPYBAADLCgAAKDUAAOEhAAD1AgAA/RAAABUYAAA7CgAAaQIAANwCAADZCgAA1gEAANYCAAC2JQAAcS4AAFsMAADUAgAADA8AABwIAAAQMwAA3DkAAHc0AAA6OgAALRcAAM0qAABeCwAAkRUAAGgqAACzHAAAmQMAAKYVAACRPAAAtSoAAHciAACJLAAA/hQAAFkZAACEAAAA8SMAAF8+AAA3IgAADCgAAPEnAAD7KQAAUiIAAF09AADaIQAACiEAAFgPAAD1EQAA2y8AAH0GAABrJQAAQBEAAGMjAADaGgAAUSkAACQcAABPGgAAhygAAAslAACOLgAARTgAAP4LAABOKgAAXB0AAAo7AABzKQAAahsAALwFAACKLgAAnAUAAG4hAAANOAAAyg8AAL8JAAB5AwAAwhcAALAaAAAFAQAAwDoAADcjAABGHQAAXCYAALIeAAB/EgAAoQgAAL05AADSDwAAmCgAAK0SAABoEgAANBIAACsdAADhMAAAQBYAALkgAAAgKQAAVzsAABE5AACNHAAAwjQAAHgnAAD8KAAApzEAAI0bAACfAgAAaAcAADQOAAAwHQAAThEAAGIgAABfLwAAXiYAACQ6AACnEwAAUzgAAMEtAAD+GAAA+x8AAHU1AABJFgAA9zkAAB0UAADlDwAArAUAAAgeAABYOgAA7CYAAHUZAACLIQAAHjIAAG4WAABNFAAAzyYAACscAAAbFQAAkC4AANMnAABCDgAAxiwAAL8sAAAxFQAAOTkAAIgCAABBCwAA6iwAAAMTAAAHGgAAySEAAK8kAAC1CQAAvBUAAC07AADBGAAAERQAAMc4AAC8NgAAFAIAAOgmAAA3BAAAuRQAAC8dAADCLAAAiBEAALEiAABGEwAAwAcAAOQbAAA4KwAAXCoAANkwAAA7OgAAgwwAAJwkAAARIQAASxQAAP0sAACTCgAAuwMAAAYoAAC2PAAA7w8AAGU4AAATLAAACTYAAPUeAADgEAAADjcAAFAjAAB/CwAA2BYAAM8WAADgFwAAghMAAKwyAADtFAAAXiIAABYIAABvNwAA/jcAAKECAAD3HwAAwDkAAGw+AACTMwAAFhEAAL8LAADhFAAADwMAAFMlAAArJAAARhQAABIFAAD1DwAAcxwAANkkAACKCAAAEB8AAJc9AABFAQAARAQAAJIZAAD2FwAAjjoAAG85AABzKwAA1DYAAEsrAABEHgAAOw4AALUCAABREwAARjIAANYKAAAfHAAA+xMAAPUnAADiOQAAiiUAAKQ2AACABQAAKzEAAIwWAAAdHgAA3SQAAPsoAAB/EwAABB8AAOkrAABOLAAA1yQAAPU2AACbLwAA1RUAAFgSAACtMAAAOCwAAOwAAACsAQAABxsAADY0AAC7KgAAIxUAAHIEAAAVOAAAngsAAPsHAAAuAgAAbTUAAEwyAAD3CAAAjw0AAA8ZAADpLQAAnT0AAC4+AACdOwAA6CQAAO0VAADfAQAAHgIAALUKAAApIgAAtTUAAIoHAABqBgAAaAkAAGQXAAAfBgAAHy4AAM00AAAQBQAA5g4AAL41AACaEgAAfgcAAPw6AAD9NgAA3DoAAMYZAAAWHwAA+zMAAPkVAADWBAAAxgIAAMkKAACbJgAAegMAAPIEAACgEwAAZjAAADwHAAAtLQAA2ykAAIoeAACXCgAAcRUAABwiAADBBQAA2CMAAEI5AAAxLgAAJxkAAC8rAABfJQAA2hMAAGQHAACGCgAAniQAANosAACcCgAASD0AAHMKAACUCgAAIxgAACo+AACmOwAASg0AAJgeAAApOQAAdAcAABMAAADvHQAA0h8AAKwuAABZFwAA3TIAANIXAAA/IwAA5ywAAH0KAADRLwAA7xIAAC4JAABsJwAA+icAAJwgAADNOAAACTAAAGsaAAAMKQAAHQIAACM1AADnDQAAPzwAAP8UAADRLgAAjigAANMuAADpDAAAeQgAAGUzAABVBAAABjAAAF0KAAAlCAAA9wwAAFEQAABPDgAA8gIAAJQ4AADuJgAAaDYAAKsNAAC1BgAAQCgAABESAABZIAAAcA4AACA6AACdNgAAlBIAAL89AAC3BAAAJAoAALMzAAA9CgAAVCsAAAkFAADTFgAA9TQAACcsAACALQAAzjsAAAMAAACRJQAAGQkAAHUfAAA8LQAAhAwAAHcTAAB0PgAAIBoAAEIgAAD3HgAAChEAAKQsAACyJAAAXh4AAD8kAAATIAAAzQ0AAP0RAADtOgAAuTcAANcUAABVEwAAlxgAAN4YAAC1LgAAHwEAALIJAAAXPgAAtyUAAAMpAADSPQAAkysAABM7AABcKwAAKQYAADIBAAC2LgAA/T0AANINAADlNAAAYQAAADwyAAClHwAA5zAAADA4AACkCgAAMBYAAE0gAAA4NgAA0Q0AAJ8ZAABFFQAAbyoAAPwAAAD1IwAA6iIAANsAAACdHQAAUw8AACEJAAA+NwAAvhIAAGAeAACJJwAAvCUAAJcQAADJCAAAuxcAAF4gAADAAwAAczYAADszAAALHAAAlDAAAJYWAABhFQAAwQ4AACIdAABTKgAA4RMAAFAIAAD8FwAA3hkAALorAAB/BQAAHSQAAE4TAABIGgAAthoAAH43AABEEQAARTYAAOIVAAAsGQAA0xUAACoaAADXKQAA5xIAALMyAAAKMAAA1TkAAGACAADyCAAAqSsAAP8nAACbOQAAPgsAALYqAACMGQAA4REAAKUTAACaJAAAlQ8AANExAABkNQAAdTcAANwwAADQEAAA/hUAAGMrAAB7FAAAIDEAADwQAACuFgAAqykAAOIYAAAgJgAASxYAAFQhAABrGAAAihMAADcvAAB2NAAAJAAAAOEHAAB3BwAAQg0AABQXAABTFwAAswQAAGs9AAAjEQAAVyEAABYNAAAMOAAAljAAAO0WAACYMQAA4QEAACIhAAAYFQAAEwYAAOQVAABTPgAA2SsAAFIHAAAnNAAAVgAAAH8gAABiNgAAPgMAAOsQAABeKgAAwA4AAGkWAACYJAAAVhgAAAsYAABxCwAArSsAAJc4AAAsCgAAEy4AAGABAACLMQAAiQAAABEbAAAnHAAAAQoAAOs7AADIBgAAowEAAN8uAAAtCQAAeBQAACooAABWDgAASR4AAEUPAADoIQAAMAsAANMrAAAYFwAAJhcAAMkLAACcHQAAuSoAAIoCAADxLAAANzEAAI0VAABKDwAAwi0AAJ4TAADpPQAAoDcAAK0zAAC3HgAAFxsAAOIXAAArBgAAxQcAAL4IAAAiFwAAtDYAAC8ZAACPIAAAMTEAAKg9AADTBwAArTgAAHwcAABZLAAAhzkAAH8AAACrBQAAUDQAADsJAAAzKAAAfhkAABAwAABhGQAA4zAAAIMmAABvNAAAgB8AAE4OAADgDgAA3iAAADMRAAAwDAAACTUAANcAAAAOJgAALjQAAFMWAACDLQAA7AoAAPUNAAAyMAAAxzcAAAYZAABqEQAAjxIAAPY9AAC1BwAAUQkAAGMFAACbFAAA8ioAAFQ3AAD+AwAA2hYAAJgnAACmCwAAnAYAALAnAAC7GQAAoCUAAHImAAB9EAAAOBMAAMwXAADxMgAArRQAAHMTAABTFAAAhwwAAMoaAACLLwAA6x0AAFAcAAACBQAAjiwAAPwKAAA4OwAA4CMAAEclAAA3OQAApjIAAM0YAABtOQAAuxoAAJMaAABuHwAA2gIAAOcfAADPGAAA6xEAAAITAADlDgAAnBoAACExAACfEwAAYAgAAJYQAABZAgAAZgMAAKgzAAAyNQAAwwcAALgUAAAyOgAA4ycAAH8BAAB2DQAAcCcAAIA7AAC/IAAASjgAAAYXAAA3IQAAKQMAAG8ZAADiAgAA5RIAAK0WAAAmAwAAYRAAAFIYAAA8DgAAbTYAAHwrAAD8AwAANDQAAOwZAAB6LgAAoSkAAG4nAAAROwAAvyMAAPMVAABpGAAA/QQAAFUGAABvIwAAvAoAADk1AAAHLAAAmiEAAMMmAAAHLgAAyTUAAO4IAADVIQAAfCEAAKwvAAChAQAAFxYAADEUAACADAAAGj4AAGUAAADQOAAAlgkAAKEVAADqGAAAehgAAC8FAAB2GQAAdzwAACsKAACHEQAA3j0AAFAfAADpCwAA1SUAABEIAABFHAAAxBcAAP47AAC7LwAAVCoAABcoAACuCAAAaz4AANAPAABiGgAAETcAAKsdAACnBgAATRYAAMQnAADsOAAAAxkAADoBAACIIgAAFjYAAA0dAABTEAAAQyMAAN8CAAD0GQAAByQAAKkgAADWCAAA4S0AAMsZAAA9KgAAsDcAAGMkAADJJQAAqDoAAN8WAABPLAAAgCIAADslAADXDgAAfRUAAN8SAADYLQAA8hYAAFosAACEMQAAxBkAAOciAAAhFAAAQDEAAMIyAADcGgAAuzQAAOErAAA5MAAAHAUAAO80AACIEwAAwB4AAL0dAADNMQAA/jkAAM8RAACCNgAAdwsAAI0hAABqNgAAxQoAAMUhAADSKgAABQMAAMspAAAjHQAAMhMAALQpAAB9FwAALCYAAB4JAADEJgAA0ikAAIw0AACjOwAAxTQAAKYoAAC/MQAAtDoAAF8CAABpMgAAnwsAAI4JAAAPEAAAZRwAAGUiAACuPAAAkRcAAI8dAADzFgAAgRYAAP8GAAAPIwAAgi0AAGQUAADYGgAAtA4AAGYgAAAaHwAAsTIAADkoAACZGwAAAhkAADguAAC/BwAAGhwAANsRAACiMQAA1RoAAIM0AADmGAAAkgUAABkXAAChKwAAKSMAAFcSAAAGGwAAGg8AAEsOAAB3IwAA0zcAALE7AAAKDQAAGCMAAHoEAADlBQAANjkAAH03AABGBgAAFywAAPYwAAAOGwAA6i0AABAUAADDOwAAcTAAAJAwAACkMAAA5CEAABQSAAC5JwAA7iAAAMo6AADyJQAAnTMAAHgfAADmKgAAlBAAAB0OAACqAwAASRMAAOMHAAC4DQAAoyQAACYyAAA4EgAARwQAABs1AAADMgAANgcAAIYQAACPMwAAhhIAAFYqAADUEwAAABgAACEEAACTHgAAniMAACUXAACSPQAAWTEAAMsNAABoOAAA1QgAAOElAAAUBAAA9ikAAAENAACjDwAAqTgAAOUDAACMPAAALSsAADsBAADlMQAACQAAALE3AABNOAAAIi0AADc3AACtKgAAix4AAMQ2AACqOQAAjhIAAN4vAAD0BgAANyQAAOksAABbBQAAkg4AACQGAADDEgAA0DwAAAYqAAAsMwAALDwAAI8VAADxDgAA8DcAAHcCAABjDgAARDYAACwlAAAfHwAAWRwAAKYSAAAiGAAADScAAIYHAAAwGAAAvgUAAKkiAAB9CQAAdQEAAGYZAAAEGQAArx8AAKwPAACHIQAATxUAABoLAACQCwAABx8AAEwFAABBGwAATCEAACcKAADGLgAAyQ8AADIMAAD/FQAAHxYAAPQaAACXHgAAqgcAADocAABsLQAAuCEAAF0sAACkFQAAlToAAFEkAAAuIwAAaTQAAJc6AADSHQAAehoAAMslAAB0KAAA9BMAAKs0AADBNAAA4CgAAOkVAABmIQAAMQoAABonAAAMIgAAviAAAHYFAAD1HwAADRwAAEcMAACCLwAApAsAAFoRAACVFQAAkhsAAGYlAADMDAAA7yoAAMIEAACzIAAA0DcAADoyAACuGAAAlSwAAGIuAAArKgAAZjMAAL8PAABGHgAAbCIAAA00AAAxEwAAqhAAAKYUAAAhBgAAqSYAAO8LAABIAQAAbgsAAG0vAACQOwAAmjoAAPMdAAANOgAAWAEAAIYwAAC3JgAArSgAACoVAACUGwAAvyYAAEkiAABlEwAAWQYAAFI1AADTMQAAwD0AALkmAAAbIQAAwhUAAEUgAAB7AgAAdhMAAL0YAADKJwAAXRcAAOA9AAA6GQAABAsAAFk8AADYAwAAbAEAADwGAADbLAAAsSgAAB4SAAAPDAAA6jgAAH4tAAApPAAASxAAAHkhAAB3PQAAUyQAAFczAAAKGAAA8TQAAJ4NAABGNgAAzxMAAMULAABzHwAA/BgAAHAPAACmKgAAFjEAACsZAAAgPQAA9CkAALQEAAC8BgAARjcAAP8MAACPEwAAGyYAAHEAAABtHgAA1i8AAAIKAAApEAAAVxUAAOANAADsEQAA/y8AADkzAABbNwAAAgYAAMcgAACzMQAAiCoAALsrAABoJwAAoBwAACYuAAAlNAAAnisAADkuAAARKQAAti8AABAPAACuGgAAfB8AAPAzAAA2CAAA7wgAADcNAABpBwAAYw8AAOIIAADxAwAA8jQAAKoUAACaKQAAtjMAANUbAAATLQAAQC4AANozAACfGAAA/xYAAOA0AADYPQAAvxYAAEIrAADCEwAA2RcAAB8FAADtAQAApz0AAHQMAAB7JAAAey0AALgJAAB/AgAAvQEAAD0YAAD/LgAAkwIAADopAAC6MwAAfiUAAEo0AABVFQAAxTYAAD4yAADpBQAAbiMAANIsAADWJgAA8zcAAJovAABeEgAAjxAAAOMlAABbFQAAsAsAAHULAAC/MwAAIxMAANIeAADkLQAA1zYAAC4FAABrAAAAnxQAAMQSAACMJgAAtCgAAN0zAAD5AQAAgR0AAHwoAADQKQAAIhwAAAcXAADrJAAAvCgAAFY4AAD7FgAAry8AAH4zAACODgAAvRcAALwTAAD0AgAA/A8AAOIgAACMLQAA1xcAAHADAADCNgAANzMAAPkmAACHAQAAEgsAAIwGAACQLQAA+TIAAPsxAAB0IgAAYgQAAFsmAACqJgAA+DcAAN8AAADRIgAAIzcAANgAAADLHwAAFAgAAAo6AABcGwAAVz0AAOUiAAASDQAA7A0AALoDAADIGgAAoRIAAE4UAABAHgAAFy0AAHo0AABBAQAAhAIAANwqAAB2DwAAPhgAADwlAACGNgAAMBsAABc8AAClHQAAWDcAAO4qAADsFgAAzTkAANMtAACaAgAAaSoAAMMjAACoBgAAaQUAAIMUAAAIDwAARDIAAHQdAABoAAAArioAAG4sAADSMgAAXisAAMAKAAD7PQAAAhcAAEYRAACOFAAAvi4AAJEQAADxKgAA9BEAAPwGAADsMAAA7SQAAMMeAABrBwAADBYAADQ1AAAxKwAAaSIAADs9AAAqLgAA6h0AAEoUAAA8AAAAKSQAAMkkAACtPQAA9DIAAMUrAAD/NwAA9RoAAHkTAAAzNAAAzC0AAO4SAADVNwAA+hoAAHsTAABDCgAAkgwAAEk1AADkKgAAmhQAAEQNAABHJgAASA8AABkWAAANLwAAvDgAAOwaAACUDwAAoDoAAJoQAAAeKAAAdSUAAIwTAAArOAAAuSMAAE4LAAAKOQAANDcAALMJAADrKAAAUgUAAFkIAACbBgAAhBMAAP8IAADOFgAA/CwAAEM5AAAgPAAApxcAAKEkAAAXAgAARxYAAOwiAAC1FQAASTwAADoeAACJAgAA7DEAAPkwAACGJQAAAy0AAHwCAACOIgAAzSQAABMDAAAqBQAAmRQAAEguAABnKQAAViAAAAUTAABYFwAAIjAAAOQxAAAEFgAAmQsAACE7AAA3GQAABjYAAB0WAAD9JgAAfzwAAOUuAABTNQAAzQEAAGYUAADoBAAA3wMAAAs3AABSNgAAWhIAAKcEAAB7OwAASzwAAPMPAADREwAAeRsAAMQdAAAaFwAA0CoAAO8RAADnCAAAiAoAANsFAAAfKwAAzwQAACcAAABSAgAA0DIAAIUXAAA+FQAAAz0AAMQVAAC9MAAA7zkAAEkLAAAzOAAAtS0AACEcAACPGQAA6icAAJAeAABtJwAAwgwAAP4QAAAAHgAA8hoAAOcrAAAmCgAABDEAAFgLAACpBQAA0gcAAH0FAACIFgAA2TgAALkVAACjCgAAtAEAAJsgAADaKgAAKCkAACoxAACTEwAAyxAAAK8ZAAC/FAAA4AYAADkvAACUIgAAVi8AANceAACbLQAA8RgAADIWAADFEAAAVRwAAEEAAAATEwAAPQMAAJ88AACDMwAA6REAAOA1AACVFAAAPyAAAJMxAAAvOgAA9xsAAFQJAAB7LAAAZQMAAFUtAACrIgAAWToAABEJAADZCAAAsgYAAJczAADmAAAANwcAAAgXAABQAwAAdQYAAKocAAASJAAACioAACoTAACALwAAbSUAANElAADrPAAAvxsAAIE8AADCBgAAMhoAAD0WAACnAAAAdjUAAIYoAADtJgAAnygAAJYLAABMMQAASiwAAFsiAAAJKAAAczAAAMUlAABhLgAAFiwAAOchAAB4PAAA1xUAANYPAADbCwAAQRkAADQdAAAzDgAA5QgAAFQ1AAACJgAAeh4AACUEAABVNwAAdR4AACcWAABzAQAAlAkAAOgPAABZJQAApgEAAF0TAACsJQAAdiEAAH84AADWPAAAvDcAAKk7AAApNQAAbhkAAOIlAADNIwAAOiEAAO4PAADqBwAAPjEAAKQuAABZCgAA2isAAAkfAABrIgAA4RgAALAeAABqHQAAuTYAAMYvAABzIQAAGDEAANIOAADyEwAAbwQAAEcJAACLJgAA/jMAAHQgAAAlKAAAZCAAAAwtAACTGwAAggkAANgwAADAJQAAHwgAAHUMAADAHwAAZxQAADQGAAB2LwAASQYAAC0TAAAdEgAAhQgAAOkkAADmIgAAOw0AAPAUAAArAAAAfgkAAEcBAAC3IAAAoysAAAwSAAAkKwAAHBoAAGINAACjMwAAKyAAAKc1AABPCwAAmTEAAMUuAAAKDgAAFDgAALsBAACINAAATj0AAEYEAADpAwAAjBoAAP8HAAA+OwAArjoAAIc0AABwGgAAkToAAKoSAAA1BQAAryYAAP40AADlJQAACCAAADATAAAyHAAA8hQAABcJAADRAwAAQyoAAAs4AAC0FAAAQjUAAHEYAABYGQAA5iQAAMwqAACdEwAAOxYAAB8EAAD6FgAAHhAAAGsyAACmGAAAMR4AACUnAACrGAAARy0AACEmAAB8MwAAySkAACEQAAD3KQAA2DMAAGA3AAByJAAAnDQAAKkCAAB7IAAAVjoAAHQcAACOBgAA4jQAALc3AACAKgAAQDgAAJITAAAUEAAAOywAAJk7AAAVLgAABwIAAEEoAAAGPAAAjgcAADMdAADJLAAAjzgAANUiAABsCQAArAkAAJwEAAANMwAAQTwAACUYAAB2MwAApScAANc6AAAYAAAAMg4AAL0uAABpGQAAGisAAHs5AAA6AwAAZh4AABM1AADdLgAAAwUAAI0jAACzDAAAyA8AAN8EAACfHgAAEwcAABc3AADoHAAAIAcAAHE1AADzFAAAGBwAAOsxAADKNgAAVQgAAIsfAADcHwAA1S0AAH4YAACCEAAARDUAAG8LAAA1JQAATy8AAN4CAAB2KAAAoxYAAAU0AABrEAAASw8AAHQsAACPOwAAFwsAAFQfAAAwKgAAKDYAAGUoAADSHAAAVAEAANk7AAD1MQAARQ4AAFonAABtCAAACAIAAOM0AABLMgAALh0AAN0QAAAqKwAAVysAAMUfAAB+JAAAdRAAAMYLAABjFgAAlgQAACkLAAANJgAA2jAAAPwOAADYJAAAhQMAABMWAABCEgAAkRoAAOkiAAAhJwAAywgAANUfAAAYEgAAnDAAAG4VAADKGQAAcC4AAA0PAADiDwAANBYAAOk8AACNPAAAvjAAAOQJAAAKCwAA0Q4AAJUfAADFCAAAdy0AAOsbAADrOQAACzwAAEEqAADyDAAAzAQAAPoUAABaGQAAywAAAD4tAADHIgAAIgkAANQfAAAEKAAAkx0AAD0tAACvKwAAKzQAAAAHAAAoPgAAGDUAAH4xAAAmOQAAoiIAALAHAAApGQAATREAAGI+AAAAEAAAbiAAALYVAAAMJQAA6gEAANAUAADVGQAAPiEAAHs0AAAWIAAAxh8AADU4AAAfMwAAIg8AAMUWAAC4HwAA3RgAAKELAACIHgAAaCAAAKAmAABhNgAABAkAAJ06AACLAgAAHBkAAO49AAD7NgAAiAwAAMgbAADbKAAAER0AAKoTAADZEAAAMC4AAFUWAAB5LwAAyDIAALQWAABILAAAsyEAAG4PAAD/KgAA7x4AAGYBAAC3FgAAkhwAAL47AAD8BAAAqz0AACgwAAB4GwAAExQAABw0AAAZOgAAMzEAAAUoAADNNQAA2zQAAHkHAADGAQAAJjUAAOEvAADKFgAAmjwAAGwMAAAOAwAA0w8AABQ9AACnHgAAowYAAGAmAACZDQAA7yYAAPI5AAAHGAAAOgcAAAINAAA8GQAADBwAAI05AACNEQAAoRgAAHUhAABcCQAArikAADELAAD3GAAAYRQAADkOAAA9BAAA2AkAAIYWAADoBgAApwoAANsJAAB4EQAAszQAAG4pAACPIgAAjisAAIg7AAAfJAAAvDUAAOoGAAAVCgAA1xEAAFYeAACoJQAAYx4AABcvAAClAwAA6x4AACkgAAAGCwAAiTsAABQ6AAAkHgAAgAcAAE81AAAWJwAAbigAALkSAADdHAAAqDEAAMMlAADaNAAAggMAAJ4sAACpOgAAuSEAAPsnAACKHQAAaQAAAPk7AAC1MwAAaB4AANsqAABdNwAA3goAAH41AAAMNAAAUisAADY1AAD3FwAAVxwAAEYBAADuDAAAlzIAACcRAACbHgAASS0AAP8ZAAAFDgAABSsAAI0MAADaJQAAGSQAAFEuAABaCQAAWx8AAHosAABHHgAANx4AAH0SAABbEgAAlCgAAH0hAAAeHgAANjcAAIU5AAArEgAAzCwAAG84AAA/MQAAfh8AAKAXAABfHQAAOS0AAEomAAATFQAA9zAAAJoaAACHAAAAVjUAAAwvAADvDgAAPxsAAPYeAACCKAAAiDAAAG0NAAClHAAAwgMAAI8BAADJOQAA/zUAANEHAACQIQAAVC0AAAUKAAA5CAAANioAADsnAABFGAAAzCcAAEIBAAAfEQAA3C4AAEIUAABOGQAAPC8AAMg3AADwDAAAdBQAAOkmAAD8OwAABAwAAP07AABDBAAArisAAFQoAAAJCQAAPB8AAH8sAAAxMgAAGSUAAIAWAADyOwAA3ikAAGIhAACXNQAAASEAAKUaAAA0OAAABS8AAMk7AADZCwAAeRQAAAo0AABDGgAA5CAAAI0KAAB5MwAAKg8AAEw2AADRKQAA4SkAAPsAAAApBQAAwAsAADMlAAB+BgAAzSkAAGQ3AAAHAAAAjBgAAPkJAAA4FAAAARoAAEAGAABCPgAA/ToAAMMZAAD1NQAANxQAAFQiAABQKwAA5BEAAMg2AACCFgAAlhEAAEg6AAA2IAAA5TgAAJ4qAACzEwAAqjUAAJEwAABQIQAADw8AAP0LAABaGwAAJxUAAFIVAACCGAAAkxYAADEIAAAYJwAA0T0AAL40AAC8GAAALygAAN8cAADkGQAAXRIAAGsGAAAbAwAAeysAAMwiAAB4LQAAvwQAAPEkAABxCgAA9SgAAMw9AABcLgAA/SoAAGsgAABmIwAAry4AALAoAABbBAAAASkAANo3AADtIgAAawQAAJMkAAD4LAAAfBQAANUzAACzKgAADR8AACksAADBCwAAsR0AANcPAAAKFgAAJiAAADQtAADlAgAAQA0AANA2AACpGQAACC0AAE0CAADOCAAAQhUAAF4zAAB3DwAAoQQAAOcbAABfLQAAagUAAHQkAACSOAAAjy8AABwjAACKIgAAZDgAACArAABlKwAA8j0AACc7AADcCwAATBsAABUAAABlLgAAbjcAAD4PAAAdFwAAbC4AAK0ZAADAIgAAfggAAEgKAADOAQAAQx0AAPIVAACKKgAAtzIAALUjAAAMCwAALzYAAMgnAAA5BAAADggAAPw4AAC7HAAA/gcAAPYjAACGJAAAdyUAALAwAABqBwAAlzEAAEckAAAjDwAAwiMAAPg9AAB5BQAAJCgAAOMdAAB0AgAAlBEAAKsfAAC+OgAAxxcAABksAACzKwAA/BkAAO0jAAAmHwAAXwoAAFgTAAAiOQAAWx0AABw9AADrNwAA5AcAAPshAACFIQAArA0AAMwaAABjNgAAkh0AABUoAAAhHgAAYyIAAL4ZAAC3EQAAMwcAADcQAADoNQAAzQsAAOgnAAAYDQAAWBAAAB0vAACNNwAAFA8AAP0nAACAGgAA1zUAANcdAABrJgAAtBAAAPAOAAAbLAAA+zwAAIsXAAD3EwAAiigAAPQdAACuBQAAYTgAAMIpAADKBgAAkyYAAF8uAACqOwAAPQIAAGocAACYDwAAkikAADsSAADFAgAA1QAAAJoHAADOOAAAoQ8AAF8xAABoBgAA7goAAHU8AAAsOQAACDsAADYKAADwOwAAThIAAH8nAADqLwAAHAoAAIASAAC/CgAA9wQAAME3AAAzEgAAUxUAAAk3AACWLwAAgR4AAKkGAACKJgAA9DQAAM4iAAC9JgAApSkAADctAABwIwAA8CUAAPgoAACnLgAAbQEAAMwHAADsFAAAFQkAAJ8sAAAWBwAAHTEAAGMtAAAhNwAAyQIAAHsdAABNNAAAyxMAABkRAACBGgAAeBcAABg6AACjGAAA1SkAAKQMAAASIgAAaRMAACg9AAA9OgAA4iIAAC4SAAB6JQAAawUAANE6AADRJgAA9gcAAOk3AAAcHwAAPwcAAFs2AABlHQAAgAgAALoXAADgEQAAUiAAANYYAAAFBQAA3hMAABwcAABLCQAAcj4AAHEJAADiHwAAsAEAAI04AACZGgAAXg8AAIcQAACTFAAAKyIAAKgAAABGGQAA9zUAAPQPAACoFwAAFDIAAIcWAAAiBAAA7AgAAJcVAACiGQAAqS8AAFYLAAACHQAAZSEAAJUnAACkJAAAyCoAAMsLAABtIwAAwhAAAA8VAABLBgAAfBAAADQYAAD3GgAAvjwAAI49AADAFwAAxgcAAFULAADsJQAAZDoAAK88AAC/EAAA6yMAAG4AAAANBQAAzzkAALUNAAB+MAAAKTgAAHcuAABUEwAAQxgAANEGAABqLwAAGhYAAAgYAACRAwAAHg8AAMYbAAC2FgAA4hkAAB07AAA3IAAAfxYAAAogAABpDAAAUDoAAEYbAABLMQAA0TUAAB0NAAAyNAAAmQgAACoyAAB0DwAAQzgAAIsKAADhLgAAMA8AAOAnAADcLAAAFwAAAG8uAAD/PQAAfRQAAGcoAAA2EwAAuTAAABAtAACbDQAA3QMAAKMhAAD+PAAAEyIAACcfAACoBwAAyAUAAHgGAAB9DwAA8RcAAPMCAABlNAAAiCcAAFs1AADsFwAABzsAAEkvAADeBQAANScAAAgEAABRLQAAYBcAAKY3AACWGAAAaxEAALInAADpAQAAez0AAJoGAADANwAALBEAAGgYAACePAAAezIAAPoYAACWHQAA5zgAADQfAABKBQAA5y4AAIcYAABNKQAApiUAALshAABkCwAAxg8AAKQBAABGGgAAHR8AALAhAABzBQAArykAANcrAAAhJAAA9zEAALAOAAB9EQAATjIAACIIAAAMJwAABAQAAIQcAACPAgAANjEAAOwdAAC7BgAAuTsAAJskAADFHQAAxR4AAFc4AADgCQAAxB4AAKIAAAAmIgAA8Q8AADwPAAAgJAAAyhQAAEUqAABVLAAAkhoAABIcAADaJAAAPSAAAIUOAACdLAAAghkAAAMHAABJAgAAqygAAN0eAACCJAAAMwUAAGcbAABzGgAA4SgAAKY0AACLGwAA6DMAAFQgAACOKQAAECgAAPsOAACNGAAAoCIAAM0IAAA3KwAALhEAALEsAAANAwAAPAkAALA5AABQBAAADREAACQNAAC4CAAAejUAALoNAADIIQAAaycAAIkaAACSNAAAZyIAANglAAAoAAAAMQwAAOw5AACjFAAA8y4AAKYJAAB5HwAA6DYAAOocAADnEAAAdjAAAGc1AAAkEgAAvBsAAMYrAABfLAAA1TwAAIAkAAC0NwAAFi0AAC8nAAAdHQAA4BkAACQ5AACdIwAA3CkAAEQdAAAeOwAASB8AANEBAAAdNgAA6xIAALAYAAByKAAAJCwAAP4sAABIJQAAZCYAAGkfAABWGwAAORIAAIwUAADCCwAAfB4AAGQwAACeIgAAUxIAAJgZAAB1IwAApAMAAHMJAAAoOQAAKBUAAEYwAABdHgAAbiYAAFcWAAAJCgAAtREAANkgAAB7LgAAohMAAOowAAAlNwAAHy0AAD8PAADQGAAAfgQAADUxAABACgAA9QkAAJswAABgIAAAYBkAAPMIAABVJAAAMDcAADUiAACPEQAANhwAANIQAACZNgAA/gUAAAY3AABHFAAAqyMAALErAAB5IgAAxBAAAJAaAACJCgAAshgAABI+AADpDgAA5DgAAFIsAACJFAAAwRkAAKUWAAB9DQAA3C8AAJM7AAA4JQAAGRQAAM4VAADICAAArxcAAKcPAAA5PAAAMxgAAO02AADvJwAAhBYAAJwuAAC7FQAABREAAIsTAAD7FwAASxIAAFsCAABtPQAAiCAAAJ0bAAC6MQAAcjYAAG4yAAA1BAAAvRMAAGM+AABpEAAAqgAAAMc8AAAmMwAA4zYAAIENAACCCAAAHjoAAGo7AADEPQAAAQ8AAAgcAAC6CAAAThAAAIYbAABVAgAAXAsAAA88AAC7CQAA4gkAAJQ9AABvAQAAyigAAJM2AADLOgAAmQIAAAQPAAASAAAAZAkAAPEwAACzCAAAwxwAANMJAACCHgAAtTkAABEAAADGJAAAJgYAAEYHAACQDwAA1xoAAG0gAACcKQAA7jYAAGkLAAAIMQAAdDwAAMMVAACDFwAA7R8AAGIoAAAiAQAAmxgAAAMYAACeDgAAsxkAAKUNAADjLwAAyDMAAFk1AABvHwAAeSsAAHEDAABiCQAAPgAAALQhAABHAgAARRkAAE8cAADIAAAAYiIAADcYAACmMwAAugAAAC4kAAA1OwAAqy8AAM0dAAAPCwAAFhkAAC8lAAD2DQAAhDsAACAhAACyAAAAMhgAAEQ0AADuIwAALxQAAC4qAABtPAAA5A8AAB8sAACPHgAA/RoAAGUkAAA4JgAA3DsAAKQJAABhKgAAkgIAABEnAABlBgAAoBkAAEkJAAAfDgAA6wsAACI0AABeDQAAXDAAAL4KAAB3IQAArgMAAPIKAAAVGwAAvC0AABEQAAAWGAAAfT0AAFEvAADGNAAA+jQAAEU9AABmDwAApSIAAJEeAABDFwAA5jAAAFY0AACnMwAA2B4AAJAVAAANPAAAYDgAAMwwAADVNgAAEQUAAHAUAADtCAAAXDQAAA4KAADOJAAA+yQAAIQ9AABcJQAA5AAAAHIrAAC3BQAA2DgAAHY9AAD/LQAATAgAAA8lAABgLQAAATAAAAYCAAC/GQAAggUAAPkWAABfFwAAbRoAABQYAADZAQAAnxsAAEw+AACcJwAAUCQAAN0tAABsDgAAdQ0AAFEKAAB/EAAAfTIAALsmAADAFQAAqzEAAGogAAAyOwAA5DAAANEFAACwBgAAUjwAAFIDAAA8EwAAAxIAAKcUAACPCgAAnS4AACYYAAAhDwAAvzQAAMgVAAA+GgAAGBoAAKE6AACYJgAAGzYAAAIiAADPHAAApyYAAIELAAChHAAAKw8AADgEAACVOAAAEjIAAAk7AACeGwAApQEAAIobAAAmNgAAphAAAIgEAAByHQAAJQMAAAkDAABrLgAAFRYAAMQ3AADNNgAAmBQAAMAGAAAjDAAAYAUAADUpAABsNAAAqiwAAFQ+AABVOwAA6hsAAF4uAACAEAAA5BgAAAw2AAD6HAAAkAIAAO0cAABLIQAALBoAAKwYAAC0HQAAcTQAAAwHAACaAAAAtjIAAM42AAD1IgAA/CsAABMEAAB4CwAAdwoAAPYZAAAIKAAAyBQAAFYpAADMAgAAagQAAPYtAABfEQAA1RMAANwXAAAlEgAAbhcAAMkOAACHIgAAvRUAAHkcAAASAgAA2CIAANMsAADeKgAAMgYAALYiAACuHQAAvyIAAO05AAAWKQAARyoAAD07AABEFgAA3gEAADQlAACxEAAAMyQAAP8eAAA0MgAAwCgAAO88AAAsMAAAEwgAALc6AAAjMQAArAYAAEA+AAAOOgAAayMAAEUrAADIHwAAaQ4AADk+AAC3DAAANg8AALgvAAC6FAAA8zQAAJAMAABnCwAA1S4AABEOAADSBAAAwQgAAFASAAAuIQAASiMAACgoAABgAwAAKxQAAHoJAACoDQAABCYAAJ8IAADIAgAAKBwAABwRAADNOgAAXCkAAMYjAABIBwAAoDAAAKgWAAAnGAAAbBMAAIYxAABfKgAAByMAANsZAAC+BwAAzhkAAEoCAADTHQAAiyoAAGEOAACSCAAAyTcAAIkTAAD5HAAA1iUAAFcbAADwPAAAcTYAAEQ3AAC5AAAAvDIAAJoXAAA5CgAA7SgAAFoEAAA2PgAAHSYAAAkMAADiKAAAkg0AADQ9AAAoKgAAyxQAAJIWAADtFwAAJyIAAGIdAADYHwAA4gQAAKEwAACZDgAAKQ0AAAQzAAAeDAAA1zwAAO8aAAArFQAAZxMAAAgUAAAWFwAA5BwAACA2AAA1EwAA9R0AAKwDAAByKgAAQBQAAPckAACsGwAA2SIAAPsSAAAsIgAAWhoAAB8KAACcHgAA9jcAAIcwAABmDgAAOzEAADM6AAB6EgAAqjEAACw3AADPCAAA5jEAAOAHAABDKAAAQjQAAJYzAAB7JQAARhgAAI4aAACkBwAA/igAABwJAABQOwAALQEAALAQAABbGQAAvT0AAEAmAAA9DAAA5QcAAOA8AACKHAAAfx0AABkGAACUJgAAcy4AAKQoAADzCwAABgUAAEoyAABvMQAAFjAAANc4AADjBgAASREAAG0VAABVMAAANyYAAHcpAAD+BAAA5xcAAIQQAAAQAQAAkiMAAGUeAACdDwAA4hEAAD89AABfJgAA1w0AAIkqAACWJAAAkBwAAFQyAABFJwAAfTwAABkYAAAQOgAAXQ4AAOswAADwLAAAxQAAACg8AADxGgAABSkAACgvAAAVIwAAmjEAAJsbAACFEAAAEQsAALk5AAAbAQAA1iIAALIFAABcMwAAYzcAACY9AACkEQAAmQkAABQFAAA5GgAA4CwAANwcAABiMwAA1zkAAEYiAACuHwAAiAsAAGcsAABCKQAAuDQAAKEuAABoHAAAFg4AAPEoAADfNQAAahYAAMw7AAC3NgAAuCYAABQVAACkPAAARAcAAPk2AADvOAAAQwEAAF0PAAA+EgAAej4AABMmAACCBwAA7jQAADI5AACgNAAAWAYAAIoZAACVIgAAIx4AAHsfAABKHwAATR8AACoAAACJOQAAoRAAAHsPAAAGHQAAIiUAAJsdAAChJQAA5RoAACwhAAASDwAAfyQAAHsVAACHKgAAXwwAAPwcAAB5JQAAqxUAAPALAADtLQAAVQUAABs3AACbKgAA2xsAAEMxAADvLQAAVx8AAJABAAAVBQAAVToAACIaAABAEwAA5goAAF8JAABaIwAADBkAAM4fAADhAgAA3xUAAIslAABvHAAA9RcAAJo2AABPHQAAVj4AAJcNAAC/JAAAzwcAAMUJAAClLAAAOiYAALkGAAALKgAAhjIAALo7AACLFQAA9T0AAN4UAACVEQAAfjkAAHwnAADwEwAAIgIAAFMpAAB9MAAA6RoAAOYoAACFMgAAAiMAABYPAACwIwAA+jMAANs9AADGMwAAzygAAHcoAABlKgAAbjQAAFEwAADjLAAAqRwAAIQ2AABUDAAAOx4AAIQmAAAoCgAARyAAAGMpAAAvBgAAEDwAAD4WAAAFHAAAqREAAOEjAABDNAAAWyQAAMkrAABwFwAA+zkAAHsnAAAeJQAAVTkAAHobAADEHAAAzSIAAAw+AAD4DQAAxAYAABs9AABMIgAAthEAACgIAABDKQAAIAgAAIcPAABJJgAAiRUAAKYNAADOGwAA3i0AAK82AAAsDAAARRIAAFUyAAAjKQAAtxkAAE8bAABBDwAAPDEAADsVAAD6CwAAuy0AAOU6AAD8MwAAxCAAALcpAAAENgAAKjUAAMUEAADmLAAAkQUAAO4JAAAIKQAA7QQAAEk7AAD8LgAA8CoAAJ4eAABIGAAAFhwAAEI2AACLCQAA3CQAAIsaAAA5HAAAvCcAAE87AADPDQAA4Q8AAEkrAADNLQAAVS4AADQsAABPMgAARQIAADQoAADjOwAALhsAALMWAAAjMwAATjoAAEIfAADyDwAApwEAAE4BAADELwAALxAAAEAFAABnCgAAMwkAAB0YAABaAAAAoTIAAIoAAAB+PAAAbwYAAGcZAACdJQAAQRIAABI1AACVLgAAzBUAAHQNAAAFCQAAyCwAABQzAACzAQAAXA8AADgAAACKIwAAGRIAAGEmAAA+IAAAjSYAANQpAABjKgAAoDUAAN8eAAAmOwAAuS4AAGUjAACCOQAAGi4AAKY1AACjAgAAygkAALseAABMHAAAlBcAANcnAACWKAAA+ggAAIkkAADCFAAAtgMAAN8tAADOHAAAhzoAANMNAACuOQAApToAAGMVAAC2JgAA8R0AAAgnAADAEgAAHSwAALcPAACGLgAASBkAAN8sAABPMQAA/BsAABknAADZOgAAQC0AAHU4AADQKAAAnRkAAFAOAAAtNwAApzYAAF02AABAAAAATisAAHc6AACYFQAAXBwAAFImAABWFAAA3xQAAPMNAAAEOwAAuzcAAPQ8AADhEAAABwoAAOMbAAB2KgAALh4AAGg3AAAcIAAAKiIAAJkdAAD+EwAALhkAANMBAADYAgAA3DEAADcpAADGHgAA/gAAAHUTAACnDQAAWzwAACsfAAAyFQAA6DkAAGEtAABYPAAA6iEAAN0fAABCCgAAUCwAAPAiAABUCAAA/yAAANYcAADQGQAAKQgAAKMiAABhLAAAqhEAAAQjAACqKAAA3hUAAPImAABQKAAAxxMAACwGAAD5IQAAHg0AAB88AACWAwAA6DcAAEsRAACYIAAArRsAAEkxAABMPQAAgR8AAFMiAABqFAAAyjwAAJMyAADvBQAAxQwAACAKAAB1NAAABycAANIMAAAxJwAAcgoAAJUQAADmPQAAlxkAAJchAAB6NwAApggAAAAaAADiMgAAHw8AAFcsAADRKgAAPzQAAJEcAABLKAAAPiMAAOA7AACJMQAA/DkAAFITAACnOAAAYgwAAG0pAACLPAAAiSYAABoSAAD9GwAA7TsAAAMgAACgJAAAKz0AAFQ0AAAlLwAAFDwAANwWAACbKwAAag4AAKY5AACgAgAAczEAALwMAACCFAAAdxsAALMOAABlFwAArBkAAGIkAACENwAAky4AAFYjAABxKQAAXjgAAKsKAAB6OgAATz0AAJclAABpGgAAhzUAAGIPAABxEAAAzj0AAFEdAADmBgAAQiUAAFktAAD/BQAAnBMAABkPAAC/GAAAnxYAAJ8FAAB2OwAAxiIAAPMOAAC6EgAAFCsAAO8MAAA7OAAAMhsAAO8yAACyNQAA6zIAAO8JAACEKQAApSUAACQOAABEJwAAlx0AAHcyAACmHQAApiYAALUFAAAhOgAAHSsAALoCAAB2MQAAkwYAAN8NAACrAwAAoCAAAGoeAACeOAAAnCUAAH4oAACEEQAA8TgAAA0UAADlFQAAvgQAAOo5AADtEwAAniAAABAWAACuOAAAXBAAAFMnAADdNwAAzwMAAKA5AADfKgAAaSgAAG4zAABBLQAALjsAAHgdAACkFAAAvRwAAIgYAAAvHAAA3zMAAHMNAACTEQAA3gwAABw4AAABLwAAsS0AABoRAADGMgAADDwAAFEiAAA8HAAA2xQAAMMyAABAOwAA4wwAAFgvAAAlEAAAmBgAAOgfAAAtIAAAnjYAAHQSAAD6PQAAZhYAAEUwAABLJAAA3SYAAJIVAACYEwAAKA8AAPoFAAD1CAAAIRIAAJIRAABTOwAAWCoAAKYPAACiHgAAwDIAAEU5AAD/AQAASTQAADwYAACzJgAAEyEAAOUnAADdLwAA+BwAAGoNAAC1GwAAaykAADQDAABqEAAAegEAACw+AACQBQAArxEAAMoMAAAiJAAAwScAAF48AAD8NAAAVxgAAJ8dAACRIQAApTsAALUnAADOKAAAoAMAAE4EAAAfAAAAUAsAAOI6AAA5IgAAphcAAJ8XAADZMgAA2TQAAIUiAACKOwAAfTQAAMk9AAAGPgAAaxkAAMoYAAAFHQAAZQIAACgCAADBNQAAtgcAAEM1AAD9OQAALjYAAOcnAACYNgAABykAANkRAAAlBgAA/R0AANsmAABeKAAAuDYAAC8RAABaBgAAoA4AAEEvAABCMwAAMwYAANoEAABPMwAASh4AAKUPAADgIAAAlwgAAE0qAAAhPAAAEhIAAD4UAABAMwAAaysAACkuAABhOgAA0zMAANQPAAAXDAAAFR8AAMQiAACPAAAAGAkAAN8yAADFLAAAvSoAAJwZAACxOQAATCcAACM9AAABCwAAdSQAAGYuAABLIAAAVSUAAE4GAAAWEgAAQxIAAHcMAACPIwAAtgUAAJwXAADLOQAAPCYAAKIlAABUGAAASiAAABEHAAAFKgAA6jYAACAdAAD3IQAAwT0AABEiAAD4CQAApSYAAP0lAACpLAAAjysAAIoQAADtCQAAzw4AAOkjAACdIQAA9wkAALkbAAD5BwAARwMAAKYjAADnKQAAixgAAH0AAAB1LgAAsQYAAI4kAAD8NQAAIi8AAKYAAACzLQAAMgcAALYwAAAlIAAAsTQAAAoAAAD7OgAAki8AAOsCAADuOgAAkTkAAO0sAACOGAAAaDMAAPweAAAKEgAAcBAAAI8XAAD5MwAAAjYAAFwDAADYIAAALx8AAFoNAACoKQAALwEAAJ4VAADILQAAuRYAAPYdAABeAgAAJwgAAO01AADhJgAAOTYAAJYSAACmGwAAIhsAAHozAABQJgAA8hsAABInAAAKJgAA8QgAAFMGAAAPHQAAqhsAAJo4AAACEQAAci0AANgBAABjHwAAGB0AANM1AAAQHQAAXQ0AAHAwAADAAgAAGS8AADYeAACpNQAAWCIAAOQ9AADJAAAAXikAAGESAAAIDgAAJQIAAMsjAAApHgAAXDcAAJYcAAAZIQAAjiYAAFUOAAA6BAAAQD0AAHEqAAC5CAAAHQMAABkEAABHPAAAaTwAAIIfAACpFQAAgisAAOkqAADQKwAA4TIAABUtAAAQPgAAWjcAABQsAAAdPAAAYzsAAAQlAABPIwAAHyoAALMaAADMKwAAUTwAAHwVAAA5LAAAchkAAHwbAACIMQAACAgAANQAAAAwFQAAWw0AAMc0AAA5AwAASigAACcSAADlCgAANT4AAOAAAACyDQAAXDsAAIE9AAA8DQAAHDYAAGAnAAAiIwAAaDQAAMQRAABaMQAA1SgAAOAuAAA7EQAAqx4AAEgUAAAVNwAADxgAAGA1AAAyEQAAQwIAAMY3AACdGgAA0jEAAIMjAABKPgAA3RcAADMwAADNBgAA1hsAADwVAAB+CgAAmggAABUVAABDBQAAZgsAABYuAABgPQAA9CYAAJEiAAAwNgAAKR8AAOoLAAAQGQAA+xkAAF8pAACIDwAAjwwAAI4wAADoFQAAbAIAAPYIAAA0IQAA8S8AAHURAAB0GQAA+R4AAHIJAACGJgAAjRAAAAM6AADYEAAA2yEAAPQrAABHJwAAswYAAAM8AADNLwAAThsAACAnAAAcLgAAzzwAAPw8AABaDwAAuBgAAIQhAACpAAAA5SEAAHcwAACmCgAA3jUAALkaAACLKwAA4woAAM0CAABWJQAAyxEAAMogAABDLQAARwsAAKkuAACCJwAAShoAAA0yAACUJQAAFzIAAEIHAADhJAAAHAcAAC4iAAABKwAABwEAAOAEAAB7LwAAuzwAAG8YAADpEgAAJy8AAMkQAAAzCwAADigAACcDAADrFgAACxIAAMs8AAC9GgAAAx0AALo2AADvNQAAHAwAAI4jAABANgAAeCQAAJgJAADAIQAAshoAAMMzAADYLwAAAQMAAE8eAABSCAAA6D0AAL0SAACxJgAA0RUAAFkeAAA+AgAABTsAAL0bAABiBQAABy8AACc1AAAECAAAMiYAAGM1AAC6GgAATjcAADIuAAB0PQAAHC8AAB40AAD7CwAANDEAAGYIAAC5CQAADCEAAIsAAABPOQAAUDAAAP0zAADEBQAAyBgAAEoXAAADLgAAOyEAAMgBAAAbKgAAPCwAAOcdAAAKMQAAQycAAB01AAAYBQAAczUAAN8rAACeFgAArToAAEEfAACQJQAA3jgAAAYIAAAkCAAAcRwAAJcTAADeBgAADR4AALEUAAC6NAAAcjMAAGwrAAD/DwAAAj0AAMYxAACAHAAAgiEAAIkYAADXGAAAwSEAAMQ4AAB+DQAAYR4AAJkhAADVMQAAowwAAKk0AACKJAAAWz0AANwMAAAzDQAA+wUAAL01AABtEwAABgcAAComAACvDwAA6xoAAMkZAADuAwAAfjsAAO0bAAAoDAAAVDAAAM0uAABHOwAAbBYAAD45AAAkIQAArw0AAG0hAAASGAAANS0AANM2AAAKPAAA3RYAAD0iAABlFgAA7g4AADgKAACOHgAAVzEAADERAAA0FAAAohwAAOkxAAAZDgAAJiMAAHYeAAB4EwAA3zoAALEKAAAMOQAAjhkAACslAAAUJgAAYBsAAIoPAAAvDgAAdz4AAIE7AACcFAAABAMAADIxAAAaNgAAvjkAAFElAABmGwAAww8AAAMsAACNHQAA4wIAADw1AAB/HgAABQcAALQFAABmCQAAlBgAACsJAABvBwAAYDkAAFUxAADWNwAAVw4AANo1AADCAAAAIiAAAGY8AABTHgAAlRsAAAc6AAAlLQAAaxIAAEo2AABRBwAA3QEAAJsMAABEJAAAKgcAAJ0LAADwKwAANTcAAB4sAAAtHAAA2BcAAFY2AAAlDQAArxgAAHQ6AAAMEAAAFRAAAOEGAACRNAAAQyUAABMbAADdPQAAHi0AABItAACcOgAAMjMAAIAGAADGJwAAjgsAAO4LAADXJQAAUBcAAAQFAAAAPAAAvwMAAAAAAABlDgAAwQkAALApAADzHwAAWA0AAKoeAACILAAAXQQAAEQIAABzKgAA3xsAAHMSAADWHgAAOSUAAFA4AAAALAAA/BIAAAkiAACDIQAAUTYAAOw8AADZMwAAqwsAABUwAABWIgAAIBUAAGUwAAD1MgAA4TcAAFQFAAA2JwAAYT4AAEQwAACSNQAA+igAAPEAAAC9MQAAOwAAALw9AADpAgAAmwEAAOc0AACTHwAAyyQAANE4AAAFLQAAsSQAAFo0AABeAQAAwhIAAC4TAADmCAAAaSEAAOAiAAAyPgAApCMAAOooAAATPQAAPxUAAP0MAAB7JgAA6xgAAHg6AADvPQAA5B4AALEvAADBFAAAhxsAAJUXAADoEAAAzDcAAJs0AABbGwAANgUAAIohAAAzGgAAnyQAAKAyAABXNwAADSMAAFgoAADeNgAA+A4AAAUIAABzAwAA8yUAAG4YAADAPAAAszgAAJsQAADkBQAA4SAAANcjAAD3KAAAtQsAAIYNAADfBgAAGAgAAHsYAACzFAAAfR0AAJc2AAAPOgAA/zQAAEg5AADeNAAAXBEAAJMtAADHAgAA4jsAAPcnAABuBQAAryMAADUkAACuPQAA4gYAAH8iAABeJwAA0RYAALgsAAC+EQAA/CAAAHoLAADXLgAAFwUAAE0TAABbOgAA5hoAAGAhAABiFwAA8wUAANEQAACWGwAAOgwAAGs7AAAMAwAAuQ8AAKIUAAD2NQAA0R8AAOopAACVDgAASRoAAFkpAABrFQAA8RQAACcaAABaPAAAoTEAAIMyAABEKQAABwcAAFIzAABoDgAAzTMAAEUjAADLHAAAKRUAAM0OAACyCwAAPAoAAOoQAAAlFgAAZyEAAA0xAABzEAAACTQAAA8uAAA+PQAAGD4AALkpAAAVOgAAmhYAALYcAADOCgAAVgEAAEwaAADTIQAAiC4AAEIZAABqOQAAqiAAAIcSAAAkPgAAGycAAIIBAAAlOQAArx4AAEUbAAATJAAAcAEAADYbAADQDgAAFQsAAHocAABjCgAAMAQAAG8KAADAGgAA3QsAADo2AAD+GgAAlRYAAMkRAACwPQAAGBsAAKgmAACMOgAAzxcAAG4rAABUGQAAtR0AAH4mAAA0AQAAGykAABA1AABWGQAARSgAABMrAACfLwAAUwgAAM0bAADjMwAAMigAAHYiAADUKgAAkwwAAMMsAABoAgAApSAAAF80AAAxLAAACSUAAFEBAACiNwAA3TsAAFIbAABDHwAA8BsAAAsDAABvCQAApgwAAPApAAAGDQAAEw0AALwPAAALPQAAeSQAAM4SAACqAQAAYScAAEUFAAD6KwAABQ8AAEk2AADlMAAAcDMAADYZAABsMQAAGzIAAOIWAAAhNQAAeRgAAGIvAABcAQAA3AUAAPEeAADLGwAABCsAAKcZAAASIQAAEyMAAN4DAADfGAAAxDkAAOwcAABwBQAAcjIAAOUMAAB2EgAA2Q4AAPQjAACdIAAA+AoAAMQJAACrBwAANgYAAPcAAAA2MgAAkjsAAKUqAAAdDAAAwwsAAHI6AAADIQAARQoAAOAkAABZPQAASQMAABopAAAEJAAA5iAAAEsYAAB9OgAAFjsAANgTAADENQAA9hYAAPgSAACuJwAAAAoAAIgmAACWEwAA/zgAAAc2AAC2DQAAaTEAAHoVAABoDwAAhQsAAFc1AACGHAAA4TsAALkcAABWAgAADRIAALUkAADlMwAABiYAAIACAAA4DgAAuiMAAJwJAACHMgAARBQAALYsAAD2IAAADgsAAKozAADmEQAAOBUAAOQQAAA0CwAA7QMAALocAABYIQAAyyIAAIE6AAAbMAAA9zgAALofAAB8OAAA/C0AAAsTAAAkBQAAex4AAAI1AABOJQAAWxoAAOoIAABMEAAAXgQAAIs2AADlAAAAiR4AAFo+AADXAQAAmBEAAHMYAABvIQAA0A0AALEeAACxMAAA+g0AAEUGAACxOAAALCsAADMiAABOLgAAyggAAE0BAAACAwAAEAwAAAABAADoGgAAIgwAAM4gAABEIAAAKzIAANYsAABiEQAAcQEAAAAfAAAuDwAArB8AABY1AABwAAAAswMAAOkzAADTMAAAqTEAALUlAABjDAAAViwAAMkYAAD4BwAAPzsAAAUxAABFNQAAtjcAAMsBAADfPAAAYSUAAHk9AACdHgAAXhcAAB0hAACREgAAQz4AAMI6AABvEAAA0QwAADcfAACiCwAAHhMAAJAAAABvLwAAmDkAAHkCAAC3HQAAiw4AAJMpAAAyIQAAVxoAAFoTAADODQAARiMAAIs0AAAiAwAA0DQAAOkbAABpLAAA/QUAAHw3AACmMAAAlR4AAD4ZAAB+HQAAXBIAAHY6AADdBgAAjyQAAIUwAAAGHAAADQsAAOcEAACBIQAAgxUAAFgEAABfHwAAHCcAAIYaAADsBgAAcDIAAJoNAACCGwAAgCkAAAsuAABgLgAAmx8AAIQDAADJPAAA6hoAAMsoAAAXIQAANzsAAJccAAC7OwAAAhYAAA83AACnGAAAbxMAAOgMAABFBAAA4i4AAB4zAADQLwAAqRYAAMIZAACtLgAAfzsAAJE3AAA/DgAAdyAAAGoVAAByBQAAfTMAAG8PAABmNQAAKicAAMgiAAAyAAAAZS0AAC44AAAAOwAAiyIAAK00AAAdIAAAZQoAAJgAAADoMAAALyQAAIwPAADOIQAAxwYAAKApAACSLgAASzkAAN4oAAD1EgAAnwEAACUZAADMDgAAqzcAAIYRAAAkGAAAST4AAIE0AAChKAAAoy8AAHwgAACWGgAAEQwAAFYDAACYPAAA4iwAAFg9AAAFEgAAZzIAAPIrAACwLgAAewoAAAEUAADMJgAAvjMAAMgLAACVPAAAxRgAAJk1AAAGIwAAvzoAAC4LAAC0MgAAGjcAABwxAAB1AgAACj0AAHQDAABTBwAAQgMAAOsGAAAJLwAA0zwAAAcTAACPNQAA9BIAALogAAD/AgAAkyoAABsEAAAoKwAALzQAAFM0AABdDAAAszsAADcVAACkKgAAxCUAADAxAACMCQAAQA8AANIFAAB9BwAAORYAAO08AAD5PQAA+AMAAO0rAABdKgAALRIAABgiAADKIQAAnDwAAOQKAAAtLgAAXQgAAJMQAAA6HwAARgMAAMUUAACMKgAAfhAAACEKAACsEgAArSkAAPsGAABTMQAAcCUAADUBAACoMAAAOyMAACElAAAHLQAAQBUAAEQjAAACHgAAQCEAAO0xAAA+HwAAySIAAJUAAAAnEAAA6A0AAPsEAADTIwAAJBUAALkyAAA1MwAA1wYAADIgAABeOQAAKA0AABMRAAC8IAAAVg8AAN0lAAB0LQAAoQMAANg1AABDOgAAgh0AALMPAAAlJQAAkS0AAKIuAABMIwAA8i8AAL0KAACKFQAAnTAAAFg0AADXCwAAJykAAEErAABpLwAAuwAAAGA0AABOMwAAVjAAAPEpAADFBgAA2jsAAFcyAAD6NwAA8RIAAK0TAACdDQAAcB0AAFkaAAC8IwAAoioAAHAEAACPCAAAyjEAAGQFAADMOAAABDgAANIkAAB7OgAAszcAAP8zAAAaLAAAiC8AAJ8cAADXNwAAkzoAAPAXAADyIQAABTkAAPkuAAB3EAAAZCcAAMMRAAB5HgAAET0AAAgQAAD4LgAAOzYAAE8HAAB6HwAAfw8AADE0AAAyDwAA2BgAACszAACgLQAApAUAADAhAACVHAAAzzAAAF47AAC1IAAAWxYAAKsWAABfMwAASwAAAFcmAADBBgAAfhYAAHowAABEAAAAiBwAAD8IAACRAAAAczkAAIsWAAAMOwAAWB8AACEHAAAqOgAAORgAAHQRAABjBgAAhywAAPMGAADHCgAAOxoAAJsIAAAZLQAAGSIAAFgeAAADOQAAZisAAPcyAADeEAAAhTYAABwwAABuMQAAgRcAAHwLAAAkMwAA4SIAAIw2AADzMwAAFzsAAFUdAABEGgAAvzgAAFAdAAAqLAAAqCoAALwkAABsKgAAUyAAAEY7AACdLwAA2yUAAI0HAABCIwAAYQMAAIIOAAB6LQAAECYAAL8rAABgNgAABQ0AAD4cAAA1HwAAVQkAAHA9AACdDAAAIikAAHYGAACrDgAANA0AAKgSAAAjPgAAcQwAAJUzAAC3LwAAuyAAAO4vAACeLQAA9CgAANISAABDEAAAJjAAAPcjAAD9DwAA4g4AAK0fAAASOwAA8AoAAHMXAACWMgAAfDAAABETAAA1NgAAsDUAAEExAACPBQAAZj0AAAMDAABSIwAAsREAACYPAACaKAAA2QUAABwlAABLHwAAlwkAAJcwAACJOgAAuh4AAPUFAACkAgAAiTAAADsiAADMMgAAnAMAAA4sAAA9JwAANhUAAJgzAAA6IAAArQ8AAJQDAAAgIwAAVwkAAP8dAABUBgAARBMAAMQIAAAvOQAA+xsAAPEiAABMBAAAyi0AADARAACqFwAAKy0AAMI4AACEOAAAphYAAFwsAAC0NAAAShkAAK8wAADDCAAA6AoAAHU7AABWLgAA9DkAAJILAAAMHgAAKDMAABgTAABUKQAA+TkAADAiAAB7BQAACjcAABYTAAAmJgAAwCQAAJomAABJIQAAbSgAALUTAADrOAAAbTEAAAMfAAAJJwAAdAAAAFYVAADFPAAAxgAAABAAAACBLgAAAwEAAIs9AABBBAAAYgMAAFoIAAA6PAAAPDQAADYNAAB1IgAAnRYAAKkLAADHHgAAggYAAGc7AAAnJQAAZCsAAJouAAAPAAAAeD4AACAZAADyNQAA9gIAAEIiAABYKwAAEzcAAKsrAACEDQAAjSoAAMcBAAA8IQAAOTsAAJkSAABfBAAAfCYAANkPAADROwAAOAIAAEgmAADgLwAAFQYAAC0vAAB9JAAAPz4AAMkzAAB1JwAABT4AAMMTAACADQAA5jUAADoIAAA7LQAAZA0AABArAADgNwAAcCAAAHA0AAD6KQAAWCAAAJQBAAAAKQAA+SgAAJk5AAAuFQAAvTQAAD0yAACWIAAAsBkAADEoAAADDwAATS0AAKYaAAA/GQAASAUAALsOAAAEOgAA8CgAAHIOAAB8IwAAPQ8AAEUlAAA8DAAAIB8AACAqAAD8BwAAYQUAAFMtAADcBwAA9wIAAK8OAADtJwAAuw0AAEodAACSIgAAOA8AAA8gAABiNQAACDcAAIwjAADpMgAAPzkAAEknAAANDQAAEwsAAJEdAACQKQAADDAAAAM3AACtIAAA1iMAALECAADzPAAAZx4AACIVAADUFwAAqwEAAP4IAAAJHgAAHToAALwdAACfKwAAYiMAAK4BAADdIAAARCEAALMNAAB5NAAADwQAAHwEAACCPQAAcCYAACknAADeLAAAVzkAAKsgAADkDAAA4gMAAJ08AADULwAA1TAAAB8CAADqNAAAUjIAAA0qAAAxJAAAriUAADgIAACNNQAA6xcAALEZAABaLQAAdBUAAFIdAAAeEQAAVBcAAGURAADmHwAA9yUAAAUlAACACgAAcjgAAMwYAAANBAAAHBYAAHkwAABeEAAA+hEAAEoJAABoFgAA1jQAAHoCAABMBwAAPRsAAMU3AACEKgAAcyAAAEE3AACbEgAABiwAAKMJAADDKwAAFgQAAD84AAA7FAAAIRsAAGASAAAhLgAA+CsAAJYKAADxCQAAAikAAI0rAAA5NAAAjzoAAJcOAAARDwAAtxcAALgkAAClPAAAXTgAAIkzAAC3AQAAqhYAACYUAADKFQAA7BsAAMcbAABxOwAAPCoAALkiAAAIAAAAcjQAALQMAAA/JwAAYxoAAFgYAAD7LwAAAzQAAC4NAAAvJgAAvwUAAOcRAAAMJAAA6wEAADU0AAANJAAAyTYAAM87AAAgAQAAqCgAAP8wAAC8LgAAFSwAALgyAABWDQAA6ioAAHglAABGJQAARSEAAEIRAACUJAAAMiMAAOg0AAC1LwAAqy0AAHgMAADnDgAAvzkAAHgIAACVGAAA+Q4AAKEnAAA6MwAA9w0AAI4AAAAZKwAAtC0AACw0AAAmHgAAlwsAAN4EAAB2BwAA7hsAADMcAAAGDwAAtCcAAB4hAAAjBAAAJQAAAB0zAAAMBAAAqAkAAPsDAADTHgAAlhkAANwrAAALBAAA4ikAANAiAABbOAAAGCQAAIAUAABzDgAAux0AAC4lAADQIQAAsAUAABYbAAAVPQAALz4AAJUoAACBBQAAoBsAAIYEAAC7NQAAGQMAANcsAADDJAAAQRUAANkYAAD9KwAA8wwAADwdAAAoOgAAeDMAAC8aAAAnDwAAigMAAPADAAD3FgAAiwMAAFgFAACeKAAA+hAAAJs3AAB0EAAAXjAAAEwdAACRHwAAACQAAF8SAACjJwAAchIAAL4dAADJCQAA9D0AAPgzAABiMAAAJgsAAMgjAACFNwAAfxkAAF0tAADNFQAAQAIAANwzAAC4IwAAYRcAAKAKAABnPgAAWBUAAD8GAACJHwAA6hUAAAcLAAAPKgAAACsAAA0aAAClNAAAFysAACcMAADyDgAAVygAAMMUAAAsDwAAvRYAAH8lAADwJgAAfy4AAJcSAADpIQAAMRgAAEgtAABoMgAAaAsAAFMAAACAOgAAjAQAAK8UAAByFQAAFRwAABYDAAB+IwAABwYAADY7AAAQLwAAKjwAAKAPAACiEAAAgSIAAKwAAACcIQAALxUAANoGAABaLgAAdzcAAAItAAAPJAAArQAAAOAIAAA5HQAAIAkAAC0RAAAANQAAoAUAAAEuAAAhEwAA2xwAAP0gAAD8CwAA6SkAAHovAADpAAAApCAAAHwXAAD4FAAA6iUAAJogAAALCwAApQcAANMyAAAKLgAAtgQAAOcFAAD0AwAAORsAAKw1AAASGgAAvCoAABMoAABkLwAAby0AABQHAAAQIAAAlQYAAPQQAACRBgAAECoAAMwvAACrGQAAMAEAAJIQAAANNwAAZhwAAMwlAABFHgAAaC8AALEMAABaHAAA8QsAAF8cAABROwAAyBEAAP8QAAC3LQAAWQMAAHcFAAD7OAAAbg0AANwZAADoKwAAoDwAALYnAADmFgAAzgAAAAkHAADmGwAAuzAAAIsjAADmOgAAhCgAADwXAABbLwAAbTsAAGYyAACKDAAAdi4AANswAABOHgAAYDwAAB0GAABBCAAA2hAAAPUEAACNBAAAQBoAALQ8AABxPAAAIQ4AAHo7AABHGgAA4TQAAFMuAADaNgAADRkAACsCAADpCAAA/hsAAOckAABEGwAAJRMAALwWAACCLgAAEigAABI5AADNFgAAMgMAAAcEAAAVEwAA/Q0AANojAACQKgAARS8AAIcgAACIPQAAjSUAACgJAADwAgAAojMAAAoeAAAJLAAACS0AAJUpAADAEAAAABwAAOo9AADIOwAA8gMAALouAABiMQAAUyEAAAstAAChNAAAwS4AAHspAACCCgAAuzkAALc9AAAgBAAAIwEAAHQqAAAJOgAADgYAAH8jAACYHAAARhUAAP0hAADdFAAAGDYAAF4IAACuEwAAVCYAAGwQAAAyKwAAcggAADcPAACXLQAAAxYAAKoLAACUHQAAfSwAAAguAAC2OQAAhQwAAN06AAC0BwAAaAEAAMssAABBNAAADhUAAEsVAACuBwAAHCwAAOMQAAD0CAAAaQ0AAI83AAD6BgAA4A8AAPkPAACINQAA/iAAAKcjAAA2MwAA5xgAAHwPAABQPQAADzMAAIkSAACqKQAA/TwAAMYVAAB5FwAALgoAABg3AABFPgAAMTUAAGguAAD5GgAA9xQAAPECAABnCQAAnzYAAAIvAAC8MwAA5RYAALcaAACNAwAAIRYAALsjAABmEwAA4yAAAMAxAAAjHwAAxyoAAKwMAADyGQAACgwAAK8iAAD5GAAA/h4AAK0NAABBFgAAZhcAAJgDAAABPAAANwEAAMUTAACvIQAAFxMAAPElAACZJwAAcw8AAF0WAAApDAAABBoAAFYdAAAqCAAAPRUAABEsAACbJQAADjgAAC4gAACENAAAnBgAAO0aAAAHDwAAbjoAAM8UAAA6EQAAgw8AAG42AACRPQAAyhEAABY0AABzJAAA6CMAAKMyAAA5NwAAgyIAACQ9AADRCQAAjR4AAMU5AAAmJQAADRgAAPgFAABeLwAA5g8AALAcAADPBgAAlgUAAIw1AAAbBgAAAysAAHsGAAC2AgAAWwEAAEgAAABxBgAADz4AAOs1AAA4HgAA7yUAAPkXAAAeCwAAKBgAACoZAADQPQAAKywAAO4wAAADMwAARBwAANQOAABvHgAABiEAAPQcAABIFwAAzA0AAJY1AACUHAAAnS0AAPo2AAC8GgAAejYAALMLAAB6KgAA8wMAALkLAACSPAAAlyoAAJwfAAAIJgAAqCwAAHE+AADmHQAAZhEAAMo1AACkOwAAhS0AAIMAAADxHAAAFzUAADoiAABVFAAAawkAALobAABoAwAA6Q0AANw4AAAcNwAAyTQAAF8kAAC7CgAA+zcAAHgPAADxDQAAwTkAAJM4AABXJQAAXj4AAPwxAAC6BwAAoQUAAB4WAABIKQAAjygAADwFAABKPQAARzMAAIYTAACMLgAAvhcAAH0CAAAqAQAA9jQAACoqAACOGwAA+gcAAKo2AADoLwAAwggAADAkAAAINgAACDQAAKgvAAB2JQAAcSQAAOY5AADiKgAAkwcAAJozAAB8GQAAHQEAAAY7AAAnFwAAgScAANE2AABWEgAAhA8AALElAABgJQAAMQYAAO0LAAAvKQAAPC4AAKYkAACKMgAAYDMAAF0JAABjBwAATwQAAKovAAAEHgAAijMAAP4nAADLLgAAqzkAAA4lAAC3CQAAoyAAAJofAADAOAAAtAYAALs4AAA1MgAA9jkAAFwiAADOLgAAMQAAAMABAAA5EAAAMSkAAOsfAAC3EAAAzx0AALkHAABRMgAASz4AAB82AACpFwAArhsAADwjAACjDgAALCAAAFYyAACeIQAAyzYAAGY3AABINQAATzgAAN4HAABiJwAAvQkAAI0aAADRHAAA7jUAAI4zAACFNAAAdQ8AABckAADKHgAAMiUAABccAAAQFQAA8T0AAGMRAABXHgAAjhUAAHopAAC4MQAALSEAAF4HAADKOwAAcyMAAIscAACFDQAAdRQAADkTAABWBgAAaiUAADgaAAAWCwAAXhwAABo6AADBHgAAKTYAAJgWAABxJQAA9BYAANMlAAAILAAADiEAAPYEAABEIgAAbxsAAEkuAACFGwAAvDsAAA0BAABADgAAAgAAAAo4AACPPQAARDgAAIM9AAB0MwAAOioAAKEXAACSIQAAYgIAADodAABFOwAAcCwAAB8eAADBJgAAFAAAALowAABLJgAAmCEAABo9AADwOgAASwUAAHwRAAA0BwAAmiIAAGkcAABOBwAAShYAAIA5AAClMQAAID4AAO8KAACqIQAAmDQAAGYAAAC3IQAAzisAAN4fAABRNwAAEgcAABEDAADzEQAAbQMAAFkOAAAfJgAAqBsAANoPAABeBQAAUgAAAOIBAAAFIwAAKSgAAEkfAAAbIAAA+hkAACsXAADEGwAAIzwAAEQsAAArPAAAUjcAAK8SAADKAwAAjwsAAF0kAACwDAAA+AAAAPI6AADkHQAA9CoAAOwPAABOFQAAGRMAAIUSAAAiDgAAKwQAAPgBAADIEwAAQQcAAEkyAABkDAAAeBgAAKAaAAAmBAAAOCAAAHknAADFOAAAtywAABIuAADWGgAANCIAAGsxAAA1GQAACCsAAFMBAACbFgAApAQAAP4iAABSDQAAyzMAAP0oAABrFAAACgoAAAAXAAADNQAA0RkAAEoTAACCAgAAwDUAACYoAABhGwAAliYAAJMsAABAMgAADgkAAIw4AACULQAAAA4AAIYrAAAyNgAAnyEAAC4oAAASKQAA9zYAAK03AAD/GgAAWj0AAGkXAAClEAAA6zoAADspAAAFJgAAPQEAANEkAAC3DQAABB0AAPUWAAAKNQAAFBYAADUDAAC2DAAAiwQAAIw5AAADLwAADiQAAJwsAAD+DgAAnDkAAAUZAAD7AQAAbi4AAOIeAACxHwAAvzwAAGwkAACuIgAA/iYAAGQ2AACtAwAA8xAAAKsSAADYBAAA1jkAAI0GAAA5AAAADA4AAIUKAAA+EAAAAioAAGomAADqDgAACwoAAHgsAABiAQAAkSgAACMsAABNBQAApxAAAHUYAAAFHgAA0BIAADo3AADCKwAALTwAAGwvAAA1DQAAph8AAII0AAD1JgAAewMAAAsJAACQCAAA1gMAAFkzAACzPAAAuwwAAGc9AAAUHQAAYjgAAI0gAAB2JwAAuzoAAE8mAAAJEgAAaREAAAETAADhHAAA6RYAANgsAAAuDAAAjAIAAMgWAAC5OAAAgzwAACUaAAAzNwAA8AAAABstAAC7EQAARA8AAIs7AAClBAAAXBQAAC0GAACLDwAAyS0AAAYMAAAfOgAAdC8AAEEhAACeEgAAuSUAACgEAACkNAAA3zYAALMCAAAgLwAAdQcAAAwKAADwEAAAwQoAABg7AAC4HAAA7wcAAMcwAAAsOwAAjAwAALU9AACAFQAASzoAAKoJAABpMAAABwUAADg1AAAjLgAAlicAAFI0AAALKAAAPTAAAE4aAAApCgAAmAwAAKcwAACyHwAAVAMAAEc2AABnAgAAYBUAAEwKAADEDwAA7yMAAGgKAACpCgAAzBMAAEowAACLCwAAGA8AAO8wAAAKMgAAUQgAAEwLAADbBwAAShgAAOY3AAClOQAA6yUAAA4RAABTLwAAdxEAADYmAADBDQAAZSYAAAc9AACPBAAAdi0AAKkPAAAsMQAA3jwAANg0AADTKgAAGT4AAOcBAABdAwAAXSYAAEY5AABNAAAAiQ0AAEA5AAD1CwAAwRYAALsCAAAwNAAAIwMAANQsAACNMAAAEDYAAPsIAABCLQAAAyIAAM0ZAACqDAAAhBgAAMkqAACOOAAAZy8AAD01AABoFAAA9zQAAJInAACHNwAAIhYAAPMJAACCDAAARDoAANARAAA3PQAAQSwAAMQ8AABsNwAALRgAAAwGAADzGQAAWCkAAK4QAABXCAAAVhEAAI4QAAD1OgAAVi0AAA0wAADxLQAAKT4AAGEcAABbIQAAKQkAABsuAAC1AwAALxgAADIQAACiDwAA5CcAADIKAADXAwAAyQQAAI8yAAAOIAAAsAQAACMaAABGKwAA0DoAAGgZAADQAwAAIiwAAFw4AABtEgAAEyoAABUrAAClFQAA6SAAAOgqAABnBgAAhhQAAIIwAAAsBQAAHxgAADMBAAAIAQAAUwQAANgSAABCCwAAiQsAAF8IAADcAwAAfBgAADUmAAAWAgAApBgAAFk0AAB5IAAAbxEAABIbAADBMwAAMhQAAEstAAC6JwAAYh4AANYpAAC5AQAA7QYAAIEIAAAkJwAAOQEAAAwRAADDEAAAazcAAE8IAACKCQAA0gAAAOcCAADtMAAAvTYAABMBAAA+OAAAqyYAAKoKAAASPAAAcRsAACEFAABZGwAApB0AAIw3AABrDQAAfxgAAEc9AACDHAAA7DMAAIgJAAAkNwAAyw8AAIIqAAALHQAAkgEAAIkQAACQLwAACBIAAG0KAABMHgAA9DEAAFUNAAC+IgAAJzAAAL0lAAAEKgAAgQQAABkbAAD+HAAAJQwAADsDAAAZNwAAzi8AAEsMAAC9IwAAHgUAAA84AAAmKgAA1zMAACwIAABXCgAAygEAABUvAADeJQAAXyMAAEUfAACINgAAASUAAMUoAADMCgAAuQQAACwOAACQEQAAHQUAAFokAABnDwAAJCkAAPkrAACCPAAApDcAANcwAAAeLgAAbhMAAIMoAADzNQAASwcAAJg4AACVKgAAIi4AAKY9AABfKwAAIA4AANUDAADEBwAAIgsAAGI3AAArMAAAQQ4AAF82AAAaJAAApB4AAJcDAACdEAAAxCsAALkoAADxBAAA2gUAAHIGAAB8CAAAqjgAAJoDAACeMQAAYTwAAHMMAAAYFAAAFCEAAHcZAAB5KAAA1gwAADg3AACFHQAATykAAD8pAAD4NQAAAi4AAG00AAB3FAAAWSoAAPMjAAB3AwAAvh4AAB8ZAADPJwAAVxAAABYBAACrDAAAXxsAALQiAABEGAAAlSEAAEQ9AAAfFAAAkycAAF83AAAhMgAAwAkAAA8xAADlHAAArA4AAAUkAABCJwAAPzcAALUYAAABOgAAuhYAAFgkAAAqEgAAQB8AAGozAABQKQAA9S4AAIsIAAAxIAAAPxwAAMcvAADvEAAAVRAAABAuAAA/DAAAWAAAAJgNAADLAwAAniUAAKInAAAIPgAAzgQAAJEEAADMHAAA2g4AAKgRAADIHgAASxoAANYAAAD7HgAAsi4AAIwxAACQMgAAfwMAAHYjAAClMwAAyjQAADkjAADNDAAAwS8AAH8qAAAJKgAAoB8AAHEXAABeOgAAyQUAAEk3AABnJgAADw4AADgbAABGLQAA1yYAAFYhAABlKQAA3QoAAPstAABSOwAAaD4AAFsPAAB6KwAAjAUAAHsOAABNJgAAUjoAAGEjAABAAwAASwsAADE5AAD+DQAAhToAAFgnAADLHQAAQTsAACUrAAB2CwAAlikAABcBAACvFgAAuzMAAG0WAAArGwAA2xoAALguAAA/LgAAzyIAAMMMAABSPgAAljYAAMoAAABDCQAAmy4AAI4FAACzBQAA0QoAAAYgAAD3MwAA1BkAADsTAADoEwAAjgIAAEsKAACBAAAA0RQAABY+AAAVAgAAmzgAAEgOAADqAAAAgSMAAP8fAADzHgAAzg8AACgLAAAzAwAANzUAAMEfAAA2JAAA7x8AANEAAABrEwAAKhcAAE8UAAAQNwAABBIAAJYjAAAgEQAArzQAANQNAACdMQAATCgAAMMdAAC9EAAAxTMAAK8MAAB1KwAAKjAAABwGAAAjIgAAngoAADYRAACpHwAAugsAAHw0AACEHgAAPi8AAPMnAABCMAAAnC0AALcCAACoGQAAKzUAAJUmAABeCgAAghcAAC0DAABBAgAAXxYAABE+AACmLgAAXRAAALktAAC/HwAAxhwAAKY4AAATBQAANgwAAOMWAAC9HwAAlwEAAEUtAAAABgAA6xUAAKMRAABNMQAAkTsAANQ0AAAWMgAAAyMAAFsgAADeLgAAYx0AAPghAAA8KAAAaToAAKkBAADUFgAA/C8AALUZAACfEQAACwcAABYiAABGKQAAIA8AALU6AADKNwAAEDEAAFcqAAD+FgAA+AgAABIgAABTGgAAJSQAAKM5AAAQMgAAZgIAANAnAAAYGQAA9woAAMIFAAA5GQAAYwAAANcbAABOPAAAnA8AALENAABxBwAA5RkAAIYGAABmMQAArTsAAAE3AADFJgAAqDsAAIA1AADOGAAAUgkAAAoBAABdPgAA3wgAAMAYAAAWOQAAURIAAP4vAAD2DAAA+zUAALwDAABjLAAAxikAAGAyAACdCQAAyRsAABEmAAAEAAAAgB4AAAA+AADZCQAAKQAAAEYzAACVGQAAjS4AAGEyAADdIQAArwYAAJAKAAAjHAAAHhcAAHYCAADYFAAAujwAAJA6AAA7BAAAtxMAAG81AADKMwAANxcAAFM5AADcIAAA4hoAAEcNAAAFFgAAZT0AAGsWAACWFAAAiSkAAFQcAAB0DgAAkzcAALwhAABNGQAAIicAAJAOAADXIQAA3jkAAA07AACRDQAAZDsAAF01AAAtDAAAWxEAAKcLAABoBAAAiwwAALQmAACtCQAAtzgAACQbAABcBgAA+ToAAGcSAAAuNQAAzBYAALoQAACOIAAAvQ8AAPQKAAAZHwAACQ0AAKMEAAB2FgAA7BgAADUAAAA1PQAA0DEAAMERAAD0IgAAMzIAAHYkAAB0MQAAKC4AAL4lAACbFQAA4wgAAFwhAAChMwAA5RcAALcLAAA8KQAA+x0AADMQAADCNwAA+CYAALoOAAAtPQAAARsAADM8AAA7IAAAmDoAAFoqAADONwAAPSMAAIMlAAB5AAAAMy4AAB4mAAAyPAAAGBYAAPoSAACpNwAAsCYAAJ0GAAClKAAA5AIAAE80AAAMAgAAsisAAHIHAACaHQAA3hsAACYdAAB1MgAAeAQAAOEOAAC3NQAAZCEAAHkJAACKMQAAISAAAM4JAABqNAAAdSwAAHQyAACJIQAA4hQAAN0EAADlGAAAFBEAAAE7AAB0KQAAmj0AAJQvAAAcKAAA/RgAAE0cAACgDAAAeCYAAHUKAADUMQAAXTAAAOsgAACIOQAAMzMAAAAxAADWJAAAHggAAHg5AADvMwAAdw0AAOMaAACiPQAAfAkAAOILAAA7NQAA3wsAAGQQAABOLwAAnwMAACspAACoNwAAziMAAC0lAACvCQAAVC8AAJcEAADgAgAAfBIAAEA0AADDLwAAchcAAL4fAAA3HAAAMz4AALgAAADaPAAAtQEAAIcxAABmLQAArTIAAJEyAADeOgAA4yMAABweAABTDQAAQSUAAEoRAADaHQAAySYAAMkTAABXHQAATygAADQ5AABLCAAAKh8AAD8vAADyHAAAty4AAFAYAAAbJAAANTUAAMoCAACZBwAAVggAAA80AACCFQAAFCMAAGcYAACkBgAAKRMAAGMJAACrMgAAhTUAAKsRAACtHgAAlykAANYOAAA7LwAAizIAAFUiAAD7GgAAGwIAAA48AADDKAAAyhcAABAOAAC/AAAAYzkAACk7AAAdNAAAzSEAABY4AABZOQAA1zIAALMbAAB/IQAA4QoAADQZAADfBwAAdycAADwBAADuJwAATyUAAOISAADiIQAAYQwAAJ87AACOCgAAUQYAAAIOAABgEwAA3TUAAGYQAADSOQAATTsAAF0yAADzGgAAzSsAAFw6AAB3DgAAdQgAAJQgAADDFgAACgcAAAQQAACfDAAAiykAAC0ZAAC4AwAA8DgAAF8OAAAkIgAAqQMAABYGAAD5HwAAqA8AAO8gAADjGAAA3BQAANQjAADIEgAAgAEAALIqAABmJgAAAjgAAEIQAAA9EAAAriEAAN47AACFCQAAtCoAAIM4AACrNgAAYyAAAKgLAADUBQAAChUAAPgCAACVOwAAIQwAAIMCAABmGgAAvDQAAOAMAADdOQAAjBIAALQcAABrDwAAbSIAAPkxAAD/IQAAKRsAAG8SAABkHwAAeyIAAOc8AAC5LwAAIjsAADcdAAANKAAAyQYAAN4zAACxIQAA+gAAADQCAAA4EQAAviYAAOIAAAAtHwAAAxQAAJ8wAACFLgAA1yoAAOEaAAAeIAAA6yYAAIg3AAA0LwAA9TsAANQGAAB6IwAAUiUAAPEuAAB0GwAA2DIAAOIKAADWDQAAyyAAABkVAADQFQAAczcAAF0RAAC8CQAAKQIAALgHAAC9EQAALQcAANAcAAC2NgAAGDkAABE0AADwBAAABw0AAJASAABHEgAAVSAAAIQJAAC+DAAAwjUAAIQEAAAwBgAA8BoAABQoAAAiHwAAgiYAAGMyAADxMQAAYwgAABEjAABKJAAALRQAAJELAADoEgAAoCsAABIfAABdAAAAVR4AAC4uAADuMgAADAAAAOYeAACZIgAAthkAAEoIAAAHMgAAYzoAADkFAACVNQAAeBAAAL8tAABfKAAAXA0AAIMSAAAHNQAAVhwAAK0CAABdGAAAbjUAADAJAAA/IQAASjsAADsrAADDLgAAiyAAAAA9AAAwJgAA8DIAAGAwAADRPAAAtDEAAAcdAADSLQAA5DYAAPAJAABDGQAABgEAAM0QAACjFQAALQAAAIcHAACoKwAA4TYAAAAiAAATKQAAwiIAAAw9AACuOwAAjSwAAOcGAAA+EQAAMh8AAJ8nAAB6DQAAFTUAAIoXAAAnGwAAzSgAAN4xAAD2EQAAnw4AAD4FAAAdEwAAJSYAAC4QAACtLwAASA0AAOM9AAA7JgAA6R4AACQqAABzBwAArAsAADcqAACEOgAAGwcAAA4wAAD4NAAAiRkAAKMqAACvJwAAGTMAAO0HAADsOgAAQCsAAH83AADYNwAA3A0AACc3AABLOAAASSAAAOI9AAAXFQAAgwEAAFkPAAAVJgAAfzoAAPUwAADABAAAyCQAAEIqAAAYPQAAzA8AAPIyAAAAAwAAxAIAANw3AABFLgAAPDYAAAQ1AACeAAAAuRAAAOoRAAAQAwAAXDYAANUGAABpJwAApiwAAAEOAABLPQAA9C4AAKszAACwCgAAdToAAOkEAAAjFAAA8h4AAJoeAACyLQAAgzYAAOszAAAzEwAAbw0AALcSAAByDwAAGhoAAD8qAACEMgAAVgwAAMYWAAD0HgAAcAkAABcRAACbHAAAFCoAAIosAAAsEwAAYgcAAHo5AAAxLQAAnSIAAGMLAABOJAAADwcAAModAAAaIwAAXBcAANcJAAAbDAAAUwkAADcAAABvAgAAnQUAAPwiAAAtKQAAPiUAAM84AAAaEAAA8A0AAIk4AADWCQAA6i4AAIExAADlDQAAwBYAALkKAAAPKAAA9jMAAJAGAABSLgAAiBcAALEuAACYCwAAbi0AAHoOAAAGJQAArQgAAAskAAB3OwAAIhQAAO0AAAAIFgAAdQMAAO4pAACANAAALAMAAA4eAAAtHgAASyUAAK0XAABSHAAAAgIAAAExAABCPQAAMxcAABErAAAMFAAANRIAADgNAAA3NAAAJhkAAIUrAADqPAAAdgkAAMEqAABHIQAAyDUAALoMAADgHwAAjg8AAHQnAACfDQAAEjYAABUPAAAwBwAAvxoAANsCAABUFQAA7jEAAHwaAADZJQAAMx4AAFE1AAAEHAAAIDAAAKgKAAAPBQAAmjkAAGgpAACrCQAA+jUAAGccAAAHGQAAPgoAAKwmAAAZJgAAkDcAAF4lAAAgGwAA8ikAAHUvAABUGgAAtAMAADwaAABJMAAALwcAAIYnAABDFAAAZwEAADUXAADAAAAAPiQAAL0MAAChPAAAhyYAAJ81AADsJwAAqywAAIkHAAB2FwAAjiUAAN0wAAC0LwAAyikAAFoyAAAIDAAATTUAAEEFAABzOgAA4DIAAOYFAADEAQAAiSsAANAmAADSKAAALRAAAHcdAAAKKQAA/RcAAHcrAAA/MgAApwMAAOYUAAClEgAALQoAAJIwAAAFPAAALCgAAC87AADFOwAA2RMAAKcRAAAtOAAARC4AAOUfAABfOQAAaBoAAKwsAABYLQAAxzUAAMAjAAAqDgAAxz0AAJY7AACsAgAAWScAAAMIAABSGgAAizUAAOs0AABQKgAAzCkAAAIEAAD2KAAAggAAAJkpAAAgEwAAiQYAAOUsAABuJQAAXzIAADcWAACxMQAAGCgAAIUlAADbNQAAsjsAAGUSAABOIwAA+QQAALg5AABcHgAABjoAAC8NAACaIwAAmB0AAOgbAAACOgAApxoAANkaAAAgJQAA/jIAAJoTAADEKQAA8C8AAAEzAACDGgAAoR8AAHMiAAC7LgAA4DgAAE09AAC+AwAAnhkAAAorAADRAgAAiygAALIPAADOMgAA+jAAALATAAAyDQAAXBMAANofAAB8CgAAOhsAAIEGAABWBQAARw4AAB0pAACmPAAAxDMAAAMqAADbFgAA+xwAABsXAABEJgAA9zwAAGAdAAAjIQAAGAMAAEIdAADhDAAAqzwAAPwqAAAyIgAApBIAAOMPAADAHAAAgxMAAG0CAADMFAAAMDAAADkHAABdKAAA9gMAALUmAAAKDwAAJz4AAB0uAAAAFAAASDgAALciAABLNAAA1BIAAPYxAAAMNwAAaDUAAOYvAAAKPgAARDsAAMkfAACyJQAAXR0AAE40AACxEgAAIBcAAMgxAADNCgAAgRwAAJUgAADsHwAAVAcAADg+AADvHAAAKR0AABM2AAB7KgAAuB4AAJkkAADfJQAAIyMAANUWAADfCgAACigAAEgqAAC+CwAA+iAAAE02AAATDAAAoCcAAE4tAABfEwAAkRYAAIcjAAASLAAASgwAABglAABnFwAAwA0AAM0UAADaLQAArjUAAAUQAAAIMAAA7w0AAOQrAAA/JgAAQAQAAPMbAADYJgAATScAAOk4AACjNgAA9RkAAEkqAAAMKwAAoigAADUYAABPGAAAVSsAAJciAADEFAAAETIAAGIZAACiAgAAkioAAMgpAABLLAAAIxIAABMJAAD8IwAAADQAAEwgAACpFAAAVgcAABwVAADMAAAAFyIAALEVAAAcJgAAwDQAAEIWAACkEwAAmjUAACIyAACePQAA7SkAAH4SAABlEAAALjcAAAMwAAAbOwAAKhEAAIUHAADKDgAAijYAADQIAAAcAwAA0DMAAGA6AAByEAAA5zEAAFIkAABaLwAAdS0AAO8YAACSJQAADCAAAKINAAAIHwAArCMAAA4CAAC0OQAA/ioAAGcQAACbKQAAlDsAAN8wAAD1OQAAqycAAIQwAAAGDgAAsAIAAG0MAAAVCAAAsxIAADUIAABYPgAAJzwAAAceAACXLwAAqRAAACsvAAAsGwAAdT4AAMIuAADsKwAA6jMAADs+AACwIAAA/S8AAMcMAAAsBAAArxsAAIskAACwNgAAKjMAABwEAAAZAAAAvDoAAJsxAADDFwAAcToAANguAAB9GgAAyzgAAC0jAACnMgAAhQAAAOk5AADLBwAAqgQAADMMAABcBQAAkisAAJIAAADQCQAA4DkAANccAAAsOAAAJBMAANILAAB9GAAAmRcAANQrAAB5FQAAthAAAEAXAADHBQAAegAAAEcPAADtBQAAQhcAAO8bAABwBwAA0xoAAJADAACcKwAAfw0AAEAjAACqDQAAVxEAAJYfAADHGgAAAxsAANICAABeFgAAegoAAAAwAAB4HgAAmwAAAKM6AACFDwAAOwsAANcIAAACDwAAlzkAAFMsAADmLQAAFgkAADgJAACJLwAAUSgAAL4jAABPHwAA3B0AADYvAADrDgAAGSMAAJYxAABrNAAApB8AALsxAAAbCAAAThwAAMESAAARHgAA9y8AALwEAAARGAAAwBkAAKEhAAATJQAANQ8AAP4lAABfPQAAwR0AACQUAAAdPQAAohcAADEWAAA7HAAA/AkAAPkMAAABIwAAAjkAABoHAAAONgAAxjAAAMAwAADAEwAAjy0AAHoMAAA7FwAAOCgAAMYtAABYHQAAuBUAAH0cAACzLwAAdQ4AAFcMAAAHJQAAlRIAAB0VAADWFwAAij0AAEgeAACNFgAAvCIAALkkAABJOgAAoQ4AAEkXAAAOFwAAPgYAALUpAAAyLwAAxQ0AAPklAABrHwAAKSEAAMUSAADHHAAAqAMAAD8dAACPPAAAdyYAAD0pAAAjJAAAjT0AAFE9AADzMQAAbiQAAAAzAABCNwAA4TkAAEMAAABIIwAAui0AALU2AACpKAAA5gsAAFUpAADNEQAA9CUAAPsjAAAlHwAAeBIAAPkZAACHMwAA6hMAAHkKAADCGAAANwMAANIIAADwJAAAMQEAAEYIAAB4KgAAeAUAAAcoAADxEQAA2i8AAGEfAAAjBgAA3zsAAEoQAABtMAAAnhQAAEolAADSAQAAuDcAAI0LAACoPAAAqSMAAGwsAACgCQAA3SMAAMYgAACgLAAA6xwAACgHAAA5KwAA+hcAABgRAAAaFQAAmgoAALsUAAC+EAAAnzIAAGojAACjBwAAdggAAAwIAAAMDAAAGxsAAPcrAADbAQAACRsAAEwSAAC9IgAA3Q8AAC0wAAB1EgAA5ygAAKw3AAAkFwAAGw8AAH0lAAB6EwAA8jAAAFoDAABSOAAAIREAALg9AAAlOAAAQgwAAMcNAACQGAAALjIAAKIjAAB7DAAABRsAAO0vAAB1MQAAZycAAPknAABLHgAAZAMAAFg1AAD5LwAAGgEAACA1AADeDgAAnDYAAPkQAACdJgAATAMAAMQaAABNLwAA6goAALoqAABoLAAAHjcAAHU2AABiKQAAcQ4AAGo+AAAFMgAAFBMAABgrAAAaCAAA8AgAABUXAAC2BgAArCcAAAgqAACBKQAASiEAAG0rAACnGwAAiw0AAFkAAABcPAAAnQEAAEcxAAB+GwAAQSIAAA8BAACrFwAAXzUAANATAAB2KQAAhAUAAB81AADyGAAAlycAAFc8AACgMwAASQUAAJsLAADjIQAA5jYAACcmAACkDwAAoiQAAAgvAAAmEQAAKDIAAFUqAADxIAAA1BQAAHwFAACkMQAAqhgAAOEJAAA2AQAAqAEAAIgjAADmFwAAWzQAAAEQAACRAQAAuiIAAG0yAACiGgAAMiwAAJ8AAAD2JwAAPQcAAIg6AABONQAADjIAAIEPAADsLAAAdjgAAGo3AAC7JQAATxEAAHITAACHPAAA3h4AABwqAAACCQAAji0AACYkAAAiPQAAkzUAAOM4AAAXJwAAjCUAAK8tAABmOQAAhSYAADEjAADTEAAAdzkAAJI5AAAXKQAA+xQAAAYRAABkAAAAkSwAACwqAAD2KwAA9xIAACQtAADFKgAARDEAAAs2AACwOAAAhh8AAAYGAACRDwAAhxkAAIwdAABdAQAAzTIAAAQyAADSIAAAZgwAAEIcAAB2GgAAgCAAAL4CAABUNgAAzDMAABwXAADlHQAAOC8AAL0LAADGEgAADhgAANkjAADVHAAA0SAAAKM3AADqAgAAFSQAADE7AABqAwAA8RAAAKw8AADsMgAA7AEAAO4NAACaOwAATQsAAK4GAAAXIAAArg4AABw7AAAwPgAAwwMAAMwdAABPFwAAwhoAAGMBAADJIAAAnCoAANYSAADDMAAA6RcAAF0nAACZJQAABxEAAE0OAAAWNwAA1iAAAM8aAABVHwAAdRoAACgWAAAuKwAAxB8AAGkBAADwMAAAvhQAAJ80AACzAAAAzzcAAEwGAACMCwAAvScAAIMIAAD0MAAAxSkAAMUnAADuGgAAAR0AAIoEAABcKAAAFAYAABwtAACnHAAAAwoAAJcjAADjKgAApRcAAMYXAAD1DAAAhjwAAM80AADGEAAAASgAAJwMAAAOGgAA/jEAABEGAAC1OwAAagsAALIQAAA4HAAAfQwAAC4aAAA8FAAAnCMAAA==\"},\"shape\":[10000],\"dtype\":\"int32\",\"order\":\"little\"}],[\"Ea\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"FK5H4Tqjt0DXo3A9Spa6QArXo3B99bpAzczMzAy0t0ApXI/Ctc+2QI/C9Shc0rhApHA9Cpc9t0AAAAAAQF64QB+F61E4DrlArkfhehRWuEDsUbgexU65QNejcD0KH7lAXI/C9agyuECF61G4XoK4QKRwPQoXg7RAj8L1KBxat0BSuB6F6yO3QClcj8I1u7ZAKVyPwnXauUBcj8L16PW7QIXrUbje47lA4XoUrgfptUDhehSuB3i1QLgehetR4LhAZmZmZiYkuUAUrkfhOjO4QMP1KFzPNrdA9ihcj8K1tkAK16NwvYO3QD0K16Owk7lAcT0K12N0tUAAAAAAwKK1QFK4HoXr1bdAcT0K1yOtt0C4HoXr0QC4QAAAAAAAOLZAj8L1KByIt0BSuB6Fqyy4QKRwPQoXQ71APQrXo7BJt0AUrkfh+lqzQHsUrkdhJLhAzczMzMytt0D2KFyPgmi3QKRwPQoXtrdAhetRuF7etkAK16Nw/Rq2QNejcD1KtbhAmpmZmdnYtkA9Ctej8Au4QM3MzMzMTrZAcT0K1yPFuEAUrkfh+p23QFyPwvWorLZAPQrXozAKtECkcD0Kl3S4QJqZmZkZmbZAAAAAAIBtu0CPwvUo3Pe5QMP1KFwPBrZAmpmZmZlFtUCamZmZGXe3QClcj8I1NLZAmpmZmdkYukDNzMzMDGu4QJqZmZnZQrhAMzMzMzPCuEAK16Nw/WW3QKRwPQqXHLZAZmZmZmaWs0DNzMzMTKu3QNejcD3KWbdA4XoUrgcVtkCPwvUoHMu4QJqZmZmZWrhAuB6F69G0tEAzMzMzMxO3QOF6FK6HFLlAexSuR2FhtkA9CtejsDy1QJqZmZmZ3LhA9ihcjwIBuECamZmZ2cKzQGZmZmbmSLhAAAAAAAD2t0AAAAAAgNW3QOF6FK7Hu7VAzczMzAxOt0DNzMzMTF63QK5H4XoUQrhACtejcD3Et0D2KFyPQuO1QArXo3B9w7dAw/UoXM+tuED2KFyPQpO4QOxRuB7FmbhAUrgehWteuEApXI/CtSW5QKRwPQrXbrhAAAAAAECAuECPwvUo3I23QHE9CtdjyrpAMzMzM3OutkBmZmZm5ni4QFK4HoUrPLhA16NwPYrRuUDhehSuBxqzQI/C9SgcdrdAUrgehWvLuEA9Ctej8H+2QK5H4XqUsbhAUrgehSvntUAzMzMzsza1QIXrUbje/rhAUrgehevEt0DNzMzMzNS2QFK4HoVrR7dAFK5H4fpKukAUrkfhOi+4QEjhehTuGbZArkfhetR8uUBSuB6Fq765QPYoXI8CBbdAj8L1KJwruECkcD0Kl463QFyPwvUotbdA16NwPQpKuECPwvUonIy6QHE9Ctfj5LdAcT0K12Mat0BxPQrXI1K5QNejcD0K87ZAH4XrUfjmtkBSuB6Fa5q4QPYoXI/CFLZAUrgehWv9t0A9CtejMJW3QKRwPQpXHblAMzMzMzMSt0DsUbgeRWW2QDMzMzNzTrhAXI/C9WiVtECuR+F6lHe2QHE9Ctfj3rdAMzMzMzNmtUBxPQrXo4S4QClcj8L1trlAH4XrUTjWt0CF61G4XqK3QFyPwvVogbZAKVyPwvU3tkAfhetROAS3QLgehevRPrhAmpmZmZnbuEDXo3A9yrC4QI/C9Sgc37dAMzMzM7PZuUAfhetROEO0QKRwPQoXdrVArkfhelQMuECamZmZmYy3QBSuR+G6yLVAKVyPwjXXuEBI4XoUrvO0QOxRuB5FRbZAKVyPwvWxt0BmZmZmpmW5QDMzMzOztrZAPQrXo/AsuECamZmZmR62QFyPwvVol7hArkfhelSxt0AzMzMzc+O2QK5H4XqUvbdACtejcL2Uu0AfhetROEm4QFK4HoUrDLdAmpmZmRm3tkBmZmZmZtq5QFyPwvXo67dAKVyPwvV6t0DXo3A9Csi3QI/C9SiclLZA16NwPYp6tkCamZmZ2RG4QB+F61G4b7dAH4XrUTjquUApXI/CNeu4QI/C9SicP7lAXI/C9agotkDhehSuxyC4QFyPwvUo3LZA7FG4HoW6tEDXo3A9inO9QJqZmZnZpLNA16NwPUr4uUApXI/C9Tm1QGZmZmamf7ZAH4XrUTh1uEAAAAAAQCq2QArXo3D9QbxAPQrXo7DFt0C4HoXrUce2QPYoXI/CbLlAUrgehWvwukC4HoXrERm4QB+F61F4gLZAj8L1KFw7t0CPwvUoHGa3QKRwPQpXVblA7FG4HkWpt0CkcD0Kl5O4QM3MzMzMmLdASOF6FC5puUCF61G4Hiy8QI/C9ShcqLhAAAAAAIDnt0B7FK5H4We1QAAAAAAA2bZAFK5H4XrqtkBcj8L1aAm8QM3MzMzMZrdACtejcD1St0AUrkfh+p+4QAAAAADAMrZAhetRuJ51ukCamZmZma62QPYoXI9C7rdA7FG4HsUku0CuR+F6FKO2QNejcD2KT7dAZmZmZqY3uEC4HoXrUbS2QFyPwvXoSbdAuB6F6xHSt0AUrkfhepC5QNejcD0KlrdAzczMzMxLtkBxPQrXo0+7QD0K16Pw4LhAMzMzM/Pqt0D2KFyPAsm4QAAAAAAAjLZAMzMzM7MhuUB7FK5H4UC2QFyPwvXoPrVAKVyPwvVWtkAzMzMzswy3QDMzMzMzm7pAuB6F65EOt0AAAAAAgIm2QHE9Ctejt7ZAuB6F65HCt0DsUbgexWm3QClcj8K13LZA7FG4HgXxuUBSuB6F67K7QBSuR+H6drhAAAAAAAD4tkCkcD0KF/iyQB+F61H4S7lArkfhepTHuUB7FK5HoSi4QMP1KFyPVrdAKVyPwrUCuUCuR+F61Nu4QEjhehTuFLlACtejcP00tUBmZmZm5hm3QNejcD0KHbZAUrgehWvqt0AzMzMzs1K5QKRwPQoXx7lAhetRuB4fuUB7FK5HoS+4QHE9CtcjM7dAmpmZmRllt0DNzMzMzPC3QIXrUbjev7dAj8L1KBy+ukDD9ShcjxK5QGZmZmam7LZA7FG4HoWWs0BxPQrXo1C3QB+F61G4c7dACtejcH2nuEDXo3A9in62QKRwPQoXNrZAzczMzEwIt0CkcD0KVxC4QPYoXI8COrVASOF6FC6/t0CF61G4Xpq3QM3MzMwMFbdArkfhelROt0DXo3A9yle4QFyPwvWoyLZAcT0K1+PEuEAAAAAAgMm4QKRwPQoX27hA7FG4HkV/tkBmZmZmZpm1QClcj8K1qLdAKVyPwrWUu0CuR+F61EO3QKRwPQqX87ZA9ihcjwJcuEA9CtejMAS3QPYoXI/CY7hArkfhetSQt0DXo3A9Cpy3QIXrUbieALhAuB6F6xGQuECkcD0KV1a2QM3MzMyMcbZAexSuR6H2uEDD9Shcj964QMP1KFxPzLhA7FG4HgX6t0DhehSuhzK6QBSuR+H6hbVAuB6F61EkuEBcj8L16E+2QLgeheuRsLdApHA9ChcfuEA9CtejsGS2QAAAAABA7rdAhetRuJ6Vt0AfhetReCO7QIXrUbheDrZAKVyPwrXLuEBI4XoU7rW3QI/C9ShcQLdArkfhelRAuUDD9Shcj9W5QBSuR+H6YrhAXI/C9ShFtkCkcD0K13e2QPYoXI/CVLtACtejcD3xtkAAAAAAgB+3QDMzMzNzsLdASOF6FO5FuEBcj8L1aLu4QDMzMzNzK7lAMzMzMzPft0Bcj8L1aB+8QIXrUbge5rdACtejcH1Et0ApXI/CdU23QNejcD1K87NAexSuR6Hrt0DsUbgehde3QOF6FK4HzrpAcT0K16OstkBcj8L1qCe4QOxRuB4FyLZAzczMzMxcuEBmZmZmpja3QLgehesRXrdASOF6FC5SuEAAAAAAgAi4QAAAAADA77VA16NwPYo4tUDNzMzMzMe1QMP1KFxPirhArkfhehSiuUBSuB6FK7S6QAAAAACA17ZASOF6FG54t0BI4XoULoi2QD0K16Mw7rZAexSuR6HOtkCuR+F6VBi3QI/C9Sjc4bZAKVyPwrVAt0BxPQrXo3W3QHsUrkehtrhASOF6FG5IuEBmZmZmptu4QI/C9SjcbbhArkfhelS7vEBSuB6Fq263QBSuR+G6trlArkfhepStukCuR+F61P+7QB+F61H41LdAKVyPwrVYtkDsUbgexQ66QD0K16PwVbhAPQrXo7CxtUCuR+F6VJ22QI/C9SjchrhAH4XrUXg+tkBSuB6FqxS2QK5H4XpUibhAj8L1KJx6tUAK16NwfXK3QMP1KFzPGrVAMzMzM3PYtkB7FK5H4Q+2QGZmZmYmybhA9ihcj4JKukCamZmZ2WC4QKRwPQpXJrVA4XoUrsczuED2KFyPwri3QLgehesR8LZAzczMzAyJuUBI4XoUbg64QHE9CtcjuLlAcT0K1+Nlt0Bcj8L1KPy2QIXrUbgenrdA9ihcj0JTuUD2KFyPAgu4QMP1KFwPRrpAKVyPwvVAtEAUrkfheo62QD0K16Nwj7dAFK5H4XqBuECuR+F6FMu4QOxRuB4F3rZAcT0K16MNtkCkcD0Klyy6QAAAAAAAqLdAcT0K12PVtUC4HoXrUYq2QBSuR+G61LhA9ihcjwIbuEBmZmZmpku3QHE9CtcjyLZAj8L1KBwst0CPwvUoHO63QHsUrkdhZrhAPQrXozBgt0A9CtejMLC4QFK4HoXrxbdA7FG4HsWzt0BxPQrXI2G2QFK4HoVrurVAmpmZmRkJukDhehSuB3e3QFyPwvUomrdAcT0K12Ndt0DNzMzMTJm3QGZmZmZmzLRAXI/C9SgPuUBSuB6FaxC5QB+F61H4x7dAKVyPwjXLuEA9CtejMGy4QArXo3D9CLpAMzMzMzPpt0CamZmZ2fG2QD0K16OwYLdAj8L1KNzYtUC4HoXrEXS1QHsUrkchmbdAXI/C9SjstECkcD0Klzq3QBSuR+F6ibhAFK5H4XrUtkBI4XoUblu3QOF6FK4H2LlA7FG4HoWQtkDNzMzMDBW2QClcj8K1wrdAUrgehaspuEAAAAAAQPO4QPYoXI/CFbhAZmZmZuYEtUCkcD0K16m2QK5H4XrUPblA16NwPQq0t0CkcD0K1wuzQGZmZmZmrLRAUrgehevXt0CuR+F61BC0QB+F61H4crZAAAAAAMAkt0AzMzMzs+65QIXrUbheTrZAPQrXo/DntUBcj8L16Fe3QOxRuB6FXLZAKVyPwjVZtkBxPQrXo/C2QAAAAADABrdACtejcP10uEB7FK5HYWa5QD0K16Nw97RAXI/C9eintkCF61G4Hru5QM3MzMwMybdA9ihcj8LmtkCkcD0Kl++0QAAAAAAAErdACtejcD2Wt0DXo3A9Sj+4QDMzMzMzerRAAAAAAABPukDNzMzMTKG5QMP1KFwPpbVAw/UoXI9puUDD9Shcz6+4QLgehesRvLdAUrgehStFtkDD9Shcj7W3QFyPwvXogbVAj8L1KJwGtkB7FK5HoVy3QIXrUbgeVbVA16NwPUqLuEAUrkfherq1QClcj8K1ErdAPQrXozAEuEB7FK5HoVy6QGZmZmbmsbdAzczMzMz0uEBmZmZmJqm1QArXo3A9u7dAw/UoXE9PuEDhehSuR4+5QFyPwvXo07dA9ihcjwJHt0BmZmZmplC6QM3MzMyMtrZACtejcL2ItEAfhetR+Eq3QJqZmZmZVrdAZmZmZmZBuUDsUbgexSe6QPYoXI+C37hACtejcD1DuEAAAAAAAHO2QKRwPQpXfrhAzczMzMwjuEB7FK5Hoba2QAAAAABA6bZAw/UoXM//uUBcj8L16DS3QM3MzMxMs7pAKVyPwjWMuUDhehSuxy+zQEjhehRuDrhAexSuR+FDt0CuR+F6VN+4QK5H4XrU0rdA4XoUrgc9tkAAAAAAQHq0QFK4HoXr5bdAH4XrUTi+tUAfhetRuEO6QKRwPQqXmbhAZmZmZqbYt0ApXI/C9VG2QFK4HoXrR7pAhetRuB44uUAK16NwfSi3QIXrUbieLLdA7FG4HsW0tkDNzMzMzDm5QArXo3D9U7ZArkfhelTxtEA9Ctej8BW1QOF6FK5Hk7dApHA9ClfbtkAK16NwPSq1QHE9CtdjlLdASOF6FG5ztEAK16NwfTe4QKRwPQpXq7JAexSuRyG/t0AfhetRuCW3QFyPwvVoXrdA9ihcj8IguEDD9ShcD4C1QGZmZmbmWLZAmpmZmdlYuED2KFyPgv24QD0K16PwM7VAFK5H4TomuEAUrkfh+ua3QArXo3D9aLhA9ihcj0K+tkAK16NwvXG5QB+F61E407hArkfhepR7uEBcj8L1KPq2QNejcD2K8rZA7FG4HkWRt0CF61G4nka3QNejcD3KIrxA16NwPUq/t0AAAAAAAD63QI/C9SicybJAexSuR6FcuUA9CtejMKS4QFyPwvXo7LVAcT0K1yPWtkCuR+F6FK26QI/C9SicFbZAUrgehWu1uEAAAAAAgGy2QClcj8J1drhAw/UoXM9htkDNzMzMTFK8QArXo3B9/LdA7FG4HoW3ukD2KFyPgni4QK5H4XrUCbdAUrgehetAt0B7FK5HYci4QIXrUbieQbhAw/UoXE8XtUApXI/CNV23QOF6FK5H97ZAFK5H4XoHtUCPwvUonMq1QLgehetRrblA16NwPQoxuUCF61G4njW3QB+F61G4qrZApHA9Cle0t0CPwvUoHHq7QFyPwvWoZLhA4XoUrgfOuEB7FK5H4ay4QJqZmZlZT7dA16NwPcrctkAfhetRuGq2QLgehetR+rVAMzMzM/NQt0BI4XoU7mm2QMP1KFwPd7dA16NwPUqBt0D2KFyPQsq2QMP1KFwPerVAcT0K1yNutkCuR+F6VKy5QFK4HoWr+LZAj8L1KNyptkD2KFyPgtm0QBSuR+E627dAXI/C9WiJt0CkcD0KFxi4QM3MzMxMbrhAFK5H4brLt0CPwvUoHFG3QJqZmZlZnLZAuB6F61FptkA9CtejsDa3QM3MzMwMf7ZACtejcD2MtUBmZmZmJvC3QEjhehRuTrlApHA9Ctc/u0C4HoXrkYW3QOxRuB4FEbdA7FG4HgVquUCuR+F6lAO2QJqZmZlZsrdAj8L1KFyztUCPwvUoHDW5QEjhehQuxLdAPQrXo/DNtkBmZmZmpmG4QB+F61G4s7dAH4XrUbjGs0CkcD0KF7y3QOF6FK7H17RAj8L1KNzGvEA9Ctej8Ky4QIXrUbhe8btAzczMzMzWtUAK16NwPUy2QFK4HoXrULxAcT0K1yMyt0BI4XoU7ui2QIXrUbhe47ZAAAAAAICDuEBSuB6F6+O2QFyPwvVol7RAw/UoXM9AuEBmZmZm5nG1QKRwPQrXRbtAj8L1KJw3t0DD9Shcz765QEjhehSu8LZApHA9ClccukDNzMzMDJK2QEjhehRuy7dA4XoUrseitkBcj8L1qKC6QK5H4XqUDLpAj8L1KNzvuEApXI/Ctbe6QFyPwvVoR7hAcT0K1+OXt0C4HoXrURm3QJqZmZlZF7lAZmZmZiZuukCF61G4Xri1QPYoXI8CTLlA7FG4HoWdt0BmZmZmJsO3QBSuR+G6b7RAmpmZmRlttkDNzMzMzMq0QFK4HoUrUbZAhetRuJ7cuUAK16NwPbS3QClcj8L1f7hAexSuR2F6t0DsUbgeBWu5QNejcD1KErZAKVyPwrUwt0CF61G43oG2QK5H4XoU6rhAPQrXozDgt0AfhetROE+4QOxRuB4Fv7hAKVyPwjUSt0A9CtejsOm5QM3MzMyMTrdACtejcL2eukDXo3A9iie5QFK4HoVrQ7ZA7FG4HgUmt0Bcj8L1qIm4QKRwPQpXsLdAUrgehesUt0CamZmZWRm3QOF6FK5H57hAj8L1KBz/uEAAAAAAgMu3QI/C9SjcNLlAXI/C9Sj1tkAK16Nw/cC2QJqZmZkZSblAhetRuJ68tkAK16NwvWS4QMP1KFyPArpASOF6FC4NuECkcD0K1zu2QHE9Ctfjo7pAFK5H4fqotkAUrkfh+ka3QFyPwvUovLZA16NwPcoGt0AAAAAAwBK1QClcj8K1R7lA16NwPQpXtkCamZmZGSa5QIXrUbgej7hA7FG4HoVAt0AK16NwvaS3QOxRuB7F3bNAUrgehes9t0C4HoXr0ey3QHE9CtejRbZAH4XrUbi0t0CamZmZmY62QJqZmZlZ9bdAKVyPwvURtkCamZmZGem4QD0K16Mw5rpASOF6FG7EuUBSuB6Fawq3QHE9Ctejo7dAUrgehauuuEDXo3A9ily3QMP1KFxPardA16NwPcoLuEApXI/CtZK4QDMzMzMzq7NApHA9ClcRtUB7FK5H4XS1QK5H4XqU4bVAMzMzM3P4tkCF61G4XnG3QEjhehQuBrtAKVyPwjX8tkDXo3A9iim5QFK4HoUr17dArkfhelRnt0AAAAAAwMO2QD0K16PweLVAmpmZmdnYtEDD9Shcz8S2QGZmZmZm77hAcT0K1yPMtECPwvUo3NW3QM3MzMyM5rVAZmZmZiZ6uUBI4XoU7lu3QEjhehSuULdApHA9ChfruECPwvUoHJe3QKRwPQqXrLdAPQrXo3AvuEDNzMzMDNa2QOF6FK6H6rdAUrgehWsYtkCF61G4Xiu0QEjhehQuqrhA16NwPQq+t0CPwvUonDO5QIXrUbieVbNA4XoUrseIuEAUrkfh+vW2QEjhehSuPrlAcT0K12MeuEA9CtejsOG2QArXo3A9K7pAzczMzIxmtUDsUbgehfOzQEjhehQukrlASOF6FK71vEBI4XoUbgy5QB+F61F4lLhAAAAAAED1t0DD9Shcj6G4QPYoXI8C47dASOF6FO5kt0BxPQrXIxO3QMP1KFwPY7hApHA9CpfYuUCPwvUo3C24QHE9CtcjLrhAmpmZmZlBuEDNzMzMjHS3QOxRuB4FyrdApHA9ChfnuECkcD0KlwW4QD0K16PwxbhASOF6FG6/tkCF61G4HvG3QOF6FK5Hi7ZAj8L1KJyrt0BmZmZmJsW1QBSuR+E6jLhACtejcL1nu0D2KFyPAjq4QD0K16PwOrZAuB6F6xHpt0D2KFyPQha3QIXrUbhefLZAhetRuF7WtkBSuB6FK7i3QOF6FK5HlbdAPQrXo3BdtkB7FK5HYVy4QFK4HoWrn7VApHA9ChfXtkDsUbgexZO4QKRwPQpX+bdAXI/C9ejmuUDD9Shcj3m4QMP1KFwPDrVA7FG4HgU8tkCamZmZ2bO2QJqZmZmZ4bdAZmZmZqYlt0D2KFyPgo+zQIXrUbie4rlAZmZmZqYTuUCkcD0KV164QPYoXI8CaLlAH4XrUfjVtkDD9ShcTx63QD0K16Nws7dAzczMzEz7s0Bcj8L1aPC1QM3MzMxMR7ZAmpmZmVl+t0AfhetReMe4QDMzMzMzZbhA16NwPUpMt0CkcD0Kl1G4QB+F61H4hrpAexSuR6GAtkDhehSuB6W3QIXrUbjeErdAzczMzIx3t0DNzMzMTEa3QClcj8I1HrpACtejcH2ct0BxPQrXI7u5QAAAAAAAvrdAw/UoXI/KuECamZmZ2aO5QOF6FK6H1rlAmpmZmRkvtUBxPQrXY2C5QHE9CtejP7dAexSuRyESt0CPwvUoXIK3QHsUrkehFrVACtejcP0iukDsUbgeBY+4QDMzMzMzWbdApHA9CpdSukBI4XoU7lO3QD0K16PwprhArkfhelQ5uEAK16Nw/eO4QB+F61H44rRAUrgehWt+uUCkcD0KV0y3QOxRuB7FIbRAcT0K1yM9t0CkcD0KF2a2QI/C9SgcLLVA4XoUrsc0uED2KFyPgpW2QAAAAACA6LZAZmZmZuZQt0AzMzMzswe2QDMzMzPz8rdArkfhetRzuUApXI/CdWy2QIXrUbjeobhAcT0K16Oqt0AUrkfhuqi7QD0K16NwhrlAzczMzAwduED2KFyPwku2QM3MzMzMBLhAH4XrUfjbt0AK16Nw/ZK4QIXrUbierbdAzczMzExHt0DXo3A9yvi2QMP1KFwPuLhAAAAAAACUtkDXo3A9CjC1QLgehesRmLVAuB6F65EXuEApXI/CdU25QOF6FK4HorhAhetRuN4Ft0AzMzMzMwi5QDMzMzNzPblAKVyPwrU1tEAUrkfheh24QClcj8I1crZACtejcH2HuEDNzMzMTF24QDMzMzMzuLpAMzMzM/MmuEAfhetRuGa5QEjhehQuEbhAuB6F69FRuUCkcD0KF5K3QAAAAADAy7JAPQrXo7CUt0AzMzMzs4S3QIXrUbjeurZAAAAAAECmt0A9Ctej8Di4QOxRuB4FrbtApHA9Chf1tEDD9ShcDy62QArXo3D9uLZAH4XrUXiNt0CPwvUoXGW3QHE9CtfjUrdAexSuRyFfuEBxPQrXo3O3QGZmZmam/bdAzczMzIwstkCamZmZGRa2QM3MzMwMH7dAPQrXo/DUt0CkcD0K1xS4QKRwPQrXGbhAw/UoXE9EtkBmZmZmJqu0QKRwPQqX67dASOF6FK6OtkBxPQrXI4K6QGZmZmYmoLlAcT0K1yP7t0Bcj8L1qFq3QOF6FK6HqbpApHA9CldQt0BxPQrX47e3QMP1KFzPM7dAzczMzExnt0CPwvUoHCy2QKRwPQqXVrdAPQrXo7CluECPwvUonNO6QIXrUbhe5rZAAAAAAID6tEAzMzMzsxu2QDMzMzPzFLdAcT0K12OBt0AAAAAAQAa0QOF6FK4HcLhAexSuR2EUuEDhehSuhwC5QJqZmZnZdLhAhetRuN7NtkDXo3A9yjW6QI/C9SgcubhACtejcD1itUCF61G4XuC5QMP1KFzPrLdAmpmZmdkTtkAK16NwvQu5QOxRuB4FmrlAj8L1KFyxvkA9Ctej8Ay4QFyPwvUov7pApHA9Ctd8t0BSuB6Fqx22QOF6FK5HOrZAmpmZmRleukAK16NwvW23QClcj8I1PLxAXI/C9WjpuUCuR+F6VA65QFyPwvXo0LhAexSuR+F/tkDsUbgexYS1QGZmZmYmY7ZAXI/C9ej3tkCkcD0KF8O1QFyPwvUofLRAexSuR6FCukCuR+F6lIi0QFyPwvUoxLZAhetRuF7NvkD2KFyPwgS3QHsUrkchVbhAAAAAAMCst0BSuB6Fa024QPYoXI9CObdA16NwPYq8uUBcj8L1aOG3QKRwPQrXF7xAMzMzMzM5t0CkcD0Kl1i3QI/C9SicF7dAKVyPwrXBt0AfhetReN22QK5H4XpUdbdA4XoUrseat0D2KFyPguu1QAAAAAAABLdAXI/C9eivuUBSuB6FawS5QHE9CtejzLVAXI/C9Sj7uED2KFyPwgq0QNejcD1KgLhAzczMzEzjtEBI4XoULgG3QArXo3A9V7hAhetRuB47t0BI4XoULlq2QMP1KFwP9rdAcT0K1+Nzt0D2KFyPArC4QM3MzMwMgLhAKVyPwvXiuEAUrkfhOny4QFyPwvXoMrhASOF6FO7YtkDD9Shcj/i1QI/C9SjcC7RAPQrXo/DItkDD9ShcTwa2QBSuR+G67rdAexSuR6GatkCkcD0K1yG5QJqZmZnZ/7dAhetRuN4JuECkcD0K13m4QD0K16NwxLdA16NwPYpyuEDXo3A9CvW3QD0K16MwjrdApHA9CtffuEApXI/CdQy4QOxRuB5FNrpAj8L1KFxMtUA9CtejsBC4QLgehetRQLhAH4XrUfhwukBxPQrXo/25QFyPwvUoa7dAmpmZmZkCuUBmZmZm5vG1QKRwPQrXObVA16NwPYqZtUCF61G4Xpy1QJqZmZmZBbZApHA9CtdatUDhehSuh6O1QIXrUbheiLZACtejcD0Rt0AK16NwfTa4QClcj8L1brhAhetRuF5et0CuR+F6lF+0QLgehetRDLhAH4XrUfg9tEC4HoXrUd21QFyPwvUo+rVAAAAAAMCpt0A9CtejcGy3QEjhehTuMrpAj8L1KJw1uEC4HoXr0Tq4QD0K16OwJbdAMzMzM/N+tkBxPQrXI9K3QM3MzMyMz7ZA4XoUrgdJuEAUrkfhuhG9QM3MzMyMW7dAFK5H4XqquEAAAAAAgNq4QAAAAABA+LdAmpmZmVmDtUCPwvUo3Iu1QOxRuB6FLLlAUrgehSsdvkBcj8L1aJ+1QNejcD1KjLdAPQrXo7A4tkCPwvUoXKe4QMP1KFzPjLhAzczMzEw6t0D2KFyPgtu1QClcj8J15bZApHA9CheatkD2KFyPwtO1QOF6FK5HdrpAFK5H4XqFtED2KFyPAo+1QFK4HoXr07hA9ihcj0KAt0D2KFyPgqC0QLgehevRuLVAcT0K16OXuUBcj8L1aOa3QKRwPQoXardAuB6F65HquUDhehSuxyG4QHsUrkfhYbdAUrgehSufuEDsUbgeBf6zQEjhehTuSLhAAAAAAMBZuEDhehSuB4q3QGZmZmbmqcBAFK5H4TratEBxPQrX4xG4QFK4HoVr87tAPQrXo/Awt0AzMzMzs8q3QJqZmZmZdblAuB6F6xEzukBcj8L1qCy3QArXo3B9vLZAUrgehSvptUAUrkfhOgG2QBSuR+G6LbZA7FG4HoVot0DD9Shcz1S2QGZmZmYmd7dAcT0K12NCuED2KFyPgr61QJqZmZkZwLdAKVyPwjV0tkAfhetReMm0QEjhehTurrVApHA9CpdWuEBmZmZm5ge4QOxRuB5FuLZAmpmZmVlRukDD9ShcT+O4QDMzMzPzprVAPQrXozB0tkDD9ShcT3i3QFK4HoWrRLdAH4XrUTg8uEAzMzMzs5a3QLgehetRGrlA9ihcj8J7tEDNzMzMzH63QFK4HoUrGrZArkfhepRuuECamZmZmY61QM3MzMyMO7dASOF6FK7iuEDNzMzMTKq0QK5H4XoUgrZAMzMzMzMVukC4HoXr0eG2QHsUrkdhtLlAKVyPwjVot0B7FK5HoXu2QMP1KFxPlrhA7FG4HoXmt0BSuB6F62i4QAAAAACAALhArkfhelSNuEDXo3A9Sjq2QK5H4XqUq7VAZmZmZuZEuEApXI/CNea3QArXo3B9hbhAUrgehSu3tUCPwvUoHJ64QHsUrkch7bZA16NwPQoUuUAfhetRONu4QOxRuB5Fi7ZAXI/C9egFt0AfhetReIG2QB+F61H4YLlAKVyPwvWytUCkcD0KV9q4QNejcD2KlLdAKVyPwnWitkC4HoXrkRq4QHsUrkchCrdA9ihcjwIfuUAUrkfheke3QIXrUbgeK7VAH4XrUXhRtUCPwvUonJ61QAAAAACAr7dAH4XrUXgEukCF61G4Xk22QPYoXI+CkLdAuB6F69EOt0DD9Shcz7W3QMP1KFwPNLVAKVyPwvWpt0CPwvUoHJ+4QClcj8J1L7lA7FG4HoUatkCamZmZ2am5QD0K16OwILZAexSuR2FNt0DsUbgehUK3QEjhehQunrhA16NwPUqKuEDhehSuh7K3QArXo3A9CLdAZmZmZqaruUAzMzMz8023QOF6FK4HGLZA9ihcj0J9tkCamZmZWQy3QAAAAAAAKLZAmpmZmZmYuUBmZmZm5ju3QHsUrkchRLpAH4XrUXjtuUBmZmZm5t24QMP1KFzP07ZA16NwPUp3t0DhehSuh2GzQDMzMzOzbbVAUrgehSvOt0AzMzMzs/y2QD0K16PwWbdA16NwPUoPukCamZmZGdy0QAAAAACA3LZAH4XrUTixuEBxPQrXI4O5QBSuR+E6JLlASOF6FO6CtEDXo3A9ipm5QDMzMzNzprlAZmZmZmYFtUC4HoXrkY+2QK5H4XoU87ZAZmZmZibpt0DD9ShcjyO6QEjhehRudLZArkfhelQjtkA9CtejsOS0QM3MzMzMybxAKVyPwrU0uEAfhetRuCC0QOF6FK7HHbdApHA9ChfVtUD2KFyPwh66QMP1KFwPXrlA16NwPUp5t0AAAAAAAJK5QBSuR+G6prZAuB6F69G6t0DNzMzMDEO2QI/C9SjcELRAw/UoXM+es0A9CtejMLq2QI/C9Sgc/rdA7FG4HkX2t0CamZmZOeTAQEjhehSunbdAuB6F69FSuECPwvUo3Lq5QD0K16Pw+rVAZmZmZuYEtkD2KFyPgoC4QD0K16Ow4LNAhetRuN6AtkAzMzMzs0u4QNejcD3KILZAhetRuB6RuEB7FK5HIVK4QNejcD1K5bdAmpmZmdmPtkCamZmZmV25QM3MzMzMsLZA9ihcjwKht0BSuB6F6x24QEjhehRuJrhAzczMzIyptkD2KFyPApu3QI/C9SjciLdAXI/C9ejVtEAAAAAAQDW2QFyPwvUoJrlA4XoUrofRuUBxPQrX41i4QOF6FK6HqLdAH4XrUXiVu0BI4XoU7h+2QJqZmZlZnrdA4XoUrgckuUCkcD0KV5+5QK5H4XqUPbVACtejcH2vtkDhehSuh5e3QOF6FK4HObdAPQrXo7DduUBI4XoULvS3QKRwPQpXPrdAzczMzIxWtkAK16NwfVi2QGZmZmYmNbhAFK5H4frct0AzMzMz8zO3QNejcD3KmrZAUrgehesatkAK16NwvaS4QOxRuB6Fi7dACtejcL0Et0C4HoXrkVu4QDMzMzNzh7dAMzMzM/PpuUCF61G4Hk23QBSuR+E6w7pArkfhehT3tUBI4XoUbje2QK5H4XpUNbZA9ihcj4LWt0CuR+F6lAa4QMP1KFwPPbpAXI/C9aidt0CamZmZWa+4QB+F61G4X7VAXI/C9WjOt0C4HoXrUaS3QHE9CtejJrZAw/UoXI+ZukCkcD0K1/u8QAAAAAAAeblA4XoUroeVtUAfhetROBW4QAAAAADA+bZAMzMzM7NTt0D2KFyPgoK2QD0K16MwT7dAMzMzMzPVt0AAAAAAABK1QNejcD2KIblAKVyPwjWxuUAzMzMz86i3QAAAAACA6rZAzczMzIxpt0BI4XoU7kq4QOF6FK7HpbVAj8L1KFwwt0DXo3A9SjC0QJqZmZmZeLhAZmZmZiYatkBxPQrXYy64QLgehesRk7RAMzMzM7ORukBcj8L1qAS2QClcj8I1VblAMzMzM/PFt0AK16Nw/dy2QD0K16PwkbZA7FG4HoVxuUDD9ShcD7u3QOxRuB7FVrVAw/UoXI8qt0CkcD0Kl0C4QB+F61H4bblApHA9Cle2uEBmZmZmZoG5QLgeheuRs7ZAZmZmZibctUDhehSuh2W5QD0K16Owu7RA4XoUroehtkBcj8L1aKy3QArXo3B9QLpAhetRuN7RukCPwvUoXKS2QPYoXI/CObpAcT0K12MPt0C4HoXrkY64QPYoXI8CALhApHA9CldGuEBcj8L1KLy3QBSuR+G6a7ZAexSuR2FgtkA9CtejsDu4QArXo3C9iLZAzczMzAwZvEAUrkfhelm3QIXrUbieqrdA9ihcjwLFtkCamZmZWf23QEjhehRuW7lAhetRuN6ft0DhehSuByO6QIXrUbjeKrRAexSuR2FWtkD2KFyPgge0QBSuR+H6fbZA7FG4HgWftkDhehSuBzK5QAAAAAAAIbdAhetRuJ6jtEBI4XoUbl65QLgehetR/7ZAw/UoXI9huECkcD0KV9O2QPYoXI9Ck7hA7FG4HsVbtkAzMzMz82e6QBSuR+G6hrZAw/UoXA/EtkAAAAAAgI63QPYoXI9CirhApHA9ClfcuUAzMzMzM1C3QGZmZmZmnrdAhetRuN5Ot0DsUbgehUG3QPYoXI9Cc7dAexSuR6EXuEBmZmZmJni3QOF6FK7HcrxAXI/C9agquECPwvUo3E65QOxRuB6FbLhAZmZmZqbvtECamZmZmUy4QLgehetRArVASOF6FO6euUApXI/C9UO5QOxRuB4FIbVA9ihcj0JttkAUrkfh+iW5QOxRuB7FLLVA9ihcj0JDuECuR+F6FF62QHsUrkchC7lAUrgehetluUCamZmZ2Zu2QBSuR+H6DblAj8L1KBwJtUCkcD0KlzS2QMP1KFzPiLVAw/UoXA+htkCF61G4nqO1QB+F61F4cLhAexSuR+HmuEBmZmZmZlu3QJqZmZkZkLhAPQrXo3ADt0A9Ctej8L+4QD0K16NwQLlAPQrXo3DotkCkcD0Kl++3QIXrUbieZrZApHA9CpcruEB7FK5H4VW3QB+F61H43rdAFK5H4XottkD2KFyPgs+3QAAAAAAAirVAH4XrUbiPuUCuR+F6lCq1QDMzMzMzTrdAcT0K12OQt0CF61G43kW3QDMzMzPzj7hAFK5H4fpNtkCPwvUoXIi2QIXrUbgejbdA7FG4HoXivEBcj8L16NG1QM3MzMwM3rhAuB6F6xFkt0AfhetROFi3QKRwPQpXQblAw/UoXE+FtkCF61G4Xl24QIXrUbheBLdAUrgehWuJt0BSuB6Fq823QBSuR+F6Z7dA9ihcj4IPuEAfhetRuFm3QPYoXI/CL7pAFK5H4brOt0DhehSuB0O0QD0K16Owo7dAPQrXozBquECPwvUoHOO3QMP1KFzPMLdAcT0K16MBuUBxPQrXAy7AQDMzMzMzCbhAKVyPwvUguEAK16NwfVG5QHE9CtfjCbhAexSuR+Hnt0DNzMzMTAO5QIXrUbjeRrdAMzMzM/P6t0AK16Nwvau2QIXrUbheQbdAKVyPwnUut0BxPQrXYx+5QClcj8L1PbhAFK5H4TqouUDsUbgexay4QNejcD2KW7ZAcT0K1+NtuECamZmZmYa4QArXo3D9wbZA9ihcj4ICuEDsUbgehQm3QK5H4XpUbbdA7FG4HkUQuECuR+F6FG62QNejcD0K97VAw/UoXM8Ou0DXo3A9yoK3QClcj8L1sbZASOF6FG6St0DD9ShcT+G7QHsUrkdhtrdAZmZmZmYqtkDXo3A9CiK7QD0K16NwbLdAPQrXo7AhtkA9CtejMLi3QBSuR+G6f7ZAexSuRyEtuEBxPQrXIw25QK5H4XpUYbdAcT0K1+P8tkDXo3A9imi4QBSuR+G6NrdACtejcP00uUA9CtejsLK0QNejcD0KVbZAcT0K1+Nft0AfhetRuEC3QI/C9SgcUrZAXI/C9SjHt0CamZmZGXe3QDMzMzMz/blAPQrXo/CstkBSuB6F68i3QIXrUbjehLZAUrgehatdt0DhehSuB/y4QK5H4XrUxLRA4XoUrkeWtkDNzMzMTP+6QDMzMzOz5rZAhetRuJ4us0Bcj8L1KLa7QM3MzMyMtLRAj8L1KJyTtkBxPQrXo4W3QFyPwvWot7VAzczMzEzzt0ApXI/CtcO5QB+F61H4bbdAAAAAAMA4t0BmZmZm5tm3QFK4HoUrgbRAzczMzEzit0DXo3A9iue6QI/C9ShcObFAZmZmZuaRtkD2KFyPwmu5QIXrUbhe3bpAcT0K1yPxtED2KFyPwli4QK5H4XrUCrlAw/UoXA/6t0CPwvUoHCi6QKRwPQoXxbhA16NwPcoPuUCamZmZmS20QOF6FK4HpLZAAAAAAACItUAAAAAAQLu0QGZmZmZmBrhAzczMzAxht0B7FK5HIfS4QOF6FK7HErZASOF6FC4ktUC4HoXrkUa2QAAAAAAA2LZAH4XrUTgstkBI4XoULs20QKRwPQrX0rZAPQrXo7A1u0BmZmZm5ky3QFyPwvUoGbhAH4XrUTiVt0BI4XoULkW1QOF6FK6HR7dA4XoUrkcIuUD2KFyPQm66QClcj8J147pAw/UoXI9Jt0DXo3A9ihe4QNejcD0KRLVASOF6FO4YuUAzMzMzs/K3QOxRuB7FHbZAexSuRyHwtkAAAAAAgIu3QFyPwvUoZbhArkfhetQ4tkAAAAAAwE+3QPYoXI9CeLZApHA9Ctd8uECkcD0K13O1QOF6FK5HXbdAFK5H4Tput0DXo3A9yk24QPYoXI9CL7dAZmZmZuaAtkCkcD0K1/m2QBSuR+F63bhApHA9Cpedt0CF61G43uC4QDMzMzNzOrhAj8L1KNxZtkA9CtejsKS3QFK4HoUrZ7hAhetRuF6EuUBSuB6Fa3C3QK5H4XrUtLJA9ihcj8L1tUCamZmZ2Rq3QM3MzMyMtrhAPQrXozC+tUAK16NwfdS2QNejcD1KD7lAFK5H4XqTt0AK16Nw/Vm3QAAAAAAABbdAPQrXo/AwuECF61G4HnO3QOxRuB4FK7lACtejcP0stkBSuB6FK+22QKRwPQrXuLdA16NwPYpvukAfhetR+DK4QD0K16PwYrhAw/UoXA8Zt0ApXI/Cda+2QI/C9Sjc2LVAFK5H4fpTt0D2KFyPwnCzQFyPwvUo17ZA16NwPQpHuEDXo3A9yt63QBSuR+E6mLdAMzMzM/NItUDD9Shcz/G4QOF6FK5HPLlAXI/C9eizt0BI4XoU7jW2QPYoXI/C4bZA16NwPcoQuUCuR+F61Oe2QM3MzMyMELdAj8L1KFyPu0DsUbgehS63QD0K16MwU7hAcT0K1+NZtkA9Ctej8N+3QNejcD1KsrdAzczMzAwQtkDD9ShcT/q1QAAAAABAL7ZA16NwPUrbs0DD9Shcj926QHE9CtfjgLdA9ihcjwJltUCPwvUoHBS4QEjhehSuD7dAcT0K1yNit0AfhetROAy2QLgehevRpbhArkfhelRCtkB7FK5H4Q64QIXrUbje4bdAH4XrUXhIuEBI4XoUbi+4QBSuR+G6tLdAexSuR+E3tkBmZmZmpn22QFK4HoWrdrdAH4XrUfgvt0AUrkfhuu27QArXo3D9UrZArkfhehSXtEBmZmZm5sq5QEjhehQuj7dA16NwPYqQt0AfhetR+Om3QDMzMzMzZLlA9ihcj4KZtkA9Ctej8Jy4QMP1KFyPnblAXI/C9ehNt0C4HoXrUQS6QK5H4XrUGrdAH4XrUTgTuUCuR+F6VKG5QEjhehSuNbRAw/UoXE/6tkBSuB6FK1q2QAAAAADAs7ZAH4XrUThtuEB7FK5H4Vi4QFK4HoUrfLZAexSuR+FjuUAzMzMzc1i4QK5H4XqUsbZAcT0K16MGtkC4HoXrkRG1QHE9Ctcj9rlAcT0K16PHtkC4HoXrUei2QIXrUbgeybdAmpmZmRn6ukCPwvUoHNe1QMP1KFxPg7dAmpmZmVlptkB7FK5HIZm6QAAAAADAALZAmpmZmdmHtkAUrkfhuqO2QOxRuB7FzrdAKVyPwrVzt0CF61G4XlK4QPYoXI+Cd7dAZmZmZmb9t0CF61G4HoK3QI/C9Sgco7pAexSuRyE0uECPwvUoXFW4QKRwPQrXs7pA16NwPcoEt0AzMzMz84W2QIXrUbg+ZcBAXI/C9SiUuUD2KFyPgrm3QHsUrkdhprtAhetRuN63tUA9CtejsLS1QDMzMzMzb7RAmpmZmVmTtECamZmZWfm1QArXo3A9TLRAexSuR6EItkAzMzMzs3y5QArXo3C9rbhAUrgehauvtUCamZmZ2aC3QAAAAACAjLdA4XoUrgfxt0DXo3A9Soe1QMP1KFwPtLlAw/UoXA+Vt0D2KFyPAh64QEjhehQOBcBAXI/C9WjquECamZmZGc64QM3MzMzMsrZArkfhetQotkApXI/CtZm3QLgeheuRBrdAZmZmZmZQt0Bcj8L1KLe3QK5H4XoUqbRAKVyPwnUztUCPwvUoHGu8QClcj8K137dACtejcP37t0D2KFyPgnK3QBSuR+F6U7lAUrgehWsYtkDD9Shcz0a4QFyPwvWoHbRA4XoUrseZtkBcj8L1KOq8QOxRuB7F6bhAPQrXo7DCukA9CtejsK63QGZmZmbmVLlAPQrXo3A+t0DD9Shcj/e6QOF6FK6H77ZA7FG4HkXetkDD9ShcD423QGZmZmZmubZAH4XrUXhst0CPwvUonJq4QM3MzMzMR7ZAH4XrUbhRu0Bcj8L16Nm1QOF6FK4HtLlAUrgehat4uEAAAAAAgIS4QHsUrkdhgLhAhetRuF4IuEBSuB6F64K6QClcj8I1/LVAw/UoXE9gt0DXo3A9CrC4QJqZmZkZhrNAAAAAAABSt0DsUbgeRQu3QClcj8J1T7pAPQrXo3CTt0B7FK5HoX23QHsUrkchlbpAuB6F61FzuEDD9Shcz2O2QDMzMzOz67hAMzMzM/Mqt0BI4XoU7gi5QMP1KFzPMrZA16NwPUrmtkBcj8L1aMK2QFK4HoVrj7dAZmZmZubytkBI4XoUbjC5QClcj8L1NbpAUrgehes4tkBmZmZm5oi2QOxRuB5F9rdAw/UoXM+WtkAUrkfh+va3QB+F61F4B7dAUrgehWvBuEBI4XoUrt+6QKRwPQpXfrpAKVyPwjV+tkDhehSux4a4QJqZmZmZFLFASOF6FO5Ft0Bcj8L1aPK3QB+F61E4mLZAhetRuJ4yuEDXo3A9ig62QFyPwvUoLbtA9ihcj8KztECF61G4Hha3QI/C9Shc9bdAAAAAAEAxt0DNzMzMzJK4QGZmZmamyrZASOF6FK5fuEAAAAAAADm3QAAAAABABbhACtejcD0ZuEApXI/Ctdq4QD0K16MwILZACtejcL3UuUDXo3A9irC2QAAAAADAp7hAw/UoXA8HuEA9CtejsB63QNejcD0KybVASOF6FK7ouUDhehSuh3i2QGZmZmamWbhArkfhetQVt0DhehSuxxO5QK5H4XrUCrpArkfhehQ3vEDXo3A9SvG4QOF6FK5HlblASOF6FO6Tt0CamZmZWVS6QOxRuB5Fu7ZAKVyPwjWxtUAK16NwfQi1QPYoXI8CuLVAKVyPwrUot0AzMzMzc8u1QI/C9ShcFrhAw/UoXM/GuEAK16Nw/Zm5QArXo3D9DbhAcT0K16PLtkAK16Nwfci2QGZmZmamNLVAH4XrUXiMuUBxPQrX44m2QFyPwvWoI7lAPQrXozDmtkA9CtejMAS4QLgehevRhrhAw/UoXA8gukAAAAAAgJi2QAAAAAAAhLhArkfhepTHukAK16Nw/TK4QHsUrkehrbZA16NwPUqAu0Bcj8L1qIa1QOF6FK6HyrhAuB6F61FBt0CPwvUoHKS3QHE9CtejArdAzczMzIz6tUDD9Shcj4O3QOF6FK4HfLdA16NwPQpQuEB7FK5Hocu2QB+F61G4TbhAw/UoXM/6tkAK16Nw/Si2QOF6FK5HW7pAexSuR2EGt0DXo3A9yvi1QIXrUbie4bVAw/UoXI+QukDsUbgehUW4QLgeheuRQL1APQrXozChuUApXI/C9cy2QAAAAACAULpA7FG4HgXNuEDNzMzMjNy0QClcj8J1crVApHA9CpctuEA9CtejMDS4QBSuR+H6GbdAcT0K1+MouEApXI/CNbq0QM3MzMxMHrdASOF6FK47uEBcj8L1aH+2QGZmZmamyrtAKVyPwnXxtUCF61G43ji5QBSuR+H6srhA16NwPQpOuUBxPQrXY1+3QEjhehTuCbdAZmZmZubRt0CuR+F6VGy3QOxRuB4F3bhA9ihcj8IpuEApXI/Ctfi0QB+F61G41bVA16NwPQretUBI4XoULry3QOxRuB4FwrZA16NwPQrgtkBxPQrX4z23QGZmZmZmnrdAj8L1KFzBuEDNzMzMjHi2QOF6FK5Hz7hA9ihcj4L2tkCPwvUoHKy4QNejcD1KuLdA4XoUrodsuEDXo3A9Sm+4QHE9CtdjkrZArkfhelSit0BSuB6Fa1u1QEjhehQubrZAj8L1KJxetUBxPQrXIwq1QJqZmZkZmbZApHA9Cld3uEDXo3A9Svm3QD0K16NwJ7hAPQrXo/CLvUBcj8L1aLe2QKRwPQpXU7ZAzczMzEz5t0CamZmZGTW6QMP1KFyPR7hA7FG4HsVzuUDXo3A9Sru4QPYoXI+C5blA16NwPQquuECkcD0KlxS8QJqZmZlZP7lAzczMzMwxtkBI4XoUbi22QNejcD1KTbhAMzMzM7N0tEDD9ShcD3G3QOF6FK4HQrdAzczMzAyytkAfhetR+J23QOxRuB7FUrdAzczMzIzZt0C4HoXr0SS4QD0K16PwjbtAexSuR2EptkAUrkfhuh63QDMzMzPzELZAw/UoXA+JtUCuR+F6FKGzQD0K16OwGbdAMzMzM7NfukCuR+F6FMGzQB+F61E4hrNAhetRuJ4wt0AUrkfhet+3QMP1KFzPVrRA4XoUrgcYuUDXo3A9She3QArXo3C9B7lAKVyPwrV6t0DD9Shcj2+3QB+F61G4gLlAKVyPwrWhtkCuR+F61Ai3QHE9CtejFbZAZmZmZqYtuEAzMzMzc+y5QLgehetRWLVA16NwPUpYuEDsUbgehQ23QNejcD0KerdAj8L1KJxPukBcj8L16H63QLgehesRr7dAcT0K12Mht0Bcj8L1aAq4QIXrUbheYLhAXI/C9WgwtUDhehSuB8G3QFK4HoVr+bRAmpmZmRkDuUAAAAAAAAe3QMP1KFyP0LZAhetRuJ58tkDhehSuh1W4QB+F61F4KLZAUrgehWumtEAzMzMzc6W6QMP1KFyPLLhAXI/C9ejKt0ApXI/CNb64QPYoXI/Cy7dAAAAAAEACuUC4HoXr0Ru4QLgeheuRzbZAUrgehSuUtkDXo3A9Sgy2QI/C9SgcJ7pA16NwPcrzt0D2KFyPwqi3QHsUrkchD7RAUrgeheutt0CamZmZ2U+3QFK4HoUri7VASOF6FO7itkAK16NwvZm3QB+F61H4rbhAKVyPwvW7tUA9CtejcOW1QHE9Ctfj27ZAmpmZmdnRuEAfhetR+Ji4QClcj8L1fLlAcT0K16P/uUDD9Shcj6y3QClcj8K1U7hAXI/C9WiNt0DNzMzMjIu5QFyPwvVosbhAXI/C9eiUuEApXI/CdaizQKRwPQqX6rRAhetRuB7rt0BmZmZmZga4QLgehevRHbhApHA9CtdbuUDNzMzMDE+3QLgehetRVbhAZmZmZibztEAfhetROLW3QFyPwvWoXLdACtejcH1buUCF61G43lu3QBSuR+G6nrdAZmZmZuY1t0DD9ShcD3q3QOF6FK4HBrlA16NwPYp9uEDNzMzMzM24QHE9Ctej4bhAXI/C9ejktkCPwvUoXOe2QOxRuB6Fy7hAw/UoXA9/t0BmZmZmZua4QClcj8J1i7hAw/UoXM8YuUC4HoXr0aq1QArXo3B9zrhAcT0K1+OktUBSuB6Fa3K2QOF6FK7HubZArkfhehQyukCamZmZ2da5QB+F61G4AbhAMzMzM7OBuEAUrkfh+uS2QFK4HoVrXLhArkfhehRBuUCkcD0Kl++2QGZmZmamsbdAAAAAAAAZuEBmZmZmpsu4QDMzMzMzd7ZApHA9ChdWtUD2KFyPQg+4QBSuR+E6RbxAmpmZmRnXtkDsUbgexd64QEjhehQuk7ZACtejcL0ruEBxPQrXIzy1QEjhehRujbdAhetRuB6rtkAUrkfh+om4QAAAAACA1LZACtejcH2VuEAAAAAAQHS2QOxRuB4Fm7dA4XoUrgd3tkDhehSuhxm4QBSuR+E6PbhA9ihcjwLpuEBxPQrX4xu4QClcj8K1JLlAZmZmZmb3tkBxPQrX4222QD0K16PwvrZA4XoUrod8tUD2KFyPwna4QLgehevR+LdAZmZmZqbzuUCPwvUonM22QNejcD3K57dAFK5H4bpItUDhehSuB3G3QNejcD1KhbZA9ihcj8Kut0CF61G4HrS2QD0K16NwtrdAexSuR2E1uECkcD0KFyq5QMP1KFxP/blAzczMzMyPt0AzMzMzM4i0QDMzMzOzLLZA4XoUrocnt0AzMzMz83K3QAAAAACAbrhArkfhelQiukAzMzMzcxW2QAAAAACAWbhAKVyPwjVStUAUrkfh+jm5QEjhehRuwbRAPQrXo/Aat0CamZmZWT24QArXo3C9IrVAXI/C9Wh4uECuR+F61Bm3QKRwPQoXV7ZAPQrXo/BHu0B7FK5HofO0QI/C9SgcZLdAuB6F69FlukDD9Shcj6y2QHsUrkfhN7hASOF6FO5DtED2KFyPAjO3QPYoXI/CMrZAKVyPwjUTt0DD9ShcT9+3QI/C9SjcJLZAAAAAAEDDuUCamZmZWRm4QIXrUbhe/bZACtejcL38uUAUrkfhura4QK5H4XoUsrRAexSuR+FEuEAK16Nw/Rq3QBSuR+E6p7hAKVyPwjU8uEA9CtejcLy3QGZmZmZmV7hAXI/C9ShstkCF61G4nhO4QJqZmZmZ27VAAAAAAIA+tkAAAAAAgPe4QI/C9SicDLhAcT0K16OduEAUrkfh+ma1QMP1KFxPI7dArkfhelSIuUD2KFyPAsa4QHE9CtfjNrdAj8L1KBxwtkAAAAAAwJm3QHE9CtfjE7VAPQrXo7DKtUAfhetROD65QLgeheuR6LdAUrgehatVtkBSuB6FKxe6QEjhehQuNrdAFK5H4XpmtkDhehSuB8u3QOF6FK6HNLVApHA9Ctffs0CamZmZGZi5QArXo3D9W7dAZmZmZmY7uEBI4XoUbiW5QFK4HoWrIbdACtejcP24tUAAAAAAwKm4QHsUrkchALtASOF6FG41uEAfhetROOO3QArXo3B9NLdAexSuRyGetkC4HoXrkUq3QOF6FK6HBblAXI/C9SgjuEA9Ctej8JW2QArXo3B9wLdAH4XrUTg6t0B7FK5HYZi1QFyPwvXoLbZAexSuRyETuECPwvUonCm2QM3MzMxMkrpApHA9CpfPuEBcj8L1qCa2QFyPwvWo6rdAMzMzM7PMtUBSuB6F67S2QArXo3D9hrdAKVyPwjVPt0A9CtejMD6zQPYoXI8Cpb1AmpmZmVm5uUDD9ShcD3a2QB+F61G4Q7hApHA9CldbuED2KFyPAu+3QFyPwvVoQ7hAH4XrUfglt0AAAAAAwN+3QD0K16Nw6rlAw/UoXI+3tkBxPQrXI1K7QMP1KFzPsrdA9ihcjwJpuUDXo3A9iuG3QHE9Ctfj5rZACtejcH1JuUAfhetRuNO8QFyPwvVoirZAMzMzM/OVuEAUrkfhupq1QLgeheuRSblAH4XrUfgBt0ApXI/Ctdm6QGZmZmbmNrZAKVyPwjXQuUD2KFyPwkS3QOxRuB7Fs7VACtejcL3PtkCPwvUoHLa2QIXrUbheNbxAmpmZmZluuUBxPQrXI0W6QFyPwvWoWrhAMzMzM7PntkAzMzMzsxO2QPYoXI8CWLlAexSuR6HetkDsUbgeheC1QK5H4XrUI7ZAH4XrUXjst0A9CtejcDi4QM3MzMwMmrlApHA9ChchuECPwvUoHIS4QJqZmZmZWLdAH4XrUXgmtUD2KFyPAim4QNejcD2Kd7lAmpmZmbl8wEApXI/CtQ25QHE9Ctfj+rZAw/UoXE/vvUAK16NwfZa3QKRwPQoXe7dACtejcD2+tEBxPQrXIwm3QB+F61G4+rZAFK5H4XogtECamZmZGc+4QJqZmZnZI7dAexSuR+FYuECkcD0KF8S6QKRwPQqX07pA16NwPUrHt0DXo3A9Sue3QI/C9SicYLdApHA9Chc6uEBcj8L1KKG2QFyPwvUo27hAUrgehSuht0CPwvUo3Oi1QLgehesRorlA9ihcjwIPtkBcj8L1qGy1QLgehevRi7dAj8L1KJx7tUB7FK5HYc21QPYoXI9CX7VAj8L1KJzWtkC4HoXrEfm4QIXrUbjejbdAPQrXo3AXt0AzMzMzM8i2QD0K16Mwm7pAH4XrUfj0uEC4HoXrEfy2QIXrUbjeh7VAH4XrUbhluEDsUbgehTW5QGZmZmamILZAKVyPwnXit0BxPQrX40O3QArXo3C9QbdAmpmZmZmOuUBI4XoUru60QKRwPQqXKLhAPQrXozDvt0BxPQrX4wq3QJqZmZmZMbpASOF6FO7QuUCkcD0Klyq6QIXrUbgeVLhA9ihcjwL8tkCPwvUonGO6QFK4HoUrnrdAMzMzMzPbu0A9CtejsGq4QClcj8L1ArZArkfhetQtt0BSuB6FK+22QD0K16OwxLVAKVyPwjVBt0AUrkfh+pq6QFyPwvVoHbZAKVyPwrVbuEBcj8L1KDS6QHE9CtejBLdAmpmZmRnAuED2KFyPwsy2QDMzMzNzF7RAXI/C9ehEukC4HoXrkRq3QHE9CtdjzLdAFK5H4XodtkCamZmZGfy4QPYoXI/CN7dAcT0K12NKv0DNzMzMjN60QBSuR+E6h7NAMzMzM/OyuEDsUbgeBWq4QOxRuB5FQbVAXI/C9WjUtkAAAAAAgL65QBSuR+E6BbVApHA9ChcvuEDsUbgeBSm2QK5H4XoUebdAXI/C9eihuEBcj8L1KDG3QJqZmZkZk7RA16NwPUoDuEBSuB6FK0y2QPYoXI8Cs7hAKVyPwjVtuEBcj8L1KAK4QNejcD3KB7lAZmZmZqazt0DNzMzMTIm4QGZmZmamobdA4XoUrkdTuEAUrkfhOhO2QHE9CtdjhrhA4XoUrkcqtUDD9Shcjx6zQOxRuB6FQLZA7FG4HgVHtkAfhetR+KW3QKRwPQqX9rtAAAAAAIC5tUCPwvUo3Fq6QMP1KFzPKbdAUrgehavjt0CF61G4nnW4QAAAAACAELhA9ihcj8LstEDD9ShcTz+5QKRwPQpX+rhApHA9CtfktUDD9ShcT6O2QMP1KFwPsbdAuB6F69ERuUDXo3A9yvWzQD0K16NwjrhA9ihcjwJVuUBSuB6Fqx24QClcj8I1crpArkfhetTBuUDXo3A9ir25QK5H4XoUjbdAPQrXozDwtkBxPQrXY3G3QHE9CtcjPrhAXI/C9SjKtkCF61G4nkK4QEjhehRuVLZAuB6F65HvuEBxPQrX4323QArXo3C9BLpA7FG4HgU6tkDhehSuh1G2QB+F61H4ObdAuB6F65Gct0A9Ctej8OS2QM3MzMwMxLdAexSuRyGtuEDXo3A9yiq4QHsUrkchiLdAH4XrUTgWtkDsUbgeheS2QD0K16PwqLZASOF6FO4VukDD9Shcjy22QKRwPQrX/rdA4XoUrodRtkDNzMzMzCK5QNejcD0KBLdAZmZmZiY1ukAUrkfhevC3QAAAAABAJLhASOF6FG4iuUDD9ShcTwO5QI/C9SgcsrhAFK5H4bq2t0AAAAAAAOK4QOxRuB7FWblAj8L1KNwRtkAfhetR+DK3QD0K16Mwj7lAZmZmZqa9tEC4HoXrkWK4QOxRuB6FzbhAj8L1KFzyt0A9Ctej8Bi5QB+F61E4hLdA9ihcj4LhuECamZmZ2Uy3QIXrUbhej7ZAZmZmZmaFt0Bcj8L1KGK3QIXrUbhegLZApHA9Clf1uECkcD0K17u1QClcj8K11rZAPQrXozCeuUCamZmZ2Tq4QM3MzMzM+bVAcT0K1yP2t0ApXI/C9bW2QK5H4XrUk7ZAhetRuN6WtkB7FK5HIbKzQMP1KFxP5bVA9ihcj0K4t0CuR+F6lNe1QEjhehQuc7dAFK5H4XoIuUBSuB6Fa5q2QFyPwvUoEbhAKVyPwjWQuUBmZmZmZuq1QDMzMzMzILhAj8L1KBz0uEBSuB6Fq2C1QClcj8L1fLdAexSuRyGftkBSuB6FK/q2QClcj8K1eLhArkfhehQrs0CF61G4Hh21QEjhehQubrhAw/UoXM+4tkAfhetROGu1QBSuR+E6MLpAuB6F61FXtkA9CtejsIC3QB+F61G4fbhApHA9Chf0t0A9CtejcOO1QHE9CtdjOrVA7FG4HkUtu0DhehSuh361QD0K16OwsbZAhetRuF6yuEApXI/C9cy2QFK4HoUr6LdAMzMzMzPdt0BmZmZmJlq3QFK4HoVrArlAhetRuF6NuEBSuB6Fawi3QClcj8J1WbhAw/UoXA92s0DsUbgeBWS6QLgehetR+bdAFK5H4bpHtUCPwvUonPu1QI/C9SjczrRAUrgehev8tEBI4XoUrje5QClcj8L1vbRAFK5H4boPt0BI4XoUru62QOxRuB6FnrdA16NwPUq4uEAAAAAAAKm1QJqZmZlZDrdAuB6F65FutUCuR+F61Mi4QI/C9Sjcd7dA16NwPUoSvkDhehSuh066QLgehevxmcBAMzMzM7MTtUBI4XoU7rS3QI/C9SgcLrZAw/UoXE8AuEDD9Shcj1K4QEjhehSu3LhAH4XrUfgkuEDXo3A9StC3QEjhehSudrhArkfhetRjuEB7FK5H4eu6QGZmZmaml7ZA9ihcj4K/t0AUrkfhOp22QNejcD2KNbdA9ihcjwK6t0Bcj8L1aLK3QM3MzMyMybhAj8L1KJzrtkApXI/CdZm2QArXo3A9pLhA16NwPQq9tUDsUbgeBca5QFyPwvXob7hAUrgehWstuUDXo3A9ysq3QD0K16Pw7rZAPQrXozBruUBSuB6Fq6a3QArXo3D9BLhAhetRuB4rt0D2KFyPgs+3QD0K16Nwi7VAH4XrUfiHuUDNzMzMTPe3QHE9CtdjrbVAj8L1KFy9tUAK16Nw/Xm3QB+F61G4C7ZAXI/C9WiltkAfhetRuKa6QLgehesR7bRAmpmZmdk/tkBSuB6FK7a2QAAAAACA97hAj8L1KBwht0CamZmZmUy2QNejcD0KJrpAuB6F65FSt0CPwvUoHLC7QKRwPQqXerhAZmZmZqaIuECF61G4Hu+1QKRwPQrXKrVAmpmZmZlAuEAfhetRuEO3QK5H4XoU67dAcT0K12NSt0CPwvUoHA64QI/C9SicgrhA9ihcj0LRuEB7FK5HIZS3QOF6FK6HS7ZAPQrXo3BKuEDNzMzMzDq6QHsUrkdhT7ZAKVyPwjW7uUCPwvUoHGK5QD0K16OwtbVAj8L1KJw5t0DNzMzMzOO5QArXo3B9dLdA7FG4HoX6tUAUrkfheum2QK5H4XoUqLxA9ihcj4LvuEBcj8L1KFa4QLgehetR+LdAj8L1KFzKt0CF61G4Hie5QDMzMzMz/7hAMzMzM3NouUD2KFyPQiC2QAAAAAAAJrZAFK5H4TqEukBI4XoULvC5QOxRuB5FG7VAmpmZmdnOt0CF61G4Hh+3QHE9Ctfjm7ZAFK5H4fpGt0DhehSuBzO2QEjhehSubLZAKVyPwjXRtkAAAAAAwAK6QK5H4XoUobdAhetRuN5ftUD2KFyPgoO4QClcj8J147lAKVyPwrX4uEBI4XoULsS3QGZmZmam+bZA9ihcj0KFt0AAAAAAwCi2QHsUrkchd7hAmpmZmZmntkCF61G4nuy5QGZmZmam7bZA7FG4HgXMtkCF61G43u62QOF6FK7HdLdA4XoUrscEtEBcj8L16EC4QHsUrkchw7ZAKVyPwnXUt0ApXI/CtU65QGZmZmamVrlA9ihcjwICuUCF61G4nmW4QGZmZmZmM7tAZmZmZmbduUBxPQrXI9a4QDMzMzMzMbVA4XoUrkdjt0BSuB6F60C4QMP1KFyPBLlAH4XrUTjNt0A9Ctej8Ey4QDMzMzNzf7hAFK5H4TrPt0DD9ShcT1O6QLgehevR/blAzczMzIymt0DXo3A9yjG3QNejcD0KILVArkfhehRguEDhehSux/W2QD0K16NwNLZAzczMzEyLt0AfhetRuPm3QPYoXI8CArlA16NwPUoduEBI4XoU7ni3QFyPwvVozrdApHA9CtdwtkDNzMzMzPG3QPYoXI+CqrZAPQrXo3BUt0D2KFyPAoW5QArXo3A9QbhApHA9Che9tUDNzMzMTOi4QB+F61H48rdApHA9CtcNuUDNzMzMjDq4QBSuR+G67rZAAAAAAAC5tUCuR+F6VLy3QNejcD3KDLZAw/UoXA+kuUAfhetR+EW0QDMzMzOzfrVAZmZmZmZ0uEDhehSuh+m0QFK4HoUr8bRAexSuR+FCuECPwvUoXCK4QMP1KFwPbrdA16NwPco/uEDXo3A9ytO4QArXo3C9iLhACtejcD14uUBI4XoU7nW4QBSuR+E64blAUrgehWtat0AfhetR+Ci4QDMzMzNzMLhA4XoUroctuECuR+F6VCS5QHsUrkdhuLZAzczMzAyktEAUrkfheti1QPYoXI/CGLdArkfhetSPuUCkcD0KV+K5QJqZmZkZbblASOF6FO5+tkAzMzMzM5K4QD0K16MwK7dAH4XrUbgYuEAzMzMzcyG3QIXrUbieLLhApHA9Cld2uEApXI/CdYu2QFyPwvWo17hAH4XrUTgPuEDsUbgeRa23QK5H4XrUi7hA9ihcj8JduEBxPQrXY7O3QJqZmZkZG7hAUrgehWtktkCkcD0KV0u2QM3MzMzMMLlA4XoUrgcftUBmZmZmJuC3QArXo3D94LhA4XoUrsenuECF61G43u+3QAAAAABAC7hAzczMzMx/uEAK16Nwfea6QEjhehQucbhA9ihcj8KZtkCPwvUo3Li2QAAAAAAAU7pA7FG4HgV3uEAfhetR+Mi1QPYoXI/CW7ZA4XoUrgdit0BSuB6F69m4QOF6FK6HArpA7FG4HgVuuEApXI/Ctaq3QI/C9Sgcq7hAexSuR+H7tkBxPQrX4/G5QK5H4XoUK7hAj8L1KBystUAzMzMzs/q3QFK4HoVrEbdA7FG4HoV+t0BSuB6FKwa3QMP1KFzPELdAcT0K16N/t0A9CtejsBi3QOF6FK5HJLhAAAAAAMDgt0DhehSuh1i1QM3MzMyM67VA16NwPcoEu0CuR+F6lJ65QNejcD0K0rZAw/UoXE8iuEC4HoXrETy4QPYoXI9CPLZAXI/C9Wj+uUAAAAAAgH+3QOxRuB6FNbZAmpmZmVkNuEDD9Shcz4C3QOxRuB7FZ7ZAZmZmZub3uUDhehSuB663QI/C9SjchLVAUrgehatUuEAUrkfhutK1QFK4HoWrM7dApHA9ClcWukCPwvUo3C+2QArXo3C9U7ZAw/UoXA9Et0BmZmZmph24QFK4HoXr1bdACtejcH3it0Bcj8L16Ay5QPYoXI8CZ7ZA16NwPQqvt0CkcD0KV4e3QOxRuB7FcrZAFK5H4bpQtUAAAAAAAJS2QIXrUbheiLZAhetRuF7ytUB7FK5HoVW3QHE9CtcjBLlAj8L1KNz9sUAzMzMz8/u1QArXo3B9crZAPQrXo/DcuEAAAAAAwMa4QD0K16Ow37lAFK5H4bqDtUC4HoXrkYO3QLgeheuR8rhACtejcP29tECamZmZGVi3QClcj8K1NrlAj8L1KFzktkDNzMzMzCS2QMP1KFzPIbZAZmZmZubGtkBmZmZmplm2QEjhehRuJ7dAZmZmZmZ/t0A9CtejsKi3QBSuR+G6mrdApHA9CpfItkBSuB6FK1O6QPYoXI/CsLNAKVyPwjWvt0DXo3A9imy3QFK4HoWr8LhAzczMzIz8uEAzMzMzc8a2QJqZmZmZ1LdAj8L1KFyOt0Bcj8L1KLq3QOF6FK5H9bRAPQrXo/CLuEB7FK5H4eO2QFyPwvUohLlAw/UoXM9HuEB7FK5HYS+5QDMzMzNzmrNAAAAAAMBru0B7FK5Hoe21QIXrUbhecrpAhetRuJ7ttkDXo3A9ynW2QMP1KFwPbrZAw/UoXM8Ut0AAAAAAwES2QB+F61G4BLhAZmZmZuYLukBmZmZmZp63QHE9Ctfj9LZAZmZmZiZntkCamZmZmey1QFyPwvUoxrZAKVyPwjVdt0D2KFyPwu+2QM3MzMwMnLdA7FG4HsWTuUAK16Nwvf+3QNejcD3K1LZApHA9ChfDt0ApXI/CNWW4QI/C9ShcKrlAhetRuB7CtkDsUbgehSS5QEjhehTuh7ZAcT0K1+OotkAK16Nw/SG2QIXrUbhec7pAFK5H4XqPt0B7FK5HoUG3QIXrUbhebbdAKVyPwjVWtkA9CtejMCK3QClcj8K1FLZAmpmZmVmPt0AK16Nwfbe2QDMzMzPzU7ZAcT0K1+Mmt0DsUbgehe2zQIXrUbgew7lAAAAAAECIuUBcj8L16Fy3QEjhehTuZLhAuB6F65EXuUD2KFyPgpm2QI/C9SgctLZAFK5H4brZuUBcj8L1KHS5QEjhehQux7ZAAAAAAAByuEBxPQrXI3C3QLgehevRPrdASOF6FO5iuUCkcD0KV+m0QOF6FK5HzrZA7FG4HsW9tUAzMzMzMwS3QBSuR+G6yLdApHA9Chc8uEB7FK5HId+0QM3MzMzMNLlAH4XrUfjItkDhehSuB/22QGZmZmYmJbZAzczMzIxSuUDNzMzMzG60QArXo3A9PbZAexSuR+F+uECPwvUoHMuzQOxRuB6F9bdAMzMzMzNHt0BmZmZmZri3QD0K16Mwy7tAXI/C9Sjwt0BxPQrXI+m2QLgeheuRprlAuB6F65E4ukC4HoXr0bi4QLgehevR3bVAFK5H4TrVtkCF61G43tW2QHE9CtdjQLdA9ihcj8KEuUC4HoXr0d+2QNejcD0Kb7lApHA9CheKuEAfhetROAu4QFK4HoWrw7dASOF6FG5GtUCF61G4Xv+1QKRwPQpX47dAFK5H4XpxuUBI4XoUrpC3QOF6FK4HvbZAMzMzM/PeuUCkcD0Klw24QM3MzMxMArhAuB6F6xHwt0AfhetRuBm3QLgehevRpbdArkfhepQ+uEA9Ctej8Ae5QHsUrkfhb7NAFK5H4bphs0AfhetReOe3QFyPwvVosrhAKVyPwvXntUBSuB6Fq424QFK4HoUrYrlAFK5H4fpNuUDNzMzMjB64QAAAAABAF7lAw/UoXI/8t0DsUbgehdG1QHE9Ctfj4rdAj8L1KFw8t0BmZmZm5h60QHE9CtfjK7hAmpmZmdl9uEAK16NwfXy4QI/C9SjcIrdAUrgehasrukBI4XoUbp63QArXo3B97bVAzczMzAzbtkA9Ctej8Ji0QNejcD2K6bpAXI/C9aiTuEAUrkfhuhy8QMP1KFxPeLdAXI/C9aiJuUAzMzMzcwG2QClcj8I14LxACtejcP0huEApXI/Cdaa6QArXo3D9xblAFK5H4fr4tUAfhetRODC4QMP1KFyPIbZApHA9CtfztUBxPQrXo2m2QB+F61F4q7dA7FG4HgUauUD2KFyPwhm4QPYoXI9CsLlA7FG4HgUouED2KFyPgkC3QHE9CtdjNrpAUrgehSsZt0DXo3A9SjC3QKRwPQrXl7VACtejcH1BuEBI4XoUbla6QB+F61F4fLhAcT0K16M9tUDNzMzMTGq1QNejcD1KArlAPQrXozBSuEBSuB6Fq3C3QBSuR+H687dAZmZmZuYVtkBmZmZmJuW3QDMzMzPzyLhA7FG4HgUjuUDsUbgeRU+2QD0K16MweLhAPQrXo/AWtkDsUbgeBa+3QOxRuB6FhrlAKVyPwnVmukDhehSuB165QBSuR+E6D7tAAAAAAACht0DXo3A9Slm3QB+F61G4ObhAZmZmZqZXuUBxPQrXY8K4QIXrUbievbZAUrgehWunt0CF61G4Xru3QB+F61E4KbhAzczMzMzmtEBcj8L1KOa4QNejcD3KG7lAAAAAAAAquUAAAAAAwAW3QOF6FK5HPrdAKVyPwnV9tkBSuB6Fq/y0QJqZmZkZ1rdAXI/C9ah6t0BI4XoU7j+3QMP1KFxP/7RAj8L1KNzquUApXI/C9ZW2QLgehetRFLZA16NwPcpruEAK16Nwvdu4QArXo3A9WLlA9ihcj4LltkAzMzMzsyO4QFyPwvVo9rhAmpmZmRnUtkAAAAAAgIO1QIXrUbheh7VAZmZmZib1uEAK16Nw/Wa3QMP1KFwPn7dA7FG4HgX/uEAUrkfhOgy6QD0K16NwqLZASOF6FK4ztkDD9ShcTwa5QEjhehQuVrhAexSuRyFDtUC4HoXrkZ+3QJqZmZnZFbZA7FG4HsXotUDD9ShcD422QArXo3C9P7dAj8L1KJzqt0CF61G4Hte3QFyPwvVoGLVA4XoUrkettUAfhetROMO6QJqZmZkZjLlACtejcP3NtkAfhetReEq4QJqZmZkZO7ZAzczMzExOtkAzMzMzMyy4QBSuR+H6ZblAj8L1KBzat0Bcj8L16Hu5QD0K16Mw+LlAPQrXozDutkCuR+F6VO63QLgehesRZ7lAAAAAAMD9tUAAAAAAgJO3QClcj8I1jbVAH4XrUfjvuECPwvUo3Ca1QHsUrkdh8LZA7FG4HkUbuUBcj8L1aAG4QOF6FK4H/7ZAH4XrUXiUukD2KFyPAvW4QOF6FK5HP7hASOF6FK5muUBxPQrXY++3QGZmZmYmQbhAXI/C9ei0uUCF61G4XiS7QPYoXI8CALZAcT0K1yOguEDsUbgexeC4QDMzMzMzwrZAmpmZmZleuED2KFyPwgm1QHsUrkdhL7dASOF6FO5vt0BxPQrX4/q3QHsUrkfhEblAexSuRyFuuECPwvUoXIq1QJqZmZnZv7RASOF6FK6gu0DXo3A9SrK4QKRwPQqXYrdAUrgehWtiuUCF61G43kq1QNejcD0KmLdAAAAAAEDAt0CkcD0KV1i2QKRwPQrXkLhAuB6F61E9t0BSuB6Fawm2QGZmZmZm8bZAj8L1KNw/uEApXI/Ctfy1QFK4HoUrj7dAcT0K16N7uECuR+F6FH66QClcj8I1vbhA9ihcj4I/tkDNzMzMjEW2QOxRuB7F9LVA4XoUrsfLt0AK16Nw/Ya6QIXrUbgedLlA4XoUrgcHuECamZmZGdm4QMP1KFxPhrlA16NwPcr/tUD2KFyPgua2QHsUrkehdrdArkfhelQ+t0BI4XoU7u22QFyPwvVoHbhAuB6F6xF/tkDD9Shcj3a5QMP1KFxPZrZAmpmZmZmmt0DsUbgehTa5QM3MzMyM3rhAXI/C9agFuEAfhetReAy4QHE9CtejeLdA16NwPQrbuUCamZmZGRG3QKRwPQqXJLhASOF6FK76tkDhehSuR5e1QI/C9Sgc67dA4XoUrsept0BmZmZmpuK3QIXrUbie4blAcT0K1yMftUBSuB6Fa/q4QLgehetRE7dAKVyPwvXvuECF61G43gW3QOxRuB5Ft7ZAZmZmZmY/uEBmZmZm5qm2QLgehesRfbdAcT0K16Mit0Bcj8L1KBC3QFyPwvWo2bhAmpmZmRlNuEAAAAAAQHi3QArXo3B9SbhAuB6F61HttEAAAAAAgK21QI/C9SicgbpAw/UoXA/ruUCPwvUoHEK5QD0K16PwILdA9ihcjwI8uECkcD0KFyi3QDMzMzOzVrhAexSuRyGeuEBxPQrXY8K2QD0K16Ow8LhAXI/C9aiPuEAK16Nw/Tu4QEjhehRud7ZApHA9CpfnukBSuB6F6za3QIXrUbjew7dACtejcL29uUBxPQrXoy+2QArXo3C9lLdAXI/C9SjmuEAUrkfhun+0QIXrUbgeVrdAUrgehWsgtUCPwvUonAW1QB+F61F4u7ZA7FG4HkXKu0AzMzMz85O3QArXo3A9I7dA7FG4HsXZt0AAAAAAgMu4QD0K16MwgbZAzczMzIzQtkBcj8L1KCS7QK5H4XqUardAZmZmZqbJtkBxPQrXY6a7QEjhehSusbVAhetRuF7ys0CamZmZWfa2QGZmZmYmr7VArkfhehTZtkAUrkfh+la5QIXrUbie0rZASOF6FO4Qt0C4HoXrEQ+3QFK4HoVrVLdAj8L1KBwWtECuR+F6FLm3QIXrUbjeUbdA4XoUrgfns0BSuB6Fa/G2QIXrUbie5rlAexSuR+FFukB7FK5HIRu3QB+F61E4uLhAhetRuN7euUBmZmZm5tm2QM3MzMyMVbhAcT0K1yO4t0DXo3A9iiq3QB+F61E4rLdAuB6F69Ftt0A9CtejcO+3QHE9CtdjErhAMzMzM7NMt0BxPQrXo163QI/C9Sgcg7ZAAAAAAMDZt0AK16Nw/bu2QLgehesR9LhAPQrXo/DAukCPwvUonBO3QD0K16OwZbVAZmZmZmbXs0AUrkfhehy4QJqZmZlZq7hAXI/C9agZuUDhehSuh4W4QClcj8K1yLZA7FG4HgUEuECamZmZGfC1QLgeheuRF7dAzczMzMwCuEDXo3A9iuu4QKRwPQoXIrlAUrgehas+ukD2KFyPwna1QB+F61E45rdAw/UoXE/+t0CkcD0KF3G6QOF6FK4H1LhAH4XrUThxt0CamZmZWXO3QJqZmZkZvLZAH4XrUXi5tkC4HoXrERi2QM3MzMwMGrZASOF6FK7mt0ApXI/CdTu4QMP1KFwPQblAw/UoXE8ltkA9Ctej8F62QGZmZmYmdLlAj8L1KJxet0BmZmZm5sq2QClcj8K1iLlASOF6FO4huEDNzMzMjPq4QClcj8L1NbhAmpmZmZmmt0DNzMzMzH63QDMzMzOzW7dA4XoUrgfRt0DsUbgexXW6QFK4HoVrHLhASOF6FO53tUC4HoXr0di4QOxRuB7F+rZAmpmZmdmEtkBxPQrXY863QGZmZmZmabhAAAAAAECYs0BxPQrXo8m6QClcj8K1eLhAXI/C9ShnuEDD9ShcT1e3QClcj8L1HrZAPQrXo3BbuECF61G43p24QJqZmZlZ3bhAKVyPwvWTtkDXo3A9yoq3QBSuR+F6WrhAH4XrUbh4t0BSuB6Fqwm0QK5H4XpUR7pACtejcH3ttEDD9ShcT+C4QBSuR+G6nLpAXI/C9ShIuEAfhetReCK4QI/C9SicFLRAMzMzMzNbt0BxPQrXY9G4QAAAAACAGLlA4XoUrgfouUCuR+F61CK4QOF6FK5HFLhAuB6F61HStUDhehSuh5e2QIXrUbhecbdAexSuRyErt0BmZmZmpq62QPYoXI8CabhAcT0K16MgtUCuR+F61DO3QNejcD3KRblAPQrXo7D8tUApXI/CNT60QB+F61G4UrhAcT0K1yNdt0DhehSuh8O3QPYoXI9CgbdAH4XrUTg6uUCamZmZWcm+QHE9Ctcj57dAhetRuJ5yuEDsUbgehfS4QNejcD0KoLlAexSuRyGSuUA9CtejsAu4QOxRuB4F8bZASOF6FO5UtkA9CtejcEi2QBSuR+F6T7VACtejcL26uEC4HoXrUYu2QEjhehRuK7dAexSuR2HbtkBxPQrXI2e3QEjhehQu1bdAPQrXo/CfuUCPwvUoXIO1QDMzMzNz2bVAAAAAAACqtUAfhetR+Nu3QClcj8K1NbZA16NwPUpZtUCuR+F6lJC3QGZmZmZmA7pAKVyPwnWgukCPwvUonOmyQHE9CtejVbdAj8L1KBw2t0CuR+F61E+3QIXrUbiefbhAMzMzM7NdukApXI/CNfu5QM3MzMwMvrdA4XoUrgfluEDhehSuB+K3QB+F61G4tbZAXI/C9WgauEAAAAAAQO21QGZmZmamHrdAUrgehavrtkAK16NwPSG6QOxRuB6FrrdAZmZmZibItkBI4XoUrvm3QM3MzMyMArdA9ihcjwJnuEBcj8L16Ii3QClcj8I1f7dAexSuR6Hxu0CF61G43tO3QHsUrkeh1bdAPQrXo3C5uEBI4XoUrhm4QAAAAACAYbhAKVyPwjVRuEBmZmZm5mK5QHE9CtejVrZAAAAAAIAet0AUrkfheim5QI/C9SjclrlASOF6FC6PtUAfhetReFe4QPYoXI/CkrZApHA9CpdmtUDsUbgeBTW5QHE9CtejArlASOF6FC48tUDhehSuhzu5QLgehesRKLdAH4XrUXh/tUDNzMzMzHi4QArXo3A9bbhAUrgehWsQt0AUrkfhen+4QDMzMzOzXbhAzczMzAxCt0DNzMzMTFm4QB+F61H4nrhA16NwPUrJtkAfhetRuCa2QBSuR+E6I7pAUrgehWvJtkCPwvUo3OG4QClcj8J1m7xAUrgehSuLtkAK16Nw/YC3QPYoXI/CirdAw/UoXI80uEAAAAAAgBe3QHE9CtdjPbpAw/UoXA90uUDXo3A9iiq4QPYoXI9CpbhA7FG4HoX6uEAK16NwfUi2QFyPwvVo5rlAKVyPwvXYuEAfhetReFO3QFyPwvVo8LdAhetRuN6GuEAzMzMzc5C2QAAAAABAZrZAZmZmZmZxt0DD9ShcjwC3QAAAAACAcbdAw/UoXE/vt0DhehSuRzu2QHE9Ctdjt7hAmpmZmRnrtkC4HoXrkSS4QI/C9ShczbZAUrgehevjtkAK16Nw/cu5QK5H4XrUYblAmpmZmVmBuEBmZmZm5n62QNejcD2KQbhAw/UoXM8GtkB7FK5H4Vy5QGZmZmZmp7VAj8L1KBx9t0D2KFyPgv+2QFK4HoWrTLZAexSuR2EsuEBcj8L1KHm2QM3MzMyM/bVAmpmZmZmCuEBcj8L1KDi4QI/C9SjcELlAcT0K1+NKuEAUrkfh+p63QAAAAAAAdLdAMzMzM3NZuEC4HoXrUYO4QHsUrkdhsrhAw/UoXM99t0CamZmZmVK3QJqZmZnZybhArkfhehQRukDD9ShcD1S6QPYoXI9C/LZAUrgehSs3uEApXI/Cdaa1QK5H4XrU9rdAmpmZmdnLtED2KFyPAp22QIXrUbgeg7dAzczMzEwwuECamZmZWQ+3QPYoXI8C07RAUrgehWuPtkCamZmZWR23QArXo3A9jbhAzczMzIyRukCuR+F6VKK1QLgehetRL7hAexSuRyGluEDXo3A9Coa2QOF6FK4H+rVAmpmZmVkot0CuR+F61Fi7QHsUrkchy7RAcT0K1yM4uEAUrkfhuoe3QK5H4XqUzrhAhetRuB78tkAK16NwPVm3QFyPwvXoqLhAzczMzExPtkDNzMzMDEC3QB+F61G497dAFK5H4fpwuEDsUbgeRdu7QHsUrkdh67lAexSuR6G3t0CkcD0Kl6K4QKRwPQrXr7ZAAAAAAIAjtUCamZmZWQa6QPYoXI8CDLtAAAAAAEBsuUCkcD0KF+u4QHE9CtcjyLdAw/UoXE/EtkBcj8L1qJG2QB+F61F4oLdAKVyPwjW7uUDsUbgexaG4QB+F61F4lrZAZmZmZuaYuEApXI/CdRS5QHE9CtcjELhAZmZmZqbZt0DXo3A9ive5QNejcD1KKrlACtejcH0qukC4HoXrUUq0QNejcD0KmbhAmpmZmRnbtUD2KFyPggG2QOF6FK5H3bZAH4XrUXiHukCkcD0Kl/i3QOxRuB6FErdAXI/C9ShSuUDD9Shcz6a3QHsUrkehDbhAZmZmZmZetkBI4XoUrta3QB+F61G4iLdAj8L1KJy3tkDNzMzMTPS2QFK4HoVrQLdAexSuRyFIuEDD9Shcz0m2QDMzMzNz47lAj8L1KNxmtUAzMzMzM/q2QB+F61G4Z7lASOF6FO5Ft0CkcD0K1z22QM3MzMzMiLpApHA9CtcQuECkcD0KV6e4QI/C9SjchbdA4XoUrof9s0BxPQrXI1e3QArXo3B9B7tAhetRuN5PuUCkcD0K1ze6QArXo3B9cLxA7FG4HsWutUApXI/CtT+5QFyPwvWo9bVAj8L1KBxot0A9CtejsP25QOxRuB7FkblAw/UoXE9vt0A9Ctej8Py7QArXo3B9RbVArkfhetSVuECuR+F6lC25QArXo3C9v7dASOF6FK60t0AAAAAAwGq5QKRwPQpXfrhAKVyPwjX7ukAUrkfhOqS2QLgehesRT7dAH4XrUbj+uEBcj8L1aFu4QK5H4XrUnblACtejcP1HuUApXI/CtU+4QArXo3A9erdAmpmZmdm+tkDNzMzMjDC3QHE9Ctfj+LhAKVyPwnVIuEDD9ShczwS4QMP1KFxP0rZACtejcD0uuUAK16Nw/VG3QBSuR+F6m7ZAKVyPwrXLuECamZmZWRa3QNejcD2KdrhAcT0K12NqtkCkcD0K14y0QFK4HoWrJLdAAAAAAEBuuEBmZmZmJmq4QBSuR+F6WrhAFK5H4foYuEApXI/C9VG4QOF6FK5H2LhAPQrXo3B7tkCuR+F61FK7QHsUrkeha7dAUrgehatjuUBmZmZmppW3QFyPwvXofLdAuB6F69FIukBmZmZmZjC5QJqZmZlZerdAhetRuF4Ru0CamZmZmbS2QKRwPQrXBLlAmpmZmZm7t0AfhetR+Ie3QJqZmZkZTLhAZmZmZiaBt0AAAAAAQFe4QHsUrkeh5bhAj8L1KBxJtkApXI/Ctf21QGZmZmbmu7dAhetRuF5puECamZmZmfa2QClcj8K1V7pAexSuRyF9uEDD9ShcD0u2QMP1KFzP5rhA7FG4HoVMt0DXo3A9ivG1QNejcD1KZ7tAUrgehWuIt0Bcj8L1aIG5QKRwPQrXdbdAw/UoXM8OuUD2KFyPQuG3QI/C9SjcnLZAuB6F69Get0DD9Shcz2G5QGZmZmZmlrdAmpmZmVnruUDXo3A9SkK2QJqZmZnZYrdAFK5H4XqxtUA9CtejMDi4QAAAAACA/LdASOF6FO75tkD2KFyPAi64QKRwPQoXSLdAexSuR6HJvEAAAAAAgHm5QFK4HoXriLZAXI/C9WgduECamZmZWQK4QOF6FK4HPb1AMzMzM7N8uEDNzMzMTJq6QI/C9SictrdAZmZmZubEt0BmZmZmpim5QBSuR+H6GbhAUrgehev5uUAUrkfhOhe1QEjhehTu77hAcT0K12P8t0BSuB6F65y2QEjhehQujrZAPQrXozAkt0CPwvUoXFW4QGZmZmZmnbZA4XoUrscZuEAzMzMzM2m4QLgehesRkbJAexSuR2E4t0BmZmZm5kC4QEjhehTuQbdAZmZmZibGt0AzMzMz80y3QIXrUbgeU7dAFK5H4frlt0DXo3A9Sji4QOxRuB7FwrdAH4XrUTgDt0DsUbgeRfa1QEjhehQuDrlArkfhehTTuEC4HoXrkR65QClcj8L1g7hAH4XrUfiHt0CPwvUonD+1QFK4HoVr8rdAXI/C9ShRt0BSuB6FK8a5QOxRuB5FurhApHA9CtehtkAzMzMz89G1QHsUrkdhebdASOF6FO6qukDhehSux6K2QGZmZmZmhrhAzczMzIwat0BSuB6FK0i2QAAAAACAu7ZAUrgehSt0t0DNzMzMzJa3QB+F61G4QbhAFK5H4fr9tkCkcD0K1364QB+F61F4ZrtAcT0K16PyuEBI4XoU7kS3QArXo3C90rZA7FG4HkXXt0AfhetR+CS3QFK4HoWriLNAFK5H4ToYukAAAAAAgDa3QDMzMzOz/LdAMzMzM3NvuEAUrkfh+re6QFyPwvXojrdASOF6FC4fukBmZmZmZsK4QAAAAABAR71AH4XrUfiqtUB7FK5H4WW2QOF6FK5Hk7dAUrgehaultUCuR+F61La2QK5H4XoUVbhAzczMzMyQtkCamZmZWXy7QClcj8L1F7hArkfhetTstkDhehSux1a3QBSuR+G6O7dAUrgehSuLt0BI4XoUbnG4QFyPwvWog7dAMzMzMzPFt0ApXI/CNSi3QOF6FK4HzbNAw/UoXE9btkBSuB6FayS2QKRwPQoXGblAKVyPwnV/uEBSuB6Fq4e3QIXrUbheCLdAMzMzM7NNtkAK16NwvXW3QClcj8L10rZApHA9CldTuEBmZmZm5gO3QFyPwvWo7LZAexSuRyF/t0CuR+F6FB24QB+F61F4n7dAAAAAAEDnt0AfhetReLW3QEjhehQu4LZAMzMzM7OdtkAK16Nw/Re4QEjhehQu1rZAmpmZmZmssED2KFyPAi62QOF6FK7HDbhAUrgeheuqtUAAAAAAQEK2QM3MzMxMh7dAXI/C9aiJtkCamZmZ2Qu6QMP1KFyP9bhAFK5H4XoRuEAK16NwvWC4QMP1KFwPTbhAmpmZmZkAukCPwvUo3L+4QOF6FK7HsbpAPQrXo7Aot0AUrkfheje2QHsUrkdh6rZApHA9ChcdtkAK16NwfTG3QFK4HoXrerhASOF6FG7GtkDNzMzMTLi2QB+F61H4d7dAMzMzMzOmt0DXo3A9Cvq3QIXrUbjeMrhApHA9Cpfkt0AfhetReKe2QKRwPQrXgLlAPQrXozDvuEBcj8L1qIa3QD0K16MwVrhAmpmZmZkKt0AfhetR+Ea3QIXrUbieE7dAMzMzM7MxuEAAAAAAAOC6QI/C9ShcdLtACtejcD2Nt0CuR+F6lAe0QFK4HoXrwLNAw/UoXM9iukCuR+F61E64QM3MzMwMo7hAFK5H4Xr/tkAAAAAAwMm2QJqZmZlZCLZAj8L1KFxuukDsUbgeRcm3QM3MzMzMYbhA7FG4HsV1t0Bcj8L1aDm2QLgehevR97dAMzMzM/PNtUD2KFyPgi64QAAAAADAfLdA9ihcjwKeuEBcj8L1qEW3QGZmZmYmVbhA16NwPcqntUCuR+F6lAK3QOxRuB6FBLhAzczMzMzdtkDXo3A9ikG1QBSuR+H6QbdAzczMzAyFtUC4HoXrkX23QArXo3B9drZAj8L1KNyeuEAAAAAAwJe3QM3MzMzMXrVAFK5H4bqltkBmZmZmJvq2QOF6FK4HYrhAcT0K16Pyt0AzMzMzc0a5QDMzMzMzl7ZAUrgehWspuEC4HoXr0eC4QHsUrkfhvLZAuB6F69EwuEDhehSux/O0QK5H4XrULrdASOF6FK5IuEAzMzMzc7i3QLgehetR7LZAw/UoXM8QuEBxPQrXY7W2QOF6FK6HkLlAexSuRyGUtkBI4XoUbuW3QFyPwvWoZrlAj8L1KNwYt0Bcj8L1qDW3QB+F61G46btAuB6F69FHt0AK16NwPRG0QHE9Ctdjr7VAcT0K12PUs0CPwvUonOa5QDMzMzOzPLdAzczMzIw+tUAAAAAAgCW2QLgehetR3rhAFK5H4fqTukDNzMzMzJe1QMP1KFxPA7dAzczMzMxnt0B7FK5HIXC4QEjhehRujLlAH4XrUThRtkCPwvUonE2yQEjhehTuJ7ZAw/UoXI9itUBcj8L1KJ22QHE9CtdjhrhAcT0K1yMCuUAUrkfh+ou3QD0K16NwfLdA7FG4HsXGuEBI4XoULu62QLgeheuR77dAw/UoXM9Ht0AAAAAAAA63QPYoXI9CVrdAexSuR+FCuECPwvUoHHi3QOxRuB5Fo7dACtejcH0Jt0CPwvUonDO2QGZmZmam+7RAexSuR+EotkC4HoXrUdK2QD0K16Pwu7dAcT0K16O2uECuR+F61AO0QHsUrkehSrdAPQrXozCktkDsUbgexRm0QAAAAADArLZAmpmZmVlJt0CF61G4XjK1QArXo3B9hbVAexSuR+GJtkCPwvUoXB25QHsUrkehorlAMzMzM3NwuEC4HoXrUXO3QHsUrkehr7ZAhetRuF7Ot0AzMzMz8++2QAAAAABA7LVAPQrXozCyuEAAAAAAQD25QFyPwvVoMbZAuB6F69FWtkA9CtejMD64QJqZmZlZ3LZApHA9Cpert0B7FK5H4b+3QJqZmZnZ1rdASOF6FG7jtEBxPQrXo+K0QLgehevRxLlAhetRuF5us0DsUbgehTW3QOxRuB6F6LZAZmZmZuZVt0A9CtejcA6zQHsUrkfh/rpAAAAAAMAqtkB7FK5HIb+0QHE9CtejerdAzczMzIxguECF61G43g68QDMzMzMz+rdA16NwPYr9s0BmZmZmpvS4QMP1KFzPhrVAj8L1KJyat0BxPQrXI8u2QClcj8L1M7ZAhetRuJ7Nt0BmZmZmJoe2QLgehetReLdAMzMzMzMtt0CuR+F6FOG2QHE9CtejmrdAPQrXo3CjtkBxPQrXY+63QEjhehTu8bhAFK5H4brMvEBcj8L1qHG2QClcj8I1v7ZAhetRuB6ou0BmZmZmZmO2QGZmZmbmObdAAAAAAIBXuECF61G4Hjq5QOxRuB5Fn7dAAAAAAMAHvEDhehSuxw+2QAAAAACAiblAmpmZmRlUt0AzMzMzs6q3QNejcD3KnrhAzczMzEy4ukCuR+F61Cu3QPYoXI8CT7dAexSuR6FHt0DhehSux+23QNejcD1KX7ZAH4XrUbjYt0CPwvUonKG2QClcj8K1k7dAw/UoXI+2t0Bcj8L16GO4QFK4HoXrBrZAcT0K1yPcukBI4XoU7hy1QOxRuB5FFbhA9ihcjwIPtUAK16Nw/SW5QFK4HoVrW7lAuB6F65EEt0D2KFyPAla4QMP1KFyPcbNAH4XrUTgiuEDsUbgexe+4QIXrUbgeTLlAPQrXo3Dit0CF61G4Huu1QPYoXI8CPbdAUrgeheuIuEDXo3A9SiC3QOF6FK6HwrlAhetRuB5AuUAfhetR+Oi4QGZmZmYmi7JAUrgehWtdtkCamZmZmTq4QKRwPQrXobdArkfhepQ5uECkcD0K1725QBSuR+F6GrVASOF6FO7Tt0CkcD0KV2y4QM3MzMzMyrtAzczMzExluEA9CtejcE67QD0K16MwZbdAPQrXo/DQtkCF61G43iG5QHsUrkchWrlAFK5H4foYuEBcj8L1qG24QK5H4XoUo7dAzczMzIxauECPwvUo3GW3QFK4HoXrordAAAAAAEAtuECF61G4HqW5QOF6FK6H7LlA16NwPUq6t0DhehSuh+W2QB+F61G4TbhAhetRuB5/tkCuR+F6lBm6QM3MzMwM+rhACtejcP2ftkA9CtejMHa6QNejcD0KX7ZAcT0K16PmtkDhehSux125QHsUrkfhV7hASOF6FK4EuUCPwvUo3BS2QB+F61H4eLlAj8L1KFyytkAAAAAAAKG4QBSuR+H66LhAcT0K12NAukApXI/CtQq4QEjhehRuQrZAKVyPwvXPt0B7FK5HIfi4QKRwPQpXLLZACtejcD0vt0CF61G4Hnu4QB+F61E4TLZAXI/C9egAuUA9Ctej8F+3QLgehetRyrZAzczMzAzptECuR+F61GC4QI/C9SicV7JAXI/C9WgfuUCPwvUoXJm4QLgehetRc7lAAAAAAAAMuECF61G4Hl64QHE9CtejZLhAcT0K12NVt0DhehSuhyq1QNejcD2Kt7hA9ihcj8KPuEAfhetR+Dm3QK5H4XqUI7lA4XoUrkcht0B7FK5HoUu5QClcj8J1mrdASOF6FC4ytkDsUbgehci1QArXo3A92bdAZmZmZqYguUA9CtejsGS4QHsUrkeh5LdAhetRuB6OuUDD9Shcz4u3QI/C9Sgcn7dAFK5H4brStkDD9Shcz2G5QHE9CtcjpLdA16NwPcrJtkAK16NwfTi5QClcj8L1f7ZAXI/C9Wj4tEAfhetReJS1QB+F61F4X7hApHA9CtcLt0BxPQrX49K2QBSuR+F6ZLhAw/UoXE8Zt0DD9Shcz8y5QJqZmZkZ4rZAzczMzMyCtUDXo3A9yqC2QClcj8I1NrhAj8L1KFyCtUAK16NwPYu4QJqZmZlZkbdArkfhepQauEAUrkfhuu+3QBSuR+H6fLdASOF6FG4Qt0AAAAAAAD25QHsUrkehobdAH4XrUbiwukDD9ShcDwK2QK5H4XrUjLdAH4XrUfjztUAfhetRuCm2QBSuR+H6WLZApHA9CleSt0DhehSuR0+4QD0K16NwprZA9ihcj4LstkAUrkfhOme5QKRwPQqXAbhAzczMzMx0uEAK16Nw/RS3QFyPwvXon7ZAcT0K16PruEAK16Nwfa+3QClcj8K1ALpACtejcL1puECkcD0Kl261QD0K16MwvLlAXI/C9egfuEBmZmZmJs23QNejcD2KALlAXI/C9ehEtkBxPQrXY1u3QMP1KFzPrLtAMzMzM/O9t0Bcj8L1KBe0QB+F61H4DbdAw/UoXI/CtkA9CtejsCe6QB+F61G4IrdA4XoUrkfPuUBxPQrXI5S2QFK4HoUrmbZAMzMzM7MNtkCuR+F61JC4QNejcD1Kw7ZAexSuR6Fxt0CamZmZWRuzQAAAAADAj7ZAUrgehSuotkBmZmZmJiy+QFK4HoWroblA4XoUroeWtUCF61G4XiK3QJqZmZmZB7dAj8L1KFwgvUBxPQrXY0C5QClcj8J1NrdAj8L1KNxutkBmZmZmplW4QNejcD3KfrlASOF6FG7Qt0Bcj8L16Ju2QD0K16OwE7hAj8L1KJyHuEAK16NwfVm4QOF6FK4HTrZAhetRuJ76t0ApXI/CdUm3QEjhehQuQrpACtejcD1ltkBxPQrXo9a4QIXrUbgezrlA7FG4HkVuuEBI4XoULlm0QGZmZmamNbRAexSuR2Fft0BmZmZmJsm3QAAAAABA8bdA7FG4HsWSt0DhehSuh163QOxRuB7Fr7dAj8L1KNw+uEDsUbgexXO4QClcj8I1T7hA7FG4HgVUuEApXI/CdV63QPYoXI+CoL1APQrXo/ADukAAAAAAAAe3QArXo3A9O7lAcT0K16PRt0B7FK5H4SS1QArXo3B9RLxAcT0K12O6ukAAAAAAgCW3QOxRuB5F87VAPQrXo7Aht0ApXI/CNeS3QEjhehSuXrdA16NwPUrct0DNzMzMDLu4QM3MzMxMo7VAexSuR6FGuEC4HoXr0W24QIXrUbhedrZAzczMzAwrtUBxPQrXYxC3QBSuR+E6TLZAj8L1KBxruEAfhetRONGyQM3MzMwMa7dA7FG4HkWkuUCF61G43kC3QMP1KFzPwbdAuB6F69Fns0AAAAAAAMG3QI/C9ShcqbVAcT0K1+NntUAAAAAAABe3QLgehevRBbdAXI/C9WgHt0DNzMzMjLG4QM3MzMwM7bdA4XoUrkfdt0A9Ctej8KW3QM3MzMxMvbZA9ihcj8J+tkDsUbgehY23QOxRuB6FE7dAw/UoXM/LuEBSuB6Fa5C3QDMzMzOzL7dACtejcD2ktkCF61G4nvy2QB+F61F4h7VApHA9CtfUt0BI4XoUbsm3QM3MzMyMjrlAmpmZmRlIt0AK16NwPf+3QBSuR+F6O7dA4XoUrgfbt0DXo3A9ihW4QClcj8J1KLdAuB6F6xErt0C4HoXrEee2QEjhehRuk7VAH4XrUbgLuECamZmZmTK4QHE9CtejkrRAAAAAAIB/tkCuR+F61Da3QMP1KFzPKLhA4XoUroc0t0ApXI/CNQS4QIXrUbie3LZAFK5H4bqCt0DNzMzMTKm3QLgeheuRWLlAH4XrUfhKt0DXo3A9CkO1QKRwPQrXqLdASOF6FO5St0BSuB6FKwO4QIXrUbiegLZA16NwPUqUt0D2KFyPQh64QMP1KFzPmLlAexSuRyGdtUCkcD0Kl/qzQMP1KFzP7rVAmpmZmRlYtEB7FK5HIRW5QPYoXI8C7bdA16NwPcrTtkBI4XoULoq3QEjhehSu/bVApHA9Cld5tkBxPQrXo424QHsUrkdh2bhAMzMzMzNfuEBI4XoU7pG7QClcj8K177dA16NwPQowuUAzMzMzM/e3QJqZmZlZ4bJAH4XrUbj9uEAUrkfhus+3QJqZmZlZELZArkfhelQ6tkBmZmZmpvi3QFyPwvUoTbZAPQrXo7AJt0CF61G4ng26QHE9Ctcj8LZA4XoUrgfAtUCF61G4nhW8QKRwPQqX2rZAZmZmZmb6tkDD9ShcT5O4QI/C9SgcRrZAZmZmZiYztkCkcD0KV+e3QI/C9ShcBrdA16NwPUrbuUAAAAAAQKS5QEjhehSugrhAexSuR+FqtEAK16NwPRu4QHE9CtcjordAAAAAAAAHt0DD9ShcD8W4QOxRuB7F+7hArkfhepRIuEBxPQrX41S3QGZmZmYmgrNAXI/C9WjDt0AfhetROIS3QOxRuB4FmbhAcT0K16MEuECamZmZGaW2QOF6FK6H8rZAUrgehatVuEDD9Shcj+C4QArXo3C97LhA4XoUrofjuUCF61G4HvS4QMP1KFzP17RAexSuRyHltkDsUbgeRRu4QM3MzMyM/rVA4XoUrgfRuUDD9ShcT464QM3MzMwMVrZAw/UoXE8etkA9CtejcOG3QPYoXI/C/7dAzczMzMwNuECF61G4Xju4QPYoXI/CWrdA7FG4HgUfuEAAAAAAgNy2QArXo3B9KLVAKVyPwnVYuEDNzMzMzA+4QArXo3D9pbZApHA9Ctd2t0AK16NwfTS7QFyPwvVoArlAj8L1KFxCtUCamZmZGRe3QArXo3C9ZbVAZmZmZialuUAUrkfhupC2QNejcD2KVLdAMzMzM7ONtkC4HoXr0W6zQIXrUbjegrdA16NwPcpeuECuR+F6lC60QJqZmZlZ2LVAUrgehSsotkBmZmZm5oC5QClcj8K1nrdAH4XrUbgNuEBSuB6F6xy2QFyPwvWohrpAFK5H4fqUukCkcD0KV0y5QEjhehQuFblApHA9CldhuUCPwvUonB64QGZmZmbmB7dA7FG4HsUit0BI4XoU7tm2QLgeheuRsrNASOF6FO6guEAAAAAAAB24QK5H4XqUK7hACtejcL0OuEAAAAAAwGu4QB+F61E4MrlAPQrXo/B9t0B7FK5HIVy3QB+F61E4jbdACtejcL0euEAfhetR+DS2QClcj8L1P7hAFK5H4TqktkCkcD0K1425QOxRuB5F87dAMzMzM/O/t0BxPQrX45u6QOF6FK7Hm7hAKVyPwjWkt0AUrkfhOgC2QGZmZmYmbrZAH4XrUbiAs0AAAAAAQBm2QEjhehTuULVAPQrXo/C/uEBmZmZm5ve3QArXo3A9PLdAzczMzMxVuUCamZmZWda2QGZmZmYmbLZAKVyPwrVtuECkcD0KFzC6QPYoXI+CvLVAZmZmZiYluUBcj8L16Me2QIXrUbjeQLxA7FG4HsWRuEAzMzMzMz23QFyPwvWo97lAZmZmZmbhuUCkcD0KF+C1QIXrUbherLtACtejcL0Zt0BmZmZmpq+3QI/C9SgceLhAKVyPwrWguUAUrkfh+kO1QOxRuB7Fs7hA4XoUrkfStkDNzMzMTHC3QKRwPQrXQ7VASOF6FC51tkDXo3A9iuq3QOxRuB5FYrdAAAAAAMBbuEBmZmZmpti3QI/C9Shc+bNA4XoUrsfgt0AK16NwfUm5QJqZmZmZL7hAH4XrUbjntkC4HoXrUfq2QI/C9SicibZAzczMzIyGtUC4HoXrUV61QHE9CtejzLhAzczMzIzGtUDhehSuB+61QDMzMzOzd7lAUrgehetEukDsUbgexZW0QBSuR+G64LVA4XoUrsfSt0CamZmZWUK2QDMzMzOzZblAFK5H4fr+t0A9CtejMAK3QNejcD1KZrZApHA9CpfJuECPwvUonP24QBSuR+E6bLZAUrgehetetkCPwvUoHMa5QM3MzMxMXblArkfhehT/t0AfhetR+OK3QJqZmZlZ57lAzczMzIzKskAK16NwfZy4QOF6FK5HTLhAexSuR+E1tkDhehSuB6q3QD0K16PwM7lAAAAAAEA6tUApXI/CNc24QB+F61G4JrpArkfhelSWtECuR+F6VHC5QB+F61G4lLVAKVyPwrVZs0CamZmZ2Va3QK5H4XoUR7dA16NwPUrItkA9Ctej8Ga4QI/C9SgclLlAcT0K1yOStUA9Ctej8JO6QDMzMzMz4bhACtejcP0AtUBI4XoUbjS6QOF6FK4Hd7VAj8L1KNzJtUA9CtejsKq6QNejcD1KBbdA9ihcj4JGtUB7FK5HobW1QK5H4XrUs7lAuB6F6xHGtkAfhetReCC4QOxRuB6Fw7lAMzMzM7N0uUCF61G4HlKyQArXo3D9k7lAj8L1KBzKt0DsUbgehXe3QD0K16NwYbZACtejcD3StkAfhetReEi3QAAAAADAK7hAcT0K12OAtUDhehSuh3q2QHsUrkehfrVAUrgehasGukDD9Shcjx24QMP1KFzPO7lAPQrXo7ANuEDNzMzMzKe2QFyPwvXoXrdAXI/C9ej4uEAK16NwvaK1QK5H4XqU5rZAhetRuJ4XuUCPwvUoXKi6QHsUrkfhM7ZAhetRuB7PtUA9CtejMHy2QI/C9SgcyLdAMzMzM7NmuEAfhetROAq6QK5H4XqUqbVArkfhehR8tkBI4XoUrv24QMP1KFyP+bZAuB6F69GuuUCkcD0Kl2m4QClcj8K1HbZASOF6FO6rtUDD9ShcjxO4QI/C9SgcgbZAzczMzIxitkCamZmZmUm7QFK4HoVrYLhA9ihcjwLauEAUrkfhuvS3QBSuR+H6dbVAw/UoXM+yuECF61G4Hmm4QD0K16Ow9LdAw/UoXM9ltkC4HoXrESi3QDMzMzPzJrlAPQrXo3DovEB7FK5HIcq3QB+F61F4KLhACtejcH0guUDXo3A9SvC2QFK4HoWrjbVAj8L1KBzdtkBSuB6Fa/e2QHsUrkehBrVAKVyPwnVstUAK16Nwfay2QBSuR+F6ubZAcT0K1yOYtUBmZmZmprC5QB+F61G4lsBAuB6F69GvuEC4HoXrUcK3QD0K16NwLrpAMzMzM7PetUD2KFyPAo23QLgehevRxrpAw/UoXA91u0CPwvUoXFG3QBSuR+E6rblAexSuRyHPuUDD9Shcj/y3QBSuR+H6q7pAmpmZmZlRuUBcj8L1aHm4QPYoXI/Cc7ZAw/UoXI84tUDNzMzMDOm3QClcj8K1mLVAPQrXo7B1vUBxPQrXo463QFK4HoVru7dArkfhehT6t0CkcD0KV0i3QDMzMzOz1LhAcT0K1+N4t0Bcj8L1qG63QArXo3C9qrdAZmZmZqY+uECuR+F6VEm3QClcj8J1UbVAH4XrUfjIuEAK16Nw/d64QIXrUbhet7hAw/UoXI8dt0BxPQrXI1G4QLgehesRJLdA16NwPQoAuUBI4XoUbhS3QGZmZmbmj7VAPQrXozB7uEAfhetReGu4QK5H4XoU+rVAcT0K1+NptkDD9Shcj4W3QKRwPQpX4LdAw/UoXE8EuUA9CtejMNS4QNejcD3K3LdAzczMzAxAuEDNzMzMTPS6QBSuR+H62LdA4XoUrgdNtkDD9ShcD8O6QHsUrkehEbdAhetRuF5kuEBI4XoU7nS2QPYoXI8Ct7VAj8L1KFzUuECamZmZWcC4QD0K16Nw9rhAAAAAAMCjt0CkcD0K1xC4QArXo3A9zbdApHA9ClfDu0AAAAAAgEe5QJqZmZkZvLdAexSuR2HVtkCPwvUonGG3QEjhehTuWLZAmpmZmVlQt0BI4XoUrkK3QHsUrkchoLdAXI/C9SjaukBxPQrX49e2QArXo3C9qrhAuB6F69HttkD2KFyPgty2QLgehesR/LhArkfhetRKuUDhehSuh9W0QLgeheuRubhAFK5H4frAuEDsUbgehUm6QNejcD1KrrlA9ihcj8JhuEAfhetReBe7QB+F61H4cbdAUrgehWtRuUAzMzMz86K4QPYoXI9Cd7VAMzMzM3PLt0CamZmZ2Rq5QHE9CtejS7dAZmZmZiaOuEBcj8L16Jq3QIXrUbjeMLhAXI/C9ehauEAAAAAAwPq1QAAAAACAhbdACtejcD03uEA9CtejcKe2QMP1KFyPfbZAuB6F61GbuUB7FK5HoZ+4QJqZmZkZzLlAMzMzMzO4tEC4HoXrUQ+5QEjhehRuObZApHA9CpdAvEDhehSuxyi2QIXrUbje+7hAKVyPwvUiuECuR+F6VG62QI/C9SjcQrhAUrgehWuktkBcj8L16M24QM3MzMwMR7VAKVyPwjV/uUAUrkfhupW5QFK4HoXrxbpAcT0K16MDtkD2KFyPQqm3QFyPwvXo3LdAPQrXo/Bot0BI4XoUrgS4QMP1KFzPNLhAPQrXo3AUtkApXI/Cdfe0QArXo3C9vLhAFK5H4XpXt0DD9Shcj7e4QIXrUbgekLdA16NwPYp5uEA9CtejsBy3QAAAAAAAkbVAKVyPwnU1uUBSuB6Fa6G5QHE9CtcjubdAhetRuB6iuEAAAAAAwHy2QEjhehQuw7dA4XoUrgcBuEB7FK5HYaCzQOxRuB4Fc7dArkfhepT8rkBmZmZmJu64QHsUrkchGrdAKVyPwnXstkB7FK5HoRe3QHsUrkehIbdAcT0K1+Nwu0DhehSuBym3QM3MzMxMD7hAhetRuB4luUCF61G4noi2QDMzMzMzZrdA4XoUrsdGt0CamZmZmcy5QFK4HoWrmbdA7FG4HoWLtUCF61G4Hn65QAAAAABADbZAuB6F69HyuEDXo3A9ytq2QOF6FK6HIbxAcT0K1yNauEDNzMzMjD6zQOxRuB6FtLlAAAAAAEAtuEDNzMzMDIm4QBSuR+F6n7ZAFK5H4XpouECF61G4XnO3QJqZmZmZibZAj8L1KNyPuUA9CtejMPmzQGZmZmbmD7NAcT0K1+OwuUB7FK5HIWK5QDMzMzPz6blAPQrXozBxvEAK16Nw/TO3QPYoXI/CE7ZAhetRuF4uuUDXo3A9CgK2QD0K16MwRrdAZmZmZqbeuEAUrkfh+ra3QKRwPQoXQ7hA4XoUrofht0CuR+F6FK+5QPYoXI8C0rZAcT0K16N6t0DNzMzMjLa4QD0K16NwRbdA4XoUrseutkBmZmZmpny2QArXo3D917hACtejcH0EuEBI4XoU7g66QHE9CtdjA7VACtejcP1Ct0BI4XoUbgy5QOxRuB5FNrpAhetRuJ7DuUCuR+F6FJC4QHsUrkehtrhAzczMzIwAukBI4XoULmm3QDMzMzMz+7hAuB6F6xHet0BSuB6Fa4q4QI/C9SgcQ7hAw/UoXA8Hs0DhehSuB0W2QM3MzMyM17VApHA9Chc3tUDNzMzMDCO6QGZmZmamRbhAj8L1KJxEt0Bcj8L1aJK3QArXo3D997NAZmZmZmYft0CF61G4nny3QLgehetRRbVApHA9CtfHt0DXo3A9yqa3QHsUrkfhELhAZmZmZuaTt0AAAAAAgKa3QKRwPQrX77VAhetRuF6guEA9CtejcIG7QOF6FK7HRrdAexSuR2FluEB7FK5HYWO4QBSuR+E6U7ZAPQrXo7DAtUBmZmZmpsG4QClcj8K1W7hAPQrXo3BYuEAAAAAAwG63QK5H4XqUCbdAKVyPwjV9uUD2KFyPgu+3QLgeheuRubVASOF6FG4btUCF61G4Xqu5QLgeheuRYLhA7FG4HgW+uECamZmZGQO4QGZmZmZm/bZAKVyPwrVBt0A9CtejMHC1QHsUrkehaLdAmpmZmVkat0C4HoXrEYq4QDMzMzMzn7dAmpmZmZnquEDXo3A9iqi4QHsUrkfhS7ZAw/UoXI+ct0CF61G4nsK2QAAAAADAm7hA7FG4HgX/tUDXo3A9Cg+3QI/C9SjcXrZAw/UoXA+HtkAK16NwvVS3QM3MzMxMcLhA4XoUrgf6t0AUrkfh+t20QOF6FK7H/bhAXI/C9ehHuUBSuB6Fq6G3QNejcD2K07ZAMzMzM/MeukA9CtejcMC1QOF6FK6HfLhAAAAAAEBJt0CuR+F6VFe0QBSuR+G6dbdA16NwPcpCuEDhehSuhy+2QMP1KFzPCbdAPQrXo3A7uUCamZmZmTC3QFK4HoWr6bVAZmZmZmY/u0DD9Shcj9q2QMP1KFyPU7dAj8L1KJwauEAK16NwPeu1QIXrUbie87ZASOF6FK61tUDhehSux4y2QEjhehRuPLlA16NwPYrKt0DNzMzMzBe3QBSuR+E6obZApHA9CteVtkCPwvUo3Ji3QHE9CtdjCLlA4XoUrofnt0DD9ShcT5a1QB+F61H4EbZAFK5H4TpBt0Bcj8L1qKO3QOF6FK4HUrlAMzMzM7P1s0AfhetRuPO0QFK4HoXrtrZAKVyPwrVguEBI4XoU7ia0QK5H4XqUmrhAzczMzMwhtkC4HoXr0RG1QHsUrkchE7dAXI/C9WjQuEDXo3A9yqa3QB+F61E4BLhAH4XrUXgEt0CamZmZma63QOxRuB6Fo7hAhetRuB4BuUB7FK5HYZC4QBSuR+E6TLZAUrgehWt8t0DD9Shcj2+6QB+F61F4RbpAUrgehautt0A9CtejMAC8QM3MzMwMfLhAZmZmZubTvEBSuB6FayK1QClcj8L1r7lA16NwPUrQtkApXI/CdbW4QKRwPQqXGbZASOF6FK6luEAUrkfhOuy0QOF6FK6HublAexSuR+E8t0CkcD0KF924QHE9Ctcjo7dAcT0K16PVuECkcD0K16G4QLgeheuRzrdApHA9ClfqtkAAAAAAQGS2QNejcD2KVbhAFK5H4XpWtkBSuB6F60e4QEjhehTuVLhA16NwPQp/uEBxPQrXo9O1QBSuR+E6XbhACtejcP2duUBcj8L1KHG6QGZmZmamQbhAcT0K1yOltkBmZmZm5oW3QGZmZmZmn7ZAhetRuJ6TtEAUrkfhOqi4QAAAAADAOLpACtejcL3UtEB7FK5HIZu0QClcj8J1dbhAFK5H4Xp/uEBSuB6FqyS4QGZmZmbmzrdAZmZmZqb+uUCuR+F6VFi4QNejcD1KabhAAAAAAACluEBcj8L16KG2QIXrUbje1bZApHA9CtcEt0CPwvUonCezQIXrUbieyrhACtejcL2rt0BI4XoUrs65QEjhehRuU7hAAAAAAMD1uECamZmZWby4QKRwPQpXprdAPQrXo/A9uEDNzMzMjL+3QArXo3A94LRAcT0K1yPRtkBSuB6F6624QPYoXI+CwrZA9ihcj0LotECkcD0Kl5i2QJqZmZkZ9rpAXI/C9SjhtkDsUbgeBUa1QAAAAACAW7VAzczMzIyutkCkcD0KFxW1QOF6FK6HB7ZAPQrXo/B6tUB7FK5HoX62QMP1KFzPVLdA16NwPYpbtUB7FK5HoVe5QAAAAACAX7dA7FG4HgVutkAAAAAAgBq1QOxRuB5FC7dAPQrXo3ARt0DD9Shcj9K1QArXo3C9FLhAZmZmZqYOuECamZmZGdi4QMP1KFxPb7dApHA9CpeMtUCamZmZGSq3QOF6FK5HTbhAzczMzEyEtkCPwvUonNe4QI/C9SgcP7VAhetRuB6LuEAUrkfheqa3QK5H4XoUcLVAH4XrUThzt0B7FK5HYSO3QD0K16PwPrlAZmZmZqaIuUA9Ctej8Ji3QAAAAACANrZAAAAAAEDGtUCuR+F6VDa3QEjhehTuq7dAuB6F61EdukBxPQrX40e3QB+F61F4z7hAj8L1KNzJtUCamZmZGam3QEjhehSuorhArkfhetTvtkBxPQrXYzS3QOxRuB7FfbhArkfhehSwt0DsUbgeRZy2QLgehesRA7ZAw/UoXM+9t0D2KFyPgmK3QMP1KFxPf7hA9ihcj8JkuEApXI/CNc+3QJqZmZlZUrhAUrgehSvgs0AK16Nwvfq5QGZmZmYm/7dAUrgehSt6uEDhehSuR3+3QClcj8K1nbdAXI/C9ai8tkC4HoXrkWe2QFK4HoUr+btAKVyPwvV3uUAAAAAAwK62QFK4HoXrCbhAj8L1KBzjtUCF61G4XvO2QDMzMzPz1LZASOF6FK5ntUBSuB6FK2m4QMP1KFyP97ZAAAAAAMCKtUAK16Nw/SO3QOF6FK7HF7pAFK5H4ToIuUAUrkfhOpu4QFK4HoVrLrVA4XoUroc8vUAUrkfhekq6QOF6FK7HKbdAj8L1KNwpt0D2KFyPgt+4QM3MzMzMoblAZmZmZiZ4tUBSuB6Fa/S4QOF6FK7HCLRAXI/C9aheuEAUrkfhuuS2QBSuR+E6QLRAAAAAAIA1uEBcj8L1KAG4QPYoXI9C2rhAKVyPwnXjtkBI4XoUbuG3QIXrUbheK7ZAZmZmZibptUBSuB6Fq+mzQOF6FK5H37dAFK5H4XqEukAfhetR+Eq6QPYoXI9C7LhAUrgehStjuUCamZmZmT65QB+F61F40rdAFK5H4fq9t0DD9ShcT7u2QMP1KFxPjLlAmpmZmdl8tUBI4XoULiC3QEjhehTuXsBAXI/C9ShktUAzMzMz8yK3QBSuR+F6IbdAmpmZmRl7uUBxPQrX4xK3QAAAAABAd7dA16NwPYrzt0C4HoXr0ea3QFyPwvWoc7hAFK5H4XoGuEAzMzMzM6y+QMP1KFzPA7dASOF6FO5JuUApXI/CtZC4QHsUrkfhBrdAw/UoXM9cuEAAAAAAQDy3QPYoXI8CcLdAzczMzEwOuEB7FK5Hoa66QDMzMzPzhrpAmpmZmRl2uUA9Ctej8Aa1QArXo3D98rdAZmZmZmbTt0DhehSuBxuyQPYoXI+Ct7ZAuB6F65HeuEBmZmZmZk23QBSuR+H6KLhACtejcL1EtkBSuB6FaxK1QClcj8K1+rdAMzMzM/PTtUBI4XoULlC5QHE9CtcjEbdAXI/C9Si/tkAfhetROF63QD0K16MwfrdAhetRuF70uEDXo3A9ivu3QClcj8L1C7pAAAAAAMCcuEBSuB6Fa/+4QM3MzMxMRLhAZmZmZmYIt0DhehSuh4a4QPYoXI+CublAzczMzMyrt0DNzMzMzP22QFyPwvUoKrpAexSuR+E8tkCF61G4HvW2QHE9CtfjbbhA7FG4HgWJtkApXI/CtT22QClcj8K137ZAUrgehavqukBSuB6Fa0m3QAAAAACAhLZA16NwPcqjtkBI4XoU7t+4QClcj8L1H7lAKVyPwrV5uEAK16NwPfq2QOxRuB6FjbdAH4XrUXjKtkBSuB6F6xu2QB+F61F4MLlA9ihcj4JYtkAAAAAAgIS2QM3MzMwMn7NA9ihcjwK7uUC4HoXr0V23QFyPwvXosrZAw/UoXI++uUA9CtejsAG3QJqZmZmZ5rlAmpmZmZkgtkBmZmZmZhe4QOF6FK5H57hAKVyPwrWptkC4HoXrEV61QM3MzMxM0bRAexSuRyFKtkAzMzMzs3yzQClcj8K1a7ZAPQrXo7B0t0D2KFyPwpK9QD0K16NwabZA9ihcjwJJtkAK16NwfWG2QArXo3A9A7dAw/UoXM9ct0CamZmZ2Qq4QHE9CtejarZArkfhelT4tkDXo3A9Ciu6QDMzMzNzibZAexSuR6HOvUCkcD0K11y3QEjhehSu/bRA16NwPcrZtECkcD0KVxG5QArXo3D9ibZAXI/C9WhkuEBmZmZmpl24QI/C9Sgch7lAPQrXozBntkA9CtejMD25QB+F61G4g7ZAXI/C9SgZuEDsUbgeBci2QArXo3A93rBAFK5H4bqmuUDNzMzMjGa4QBSuR+H6vLtApHA9Chfwt0AfhetROGC3QB+F61F4p7VAj8L1KJx/t0DNzMzMDKe6QFyPwvWoi7dArkfhepRdtECamZmZWUy3QFK4HoXrk7hAZmZmZmaZt0DNzMzMjIa1QOF6FK4HsbhACtejcH1VuUBI4XoULk+4QFK4HoVrnrZAXI/C9ajnuEApXI/CdUa3QEjhehTun7dAuB6F6xEDuEA9CtejsIa3QOxRuB7FD7pAhetRuJ7ztkAfhetR+PS4QIXrUbieV7RAmpmZmVmkuEDD9Shcz3a6QM3MzMzMprVAZmZmZmZYt0BxPQrX4/y3QHE9Ctej+LdAKVyPwjWhtkAzMzMzM/y1QLgehevRurZAH4XrUXgdt0BSuB6Fq4e7QArXo3A9NrNAw/UoXI8ot0AfhetR+GK4QLgehetR2rhA16NwPQratkCkcD0KF4q2QMP1KFxPHbVA16NwPUoBt0A9CtejcEa4QBSuR+F6dLhAZmZmZuaat0BxPQrXI2K2QOF6FK7HNLlAw/UoXI9Jt0CkcD0K16y2QI/C9Sgc1rZAKVyPwrXsuUBI4XoULr22QM3MzMyM3bhAAAAAAMAit0B7FK5HoR+3QLgeheuR9rZAH4XrUfj/tUBmZmZmpt+4QJqZmZlZFblA9ihcj8JNt0D2KFyPAha4QDMzMzNzO7hAuB6F61GMukC4HoXrkSe6QHE9CtdjSbdAMzMzM7Ort0BI4XoUbj+5QNejcD3K17dAPQrXozDfuEDNzMzMjG64QClcj8J1O7hACtejcD07t0AAAAAAwDK0QB+F61H4PLlAw/UoXM/FuEA9Ctej8DG3QM3MzMxM47pAH4XrUThFuEAK16NwvTa3QLgehetRyrhAMzMzM7MouED2KFyPgiS4QM3MzMwMZrZAFK5H4TpNvEA9Ctej8OC1QLgeheuRCbdAPQrXo7D1u0AK16NwvUy2QEjhehSuBLhAuB6F65HsuEB7FK5HYdK3QOF6FK6HSLlA4XoUrkcrt0CPwvUoHMq3QNejcD0KzLVAKVyPwnUctkBSuB6Fqze3QLgehesRDrlArkfhelSbtkBI4XoULt+3QLgehesRwrZAXI/C9Wjbt0DsUbgexfG3QAAAAADAp7ZAzczMzEzDtkDsUbgexcy2QDMzMzMzAbdASOF6FG7zt0CPwvUonIq3QD0K16NwdrdAXI/C9agduUDNzMzMDHm2QPYoXI8Cg7VA7FG4HkXOuEBcj8L1aKu3QB+F61F4crZAMzMzM3Mxt0B7FK5HoSG4QJqZmZkZPbdAAAAAAMAYt0CF61G4Hpu5QHE9Ctdj+LZAAAAAAMCxt0AfhetROGC1QBSuR+E6XbdAmpmZmRkpuEDhehSuB3O3QNejcD0KL7dAXI/C9ag4v0CF61G43tS3QArXo3B9q7lAuB6F65E5t0DXo3A9irO2QD0K16Mw77hA16NwPYqlt0CuR+F6FCO2QGZmZmamo7dAcT0K12OMukDsUbgehUq4QAAAAACAQrhAzczMzMwIuEAAAAAAgGa4QArXo3C9W7hAXI/C9Wgmu0BmZmZmJnu3QArXo3D927hAexSuRyE4tEAK16NwPUe3QB+F61G4cLRAFK5H4fratkA9Ctej8EK3QD0K16MwkrdACtejcH3KtkBI4XoULjC4QI/C9SgcBLdASOF6FG7Mt0CamZmZGcu3QJqZmZmZLrlAexSuRyHqtUBSuB6Fq762QK5H4XrUVbdAmpmZmdlmt0CkcD0Kl6S1QOF6FK4HzLhACtejcD3utUAfhetROJO4QBSuR+G6abVAexSuRyGMt0AAAAAAABC6QBSuR+H63rVApHA9CpeMtkBxPQrXoxa5QOF6FK5HVrdA16NwPUrQtkAUrkfhOmi5QD0K16Nw97dAw/UoXI+it0B7FK5HISK5QM3MzMxMXrhAexSuR+EBtEAK16NwfUS3QHE9CtejCrhASOF6FO7WuEAzMzMzs6W4QOF6FK5HmrhA7FG4HoU3t0CamZmZ2aW4QFyPwvWocrZAZmZmZqbMuUAfhetRuMq3QGZmZmZmorVAexSuR+HEt0BxPQrXowG3QIXrUbhe4rlAmpmZmRlgtUDXo3A9Ske4QArXo3A9NbpAw/UoXE+VtkCuR+F6VCW4QB+F61H4i7dAmpmZmRk9tkDhehSuRwm6QOxRuB6FPbhACtejcP2YtUDNzMzMDL+3QBSuR+G6i7dACtejcP11tkD2KFyPwtW4QD0K16Mw/rRAZmZmZmZIvUAAAAAAgBC3QBSuR+G6obVAUrgehetDuEBI4XoULse2QOF6FK5H0rVAUrgehesutkDD9ShcT523QI/C9ShclrhAcT0K1yM9vEApXI/C9fK4QClcj8I1uLhAZmZmZqYAukBcj8L1aDi0QBSuR+H6UrhAFK5H4Tp8t0AUrkfheqy1QArXo3D9C7dAj8L1KFxdtkCamZmZGfW2QFK4HoVr07hAcT0K1+OLuEAUrkfhej23QOxRuB6FxbZAH4XrUThmt0Bcj8L1qPG1QDMzMzPzTrdAzczMzIyYt0DsUbgeRR63QOF6FK5HerpAKVyPwnWwtkCF61G4XoK5QI/C9SjcKrVAzczMzAxmt0AK16Nw/du3QB+F61E4ALlAhetRuF7KtkCamZmZGfy3QLgeheuRjLhAuB6F6xF4ukAK16NwfZG5QNejcD3KvLdA7FG4HkWrtUAzMzMz82O3QM3MzMxMNbhAXI/C9SjXt0CkcD0K13e2QOF6FK6HVbhAXI/C9Wg0uUD2KFyPQt62QD0K16Pw57ZAFK5H4TpktkAUrkfheqi1QPYoXI8CTbpAH4XrUThkt0AAAAAAwHC4QArXo3C9tLVAhetRuJ6RuEBI4XoULjm6QGZmZmamQ7pAMzMzMzN7t0CF61G4nsW3QKRwPQpXELdAMzMzM/PDt0Bcj8L1qP22QOF6FK5H0rhAH4XrUfjqt0BI4XoULjy4QKRwPQoXmLRAw/UoXM9AuEAK16NwfUm5QOF6FK6H8LVA16NwPQrruEBxPQrX4/y1QAAAAAAAmbRAMzMzM7MJtUBmZmZm5oW1QMP1KFzP8LdAMzMzM7MKuUApXI/CdaO2QEjhehRuE7hAZmZmZibitkDNzMzMzKO5QI/C9ShcObdA4XoUrof/tkB7FK5HoYy3QGZmZmZmnrlA9ihcj8IQuEDD9Shcj9m5QHsUrkdh77VAw/UoXE/StkB7FK5H4Wa4QClcj8I1F7VAw/UoXI/utkCkcD0KF2G5QOF6FK4HGrVAw/UoXM/vtkBI4XoULrO2QI/C9SicKbtAMzMzMzMMtUC4HoXrkc+4QFyPwvWoMbZAhetRuN59uEBxPQrX47S4QFyPwvXoFrdAuB6F61EJt0B7FK5HIZy3QHE9CtcjErhAXI/C9SgTuECkcD0K10G3QNejcD3Kt7dAUrgehWvltUDNzMzMTGq3QBSuR+E6n7dAXI/C9ejut0D2KFyPgpu4QEjhehSudbhAexSuR+GAvEDsUbgeBam2QI/C9Sic8LVAAAAAAACwtkBxPQrX4424QOxRuB7FxrhAUrgehetWuEB7FK5H4eG3QHsUrkchvrRAj8L1KJyMt0AzMzMzs8+0QOxRuB7Fw7hAFK5H4frDuEBxPQrXI8O5QArXo3C9VbZApHA9ClcqtkDNzMzMDMW3QHE9Ctdjs7dAhetRuB4FuUAAAAAAwOe3QAAAAAAA6rRAw/UoXE9bt0DNzMzMDDO3QPYoXI/CwLVAPQrXo/DiuEAUrkfh+iW4QK5H4XqUsrZASOF6FG7ZtUBSuB6FK0C5QOF6FK4HlbhAcT0K12MFukDhehSuB0i4QGZmZmZm07dAmpmZmRk9ukBmZmZmJtu2QI/C9ShcLrdAFK5H4boguEDXo3A9StK3QHE9CtejLbhAAAAAAIA5uEC4HoXrUdm2QClcj8J1uLRAmpmZmdnWtkDD9Shcjw63QClcj8K1erVAj8L1KJyLtUBxPQrXo1a1QLgeheuRObhACtejcD3kuED2KFyPAqi4QI/C9ShcP7pAKVyPwrWwuEB7FK5HoT62QOF6FK6HO7dArkfhehRHvEBxPQrXY2S0QHE9Ctdj27pApHA9Clejt0AUrkfh+jO5QClcj8K1g7dAMzMzM7OsuUC4HoXrkQi4QHE9CtfjW7NACtejcH2KtkCkcD0K10y5QIXrUbiee7dAuB6F6xFZt0CkcD0KV7C3QArXo3B9LbdAH4XrUXgitkAfhetROMW2QOF6FK6Hu7hASOF6FK6QuUDXo3A9ila3QB+F61H4XLhAmpmZmVnuuEDsUbgexYy3QOxRuB6FFrZAw/UoXA/st0AK16Nwvdy3QM3MzMzMTblAj8L1KNyFt0BSuB6FK1q4QI/C9SicMbZA16NwPUppuEAAAAAAQMa3QPYoXI/C3rhAH4XrUTjLt0BmZmZm5hS2QK5H4XrUYbhAuB6F69EKuUBI4XoU7rO5QIXrUbgelLdA16NwPUpbvEAK16NwPUS2QGZmZmZm37dA4XoUrgeCt0DD9ShcT3a8QIXrUbjeKbhA7FG4HsUluEDhehSuRyS5QHE9CtdjHbhA9ihcj8KQt0DXo3A9Sl+4QHE9CtejYbdAexSuR2HQtUCamZmZmWa3QOxRuB6F6bdA16NwPQqDt0ApXI/Ctam3QI/C9Sicl7pAUrgehWv5tkB7FK5H4Yq3QMP1KFzPpbZAXI/C9ahGuED2KFyPgti4QFK4HoXrxLZAAAAAAEDXt0CF61G4HiK4QClcj8J1NbZAhetRuB5Ot0CamZmZGW+3QK5H4XqUAbpAexSuRyHYt0C4HoXr0bq5QArXo3A9F7dAAAAAAICVtkAUrkfh+iO3QHE9CtfjULhASOF6FC5btUD2KFyPwkm2QIXrUbje6rZApHA9CpcruEBxPQrXo1e2QAAAAABAmrlAMzMzM7Mvt0B7FK5H4Q24QJqZmZnZj7pAMzMzMzNLtkCF61G43gG2QI/C9SjcKbhAw/UoXA/ltkBmZmZmJrW3QClcj8L14rdAhetRuJ7Bt0CuR+F6lJ+3QFK4HoWrGLdA7FG4HkVoukBcj8L1qJK5QDMzMzMzE7ZAw/UoXA/AuEDsUbgexfG5QHE9CtejDblA7FG4HkWAukBcj8L1aLm4QFK4HoXrLrdApHA9Clcft0DD9ShcD+S5QJqZmZkZrrZAmpmZmZl8t0BxPQrX45m5QArXo3B9P7ZA7FG4HoXWt0AK16NwvXy9QArXo3D9jLZApHA9CheXtEApXI/CtX67QIXrUbjehbhAj8L1KBwpt0CamZmZ2WK1QOxRuB4FYLhAuB6F65H+t0AAAAAAwDq2QD0K16MwWbdA4XoUrofouEDD9Shcj3S3QB+F61H4yLZAcT0K1yOMtkC4HoXrEdG3QLgehesR5bhAw/UoXM8nu0AK16NwPUW4QEjhehRuLLhASOF6FG4DtkC4HoXrkQK1QBSuR+E6rrxAMzMzM3PcuECamZmZ2a+5QAAAAAAAELdAw/UoXA+VuUBI4XoULki2QAAAAACAtbVAzczMzExKt0D2KFyPQle3QGZmZmZmJbdAUrgehWsXtkApXI/CtZu4QClcj8I1VrZASOF6FC4RtUDXo3A9iny2QPYoXI8CS7dAw/UoXI9XtEDXo3A9SmK0QGZmZmYmf7hAhetRuN4Zt0BmZmZmJp62QPYoXI/Cr7ZAhetRuN6/uEDhehSuBw64QClcj8I1RLZAH4XrUXgTtkCPwvUo3O62QFK4HoWrO7dAAAAAAIBUtkBI4XoUrly4QIXrUbgegLdAZmZmZqbEt0DhehSuB3W3QDMzMzPzCblAKVyPwrW0tkBcj8L16Nq2QArXo3C9XbdAXI/C9Wg1s0BxPQrXo3y3QFyPwvXoZ7dAXI/C9ej9s0CPwvUo3OS3QFyPwvVoWrdAuB6F6xGBt0DNzMzMTN24QLgehevRrLVAzczMzEwSt0DXo3A9SiC3QDMzMzMzorhAXI/C9SjmtkD2KFyPAhS2QNejcD3KCLZAmpmZmVkpuUAK16Nw/Wu3QKRwPQqXrrVA7FG4HkVKt0C4HoXrkaq2QEjhehQuSbdA4XoUrgenuECF61G43gW2QLgehetRWbZAhetRuJ7vtkApXI/CdRO3QPYoXI8CB7NAH4XrUTjOtkB7FK5Hocq4QGZmZmammbRAPQrXozAYuEBxPQrX40u5QArXo3B9oblA4XoUrseztkAUrkfhuo24QMP1KFzPxLdAKVyPwnV6t0A9CtejMDC4QMP1KFyPObtACtejcP2It0CamZmZmQO3QOxRuB5Fs7ZAw/UoXI8HuUAAAAAAgP64QPYoXI9CsrVAPQrXo7D5tUBmZmZmZpG3QK5H4XpUV7tAFK5H4Xrnt0CamZmZWYe3QLgeheuRv7hAFK5H4bpTuEAK16NwfXm4QArXo3D9i7VAZmZmZqZ5t0AUrkfhehC4QNejcD3K2bdAMzMzMzPat0CamZmZ2ZS0QMP1KFxPM7ZAexSuR6G1tkB7FK5HYaC6QArXo3A9ZrlAzczMzEwztUB7FK5HIZ61QFyPwvWoyrdAhetRuN6/tkD2KFyPwtW4QBSuR+F6JrdAzczMzMxEtUC4HoXrUQW4QGZmZmamdLhAhetRuF7auEB7FK5H4ee4QArXo3C9y7NAcT0K16OotUApXI/CdZu2QK5H4XrUBLdASOF6FK4suEDNzMzMzC25QArXo3B9WbRAPQrXo/AUuUCamZmZWc23QArXo3C9ILRApHA9CpfOuECkcD0KF4e6QM3MzMzMVbNAhetRuN5uukAK16Nwvdm4QD0K16Oww7VAFK5H4TrKukCkcD0Kl7i2QB+F61G4TrNAUrgehWtEtkC4HoXrUc+2QDMzMzNznLhAKVyPwnWztkAK16Nwvcy4QDMzMzOz1LZArkfhehR/t0BI4XoUbsa3QFyPwvWo9bZAH4XrUbgquUAUrkfhOuC2QOxRuB6FMLtAKVyPwnWJt0CF61G4nsS0QD0K16Mw1bdAuB6F6xE8t0DXo3A9ityzQMP1KFzPrbhAUrgehavYtECamZmZWQe5QClcj8K11LdAj8L1KBxptkAzMzMzczq4QFyPwvUoxbhArkfhelThtkDXo3A9Cvi1QClcj8I1D7pACtejcP3OuEBmZmZmpvu3QIXrUbgeeLZAzczMzAxytUCkcD0KF4KzQOF6FK5HibhA9ihcjwKot0Bcj8L1aAe1QFyPwvUoQrdA7FG4HgU8uEDhehSuRyq4QFyPwvXoJbdAhetRuB5Jt0Bcj8L1aNe2QGZmZmZmGrhAAAAAAEDFt0BI4XoUrn+3QHE9CtejcrlAcT0K12Obt0AfhetReLW3QIXrUbheobZA9ihcj4IOuUC4HoXrUYe2QDMzMzMzObVAUrgehauas0DsUbgexdS5QEjhehQuD7lA7FG4HkUIt0AAAAAAAJO2QNejcD0KS7ZAmpmZmZm1tkDhehSuRxC4QHsUrkch+rtAH4XrUTi2t0DhehSuh9a4QDMzMzMzmrdAuB6F69EVtEB7FK5HITK+QI/C9SjcvbVAuB6F69GzuEAfhetRON22QKRwPQrXWLlA16NwPcqwtUCF61G43jm5QFyPwvWos7ZAj8L1KFxSt0BI4XoUrr+4QHsUrkdhpLlAZmZmZubGt0D2KFyPgh+5QK5H4XoUmrdA16NwPcqhtkBxPQrXo329QOxRuB7Ft7dApHA9CpcptkC4HoXr0VC4QBSuR+E64rZAhetRuF52uEAAAAAAQIq2QK5H4XoUjrdAH4XrUfjFtkBxPQrXYxu5QFK4HoWrh7dAKVyPwnVstkCuR+F6lJC5QB+F61E4gbZApHA9CtfeuEBmZmZm5kW3QEjhehTupbNAPQrXozB6uEDNzMzMDAy4QIXrUbgeSbVApHA9ChemtkBSuB6F65W7QEjhehQuerdApHA9CpdotkBmZmZmJp63QNejcD2KU7hAmpmZmdnytkDNzMzMjFa4QPYoXI/CL7xAPQrXo3CGtECamZmZmSm3QEjhehSuabhAFK5H4fpau0C4HoXrUdi5QDMzMzPzCLVASOF6FO4zt0A9CtejcAO3QBSuR+G6frhASOF6FC4duUBmZmZm5sa4QKRwPQpX/rdAH4XrUXgytUCPwvUoXFq7QFyPwvVoF7lA7FG4HsV8t0A9Ctej8By7QFyPwvVoVbRACtejcL3BtUBcj8L1qA+5QB+F61H4i7ZAhetRuF51uUDD9Shcz066QNejcD2Ke7ZAmpmZmZmMukDhehSuh4u3QPYoXI+C2bhAMzMzM3OUt0CuR+F6lDC3QKRwPQrXLrlASOF6FO5Ot0DXo3A9ikC1QPYoXI9C7rdAexSuRyGZt0DD9ShcTxC4QKRwPQpXtbVAuB6F61HUtkBmZmZmJvu1QGZmZmZmzLZACtejcP0tuEApXI/CdSC3QPYoXI9C+bdA7FG4HsVDuEBxPQrX40m6QHsUrkfhULdA4XoUrkfqtkD2KFyPgt21QD0K16NwcrZAAAAAAAA2tkAK16Nw/Qa4QGZmZmZmT7dAXI/C9Sjtt0CamZmZ2SS5QD0K16NwLLZASOF6FC6lvEAzMzMzs/23QAAAAACAWrhAexSuRyFqsEAAAAAAAEe4QClcj8K15LlAH4XrUXjvt0CF61G4HmO2QI/C9SicY7dA7FG4HoXhtUCF61G4Hma4QBSuR+E607hAhetRuN5RuEDsUbgeBaO3QFK4HoUra7tAhetRuF6QuEAUrkfhOg65QDMzMzMzwrZAFK5H4Xq8t0BSuB6F66q3QMP1KFxPH7pAKVyPwnXdt0BI4XoU7k22QFyPwvWovbZArkfhehRkuEAfhetRuKG2QArXo3B937ZAPQrXozBlt0DhehSux4K5QPYoXI8C27dA9ihcjwKgtEAAAAAAQMe2QLgehevRFLdAuB6F65EBt0A9Ctej8EG4QArXo3B9q7dAj8L1KJymuEApXI/C9e+0QHE9CtdjxLZA16NwPQqquUBI4XoU7hO3QLgehesR97VA4XoUrofQuUBI4XoULhW4QFyPwvWo77dAH4XrUbgBuECPwvUoXHa3QHsUrkchBrlAzczMzIwjuUCPwvUoHPm3QMP1KFwP57dAUrgehWtBuEAfhetROJq3QClcj8I1u7dASOF6FG4AuUBxPQrXY+m1QM3MzMzMSLVAzczMzAyxt0AfhetROLG4QNejcD0KbrhAPQrXo3BDuEAzMzMzczy1QK5H4XqUmbhAKVyPwnXatkApXI/CNUi3QIXrUbjeY7ZAmpmZmZkPuUBI4XoUbhe3QIXrUbie+7ZAzczMzMxHuEBSuB6Fqx23QDMzMzNzp7dAj8L1KBwHuUCuR+F6VJiyQLgeheuRELlAH4XrUXieuEBI4XoUbl+4QBSuR+F66rVAw/UoXE+auECkcD0Kl5K3QI/C9SgcrLpASOF6FC7RuUApXI/C9bq3QPYoXI8CfbdAPQrXo/CJtkAfhetRuBa5QNejcD3KgLZAzczMzMzyuUAzMzMzM7u1QHE9CtcjcLVA4XoUrsc0uECamZmZWeC3QMP1KFzPY7hA4XoUroc6tkCF61G4Xta1QMP1KFyPzLZAj8L1KJxIt0AK16NwfU65QFK4HoWrkbdAFK5H4brIt0AUrkfhuvW2QFyPwvWoE7ZAKVyPwjVSt0C4HoXrURm3QEjhehQudbZAmpmZmRm2t0CF61G4noa4QEjhehRuaLdAH4XrUXhTuEAzMzMzc8e0QM3MzMxMerhAPQrXozDctkAAAAAAAJu1QNejcD2K/7ZAj8L1KJz3tUA9Ctej8B63QGZmZmYmMrlAj8L1KJzMtUCamZmZmXC4QMP1KFzPHbZAMzMzM7NstkBSuB6Fa5K4QM3MzMxMZLVAuB6F65F1t0DNzMzMTKy2QFyPwvXo2rlAAAAAAICotkA9Ctej8Jy1QKRwPQoXmLpA16NwPQqut0DhehSux026QDMzMzMzN7ZAUrgehWsqtUAAAAAAwCG2QMP1KFzPIrhAFK5H4fpkt0BI4XoUbpG3QLgehesRXrdAZmZmZmZFtkAfhetRuJ64QAAAAACAkbRAexSuR2FBt0AfhetRONO2QNejcD0K9bpAj8L1KJw5uEBI4XoULvm2QEjhehRu+7ZAFK5H4frIuUDXo3A9Cqa2QB+F61H4UrZAj8L1KByBuECF61G4Xju4QK5H4XoU+rVA7FG4HkVEuUAUrkfhOjK8QHE9CtejxbhASOF6FC54uEApXI/CdT22QHsUrkehWrZA4XoUrgdVtkDD9Shcjx63QM3MzMyM0blAFK5H4frNtECPwvUoXEO3QK5H4XoUmblAMzMzM/NEt0DhehSuR5K3QB+F61E4zbZAFK5H4XoRuEDhehSux9i3QClcj8L1z7dAj8L1KNxSuUCuR+F6FA64QEjhehTuR7RASOF6FO5GuUDXo3A9yju4QLgehevRr7dAw/UoXE+3tkB7FK5H4Vm5QI/C9Sjc87pAzczMzAzpt0DhehSuB+K3QAAAAAAA97VAH4XrUbhLuUDhehSuBy+2QK5H4XoU27dAhetRuJ57t0BSuB6Fayu2QIXrUbgeR7dAhetRuN77tkAK16NwPV65QDMzMzPz07ZAuB6F61GAtkBI4XoUrsO4QKRwPQrXFLhAFK5H4Tq4t0C4HoXrUWi3QFK4HoVrnbdAzczMzEwlt0DhehSuB6K1QJqZmZmZTrZAXI/C9aggtkCkcD0K19S2QNejcD3KVrdAzczMzIyItUBcj8L1aKq1QOF6FK7HJ7ZA16NwPUq8tEDNzMzMDLu4QPYoXI8C2rhAuB6F6xFyt0AfhetRuPu3QNejcD1KSrZArkfhehQnukCF61G4XhW2QKRwPQpXMrdAmpmZmRlXuECPwvUonFi2QHsUrkdhH7lAzczMzMzNuEAK16NwvYC4QD0K16Ow2LlAj8L1KBzftkDsUbgehVe3QPYoXI/CRblAAAAAAIBxt0CkcD0KF1K3QKRwPQrXzrVAZmZmZuZZtEBSuB6FK6SzQClcj8J14rhAZmZmZubiuUAK16NwPQq4QNejcD2KOrdAw/UoXM/tt0CamZmZWdK1QAAAAABAVrdAAAAAAMAOuUA9Ctej8Hm2QIXrUbiew7hAzczMzAxdtkCuR+F6VJ22QOxRuB7Fl7dAmpmZmVlSt0A9CtejMH6+QB+F61F47LVA9ihcj0JNu0CF61G4Xq66QK5H4XpUALpAcT0K12OSuECPwvUoHC24QHsUrkchK7dAj8L1KJxauEAzMzMz83a4QDMzMzOzKbdAZmZmZuZFtkDhehSuB7e5QFyPwvUo6bZAAAAAAIC7tUAfhetRONe4QOF6FK4Hr7hACtejcD0duECPwvUoHNe8QArXo3D9sbVAZmZmZuZxtUA9CtejcC23QHE9CtcjyLZAUrgehevmt0B7FK5HodW3QEjhehQuMrtAj8L1KJxFt0ApXI/CdTe3QFK4HoVrN7VACtejcH34tUCPwvUo3Du3QIXrUbgexLhAZmZmZibBt0CuR+F6VB63QArXo3D9XLZACtejcH0wtUAfhetReHe4QFK4HoVr5bVAzczMzIwqt0CkcD0K18i4QGZmZmYmILtAuB6F65Hxt0CuR+F6FPu4QFyPwvWo6rNA7FG4HoW9tUDD9Shcz0W6QD0K16OwvrdArkfhehRau0AUrkfheky4QAAAAADAgrtA16NwPQo4tkCuR+F61PG3QJqZmZlZ7rZA7FG4HsXbtUDsUbgeRa+5QEjhehTuUbVAAAAAAMBEtkDD9Shcj5a4QMP1KFyPVLVAzczMzMyDtkApXI/C9WC3QB+F61G4hrdAzczMzIz1tkA9Ctej8EG2QIXrUbgewLdAcT0K1+PjtkAAAAAAAHa3QB+F61E4OrpAexSuR2EvukCF61G4nnW3QPYoXI9CZrZAFK5H4XpUuUCuR+F61Oa1QGZmZmZmTLhAmpmZmdnZt0DsUbgehTK1QGZmZmamebdA16NwPQrQtkDD9Shcz8S3QFK4HoVrH7hAuB6F69EKt0AzMzMz85i3QFyPwvVoGLhAw/UoXI92uEDsUbgeRe63QJqZmZmZDLlA4XoUrge0uEC4HoXr0X62QB+F61H42rVAKVyPwjUquUDD9Shcz8u2QAAAAAAAtLhAj8L1KFyFuECamZmZ2VuzQBSuR+G6DLZAAAAAAEAht0CF61G4Hh23QK5H4XrUerpAMzMzMzMBuUBmZmZm5ve5QMP1KFwPX7lA7FG4HsWZtkCuR+F6lLKzQJqZmZnZIbhAUrgehetOtkAK16NwPbK3QLgehesRbrBAPQrXozCUtkC4HoXrEdq2QJqZmZkZErZAUrgehSvftkBSuB6Fq+u4QOxRuB7FS7lA7FG4HgW2t0CuR+F61Nu3QD0K16Mw77ZAPQrXozAKt0AAAAAAwNq3QIXrUbieBLdAhetRuF4sukC4HoXrUVqzQMP1KFyPVrpAZmZmZuaMt0CamZmZGea2QLgehesR27dAUrgehauYuUBxPQrXI624QMP1KFwPkrdASOF6FG6FuEBSuB6Fq121QHE9CtcjRrpA7FG4HgXzs0AfhetReGm5QOF6FK4HkLdAuB6F6xE1t0CamZmZWb+3QOF6FK5HE7dAZmZmZqactUDD9Shczy65QLgehesRurZAw/UoXE9btkA9CtejcNu1QAAAAADA1LtACtejcL23uEApXI/CtT22QOF6FK5HFLdAAAAAAIDIuUCPwvUo3Gm3QI/C9SgcG7hApHA9Cpfqt0DsUbgeBay2QLgehesRlrdAexSuR+H8tEApXI/CtQW5QArXo3A9HblApHA9ClfruEDNzMzMzHS2QFyPwvXojrhAj8L1KJx9t0BI4XoULhi3QDMzMzNzC7dA16NwPQq7tkCuR+F6FCy4QHsUrkdhfbxAj8L1KBxluECkcD0K1521QMP1KFyPZbdAPQrXo3DztkC4HoXrkai2QAAAAABAJ7dAZmZmZmaGtkBSuB6Fq2W5QGZmZmbmErdAFK5H4fqktkC4HoXr0Se4QHE9Ctfjo7lAcT0K16Out0B7FK5H4cq3QFyPwvXoBrdAuB6F6xGctUCkcD0KFxK6QHE9Ctcjy7ZAuB6F65Gkt0CPwvUonEO4QM3MzMyM9rdAAAAAAEAltkAK16NwPeG1QI/C9SgcgbhA9ihcj4KTt0B7FK5HYSu5QOF6FK6HZblASOF6FC4MuEDhehSux7W3QPYoXI/C7bpAuB6F61GquEBxPQrXY/22QKRwPQrX1KxAKVyPwrVvuEDXo3A9ShO3QHE9Ctdj07lAAAAAAAB4uEDhehSux662QMP1KFxP0LhAZmZmZmbkt0AK16NwPZ+2QD0K16Pw2LZA7FG4HoVIuUAfhetR+K63QBSuR+H63bZAAAAAAIBUuECPwvUonIG1QK5H4XpUwLdA4XoUrke9t0B7FK5H4ce2QFyPwvWoqblApHA9ChdntkDhehSuR/S3QJqZmZmZXrZAhetRuB60t0AK16NwvTi6QClcj8L13LdA7FG4HkVMt0ApXI/CdQm7QK5H4XrUNbVA16NwPYpGuECkcD0KV9G6QD0K16OwG7hArkfhelSjt0AUrkfhOg64QKRwPQoXi7ZAUrgehWu2tUCPwvUoXFe2QMP1KFwPs7hArkfhepTatkA9CtejsDm3QGZmZmZmT7hAKVyPwrX8tUBmZmZmZjG2QLgehevRj7tAPQrXo3C8t0AUrkfhOr25QKRwPQoXvLhAuB6F65GTuEBmZmZmprW2QMP1KFzP67ZA4XoUrgdaukCamZmZGSe4QLgeheuRTbZAH4XrUXjVuEDNzMzMDCS3QB+F61F4ULVACtejcD2RukDD9Shcj7O4QKRwPQqXmbdAAAAAAMAauEBxPQrX4+C2QGZmZmYmnrdAUrgeheuXtUDNzMzMTJa1QK5H4XpU8rVAhetRuB6WuUDXo3A9Cte5QHE9Ctdj+bdAH4XrUbhGt0AUrkfh+my3QDMzMzPzybNAUrgehes4tEDNzMzMTDO5QFyPwvWo/rdAhetRuF5ru0DNzMzMTBK3QNejcD0K8LZAhetRuN6Mt0C4HoXrUay4QJqZmZkZr7ZAH4XrUTj9t0BSuB6Faz+5QHE9CtfjZ7dAuB6F61Evt0B7FK5HYaS2QM3MzMwM37ZA4XoUrgcMt0AfhetReDm2QBSuR+F6PLhAzczMzMz+t0DsUbgexTy2QNejcD1Kz7ZAj8L1KFzMt0CamZmZGQi4QDMzMzPzp7ZA4XoUrsdct0AK16NwPWi1QMP1KFwPBrpAuB6F69HUtkB7FK5HIa62QM3MzMwMnbZAhetRuF6ltEAUrkfheqC3QEjhehTu+bdAj8L1KFxCskDNzMzMDNu1QHsUrkch6LZA4XoUrgfKtkDXo3A9itq2QGZmZmbmy7dAPQrXo7DNtUDsUbgexYm5QLgehesRn7ZAuB6F69FjukDXo3A9Sge5QOxRuB5FkrdAw/UoXA/tuEAzMzMz89m2QOF6FK4H2LdAmpmZmVleuUA9CtejsGG4QK5H4XrUz7lA9ihcj8Kqt0AAAAAAwM+3QM3MzMzMXbZA7FG4HgWMt0DD9ShcT561QFyPwvUoDLhASOF6FG6DtUCuR+F6FEu4QEjhehRuSrhACtejcD1LukD2KFyPAiu4QLgeheuRo7dAZmZmZuYlu0DD9Shcj/O4QHE9CtfjG7ZAMzMzM7ORu0AfhetROKW1QHsUrkdhZL1A4XoUrgc3t0AfhetRuP22QK5H4XoUfrVASOF6FK7vuUDsUbgeRe+2QHE9CtfjgLhAj8L1KJyrtUBI4XoUrje3QHsUrkchcrZAMzMzM3O8tkDD9ShcjwG5QFyPwvXonLVAhetRuB6Jt0CuR+F6FIq1QJqZmZmZ0LdAzczMzIx1tUA9CtejMOK3QOF6FK4HWLZAKVyPwvXls0CkcD0Kl8e5QI/C9Sicc7VAPQrXozC3tUDhehSuR0i4QHsUrkfhObdA16NwPUqYuUBcj8L1qGq2QLgehesRTLdAUrgehSv0tEDNzMzMTLq4QBSuR+E6ErdAw/UoXI9iukA9CtejMOS0QKRwPQpX3bhA7FG4HoV5s0AfhetRuI27QD0K16Pwi7dAexSuRyGxt0BmZmZmprO5QClcj8K1hbhA16NwPYrHt0AAAAAAgM64QKRwPQpXdbdAKVyPwvU7tUAfhetReE63QMP1KFyPx7dAUrgehSuNtUB7FK5HoUi3QLgehesR8bZArkfhetR1ukCPwvUoHGS2QK5H4XqUMbhA4XoUrgdZuEApXI/CNUe4QOF6FK4HmbhAKVyPwrUrt0BxPQrXo662QOxRuB5FmrlAmpmZmZmWtkDsUbgeRXm4QArXo3A95rhAw/UoXI+bukBcj8L1aGq4QDMzMzPzE7ZArkfhetRFtkCF61G4nqy4QKRwPQpXlblAH4XrUXjYtkDNzMzMTHK3QJqZmZlZsLZAmpmZmZkgtkCuR+F6VB22QM3MzMxMMLdAzczMzMxhtkDsUbgeBQK4QPYoXI+CsbhAMzMzM/OpuECuR+F6FHK2QD0K16NwhLZAcT0K16Oet0CkcD0K14m4QHsUrkfhnbhAMzMzMzPYtUDsUbgexeq1QNejcD1KKbdAXI/C9ah7tkAUrkfhuj64QB+F61F4x7dAexSuR2GxtEDhehSux5W1QD0K16Nw7rdAH4XrUbhtvEAUrkfhemi3QAAAAAAAabdAcT0K1+OYuECuR+F6VFO4QBSuR+H66bVACtejcD0VuUApXI/CdWK3QK5H4XrUtLdAj8L1KFz9tkAUrkfheiq3QMP1KFyPBrhAXI/C9ShTt0AUrkfh+qy2QDMzMzPziLNAcT0K12NYuEDNzMzMjFi5QDMzMzNzS7dAhetRuF5eu0DsUbgexWK0QArXo3A9PbdArkfhetRAtUB7FK5HYemzQFyPwvUourhAXI/C9ajIukBmZmZmpsi2QDMzMzPzVbZA9ihcj0LltkAAAAAAwIi3QJqZmZlZ7rdAXI/C9aiwtkBmZmZm5iq2QM3MzMzMBrdACtejcP2jukB7FK5HYdu1QKRwPQoXr7dA4XoUrseSukBmZmZm5pS4QArXo3A9RrhAmpmZmVlct0CkcD0K1wm5QMP1KFxPZrhAFK5H4fpxt0D2KFyPQhy2QPYoXI8Cw7pArkfhelS/uECamZmZWe66QAAAAACA87dAj8L1KJwwtkBSuB6Fayy4QK5H4XoUUbhApHA9CtcOuECkcD0KV5+3QOF6FK5HybhA7FG4HoWYt0BI4XoUrpG4QHsUrkfhWLhAmpmZmZlbtkBxPQrXY/q2QOxRuB6FdbhACtejcP2IuEDXo3A9Cvm2QPYoXI+CNLhAUrgehStyt0DsUbgeBbW6QLgehesR+LlAw/UoXE9ftkApXI/CNS21QIXrUbhe+rZAw/UoXA9xukA9CtejsGm2QClcj8J1crdAPQrXo3CmuEAzMzMz89m3QJqZmZkZTrZAj8L1KBwPt0AK16NwPVW2QPYoXI/CVLhAcT0K1yMBuECF61G4XpK1QHsUrkfho7ZAZmZmZuZ2t0Bcj8L1aJ24QJqZmZkZ3rVAcT0K1yNEuUAUrkfherK1QPYoXI9C8bdA4XoUrkc9uEB7FK5HYWS3QHE9CtdjbbhA16NwPYrEtUDNzMzMzN20QFyPwvVoprZAUrgehWvhuEAK16NwPSq5QOxRuB5FP7hAXI/C9eiOt0BmZmZmJly0QK5H4XqUE7lAhetRuB65uEAUrkfhOgq0QK5H4XpUB7dAAAAAAIDTtkD2KFyPgvG1QGZmZmZmZrZAUrgehStUtkDhehSuh8GzQI/C9SjclbdAzczMzIzGtkAzMzMz8+e3QFK4HoVrZrlA16NwPUpbt0AzMzMzMxq3QJqZmZkZ4bdAH4XrUXgIukBmZmZmJvu2QAAAAADAGbhAAAAAAIAWtkAfhetROEC2QKRwPQqX07VAH4XrUbjbuEDD9Shcz2e5QHE9CtdjJLhAzczMzEwhuUDD9ShczyG3QGZmZmYm/bhAZmZmZub0tkDXo3A9CoK3QGZmZmYmzrhA16NwPUqsuUCkcD0KV/W6QNejcD3KcbdAZmZmZqZdt0CPwvUonPS3QPYoXI/CpLZACtejcH3ptkAzMzMz86a2QK5H4XqUNrdAZmZmZibItkA9CtejsI24QFyPwvVoErpA16NwPQphukAK16Nw/fG2QB+F61E4Q7dAFK5H4TputEDNzMzMjKq3QIXrUbgev7hAXI/C9SgkuEBI4XoU7uO3QClcj8K167hAAAAAAIAHtkAUrkfhemS4QBSuR+G6arhAFK5H4TrPuECkcD0KV6u5QFyPwvUoe7hACtejcL1jtEDsUbgeRT62QB+F61F487dAw/UoXM/+t0D2KFyPgq23QArXo3D9MbdAmpmZmRl5uUB7FK5HYZW3QOF6FK4HerdA7FG4HsX+t0AAAAAAANq2QKRwPQpXL7VAFK5H4Xpnt0CkcD0KFzG2QIXrUbiev7dAcT0K1yNLuEAfhetROOW4QMP1KFyPU7hAH4XrUbiztECkcD0KFxO5QK5H4XoUirdAMzMzMzNatkA9CtejcK62QD0K16NwObhA16NwPcpKt0DNzMzMjE20QPYoXI/C4LdAMzMzM7NsuECkcD0Kl3K3QBSuR+E6krVAuB6F65E9tUCamZmZ2Yu3QLgeheuRWbZApHA9ClcgtkCuR+F6lK65QKRwPQrXXrhAUrgehatYuUAAAAAAgBK6QClcj8J1cLhA9ihcj0Iru0B7FK5H4Se3QHsUrkehb7VApHA9CtclukC4HoXrUfi4QEjhehRuH7ZAPQrXo/AiuEC4HoXrEdW7QB+F61E4ibhApHA9ChfOtkCPwvUo3Eq6QBSuR+G677dAj8L1KFzWtkCPwvUoXCu3QArXo3D9C7lAFK5H4Xr2tUCF61G43lW5QFyPwvUoZ7lAH4XrUTiuuEAK16Nw/eK2QClcj8L1TrhAj8L1KNzXtECuR+F6lH+2QOxRuB5Ft7ZA7FG4HoWZtkD2KFyPAhm6QBSuR+G6dbZAFK5H4foOuEBmZmZmJli2QBSuR+G6HrdA4XoUrkeyt0BxPQrXowy3QKRwPQrX5rZAw/UoXM9Yt0D2KFyPgqW2QOF6FK5HELdAw/UoXA8PuEC4HoXrkcK3QD0K16OwxbdAMzMzM7PTtECPwvUoXGy3QHsUrkfhSrZAmpmZmRl+ukBSuB6FawK4QB+F61F4IbpAXI/C9ajYuEAfhetROBi2QGZmZmZmZLZAAAAAAMDKtkD2KFyPQmS6QLgehesR4LNArkfhehSVt0Bcj8L1aFy5QOxRuB7FZLVAAAAAAADNtkBcj8L1qNW2QFK4HoWrJrdAhetRuB7Is0DD9ShcT5O3QI/C9ShcerlAAAAAAEBNtkDD9ShcD4O2QB+F61H4mrdAKVyPwnWftUAUrkfhOpe5QLgeheuRcbpAexSuRyEltUAAAAAAgMS5QOF6FK6HELhAKVyPwnV4ukBxPQrXIya5QKRwPQpX67hAhetRuJ5Qt0DXo3A9SgW4QNejcD3K3LZAZmZmZibvuEApXI/C9SO2QHsUrkehy7hASOF6FG4BtkB7FK5HoZa5QKRwPQqXtrVApHA9CteNtkAK16Nw/ae4QFK4HoXrQbhAcT0K1+Net0BmZmZmZlG4QNejcD0K5rVAj8L1KNw6t0BxPQrXY621QAAAAABAybZAPQrXo/AbuEBcj8L1qMm5QFyPwvUokLRAj8L1KFygskDhehSux3i3QPYoXI9Cc7hArkfhepS3t0AK16NwPYG2QAAAAAAApLdAKVyPwvVTtkDXo3A9Sh22QK5H4XqUtrdAw/UoXE8Qt0DNzMzMTJS3QLgehetRj7lA9ihcj8L1uEBmZmZmphO4QNejcD0KFrVA4XoUroeBtUApXI/C9Vy3QNejcD0KmrVA9ihcj4Iat0A9Ctej8K23QClcj8J1GLdACtejcH0KuEAUrkfh+oq4QPYoXI9C8bdAXI/C9aiMt0BSuB6Fq0C5QM3MzMyMMrlAMzMzM/ODuECPwvUoHPC3QB+F61H4QLdACtejcL0ZuUA9Ctej8Jy0QM3MzMzMbbVAH4XrUXgRtkAUrkfhOle3QHE9CtcjNbdAw/UoXA+euUC4HoXrEX+4QJqZmZkZqrhACtejcL12t0D2KFyPQv+2QD0K16Pw9bhAPQrXozDtuECuR+F6VK62QMP1KFxPIr1AexSuR2Gmt0DD9Shczx+2QM3MzMwMr7JA4XoUrkf6tkDhehSuxxC4QHsUrkchcLZAZmZmZibpuEDD9Shcj8O4QFK4HoXrerZAuB6F69EzuECF61G4ntK2QI/C9SjcTrlASOF6FO7CtkA9Ctej8Fu4QDMzMzMzUrlAH4XrUbhNuEDsUbgexdC4QClcj8J1zbhAMzMzM7N7t0CamZmZGZK3QGZmZmbmlbdAuB6F69HOuEA9CtejsFK2QClcj8L1BLlAZmZmZiYVt0ApXI/CtS62QHsUrkdhzbtA4XoUroeJt0CamZmZ2V20QBSuR+E6TrlACtejcH1jtkCF61G43gm5QKRwPQoXL7RA9ihcjwIBt0CamZmZmfK1QDMzMzNzh7ZAMzMzM/M4uUDsUbgeBaS5QFyPwvVofrdAPQrXo/CXuEDsUbgexX+4QFyPwvUog7dAzczMzMxiuECuR+F6FF63QHsUrkfhr7dA7FG4HgV8uEAzMzMzs7+1QNejcD3KEblAzczMzEwMtkAUrkfh+p+4QIXrUbje8rlAKVyPwrUNuUDXo3A9Sri4QJqZmZmZV7hA4XoUrod8t0DhehSuR1i1QHsUrkdht7ZAH4XrUTgSuUCamZmZGTW3QNejcD1K47ZAzczMzAyGtkC4HoXr0cG6QI/C9ShcN7lAZmZmZubiuEAzMzMzc121QEjhehQuNrdAXI/C9SjCtkAUrkfherm2QArXo3D9HLVA9ihcj8KWtkDD9ShcT7u6QJqZmZlZrLlA16NwPYoYtkBmZmZmplW4QKRwPQpXYrVAw/UoXI+quECamZmZmZy4QClcj8I1v7NAKVyPwnWVuEBmZmZmZnm4QB+F61F4jbZA9ihcjwJGuED2KFyPwvW5QD0K16OwsbRArkfhehR2uECPwvUoHAK3QBSuR+E6ubdAmpmZmVmFt0BI4XoUbkO4QB+F61G4abhA7FG4HsXYt0CuR+F6FDq1QFK4HoXriLhAAAAAAACMtUBSuB6Fq7K2QHsUrkchq7pAzczMzEzIuEApXI/C9aC6QFK4HoUr6bdA4XoUrke1t0DD9Shcj3W4QFK4HoWrZ7hASOF6FG6RtUCF61G43g62QB+F61G447ZAj8L1KJygt0BmZmZm5m64QD0K16PwyLhA16NwPcoRtkCamZmZ2R+3QHE9CtejU7hAzczMzAzftUA9CtejsAG4QArXo3D9urZAXI/C9ejlt0BmZmZmZjq2QFK4HoWr5bdAKVyPwrVzuEB7FK5HoYm3QIXrUbjeGbRAPQrXo/CYt0AfhetROOa1QAAAAACA/bdAw/UoXI91tUAzMzMzc1G3QClcj8I1JbdAexSuRyFNt0A9CtejMO24QDMzMzOzlrlAj8L1KNxntkDNzMzMDDC5QK5H4XpUTrdAexSuR+FRuEAK16NwvQy5QHsUrkfhGblA4XoUrsdeuUAfhetReE22QEjhehRuGbZACtejcH3atUDsUbgehQ25QEjhehRuPrhAw/UoXA8CtkDsUbgeBY63QOF6FK6HkrhASOF6FG7IuED2KFyPwvS5QOF6FK7H9rdAexSuRyGXukAzMzMzM+G5QNejcD0KTrZAAAAAAACCtUA9CtejsA+0QHsUrkchZLhA4XoUrkfatkCF61G4XiW2QJqZmZmZIrhArkfhehTetkBmZmZmJlK4QIXrUbietLlAcT0K1yP1tEAK16NwPVuzQPYoXI8CBbZAXI/C9ehRt0CF61G4njO3QPYoXI/CYLhAXI/C9ajhtkBxPQrXIxq5QAAAAADATLVAXI/C9ahruUCuR+F6VAi4QI/C9Sgc0bZA4XoUrscxtEDD9ShcD8y2QK5H4XoUULhArkfhetTeuECPwvUo3O22QI/C9ShcZLZAmpmZmVnUtUAzMzMzc8u2QArXo3A9p7RACtejcP0LuEDhehSuh6u1QIXrUbieS7ZAXI/C9ShqtkApXI/Cdcy3QAAAAACA5LdAAAAAAACXuECuR+F61E22QBSuR+H6hrhArkfhehSDt0DXo3A9is+2QK5H4XoUubVA9ihcjwJitUDNzMzMjDO5QOxRuB7F5rdASOF6FO5Tt0AK16NwvX+6QClcj8I1nrdAhetRuJ6Pt0AfhetR+Le4QOF6FK7Hz7hAKVyPwvXAt0DXo3A9isS2QHE9Ctej/LlAAAAAAEDTtUCuR+F6lNW3QM3MzMyM57dAMzMzM3NcskDD9Shcz++1QM3MzMwMdrhAMzMzM7M5t0C4HoXrUZO2QNejcD1K5LdAuB6F65F1t0DXo3A9ipG4QHE9Ctdjn7dAPQrXo3BcuUApXI/C9Tu1QK5H4XrUC7hASOF6FC75t0Bcj8L1aJS5QBSuR+H6T7pAKVyPwrXktUCamZmZGRi5QIXrUbiej7lAw/UoXM8QuUBxPQrXoz+5QMP1KFzPeblAhetRuJ4BuEDD9ShcT5G6QD0K16NwhbVAw/UoXI8Ut0DNzMzMDNK2QFK4HoWrgbdAKVyPwjXrtkDNzMzMTCW2QMP1KFxPtLhA4XoUrkc0t0C4HoXrEVu7QClcj8K1j7ZAMzMzM7O+ukD2KFyPwga6QMP1KFxPirdASOF6FG6auEDD9ShcD760QJqZmZnZ1LdAzczMzIy8tkC4HoXr0WG4QIXrUbjeq7ZAZmZmZmbltkCkcD0KFy62QGZmZmbm2rdAexSuRyG/uEBxPQrXowq4QClcj8I1yrZAw/UoXI9ZuEDsUbgehbC1QFyPwvUohbdAFK5H4fqTuEApXI/C9U64QKRwPQqXx7dAhetRuB5CtkApXI/CdUu2QClcj8K157lAuB6F65HgtkApXI/CtQu3QIXrUbgeerZAj8L1KFx0uEBmZmZmZhK5QDMzMzOz4rdASOF6FO4LukDD9Shcj4O3QHE9CtejYbhAuB6F69FPt0D2KFyPgq26QI/C9SjczrxAXI/C9WgmuEAfhetRuCq4QClcj8K19rdArkfhetSetkDD9ShcD0y3QBSuR+F6CbhAuB6F65FqtkDXo3A9Cg24QI/C9SicX7lA9ihcj8IPuEBSuB6Faze6QFK4HoXrqbNA4XoUrkfYuEAfhetRuOK5QEjhehQuKrVAKVyPwrWPt0CuR+F61GO0QDMzMzMzArdA7FG4HsUOtUAzMzMzc5C1QFyPwvUob7dAcT0K1+PftkBcj8L1KJy5QI/C9ShcpLVAPQrXo3CfuEAAAAAAwNi3QM3MzMxMLrZA7FG4HkUct0CF61G43ui2QLgehevRwbtA9ihcj8IHukCamZmZ2ZqzQHsUrkfh+LZA4XoUrofrtkDD9ShcT463QGZmZmYmvbdAUrgehesgukBSuB6Faxe5QJqZmZnZ3blAKVyPwrUot0AUrkfhOrC4QArXo3D9OrdAhetRuF7Gt0AzMzMzs2C4QFyPwvXo7rVAUrgeheuptkDNzMzMzIy1QKRwPQoXNLhA9ihcjwKVt0DXo3A9Sk63QNejcD1KqrdApHA9CtecsUDNzMzMTK+2QHE9CtejaLdA16NwPUqot0AUrkfhuqG1QBSuR+E6Q7dAcT0K1yNNt0CuR+F61La6QOxRuB7FSbpAcT0K1yMXtkCF61G4Xr62QM3MzMwMoLVAUrgehWsQt0CamZmZWZG3QI/C9Shc87hAMzMzM3OXtUD2KFyPgoa2QGZmZmYm87dAmpmZmdnGuUCkcD0KV328QKRwPQrX5bZAhetRuJ4jtkCamZmZmYi3QBSuR+H6+bdAzczMzEwyt0BmZmZmJjq/QOF6FK4HirdAKVyPwvVpt0AAAAAAAPm2QHE9CtcjbrdAAAAAAMAVukDD9Shczwm5QFK4HoUrZLRA4XoUrsdCtkCuR+F61Dq5QOxRuB5F1LZAuB6F61GSt0AfhetRuKC5QOF6FK6HSbdA9ihcj4JRuECPwvUo3IC6QHE9Ctdj27hAj8L1KJyzuUDNzMzMjL65QB+F61F45LhASOF6FO4/t0AfhetR+JW3QDMzMzMz0LhAZmZmZqZQt0DsUbgexQa4QDMzMzMzKrpA9ihcj8JVt0AfhetR+Gy3QArXo3B9j7lAXI/C9ejFtkDsUbgeRVy2QD0K16Pw3rdAj8L1KBwVuEBxPQrXo5G4QGZmZmbm4bZAj8L1KFyjtkAUrkfhuuC3QFyPwvUojrpA4XoUroejuUA9Ctej8Ca3QBSuR+F6c7hACtejcD2Nu0A9CtejMBW2QHE9CtejWLhApHA9CtfbtkDsUbgeRcq1QBSuR+F6bLhAuB6F61HGt0DD9ShcT6y6QI/C9Sic6rNAKVyPwvXVtUA9CtejsDW2QArXo3C9x7dAH4XrUfgQukDhehSux0W5QBSuR+G6zLhAhetRuB7Ds0DhehSux3q4QOF6FK7HVrpACtejcD3Ct0C4HoXrUY24QI/C9Sjc57lA4XoUrgcmtkBI4XoUbke4QIXrUbje5bVApHA9CpeJuEC4HoXr0T+7QGZmZmZmobhACtejcH1puUAK16NwvVm1QHsUrkfha7pAhetRuB7buEAUrkfh+r23QD0K16PwP7dAUrgehWvUuEAAAAAAwPO2QDMzMzOzvLdAcT0K1yOwuECuR+F6VKmzQIXrUbieJrhAzczMzMy6t0CamZmZ2Sa3QEjhehTuMbdAFK5H4XrAt0DsUbgehcS3QM3MzMzMQblAMzMzM/PNuUCuR+F61Ku2QArXo3C9eLlAZmZmZiZPuEAfhetReDW3QMP1KFyPNLdA16NwPUpRt0BSuB6F60q5QDMzMzPz57dAFK5H4XqDuECuR+F6lLW1QBSuR+E6brlAFK5H4bqEt0BI4XoU7gG2QHE9CtcjzrhAXI/C9WhSuUA9Ctej8Ce3QMP1KFzPvbhAMzMzM/Mxt0DXo3A9ype6QB+F61G4pbhA4XoUrgcmt0CPwvUoXFS3QIXrUbiegLdA9ihcj8Ljt0DsUbgehXm5QNejcD1Kc7dAw/UoXE/3tkAUrkfhenS4QEjhehTudLdASOF6FK4kt0ApXI/CtcG3QDMzMzNzJrlAPQrXo7AiuEBI4XoULq62QArXo3D9EbVA9ihcj0JnuEBxPQrX4860QMP1KFyPbbdASOF6FK6ntUCkcD0K10K8QK5H4XqUEbhAmpmZmZlsuECuR+F6FKq2QB+F61H4hLhAZmZmZmakt0DXo3A9Spm4QB+F61F4arVAMzMzMzMLukApXI/Ctbu7QAAAAAAAtbZApHA9ClctuEDXo3A9Ska1QD0K16PwyblA4XoUrodNtkBI4XoU7l64QEjhehQus7ZAKVyPwrWHuEBcj8L1aAq3QB+F61F4Z7tAj8L1KFxVuUCkcD0Kl5y3QAAAAABA97NASOF6FG6ruUC4HoXrkQi3QArXo3D9w7hA4XoUroeGuUBSuB6Fq4e6QBSuR+H68LVA7FG4HoXutkAK16NwPQ23QIXrUbgeDrdAMzMzM7OTtUAUrkfhOjS3QI/C9ShcpbVAzczMzMxRt0D2KFyPAue3QGZmZmbmXrdAhetRuN4ttkCamZmZ2R65QI/C9Sjc/rhAMzMzM3N+tUBcj8L1qGG4QArXo3B9T7dAhetRuB4AtkBSuB6F67C0QI/C9SicsrdACtejcP00ukCamZmZGTy3QOF6FK4H1LZA16NwPUqQtEB7FK5HYZ63QArXo3A9ELlAFK5H4brqtkBcj8L1KJm0QHsUrkehDbhAUrgehatnuUDXo3A9Suu3QOF6FK4H5bZASOF6FO69t0BI4XoULte8QK5H4XpUxbZAcT0K1+OytkCF61G4Xvy1QOxRuB7FsLdAKVyPwvW5t0AK16NwPQu9QBSuR+F6PbZAKVyPwnVAt0AzMzMzM0W6QHsUrkchBLhAPQrXo7D5tkCF61G4Xom0QMP1KFxPQLRA7FG4HsXiuEAK16NwPZa5QAAAAADAqblASOF6FK6yuUDsUbgeBXu7QI/C9SgcX7dAzczMzIx6ukBSuB6FK2a3QKRwPQrXR7lApHA9Cpe5uEAK16Nw/bG4QD0K16MwDblA16NwPcrztkB7FK5HIbu3QOxRuB4FIbdA16NwPYqTuEAUrkfhumS2QFK4HoWrkbdAMzMzM/PntkDhehSuR+a1QHE9Ctcj5rZAZmZmZmZ5tkCkcD0KF4G3QMP1KFzP5rhAZmZmZibjukBmZmZmZtK3QD0K16NwWLVAMzMzMzNQtUDNzMzMjIy4QJqZmZnZy7VA4XoUrgedtkAfhetRONK1QPYoXI/Cx7ZAuB6F69FitkD2KFyPwsC1QAAAAACAe7hAcT0K12P/t0CkcD0Kl1O1QGZmZmbmxbpAAAAAAAA0t0DNzMzMjI23QOxRuB6Fv7ZAPQrXozCHt0DD9Shcj463QLgeheuR/LlAexSuRyHrtUDsUbgeBaG3QHsUrkfhkLdAmpmZmZnTtkBSuB6Fq1C7QK5H4XoU+rZAAAAAAAA0ukAzMzMzM5a1QHsUrkfhF7dAUrgehavSukDD9ShcTwm5QEjhehQunrhA9ihcj4KswEAUrkfh+uy4QHE9CtejgbVAXI/C9ahutUB7FK5H4W60QKRwPQrXgbdAXI/C9WhNuED2KFyPAua3QNejcD2KbbpAmpmZmdmet0AfhetReJO2QDMzMzMzVLdASOF6FO56uUAUrkfhuuS0QAAAAAAA7rdAMzMzMzNIuECPwvUonKy1QLgeheuR8LhAuB6F6xF4t0CF61G4Hg25QClcj8I1eLdAcT0K1+NJtUBxPQrXI664QI/C9Sgc3LdAmpmZmdkqt0DsUbgeRTm5QEjhehRuJLlArkfhetTKt0AK16NwPcu5QGZmZmZmdLVAPQrXo/CIuEDsUbgehTO6QHsUrkfhfbZAFK5H4bp/uEDsUbgeRaq6QGZmZmZm17RAFK5H4Tr7tkC4HoXrEWa4QHsUrkfhSrRA7FG4HoUDuEAzMzMz82C+QFyPwvXoTbVAH4XrUTjEtEDsUbgehWK2QM3MzMyMv7dAcT0K12MJuECkcD0K1wK2QPYoXI9CVLhAhetRuJ5et0AzMzMz8+S8QDMzMzPzjbdArkfhehQdvkCkcD0K1862QJqZmZmZw7dAexSuRyHxtkD2KFyPgt63QHsUrkdhYLdAH4XrUfj0uEBSuB6Fa8i4QPYoXI+Cg7dAFK5H4XqZtUAfhetR+OK0QClcj8K1RrZAuB6F65G7uEDNzMzMTMe3QMP1KFxPT7hAH4XrUTgFuECF61G4nrC3QHE9CtfjTLZA9ihcj8KRuEAzMzMzc+e3QDMzMzOz6LhA9ihcj4JLtkCF61G4nri3QM3MzMxMB7lAexSuRyHnt0BxPQrXo2S2QLgehetRTLhAhetRuJ5iuUDD9ShcD3m2QGZmZmamG7dACtejcL3It0CamZmZ2eu6QGZmZmZmL7dA4XoUrgcwtkBxPQrXo0e3QArXo3C9cLZAFK5H4TpbuUCF61G4Xh2yQPYoXI9CCrVAw/UoXI/XtkDNzMzMzL+6QJqZmZmZjbZAmpmZmdkDtUApXI/CdUO1QFK4HoVrXLhA4XoUrkcWtUC4HoXrkQ60QIXrUbgemLZAhetRuJ5suUCF61G4nui1QNejcD0K3LZAUrgeheu/tkAAAAAAgLK3QKRwPQoX27ZAUrgehet1uEAK16Nw/Y64QMP1KFwPNrhAKVyPwnV3uUCF61G4njO2QM3MzMzMfbVAFK5H4TqbtUAK16NwfTy3QHE9CtdjH7dA9ihcj8JEt0DNzMzMzGK3QIXrUbiec7VAmpmZmZmLuUAAAAAAAE24QHsUrkdhHblAXI/C9ahhuEBxPQrX49i4QPYoXI8CRbhAKVyPwvXptEA9Ctej8Ny3QBSuR+H6hLhAcT0K16M3uUBcj8L16M22QNejcD0KcbhApHA9ChfxtEBI4XoU7ra3QB+F61E4c7dAzczMzIxMt0CkcD0KF0S5QFyPwvVoIrZAzczMzAwIt0DD9ShcD0O2QD0K16MwJrlAUrgehetKtkA9CtejMI63QDMzMzOzR7hAcT0K16NOukCuR+F6lMm5QHsUrkchG7dA7FG4HgVZtUAK16NwvaG3QOxRuB6Fc7dAcT0K1+NCukDXo3A9CrW3QHE9CtfjhrhAPQrXo/D6tkB7FK5H4fy4QDMzMzMzN7dAcT0K1+NPtkAfhetRONu2QFyPwvWoGrdAzczMzEw8t0ApXI/CdUO2QJqZmZmZhbhAMzMzM3NmtUApXI/CNXi3QMP1KFzPx7hAj8L1KNw1tkDXo3A9itu4QOF6FK7HtLZAexSuR6E2uEB7FK5H4bK4QAAAAACAvLhAKVyPwvWitkBcj8L1KIC4QFK4HoWrfbdAZmZmZmYSt0AzMzMzc3a3QM3MzMxM6bZAKVyPwvVMtkA9CtejMMm6QOF6FK7HqrZArkfhetSFt0BmZmZm5ve1QOF6FK5HELVAPQrXo7DPtkC4HoXrUTO4QK5H4XrUEblAuB6F65GPtkC4HoXr0fW2QNejcD3KjbhAPQrXozAjt0D2KFyPgru3QI/C9ShcerVAcT0K1yN5t0AK16Nwfbi3QDMzMzNzoLVA9ihcj4LetkDXo3A9Cpi1QM3MzMyMNbZA9ihcj8L+tUDhehSuBxO2QDMzMzOzqrZA16NwPUoKuUCF61G43he2QBSuR+F6I7pAzczMzExnt0BI4XoU7tK1QFK4HoUrlblAFK5H4fqEt0BmZmZmJiK3QFK4HoXr/bdAAAAAAECwuUD2KFyPwjq3QArXo3B9C7hAj8L1KJxKuEAzMzMzMxK3QFK4HoUr9rhA16NwPQphukB7FK5HofC3QArXo3A9zbhApHA9Cheit0CkcD0KVza0QClcj8J1C7dAcT0K1yNItkDNzMzMzIu1QArXo3A9KrdASOF6FO7ctUAfhetRuBG4QOF6FK7HZrhAMzMzM7NoukCPwvUoHE+4QAAAAAAAwbdAAAAAAEB1tUDsUbgeBfy2QKRwPQpXDLdAj8L1KBw0tkD2KFyPgoe3QM3MzMzMJLVA7FG4HkVFt0DhehSuR1a5QBSuR+F6erpAKVyPwjXatkAfhetRODO5QD0K16MwirlACtejcH0et0DXo3A9yr+2QB+F61E4ubZAexSuR+HYuEBSuB6FK+60QM3MzMyM2LdAKVyPwnVluEBcj8L1KIu4QDMzMzNz4bdA4XoUroc2tkAUrkfhuiO7QFK4HoXrVrdAUrgehetwtkBI4XoULgu1QGZmZmYmpLZAKVyPwjUquUDsUbgexZ+2QOxRuB6FYLhA7FG4HkXHt0CamZmZGUG3QMP1KFxP/bNAzczMzAyYuEDD9ShcD7q4QHsUrkehVbVAmpmZmdlRt0AK16NwffC0QKRwPQoXMrhAXI/C9agvu0Bcj8L1aAu2QLgeheuRdLZAZmZmZiZ9t0C4HoXrUYq2QClcj8I1tLlA7FG4HgV7t0DXo3A9Smi5QMP1KFwPlLpAexSuR+EVuEAK16Nw/Si2QArXo3A9EbVAexSuR+HFtkDNzMzMjHm6QNejcD1K0bVA7FG4HgU7tkBxPQrXoxG5QClcj8J1B7ZAKVyPwrVNtkDNzMzMTBC5QArXo3B9UrVAPQrXo7DCukAAAAAAQNi1QBSuR+F6z71ACtejcL1jukBmZmZm5qK3QM3MzMxMnrlAZmZmZmbat0CuR+F6FGm3QB+F61F4yLZAAAAAAIAzukDhehSuh/m3QClcj8L10rVArkfhelRquED2KFyPAsm1QHsUrkehDblAuB6F61E9tUAzMzMzsxC3QEjhehTuirdAXI/C9WhOuEAUrkfhehy2QIXrUbjes7dAFK5H4XpAt0CPwvUoHBK3QLgehevR17lAUrgehSuSs0D2KFyPAj+4QClcj8I1k7tAcT0K12PGt0AK16NwfV+2QOF6FK6H/bRAH4XrUfiquEDNzMzMjLS3QPYoXI/C2LhA16NwPcpcukBI4XoULoa2QHE9Ctej4rhAPQrXo/APt0CkcD0KV5q5QFK4HoUrT7hApHA9ChcoukDNzMzMDIW3QNejcD2K/bVAzczMzMwtuED2KFyPwge3QHsUrkehD7pA4XoUrse9tUBSuB6Fa9K3QBSuR+G61rpAAAAAAICPtkDD9ShcTwC3QD0K16Ow5LhAw/UoXI+Ut0DXo3A9StK1QEjhehRurrhAXI/C9egNukAzMzMzM0e2QIXrUbje1LlArkfhepRfuECF61G4Hp66QLgehetR+bdAXI/C9SjrtkBcj8L16MG3QJqZmZlZkbpAXI/C9SgTuUDNzMzMjMS2QB+F61H4h7ZAj8L1KJwzt0CkcD0K19q2QK5H4XrUzLdArkfhepQCukBI4XoUrqy3QOF6FK6HM7dAZmZmZqantUD2KFyPwqm3QD0K16OwZbZASOF6FK5fukCF61G4Xu+3QMP1KFxPFrlACtejcL17u0DXo3A9Cgu6QJqZmZnZg7hASOF6FG4/t0CF61G4nli3QPYoXI8C5rhAKVyPwnVst0DsUbgeBZK8QArXo3D9ZLhAhetRuJ4TukCF61G4XlC3QArXo3D9PbhAhetRuN5kuUDhehSuhy64QAAAAADAOrFAuB6F6xE+uEBSuB6F6+y2QFK4HoXrYLRArkfhelT5t0CF61G4XjK3QK5H4XqU1LRA7FG4HsUkt0DD9Shcz7S3QArXo3D9tLhAPQrXo7Cms0B7FK5H4cC2QDMzMzPzJbdAZmZmZiZlt0C4HoXrEQS5QFyPwvUoHLZApHA9Cld7tECkcD0KV7S2QLgehesRsbhAexSuR2EcuUCkcD0Kl2i3QHsUrkfhkbpA9ihcj8JptkA9CtejcHa8QHsUrkchsLlAj8L1KNzvvECuR+F61Eq6QJqZmZkZwbRAAAAAAACCtUCF61G4Hme5QPYoXI8CqbdA4XoUrodXt0BI4XoUbiG3QFK4HoUrrrZAPQrXozCXt0CPwvUo3D64QOF6FK7HrrhA16NwPcqEt0Bcj8L1qCS3QEjhehQul7hAMzMzM7NSuEApXI/CdQu3QOxRuB5FzrdA16NwPQoKtkDXo3A9Sli1QHsUrkdhXrhASOF6FC7XuEBmZmZmZtG1QFyPwvWoQbdApHA9ChfOtkAfhetRuGa4QMP1KFxPqbVApHA9CtdetUDD9ShcT9q3QB+F61F4gLdAXI/C9ahct0DsUbgeRTS5QJqZmZlZc7pA7FG4HoX5tkDsUbgeRcC3QPYoXI8C0LdAAAAAAECjt0CuR+F6FDG4QArXo3A9qrZAmpmZmRmpuEAzMzMzc1S3QFK4HoVrObdA7FG4HsUAuECPwvUoXI25QArXo3C99bZAPQrXo/C2uEAAAAAAAKK2QFyPwvVo4bVA16NwPcozuUDhehSuhyG6QAAAAADAerdA7FG4HgU5uEAK16NwvUy4QIXrUbge47hArkfhetTZt0DD9ShcD5+zQHE9CtdjHrdA16NwPQp/t0AfhetReKO5QI/C9SgcUrdAMzMzM/PYuECkcD0Kl3W2QFyPwvUo17pArkfhehQSuEBSuB6F6xW7QNejcD1KvrdAPQrXo/B9tkDNzMzMTLe6QI/C9SicbrdAZmZmZqa2tEApXI/C9UO3QOF6FK7HvL1Aj8L1KFxZtkAfhetROBa2QM3MzMwMx7lAH4XrUXgpuUDD9ShcD0q2QM3MzMzM/rdAKVyPwjXNuEDhehSuR424QK5H4XpUGbVAhetRuJ6Ft0AAAAAAwOC6QKRwPQoXzLdAcT0K1+PUtUDXo3A9Co+3QPYoXI+CbbdACtejcD3tsUDsUbgexZS3QJqZmZlZgLhAKVyPwjWstkAfhetRuEG3QIXrUbiew7ZAj8L1KJxVt0BI4XoU7ue4QM3MzMyMSbhApHA9Cle3tkC4HoXrUUS2QBSuR+G6vrZAj8L1KNxltUDhehSuR024QD0K16OwybdAKVyPwnXwtkBSuB6F62q4QFyPwvVoxbhACtejcL2wt0AAAAAAgF64QOxRuB4FhbdArkfhehTlt0CuR+F6FFC6QPYoXI9CT7hAcT0K1+NwukBcj8L16B64QHE9Ctcj2bdAzczMzIxduUAUrkfhOjq6QFK4HoVrtbZAUrgehauUuUBxPQrX46q0QFyPwvXoXrdAFK5H4bq0t0BxPQrXY0q1QHsUrkdhDbZAexSuR+E3uUCF61G4Hm65QDMzMzPzELdAj8L1KNwguED2KFyPAqa4QArXo3C9RrdAH4XrUbjmtECPwvUoXC63QPYoXI8C17hA9ihcj4JCt0DNzMzMjLK1QFK4HoXrPLdArkfhepTrt0C4HoXrkaG2QHE9Ctfj1rZAMzMzM/MIuEA9Ctej8DG5QHsUrkfh9LhA4XoUrkcft0ApXI/CdYK4QD0K16PwgblA4XoUrge+t0AzMzMzs864QI/C9Sjcl7dACtejcH1ytkApXI/CddO3QDMzMzPzq7pA7FG4HoWSt0DsUbgexSm4QD0K16OwabhAmpmZmRk+tUBcj8L16PG1QGZmZmamPbdAZmZmZiaYs0CuR+F6lKe1QK5H4XoU0bZA7FG4HoXEuEDD9ShcD/e4QK5H4XqUpK9A4XoUrkeOuECamZmZmYO4QKRwPQqXJbhAj8L1KByDuEAAAAAAQAG3QKRwPQqXebhAexSuRyEptkAK16NwPQy6QEjhehSuordAw/UoXM+wuECPwvUo3EO5QBSuR+G627NA9ihcj0K3tUCamZmZWUW3QM3MzMzMMLdAMzMzMzPnt0CkcD0KF+G6QFyPwvVod7dAMzMzM/PLuEBcj8L1qKW2QFyPwvWok7ZAhetRuF5Ht0DsUbgeBeK2QBSuR+E6TrlAcT0K16PWtkAUrkfhesC3QNejcD1KG7ZAj8L1KFwUuUBSuB6F6+22QGZmZmamardA9ihcjwKnuEDhehSux++3QLgeheuRRbpAZmZmZmY1tkAAAAAAgOu1QOF6FK5HArhACtejcP3+t0AzMzMzMxO3QHsUrkdhZrhACtejcH3QtUBxPQrX4yO2QB+F61E4qbNAhetRuF7It0CkcD0KVx64QFyPwvXotLdAPQrXo7D9tkC4HoXrkci3QHE9CtdjN7lAexSuR6HqtkAfhetROH63QNejcD0KhbdA7FG4HsWHvUDD9Shcj9K2QAAAAAAAEbhAFK5H4fqGt0AfhetROP64QOxRuB5Ff7xAAAAAAIAktkDNzMzMzBW3QK5H4XoUwrVAFK5H4fp7tUD2KFyPArW3QFK4HoUrnLdAFK5H4foZtkBI4XoULmu4QFyPwvXo3rVAZmZmZmY9ukAAAAAAQOW5QClcj8L19rdAZmZmZiZUuUCPwvUonGG3QKRwPQoXj7dAw/UoXE+Zt0AK16NwPRG3QClcj8J1yrhAuB6F65G5ukCkcD0Klx62QIXrUbhe6LVAXI/C9WgUuUBcj8L1aNG2QD0K16MwaLVA16NwPcoatUCuR+F6VH27QOxRuB6FJrZAw/UoXI/it0BmZmZm5qa4QMP1KFzPb7lA7FG4HgXiuEBI4XoU7ve5QArXo3D9+LdAmpmZmRnrt0C4HoXrkbK1QB+F61F4SrZA16NwPUpQt0A9CtejcM+1QOxRuB6FRbRA4XoUrsfWt0BxPQrXY0C2QBSuR+G6qLtAH4XrUXhSuEAzMzMz8zi2QIXrUbjeg7VAZmZmZuZTuEDXo3A9ihC4QOF6FK6Hq7pAH4XrUTg/t0B7FK5HISK3QHsUrkchJrVA9ihcj0LluEBI4XoU7rO5QOxRuB7FLLZACtejcH2Jt0B7FK5H4V64QHE9CtejobdAPQrXo/C/tUA9CtejsEy4QK5H4XoUgrVAhetRuB55uUB7FK5H4Za4QClcj8J1nLhAFK5H4Xp9uECF61G4Xhe6QK5H4XrURLdAKVyPwnUwtkDXo3A9CuS1QFK4HoWrR7hAXI/C9SgYuUDXo3A9Sua0QFK4HoVr4LZAw/UoXM/1tkAfhetReGO2QFyPwvWoMblAH4XrUfg+uEAAAAAAwFO2QClcj8K1BbZAPQrXo/DKt0AfhetR+Dm5QJqZmZlZQbdAAAAAAICbuUCF61G43mu7QNejcD0KQbZAXI/C9agnukDsUbgeReq5QJqZmZmZqLdAUrgehStzuEBxPQrXoxm3QHsUrkfhOblAexSuR2FZtkD2KFyPAje5QHsUrkdh+rdApHA9ClcRuUDD9ShcT4+4QFyPwvXomrlApHA9CpfJtUBmZmZmJmK4QKRwPQqX57dAXI/C9Wj2tEDD9Shcz6i0QB+F61G4rLZAMzMzM/MTt0C4HoXrUVm1QFyPwvVow7hAAAAAAAC4t0AzMzMzsw64QB+F61G4O7hApHA9ClcQuEAUrkfhOtm1QBSuR+F6TLdAcT0K16NTrkApXI/C9Ym1QFyPwvVoOrdA16NwPQpRuECkcD0K1zm3QPYoXI+CJ7hASOF6FK4+ukBSuB6F69K3QB+F61G4bbVA9ihcj4KIt0CPwvUonEO6QFK4HoXrALdAFK5H4XqrukCamZmZWVO4QOxRuB7F+rZAmpmZmZl9tkD2KFyPwk24QAAAAAAARbZArkfhetRnvEBmZmZmplC4QDMzMzPzmLZApHA9ClejuUAfhetROBq4QB+F61G40rlAPQrXo7C/tkCkcD0K10C4QB+F61E4F7hAcT0K16Out0CamZmZmUi2QHE9CtcjbrdAuB6F65E0tECF61G4nvO1QDMzMzOz07VAMzMzMzOvuUDhehSux7K2QOxRuB4F1bZAH4XrUXipu0C4HoXrEXS4QDMzMzNzQbdAAAAAAEA8tkBSuB6FK3i2QEjhehSuOrlAAAAAAEAdtkBcj8L16LS4QD0K16NwLbZA7FG4HgXBs0AfhetReNK6QJqZmZnZmLZApHA9Chcut0B7FK5HIRi1QPYoXI9CZbVA4XoUrodcuUAzMzMz84q2QBSuR+H6nbhA4XoUrkf7uEBmZmZm5p20QM3MzMwMd7hAcT0K1+OmuUBSuB6Fq3u4QNejcD1KK7lA7FG4HkUmuECkcD0KF+q1QDMzMzNz47VAFK5H4fp4tkC4HoXrEW+4QFK4HoVrYbhA4XoUrofsuEDD9Shcj6y2QMP1KFxPCLhAmpmZmRnht0DXo3A9ys24QBSuR+E6mrdAKVyPwvUZt0DD9Shcj1G3QKRwPQoXlbdAUrgeheuFtkDXo3A9Cry3QEjhehRuNLhA7FG4HkVIt0C4HoXr0dW5QB+F61E4r7RASOF6FO7ptUBcj8L16He5QIXrUbgec7hA7FG4HsUot0DD9Shcjwi2QDMzMzNzwbdACtejcH2WukAzMzMz85K3QB+F61F46rdA7FG4HgWytkAUrkfhekK3QLgehetRq7lAexSuR6GsuEAfhetReNy2QIXrUbjebLdAexSuR6E+uEB7FK5HYZm4QNejcD1KprhAw/UoXE87u0BmZmZmpgO1QHsUrkchm7VAMzMzM7M2ukBmZmZm5gy9QMP1KFwPhLNAexSuRyFHtkB7FK5HIZC3QDMzMzMz/LdApHA9CtdOuECkcD0KF1O4QM3MzMzM2LdAH4XrUXjHt0BxPQrXY0C1QD0K16OwzbdA4XoUrsfmtEDhehSuh0G4QClcj8I1fbRASOF6FG4ht0C4HoXrERe5QEjhehRuObxAzczMzMy0uEDsUbgeBTa4QIXrUbheBrdAH4XrUbgWt0BSuB6F62i4QJqZmZkZ7rZAKVyPwvUntkDD9ShcDxS6QFyPwvVoTrhAH4XrUfjhuEDD9Shcz024QI/C9Sjcy7hAPQrXo7BstkA9CtejMJu4QClcj8I1W7RAw/UoXE9lt0DhehSuB4W3QB+F61F4tbhA9ihcjwLCt0CF61G4Hl20QEjhehRu4bZAPQrXo3BEuUAAAAAAwI64QOF6FK7H5bJArkfhetT0tUAzMzMz8zW5QBSuR+E6jbZAKVyPwrXDuECamZmZGWa3QKRwPQqX77VApHA9Clc2t0BxPQrXY3W6QD0K16Mw0blAuB6F6xGKtUAUrkfhujC5QEjhehRuprdA4XoUrgclt0AzMzMz82S2QPYoXI/CurpA4XoUrgdzuECkcD0K13+3QAAAAACArLhAuB6F65E4ukAUrkfhOhi4QEjhehQuO7pA4XoUroeGtkAfhetRuAW4QOxRuB6FgLdACtejcH3StkB7FK5HIei4QEjhehSuELhAj8L1KFwnt0CF61G43kO3QB+F61G4JLdASOF6FO7FuECF61G43mW4QIXrUbgeZ7dA9ihcj0L4uEApXI/CNWW1QM3MzMyMALZAPQrXo/A5tkCuR+F6VDS2QHE9Ctfj8bVAexSuR2GetkAUrkfhusO3QAAAAABAu7dAAAAAAAAMtUDD9Shcj8G3QFyPwvWo17RA16NwPQryuEDXo3A9ime2QBSuR+E6vbVAH4XrUbgxukAK16NwvbO2QMP1KFwPZLhAhetRuN5KuEBmZmZmpjK3QArXo3D9y7dAcT0K12MjuEBcj8L1aJ65QMP1KFxPebZApHA9Cpe+tkApXI/CNRq4QBSuR+G6N7lASOF6FK4MtkBSuB6Fq9+1QD0K16NwU7JAzczMzEyBukCamZmZmVG3QBSuR+F6MLdAXI/C9Wgwt0Bcj8L1qPO1QDMzMzNzLLZA9ihcj0JctkDD9ShcD5e4QDMzMzMzmbZArkfhelSgtkCPwvUo3OC3QK5H4XqUNbhA7FG4HsVZt0AfhetROKa2QFyPwvXoSrdAKVyPwjUHt0DsUbgeRSm2QClcj8K19rpAcT0K16MbtECuR+F6lIC1QIXrUbieGrdAFK5H4Xopt0ApXI/CtYS2QFyPwvVoX7lAj8L1KBy5t0AUrkfhOl25QEjhehQuLrdAAAAAAEDSt0BxPQrXI0m3QOF6FK7HvrhAmpmZmVmetkD2KFyPgum6QM3MzMxM2btAZmZmZmb0t0DXo3A9ilq4QFK4HoUr0LRASOF6FG5luUC4HoXrkVe5QEjhehRu0bRAFK5H4bo2t0DhehSuhxm3QHsUrkchnbRAw/UoXA8ruEAK16Nw/TG6QK5H4XoUUbdASOF6FO48tUDsUbgehYm4QLgehevRV7hAmpmZmRket0AAAAAAgGe4QNejcD1KUbVA9ihcj8KNt0BI4XoUbl67QAAAAAAAwbZAZmZmZubVskD2KFyPQve4QAAAAACAXbZAmpmZmRkot0AzMzMz89i2QOxRuB7Ft7VAAAAAAICutkBI4XoUrg23QPYoXI9CQrZAcT0K12N7uUCPwvUoXL63QKRwPQoXuLdArkfhelRetkAAAAAAABq1QLgehesRbrhAcT0K1+MltkDD9Shcj3W3QFyPwvVoprdAMzMzM3PFuED2KFyPgnmyQFK4HoUr0rVAMzMzM3Oyt0ApXI/C9X22QDMzMzOzmLpAXI/C9ShLuEAzMzMzs1K1QEjhehSusLdA7FG4HkXkuED2KFyPAjC0QFK4HoWrlLdAPQrXo3B5ukCPwvUoXB22QEjhehTuc7hAmpmZmRkRukCPwvUoXEa4QI/C9Sjco7RAFK5H4XokuECPwvUonMu4QEjhehTu+bdAcT0K16ODtkBcj8L1aHe0QEjhehQuxbZAXI/C9WjZt0C4HoXrUeu1QDMzMzNzgrZAcT0K1yOJtkBmZmZm5pC5QEjhehTud7hA7FG4HgWsuEDhehSuB/K2QHE9CtcjQrdACtejcL3ct0CF61G4Hm+4QPYoXI9Cd7hASOF6FO7auUAzMzMzc163QI/C9SicDLhAexSuR6FHu0DsUbgeheG5QFK4HoWrvrRAw/UoXA9rtkCPwvUonGq2QNejcD3KeLhAXI/C9egBt0CamZmZWY+2QClcj8K1a7hAzczMzIxktUCkcD0K15K3QJqZmZmZ/LdAFK5H4fp+uED2KFyPQpy4QFK4HoVrpLRA9ihcj4Lvt0DhehSuBxW1QI/C9SjcArhAj8L1KByvtUAzMzMz88K2QPYoXI/CI7ZA16NwPQp5uEAUrkfhOhC5QK5H4XpUS7lAj8L1KNwit0BSuB6F60+3QOxRuB5FILpAZmZmZuYht0DXo3A9Sh+8QFK4HoVrhbVAw/UoXE+ntkB7FK5HYSy4QIXrUbjep7hAAAAAAIC3tUAAAAAAQHi3QOxRuB4FZLRAmpmZmRnwtkBcj8L1KD22QOxRuB5FnbdAhetRuN57uEBxPQrXo7+1QDMzMzMzVbpAKVyPwvXruECPwvUoHCq5QM3MzMzMobhAcT0K1+M5tkAAAAAAANK4QIXrUbjePLhAMzMzM/Pst0AUrkfh+mW2QK5H4XoU9rhAAAAAAMAVuEAfhetR+CS4QM3MzMyMp7hApHA9CpdquUD2KFyPQhG4QMP1KFyPELZAAAAAAABctkB7FK5HYaO0QPYoXI9CXbhAXI/C9eiStEBcj8L1aJW4QNejcD2KH7xAj8L1KJwxt0Bcj8L1aPe2QKRwPQqXaLdAAAAAAIBLuEDD9ShcT0W1QM3MzMyMErhAPQrXo/BiuUBxPQrXo9O2QK5H4XrUw7ZAuB6F61HNt0AfhetRuCm4QJqZmZnZbbdAAAAAAECXuEBxPQrX4za7QOxRuB4F7bZAH4XrUbjEuUBSuB6Fq3u5QMP1KFzP7LdA4XoUrkfUukDhehSuh8O5QBSuR+G6E7ZA9ihcj4IVuECkcD0KFyO4QOxRuB5FerdAhetRuN7At0CuR+F6lKe3QOF6FK4H5LVAj8L1KJwWtkCuR+F6FGy2QFyPwvXoRLVACtejcH13tkDXo3A9ClW2QJqZmZmZFbhASOF6FO4ct0AzMzMz8wK2QM3MzMxMvrxAmpmZmRlJtkA9CtejsOe3QNejcD2KGbhAhetRuJ4YtkAfhetR+KC1QMP1KFyPcblArkfhelTItUD2KFyPwmG5QOF6FK5HqbhAXI/C9eiktUCamZmZmce4QNejcD0KirdAMzMzM3MvuUDhehSuR9q2QFyPwvXo/bZAhetRuN6wtkAzMzMzczK3QI/C9SgclLdAH4XrUTjNt0A9CtejcC25QNejcD2KSrdAZmZmZiaLuUDXo3A9yqi2QClcj8J1i7dASOF6FK5mtkC4HoXr0V22QLgehesRzLdACtejcP0rt0DNzMzMDBC4QM3MzMyMh7hAj8L1KNzKtkAK16NwPZG2QLgeheuRBrlAuB6F61HAuEDsUbgexaq5QK5H4XoUlbhACtejcL3wt0DsUbgeBa65QK5H4XoU8bhA4XoUrsfAt0AfhetRuNq1QK5H4XqUc7hArkfhelTEuECF61G4Hj2xQOF6FK4H0bhAj8L1KJygt0CkcD0Kl+S4QBSuR+G6H7lAFK5H4XrTtkBSuB6Fq0S9QFyPwvUoxrVArkfhelRiuEDD9Shczy24QJqZmZnZ/LhArkfhepQQtkBSuB6Fqxq4QB+F61F4yLdAMzMzM3MouECF61G4Xga4QI/C9SicFbhAzczMzIwtukDhehSux5W3QEjhehRu9rZAhetRuN6btkAK16NwvXi4QKRwPQoXkrRApHA9CpfEt0DhehSuh2y1QHE9CtejabhArkfhelQjt0D2KFyPAoi3QHsUrkchyrRA4XoUroceuECuR+F6VAW0QFyPwvUo9bhAKVyPwnWCtUCF61G4nqe7QOxRuB5FnrhAXI/C9aitt0AUrkfhuuW1QJqZmZnZ8bhApHA9ChcIukAK16NwPWi6QD0K16NwBLlArkfhetRauECPwvUonBu3QKRwPQoXVLdAzczMzEwhuEB7FK5HYWy4QMP1KFyPtbZAUrgehauFtkCkcD0KV/23QB+F61F4rrVAPQrXo3DouEApXI/CNZS5QB+F61H4dLhAMzMzM7Ohu0CkcD0KV9i4QClcj8J1g7lAj8L1KNxluECamZmZGUy3QK5H4XrUzbRA4XoUrsftuEAAAAAAwMS2QOF6FK7HP7hAexSuRyFYuECamZmZmT23QEjhehQuvrZAZmZmZmbqt0B7FK5HIdy2QHE9CtdjcrtAcT0K1yONt0DhehSuR325QClcj8J1rrhA7FG4HsVatEApXI/Ctea1QHsUrkchy7dAH4XrUfg1t0CF61G43sS3QFyPwvXoG7hA7FG4HsVAuUCF61G43o+4QDMzMzNzeLZApHA9CtcFuEApXI/C9WC3QJqZmZkZsLhAw/UoXA95uEBcj8L1qBe4QEjhehQurrlAXI/C9Wiht0Bcj8L1KDK4QD0K16PwgbdA4XoUrsdyukBxPQrXY5O4QBSuR+F6eLVAw/UoXI9itkBcj8L16LG5QNejcD0KRLVAcT0K1+MvuUBxPQrX49i4QD0K16NwZbdAKVyPwjXatUAAAAAAwDC2QClcj8J1FbhAuB6F69GstkCuR+F6lJC4QArXo3C9Z7VAUrgehWsytUC4HoXrES22QClcj8L1L7ZAMzMzM/PIuUAUrkfh+iO5QK5H4XrUDrlAZmZmZiYlt0BxPQrXIyy5QD0K16OwsrJAexSuRyHeuEDsUbgeRUq6QHsUrkfhO7ZAexSuR6GZt0A9CtejME22QBSuR+E6+LZArkfhepRrt0DNzMzMTAu3QFK4HoUrzrVAzczMzEwztkApXI/Ctdu2QKRwPQoXG7tASOF6FK5EtkB7FK5HISu3QFyPwvXoQrdAzczMzEzjuED2KFyPAme2QM3MzMyMvLlApHA9CleLt0B7FK5HYTO4QPYoXI8Ct7dAFK5H4fqXtkAUrkfhula5QOF6FK5HD7dAKVyPwnV3t0AK16NwPcCzQClcj8L1MbZAH4XrUXjGt0AAAAAAQOy4QClcj8I1dcFAAAAAAICIuEAK16NwvV23QIXrUbgePLhA16NwPUqltUCF61G43kC3QBSuR+E6/bNApHA9Cldkt0CkcD0K1/21QHsUrkfhE7hApHA9Chc8vECF61G43sG4QM3MzMyMD7hAKVyPwjXotEA9CtejsEW5QIXrUbiemLlAexSuR2FNuUBSuB6Fq++2QKRwPQrX4LVAXI/C9ei/tUDsUbgehbS4QFK4HoVrmrZA9ihcj4JNtUBxPQrXY9S2QBSuR+G6t7pAw/UoXI8atUB7FK5HYZC4QHE9CtfjjrhASOF6FK6YtkBxPQrXo5O2QHE9CtdjlbhA4XoUrocCvUDhehSux/q2QGZmZmZmKLlAZmZmZmYst0AzMzMzs+u6QD0K16Pw4LhAZmZmZiaut0BI4XoU7oO3QOF6FK4HZLpAMzMzMzPLt0CamZmZ2YS4QLgeheuRGrdA4XoUrsfZuED2KFyPQmi1QOxRuB5Fr7hAH4XrUXjwtEAK16Nw/c63QPYoXI+CsrZAZmZmZiaLuECamZmZGbW2QFyPwvVoc7dA7FG4HoUFvEBxPQrXI5i2QHE9CtcjLrhArkfhetTiuEAK16Nw/e+3QDMzMzPzwLZAAAAAAMA/uED2KFyPQgi4QM3MzMyMzrlAexSuR+G/tUDNzMzMjJO3QGZmZmam9rhAZmZmZqbLtkApXI/CNVi1QOxRuB5FVLdAzczMzEyEt0BxPQrXoxm4QD0K16Mw/LdAuB6F65FCu0AAAAAAgKW3QK5H4XrUWbdAFK5H4Xrat0AK16Nw/ay3QAAAAADAE7ZAXI/C9WhouUCkcD0KV7W7QMP1KFyPeLhA7FG4HsVbt0DNzMzMzAO3QAAAAABAo7hAAAAAAABcuUBcj8L16FO3QBSuR+G607ZAFK5H4fqttUDNzMzMzLW3QB+F61E4UrZAhetRuB4EtkAfhetRuO23QClcj8L14bhAXI/C9ejZt0BSuB6F69u5QBSuR+E6t7VAUrgehesttkCPwvUoHGG6QDMzMzOzY7dAKVyPwrV6tkC4HoXrEZ25QJqZmZmZG7pAmpmZmVnkuEC4HoXrEQa7QOF6FK7HjLhAXI/C9WjJt0DXo3A9Cpi2QArXo3B967VA9ihcj0L3tUC4HoXrUYm5QBSuR+F6DrlAH4XrUbibuED2KFyPwpO2QD0K16Pw6rtArkfhelRyukCkcD0KV3m7QEjhehRuqbdA7FG4HkWot0ApXI/C9eu4QM3MzMyM+bZAAAAAAIAmtkCuR+F6lO26QHE9CtdjQLhAH4XrUbgXukD2KFyPQoq4QPYoXI/Cm7ZAhetRuF53uEBxPQrXY/+/QClcj8J1QblA7FG4HoXHtkBcj8L16GS4QEjhehTuz7FAzczMzIwat0D2KFyPwiu1QBSuR+H687RA4XoUrkeHu0C4HoXrkSe0QArXo3A9PrZASOF6FC6wtECuR+F61HC1QPYoXI+CYbVAw/UoXE/VtECamZmZ2Y+5QFK4HoXrRb5A4XoUrodYukCF61G43ji6QK5H4XoUJbhAPQrXozDRuEAUrkfhug24QNejcD0KIbdAmpmZmdlvt0CuR+F61Ba/QJqZmZkZCrhAAAAAAEDGtkCF61G4Hs61QJqZmZmZwrdApHA9CleDtkBcj8L1qMm0QAAAAADAvLRAH4XrUbhKuECuR+F6VIy2QD0K16NwkrdAexSuR2FRtkA9CtejcC+3QAAAAAAAOrhAFK5H4TqstEDXo3A9Cia5QGZmZmamsbdAH4XrUThPtkC4HoXrkba2QK5H4XqUMLlAhetRuF5nuUCPwvUonLW3QFyPwvWoJbVA7FG4HsX7tkDXo3A9Cm+7QFyPwvUocbtAzczMzAx3ukDD9Shcz3G4QOF6FK6HbrlAmpmZmdnItUAfhetROKO3QIXrUbieHbdA4XoUrkf3tEBxPQrXY7K1QBSuR+H6VLZA7FG4HgXxuEDD9ShcD9m2QMP1KFwP8rZAZmZmZqZcukA9Ctej8Na4QOF6FK5HabdAH4XrUTjeuEBI4XoULrS2QAAAAAAAD7hAcT0K16OCukCF61G4nmu4QFyPwvWorLdA7FG4HgWcuEBmZmZm5i60QJqZmZmZUrhAPQrXo3CWu0AK16Nw/S63QI/C9SgcorZAzczMzMxst0CkcD0K1xO6QMP1KFwPh7dAuB6F65FruECPwvUo3Ge4QOxRuB6FlLVAhetRuF4CuEApXI/CtUa3QOF6FK5HGb1AzczMzEzotkC4HoXrEey4QFK4HoUrgrpA7FG4HoVRt0BI4XoUrjG4QI/C9SicPLdASOF6FC6QuEBI4XoUrma1QI/C9SjcN7lAKVyPwrUZuECkcD0K1wy3QMP1KFwPTbtA16NwPUo2tkAUrkfhOnS3QHsUrkch2rhArkfhepREuEDsUbgexR23QEjhehQuN7hA7FG4HsVRtkCkcD0KFwe4QMP1KFwPrLdACtejcL0fuEBSuB6F64K7QKRwPQoXN7dACtejcD3VtkDXo3A9yrO4QI/C9ShcXrZACtejcD1bt0ApXI/CdUK4QI/C9SjctbVA4XoUrsc0tkA9CtejMKS2QIXrUbge17ZAXI/C9ajvuUCF61G4Hnm2QDMzMzOzA7lAexSuR6HstkDsUbgexbG3QOxRuB6FeLhA4XoUrgeNtkBSuB6FqxC4QI/C9SgcXbZApHA9Clf5tUDXo3A9CsW4QArXo3C9ybZAH4XrUbgkuEAK16NwvU64QDMzMzPz27dAj8L1KBxStkD2KFyPwiO4QD0K16OwS7hApHA9CtcZuEAfhetRuG+2QM3MzMxM8bRArkfhepT8tUCPwvUoHK64QOxRuB7Fc7hAAAAAAECftkC4HoXrkXi1QKRwPQqX0rZAFK5H4ToPuECamZmZWTq1QJqZmZnZ7LRAFK5H4brbtkBcj8L1aE61QArXo3D9L7ZAexSuRyEsuEAzMzMzs5S2QIXrUbjeyrhAPQrXo3Ctt0AzMzMzc5O4QFK4HoWrMLtA16NwPUoptEBSuB6Fq0y3QOF6FK7HMLhA4XoUrkcmtkCPwvUoXOW2QPYoXI+CgLhAhetRuJ52t0A9CtejMPe1QOF6FK7HNbpAcT0K16PPt0BSuB6FKx+5QHE9CtdjMblAzczMzIw5uUB7FK5HIYa4QGZmZmYm7rZAuB6F65EyuEAzMzMzM/+6QAAAAACA2LdApHA9Cpevs0CamZmZ2SK1QM3MzMzMDrdAhetRuN6EtkCPwvUoXH+3QClcj8J1D7ZAH4XrUbgFt0AfhetR+Gm2QJqZmZnZc7dAw/UoXM8WtkAAAAAAQIO3QHE9CtfjprZAcT0K16NFt0DsUbgexZK6QD0K16NwebhA9ihcj4Ktt0C4HoXrkUG1QAAAAAAACrhAcT0K1+PiuEDhehSux6W3QHsUrkchubZApHA9Che3vkBmZmZm5pK2QIXrUbgegbdA4XoUrgc+t0AfhetROMW2QPYoXI+CQLpAH4XrUTgEt0ApXI/Cdf+4QFyPwvXoBLdACtejcP0Nt0CamZmZmUu2QBSuR+F6crdApHA9ClfsuUDsUbgeBSe2QPYoXI+ChLdAZmZmZqb6tUCamZmZ2Uu8QD0K16NwSbVACtejcD13tUB7FK5HoXi3QIXrUbge5bdAXI/C9SjfuEDNzMzMTAa4QHE9CtejU7RAUrgehauntkC4HoXrkX+7QD0K16Nw1bVApHA9Chejt0BI4XoUbta3QHE9CtcjdblAAAAAAMC7t0DNzMzMzAe5QFK4HoVr9rhAhetRuB6pt0AAAAAAwG+1QOxRuB6F47xAZmZmZqYQuED2KFyPQjG4QDMzMzMzdbdACtejcD0ntkBcj8L1KIm1QOxRuB4FHrZASOF6FC5SukA9Ctej8P65QMP1KFyPy7pArkfhelTsuEDXo3A9SsG4QEjhehQuCbdAH4XrUfiQuEC4HoXr0ba2QGZmZmYmV7ZAexSuR2EZt0D2KFyPQt22QD0K16Nww7ZAhetRuB6QtkCkcD0KFwO4QOxRuB4FOLdAmpmZmRmiuEDhehSuR9K2QOF6FK6HFLhA16NwPYpGuEBmZmZmJre4QClcj8L19rdACtejcP0dt0BSuB6F69GyQHE9Ctfj87VAPQrXo3CQt0A9Ctej8HS3QPYoXI/CrLNASOF6FO4luUDD9Shcj3C4QB+F61G4CbZAcT0K12PBtEBcj8L1qMe3QFyPwvVobbdAZmZmZmbuuECkcD0KF5mzQIXrUbievrpAUrgehasMuEBxPQrXI/63QClcj8K1z7hAKVyPwjUms0AzMzMzMwe3QHE9Ctdj0bVA16NwPQrguEBSuB6FK4i2QOF6FK6HW7hAuB6F61E+t0DhehSuR+G3QOF6FK7H5rZAmpmZmRkZukCuR+F6FCS1QM3MzMwMarlAcT0K1yMAt0A9CtejcHW4QDMzMzPzW7hACtejcH2FtkBxPQrXIwq3QKRwPQpX761AuB6F61HOtkAUrkfhOvu3QHsUrkch/LhAuB6F69FsukC4HoXr0bS4QD0K16MwqLdAcT0K16MYuEDXo3A9CjW4QK5H4XrUMbZAw/UoXA+/tkBcj8L1aJ+3QOF6FK7H8bZAPQrXo3CSuUCuR+F61Kq5QLgehevRhbdA9ihcj4LctkCamZmZmcG6QBSuR+E6OLlAcT0K12OLt0B7FK5HITa2QNejcD3KhrNA9ihcj0LetkD2KFyPwje5QBSuR+H6tLhAPQrXo7DGt0BSuB6F63+zQB+F61F4hLZAKVyPwnU1t0DD9ShcT621QOF6FK5HtrZAZmZmZmayuEC4HoXr0Ue4QKRwPQpX8rxArkfhepRLt0C4HoXrkXK5QHsUrkchg7xA4XoUrodrtkAK16NwvSG4QIXrUbieBrhAw/UoXE/4tUAUrkfhegu3QHE9CtcjirhAw/UoXM9dtkB7FK5HoRG3QBSuR+E6qbdAzczMzEz5tkDhehSuB0m4QD0K16Nw57lAexSuRyEkuUCamZmZWaG5QClcj8L1krhAuB6F65FNuEDsUbgeBaK2QGZmZmbmOrlA9ihcj8LSuED2KFyPQkS2QHsUrkch7bVAmpmZmZnBuECkcD0KVy+3QEjhehTuYbVApHA9CtfJuEDhehSuB+G3QOxRuB4FBLdAuB6F61FGuED2KFyPgui4QBSuR+H65blACtejcL0YukDNzMzMDGO2QOF6FK5HfrhAMzMzM7PouECamZmZGde5QPYoXI9CL7ZAFK5H4XpQtkD2KFyPggG2QB+F61H4mLZAAAAAAMCTtkA9CtejcNa1QEjhehSuW7hAhetRuB6MukBSuB6F67u0QEjhehTu5rpACtejcH0VuEAzMzMzs6+3QGZmZmamz7hAPQrXo3AtuEDXo3A9Csi1QB+F61H47rZAzczMzAxWtkBI4XoUbk+3QNejcD1KY7dAH4XrUXgAuEApXI/C9Ra3QHsUrkehf7ZAuB6F6xHLuECkcD0KFyq5QOF6FK4HJrhA4XoUrgeTt0DXo3A9ihS4QHE9CtejfrZA9ihcjwIitkAAAAAAgJC2QLgeheuR6rZAKVyPwrWntECF61G4noW4QArXo3D9AbhAmpmZmRmrtkDD9Shczzy2QNejcD2KdbhArkfhelRFukApXI/CddO3QIXrUbjeV7ZAexSuRyHNt0DhehSuB8W3QKRwPQrXdbpApHA9Cpelt0BSuB6F61u1QK5H4XoUorZAZmZmZiZ5uUBcj8L1KMW2QAAAAAAAg7VAcT0K12MKt0BmZmZmpm24QM3MzMxMp7VAmpmZmZmbtUCPwvUonIa3QB+F61H4b7pAZmZmZmb1tUDhehSuh824QM3MzMwM/rZAzczMzIy4t0B7FK5Hoam2QLgehetR3LdAAAAAAMC8t0B7FK5H4aC3QFK4HoVrxrlAFK5H4bo3u0CuR+F6FDO3QHE9CtdjSLlAMzMzM3PIuUBSuB6FKwS1QM3MzMyMN7VAzczMzAwcuECPwvUoHOC6QGZmZmYm1blAhetRuF7ju0B7FK5HIaC5QBSuR+E637dAmpmZmdnWt0AUrkfh+v63QEjhehSuKbhAuB6F65HzuEA9CtejsIa2QClcj8K1ALhASOF6FO59t0D2KFyPgjK4QArXo3D9ZrdACtejcH15uECuR+F6FIq4QLgehetRn7tA4XoUrofSt0AAAAAAAES3QFyPwvWoqbZAcT0K16OkuEBxPQrX4wq2QK5H4XoUkbdASOF6FO7CuEBI4XoU7im4QBSuR+E6h7hAAAAAAEA+t0BmZmZmZvS1QOF6FK6HD7ZASOF6FG71t0BI4XoU7jW4QBSuR+H6SLdAXI/C9WgVukBxPQrX4/24QFK4HoWr5bdAPQrXo/Akt0ApXI/CtcO4QClcj8J1E7lAPQrXozAWuUDsUbgeRZ60QB+F61G4a7hAMzMzMzM2uECkcD0KV3S3QBSuR+G6CLhA4XoUrkc0uUA9CtejsEG3QEjhehTuN7hA16NwPQpMuEDD9Shcz2q3QBSuR+H6erdAuB6F6xG5uEAK16NwfTG2QAAAAACAdLhASOF6FO4LuUBcj8L16A21QD0K16Ow+rZAPQrXo/DytECPwvUoHDO6QLgehetRlrdApHA9Cte1t0BI4XoU7ki3QKRwPQoXdrdAFK5H4TpFt0A9Ctej8Hu6QEjhehSuW7dAj8L1KByWukBmZmZmJiG5QLgehesRlLdAPQrXo7CnuEDhehSuB222QClcj8K1dbdAKVyPwrWiuEDNzMzMjAm4QEjhehTuMLZAmpmZmVlut0A9CtejsNW4QNejcD0K5LVAPQrXozAMtkA9CtejMGa4QM3MzMzMKLhApHA9ChfHuEAzMzMzs9W6QEjhehQurLdA4XoUrkeKtkDXo3A9ilO6QClcj8I1FbpAzczMzIwAukCamZmZ2cy4QFyPwvXoILdACtejcP2LuEB7FK5HoQ62QArXo3C9YLZAUrgeheu2tUBcj8L1qAm3QLgehetRlbdAzczMzIwytkAAAAAAACO2QHsUrkdhj7ZAw/UoXA+ktUBcj8L1aLC4QDMzMzPzMLpA7FG4HsVaukCkcD0KF5+2QMP1KFxPFLlAmpmZmdlTtkAAAAAAgFW6QJqZmZlZ5bZArkfhehThuUB7FK5HYVq4QFyPwvWotrZA16NwPcpNuEAK16NwfVO4QAAAAACATblAuB6F65FuuUDNzMzMzHW2QBSuR+H63LZAAAAAAMA9uEAfhetRuBq4QNejcD3KObVAzczMzIwXuECPwvUonLm3QFyPwvXoKbdAmpmZmZnbt0AzMzMzsy27QMP1KFxPZbZA4XoUrod7uEAzMzMz8wq4QKRwPQrXn7VAhetRuF5HuEDhehSuxzW6QB+F61H4WLhAH4XrUTgEuUDhehSuhw65QEjhehRuMrZAPQrXo7AGtUAK16NwfYS5QGZmZmbmGLhAj8L1KJxqukAfhetRuOq5QHsUrkeh17ZAzczMzEwouEApXI/CtXu4QLgehesRhLRASOF6FG6ntkAfhetRuCi3QAAAAAAAdbhA9ihcj8KmukBI4XoU7lG4QBSuR+G64LhAH4XrUbjbukDD9ShcT+a2QM3MzMzMqrRAcT0K16MluUDsUbgeBYG2QFyPwvUoMrlAKVyPwjWWuECamZmZmba3QOxRuB6FubZAuB6F6xHQt0CPwvUoXC65QLgehetR9LhAexSuRyFguEDhehSuR8O5QJqZmZmZX7ZAKVyPwnVztkCuR+F6VJq2QNejcD0KELdA16NwPUpXuEAK16NwfZW2QFK4HoUry7VAAAAAAECZt0BI4XoUbku0QHE9CtcjRLxAXI/C9ajAtkDXo3A9yvm5QHsUrkchsLpAAAAAAMA9uEDsUbgexVq4QK5H4XqUoLhApHA9CpeQs0AAAAAAwGa3QOxRuB7FTrxAXI/C9eh8t0CPwvUoXNq4QPYoXI9Cn7ZAZmZmZqZdt0BmZmZm5rC5QDMzMzNz6bdApHA9ClceuUAUrkfh+uK2QOxRuB4FGrVAuB6F69FLtkAfhetReIy1QPYoXI+CU7hAXI/C9aiTtUDhehSuxyq3QFyPwvXo1LVAMzMzM3P9uECamZmZmRa8QJqZmZlZq7dAw/UoXM/ItkAfhetROL+4QAAAAABAfLlAKVyPwvWkuEBSuB6Fq6O3QOxRuB5Fn7lA16NwPcpjuEDNzMzMjI62QHE9Ctfj2bVAMzMzM7MxukA9Ctej8L+1QDMzMzOzAblAexSuR2FDtkCamZmZ2Wy3QFK4HoWrmLdA9ihcj0L1t0DsUbgeRXm3QJqZmZmZ+rlAexSuR2GIuEApXI/CtUO3QOxRuB4FrLdAzczMzAyDtEAfhetRuG62QJqZmZmZzLZASOF6FC6ttUApXI/CNdy2QPYoXI+CKLpAPQrXo7CbtUD2KFyPQke4QM3MzMwMCrhAPQrXo7BttEDNzMzMjLK3QDMzMzOzxLNAzczMzEwmt0CamZmZWZC3QJqZmZnZa7tA4XoUrgdduUAzMzMzM5+2QKRwPQpXp7dA9ihcjwKHtEB7FK5HofS3QLgehesRF7pACtejcD27t0DXo3A9Cs64QOxRuB7FQrZAAAAAAAAUuEApXI/C9Uq5QJqZmZkZhLZAFK5H4TpjtkBI4XoUbu22QBSuR+F64bRASOF6FC7SuUBSuB6FKx26QB+F61H4lbhAmpmZmRknuEDNzMzMTLC3QClcj8L1DbhAhetRuB5it0BxPQrXo0K3QJqZmZnZV7hAj8L1KFwvtkCamZmZGW25QD0K16Pw47VAMzMzM3OXukDsUbgeBXe3QD0K16Pwr7dAMzMzM3O6t0DNzMzMTJy4QMP1KFyPCLVArkfhehTitkBI4XoUrpS3QB+F61F4jrpA4XoUrkeYuEA9CtejsNG3QM3MzMxMjbdAzczMzAwCt0CkcD0KF1C5QFK4HoVrE7hAuB6F61FSt0AzMzMzMw+2QEjhehRuY7ZAzczMzEysuUBcj8L16AK3QIXrUbje0rZAKVyPwvUjuEA9CtejsNK2QJqZmZmZm7VACtejcP1nuEC4HoXrEba2QMP1KFwPo7hAAAAAAAB5t0D2KFyPAn23QI/C9SicbrpASOF6FC4NtEC4HoXrkSq2QArXo3D9brhASOF6FG5BuUBmZmZmZt22QGZmZmbmWLhA16NwPUrmuEDhehSuB+i8QKRwPQpXRrhAH4XrUThCt0CF61G4HiW6QKRwPQoX8bRAKVyPwvVFu0A9Ctej8EG3QNejcD2Kh7ZAMzMzM7PPt0BSuB6F61S2QJqZmZkZTrRA9ihcj0IWvUCamZmZ2YG2QJqZmZkZE7lAcT0K12OytkCuR+F61LC2QFyPwvWoGbhAexSuR2Ejt0ApXI/CtXm2QIXrUbjebrdAexSuRyHwtEA9CtejsHG5QMP1KFzPa7hAmpmZmRk0uUAAAAAAgPK5QEjhehSus7dAAAAAAADZtUCPwvUoXMe4QJqZmZkZ8rZArkfhetRntkCamZmZ2Te0QD0K16PwH7hA7FG4HoVNuUC4HoXrkQy4QMP1KFwPRbdAmpmZmZmbt0CF61G43sq3QIXrUbiegbZAcT0K12MLtEAK16NwfZ23QOxRuB4F3rZAzczMzAyWtkCPwvUoXEa7QB+F61G4iLVAw/UoXE8st0BmZmZm5tu5QK5H4XpUY7hAH4XrUTj/tkBcj8L1KGO5QM3MzMzMTLlASOF6FK5ftUApXI/CNSW5QHsUrkchoLZA7FG4HkW5tkAUrkfhulm1QFK4HoXr67ZAj8L1KBzxtED2KFyPwh63QLgeheuR27dA9ihcjwK4t0CuR+F6VNm2QBSuR+H6FbZAhetRuJ7XuUDD9Shcz/+1QOF6FK7HWLhAH4XrUbjMuUBI4XoU7gO2QPYoXI/CebdAhetRuN68tkCuR+F61A63QNejcD2K3bdAzczMzMyztEAK16NwPSi5QD0K16NwbrZAexSuRyEEuECkcD0K14WzQEjhehRurLdA16NwPcomuEDsUbgehTS6QIXrUbgegLdA9ihcj8LnuEAK16NwPTu3QLgeheuRkrVAKVyPwnVytkApXI/C9TW5QKRwPQrX5rVA7FG4HgX/uEA=\"},\"shape\":[10000],\"dtype\":\"float64\",\"order\":\"little\"}],[\"log10_A\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"rthfdk/eB0AkC5jArfsMQIZVvJF5pA1AlZo90ArMB0C7fsFu2HYGQJ1oVyHl5wlANSkF3V4SB0BX7C+7Jw8JQHJQwkzbPwpAdQKaCBseCUCUTbnCu5wKQOzdH+9VawpA7KNTVz7LCEB/vFetTHgJQBlW8UbmUQJA6J/gYkWNB0D20akrn+UGQGw+rg0VYwZAMBLaci7FC0A8ZqAy/j0PQCHNWDSdnQtAf/YjRWTYBEB5O8JpwQsEQJkqGJXUCQpAwAmFCDiECkDgufdwybEIQN3qOel9IwdAVDVB1H1ABkDtDb4wmaoHQCpXeJeLOAtA4UBIFjABBEANjpJX51gEQF97ZkmAWghAV89J7xvfB0BBn8iTpGsIQB0gmKPHbwVAkpGzsKedB0BrZcIv9bMIQPQVpBmLxhBA5EnSNZMvB0CygAnculsAQP/PYb68wAhAOX8TChHwB0DTE5Z4QJkHQMuhRbbz/QdANjy9UpahBkBLdmwE4nUFQNv5fmq8tAlA0NA/wcWKBkDwhclUwagIQMyXF2AfHQVAMqzijczjCUAQ6bevA+cHQO/Jw0KtKQZAcLa5MT1hAUCm0HmNXWIJQFd4l4v4DgZAJxQi4BBqDkD+ZffkYeELQKG5TiMtFQVA78nDQq2pA0ByM9yAz48HQKfoSC7/YQVAcLGiBtMwDEBXz0nvGx8JQPXb14FzxghAi6azk8HRCUAdIJijx28HQOI7MevFUAVA9gt2w7YFAUBLsDic+dUHQCno9pLGaAdAQE0tW+tLBUCFsYUgB+UJQEBNLVvrCwlAIXam0HnNAkAZyol2FdIGQPs6cM6IUgpAHHxhMlWwBUD7Bbth26IDQFoNiXss/QlAak3zjlN0CEB88rBQaxoBQJwzorQ3+AhApHA9CtdjCEA51sVtNAAIQPgZFw6EZARA220Xmus0B0DgoSjQJ3IHQAQEc/T4/QhAYM0Bgjn6B0DG4cyv5sAEQJpC5zV2CQhAopxoVyGlCUD1udqK/WUJQP9byY6NgAlAyjLEsS4uCUCt3XahuY4KQCqMLQQ5KAlANsgkI2chCUB96IL6lrkHQJPGaB1VTQ1A09nJ4Cg5BkBBZfz7jEsJQI1iuaXV0AhAHPD5YYSwC0ARHm0csRYAQB9LH7qgfgdAkx0bgXjdCUDXL9gN29YFQKSNI9bi0wlAQNmUK7zLBEAvhnKiXcUDQLMkQE0tGwpA4WJFDaYhCEA1e6AVGHIGQDMWTWcnQwdANIXOa+ySDECkqgmi7sMIQD8AqU2c3ARAAB3mywvwCkDBHD1+b1MLQJTeN772zAZAYXE486u5CEAIrBxaZLsHQMWsF0M5EQhAO8eA7PXuCEBwJTs2AvEMQFN5O8JpQQhASWjLuRTXBkAu4jsx68UKQJIiMqzijQZA4BCq1OzBBkCeB3dn7XYJQAVR9wFILQVA6dSVz/J8CEASFD/G3PUHQAAAAAAAgApAbef7qfHSBkDVJk7ud6gFQBiyutVzEglA/WoOEMxRAkDwoq8gzdgFQEq1T8djRghAUMJM27/yA0Cqtwa2SjAJQNP2r6w0aQtAFVeVfVdECEDqeMxAZfwHQNdppKXy9gVAd9Zuu9BcBUCVK7zLRbwGQGiu00hL5QhAzSN/MPDcCUBXlX1XBL8JQMv49xkXTghACi5W1GCaC0B8REyJJPoBQGiz6nO1FQRAdhppqbydCEDqPgCpTdwHQCbfbHNjugRAPBQF+kTeCUAp7Q2+MFkDQGU2yCQjpwVAdonqrYHtB0CpTZzc79AKQLb4FADjWQZAiEuOO6XDCECmJyzxgDIFQCPb+X5qfAlAdc3km23uB0BUqdkDrYAGQJNvtrkx/QdAC+9yEd/JDkAz4Zf6edMIQOgTeZJ0zQZACFqBIasbBkChhJm2f6ULQHuIRncQewhAd4TTghd9B0CXi/hOzDoIQCTW4lMADAZA2xZlNsjkBUBzuiwmNp8IQKGhf4KLlQdAmDRG66iqC0C2uTE9YQkKQHWOAdnrnQpAqBjnb0JhBUD2RUJbzqUIQAuYwK27eQZAV3iXi/jOAkDXUdUEUfcQQAKfH0YIDwFA8s02N6bnC0D68gLso5MDQPzepj/70QVAxHdi1othCUBvEoPAymEFQMQlx53SwQ9AFytqMA1DCEAcQpWaPVAGQONw5ldzAAtAizIbZJJRDUCRfvs6cM4IQMh71cqE3wVAXTP5ZpsbB0A3jliLT4EHQHnMQGX8+wpAr3d/vFftB0AIrBxaZHsJQPxvJTs2wgdAJt9sc2P6CkA6BmSvd78PQOIBZVOucAlAOsyXF2BfCEARNjy9UhYEQILF4cyvZgZAH5268lmeBkBDc51GWmoPQHTqymd5XgdAJXoZxXJLB0Ckx+9t+nMJQCpSYWwhSAVAqFfKMsSxDECvsUtUbw0GQBBYObTIdghAduCcEaX9DUAKgPEMGjoGQMfXnlkSYAdAcHztmSXBCEAAV7JjIxAGQP5IERlWMQdAHF97ZklACEB8CoDxDBoLQDbqIRrdwQdAwcqhRbZzBUAO2xZlNggOQGwJ+aBn8wlAh78ma9SDCEDCTNu/stIJQGa9GMqJNgZAUN8yp8tiCkDEmV/NAYIFQE0VjErqxANApn7eVKSCBUBx5ldzgOAGQHNLqyFxDw1Ah+EjYkrkBkAzxLEubuMFQJRNucK7HAZANdJSeTsCCED4cMlxp3QHQHjuPVxynAZAPZtVn6vtC0BC7Eyh89oOQDMWTWcnQwlA28TJ/Q7FBkD2C3bDtkX/PyPb+X5qvApAA1slWByOC0DzAuyjU5cIQPYLdsO2RQdADk+vlGVICkCxpx3+muwJQKPMBplkZApADk+vlGXIA0Aw2A3bFqUGQGt9kdCWMwVA2LYos0FmCEAqjC0EOegKQAJIbeLkfgtA3nGKjuRyCkA51sVtNMAIQMeA7PXuDwdA24r9ZfdkB0Dp1JXP8nwIQJrOTgZHCQhA/U0oRMAhDUDXL9gN21YKQCAkC5jAbQZAnx9GCI/2AEDItaFinD8HQG5uTE9YogdANSTusfShCUDBrbt5qgMGQGJnCp3XWAVAA1slWBzOBkDmBdhHp64IQA2OklfnmANAmC8vwD76B0DzVIfcDLcHQOwS1VsD2wZA+N9KdmxEB0DCacGLvgIJQLn8h/TbVwZAJsed0sG6CUCfsMQDyuYJQFPQ7SWN0QlAcy7FVWXfBUDYR6eufFYEQA6hSs0e6AdAlzldFhObDkAXSFD8GDMHQO317o/3qgZAgEi/fR04CUDJPPIHA88GQImYEkn0MglAje4gdqaQB0AA4xk09M8HQL06x4DsdQhAIv32deCcCUCCyvj3GZcFQOOItfgUwAVAEAaeew8XCkDcnbXbLvQJQODzwwjh0QlAT8x6MZRTCEB1H4DUJk4MQExPWOIBZQRAe737472qCEBCPujZrHoFQKbtX1lp0gdARnwnZr2YCEBrK/aX3ZMFQL68APvoVAhAGFsIclDCB0CfPCzUmiYOQKpIhbGFIAVAnFCIgEPoCUBTeTvCaQEIQHDrbp7qEAdAzeSbbW6MCkAWTWcng6MLQDmc+dUcYAlAQxzr4jaaBUDejnBa8OIFQMCV7NgIBA5Ay/Pg7qydBkDRItv5fuoGQGrecYqO5AdAbmk1JO7xCEBWDi2yna8JQEz9vKlIhQpAStI1k282CEBQcLGiBpMPQI16iEZ3UAhA/cHAc+8hB0DjUwCMZ1AHQGLzcW2oWAFAEAaeew9XCEC8P96rViYIQPbuj/eqVQ1AyF7v/ngvBkC45LhTOtgIQF70FaQZSwZA5CzsaYf/CECH+fIC7CMHQEinrnyWZwdA2XdF8L8VCUBeY5eo3poIQEvIBz2bFQVAGAltOZeiA0CqYFRSJ6AEQEvNHmgFhglARnwnZr1YC0B3FVJ+Ui0NQOOItfgUgAZABkzg1t18B0A3GsBbIAEGQK+ZfLPNjQZAxooaTMNwBkBnLJrOTgYHQGHD0ytlmQZAKpFEL6MYB0BGtvP91LgHQAUXK2owzQlAomKcvwlFCUBrfZHQlvMJQGU2yCQjJwlAVcGopE5gEEDsUbgehWsHQE7udygKdAtApOTVOQYkDUC/K4L/raQPQKBsyhXeJQhA3eo56X2jBUCSdM3km+0LQB2s/3OY7whAK8HicOaXBEAeFmpN8w4GQP1qDhDMUQlADhDM0eN3BUBihPBo40gFQBkcJa/OcQlAJ07udygKBEDGxObj2pAHQEj+YOC5dwNAl4v4Tsx6BkC536Eo0CcFQNi7P96r1glAls/yPLh7DEA/UkSGVTwJQNFcp5GWigNAsTOFzmvsCECl2qfjMQMIQP/KSpNSkAZACeHRxhErC0AM6lvmdNkIQCTusfShiwtAcvkP6bdvB0AF+kSeJJ0GQFmjHqLR3QdAmyDqPgCpCkDX3TzVIXcIQPT4vU1/dgxAUps4ud/hAUDRP8HFihoGQG2oGOdvwgdA78nDQq1pCUBcGyrG+dsJQL7e/fFedQZAFhiyutXzBEC94xQdySUMQCqMLQQ56AdAHvmDgeeeBEAVjErqBPQFQOUK73IRHwpAFAX6RJ6kCECFlJ9U+zQHQBefAmA8gwZAqFKzB1oBB0AK16NwPUoIQA+0AkNWNwlAaAWGrG51B0BwfO2ZJcEJQN5xio7k8gdAqbwd4bTgB0DBVgkWh7MFQPDErBdDeQRAatlaXyT0C0CLTwEwnoEHQFwgQfFjzAdAAKlNnNxvB0C1/SsrTcoHQIvgfyvZ8QJAODKP/MFACkCamZmZmVkKQE0tW+uLBAhApHA9CtfjCUCsHFpkOx8JQE0tW+uLBAxA7fDXZI16CEDzWZ4Hd6cGQIv9ZffkYQdAecxAZfy7BEA7wmnBi/4DQGr7V1aa1AdAVMa/z7gwA0DXL9gN2xYHQMFz7+GSYwlAlUiil1FsBkDnGJC93j0HQGpq2VpfpAtALzTXaaTlBUDso1NXPgsFQBbe5SK+EwhAuB6F61G4CECeQUP/BBcKQBSzXgzlhAhA4h5LH7ogA0AnFCLgECoGQB9oBYasrgpAPu3w12QNCECpTZzc7xAAQBPVWwNbpQJAs14M5UQ7CEAtJjYf18YBQH3Qs1n1uQVAH4XrUbgeB0AYeO49XPILQPQau0T1lgVAzsKedvjrBEBaL4Zyol0HQB7cnbXbrgVAe9rhr8laBUBR2ht8YbIGQIfEPZY+tAZAsMka9RANCUB9lufB3dkKQCL99nXgHANAqFfKMsQxBkB4tHHEWnwLQDC7Jw8LNQhAAz4/jBCeBkDDnnb4a/ICQLAgzVg03QZAsylXeJfLB0A+IqZEEv0IQKWD9X8OcwJAVMa/z7hwDEDdDDfg80MLQPlmmxvTUwRAv0NRoE/kCkDvA5DaxMkJQIRHG0esBQhAhetRuB6FBUBA3qtWJvwHQNNqSNxjKQRANs07TtERBUBzuiwmNl8HQCrj32dcuANABrth26JMCUAT1VsDW2UEQDEIrBxa5AZA24r9ZfekCEB9rrZif5kMQH/2I0Vk2AdArMq+K4I/CkDx9EpZhngEQEX11sBWCQhATtGRXP4DCUDjjcwjf/AKQLTIdr6fGghAUWuad5wiB0AvhnKiXYUMQHpwd9ZuOwZA5iK+E7NeAkDGihpMwzAHQPJBz2bVZwdAfsaFAyGZCkDWOQZkrzcMQCi4WFGD6QlATrSrkPLTCEBQATCeQcMFQAT/W8mOTQlAUWaDTDKyCEBsQ8U4f1MGQM+goX+CiwZAwhIPKJvyC0BS1QRR9wEHQKMBvAUSVA1A81meB3cnC0AkfzDw3DsAQGqHvyZrlAhAAmVTrvAuB0DeyDzyBwMKQDwx68VQTghAsBu2LcpsBUBMiSR6GUUCQMxAZfz7TAhAUtUEUfeBBEBVGFsIclAMQNtQMc7fhAlAAMYzaOhfCEC+MJkqGJUFQEvIBz2bVQxA+HDJcae0CkCeKXReYxcHQFdbsb/sHgdAQZqxaDo7BkAj+N9KdqwKQBEZVvFGpgVAjSjtDb4wA0Dkg57Nqo8DQNuF5jqNtAdAMiB7vftjBkDxETElkqgDQH41BwjmqAdAGZC93v1xAkA486s5QPAIQLFQa5p3HP8/WvW52or9B0CLprOTwREHQGcKndfYZQdAICQLmMCtCEDhKHl1jgEEQJv+7EeKiAVArmTHRiAeCUDWc9L7xhcKQKDgYkUNpgNATpzc71CUCEBq3nGKjiQIQLDmAMEcPQlArVEP0ehOBkCZDTLJyBkLQCnQJ/Ik6QlAAmVTrvBuCUCbWrbWF8kGQHldv2A3bAZAlN43vvbMB0A6HjNQGT8HQKFKzR5oBRBAMIFbd/MUCEA6r7FLVC8HQAK37uapDv8/9nr3x3uVCkB7iEZ3ELsJQNun4zEDFQVACD2bVZ9rBkDVJk7udygNQOdSXFX2HQVAGw3gLZCgCUC1MuGX+rkFQETdByC1SQlAJzEIrByaBUAziuWWVgMQQH/7OnDOiAhA0qkrn+U5DUCyhSAHJUwJQDWYhuEj4gZAa0jcY+lDB0B6cHfWbvsJQItUGFsI8ghAste7P95rA0DBqKROQFMHQNPe4AuTqQZA+aBns+pzA0CTjJyFPa0EQC9RvTWwVQtAG9gqweJwCkB4CyQofgwHQBMsDmd+NQZArRdDOdHuB0CDaRg+ImYOQNUEUfcBSAlAlfHvMy6cCUCXi/hOzLoJQLSwpx3+WgdAKm9HOC14BkAWhzO/msMFQN21hHzQ8wRAZyyazk5GB0A8FAX6RJ4FQOOItfgUgAdAKA8Ltaa5B0AsZRniWFcGQDvkZrgBHwRAxJlfzQHCBUC2hHzQs1kLQOlILv8hvQZAHtydtdsuBkBv8IXJVAEDQB5tHLEWXwhAR1UTRN2HB0CC597DJYcIQHE9CtejMAlAJGJKJNELCEC0k8FR8ioHQM78ag4QDAZA/TBCeLSxBUCZZOQs7CkHQLkZbsDnxwVAAkht4uQ+BEDpt68D50wIQNGRXP5DugpAwTkjSnsDDkD5g4Hn3oMHQCveyDzyxwZAgufewyUHC0AdWmQ73w8FQPVKWYY41gdAv4I0Y9F0BEBcIEHxY4wKQAB0mC8vQAhAVwkWhzN/BkAxQni0cQQJQML6P4f58gdA7+GS404pAUD5oGez6vMHQIMXfQVpBgNAHNMTlnhgEEASwqONI5YJQEG3lzRGKw9AtkqwOJy5BECmCkYldYIFQBXGFoIc1A9AxsTm49oQB0CLNzKP/IEGQP2C3bBtkQZArBxaZDtfCUATfqmfN5UGQNVbA1slmAJAppvEILDyCECqDrkZbgAEQHReY5eoHg5AR6zFpwAYB0DrHAOy13sLQKUxWkdVkwZAD0WBPpEnDEAB9tGpKx8GQCZTBaOS+gdA6ZrJN9scBkBORSqMLQQNQDj4wmSqIAxAppvEILAyCkBc5nRZTCwNQPn3GRcOBAlAN091yM2wB0DcupunOuQGQDCBW3fzVApANnaJ6q2BDEDmP6Tfvo4EQE3zjlN0pApA6IL6ljndB0AhByXMtP0HQDeJQWDlUAJAeAskKH7MBUDGUE60q9ACQIenV8oyhAVAw/UoXI/CC0DWbrvQXOcHQALU1LK1PglAC3va4a9JB0B7MZQT7eoKQIiAQ6hSMwVAMGR1q+fkBkAIlE25wrsFQCjVPh2PGQpAur2kMVpHCED2C3bDtgUJQAQcQpWavQlAWoEhq1u9BkDxnZj1YqgLQODb9Gc/UgdAa0jcY+kDDUAZVvFG5pEKQCE82jhibQVAD5ccd0oHB0CdRloqb4cJQG76sx8p4gdAdEF9y5zuBkAT1VsDW+UGQMr9DkWB/glA3xrYKsEiCkD2Yign2hUIQK7wLhfxnQpAWWlSCrp9BkAGEhQ/xlwGQDMbZJKRswpAcOtunupQBkCfzarP1RYJQGkAb4EEBQxAHOviNhqACEBmMbH5uHYFQKWg20saIw1A1pC4x9JHBkBma32R0BYHQKQZi6azUwZAmZ6wxAPKBkBdUN8yp0sDQDdPdcjNcApApWYPtALDBUCMhLacS3EKQEgzFk1nZwlABDkoYaYtB0D2RUJbzuUHQFRXPsvzYAFAAoI5evweB0D1Zz9SREYIQLx5qkNuhgVAMjhKXp3jB0CL4H8r2fEFQO317o/3aghAXHfzVIccBUAAV7JjIxAKQOzdH+9Vaw1AJ9pVSPmJC0Dc14FzRtQGQCyazk4GxwdAGCZTBaOSCUBW1GAahk8HQGDNAYI5egdAodY07ziFCEBNFYxK6oQJQEjcY+lD1wBAqoJRSZ1AA0AmGTkLexoEQGXfFcH/1gRAOL72zJLABkCwrDQpBV0HQCPzyB8MvA1AeNFXkGasBkCBeF2/YHcKQAJlU67wLghAXrpJDAJrB0CIS447pUMGQED7kSIyLARA3PRnP1IEA0DpDmJnCl0GQCs1e6AVGApAGa2jqgniAkAkl/+QfjsIQDNt/8pK0wRAzvxqDhAMC0DecYqO5HIHQGHgufdwSQdAEmvxKQBGCkCDaRg+IuYHQL4Ts14M5QdAsfm4NlTMCEDnxvSEJV4GQJY+dEF9SwhA8wLso1MXBUAuBDkoYeYBQAMmcOtunglAU67wLhfxB0A8g4b+CW4KQJM6AU2ETQBA9ODurN12CUBEboYb8LkGQBh9BWnGogpA5CzsaYe/CED9wcBz76EGQGYxsfm4NgxAkIgpkUTvA0CY3ZOHhVoBQCHlJ9U+XQtAsfm4NlRsEECDbi9pjFYKQDJVMCqpkwlAXmOXqN5aCEDuWkI+6JkJQEfJq3MMCAhAniRdM/lmB0DY2CWqtwYHQLByaJHt/AhAkiIyrOKNC0CxFp8CYLwIQNI6qpogqghAQQ5KmGn7CEA8vVKWIY4HQKxzDMheLwhA3GgAb4EECkBS7dPxmIEIQDCBW3fz1AlAza/mAMEcBkCHbYsyG2QIQFZ9rrZi/wVAT6+UZYjjB0DXNO84RYcEQBBAahMndwlAIoleRrFcDkCEEmba/tUIQHi5iO/EbAVABARz9Ph9CEA+7fDXZM0GQOc1donq7QVAjGfQ0D+BBkAfLjnulA4IQFCqfToeswdAEMzR4/e2BUDt2AjE6/oIQED7kSIybARAUMJM279yBkAAdJgvL4AJQKDDfHkBdghAUWaDTDLyC0BQU8vW+mIJQOChKNAncgNA+zpwzohSBUBJERlW8UYGQHlYqDXNOwhA/isrTUoBB0BOYhBYObQAQFJ+Uu3TsQtAvFzEd2JWCkBTkQpjC0EJQLgehetRuApAQBh47j1cBkDOx7WhYhwHQEQX1LfM6QdAAJF++zpwAUB5AfbRqesEQCntDb4wmQVA+1xtxf6yB0DSb18HztkJQJ2FPe3wFwlAFZFhFW8kB0Cg/UgRGRYJQDSFzmvskgxAPpY+dEH9BUA6HjNQGb8HQNr+lZUm5QZAcSAkC5iAB0CQFJFhFS8HQA8LtaZ5BwxA06QUdHvJB0AS91j60IULQFhWmpSC7gdAqcE0DB/RCUDL+PcZF04LQBZNZyeDowtAgPEMGvqnA0Cc+dUcINgKQN1B7EyhMwdA3NeBc0bUBkCH4SNiSqQHQPC/lezYiANA2PULdsM2DECOklfnGJAJQJbnwd1ZOwdArYbEPZZ+DED99nXgnFEHQLPqc7UVuwlAIAw89x7uCEAhH/RsVv0JQIFbd/NUBwNA0vvG154ZC0CTHRuBeB0HQFn60AX1rQFAK97IPPIHB0AhdqbQeY0FQGAfnbrymQNAoDcVqTC2CEA/dEF9yxwGQPryAuyjkwZA6MHdWbstB0DKbJBJRg4FQL3jFB3JZQhAc9cS8kEPC0C62or9ZbcFQCQofoy5awlAOiNKe4PvB0D+8V61MqEOQObLC7CPDgtAyHvVyoSfCEAFo5I6AY0FQP5D+u3rgAhAOe6UDtY/CEA1JO6x9GEJQLhYUYNp2AdAPgXAeAZNB0DeH+9VK9MGQKxzDMhe7wlAO8eA7PXuBUC7RPXWwJYDQBnFckurYQRAq1s9J72vCEDU8ZiByvgKQBZqTfOOkwlAjGfQ0D/BBkCXHHdKBysKQFJ+Uu3TsQpAbw1slWCxAUDOqs/VVqwIQH506spneQVAud+hKNBnCUDCwHPv4RIJQJ3X2CWq9wxA2v6VlSalCEChLedSXNUKQCKrWz0nvQhAdZMYBFbOCkAgY+5aQr4HQFmGONbF7f4/NNdppKWyB0CWlSaloJsHQDSdnQyOUgZAPUSjO4jdB0CAK9mxEQgJQNJvXwfO2Q5AIv32deAcA0D52jNLAlQFQOuLhLacSwZAwhcmUwWjB0Cuu3mqQ24HQP/PYb68QAdA1pC4x9IHCUBZNJ2dDI4HQOoENBE2fAhADf0TXKxoBUBFuwopPykFQDYf14aK8QZAKdAn8iQpCEBrgqj7AKQIQIp2FVJ+kghA93XgnBGlBUC6ZvLNNrcCQB3mywuwTwhAsTOFzmvsBUD4Nv3Zj9QMQPonuFhRgwtA+tAF9S1zCEDmV3OAYE4HQHaJ6q2BLQ1AeLmI78QsB0CrBIvDmd8HQAe2SrA4HAdAj+TyH9JvB0BqTfOOU3QFQLO1vkhoSwdA4zYawFugCUB6qkNuhlsNQI7MI38wcAZA5lyKq8o+A0DY2CWqtwYFQIGyKVd41wZAfm/Tn/3IB0BMiSR6GYUBQDF8REyJZAlAcv4mFCKgCEB3LSEf9CwKQFMFo5I6QQlAehnFcktrBkBYyjLEsS4MQCS5/If02wlAYOXQItv5A0D76NSVz7ILQJ/leXB31gdARuuoaoIoBUCLcf4mFGIKQIl7LH3oQgtA61bPSe/7EUDr4jYawJsIQOohGt1BLA1A7UeKyLCKB0CEu7N220UFQD55WKg1TQVAnkFD/wSXDECWPnRBfYsHQEX11sBWyQ9AUiy3tBrSC0D6m1CIgEMKQFCNl24SAwpA8RExJZLoBUD3WPrQBTUEQG2tLxLasgVAhCo1e6CVBkD2RUJbzqUEQO8gdqbQeQJA6ZrJN9tcDEBgzQGCOXoCQJj6eVORSgZA/MbXnlkSEkCPqiaIus8GQOBKdmwEIglARN0HILXJB0DVeOkmMQgJQHi0ccRaPAdA7C+7Jw9LC0AHQrKACVwIQNkIxOv6hQ9A7xtfe2YJB0DjUwCMZ1AHQIHPDyOExwZAbCHIQQnzB0BiodY073gGQDjzqzlAsAdATKYKRiW1B0D9MEJ4tPEEQG6LMhtk0gZACr/Uz5tKC0AhPNo4Yi0KQB+A1CZOrgRAYtuizAYZCkDiOzHrxZABQOaWVkPiXglAfZHQlnMpA0Dx12SNesgGQD+RJ0nXDAlASnuDL0wmB0AqkUQvo5gFQBIxJZLoZQhAzeSbbW6MB0CMvoI0Y5EJQIZyol2FVAlA96+sNCkFCkDX+iKhLWcJQPQau0T11ghAHAjJAiZwBkBJaMu5FNcEQKDgYkUNZgFAgH106spnBkCiXYWUnxQFQHWr56T3TQhANUbrqGoCBkBz9Pi9TT8KQMvz4O6sXQhA42vPLAmQCEALRiV1AloJQMvz4O6sHQhA3Qw34PNDCUB6/N6mPzsIQOCEQgQcwgdAxm00gLcACkC6TiMtlXcIQNI6qpogagxAYhBYObSIA0Df+NozS4IIQHnpJjEI7AhA1XjpJjGIDECWJqWg28sLQBx8YTJVcAdApb3BFyZTCkC86CtIM9YEQCV1ApoImwNAZ0Rpb/AFBEAaFw6EZEEEQJ2FPe3wFwVAyR8MPPceBEC2hHzQs1kEQDf92Y8UEQZAzt+EQgTcBkD+YOC59/AIQM+Du7N2GwlAt+7mqQ55B0D7P4f58kICQIqT+x2KgghAfT81XroJAkBMN4lBYOUEQLZKsDic+QRAqDXNO07RB0Bh/Z/DfHkHQM5THXIzXAxAGxL3WPrQCEAYWwhyUMIIQKsJou4DEAdAjIS2nEvxBUBOKETAIRQIQJsb0xOWeAZArrZif9n9CEDEfHkB9pEQQPUtc7osZgdAAtnr3R+vCUBwmdNlMfEJQD/jwoGQbAhA5CzsaYc/BEDuQnOdRhoEQMU4fxMKkQpAlnhA2ZSLEUDi5H6HokAEQMLdWbvtwgdA+wW7YdtiBUAknBa86KsJQJ1oVyHlZwlAo5I6AU0EB0AjSnuDL8wEQAEwnkFDfwZAvW987ZnlBUCPxwxUxr8EQL7BFyZTxQxAWp4Hd2dtAkCwA+eMKC0EQD24O2u33QlAbhea6zTSB0A8iJ0pdJ4CQPRPcLGihgRATu53KAo0C0CZKhiV1EkIQJ+rrdhfdgdAFW9kHvnDC0Aps0EmGbkIQJtattYXSQdASOF6FK6HCUC4HoXrUXgBQDarPldb8QhAntLB+j8HCUCgFRiyupUHQK5kx0YgXhRA9iNFZFgFA0B8CoDxDJoIQK7YX3ZPXg9AYTdsW5QZB0B+xoUDIRkIQPn3GRcOBAtAfbPNjelJDEB/EwoRcAgHQIFDqFKzRwZAqiuf5XnwBEAurYbEPRYFQFLVBFH3AQVA0jWTb7Z5B0ATJ/c7FIUFQGrZWl8ktAdAaLPqc7UVCUCuZMdGIJ4EQHP0+L1N/wdATdu/stLkBUAOhGQBE/gCQBlz1xLygQRA9nr3x3sVCUB88rBQa5oIQAAAAAAAQAZAi08BMJ6BDEBPIy2Vt+MJQFQ6WP/ncARAERlW8UamBUDiWBe30YAHQJXx7zMuHAdAgGWlSSnoCEAf14aKcf4HQPK1Z5YEaApAeo1donprAkClMVpHVZMHQMBbIEHxIwVAcSAkC5hACUDzcW2oGCcEQJoIG55eKQdAiIBDqFKzCUD5FADjGbQCQAh3Z+22CwZAfh04Z0QpDEBEwCFUqZkGQD8djxmojAtA11HVBFF3B0B9y5wui8kFQMZQTrSrkAlAN091yM0wCED92Y8UkSEJQDawVYLFoQhAZcdGIF6XCUAu/yH99nUFQLFtUWaDjARArkfhehTuCECyEYjX9UsIQN7lIr4TcwlA6lvmdFmMBECbG9MTlngJQB1VTRB1nwZA74/3qpWJCkAsms5OBgcKQMiYu5aQzwVABwjm6PG7BkB8CoDxDNoFQBv1EI3u4ApAW7bWFwltBEBZhjjWxe0JQAhVavZAqwdA83aE04IXBkBFniRdM7kIQFrwoq8gzQZAHvmDgedeCkAzp8tiYjMHQDbqIRrdwQNAHjNQGf++A0Bxcr9DUWAEQBwIyQIm8AdAf7xXrUz4C0CQ2sTJ/Y4FQDW1bK0v0gdAdZMYBFbOBkBkO99PjdcHQLjkuFM6mANAcT0K16PwB0CLbOf7qbEJQAVR9wFIbQpAWYY41sUtBUB9eQH20WkLQAZkr3d/PAVAqn06HjNQB0Cz74rgfysHQLecS3FVWQlA+5EiMqxiCUCM+E7MevEHQI4G8BZI0AZAfh04Z0RpC0CeDI6SVycHQG0csRafQgVA4uR+h6IABkDp1JXP8rwGQP1NKETAIQVA3PRnP1JEC0DuJY3ROioHQBEBh1ClZgxAVRNE3QegC0DdJAaBlQMKQNR9AFKbeAZAZyeDo+SVB0DDnnb4a3IAQM9r7BLV2wNAAU2EDU8vCEDowd1Zu60GQEuwOJz5VQdAhnKiXYUUDECxv+yePOwCQCnLEMe6eAZACYofY+6aCUC9GMqJdhULQLq9pDFahwpAYygn2lVIAkCFJR5QNiULQOxph78mawtAO+RmuAFfA0BmoDL+fQYGQO/mqQ65mQZAr5l8s81NCEBGCI82jhgMQHEgJAuYwAVAdY4B2etdBUA1QdR9ABIDQIUlHlA2ZRBA6rKY2HycCEBoeR7cnbUBQN+JWS+G8gZAbEPFOH/TBEDUYBqGj0gMQGXfFcH/1gpA6njMQGV8B0DmXIqryj4LQHh/vFetTAZAaCJseHrlB0BL5e0Ip4UFQC0hH/RslgFAPx2PGajMAEBuF5rrNFIGQEDeq1YmfAhAIeUn1T5dCEDXTL7Z5mYUQKLuA5DaxAdAr+sX7IYtCUDOpbiq7HsLQN1B7Eyh8wRAK9mxEYgXBUA1tWytL1IJQMvbEU4LXgFAVMa/z7jwBUDZ690f79UIQMi1oWKcPwVAmnyzzY1pCUBKmGn7VxYJQMqJdhVSPghA3LqbpzrkBUCk/KTap+MKQBhgH5268gVALxfxnZi1B0CAZaVJKagIQEiKyLCKtwhAJ4Oj5NU5BkCoHf6arNEHQPz7jAsHggdA/1vJjo0AA0BaR1UTRF0FQBoXDoRkgQpAAd4CCYqfC0Cn6Egu/yEJQMFWCRaH8wdAjXqIRneQDkAjZ2FPOzwFQD0P7s7arQdAinYVUn6SCkAmqrcGtkoLQP8h/fZ1oANAkwA1tWwtBkABE7h1N88HQBxfe2ZJQAdABhIUP8bcC0B9eQH20WkIQB6KAn0iDwdAWp4Hd2etBUAZOQt72qEFQDKs4o3M4whAUiy3tBpSCEC2LcpskAkHQP28qUiFMQZA2evdH+8VBUDT3uALk6kJQEj+YOC5twdAxCXHndLBBkCUTbnCuxwJQK6ek943vgdAU1xV9l3RC0CMSuoENFEHQMed0sH6Pw1AW3wKgPEMBUD5Tsx6MVQFQOWzPA/uTgVA76zddqE5CEDDKt7IPHIIQGuad5yiYwxAD+7O2m3XB0CBW3fzVMcJQJ+wxAPK5gNAc6JdhZQfCEDY9Qt2w/YHQCMyrOKNTAVAuvdwyXHnDEDpJjEIrHwQQBoXDoRkAQtAAWpq2VpfBEDBOSNKe4MIQJgXYB+dugZAcJS8OsdAB0A3/dmPFBEGQOTaUDHOXwdAAG+BBMVPCEBznUZaKm8DQFovhnKiXQpAZ/LNNjdmC0A7GRwlr84HQJCDEmbavgZANUbrqGqCB0B9eQH20ekIQLGnHf6abARAYLAbti0KB0CvX7Abtu0BQD86deWzPAlADDz3Hi55BUCqDrkZbsAIQHReY5eongJAL6NYbmn1DED61RwgmOMEQHWTGARWzgpAe2tgqwQLCECze/KwUGsGQEBqEyf3+wVA0A8jhEcbC0DONjemJ+wHQB7htOBF3wNAGmmpvB0hB0BbzqW4quwIQMQlx53SAQtAATW1bK2vCUDPvYdLjvsKQJpC5zV2SQZAEQGHUKWmBECLic3HteEKQFlRg2kYvgJAuqC+ZU4XBkCbIOo+AOkHQLr3cMlxZwxAuFhRg2lYDUD6fmq8dBMGQAeZZOQsbAxAlfHvMy7cBkBVwaikToAJQJm7lpAPeghAfH4YITwaCUBa9bnaiv0HQMrgKHl1zgVAtFn1udrKBUBTXFX2XdEIQFOzB1qB4QVAYTdsW5SZD0CLVBhbCHIHQI6SV+cYEAhAw552+GsyBkCUMNP2r2wIQOcAwRw9vgpAbM8sCVDTB0C8kXnkD0YMQHbDtkWZzQFACHJQwkybBUBKtU/HY4YBQK7YX3ZP3gVAlDDT9q/sBUCrWz0nvW8KQJQT7Sqk/AZAj8cMVMZ/AkA7AU2EDc8KQKzFpwAYzwZA8tJNYhAYCUCEZAETuHUGQHicoiO5fAlAMj1hiQeUBUDOcAM+P4wMQEUvo1hu6QVA9wFIbeJkBkAqqRPQRJgHQGDl0CLbuQlAVn2utmK/C0B7Tnrf+FoHQIOj5NU5xgdAZFjFG5lHB0BJgJpatlYHQL2MYrmllQdACHdn7baLCECqZWt9kZAHQMX+snvyEBBAb/Wc9L6xCEAp6PaSxqgKQME5I0p7QwlAMgOV8e8zA0DRlnMpruoIQMH/VrJjYwNAS6shcY8lC0DCo40j1qIKQP63kh0bgQNA86s5QDDHBUBJgJpatlYKQJ92+GuyhgNADhDM0eP3CEA1Y9F0drIFQISB597DJQpAFAX6RJ7kCkBiSiTRyygGQMIv9fOmIgpAcXK/Q1FgA0DLuRRXlT0FQFGIgEOoEgRAbf/KSpMSBkAa3UHsTGEEQGfttgvNNQlAs9KkFHT7CUD36XjMQCUHQKOvIM1YdAlAYOXQItu5BkB2w7ZFmc0JQI1iuaXVkApAXBsqxvmbBkBTliGOdXEIQKBsyhXepQVAKQXdXtKYCEDFPZY+dEEHQMISDyibMghAPSzUmuZdBUDE6/oFuyEIQPlmmxvTEwRAcHztmSUBC0Bm9+RhoZYDQJbnwd1ZOwdANnaJ6q2BB0CJKZFELyMHQA6EZAETeAlA3NeBc0ZUBUCVmj3QCgwGQFFmg0wysgdATGw+rg2VEEDjcOZXc8AEQI/8wcBz7wlAArwFEhR/B0Ce0sH6P0cHQHYyOEpenQpANSkF3V7SBUCqglFJnUAJQF4R/G8luwZANjy9UpahB0AyychZ2BMIQH6MuWsJeQdAkq6ZfLONCEB5Xb9gN2wHQARz9Pi9TQxA+3lTkQojCEBOYhBYOTQCQBfUt8zp8gdA+SzPg7szCUCM22gAb0EIQMaKGkzDMAdAIEYIjzZOCkAKgPEMGnoTQJv+7EeKiAhApFNXPsuzCEAjZ2FPO7wKQNejcD0KlwhAlltaDYl7CEDRItv5fmoKQA39E1ysKAdABcB4Bg19CEBs7BLVWwMGQBzw+WGEMAdAFMstrYYEB0CHinH+JlQKQN481SE3AwlA8x/Sb19HC0B1djI4Sp4JQGWqYFRSpwVAou4DkNpECUC5jQbwFggJQDBkdavnZAZAqmVrfZGQCEDAIVSp2cMGQGFPO/w1mQdA5QrvchGfCEAEOShhpu0FQH/ZPXlY6ARA83FtqBjnDUDhehSuR6EHQN6rVib8UgZABaOSOgHNB0AoRMAhVCkPQLN78rBQ6wdAfxMKEXBIBUAF+kSeJN0NQG+BBMWPcQdAB3x+GCE8BUDYnlkSoOYHQAkWhzO/2gVA+GuyRj3ECEDhYkUNpmEKQHCZ02UxcQdALuI7MevFBkA4Sl6dY0AJQPG6fsFuGAdAcJS8OseACkDG+ZtQiMACQMMN+PwwggVAN091yM1wB0DK/Q5FgT4HQDfDDfj8cAVA2A3bFmU2CEAWMIFbd3MHQJKzsKcd/gtAnBa86CtIBkBvL2mM1hEIQIfhI2JK5AVAj41AvK5fB0CADvPlBRgKQICfceFAyAJAmRJJ9DIKBkBjtI6qJsgNQFc+y/PgrgZAAfbRqSuf/z+mYfiImNIOQAvvchHfyQJAF58CYDwDBkBXsmMjEK8HQPXzpiIVhgRAe0563/haCEDtKqT8pJoLQErSNZNvdgdA0ETY8PQKB0D0wwjh0UYIQH5v05/9iAJAxJlfzQFCCEDT9q+sNGkNQLEzhc5r7Pg/mEwVjEoqBkD4/DBCeHQKQJC93v3xXg1AVOOlm8QgA0B3EDtT6PwIQPs6cM6IUgpAr0LKT6p9CECgMv59xkUMQFN5O8JpAQpAyTzyBwNPCkBUHXIz3AACQKyt2F92DwZA+b1Nf/YjBECVmj3QCswCQLpm8s02dwhA1ouhnGhXB0Cmft5UpEIKQC/APjp1JQVA4XoUrkdhA0BnCp3X2GUFQANDVrd6jgZAHhZqTfNOBUAgDDz3Hu4CQGVTrvAulwZAwOyePCwUDkBAwcWKGkwHQC9pjNZRVQhAaQBvgQTFB0BlpUkp6LYDQF8pyxDHOgdAn47HDFRGCkA0aOif4KIMQO27IvjfSg1AVYfcDDdgB0BkkpGzsKcIQKz/c5gvrwNAilkvhnJiCkA3VIzzN2EIQOFASBYwQQVA34lZL4ayBkBg5dAi27kHQCVYHM78KglA+n5qvHRTBUBHcvkP6TcHQEmdgCbCxgVA6xwDstc7CUAFacai6ewDQNLj9zb9WQdASkbOwp52B0DF5uPaUPEIQEAwR4/fGwdAuYjvxKzXBUBZTGw+rs0GQDY8vVKWIQpAj1N0JJf/B0CGONbFbfQJQIrlllZD4ghAC5jArbu5BUD0FaQZi+YHQCwOZ341RwlAyLWhYpz/CkCJeyx96IIHQCKrWz0nvf4/Hy457pQOBUDPMSB7vfsGQNj1C3bDtglAhJ7Nqs+VBECAmlq21lcGQFLy6hwDcgpA/1vJjo3AB0AktOVcimsHQESjO4id6QZAzojS3uDLCECr7Lsi+F8HQDVG66hqggpA2nIuxVUlBUCILqhvmZMGQDP+fcaFAwhAFVJ+Uu2TDEBfmEwVjMoIQHtrYKsECwlAox6i0R0EB0Di5H6HokAGQMu+K4L/rQRAFytqMA1DB0A3jliLT4EAQMWPMXctYQZAr5l8s83NCEDDnnb4azIIQFiQZiyazgdAyeU/pN++A0A6zJcXYB8KQMQI4dHGkQpAXfksz4P7B0D8byU7NkIFQJNX5xiQfQZAXCBB8WNMCkDQ8jy4O6sGQBg+IqZE0gZA7N0f71WrDkCILqhvmRMHQH/eVKTCGAlAG4F4Xb+gBUCfjscMVEYIQC7FVWXf1QdAwW7YtigzBUChSs0eaAUFQHDrbp7qUAVA4GdcOBBSAUDP91PjpVsNQLpm8s02twdAwCFUqdkDBEDLZ3ke3J0IQKsJou4D0AZA0QX1LXN6B0Ang6Pk1fkEQLtE9dbAlglAvAUSFD+GBUBIG0esxacIQGKE8GjjSAhAIEYIjzYOCUB6U5EKY8sIQAvvchHfCQhAzZIANbVsBUCEDU+vlOUFQCfChqdXigdAih9j7loCB0DNO07RkVwPQCgK9Ik8iQVA7fDXZI16AkBdM/lmm5sLQFZl3xXBvwdAOiNKe4OvB0DGM2jon2AIQAlQU8vW+gpAAp8fRggPBkBATS1b64sJQJqUgm4vKQtACoDxDBo6B0DxgLIpV/gLQJCg+DHm7gZAn6ut2F82CkCeQUP/BFcLQGwE4nX9wgFAUWaDTDKyBkBKmGn7V5YFQJijx+9tOgZAd/hrskY9CUD430p2bAQJQDGZKhiV1AVAGTkLe9rhCkCnXOFdLiIJQBAGnnsPVwZAv9TPm4oUBUCYwK27eWoDQPn3GRcOBAxA83aE04JXBkA9YYkHlI0GQPXzpiIVBghA1y/YDduWDUDYKsHicKYEQAFqatlanwdAA3gLJCh+BUA5KGGm7d8MQCqMLQQ56ARAvW987ZnlBUD5SbVPxyMGQCU7NgLx+gdAPujZrPqcB0AyychZ2BMJQL68APvolAdAx0s3iUFgCECEKjV7oJUHQKcFL/oKEg1AUMdjBirjCEB07+GS4w4JQC2yne+nBg1A6KT3ja+9BkDfbHNjegIGQD+MEB5tvBNAx9eeWRIgC0AO+PwwQvgHQD4FwHgGzQ5ALspskEmGBECpaoKo+4AEQOtztRX7SwJA/G8lOzZCAkDVPh2PGegEQOif4GJFDQJAh8Q9lj40BUC71XPS+wYLQENznUZaqglAtB8pIsNqBECJB5RNucIHQMuhRbbzvQdA/TBCeLRxCEAFNBE2PD0EQDZZox6iUQtABK3AkNXtB0Bt4uR+h6IIQBrAWyBBURNA1xLyQc8mCkAvi4nNx/UJQN8Vwf9WMgZAM/lmmxtTBUABE7h1N88HQDvHgOz17gZAwjQMHxFTB0Aom3KFd/kHQEgbR6zFpwJA5ssLsI+OA0D35GGh1hQQQOyGbYsyWwhAh/4JLlZUCEBHj9/b9GcHQOELk6mC0QpASddMvtkmBUBL5e0IpwUJQD5cctwpnQFATYQNT68UBkDMC7CPTn0QQOOlm8QgMApAkdCWcykuDUCBeF2/YPcHQJgvL8A+ugpA8FAU6BM5B0BsskY9RKMNQCYeUDbligZARDS6g9iZBkCduvJZngcIQDF8REyJZAZAeZJ0zeRbB0BVTRB1H4AJQBkEVg4tcgVAaNDQP8FFDkAexM4UOq8EQC+ob5nTZQtAZcdGIF5XCUDcupunOmQJQLaEfNCzWQlA3IDPDyOECEBqGD4ipsQMQAisHFpk+wRAE0TdByB1B0CgVPt0PKYJQNsWZTbI5ABAyTzyBwNPB0Cwj05d+ewGQDP+fcaFgwxA+yKhLeeSB0CNf59x4YAHQH46HjNQGQ1AD9b/OcxXCUBSCrq9pLEFQL2pSIWxBQpAEce6uI0GB0BA3qtWJjwKQHe+nxovXQVAF7fRAN7CBkD8xteeWVIGQH4dOGdEqQdAFO0qpPykBkBZTGw+ro0KQJ/Nqs/VVgxAUiegibChBUC5GW7A5wcGQGpq2VpfZAhAUYiAQ6gSBkDJHww8914IQMpPqn06ngZAsp3vp8bLCUDMRXwnZn0NQG8NbJVgsQxAfGEyVTDqBUCoV8oyxHEJQHcQO1PoPPk/gsr49xlXB0C/1M+bilQIQPwYc9cSMgZA845TdCTXCEAz3IDPDyMFQEXY8PRKGQ5AvQD76NSVAkCfAmA8g8YGQHGPpQ9dUAhAICQLmMDtBkBYxRuZR34JQDJVMCqpUwZAxqLp7GQwCUBIUPwYcxcHQFvOpbiqbAhAO99PjZeuCEDxgLIpV/gJQOfj2lAxDgVAoDL+fcaFC0B798d71QoGQMkfDDz3nglALEgzFk2nCEBjuaXVkPgGQBCSBUzg1gRAZCMQr+vXC0A6WP/nMN8FQNo4Yi0+BQlAmdNlMbH5BkDXwFYJFocKQDTXaaSl8gtANZiG4SOiD0AKndfYJSoKQM9OBkfJawtA9UpZhjjWB0DOGVHaG3wMQAYN/RNcLAZA+5Y5XRaTBEDK/Q5FgX4DQE0VjErqhARADOVEuwrpBkBHj9/b9KcEQJJ0zeSbrQhACRueXinLCUAhyEEJMy0LQA8LtaZ5hwhAoYSZtn9lBkDMXUvIB30GQKkT0ETYsANAzxQ6r7FLC0AFbt3NU90FQEKygAncegpAJjYf14aKBkDAPjp15XMIQCmWW1oNSQlArrt5qkMuDEDjNhrAWyAGQM9OBkfJawlAFVeVfVdEDUDIQQkzbb8IQIy+gjRjEQZAtvgUAOOZDkDL1voioS0EQKwcWmQ73wlAI/PIHww8B0DcEU4LXrQHQAcI5ujxewZAPgXAeAbNBEDhYkUNpqEHQNaoh2h0hwdAPiKmRBL9CEBIp658lmcGQFJ+Uu3T8QhAwyreyDyyBkBGmQ0yyUgFQJBOXfksjwxAt5xLcVXZBkCPNo5Yiw8FQI3uIHam0ARAOPOrOUDwDECh8xq7RPUIQLTlXIqryhBAGD4ipkRSC0Bi+IiYEkkGQP5l9+RhoQxAhZSfVPv0CUClMVpHVRMDQH/ZPXlYKARAHlA25QqvCEDizK/mAMEIQMk88gcDzwZAAB3mywuwCECcUIiAQ+gCQMl2vp8a7wZAbypSYWzhCEAIPZtVn6sFQGw+rg0VIw9AUdobfGHyBEDw+WGE8KgKQC+jWG5ptQlAe4MvTKbKCkCPjUC8rl8HQDKs4o3MowZADM11GmkpCEDLhF/q540HQBfxnZj14glAQuxMofPaCECoV8oyxDEDQDpdFhObzwRA8zy4O2u3BEBPzHoxlBMIQDl/EwoRMAZAFytqMA2DBkBQNuUK7zIHQCbHndLBugdA1q2ek963CUA+BcB4Bs0FQE2EDU+v1AlAis3HtaGiBkAxlBPtKqQJQCVATS1b6wdAoS3nUlwVCUC6ZvLNNjcJQHk7wmnBCwZA81meB3fnB0BUqdkDrQAEQDfDDfj8sAVAXmiu00gLBECKPEm6ZnIDQLivA+eM6AVAx/SEJR5QCUB/h6JAn4gIQMxdS8gHvQhApaDbSxrjEEBIMxZNZycGQOZ0WUxsfgVAnNzvUBRoCECNf59x4UAMQHztmSUB6ghAZMxdS8gHC0AkYkok0csJQHU8ZqAyvgtAs7W+SGiLCUAnMQisHJoPQAqFCDiEqgpAat5xio5kBUD+8V61MiEFQAzIXu/++AhAKzBkdatnAkDkoISZtn8HQGKE8GjjSAdAkst/SL89BkBPQBNhwxMIQGZmZmZmZgdAZapgVFInCEBmFMstrcYIQFIKur2ksQ5An+V5cHdWBUDarPpcbQUHQB7htOBFHwVAD5wzorQ3BECqYFRSJyABQEmFsYUgxwZATP28qUiFDECAn3HhQAgBQLQ8D+7OmgBAsW1RZoMMB0DJk6RrJh8IQB5QNuUKLwJAICQLmMBtCkCQvd798d4GQNC4cCAkSwpA/yH99nWgB0DR6A5iZ4oHQMy0/SsrDQtAQlvOpbgqBkAA4xk09M8GQB+duvJZHgVA8ddkjXrICECA1CZO7vcLQOYF2Een7gNAnZ0MjpIXCUCmft5UpMIGQONTAIxnkAdAqZ83FalwDEAFUfcBSK0HQJTeN772DAhAJuSDns3qBkAZkL3e/bEIQK/rF+yGLQlA0SLb+X6qA0Aaho+IKREIQFk0nZ0MTgNA5NpQMc4fCkDfT42XbtIGQPsFu2HbYgZA9tGpK5/lBUCrIXGPpQ8JQLd6TnrfeAVA8s02N6anAkAOT6+UZQgNQOaWVkPi3ghAn+V5cHcWCECQ2sTJ/c4JQCqpE9BEGAhA662BrRIsCkDxKQDGM6gIQNy6m6c6ZAZA0VynkZYKBkDsNNJSeTsFQF66SQwCKwxA3LqbpzpkCEBDBBxCldoHQDdUjPM3oQFASx+6oL7lB0C1pnnHKToHQODW3TzVIQRAFJZ4QNmUBkB1kxgEVs4HQDnWxW00gAlAOnr83qZ/BEB9kdCWc+kEQLGiBtMwfAZATnrf+NrzCUAHX5hMFYwJQBnFckurIQtAMGR1q+fkC0APKJtyhfcHQGItPgXA+AhAbTmX4qqyB0BU46WbxCALQJAUkWEVrwlAnS6Lic2HCUBW1GAahs8AQCvZsRGIFwNAVcGopE5ACEBAGHjuPZwIQCo6kst/iAhA7UeKyLDKCkAiq1s9Jz0HQMPYQpCDEglAxEKtad7xAkATfqmfNxUIQBjshm2LcgdAJ4i6D0DqCkA1KQXdXpIHQHo2qz5X2wdAWwhyUMIMB0Bl3xXB/5YHQB/0bFZ9LgpAfZbnwd1ZCUDjiLX4FMAJQL1SliGO9QlAnwJgPIOGBkDNBplk5KwGQBh47j1c8glAhIHn3sOlB0AHtkqwOBwKQEjElEiiVwlAYU87/DVZCkBzY3rCEo8EQKfLYmLz8QlAnPnVHCBYBECwPbMkQM0FQNxoAG+BRAZACCC1iZM7DECjO4idKbQLQDFfXoB9dAhAUrgehetRCUBGlPYGX5gGQJs90AoMGQlARpT2Bl+YCkB3hNOCF70GQEWeJF0z+QdA1XjpJjGICEA10lJ5OwIKQIZa07zj1AVA5xiQvd69A0AJxOv6BbsIQPq4NlSMsw9AodY07ziFBkD+t5IdG8EJQF8M5US7CgZATHFV2XfFCEB5Xb9gN6wDQJNvtrkxvQdAbATidf1CBkA1mIbhI2IJQGiWBKipZQZANWPRdHZyCUA+IqZEEv0FQJI/GHju/QdAZ9Xnaiu2BUBRTrSrkLIIQNkIxOv6BQlAaVch5ScVCkDsF+yGbYsIQBsS91j6kApAb0c4LXjRBkBzLsVVZd8FQHLEWnwKQAZAGsBbIEExBEDbiv1l92QJQG7A54cRgghAJQaBlUPLC0CN0TqqmmAGQA4yychZWAhA8uocA7LXA0BkBirj32cHQBb2tMNf0wVAPDHrxVDOB0AKgPEMGjoGQIL/rWTHBghAv2A3bFvUCEC0yHa+n5oKQEQX1LfM6QtAR3L5D+m3B0BXW7G/7F4CQGEaho+IaQVA8KKvIM0YB0BMjjulg3UHQEF9y5wuSwlAUkSGVbxRDEB0B7EzhQ4FQLb4FADjGQlAIchBCTOtA0AiT5KumbwKQEHxY8xdywJAdv2C3bDtBkDtgVZgyOoIQB6KAn0ijwNAoP1IERlWCUDDtkWZDfIGQOjZrPpcbQVAUkSGVbxRDkCOQLyuXzADQI1iuaXVkAdAzVg0nZ2MDEA9D+7O2i0GQODb9Gc/0ghAC0YldQIaAkDbUDHO3wQHQDcawFsgQQVAjUXT2cngBkCsHFpkO18IQHugFRiyOgVAhSUeUDalC0D5FADjGbQIQOeMKO0NvgZAoDcVqTD2C0C/8bVnlsQJQJhuEoPAygJAGw3gLZAgCUDmkT8YeO4GQPQyiuWWlglAS1mGONbFCEDTvOMUHQkIQJM16iEaHQlAyjLEsS6uBUDX3TzVIbcIQJ+rrdhftgRAITzaOGJtBUB9PzVeuskJQEFl/PuMiwhAPtAKDFmdCUDuPVxy3OkDQNrmxvSE5QZAp7OTwVHyCkAZraOqCeIJQN0kBoGVQwdA8Nx7uOS4BUAWpBmLprMHQJbs2AjEKwNAz/dT46WbBEDOx7WhYpwKQDPEsS5uYwhACeHRxhGrBUBOKETAIdQLQFSM8zehEAdAf4eiQJ/IBUD6CtKMRRMIQLyReeQPxgNAsKw0KQVdAUC21hcJbTkLQMdLN4lBYAdA/OO9amXCCEA9m1Wfq20KQPrt68A54wZAWhKgppatBECHbYsyG6QJQFDCTNu/sg1A81SH3Ay3CED2l92Th0UIQGGOHr+3KQdAqB3+mqwRBkCsVib8Uj8HQCvB4nDmFwpAGRwlr86xCEBLk1LQ7eUFQOrnTUUqDAhA8G36sx8pB0C/mgMEc3QEQIIclDDTdgVAppvEILCyCEAMzXUaaSkFQLRxxFp8Cg1ABVH3AUjtCUBKB+v/HGYFQNr+lZUmZQhAKLhYUYOpBEAZraOqCSIGQIzWUdUEkQdAPdUhN8NNB0Bp44i1+FQAQJSkaybfLBFA8l61MuGXC0A6QDBHj98FQF8ktOVcCglAMV9egH30CEDPoKF/gksIQK98lufB3QhAQni0ccQaB0AHsTOFzisIQEesxacA2AtAN4lBYOVQBkCW58HdWTsOQFLVBFH3AQhAHaz/c5jvCkCt3XahuU4IQONw5ldzgAZAAfvo1JWPCkDV7IFWYGgQQFR0JJf/EAZAtRX7y+6JCUBHA3gLJGgEQFr1udqKvQpAzVg0nZ3MBkCCHJQw03YNQJ57D5ccNwVAv0NRoE+kC0A9Sbpm8k0HQFysqME0TARAba0vEtpyBkC8BRIUPwYGQH4dOGdEqQ9A0VynkZYKC0A9m1Wfq20MQBEZVvFGJglAvMtFfCemBkAj88gfDPwEQHcQO1PovApAM+GX+nmTBkD3OxQF+sQEQAh3Z+22SwVAoRABh1BlCEDpJjEIrNwIQPwApDZxMgtAamrZWl+kCEAj+N9KdmwJQFKbOLnfYQdAXoB9dOqKA0BRpWYPtMIIQAfOGVHaGwtABDkoYabtE0DusfShCyoKQHGPpQ9d0AZAfdCzWfU5EUDZlCu8y8UHQJ9x4UBIlgdAGCZTBaPSAkC7m6c65KYGQFVq9kAr8AZAJVgczvyqAUBq9kArMOQJQIWxhSAHJQdALWACt+7mCEAZ/z7jwkENQEdVE0TdRw1AIZOMnIX9B0DmdFlMbD4IQDj4wmSqYAdAxHdi1ovhCEA9Sbpm8g0GQDojSnuD7wlA4lgXt9HAB0Bd/kP67esEQDCBW3fzVAtA1lbsL7vnBEA7x4Ds9S4EQNRIS+XtyAdAboYb8PkhBEAQzNHj97YEQEgzFk1n5wNAOZz51RxgBkA+P4wQHi0KQEEOSphpuwdAIJijx+/tBkB6qkNuhlsGQMR8eQH2EQ1AXvQVpBkLCkBsIchBCbMGQCEHJcy0/QNAx9eeWRIgCUAXnwJgPIMKQDHrxVBONAVA1v85zJdXCEB3Z+22C00HQKbtX1lpEgdAk1fnGJA9C0Bzol2FlB8DQJT2Bl+YzAhA/fZ14JxRCECLcf4mFOIGQIKLFTWYRgxAy4Rf6ufNC0AMHxFTIkkMQGUZ4lgX9whAl3Mpriq7BkAwR4/f27QMQJIiMqzizQdANdJSeTtCD0Br8SkAxjMJQKKXUSy39ARAyJi7lpAPB0BgkzXqIZoGQJJ0zeSbrQRAm1q21hdJB0AMyF7v/vgMQEGC4seYOwVAdc3km23uCED0/dR46WYMQNGRXP5DugZAS7A4nPnVCUBrn47HDJQGQNyAzw8jxAFAAB3mywtwDEAWhzO/mgMHQOBnXDgQEghAww34/DACBUBAahMn9zsKQMOedvhrMgdAcVXZd0VwEkAlWBzO/OoCQBIUP8bctQBAxjNo6J+gCUDcupunOiQJQCv7rgj+twNAYf2fw3x5BkAVqTC2EGQLQPjfSnZsRANAXOZ0WUysCEAlzLT9KysFQNobfGEylQdA2/l+arx0CUCyS1RvDSwHQFDfMqfLYgJAQSswZHVrCECCxeHMr6YFQGR1q+ektwlAbt3NUx0yCUACt+7mqY4IQME5I0p7QwpAaW/whckUCEADfSJPkm4JQIWUn1T7tAdAXkvIBz0bCUDtZHCUvDoFQHk7wmnBiwlAbagY52/CA0CIaHQHsbP/P3AlOzYCcQVAyVnY0w5/BUDLSpNS0O0HQN/gC5OpQg9AaTo7GRxlBEAOLbKd72cMQFeyYyMQ7wZAh8Q9lj40CEC9NbBVgkUJQJhMFYxKqghAdavnpPcNA0BvRzgteJEKQEW7Cik/KQpAUDblCu+yBEC1T8djBioGQNAKDFnd6gdATYQNT69UCkBORSqMLYQBQMFz7+GSYwlA5iK+E7PeCkBd4V0u4rsIQIwQHm0csQxAqZ83FalwC0BMcVXZd4ULQHZxGw3grQdApu1fWWnSBkBTeTvCaYEHQCYZOQt72ghAy/j3GRdOBkAai6azkwEJQJbs2AjEqwVA0T/BxYoaCkDpJjEIrJwHQE+Srpl88wtA3Xu45LiTBUAc8PlhhHAFQKSNI9biEwdAPNo4Yi2+B0Dhl/p5U5EGQIJzRpT2BghASUvl7QinCUAvi4nNx7UIQOnxe5v+rAdAWaMeotEdBUBZwARu3Y0GQI51cRsNIAZAOe6UDtY/DEAQ6bevAycFQPOTap+OhwhABcB4Bg19BUD2RUJbzmUKQJhMFYxK6gZAGeJYF7dRDECoUrMHWoEIQNun4zED1QhAamrZWl+kCkA7wmnBiz4KQF0z+WabmwlAC9KMRdMZCEDcnbXbLvQJQCpSYWwhyApATRB1H4BUBUCtbvWc9P4GQPw1WaMeIgtA+z+H+fLCAkDHYwYq4x8JQFfPSe8b3wlAQIf58gJsCEB47j1cclwKQMvW+iKhrQdAwTkjSnsDCkAhAg6hSk0HQLraiv1l9wVAZqAy/n2GB0AcJa/OMWAHQGcKndfY5QVAYB+duvIZCkCh8xq7RHUEQEZfQZqxaAZA8nub/uxHC0CE8GjjiPUIQLyReeQPBgVAkpGzsKddCEDSqSuf5TkGQBJr8SkAxgVA6uxkcJT8BUAnZr0YyskAQP63kh0bwQRA626e6pDbB0BNLVvri8QEQEOQgxJm2gdAM8SxLm5jCkDCo40j1iIGQDSdnQyOkghAA30iT5IuC0Bi1ouhnOgEQACMZ9DQvwhA1bK1vkgoCkDaOGItPgUEQNtQMc7fhAdAhc5r7BIVBkDI6lbPSa8GQM7fhEIEXAlAL26jAbxFAEAb9RCN7mADQHztmSUBKglATpfFxOYjBkAP1v85zBcEQGBZaVIKOgxAgQncupunBUCg/UgRGdYHQJyKVBhbSAlAqpog6j6ACEDyQc9m1ecEQIT1fw7zpQNAKuPfZ1z4DUBmiGNd3AYEQL06x4DsNQZA6pWyDHGsCUC7Cik/qTYGQOv/HObLSwhA1PGYgco4CEDv4ZLjTikHQJY+dEF9CwpAIlSp2QNtCUDhfyvZsdEGQFGDaRg+IglACqLuA5CaAECkiAyreKMMQK67eapDbghApUkp6PaSA0AvhnKiXQUFQC457pQOFgNAW7G/7J48A0C8P96rVmYKQLq9pDFaxwJALQlQU8vWBkCS6GUUy60GQLVU3o5w2gdAyAxUxr/PCUCAmlq21lcEQJJc/kP67QZA/Z/DfHkBBEAIWoEhq9sJQIHs9e6PdwdAcM6I0t6AEUDgufdwyXEMQPaX3ZOHZRRAsVBrmndcA0B47j1cctwHQJkNMsnIWQVAirDh6ZVyCECU9gZfmMwIQM+goX+CCwpAeNFXkGasCEAZBFYOLTIIQFeVfVcEPwlAVoLF4cwvCUAmAWpq2ZoNQA5KmGn7FwZAyAxUxr8PCEALmMCtuzkGQNXnaiv2FwdA/YLdsG0RCEDt8NdkjfoHQNPe4AuTqQlA91j60AV1BkCeQUP/BBcGQINuL2mMlglAKnReY5doBEAnZr0YyokLQI7MI38wMAlAu2HbosyGCkDzPLg7azcIQP3BwHPvoQZASKeufJbnCkDytWeWBOgHQJhMFYxKaghA2T15WKj1BkC3ek563zgIQNOHLqhvGQRAutqK/WU3C0BZF7fRAF4IQED2evfHewRA5IOezaqPBEBPzHoxlJMHQD3VITfDDQVAmkLnNXYJBkA/bypSYewMQKW9wRcmEwNAInGPpQ9dBUAyychZ2FMGQAHeAgmKHwpAPq4NFeP8BkDxun7BbpgFQOZXc4BgTgxAIR/0bFY9B0DNO07RkdwOQAEYz6ChfwlAyy2thsR9CUCcM6K0N/gEQAFqatlanwNAIlSp2QPtCECH/gkuVlQHQAnE6/oFewhAthDkoIRZB0ChSs0eaIUIQE34pX7eVAlAXHfzVIfcCUAbu0T11sAHQKTfvg6ccwVArwj+t5IdCUAhWcAEbl0MQO9yEd+JmQVAUMJM279yC0B5r1qZ8MsKQFDfMqfLogRAkq6ZfLMNB0Cs/3OYL68LQHlA2ZQrvAdANQwfEVPiBECojH+fcaEGQPOOU3QkNxBAUPwYc9cSCkCrIXGPpQ8JQK9amfBLPQhA/N6mP/sRCEAiGt1B7EwKQOoJSzygLApAPpY+dEH9CkDY2CWqt0YFQLPNjekJSwVAu9Vz0vvGDEBgkzXqIdoLQNzXgXNGlANA1QRR9wEICEDW4lMAjOcGQPqbUIiAAwZA9RCN7iA2B0CkjSPW4lMFQHY3T3XIzQVA3/jaM0uCBkBq2VpfJPQLQL01sFWCxQdArd12obkOBEAUBfpEnmQJQEbOwp52uAtA+kSeJF0zCkDsTKHzGjsIQPcBSG3ipAZA/z7jwoGQB0DDtkWZDXIFQAFqatlaXwlAnfS+8bUnBkCOO6WD9b8LQFmjHqLR3QZARG6GG/B5BkDjjcwjf7AGQEyJJHoZhQdARl9BmrFoAUDfMqfLYuIIQHMR34lZbwZAZOlDF9Q3CEAOhGQBE7gKQJnYfFwb6gpAiEuOO6VDCkDXL9gN21YJQBCv6xfsBg5AyXGndLC+C0CIaHQHsfMJQEDeq1YmfANATfOOU3RkB0DysFBrmvcIQDZ2ieqtQQpA4QuTqYIRCEDdByC1iRMJQFqeB3dnbQlAq+ek940vCECJB5RNuYIMQBhDOdGuAgxA0oxF09nJB0BzaJHtfP8GQOyGbYsymwNAL4Zyol1FCUA1Y9F0drIGQKshcY+lTwVAeXWOAdmrB0DxETElkmgIQDvCacGLPgpA8IXJVMGoCEAaho+IKZEHQEj5SbVPBwhAtr5IaMu5BUAS91j60EUIQCFZwARuHQZAJQaBlUNLB0CKAn0iTxILQMUDyqZc4QhAe2ZJgJqaBEDnxvSEJR4KQPhwyXGndAhAYeC593BJCkDCFyZTBeMIQHlYqDXNewZAPX5v0599BEDL2xFOCx4IQNKMRdPZCQVA+n5qvHRTC0CAt0CC4gcCQKWg20saIwRAZY16iEY3CUCPxwxUxj8DQACMZ9DQPwNAqg65GW4ACUDUYBqGj8gIQAFqatlanwdATmIQWDn0CEBr8SkAxvMJQC9RvTWwVQlAUdobfGHyCkCcxCCwcigJQIsyG2SS0QtAmrFoOjtZB0AyA5Xx77MIQHdn7bYLzQhAY5eo3hrYCECvWpnwS30KQNPZyeAoOQZAisiwijeyAkBbXyS05dwEQKiMf59x4QZAdY4B2etdC0A7cM6I0p4LQK2GxD2W/gpApKXydoTTBUDUZTGx+XgJQJv+7EeKCAdASl6dY0C2CEAQ6bevA+cGQIYb8PlhxAhAo68gzVh0CUAYeO49XPIFQDSFzmvs0glAk6mCUUmdCEBfKcsQx/oHQLDmAMEcfQlAhbacS3FVCUBWSPlJtQ8IQDOK5ZZWwwhAVMa/z7jwBUC4QILix5gFQHDrbp7qkApAo0CfyJNkA0CVSKKXUWwIQOChKNAnMgpAf/YjRWSYCUDtgVZgyGoIQIT1fw7zpQhARWRYxRtZCUDbUDHO34QNQEzg1t08VQlA/fZ14JwRBkCbyTfb3FgGQJv+7EeKiAxA1eyBVmBICUCGrG71nLQEQDnRrkLKjwVAibX4FABjB0C4O2u3XegJQAnh0cYR6wtATx4Wak0zCUA25QrvctEHQAFqatlanwlAWMUbmUe+BkAhAg6hSs0LQJZDi2znuwhAHvmDgedeBECIY13cRoMIQCMtlbcj3AZA6lvmdFmMB0A012mkpbIGQI4B2evd3wZAE0n0MoplB0AE4nX9gt0GQDVj0XR2sghAqiuf5XkwCEB+jLlrCfkDQOC593DJ8QRAXhH8byW7DUCVDtb/OQwLQC3saYe/ZgZAie/ErBeDCECKzce1oeIIQOWbbW5MTwVA4Zf6eVMRDEBoP1JEhpUHQMh71cqEXwVAsW1RZoPMCEA9D+7O2q0HQJiG4SNiigVAkwA1tWztC0Av3SQGgdUHQEZCW86lOARAUaVmD7QCCUBh4Ln3cMkEQBXj/E0oBAdAvK5fsBv2C0CRJ0nXTD4FQDaTb7a5cQVADf0TXKxoB0DONjemJ6wIQBniWBe3UQhAOnXlszxPCEA6HjNQGT8KQEn0MorllgVA3lSkwtgCCEBq2VpfJLQHQOUn1T4dzwVAJEVkWMXbA0CZKhiV1AkGQACuZMdG4AVAVHQkl//QBEDuX1lpUkoHQI+NQLyuXwpAZhTLLa0G/D+mYfiImBIFQCO+E7NezAVACHJQwkwbCkCMEB5tHPEJQIfEPZY+tAtAAiuHFtlOBEBLk1LQ7aUHQB9LH7qgPgpA4GdcOBDSAkDjx5i7llAHQEIhAg6higpAn3HhQEiWBkCwA+eMKC0FQHiXi/hODAVAlkOLbOc7BkCdEaW9wZcFQMVyS6sh8QZAcLa5MT2hB0BCQ/8EF+sHQCGwcmiR7QdApYP1fw5zBkAE54wo7Y0MQAGHUKVmzwBAqg65GW4ACECSBUzg1l0HQI7pCUs8IApAK6T8pNonCkCy17s/3msGQNJvXwfOGQhAaNDQP8HFB0B4KAr0ifwHQO8gdqbQOQNAXrpJDAJrCUAMk6mCUYkGQCodrP9zGAtAxM4UOq/xCECIaHQHsXMKQHCZ02Ux8QBA5ldzgGBODkBYxRuZR74EQAw89x4uuQxA+dozSwKUBkAlWBzO/KoFQKq3BrZKsAVAucK7XMT3BkAeFmpN844FQNf6IqEtZwhAmUf+YOD5C0CBJsKGp9cHQJnTZTGxuQZAbw1slWCxBUDTMHxETMkEQC9uowG8RQZATyMtlbdjB0Dso1NXPosGQM3km21uzAdA9Ik8SbpmC0D99nXgnJEIQIz4Tsx6cQZAFt7lIr4TCEAhH/RsVj0JQIe/JmvUgwpA5NpQMc5fBkDqeMxAZXwKQKA3Fakw9gVAVisTfqkfBkD4qpUJvxQFQOIeSx+6oAxAx0YgXtevB0BaKm9HOC0HQC3Pg7uzdgdAaLPqc7WVBUDKMsSxLu4GQGiu00hLJQVAdxVSflKtB0DMC7CPTl0GQIRHG0eshQVAJ8KGp1cKB0AY7IZti3IBQD6WPnRBfQtAbypSYWwhC0A9LNSa5l0HQOW4UzpYPwlAi3H+JhRiCkCsOUAwRw8GQPM8uDtrNwZASbpm8s22C0AXghyUMBMLQHztmSUBagZAB1+YTBVMCUCKsOHplXIHQO5fWWlSCgdAuDtrt13oCkBrDhDM0SMDQO8gdqbQeQZAv0hoy7mUBEAXnwJgPMMGQBnKiXYVEghAnNzvUBToCEAnwoanVwoDQBppqbwdoQpAsTOFzmtsBkAPtAJDVrcGQFuZ8Ev9PAVAaeOItfjUCkCW7NgIxCsCQEZ8J2a9mAVAe737471qCUBN845TdCQBQKmkTkATYQhA7+apDrlZB0CrPldbsf8HQO6x9KEL6g5AGTkLe9phCEAjhEcbR6wGQPLSTWIQWAtA8tJNYhAYDECjkjoBTcQJQDFCeLRxxARAaJYEqKllBkAYYB+dunIGQP28qUiFMQdAdTxmoDI+C0DqeMxAZXwGQOxMofMa+wpAKowtBDloCUCEu7N224UIQBYTm49rAwhApKXydoTTA0A17zhFR/IEQGQGKuPfZwhA/dmPFJHhCkAZraOqCaIHQLxcxHdiVgZAyXa+nxqvC0DhC5OpgpEIQPevrDQphQhA4Nv0Zz9SCEBznUZaKu8GQEbT2cngqAdAHLEWnwLgCEDOjekJSzwKQOm3rwPnTABAMbH5uDZUAECv6xfshi0IQOLplbIMsQlA/dmPFJHhBEAvNNdppGUJQEp7gy9M5gpAbOwS1VvDCkAhByXMtL0IQMOBkCxgQgpAescpOpKLCEBPXfksz8MEQDUHCOboMQhAVwkWhzP/BkCOWItPAbABQE8eFmpNswhA2o8UkWFVCUCygAnculsJQCEHJcy0/QZAVvFG5pE/DEAtQxzr4vYHQG1Wfa624gRAD2JnCp2XBkACvAUSFH8CQI1iuaXVkA1AYTJVMCqpCUD+8V61MqEPQHYyOEpenQdAc2iR7Xw/C0B2cRsN4O0EQAMJih9jbhBAnWNA9nq3CEA/OnXls/wMQML6P4f5sgtAH2gFhqzuBEAY7IZti7IIQPwYc9cSMgVABthHp678BEANiXssfagFQAPPvYdLzgdALZW3I5xWCkBoImx4eqUIQOPfZ1w4UAtA4lgXt9HACEB5HtydtRsHQOUn1T4dTwxAsI9OXfnsBkCD+pY5XRYHQO7O2m0XWgRAQBNhw9PrCECrIXGPpY8MQL06x4DsNQlArTQpBd2eA0B8fhghPBoEQPlmmxvTUwpAuMzpspgYCUBmZmZmZmYHQKeWrfVFQghA/G8lOzZCBUA6deWzPE8IQGxblNkg0wlAJnDrbp5qCkDqPgCpTZwFQA1slWBxeAlA0sYRa/EpBUA6OxkcJe8HQPuuCP63EgtAS8gHPZuVDEAw8Nx7uOQKQN7lIr4Tsw1AKZZbWg3JB0BxAz4/jJAHQBPVWwNb5QhA6BN5knTNCkDSNZNvtrkJQKUxWkdVUwZAcEIhAg7hB0CW58HdWTsIQD6zJEBNrQhAk6mCUUkdA0D0T3CxogYKQHpwd9ZuewpAgez17o93CkCbPdAKDJkGQKcFL/oKEgdA4QuTqYLRBUARUyKJXgYDQAB0mC8vQAhAcayL22iAB0AiiV5GsRwHQA3DR8SUSANAptWQuMfSC0BVE0TdByAGQEyJJHoZRQVAotEdxM4UCUA6kst/SP8JQJkNMsnI2QpAcSAkC5iABkA9m1Wfq60IQAclzLT9KwpAOq+xS1RvBkDxS/28qQgEQGRYxRuZRwRA+mGE8GgjCkCoqWVrfVEHQAQhWcAE7gdAml/NAYI5CkA9CtejcP0LQNSCF30FKQZAkwA1tWxtBUDUZTGx+TgKQFmGONbFLQlALNSa5h2nA0D0GrtE9dYHQFX2XRH8LwVAEwoRcAjVBEBTliGOdfEFQIT1fw7zJQdAAp8fRghPCEDghEIEHEIIQAb1LXO6bANAGcVyS6thBED2fw7z5UUNQFluaTUkLgtArP9zmC9vBkD/PuPCgRAJQHsUrkfhegVATdaoh2h0BUBhw9MrZdkIQHo2qz5X2wpA1q2ek943CEBxICQLmAALQIkpkUQv4wtAznADPj+MBkD3Bl+YTFUIQPWc9L7x9QpAescpOpILBUC/DpwzorQHQGLzcW2oWARAlgm/1M8bCkBvEoPAyqEDQPc7FAX6hAZAybCKNzJPCkD+ZffkYaEIQCJPkq6ZvAZAWfrQBfXtDEASoKaWrTUKQB/0bFZ97ghA7Z48LNTaCkB6Nqs+V1sIQLosJjYf1whAr+sX7IZtC0CR0JZzKe4NQNAKDFnd6gRAmfViKCeaCUBHcvkP6fcJQANbJVgcTgZA3C4012kkCUAm32xzY3oDQHBfB84Z0QZACks8oGyKB0CwA+eMKG0IQOrsZHCUPApA5lyKq8o+CUAeFmpN8w4EQCs1e6AV2AJApfeNrz2zDkAfhetRuJ4JQBEebRyxVgdAmEwVjErqCkDOiNLe4MsDQPAWSFD8mAdASino9pIGCECEgefew2UFQDvHgOz1bglAL6NYbmk1B0AO2xZlNggFQGJnCp3XmAZAjZyFPe3wCEC4O2u3XegEQNY5BmSvtwdAg6Pk1TlGCUA6I0p7g68MQPryAuyj0wlAh1ClZg90BUAyWkdVE4QFQPVKWYY41gRAU8vW+iIhCEAexM4UOu8MQDgyj/zBAAtA1SE3ww14CEBY/+cwX94JQAltOZfi6gpAiUFg5dAiBUDfN772zJIGQERpb/CFiQdA/89hvrxAB0AUeZJ0zWQGQCl5dY4BmQhAraOqCaLuBUCh20sao/UKQEJD/wQXqwVAtmeWBKjpB0B6pSxDHGsKQPTg7qzd9glAcuFASBZwCECbVZ+rrZgIQFMiiV5GcQdAStI1k2+2C0C9NbBVgsUGQGNFDaZhuAhAqMZLN4nBBkAqV3iXizgEQBueXinLUAhAJ4i6D0DqB0DtZHCUvDoIQJZ4QNmUqwtAXW3F/rJ7A0BcIEHxYwwKQCdr1EM0ugZA4zYawFsgCkCYbhKDwAoHQIC3QILiRwZAW7G/7J78CEDHEWvxKUAGQIKLFTWYhgdAmG4Sg8AKB0DSAN4CCQoHQFX2XRH87wlA3PRnP1IECUDl1TkGZG8HQOOItfgUAAlAkDF3LSEfA0ATZtr+lVUEQOv/HObLywxAWd3qOem9C0DmIr4Ts54KQC+jWG5p9QZAkE5d+SzPCEA/UkSGVTwHQPSmIhXGFglA499nXDiQCUBlqmBUUmcGQIT1fw7zJQpA5EnSNZNvCUAAHebLC/AIQEw3iUFgpQVAqYdodAdxDUCwIM1YNB0HQHEDPj+MEAhA44i1+BSAC0CSy39Ivz0FQOXtCKcFrwdAq7LviuD/CUC1VN6OcFoCQJTBUfLqXAdA0m9fB86ZA0BKe4MvTGYDQKsJou4DUAZA8SkAxjMoD0AaqIx/n7EHQHL+JhQi4AZAbkxPWOIBCEC0dtuF5voJQJ7vp8ZL9wVAidLe4AuTBkCAt0CC4scNQLd6TnrfeAdA5pE/GHhuBkCiXYWUn9QOQMPYQpCDkgRAGVbxRuZRAUA3cXK/Q5EGQDS/mgMEcwRAERlW8UZmBkD/W8mOjcAKQGvxKQDGcwZAchb2tMPfBkBLWYY41sUGQCHNWDSdXQdA5SfVPh3PAUCYhuEjYgoIQIuJzce1YQdAdAexM4VOAUDL2xFOC94GQBlW8Ubm0QtA9nr3x3tVDEDtgVZgyOoGQBu7RPXWwAlAfxMKEXDIC0CnXOFdLmIGQAXFjzF37QhA2jhiLT7FB0D+Q/rt6wAHQM2v5gDB3AdAIZOMnIV9B0BfKcsQx3oIQIYDIVnAxAhAXyS05VxKB0AGTODW3TwHQL8rgv+t5AVAEqW9wRcmCEC2EOSghFkGQMstrYbEPQpAqKlla30RDUBk6UMX1PcGQNfdPNUh9wNArRdDOdEuAUD2QCswZLUIQGNi83FtqAlAxawXQzlRCkBs7BLVW0MJQDBkdavnZAZAbVZ9rraiCEDjwoGQLOAEQOmayTfb3AZAodY07ziFCECbyTfb3BgKQC7iOzHrhQpA6iEa3UFsDECpvB3htCAEQCS5/If0WwhAl/+Qfvt6CEAJFoczv5oMQLRxxFp8CgpAQ61p3nGKB0BfXoB9dGoHQFuU2SCTTAZACoDxDBo6BkDhfyvZsVEFQPLqHAOyFwVAoaF/gotVCEA66X3ja88IQLhYUYNpmApAb/CFyVRBBUAPYmcKnZcFQBqLprOTAQtAoBov3SRGB0AJih9j7loGQOQxA5XxLwtADhXj/E2oCEB0JJf/kD4KQMmwijcyzwhAO+RmuAHfB0BSLLe0GpIHQFd4l4v4TgdAK/uuCP43CEBXIeUn1b4MQBNJ9DKKpQhA9nr3x3sVBECEDU+vlOUJQGuad5yi4wZALQlQU8vWBUCl942vPTMIQGL4iJgSSQlAOShhpu3fAEBR9wFIbWINQIdtizIbZAlAo+nsZHAUCUA09E9wsWIHQEdVE0TdRwVAgA7z5QUYCUDxRuaRP5gJQFH3AUht4glAuhRXlX0XBkDEWnwKgLEHQHL5D+m37whA+I2vPbOkB0DHLlG9NXABQI1/n3HhgAxAARjPoKH/AkDx9EpZhvgJQOQPBp57Dw1AJ4Oj5NX5CEAR5KCEmbYIQH5XBP9biQFAO6qaIOp+B0Aj88gfDHwJQFjiAWVTbgpAB+v/HOaLC0AuymyQScYIQCVdM/lmmwhAm1Wfq62YBEBHcvkP6fcFQLJGPUSjuwdAZcdGIF4XB0BXQ+IeSx8GQFRXPsvzIAlALc+Du7N2A0COBvAWSBAHQKqCUUmdwApAEywOZ371BEA/dEF9y9wBQEX11sBWCQlA6lvmdFlMB0DEfHkB9hEIQDPhl/p5kwdAJLTlXIqrCkD7ljldFjMSQJNvtrkxPQhAi6azk8ERCUAczvxqDlAKQEYldQKaSAtAkUQvo1guC0AMk6mCUYkIQJeQD3o2qwZAthDkoISZBUAAkX77OnAFQP5l9+Rh4QNAkL3e/fHeCUBQ/Bhz19IFQAzIXu/++AZAI/PIHwx8BkDByqFFtnMHQM3pspjYPAhA5Ga4AZ9fC0CYaftXVhoEQPPlBdhHpwRAy0qTUtBtBECXxcTm4xoIQMhe7/54rwVAQ61p3nHKA0DL2xFOC54HQBEebRyxFgxArhIsDmf+DEDuQnOdRlr/Pw4QzNHjNwdAPu3w12QNB0C0ccRafEoHQHOdRloqbwlA/kgRGVaxDECbOLnfoegLQH/ZPXlYKAhAsOYAwRz9CUAwDcNHxJQIQP9byY6NQAZAMnctIR+0CEBV9l0R/K8EQHEbDeAt0AZAzt+EQgScBkCDUUmdgCYMQILF4cyv5gdAObTIdr6fBkDGM2jon2AIQCUjZ2FPuwZA/89hvrwACUA6I0p7g68HQGXHRiBelwdAIxCv6xdsD0BNMnIW9jQIQFJ+Uu3TMQhAescpOpLLCUDnxvSEJZ4IQHUCmggbHglAC2MLQQ4KCUDdtYR80LMKQKFns+pzdQVA3lSkwtgCB0Aychb2tIMKQHXlszwPLgtAQE0tW+tLBEALQQ5KmOkIQE0tW+uLBAZAIEYIjzYOBECe0sH6P4cKQNI1k2+2OQpAr3yW58GdA0BhGoaPiKkKQDfDDfj88AZASphp+1cWBED2KFyPwnUJQISB597DZQlAUb01sFXCBkDCUfLqHEMJQPQau0T1FglAzO7Jw0ItB0D4qpUJvxQJQPH0SlmGeAlA4GdcOBASBkAEIVnABC4FQNCbilQYGwxAUAEwnkFDBkBcOBCSBQwKQJ2dDI6SFxBAFva0w1/TBUC1bK0vEpoHQEJD/wQXqwdA73IR34nZCEBJaMu5FNcGQEPnNXaJagxAoMN8eQH2CkDqIRrdQawIQAjJAiZwqwlA9Zz0vvE1CkD0/dR46WYFQDJ3LSEftAtAFR3J5T+kCUD3ksZoHVUHQApLPKBsSghAcuFASBZwCUDV52or9hcGQPxSP28q0gVAB+v/HOaLB0CTb7a5Mb0GQNPB+j+HeQdALXjRV5BmCEB2GmmpvF0FQEzg1t08lQlA4bTgRV+BBkCPxwxUxr8IQOhqK/aXXQZAFOgTeZJ0BkA7wmnBi34LQHlA2ZQr/ApAAIxn0NA/CUCXOV0WE9sFQIKo+wCk9ghA0hito6oJBUCOI9biU8AKQPW+8bVnVgRAQMHFihqMB0D4a7JGPcQGQMUDyqZcoQVACeHRxhHrCED5oGez6rMFQJzhBnx+GAVAw2SqYFRSCUDhYkUNpuEIQK98lufBXQpAyqZc4V3uCEDon+BiRc0HQFluaTUkrgdAescpOpILCUBqTfOOU3QJQJbP8jy4uwlAC3va4a+JB0Ag71UrEz4HQCkiwyreyAlA+FPjpZsEDECsi9toAG8MQHKKjuTynwZANJ2dDI7SCEB7FK5H4XoEQHHJcad0cAhANPRPcLEiA0BcA1slWBwGQEi/fR04pwdAMPXzpiLVCEAkYkok0csGQIkkehnF8gJAiIBDqFLzBUD7y+7JwwIHQPERMSWSaAlAd/hrskb9DEBi+IiYEkkEQF97ZkmA2ghAcHfWbruQCUB/3lSkwtgFQGOcvwmFCAVATWcng6MkB0CuDRXj/E0OQPQVpBmL5gJANPRPcLHiCEBCQ/8EF6sHQJMdG4F43QlAlPsdigK9BkBwCFVq9kAHQMgHPZtVXwlA7Z48LNSaBUB1kxgEVg4HQAkzbf/KSghAJEVkWMVbCUCbAwRz9DgPQBpR2ht84QtA18BWCRYHCEDhKHl1joEJQGe4AZ8fRgZAGQRWDi1yA0Cm7V9ZaRIMQCyf5Xlwtw1ASNxj6UOXCkBEF9S3zCkKQPa0w1+T9QdAavtXVppUBkCskPKTah8GQGQ730+N1wdAqYdodAdxC0C4BrZKsHgJQF3Ed2LWCwZA9Bq7RPWWCUCNKO0NvnAKQG2tLxLacghAHHxhMlUwCEBFniRdM/kLQE2EDU+vlApAuwopP6k2DECNRdPZySACQDI4Sl6dYwlASkG3lzTGBECTADW1bO0EQGRd3EYDeAZAh4px/ibUDEDH155ZEmAIQNI6qpog6gZAahg+IqbECkCh+DHmruUHQBiV1AlooghA662BrRKsBUBY/+cwXx4IQAFqatlanwdA/G8lOzZCBkClg/V/DrMGQCXMtP0rKwdA/g5FgT7RCEChvmVOl4UFQE60q5Dy0wtA3xXB/1byA0DFPZY+dMEGQJ1oVyHl5wpAY9F0djI4B0CPwvUoXE8FQEok0cso1gxADi2yne+nCED2XRH8b6UJQMDsnjwslAdAPsvz4O6sAUAbnl4py1AHQOuQm+EGfA1AVG8NbJXgCkCG5jqNtFQMQBEBh1ClBhBAZvfkYaGWBEC6g9iZQqcKQHr83qY/OwVAayv2l91TB0DbM0sC1NQLQA+0AkNWNwtAGZC93v1xB0DJk6RrJl8PQBpuwOeHkQNA9Wc/UkSGCUD/CS5W1KAKQOEoeXWOAQhAkgVM4NbdB0BVMCqpExALQA4tsp3vZwlA/vFetTKhDUCC4seYuxYGQNmUK7zLRQdAqcE0DB9RCkC9HeG04EUJQG/1nPS+MQtAp5at9UXCCkDcY+lDFxQJQFTjpZvEoAdAZw+0AkNWBkDajxSRYRUHQGLzcW2oGApAIchBCTPtCEBOYhBYOXQIQLTIdr6fWgZA9YQlHlB2CkBeY5eo3loHQDeOWItPAQZAZ+22C831CUB6jV2ieusGQMvbEU4LHglActwpHay/BUBdbcX+snsCQOlg/Z/D/AZATpzc71AUCUB3Sgfr/xwJQChhpu1fGQlAIbByaJGtCEC5GW7A5wcJQFTGv8+48AlAmnecoiO5BUAiq1s9Jz0OQBmto6oJYgdA0csollvaCkCrlQm/1M8HQMWPMXctoQdAPdUhN8ONDECKPEm6ZnIKQAEYz6ChfwdAIAw89x6uDUCW58HdWTsGQKYPXVDfMgpAU+i8xi4RCEB3FVJ+Uq0HQFZ9rrZi/whASnuDL0ymB0AT8kHPZhUJQLwFEhQ/BgpAp5at9UWCBUAEc/T4vQ0FQB7+mqxRDwhA9u6P96oVCUD+DkWBPtEGQMxAZfz7TAxARl9BmrFoCUAz/n3GhYMFQOYF2EenLgpASKeufJYnB0Cg4GJFDeYEQA2OklfnWA5AN3Fyv0ORB0AW3uUivhMLQIJzRpT2hgdAQdR9AFIbCkC/ZU6XxUQIQDuNtFTeDgZA+MJkqmDUB0AexM4UOu8KQOKvyRr10AdAms5OBkfJC0BDVrd6TnoFQHCxogbTcAdAZMxdS8iHBEAr2bERiNcIQAQcQpWafQhAPGagMv69BkAkC5jArbsIQF8ktOVcSgdAd6G5TiNtEEA98gcDz/0KQBEebRyxFgZAAkht4uS+CEDkg57Nqo8IQE7udygKlBBAp3nHKTpSCUAUyy2thgQNQEZCW86l+AdAAyZw624eCEBAGHjuPZwKQGJnCp3XmAhALpCg+DHmC0ALYwtBDkoDQODb9Gc/EgpAkZvhBnx+CEDAWyBB8SMGQKHbSxqj9QVAnYAmwobnBkBBZfz7jMsIQHyb/uxHCgZA4umVsgyxCEC6oL5lTlcJQNogk4ycBf4/7xtfe2YJB0Da4a/JGvUIQMai6exkMAdAVRhbCHIQCEDcaABvgUQHQL7Z5sb0RAdAO420VN4OCEB/MPDce7gIQGpN845T9AdA29yYnrDEBkD4/DBCePQEQPiqlQm/VApAPSe9b3ytCUDvG197ZkkKQPg2/dmPVAlAi4nNx7WhB0ARHm0csZYDQNbiUwCMZwhAN4lBYOVQB0CXytsRTosLQGPuWkI+qAlAk1LQ7SUNBkCEu7N228UEQHam0HmNnQdAeQH20akrDUCjO4idKTQGQMJpwYu+QglAcm2oGOfvBkC78lmeB3cFQAkzbf/KSgZA6+I2GsBbB0CFCDiEKrUHQDwx68VQDglATGw+rg3VBkBhTzv8NVkJQNfAVgkWRw5Ac0urIXEPCkDzWZ4HdycHQMHFihpMgwZAAHSYLy9ACEB+dOrKZ/kGQOoENBE2vABAzeSbbW4MDEAtQxzr4jYHQDJVMCqpUwhAvVKWIY41CUCH+fIC7CMNQGa9GMqJtgdA4WJFDaYhDED7y+7Jw8IJQIf+CS5W1BBAaHke3J11BECw/s9hvrwFQA39E1ysqAdAEqW9wRdmBEDXTL7Z5kYGQFuZ8Ev9/AhArK3YX3YPBkCERxtHrIUOQNRIS+XtiAhASddMvtmmBkDHaB1VTVAHQKmkTkATIQdARSqMLQS5B0AqAMYzaGgJQLeXNEbrqAdAH4XrUbgeCECxogbTMPwGQIofY+5aQgFAGa2jqgmiBUB8m/7sR0oFQJHyk2qfjgpAJ2a9GMqJCUDI0ocuqK8HQIQSZtr+1QZAFVJ+Uu2TBUCeQUP/BJcHQNXKhF/qZwZA21Axzt8ECUA1XrpJDMIGQB3J5T+knwZAAz4/jBBeB0A5C3va4W8IQNqs+lxtBQhAipP7HYpCCECNeohGdxAIQACpTZzcbwZAGt1B7EwhBkCMSuoENJEIQBvYKsHicAZA98ySADW19j8HzhlR2lsFQDuNtFTejghAuDtrt11oBEDKVMGopI4FQBPVWwNbpQdAOX8TChHwBUBW1GAahg8MQCPzyB8M/AlAQPZ698e7CECA8Qwa+icJQD+p9ul4DAlANWPRdHbyC0D+fcaFA+EJQEQX1LfMKQ1Ag4b+CS4WB0BUbw1slWAFQH/2I0VkmAZAZAYq498nBUDGxObj2hAHQOAQqtTsQQlAenB31m57BkCzKVd4lwsGQGQjEK/rlwdAo0CfyJPkB0Dj32dcOFAIQIqT+x2KwghASMSUSKJXCEBau+1Ccx0GQIY97fDXJAtAFmpN845TCkDuX1lpUsoHQKgd/pqsEQlAMC/APjr1BkBYxRuZRz4HQMUDyqZc4QZAsyRATS3bCEC8XMR3YlYNQFk0nZ0MTg5AucfShy6oB0C7fsFu2HYBQKsmiLoPAAFAAg6hSs2eDEDAJmvUQ/QIQFzmdFlMrAlAuhRXlX2XBkC46c9+pEgGQC0mNh/XBgVA7yB2ptC5DEAKur2kMRoIQErSNZNvNglAY9F0djJ4B0BG09nJ4GgFQC0JUFPLVghAjswjfzCwBECalIJuL+kIQKwcWmQ7nwdA/pqsUQ+RCUAfaAWGrC4HQJfK2xFOCwlAT+lg/Z9DBECw5gDBHL0GQLK61XPSewhA529CIQKOBkDePNUhN8MDQOS9amXCLwdA/U0oRMAhBEC70FynkZYHQHkj88gfzAVA3sg88geDCUBseHqlLMMHQL/Uz5uK1ANAWp4Hd2ctBkBoke18P7UGQPsFu2HbIglA8SkAxjNoCEAqOpLLf4gKQGItPgXA+AVAjIS2nEuxCECeew+XHDcKQLAgzVg0XQZAbosyG2TSCEBFEr2MYnkDQCYeUDblCgdA3SQGgZUDCUBf0hitoyoIQGdEaW/wxQZAYwtBDkqYCED11sBWCVYGQFvri4S2HAtAZFjFG5kHBkC6FFeVfVcIQA/R6A5i5wpAesISDyjbBkDswDkjSjsHQB2UMNP2Lw9AjbRU3o4wB0BBmrFoOrsBQFuZ8Ev9fARAj6omiLpPAUBwXwfOGdELQEbrqGqCKAdAgqj7AKS2A0A8oGzKFV4FQNbiUwCM5wlAnrXbLjTXDEASpb3BF2YEQKyowTQM3wZAR3cQO1NoB0BhVFInoEkJQNJSeTvCKQtAPwCpTZycBUAfv7fpz379P1Q6WP/nMAVA1EM0uoPYA0CFlJ9U+/QFQBU6r7FLVAlAAcEcPX4vCkAqUmFsIcgHQA7bFmU2iAdAPBQF+kTeCUAMyF7v/rgGQJwWvOgrSAhAYi0+BcA4B0DlCu9yEd8GQJvJN9vcWAdAwhIPKJvyCECKAn0iT5IHQD7o2az63AdABrth26LMBkCtad5xik4FQMaFAyFZQANAAkht4uQ+BUBnYU87/HUGQKciFcYWAghAtHbbhea6CUAGu2HboowBQEmdgCbCRgdA9E9wsaIGBkCLcf4mFOIBQCPb+X5qPAZAkxgEVg4tB0C9qUiFsYUDQBuBeF2/IARAl/+Qfvv6BUDFckurIXEKQEfJq3MMSAtArtNIS+UtCUB88rBQa5oHQNNqSNxjKQZA48eYu5YQCEBoy7kUV5UGQIyhnGhX4QRAzywJUFOLCUD5SbVPx6MKQBZNZyeDYwVAgXhdv2C3BUBVMCqpExAJQKMG0zB8hAZA/tR46SbxB0BE+u3rwPkHQMAEbt3NUwhA/vFetTIhA0B5zEBl/PsCQKBsyhXeZQtA9DKK5ZbWAEA9YYkHlA0HQB4zUBn/fgZAX16AfXQqB0B81cqEX2r/P++s3XahuQ1AiGNd3EZDBUA51sVtNAADQDSFzmvskgdAmyDqPgApCUBhjh6/t2kPQB5QNuUKbwhAEJIFTOCWAUDLLa2GxD0KQHOFd7mILwRAj+TyH9KvB0C1iZP7HUoGQNlaXyS0ZQVABW7dzVMdCEBOnNzvUBQGQH0iT5KumQdAU+i8xi4RB0BdiqvKvqsGQFw4EJIFzAdAUYiAQ6gSBkDaG3xhMlUIQFBTy9b6IgpAl631RUJbEEBRMc7fhMIFQCdO7ncoSgZAGyrG+ZvQDkBDc51GWqoFQC8X8Z2YNQdAk6mCUUkdCUClMVpHVZMKQC5W1GAaxgdAqkNuhhtwD0Af14aKcf4EQK0vEtpyLgtAZXCUvDpHB0CdgCbChucHQOf7qfHSjQlAOh4zUBk/DUCyutVz0vsGQDc3picsMQdAzLT9KytNB0BpHVVNEDUIQFHaG3xhsgVAjUXT2ckgCEA5RUdy+Q8GQAPso1NXvgdAwAmFCDgECECCOXr83iYJQHpTkQpjCwVA3CkdrP9zDUCztb5IaIsDQBhDOdGugghAV1uxv+xeA0CKq8q+K4IKQBCv6xfsxgpAu0T11sDWBkB4RfC/lSwJQKVOQBNhwwBAPGu3XWiuCEDBi76CNCMKQHi0ccRavApAPfIHA889CEAQkgVM4NYEQBbB/1ayIwdAN/3ZjxSRCUBBDkqYafsGQB1yM9yAjwtAKqkT0ESYCkCjI7n8h/QJQNi2KLNBJv4/8rVnlgSoBUADfSJPkq4IQL4wmSoYFQhA3SQGgZXDCEDhRV9BmnELQEVHcvkPaQNAwi/186YiCED3r6w0KUUJQGQGKuPf5w5A24r9ZfckCUAC8bp+we4NQP9byY6NgAdAP6n26XiMBkCsi9toAG8KQJy/CYUIuApAQbyuX7CbCECNtFTejjAJQHRGlPYG3wdAvFetTPglCUDkoISZtn8HQPcGX5hM1QdAmKPH7226CEA50a5Cyk8LQCcUIuAQ6gtAzo3pCUv8B0BNhA1Pr5QGQC/6CtKMBQlAlX1XBP/bBUCKsOHplXIMQMPTK2UZIgpAGAltOZciBkBmg0wycpYMQJ9x4UBIlgVA0m9fB86ZBkDPZtXnaqsKQO2ZJQFqKglAfZbnwd1ZCkAxsfm4NhQFQGVTrvAuFwtAJvxSP28qBkD1oQvqW2YJQLTIdr6fGgpAaqSl8nZEDEAo1T4dj5kIQHehuU4jbQVArvAuF/EdCEAfaAWGrC4KQM6I0t7gSwVADHbDtkUZB0CERxtHrEUJQPZ/DvPlhQVAKCzxgLIpCkAqqRPQRFgHQPwApDZxMgZAUgq6vaQxA0B9BWnGoikJQKSl8naE0/w/FFysqMF0CkD3x3vVyoQJQHh/vFetDAtAJh5QNuWKCECR7Xw/NR4JQD86deWzPAlAtWytLxJaB0CuR+F6FK4DQFQ1QdR9wAlAbqMBvAVSCUBZox6i0R0HQIasbvWcdApAtTf4wmTqBkAKur2kMZoKQB7EzhQ6rwdAFZFhFW9kBUBIp658lqcEQOwS1VsDWwhAgnNGlPZGCkCnBS/6ClIJQF2nkZbKWwhAq+ek940vC0B5AfbRqasHQPNUh9wM9wdAzHoxlBNtBkBHj9/b9KcKQD86deWzvAdA+grSjEVTBkD7Bbth26IKQFDfMqfL4gVAxty1hHxQA0Dx12SNekgEQED7kSIyLAlAbsDnhxHCBkBI/mDguXcGQBrAWyBBMQlAh1ClZg/0BkArweJw5pcLQH5XBP9biQZAGa2jqgkiBED0bFZ9rvYFQO7rwDkjyghAo1huaTUkBECNKO0NvnAJQJ1jQPZ6twdAP1JEhlW8CEBdUN8yp0sIQL4Ts14MpQdALGUZ4ljXBkDfwyXHnZIKQI1iuaXV0AdAjliLTwEwDUByio7k8t8EQApLPKBsCghAuw9AahPnBEA730+Nl24FQH41BwjmqAVAV7JjIxCvB0BgArfu5ukIQCno9pLGKAZA7lpCPuiZBkBq2VpfJPQKQJzEILByaAhAEEBqEyc3CUApyxDHuvgGQIXOa+wSFQZAsVBrmnccCkAzG2SSkfMHQAoRcAhV6gtApWYPtAJDCUAFqKlla/0DQK/rF+yGbQtAWDm0yHa+CECM1lHVBBEIQDl/EwoRMApAwCZr1EN0BUCgGi/dJEYHQEkRGVbxxg5AnKIjufwHCEBApN++DpwBQIRHG0esxQZAXqJ6a2BrBkA34PPDCCEMQALU1LK1/gZAEr2MYrmlC0Cr7Lsi+N8FQAEYz6Ch/wVANQcI5ugxBUB5r1qZ8EsJQKorn+V5MAZAs7W+SGiLB0A6HjNQGf//P1GIgEOoEgZAnUZaKm9HBkA7qpog6r4RQP1qDhDMUQtAADrMlxdgBECdEaW9wRcHQLraiv1ltwZAtAJDVreaEECBBMWPMbcKQI6vPbMkQAdAIeUn1T6dBUA4Sl6dYwAJQFFmg0wy8gpAis3HtaEiCEDv5qkOuRkGQO/mqQ65mQhAHNMTlniACUDiBnx+GCEJQJtyhXe5iAVAr7FLVG9NCEDttgvNdRoHQMDPuHAgZAxAZCMQr+uXBUDWxW00gPcJQMpPqn06ngtA8Nx7uOQ4CUAXnwJgPEMCQJM6AU2EzQFACeHRxhFrB0C05VyKqwoIQL2MYrmlVQhABrth26LMB0B4uYjvxGwHQA8LtaZ5xwdAAfvo1JXPCED/W8mOjUAJQJ1GWipvBwlASREZVvEGCUCO6QlLPGAHQJm7lpAPGhFAwCZr1EP0C0Az/n3GhcMGQE6XxcTmowpAWrvtQnMdCEB1q+ek940DQIczv5oDxA9A9n8O8+VFDUAzxLEubuMGQNi2KLNBJgVAQX3LnC4LB0DnxvSEJV4IQMO7XMR3YgdAgzRj0XQ2CEBTliGOdbEJQOIeSx+6YARApN++DpzzCEDiAWVTrjAJQARWDi2ynQVA3NeBc0aUA0AqqRPQRNgGQKyt2F92jwVAO420VN5OCUAQO1PovMb+P6VJKej2kgdAT6+UZYhjC0CJJHoZxTIHQNUmTu53KAhA0gDeAgnKAEBAh/nyAuwHQGZrfZHQVgRAZapgVFLnA0DWbrvQXOcGQFCNl24SwwZAR4/f2/SnBkCBQ6hSs4cJQM/3U+OlWwhA5wDBHD0+CEBxAz4/jNAHQDp6/N6mfwZAgA7z5QXYBUDUfQBSm7gHQBY1mIbh4wZARS+jWG7pCUA9m1Wfq60HQJ+wxAPKJgdAKsb5m1AIBkDLEMe6uM0GQO+s3XahOQRAH4DUJk4uCECP39v0Z/8HQGe4AZ8fBgtAclDCTNs/B0BHdxA7U2gIQBh47j1cMgdAIk+Srpk8CEANGvonuJgIQB9LH7qg/gZAvLN224UmB0DIBz2bVZ8GQPSJPEm6JgRAWrvtQnOdCEBQGf8+48IIQNwRTgtedAJAAHSYLy/ABUA/qfbpeAwHQGowDcNHxAhABDkoYaYtB0AjZ2FPO3wIQN5Zu+1CcwZAKGGm7V+ZB0B0DMhe7/4HQP/sR4rIsApAvR3htOBFB0AuymyQScYDQDGUE+0q5AdAjjulg/U/B0D7V1aalIIIQOHRxhFr8QVAQBh47j3cB0D5g4Hn3oMIQDZZox6iUQtArFYm/FI/BECTUtDtJY0BQAPPvYdLzgRA+rMfKSJDAkAEVg4tsl0KQBNhw9MrZQhA4V0u4jtxBkBn7bYLzbUHQDnulA7W/wRAI9v5fmq8BUD7eVORCmMJQLJoOjsZ3AlA0h3EzhQ6CUBuizIbZJIOQNRDNLqDWAhAEAaeew+XCkCUvDrHgCwIQMwLsI9OXf8/tvgUAOMZCkDOGVHaGzwIQNF0djI4CgVAUiy3tBpSBUCZu5aQD3oIQDdsW5TZoAVArYbEPZa+BkAkC5jArfsLQNxj6UMXlAZAoS3nUlzVBEBUVz7L86APQGtlwi/1cwZA5L1qZcKvBkAK3Lqbp3oJQP7UeOkmcQVANuohGt1BBUCJKZFEL2MIQPxSP28q0gZAqdkDrcDQC0BQcLGiBlMLQMyXF2AfXQlAPQrXo3A9AkClaybfbLMIQGkdVU0Q9QdAsfm4NlTMBkBtkElGzsIJQOIeSx+6IApAL/oK0owFCUDY0w5/TVYHQCsYldQJqABAj6omiLoPCEA3cXK/Q5EHQGkdVU0QdQlAOq+xS1RvCEDsEtVbAxsGQHo2qz5XmwZAjWK5pdUQCUB1yM1wA/4JQMGQ1a2eEwpA+KqVCb/UC0A9uDtrtx0KQAIOoUrNHgNA9KYiFcaWBkD2KFyPwrUIQIxK6gQ0EQVAaoe/JmuUC0DiWBe30YAJQEpBt5c0hgVACp3X2CUqBUAjZ2FPOzwIQATnjCjtjQhAL1G9NbCVCEAGnnsPl9wIQCGwcmiRbQdAZ+22C821CEAvUb01sJUGQJKumXyzjQNA8WjjiLX4CEBZhjjWxa0IQC2VtyOcFgZA0JuKVBibB0BGQlvOpTgOQBvYKsHiMApAroGtEiyOA0D5vU1/9uMGQLKFIAclDARANSkF3V5SC0BBmrFoOvsFQOOItfgUQAdA/3ivWpnwBUCtF0M50W4AQE4LXvQVpAdA6spneR4cCUAYz6Chf8IBQBcrajANwwRAA0NWt3pOBUChhJm2fyULQDxO0ZFcvgdAqwSLw5mfCEBQU8vW+iIFQCRFZFjF2wxATDeJQWDlDEB8LH3ogroKQEjhehSuRwpATIkkehnFCkBcGyrG+ZsIQHIW9rTDnwZAUmFsIcgBB0C3f2WlSWkGQNmxEYjX9QBAObTIdr6fCUDHSzeJQaAIQPVKWYY41ghAGLK61XOSCEAH0zB8RAwJQAkzbf/KygpAU9DtJY2RB0CsqME0DF8HQB+/t+nPvgdAKm9HOC24CEBUjPM3oVAFQJV9VwT/2whAdCSX/5D+BUBaR1UTRB0LQGZJgJpadghA8nub/uwHCEAyOEpeneMMQLu4jQbwVglAkfKTap/OB0BeEfxvJfsEQHWTGARWjgVAWaMeotGdAECEEmba/hUFQBaHM7+aAwRAsylXeJfLCUDBOSNKe4MIQFR0JJf/EAdAgNQmTu63CkC/DpwzonQGQKxzDMherwVAnNzvUBQoCUCmCkYldUIMQAVu3c1TnQRAgzRj0XR2CkCDwMqhRTYGQKoOuRluwA9ALv8h/fZ1CUDWVuwvuycHQLjkuFM62AtAdavnpPfNC0BOnNzvUNQEQI3ROqqa4A5A5q4l5IPeBkASa/EpAAYIQO58PzVeOglA/U0oRMAhC0BCsoAJ3LoDQLbbLjTX6QlANNdppKVyBkB0DMhe734HQFslWBzOvANA2Ls/3qvWBUD7Bbth22IIQCJPkq6ZfAdAfPKwUGsaCUB0B7EzhQ4IQC9pjNZRlQFAby9pjNZRCECGj4gpkcQKQF4u4jsx6whAeXWOAdmrBkBoeR7cnbUGQD86deWz/AVA36Y/+5EiBEBb64uEttwDQPIHA8+9xwlA6spneR6cBEC/SGjLudQEQLgehetR+ApArwj+t5JdDEClMVpHVZMCQA3gLZCguARAQIf58gIsCEBJopdRLHcFQGItPgXAuApA7bYLzXVaCEBClZo90MoGQH5v05/9yAVACObo8XvbCUDmIr4Tsx4KQItx/iYUogVAA8+9h0uOBUA2WaMeopELQD9XW7G/7ApAscQDyqacCEAV4/xNKEQIQLUV+8vuyQtACTNt/8rK/j+21hcJbXkJQPIHA8+9BwlAX0GasWg6BUDqCUs8oOwHQFysqME0jApA9KYiFcaWA0DHndLB+v8JQFd4l4v4TgxAzqW4qux7AkDnxvSEJd4KQJI/GHjuPQRAiSR6GcUyAEDfwyXHnVIHQHaJ6q2BLQdA8l61MuFXBkDSNZNvtjkJQPilft5UJAtAsp3vp8ZLBEDf+NozSwINQHLcKR2s/wlAWtjTDn9NA0D6m1CIgEMMQPoK0oxFEwRAFVeVfVfEBEAGu2HbogwNQJkqGJXUyQZADVTGv8+4A0ALYwtBDooEQOXQItv5fgtAn5PeN742BkBXJvxSP68IQJrrNNJSeQtAXBsqxvnbCkAAdJgvL8D8PyECDqFKTQtAPNo4Yi0+CEBMiSR6GYUHQAOy17s/ngVAxoUDIVmABkBh4Ln3cEkHQLN78rBQ6whAlIeFWtM8BEBf0hito+oFQAkWhzO/GgRA3+ALk6kCDEA6BmSvd38IQO0NvjCZqgpAAOMZNPSPCEBOl8XE5iMGQN6OcFrwYgdAd/hrskY9CkBbfAqA8UwEQIUlHlA2pQZAb9Of/UhRCkAsgv+tZAcNQHwPlxx3SgVAaJHtfD+1BEAMdsO2RdkFQNIdxM4UOghAAfbRqSsfCUBDyk+qffoLQDjzqzlAcARAqiuf5XnwBUCQa0PFOD8KQP3ZjxSRoQZAF9S3zOlyC0BQ5EnSNZMJQMSxLm6jQQVA8IXJVMFoBEDFPZY+dIEIQGB2Tx4W6gVAbkxPWOLBBUBdbcX+sjsOQOqymNh8XAlA/U0oRMAhCkBs7BLVW0MIQFk0nZ0MDgRAuK8D54zoCUCkU1c+yzMJQNCzWfW5WghAzojS3uDLBUDMQGX8+8wGQGr7V1aalApAJXoZxXJrEEBaR1UTRB0IQHL+JhQioAhAs5jYfFybCkBZNJ2dDI4GQOuLhLacSwRAwCFUqdmDBkAe/pqsUc8GQEbT2cngKANAcEIhAg4hBEAsSDMWTScGQA7bFmU2CAZAie/ErBdDBED7ljldFlMLQExPWOIBJRRAa/EpAMazCUChhJm2f+UHQKorn+V5MAxA3Xu45LjTBEDikuNO6aAHQDBkdavnZA1Ai4nNx7VhDkAJM23/ykoHQNQOf03WaAtA9b7xtWeWC0AIPZtVn6sIQAX6RJ4kHQ1AGFsIclDCCkCE04IXfUUJQBNm2v6VlQVAM4rlllbDA0D3ksZoHVUIQHl1jgHZawRAUmFsIcjhEECloNtLGqMHQLqgvmVOFwhAjZyFPe1wCEB9BWnGoikHQHReY5eo3glA9DehEAGHB0D/7EeKyHAHQBnnb0IhAghAbeLkfofiCEDpYP2fwzwHQKW9wRcm0wNAcqd0sP7PCUAUyy2thgQKQI3ROqqaoAlAO8eA7PXuBkArpPyk2icJQJvmHafoCAdAJ/c7FAU6CkAxzt+EQsQGQLDmAMEcPQRA1QRR9wFICUB0tRX7yy4JQJhuEoPACgVAxebj2lCxBUDeq1Ym/JIHQB2UMNP2LwhA5US7Cik/CkCFtpxLcdUJQFjFG5lHPghA51JcVfbdCEB2cRsN4K0NQJwzorQ3OAhAGyrG+ZuQBUB1ApoIG14NQAmnBS/6ygZAuB6F61E4CUBma32R0NYFQOOqsu+KoARALXjRV5DmCUCRfvs6cM4JQKVJKej2EgpAMLsnDwv1B0ArajANw4cIQHldv2A3LAhAHjNQGf8+D0BN+KV+3tQKQGa9GMqJNghA7dPxmIGKBkCDwMqhRXYHQOc6jbRUngVA/5WVJqVgB0CYLy/APjoHQFGIgEOo0gdAzF1LyAd9DUB/MPDce3gGQH2utmJ/mQlAPGagMv59BkBtVn2utqIGQAM+P4wQHgpAf/YjRWTYCkDCEg8om/ICQOf7qfHSzQlAkpbK2xHOCUDghEIEHEIMQPCK4H8rWQtAdNL7xtceCUDZd0Xwv9UNQOM2GsBbYAdAv/G1Z5bECkAEHEKVmn0JQB9oBYasLgRAcAhVavZACEB9PzVeuokKQNfAVgkWRwdAAg6hSs1eCUAOvjCZKtgHQJ4MjpJX5whAQNmUK7wLCUCo4zEDlfEEQDylg/V/jgdAKETAIVTpCED/lZUmpSAGQPFjzF1LyAVAbvqzHyliC0Ae4bTgRZ8JQNieWRKgpgtATIkkehnFAkCm1ZC4x1IKQHZsBOJ1fQVAxqcAGM/gD0BDyk+qfToFQBmto6oJIgpAox6i0R3ECEBBDkqYabsFQNnr3R/v1QhATyMtlbcjBkCfk943vvYJQGUZ4lgXtwNAi08BMJ4BC0AAxjNo6B8LQCNnYU87PA1AWKg1zTsOBUD+1HjpJvEHQIjX9Qt2QwhAC2MLQQ6KB0Bpqbwd4bQIQGlXIeUnlQhAzHoxlBMtBUB6qkNuhlsDQC7iOzHrxQlACTiEKjV7B0AiwyreyLwJQHE486s5wAdAv30dOGdECUDY0w5/TdYGQCXpmsk3WwRAT+lg/Z+DCkBr1EM0ugMLQMlxp3Sw/gdAfjUHCOZoCUCTNeohGt0FQDvfT42X7gdAGvonuFiRCECFsYUgB+UAQBsv3SQGgQdA4NbdPNUh8z8rMGR1qycKQAVR9wFI7QZArtNIS+WtBkCjzAaZZOQGQAH76NSVDwdA1H0AUps4DkAplltaDQkHQJ/Ik6RrpghAI74Ts16MCkDIzXADPr8FQG76sx8pYgdAgJpattYXB0AlXTP5ZpsLQC7nUlxVtgdAa/EpAMYzBECvmXyzzQ0LQAqFCDiE6gRAQSswZHXrCUBV2XdF8D8GQLtE9dbAlg9AoKaWrfUFCUAW+8vuyUMAQO2BVmDIagtAYXE486u5CEDUfQBSm3gJQAjm6PF7GwZA32xzY3pCCUC+2ebG9IQHQPVKWYY41gVAnMQgsHIoC0CKjuTyH5IBQGZrfZHQFgBAlZ9U+3R8C0AibHh6pewKQF5ortNIywtAptWQuMcSEEBBguLHmDsHQOaRPxh4LgVAPpY+dEF9CkCitDf4wuQEQNdR1QRRNwdAcSAkC5gACkDzyB8MPPcHQOp4zEBlvAhA42vPLAkQCEBnYU87/HULQP28qUiFMQZAgq0SLA6nB0AkYkok0YsJQBoXDoRkQQdA0AoMWd0qBkBhVFInoMkFQL/xtWeWxAlA/iYUIuCQCEApIsMq3ggMQDbIJCNnYQNAXHfzVIccB0AwgVt381QKQPVnP1JERgxAFoczv5qDC0Bx5ldzgKAJQBToE3mStAlAsmg6OxkcDEAX1LfM6XIHQNi2KLNBJgpA7fDXZI06CEDNHmgFhmwJQOgTeZJ0DQlAZ/LNNjcmAEDLZ3ke3F0FQJ+rrdhftgRAeO49XHKcA0Ce76fGSzcMQA+XHHdKBwlATE9Y4gElB0ABh1ClZs8HQGfttgvNtQFAKa4q+64IB0AfhetRuJ4HQKz/c5gvrwNAEsKjjSMWCED7kSIyrOIHQD3VITfDjQhADVTGv8+4B0C3XWiu08gHQBZNZyeD4wRAKqkT0ERYCUCTqYJRSV0OQD0K16NwPQdAZAYq498nCUC8dJMYBBYJQA2reCPziAVAv2A3bFuUBEAdWmQ7388JQJAxdy0hXwlAajANw0dECUCHvyZr1IMHQAvvchHfyQZAtKuQ8pMqC0DqPgCpTVwIQGmpvB3hdARAwCZr1EN0A0BOtKuQ8pMLQJhp+1dWGglAR1UTRN3HCUC+TX/2I4UIQAjm6PF7mwZAAtTUsrU+B0DQuHAgJAsEQDJ3LSEftAdAiXssfegCB0Bt5/up8VIJQEjcY+lD1wdA81meB3fnCUBMbD6uDZUJQPKYgcr4dwVASrVPx2PGB0AtJjYf10YGQJC93v3xnglA+1dWmpQCBUARUyKJXsYGQCi4WFGDqQVAEXAIVWr2BUAZ/z7jwkEHQNfdPNUhNwlAuRluwOdHCEBcd/NUhxwDQGUBE7h1NwpAfhghPNq4CkBiEFg5tMgHQB7htOBFXwZAHVVNEHUfDECF61G4HoUEQJHVrZ6TXglAkq6ZfLNNB0AFwHgGDf0BQMpUwaikjgdAOdGuQsrPCEDOx7WhYlwFQPlJtU/H4wZAOgZkr3d/CkCh+DHmriUHQBdlNsgkowRAhj3t8NckDkDpYP2fw3wGQDz3Hi45bgdAe/fHe9WKCEDC3Vm77cIEQE+Srpl8swZAjV2iemtgBECCOXr83uYFQM3km21ujApAnfS+8bUnCEAtQxzr4vYGQHpTkQpjCwZAmGn7V1YaBkCbG9MTlrgHQJMANbVsLQpA7Z48LNRaCEActi3KbFAEQGufjscMFAVAgpAsYAI3B0AJbTmX4qoHQDDw3Hu45ApA2sngKHl1AUCZ9WIoJ1oDQEymCkYlNQZAvTWwVYJFCUAB3gIJit8BQNiBc0aUdglAzywJUFMLBUA7jbRU3k4DQI0o7Q2+8AZAIuAQqtTsCUCL/WX35KEHQG40gLdAgghAzo3pCUu8BkC70FynkRYIQFn60AX1rQlASKeufJYnCkDAJmvUQ3QJQJFhFW9kngVAXyS05VyKB0BKDAIrh9YMQD24O2u3XQxAPSe9b3ztB0DhehSuR6EPQOkOYmcKXQlAURToE3kyEEDtgVZgyGoDQNE/wcWKWgtAeH+8V62MBkD20akrn+UJQDRo6J/gIgVAb9i2KLPBCUBUNUHUfUADQK9Cyk+qfQtAl+Kqsu8KB0BsQ8U4fxMKQEFl/PuMywdAFcYWghzUCUD7y+7Jw4IJQFM/bypSIQhAEqCmlq21BkCLcf4mFKIFQLsKKT+pNglAEOm3rwOnBUCCqPsApPYIQJ8CYDyDBglAG4F4Xb9gCUDcnbXbLrQEQEvIBz2bFQlATkUqjC1EC0DcaABvgYQMQAvSjEXT2QhAho+IKZEEBkAlWBzO/KoHQFlpUgq6/QVAlNkgk4ycAkDYZI16iIYJQPm9TX/2YwxAkUQvo1juAkBuowG8BdICQB75g4HnXglArvVFQltOCUCoV8oyxLEIQKTC2EKQAwhALbKd76fGC0Ai4BCq1CwJQNIA3gIJSglAQBh47j2cCUDSxhFr8SkGQGcPtAJDlgZA4Zf6eVPRBkBwzojS3iAAQFVNEHUfwAlAQYLix5j7B0AY7IZti7ILQJ+wxAPK5ghAC5jArbs5CkCaJQFqatkJQPm9TX/24wdAjgHZ693fCEB1ApoIGx4IQLnCu1zE9wJADtsWZTaIBkCQvd798Z4JQAbYR6euPAZAzo3pCUv8AkD1SlmGOBYGQCBe1y/YjQ1A/mX35GGhBkAQr+sX7MYDQGq8dJMYxANAc2iR7Xw/BkBQGf8+44IDQH4dOGdE6QRATDeJQWAlBEALYwtBDsoFQAwCK4cWWQdA3nahuU4jBEABwRw9fu8KQCaN0TqqWgdAajANw0fEBUALmMCtuzkDQChJ10y+2QZAbLJGPUTjBkChZ7Pqc7UEQNBE2PD0ighAcsRafAqACECPcFrwou8JQKp9Oh4zkAdAU5YhjnVxBECBW3fzVAcHQFovhnKiHQlACfmgZ7PqBUDvIHam0PkJQORmuAGf3wNABwjm6PE7CUAPYmcKndcHQJeo3hrYKgRAoDL+fcaFB0A0aOif4OIGQOBnXDgQkgpAwLLSpBQ0C0BqpKXydsQHQJI/GHjuPQVAqpog6j6ABEAJpwUv+goHQGNFDaZh+AdAfjoeM1AZDEBau+1Ccx0HQDBkdavnpAlAbosyG2SSBEDa5sb0hOUHQK1u9Zz0fglA0JuKVBibBkDudygK9AkHQNU+HY8ZaAlAJ/c7FAX6B0D59xkXDgQGQF1txf6y+wRATHFV2XcFCEBortNIS2UHQBPVWwNbZQlA+PwwQng0CUAXghyUMBMIQAkzbf/KCglAr1+wG7ZtAUCyLm6jAfwLQH3LnC6LiQhACcTr+gU7CUBAwcWKGowHQGowDcNHxAdAGmmpvB0hBkCbVZ+rrZgFQC+jWG5pNQ9ATMPwETHlCkA/48KBkCwGQIi6D0BqkwhAAp8fRgjPBEBPBkfJq7MGQOC+DpwzYgZAsBu2LcrsA0CrJoi6DwAJQKOvIM1YtAZApfeNrz0zBEAYITzaOCIHQNgqweJwJgxAu37Bbtg2CkDHgOz17o8JQKVmD7QCgwNAu9Vz0vvGEEAw2A3bFmUMQPOTap+OBwdAKXl1jgEZB0CXVkPiHgsKQAGHUKVmTwtA8PlhhPAoBEAJ/reSHRsKQMgkI2dhjwFAV2DI6lYPCUBHrMWnAJgGQMXm49pQ8QFAwW7YtiizCEBGJXUCmogIQJ88LNSa5glA6xwDstd7BkDmeXB31i4IQHCUvDrHQAVAtoR80LPZBEC3lzRG62gBQEGasWg6OwhAJVgczvzqDECunpPeN34MQOjewyXHHQpAS8gHPZvVCkCdhT3t8JcKQAxZ3eo5KQhAgQTFjzH3B0DLLa2GxD0GQNo4Yi0+RQtAER5tHLEWBEA+BcB4Bg0HQL2pSIWx5RNAB7ZKsDjcA0BAahMn9/sGQM3km21uDAdACeHRxhHrCkCL/WX35OEGQKYnLPGAcgdAbTmX4qpyCEAnoImw4WkIQHkB9tGpKwlAuK8D54xoCECPcFrwog8SQGXkLOxpxwZArcCQ1a0eC0BEozuInWkJQEaZDTLJyAZAGsBbIEExCUDNzMzMzAwHQEm6ZvLNdgdAMXxETImkCEAp0CfyJCkNQCEf9GxW/QxAezGUE+3qCkBsskY9RGMDQIRHG0esRQhADhXj/E0oCEBUbw1sleD8P2oYPiKmRAZAZFjFG5kHCkBQGf8+40IHQLQCQ1a3ughAJlMFo5J6BUCQ96qVCT8DQD1hiQeUjQhA58b0hCXeBEB3FVJ+Uu0KQM11GmmpvAZAtqFinL+JBkAi/fZ14FwHQN6Th4VaUwdAtkqwOJw5CkCxUGuad5wIQGWlSSno9gtATkUqjC2ECUAai6azk0EKQCPb+X5q/AhAPIidKXTeBkBXBP9byU4JQImYEkn0cgtAHy457pTOB0AYsrrVc5IGQERpb/CFSQxA5dU5BmRvBUDS+8bXnpkGQCy8y0V8JwlAEFg5tMj2BUBagSGrW30FQITTghd9hQZAPu3w12SNDUDCNAwfERMHQPt0PGag8gVAA5Xx7zMuBkBbJVgczrwJQCWvzjEgewpA5bhTOlg/CUCwPbMkQM0GQNTxmIHKuAdAYtaLoZxoBkB0DMhe7/4EQCXMtP0rawpAWUxsPq6NBUB7oBUYsvoFQPZ698d7FQFAOdbFbTTAC0BnmxvTE1YHQEImGTkL+wVAPbg7a7ddC0Cz6nO1FbsGQFWkwthC0AtA2PULdsM2BUA3N6YnLLEIQL9lTpfFxAlAEqCmlq31BUCkqgmi7gMEQBNJ9DKK5QJAn82qz9WWBUAKEXAIVWoAQFQdcjPcwAVAa7ddaK6TB0DTn/1IERkRQD0nvW98rQVAyxDHuriNBUCFfNCzWbUFQPBQFOgTuQZAOIQqNXtgB0AabsDnh5EIQF7XL9gNmwVAjUXT2cmgBkBrmnecoiMMQK7wLhfx3QVA2zNLAtQUEUAgKSLDKl4HQNXsgVZgSANAZaVJKej2AkBV+3Q8ZmAKQFuU2SCTDAZAM/lmmxtTCUCQa0PFOP8IQEljtI6qJgtANpNvtrmxBUCD+pY5XZYKQOVhodY07wVASZ2AJsKGCEBUUiegiXAGQP1qDhDM0fc/ttYXCW15C0AhPNo4Yi0JQLNBJhk5Cw9AH/RsVn1uCEB7MZQT7WoHQHlYqDXNewRAMqzijcyjB0AcCMkCJvAMQHCxogbTsAdAWoEhq1v9AUCe0sH6P0cHQNqs+lxthQlAl6jeGtiqB0Btxf6ye/IDQBXGFoIclAlAV3iXi/jOCkDmdFlMbP4IQP3BwHPvIQZArK3YX3YPCkAG9S1zuiwHQJ5BQ/8E1wdA6gQ0ETZ8CED5LM+Du7MHQKWD9X8O8wtAzhlR2ht8BkAIVWr2QCsKQKDgYkUNJgJAf6SIDKt4CUBmFMstrcYMQKyowTQMXwRAzywJUFNLB0AoLPGAsqkIQBWRYRVvZAhAL90kBoEVBkDd6jnpfeMEQCvZsRGIVwZAQZ/Ik6TrBkAnZr0YyskOQOi8xi5Rvf8/443MI3/wBkDEd2LWiyEJQO317o/36glAGedvQiGCBkDPMSB7vfsFQKd0sP7PYQNAUaBP5EnSBkD0N6EQAQcJQN9PjZduUglAxHx5AfbRB0AF3V7SGK0FQN0kBoGVgwpAF7zoK0gzB0D7dDxmoDIGQJZbWg2JewZAGlHaG3zhC0DYR6eufFYGQHKndLD+DwpAGCZTBaMSB0DKMsSxLu4GQAK37uapjgZA6lvmdFkMBUAeG4F4Xf8JQCy8y0V8ZwpArthfdk8eB0CBJsKGp5cIQByxFp8C4AhAuMzpspjYDEA0SwLU1DIMQPCK4H8rWQdA4umVsgzxB0D/5zBfXoAKQGWlSSnoNghAM/59xoUDCkDxY8xdS0gJQCBB8WPM3QhAE36pnzcVB0C62or9ZbcBQKTH7236swpAKQXdXtLYCUCaQuc1dkkHQHY3T3XITQ1AbJVgcTjzCEDDKt7IPDIHQEW7Cik/6QlA+zpwzojSCEBzgGCOHr8IQHXlszwPrgVA2sngKHn1D0DjcOZXc8AEQCaN0Tqq2gZARkJbzqV4D0B+Oh4zUJkFQERMiSR6mQhAuaXVkLgHCkB+AFKbODkIQGaIY13cxgpAEF1Q3zLnBkAe4bTgRR8IQDrMlxdgnwRATdaoh2g0BUAqUmFsIQgHQMISDyibMgpApRR0e0njBUBYkGYsmk4IQBJOC170VQZABcWPMXctCEBt/8pKk1IIQLoxPWGJBwZA0NVW7C87BkCeew+XHHcGQAfOGVHa2wZAXRYTm49rCED0MorllpYHQPLqHAOylwdA+fcZFw6ECkA5KGGm7d8FQIkHlE25AgRACAPPvYcLCkDluFM6WP8HQL8rgv+tpAVAU1xV9l0RB0BRTrSrkLIIQBWRYRVvJAdAh22LMhvkBkBSLLe0GhILQKn7AKQ2sQZA58b0hCUeCEBwXwfOGREEQPxSP28qUgdAc9cS8kHPCEC30QDeAokHQA6+MJkqGAdAzEV8J2Z9EkCKWS+GciIIQIkMq3gjcwtAwi/186YiB0C4dTdPdUgGQPKYgcr4NwpAoWez6nP1B0DEJced0kEFQNeGinH+5gdA4syv5gABDUB7SWO0juoIQHVZTGw+7ghAQ/8EFyuqCEAj2/l+ajwJQKa4quy7IglAZOlDF9T3DUAfaAWGrG4HQN4f71Ur0wlAcCU7NgLxAUCxijcyjzwHQM/abReaKwJAxvmbUIiABkDcnbXbLjQHQEXY8PRK2QdApTFaR1VTBkDde7jkuJMIQG/1nPS+8QZA0CfyJOkaCEDFA8qmXCEIQB5tHLEWnwpA3LqbpzrkBEATRN0HIHUGQCL99nXgXAdAI/jfSnZsB0DpQxfUt4wEQECk374O3AlArTQpBd0eBUA+rg0V43wJQIJWYMjqFgRArtNIS+WtB0Dlm21uTM8LQF6dY0D2ugRAwXPv4ZLjBUC6LCY2H1cKQETdByC1SQdAh1ClZg90BkCZZOQs7KkKQCkiwyreSAhAtTf4wmTqB0DIzXADPn8KQL06x4DsNQlAPDHrxVCOAUBgdk8eFioHQH5S7dPxmAhA2Ls/3qsWCkCcxCCwcqgJQG/whclUgQlA1c+bilQYB0CGWtO845QJQPz7jAsHwgVAsacd/pqsC0DcgM8PIwQIQK7wLhfxXQRA3zKny2IiCECp3hrYKsEGQD0P7s7a7QtAEEBqEyf3A0Ba9bnaiv0IQLLXuz/eKwxA9kVCW84lBkAd5ssLsM8IQLDmAMEcvQdAIchBCTNtBUBNSkG3l/QLQIQSZtr+1QhArvVFQltOBEDAeAYN/RMIQGXCL/XzpgdA27+y0qTUBUCYUSy3tBoKQLPviuB/KwNAj3Ba8KLPEEAYsrrVc9IGQP8h/fZ1YARAvTrHgOz1CEDluFM6WD8GQHxETIkkugRA4QuTqYJRBUCjBtMwfAQIQB4zUBn/fglAC+9yEd/JD0AVOq+xSxQKQKabxCCwsglAEce6uI0GDEDMRXwnZv0BQIkHlE25AglArwj+t5KdB0BzEd+JWS8EQJ/leXB31gZAfjoeM1CZBUDidf2C3bAGQB+F61G43glAVHQkl/+QCUBl/PuMCwcHQJIFTODWXQZAiNf1C3aDB0Dpmsk329wEQNmUK7zLRQdAPwCpTZzcB0C1GhL3WPoGQAywj05duQxAflLt0/EYBkCm7V9ZaRILQANbJVgcjgNALXjRV5BmB0Abu0T11kAIQK/OMSB7PQpA8u8zLhyIBkD+8V61MmEIQHqqQ26GWwlAqz5XW7G/DEDswDkjSjsLQK6ek943/gdAhbacS3FVBEAQI4RHG0cHQMf0hCUe0AhAtvP91HgpCECNtFTejvAFQKhvmdNlMQlA1ouhnGiXCkDw3Hu45HgGQGNi83FtaAZALhwIyQKmBUAmGTkLe1oEQM6I0t7giwxAWOIBZVNuB0DAPjp15TMJQHXIzXADfgRAKzBkdatnCUBRpWYPtEIMQC0mNh/XhgxA4uR+h6LAB0CvsUtUbw0IQDUpBd1e0gZAi8OZX80BCEDgLZCg+LEGQIleRrHc0glAsKw0KQVdCEDtDb4wmeoIQGjon+BihQJA7lpCPujZCEDOx7WhYtwKQD9SRIZVvARAu9Vz0vsGCkAZ4lgXtxEFQB13SgfrfwJA+Q/pt69DA0Ad5ssLsA8EQIi6D0BqUwhAdbD+z2E+CkDk9zb92Q8GQJFhFW9knghACrq9pDGaBkCASL99HTgLQOjZrPpcLQdA+KqVCb+UBkBuTE9Y4sEHQL2pSIWxRQtAFNBE2PC0CEBt5/up8ZILQFw9J71v/ARAR8mrcwyIBkBEF9S3zCkJQMbctYR8kANAkElGzsKeBkDarPpcbQULQDTXaaSlcgNAufyH9NuXBkC536Eo0CcGQD0s1Jrm3Q1AOWItPgVAA0AQdR+A1OYJQMI0DB8RUwVAAiuHFtlOCUDOcAM+P8wJQNbiUwCM5wZAuqC+ZU7XBkCHbYsyG+QHQPuWOV0WkwhAa4Ko+wCkCEC+9sySADUHQBEebRyx1gdAqmBUUifgBECy17s/3msHQIZVvJF55AdAdcjNcAN+CEAbnl4py5AJQHTv4ZLjTglAU1xV9l0REECRm+EGfD4GQDawVYLF4QRAIqtbPSf9BUCUvDrHgGwJQB8RUyKJ3glAOwFNhA0PCUA89x4uOS4IQK3ddqG5zgJA0jWTb7a5B0AUP8bctcQCQLoUV5V91wlAIAw89x6uCUC22y4016kLQJ0ui4nNhwVAlX1XBP9bBUB7FK5H4foHQDhnRGlv8AdAwVYJFoczCkDzjlN0JFcIQEXY8PRKGQNAdhppqbxdB0BsQ8U4fxMHQNGRXP5DegRAVwkWhzP/CUDwUBToE7kIQE/pYP2fQwZAiSR6GcWyBEA5Yi0+BcAKQBhDOdGugglA0H6kiAzrC0BXBP9byQ4JQLzoK0gzFghA1T4djxloDECfAmA8g4YGQPrQBfUt8wZAlQ7W/znMCEAwEtpyLkUIQDlFR3L5zwhA8rVnlgToCEASFD/G3HUGQEfmkT8YuAJAg0wychZ2BkCgbMoV3uUGQJ57D5ccNwRApgpGJXVCBECaQuc1dgkEQPkUAOMZ9AhA9wZfmEzVCUBUdCSX/5AJQGVwlLw6BwxAQj7o2ay6CUCJtfgUAGMFQHS1FfvLLgdALJ/leXC3D0BJopdRLDcCQIaPiCmRRA1Abmk1JO6xB0CzmNh8XJsKQHkj88gfjAdAMA3DR8RUC0BB1H0AUpsIQIpZL4ZyYgBA2T15WKj1BUDEJced0sEKQH3LnC6LiQdAEtpyLsVVB0ARAYdQpeYHQIyhnGhXIQdAHPD5YYQwBUCFCDiEKnUGQHk7wmnBywlAZkmAmlo2C0DuPVxy3GkHQCk/qfbp+AhAbcX+snsyCkDhXS7iO7EHQLGiBtMwPAVAlBPtKqR8CEB15bM8Dy4IQLGnHf6a7ApANL+aAwSzB0ArMGR1qycJQLmNBvAWSAVA3LqbpzokCUAdWmQ73w8IQK7wLhfx3QlAiEZ3EDsTCECDUUmdgCYFQNPZyeAoOQlAcvkP6bdvCkD5Tsx6MVQLQFpHVRNE3QdARQ2mYfgIEEBiodY073gFQP2fw3x5QQhAI9v5fmq8B0CuKvuuCD4QQHLhQEgWsAhAICQLmMCtCEBwJTs2AnEKQDC7Jw8LtQhAgQTFjzG3B0DAeAYN/RMJQPw1WaMeYgdAeJeL+E7MBEDEX5M16qEHQMy0/SsrTQhAjnVxGw2gB0BD/wQXK+oHQKeufJbnwQxABwjm6PG7BkAJbTmX4qoHQMi1oWKcPwZABp57D5fcCEBx5ldzgOAJQM+Du7N2WwZAibX4FAAjCECoV8oyxLEIQP+ye/KwUAVA88gfDDw3B0BS7dPxmIEHQGcng6Pk1QtAwt1Zu+1CCEDHRiBe128LQGWqYFRS5wZA9ODurN32BUBKtU/HYwYHQEbT2cngKAlADFnd6jnpA0BIisiwincFQKLuA5DahAZAUWaDTDKyCEBRFOgTeZIFQD7o2az6XAtAAYdQpWYPB0Cj6exkcJQIQK0XQznR7gxA+yKhLeeSBUDhKHl1jgEFQM7HtaFinAhASDMWTWdnBkDItaFinP8HQA5KmGn7VwhAuY0G8BYICEDejnBa8OIHQNszSwLU1AZAvFetTPilDEDzyB8MPDcLQAoRcAhVKgVA0/avrDTpCUBQqn06HvMLQBSzXgzlRApAK8HicOaXDEAXZTbIJOMJQKG5TiMtFQdAM+GX+nnTBkDKN9vcmN4LQMqJdhVSPgZAS+XtCKeFB0DHLlG9NXALQKbydoTTggVADM11GmkpCECAZaVJKegQQLgjnBa86AVA3sg88geDAkBT0O0ljZEOQKyL22gAbwlAL90kBoEVB0DFG5lH/uADQOJYF7fRAAlAXD0nvW98CECloNtLGmMFQE4LXvQVZAdAwoanV8ryCUC0WfW52ooHQAkbnl4piwZAhXzQs1n1BUDe5SK+EzMIQIUIOIQq9QlAiGh0B7HzDUA1Bwjm6PEIQPRPcLGixghAA8+9h0sOBUBTswdagWEDQANbJVgcThBAZd8Vwf/WCUAF3V7SGG0LQKbVkLjH0gZAcTjzqzlAC0BSRIZVvJEFQIdtizIbZARAqfbpeMxAB0D3deCcEWUHQEaU9gZf2AZAOIQqNXsgBUDjUwCMZ5AJQB5tHLEWnwVAoBov3SQGA0AOLbKd7+cFQCYeUDblSgdAC2MLQQ4KAkD2KFyPwjUCQEUqjC0EOQlArmTHRiDeBkCNnIU97fAFQEjcY+lDFwZAd/NUh9zMCUDT3uALk2kIQIasbvWcdAVAjswjfzAwBUD/W8mOjcAGQDDYDdsWJQdA3+ALk6mCBUAk7rH0oQsJQCaN0TqqmgdAmGn7V1YaCECQa0PFOH8HQEX11sBWSQpA5x2n6EguBkDElEiil1EGQIQqNXugVQdA7bsi+N/K/z9i83FtqNgHQHGsi9togAdASNxj6UOXAUA9YYkHlE0IQKp9Oh4zUAdADY6SV+eYB0Cd19glqvcJQAisHFpkewRA8+UF2EfnBkBjC0EOStgGQIe/JmvUgwlAVpqUgm5vBkCw/s9hvjwFQLWmeccpOgVAjQsHQrKACkD+DkWBPpEHQFZI+Um1TwRAA30iT5IuB0ASg8DKoUUGQAK8BRIUPwdANUbrqGqCCUA3T3XIzTAFQE34pX7elAVAUU60q5ByBkCJ78SsFwMHQFhWmpSCbv8/lkOLbOd7BkAWak3zjtMJQBEebRyxVgJAWkdVE0SdCEBsW5TZIJMKQJM16iEaXQtA2XdF8L9VBkCX/5B++3oJQOwX7IZtCwhADvPlBdiHB0COBvAWSNAIQJEPejar/g1AOZz51RygB0AY7IZti7IGQJWaPdAKTAZAMbYQ5KBECkCg4GJFDSYKQNc07zhFhwRAsD2zJEANBUAlkuhlFMsHQAcI5ujxOw5ACHJQwkxbCECfPCzUmqYHQGkdVU0QtQlAV3iXi/jOCEADPj+MEF4JQNBE2PD0CgRAaW/whcmUB0BRiIBDqJIIQPrt68A5YwhAY7ml1ZA4CEDhl/p5U5ECQOBKdmwEYgVA+YOB595DBkASa/EpAAYNQKLRHcTO1ApALzTXaaSlA0D68gLso1MEQOkrSDMWTQhAFjWYhuFjBkC22y401+kJQJ/leXB31gZAOpLLf0h/A0DReY1donoIQDGZKhiVVAlAomKcvwnFCUCYhuEjYgoKQBMKEXAIFQFAqaROQBNhBECu9UVCWw4GQDG2EOSgxAZAd9uF5jrNCEBUAIxn0JAKQB/XhopxPgJApb3BFyZTCkC+vAD76BQIQKSIDKt44wFArVEP0ejOCUA0gLdAguIMQDAvwD46dQBA6X3ja8+sDECMEB5tHPEJQHU8ZqAyfgRAcqd0sP5PDUCMSuoENFEGQBjshm2LMgBAdxA7U+h8BUBFR3L5D2kGQH3LnC6LiQlAYYkHlE05BkB5I/PIH8wJQG/YtiizQQZAAOMZNPSPB0Ar9pfdkwcIQOC593DJsQZAs++K4H9rCkBUqdkDrYAGQFVNEHUfAA5A6Gor9pedB0A9LNSa5t0CQEd3EDtTKAhAYOXQIts5B0A66X3jaw8BQPQVpBmLpglAdk8eFmoNA0C3RZkNMkkKQGN6whIPKAhAI2dhTzu8BUCWeEDZlOsIQB4zUBn/vglA4Sh5dY6BBkBTy9b6IuEEQGNi83FtKAxARQ2mYfgICkCP39v0Z38IQDVj0XR28gVAhlrTvOMUBEBA9nr3x/sAQNoDrcCQVQlA5xiQvd79B0BLsDic+VUDQOj2ksZoHQdAmrFoOjvZCEA3N6YnLLEIQIOG/gku1gZAMdP2r6w0B0DHEWvxKYAGQFLt0/GYgQhAcqd0sP4PCEBI3GPpQ5cHQPdY+tAF9QpA19081SG3B0Dp8Xub/uwHQIFbd/NUBwZAEarU7IFWCkDC3Vm77QIGQOF/K9mx0QNAkdWtnpOeAECuu3mqQ64LQFFmg0wyMgpAwW7YtiizBkDz5QXYR+cFQIdtizIbpAVAIy2VtyNcBkAJ+aBns6oIQOXtCKcFLw9AvjCZKhgVCEAGgZVDi+wJQB4Wak3zzgdA0AoMWd2qAUChhJm2f4URQO2ePCzUmgRAdxA7U+i8CUAR34lZL4YGQPzepj/7kQpAtr5IaMt5BEA4EJIFTKAKQGdhTzv8NQZAnYAmwoYnB0DFPZY+dMEJQF4R/G8lOwtADB8RUyIJCECitDf4wmQKQIidKXRe4wdAJNHLKJYbBkC7m6c65AYRQAEwnkFD/wdA0SLb+X4qBUDfN772zBIJQFPovMYukQZA08H6P4c5CUBSmzi53+EFQCOhLedSnAdA/wQXK2pwBkB4eqUsQ1wKQAmKH2PumgdA4GdcOBCSBUAFo5I6AQ0LQIEExY8x9wVARl9BmrHoCUAYWwhyUEIHQLyReeQPBgFAf4eiQJ9ICUBZTGw+ro0IQCs1e6AV2ANAYU87/DUZBkBoBYasbrUOQIF4Xb9gtwdAs+pztRW7BUCq1OyBVqAHQBBdUN8y5whAKxN+qZ+3BkAHsTOFzisJQGFsIchBiQ9AnMQgsHJoAkBl/PuMCwcHQAe2SrA4HAlAlialoNtLDkCm0HmNXaILQA/R6A5iJwNANZiG4SMiB0BTrvAuF7EGQNKpK5/lOQlA/wkuVtRgCkDtgVZgyOoJQCrj32dceAhAJVgczvyqA0D8Uj9vKlIOQL4Ts14MZQpAIxXGFoKcB0CH/gkuVtQNQMTr+gW7IQJAFXR7SWO0BEAxthDkoEQKQOrKZ3keHAZAXmiu00gLC0DChqdXynIMQG2tLxLa8gVACf63kh3bDEDsUbgehasHQMxdS8gH/QlA1ouhnGjXB0CaJQFqahkHQK1RD9HojgpALpCg+DFmB0DKT6p9Ot4DQIzzN6EQgQhAdsO2RZmNB0DgnBGlvYEIQPIk6ZrJdwRA5EnSNZNvBkC3lzRG6ygFQLqgvmVOVwZAK/aX3ZPHCEDJAiZw6+4GQC6QoPgxpghAI6Et51LcCEAaaam8HWEMQOM2GsBbYAdA2IFzRpS2BkDwp8ZLN8kEQBkcJa/O8QVANQwfEVNiBUB0QX3LnG4IQOi8xi5RPQdAWWlSCro9CECqZWt9kZAKQG3F/rJ7cgVAt39lpUlJEECNnIU97TAIQDMzMzMz8whAdVlMbD6u9j9Vh9wMN+AIQPc7FAX6xAtAHVpkO99PCEBI+Um1T8cFQGdhTzv8dQdAwCFUqdnDBEDPa+wS1RsJQElL5e0I5wlAMbYQ5KAECUD61RwgmOMHQEvIBz2bVQ5AoBov3SSGCUDfbHNjekIKQL6HS447ZQZAMbH5uDYUCEANjpJX59gHQHwsfeiC+gtA3ze+9sxSCEA1DB8RU2IFQOhNRSqMbQZAdnEbDeAtCUAuHAjJAiYGQNaQuMfShwZAqfbpeMyAB0AlzLT9KysLQHl1jgHZKwhATrnCu1zEAkCbVZ+rrVgGQEJ4tHHE2gZAR6zFpwDYBkA/UkSGVfwIQMTr+gW74QdAnWNA9np3CUDVyoRf6icDQEzD8BExZQZAWKg1zTtOC0DvIHam0PkGQCP430p27ARA2v6VlSalC0ANbJVgcbgIQNP2r6w0aQhAxTh/EwqRCEArNXugFZgHQNfAVgkWRwpACYofY+5aCkC1w1+TNWoIQOKS407pYAhAVg4tsp3vCEDgnBGlvcEHQDxmoDL+/QdACD2bVZ8rCkCR1a2ek94EQEsC1NSytQNAYhBYObQICEA1DB8RU6IJQMhBCTNtPwlA7Eyh8xr7CEDEWnwKgLEDQNNNYhBYeQlATgte9BVkBkDHndLB+j8HQAsMWd3quQVAZmZmZmYmCkBf0hito+oGQB3J5T+knwZAXoB9dOoKCUDaOGItPgUHQLKFIAclzAdARzgteNFXCkDgvg6cMyL+PzdPdcjNcApAiqvKviuCCUDiOzHrxRAJQOj2ksZo3QRAE0TdByB1CUAnMQisHNoHQMed0sH6/wxA7ginBS+6C0AYYB+duvIHQLPNjekJiwdA41MAjGcQBkAzUBn/PmMKQMFWCRaH8wVAtkqwOJy5C0BDOdGuQooEQLbz/dR46QNAWP/nMF/eCEAZyol2FVIIQDo7GRwlLwlAL6NYbml1BUA6OxkcJa8EQAYv+grSjAZA001iEFg5B0BcOBCSBcwKQEqYaftX1gdAMbH5uDYUCEASMSWS6KUGQK9Cyk+q/QRAeR7cnbVbB0C9jGK5pdUGQCveyDzyxwVANnaJ6q0BCEDBbti2KHMJQOzdH+9VawdAYFlpUgr6CEASg8DKoQUDQEZ8J2a9WAlANnaJ6q2BBkDgufdwyXEEQB7EzhQ6rwZA7DTSUnn7BEC5GW7A5wcHQAd8fhghvApAYHZPHhbqBEBXCRaHMz8JQNkIxOv6RQVA9gt2w7aFBUBrt11orpMJQGPRdHYy+ANAW7G/7J58B0BpNSTusTQGQCgs8YCyqQtAHsTOFDovBkDIBz2bVR8EQL1SliGO9QxAf2q8dJPYB0BtkElGzkIMQPp+arx0UwVACTiEKjV7A0CAn3HhQEgFQHqlLEMcqwhACVBTy9Z6B0DeVKTC2MIHQDihEAGHUAdAJjYf14aKBUB65A8GnnsJQNpVSPlJdQJAQ61p3nFKB0Bb64uEtlwGQDpAMEePXw1ADOpb5nTZCECw/s9hvrwGQIRHG0esxQZAud+hKNCnC0CtNCkF3R4GQCi4WFGDqQVA83aE04JXCUBXPsvz4O4IQEm6ZvLN9gRAN45Yi0/BCkCsxacAGI8PQO8DkNrEyQlAuaXVkLhHCUC1w1+TNWoFQPVnP1JEhgVAIHu9++N9BUA2PL1SluEGQAYq499nnAtACf63kh3bAkAHtkqwOBwHQILF4cyvJgtAsyRATS1bB0DhQEgWMMEHQCAkC5jAbQZAJXUCmgibCEBS1QRR90EIQIT1fw7zJQhASino9pLGCkAbTMPwEbEIQM/3U+OlGwJA3rBtUWaDCkApeXWOAdkIQJ6Y9WIo5wdADAdCsoBJBkBkXdxGA7gKQNNqSNxjqQ1ApN++DpwzCECMFTWYhmEIQI7MI38w8ARA8FAU6BP5CkCSBUzg1l0FQKpIhbGFYAhA4xk09E+wB0Bs7BLVW0MFQAdfmEwVTAdA7pQO1v95BkDl7QinBe8KQKeWrfVFQgZA24r9ZffkBUDcnbXbLrQJQKdc4V0uoghAf7xXrUz4B0D1oQvqW2YHQN/42jNLAghA0zB8REwJB0Aj2/l+ajwEQI4ev7fpjwVAK4cW2c43BUBi83FtqFgGQELPZtXnagdAzQGCOXo8BEBH5pE/GHgEQMDnhxHCYwVAT+lg/Z8DA0BZaVIKur0JQH+8V61M+AlAscQDyqacB0Df4AuTqYIIQIyEtpxLcQVAJJf/kH47DECneccpOlIFQOrnTUUqDAdAVACMZ9AQCUCp+wCkNrEFQNkIxOv6hQpAzTtO0ZHcCUCh+DHmrmUJQGagMv59xgtAJ2vUQzR6BkDSUnk7wikHQFZI+Um1jwpAEtpyLsWVB0BLWYY41kUHQOSghJm2fwRAq5UJv9QPAkD5LM+Du/MAQKp9Oh4zEApAiBHCo43jC0CmRBK9jKIIQAqFCDiEKgdAjNtoAG9BCECxpx3+mqwEQFPL1voiYQdAJ/c7FAU6CkCjzAaZZOQFQKPMBplk5AlAGLK61XOSBUAqjC0EOSgGQCgPC7WmuQdA8rBQa5o3B0CWz/I8uNsRQH2utmJ/2QRAdNL7xtdeDkCR8pNqnw4NQNrmxvSE5QtAOL72zJKACUCJ78SsF8MIQExUbw1sFQdACW05l+IqCUCsHFpkO18JQGDI6lbPCQdA9dbAVgmWBUAKgPEMGnoLQHsUrkfhegZALT4FwHiGBECIug9AatMJQFqeB3dnrQlAXcR3YtbLCEB9lufB3VkQQGRYxRuZhwRAknnkDwbeA0DtR4rIsAoHQMMq3sg8cgZArthfdk9eCEAaaam8HSEIQDuNtFTeDg5A78nDQq0pB0CeXinLEAcHQE1nJ4OjpANA4PPDCOERBUCUap+OxwwHQP1qDhDM0QlAO420VN4OCEDY0w5/TdYGQL+CNGPRtAVAHM78ag6QA0AlQE0tW2sJQOjB3Vm77QRA7dPxmIEKB0BwlLw6xwAKQJp8s82N6Q1ADyibcoV3CEBJaMu5FBcKQLth26LMRgFAh78ma9SDBEBtrS8S2nIMQKTH72368wdAWp4Hd2ftDUDEWnwKgPEIQJkSSfQyig5ApwUv+gpSBUAdlDDT9i8IQIguqG+ZkwZA9bnaiv3lBEDgLZCg+HELQGDq501FqgNAEarU7IGWBUAY7IZti3IJQHx+GCE82gNA5E7pYP3fBUDrkJvhBnwHQGlv8IXJlAdAg2kYPiKmBkD+JhQi4JAFQF8pyxDH+gdAaYzWUdWEBkDOiNLe4IsHQJtyhXe5iAxApU5AE2FDDEAEHEKVmn0HQLK61XPSuwVAEjElkuilCkDVz5uKVNgEQC7nUlxV9ghAsylXeJdLCECygAnculsDQDEIrBxapAdA3c1THXJzBkA/jBAebdwHQI/f2/RnvwhATGw+rg3VBkDvj/eqlckHQPphhPBoowhA+vIC7KMTCUAp0CfyJGkIQKIL6lvmNApA3QcgtYmTCUCbOLnfoegFQMYWghyUsARAje4gdqaQCkC2SrA4nHkGQM0eaAWGrAlAB+v/HOYLCUDvOEVHcjkAQG2tLxLa8gRATI47pYP1BkAeigJ9Is8GQMDPuHAgpAxAs3vysFBrCkChEAGHUOULQLJoOjsZ3ApA+dozSwIUBkBfJLTlXMoAQK4q+64IvghARIts5/upBUB0tRX7y+4HQNrmxvSEpfY/h/4JLlbUBUAvbqMBvIUGQJzhBnx+GAVAYygn2lWIBkC0q5DykyoKQCUjZ2FPuwpAXaeRlsobCEBuNIC3QEIIQBYYsrrVcwZAc0urIXHPBkCreCPzyB8IQCYZOQt72gZArhIsDmc+DECbAwRz9HgAQIqw4emVcgxAVIzzN6HQB0CRfvs6cI4GQJjdk4eFWghAWwhyUMJMC0DrrYGtEqwJQFMFo5I6wQdAxy5RvTVwCUASg8DKocUDQPQVpBmLZgxArcCQ1a1eAUBjnL8JhQgLQIqO5PIf0gdAcOtunuoQB0Ae+YOB5x4IQOC593DJ8QZA1T4djxloBECkx+9t+nMKQAKCOXr8XgZAVFInoImwBUDKplzhXa4EQPJetTLhFw9AwOyePCzUCUAsvMtFfGcFQATidf2C3QZAR8mrcwyIC0C1/SsrTYoHQDXSUnk7wghAshGI1/VLCECYLy/APjoGQEHUfQBSmwdAb7vQXKdRA0A+IqZEEj0KQOAQqtTsgQpABaOSOgENCkD2evfHe9UFQOY/pN++jglAzGJi83FtB0A3pics8QAHQFX2XRH8rwZAdEF9y5wuBkBy4UBIFrAIQLZKsDicGRBAVMa/z7gwCUA+0AoMWV0EQF8ktOVcigdAs9KkFHR7BkCKk/sdikIGQMhBCTNt/wZA8rVnlgToBUBYrUz4pf4KQAxZ3eo5qQZAEF1Q3zInBkCQ96qVCb8IQMqJdhVSfgtAD39N1qjHB0Az+WabGxMIQDJaR1UTxAZA4e6s3XYhBEB5dY4B2SsMQElL5e0IZwZAFw6EZAHTB0DBxYoaTAMJQEP/BBcraghA5WGh1jQvBUAXmus00tIEQFiQZiyaTglA07zjFB3JB0DnqQ65GW4KQFX7dDxm4ApARKhSsweaCEA4LXjRV9AHQP/sR4rIcA1A3PRnP1KECUB0JJf/kL4GQKYNh6WBn+4/AYdQpWZPCUCbrFEP0egGQDnulA7WvwtAirDh6ZUyCUDUSEvl7UgGQLzLRXwn5glADLCPTl05CEANbJVgcTgGQLvQXKeRlgZAHNMTlnjACkDw+WGE8OgHQBxfe2ZJgAZAFmpN844TCUDEJced0kEEQFuU2SCTDAhAZ7gBnx8GCEA3/dmPFFEGQEG8rl+wWwtADTfg88OIBUCQFJFhFW8IQHjRV5Bm7AVAlDDT9q/sB0AMAiuHFlkMQNuK/WX3ZAhAmxvTE5Y4B0AJG55eKYsNQP/nMF9eQANA8bp+wW4YCUBv8IXJVEENQLR224XmughAbRyxFp/CB0AWak3zjpMIQJfiqrLvCgZAnG1uTE9YBED2l92Th4UFQDgyj/zBwAlAdO/hkuOOBkDt2AjE6zoHQLivA+eMKAlAlltaDYn7BEBqvHSTGIQFQP28qUiFsQ5A+3lTkQrjB0AoSddMvpkLQAA6zJcX4AlARUdy+Q9pCUBXeJeL+E4GQPhT46WbxAZAsI9OXflsDECM22gAb8EIQKuy74rgfwVA/kP67esACkD76NSVz/IGQHrHKTqSiwNAc2N6whLPDECc+dUcIJgJQLAgzVg03QdAj+TyH9KvCEBLPKBsypUGQErvG1975gdAZyeDo+RVBEB7ZkmAmloEQKdc4V0u4gRAYoTwaOMIC0CqYFRSJ2ALQG2tLxLacghAtvgUAOMZB0C37uapDnkHQJp8s82NKQFApics8YCyAUA82jhiLb4KQJ8fRgiPdghABcWPMXdtDkDQm4pUGNsGQAM+P4wQngZAU1xV9l2RB0DUDn9N1qgJQH2zzY3pSQZA83aE04KXCEAHtkqwOJwKQMeA7PXujwdAB1+YTBUMB0CvX7Abti0GQCgn2lVIeQZAU7MHWoGhBkBGzsKedngFQAsMWd3q+QhAJGJKJNGLCEDKFd7lIn4FQPDce7jkeAZAlbcjnBY8CEB0B7EzhY4IQNuK/WX3JAZACHdn7baLB0CUpGsm3+wDQHh/vFetDAxAGsBbIEFxBkAZraOqCSIGQCvZsRGIFwZADhXj/E2oAkAfnbryWd4HQBUdyeU/ZAhAVU0QdR8A/T+9APvo1NUEQChEwCFUaQZAd2fttgtNBkAtlbcjnJYGQPMf0m9fBwhAJ07udyjKBEBsskY9RCMLQFR0JJf/EAZA097gC5OpDEBRTrSrkDIKQP/nMF9ewAdAnpj1YignCkBjtI6qJogGQAQ5KGGmLQhA3LqbpzrkCkBKRs7CnjYJQCApIsMqngtAfZHQlnPpB0B9rrZifxkIQDEIrBxapAVA7GmHvyarB0CJmBJJ9HIEQHNjesISjwhAIF7XL9gNBEAiGt1B7AwJQDGUE+0qJAlAs++K4H9rDEDw+WGE8KgIQOwX7IZtywdAHZQw0/bvDUA/NV66SQwKQEgWMIFbNwVATfOOU3TkDkB56SYxCGwEQAtGJXUC2hBACFqBIasbB0D8+4wLB8IGQMo329yYHgRA+dozSwLUC0AVUn5S7ZMGQIf+CS5WVAlAIQIOoUqNBEDrOel94ysHQEM50a5CygVATODW3TxVBkAjoS3nUlwKQBMKEXAIVQRAuw9AahOnB0ANVMa/zzgEQBdlNsgkIwhA9E9wsaIGBEBIG0esxScIQCrj32dcuAVA+THmriVkAUCD+pY5XZYLQB3mywuwDwRAy4Rf6ueNBEBeY5eo3hoJQMVyS6shMQdAQWX8+4xLC0DPoKF/gssFQEQX1LfMKQdAOBWpMLYQA0CMEB5tHLEJQE0VjErqxAZAnrXbLjSXDECPwvUoXA8DQIyEtpxL8QlASS7/If22AEDqlbIMcawOQNsWZTbIpAdA/3ivWpnwB0CBPpEnSVcLQEM50a5CSglAopxoVyElCEB6qkNuhtsJQNF0djI4igdABK3AkNWtA0CsOUAwR08HQIQSZtr+FQhAYOXQIts5BEBYrUz4pT4HQGACt+7mqQZAH5268lneDEAYITzaOKIFQHTS+8bX3ghAq8/VVuzvCEAhsHJoke0IQHSYLy/AfglAKXl1jgEZB0B3oblOI20GQJJ0zeSbLQtAT135LM8DBkBjesISDygJQHtrYKsECwpAQrKACdz6DEBQcLGiBhMJQPfHe9XKBAVAn47HDFSGBUBAh/nyAqwJQK9amfBLPQtAr+sX7IZtBkDdQexMoXMHQJ0ui4nNRwZAuB6F61E4BUAWGLK61TMFQGDI6lbPCQdAFR3J5T+kBUBivrwA+2gIQLTlXIqryglAF4IclDCTCUB+Uu3T8dgFQI7pCUs84AVAo3VUNUHUB0B4eqUsQ1wJQBn/PuPCgQlAvW987ZmlBECPwvUoXI8EQHJQwkzb/wZARwN4CyToBUAU0ETY8PQIQJy/CYUIOAhAP1dbsb+sAkDO34RCBFwEQLYQ5KCEWQhAKzBkdasHEEAR/G8lO3YHQPiImBJJdAdAj1N0JJd/CUAs1JrmHScJQK5kx0Yg3gRAYXE486s5CkB7FK5H4XoHQGFsIchBCQhA1jkGZK+3BkArGJXUCegGQDQRNjy9kghADAIrhxZZB0A/xty1hDwGQNrhr8ka9QBANjy9UpYhCUBTBaOSOsEKQHJQwkzbPwdAODKP/MFADkDtmSUBaioCQOyjU1c+CwdAliGOdXHbA0C7Cik/qXYBQDo7GRwlrwlA2qz6XG1FDUA10lJ5O0IGQJD3qpUJfwVAdXYyOEqeBkAiN8MN+HwHQGk1JO6xdAhAGAltOZdiBkC1GhL3WDoFQL+CNGPRtAZAzqrP1VbsDEBoke18P7UEQKDgYkUN5gdA8rVnlgToDEBMbD6uDZUJQDxrt11o7ghAz04GR8lrB0BgzQGCOToKQMeA7PXuDwlAHF97ZkmAB0D9MEJ4tDEFQIKLFTWYRg1AE36pnzfVCUCFtpxLcZUNQGWlSSnodghAEK/rF+xGBUC2hHzQs9kIQPevrDQpBQlAQKTfvg6cCECfsMQDyuYHQPJetTLh1wlA5Ga4AZ/fB0Dz5QXYR2cJQMcpOpLLPwlAqkNuhhuwBUAoYabtX9kGQN3vUBToUwlA48eYu5ZQCUA7U+i8xq4GQIxK6gQ00QhAinYVUn6SB0AXZTbIJGMNQIKtEiwO5wtAHAjJAiawBUAwgVt385QDQA034PPDyAZAXf5D+u3rDECWW1oNibsFQBqLprOTgQdAERlW8UamCUDLuRRXlT0IQChhpu1fWQVA3rBtUWbDBkA7AU2EDY8FQGUZ4lgXNwlAm49rQ8V4CEAWMIFbd3MEQFR0JJf/EAZAA0NWt3qOB0DXaaSl8nYJQMFz7+GSowRAGoums5OBCkBGJXUCmogEQF2nkZbKWwhAYDyDhv7JCEAbZJKRs3AHQLVPx2MGKglAe737472qBEAmGTkLexoDQAYN/RNcLAZATFRvDWzVCUBj0XR2MngKQBNJ9DKKJQlAiSR6GcWyB0Drbp7qkBsCQGe4AZ8fRgpAnFCIgEOoCUD6fmq8dJMBQMai6exksAZAQDBHj99bBkAMsI9OXfkEQG/Tn/1I0QVA0ZZzKa6qBUDoaiv2l90AQKeWrfVFwgdA4nX9gt0wBkDNdRppqTwIQA/uztptFwtAAiuHFtlOB0Cm0HmNXeIGQLsPQGoTJwhAKEnXTL4ZDECZu5aQD7oGQJs90AoMmQhAATW1bK0vBUBi83FtqFgFQNQOf03WqARAZXCUvDoHCkAVHcnlP+QKQEkRGVbxhghAP6n26XiMCkBwzojS3iAHQDNQGf8+IwpA5L1qZcKvBkBPdcjNcMMHQLprCfmg5wlABP9byY5NC0Bpb/CFyZQNQDDYDdsWZQdA5A8GnntPB0BPO/w1WWMIQMgHPZtVHwZAgUOoUrOHBkBvL2mM1hEGQKQ2cXK/AwdATWcng6NkBkB/pIgMq3gJQJfK2xFOCwxAIQIOoUrNDEAd5ssLsM8GQFD8GHPXUgdAJ07udyhKAkCJB5RNuQIIQEZCW86luAlAuOnPfqTICECNeohGd1AIQFDfMqfLIgpA+8vuycMCBUDjwoGQLCAJQL7Z5sb0RAlAjWK5pdXQCUCNRdPZySALQK4q+64IfglA8+UF2EcnAkCjQJ/Ik2QFQFYOLbKdrwhATHFV2XeFCEAKgPEMGvoHQGoTJ/c7FAdAC7WmecfpCkBRMc7fhMIHQE5FKowthAdA6IL6ljmdCECSs7CnHX4GQH9N1qiHqANAICQLmMBtB0AGL/oK0kwFQIZyol2FFAhAAfvo1JUPCUA7wmnBi/4JQL37471q5QhA6udNRSrMAkAS2nIuxVUKQPyMCwdCsgdALzTXaaSlBUDD0ytlGSIGQF/SGK2j6ghA5WGh1jQvB0ASMSWS6CUCQJfiqrLvSghAd4TTghc9CUASpb3BF6YHQP4mFCLgUARA+SzPg7uzA0B9Ik+SrpkHQA4tsp3vpwVAmKPH7206BUBTIoleRnELQHva4a/JGglAz/dT46XbCkBVMCqpExAMQE563/jaMwlAd0oH6//cDUDzPLg7a/cGQCWS6GUUCwRAoBov3SRGDEASMSWS6CUKQHi5iO/EbAVADJOpglHJCEDQs1n1uRoPQCaqtwa2iglAv9TPm4pUBkAhWcAEbl0MQCFZwARuXQhAZvfkYaGWBkDWqIdodAcHQJ/leXB3VgpAp1zhXS7iBEC4O2u3XagKQH9N1qiH6ApAWg2Jeyx9CUDt8NdkjXoGQNieWRKg5ghA3gIJih/jAkB+GCE82vgFQLgBnx9GSAZADkqYafsXBkBzhXe5iC8MQB7+mqxRzwVAZmt9kdCWCECi7gOQ2oQFQO4ljdE66gZAo5I6AU0ECEC4AZ8fRsgGQAk4hCo1ewZAz0nvG197B0CqDrkZbkAGQEPKT6p9+gZAzXUaaal8CED2evfHexUIQIwQHm0cMQhApN++DpzzAkBWgsXhzG8HQEUNpmH4iAVAQj7o2az6DEBMpgpGJXUIQIRkARO4NQxAF4IclDATCkDDnnb4azIFQOAtkKD48QVAyQImcOtuBkA09E9wseIMQP63kh0bQQFA+YOB597DB0AOMsnIWdgKQEvNHmgFBgRAHAjJAiawBkAlOzYC8XoGQJF++zpwDgdAn8iTpGtmAUBMpgpGJbUHQGr7V1aaFAtAsRafAmB8BUDCTNu/shIGQJKRs7Cn3QdA+8vuycNCBEBTrvAuFzELQLwi+N9K9gxAJ2vUQzR6A0CRfvs6cI4LQGLWi6GcqAhAmyDqPgCpDEBM4NbdPJUKQM1YNJ2dDApABHP0+L1NB0CZu5aQD3oIQGQe+YOBJwZAK9mxEYgXCkBnfjUHCCYFQB1VTRB13wlAEJIFTOAWBUCEZAETuDULQGtlwi/1cwRAx/SEJR4QBkB/MPDce7gJQBXGFoIc1AhA9Zz0vvE1B0BeEfxvJfsIQFBwsaIG0wRA1EM0uoMYB0CcFrzoK0gEQNfdPNUhtwZA7BLVWwObCEAKur2kMZoLQJkNMsnImQJAqIx/n3Hh/T+zmNh8XJsHQJgXYB+dOglARkJbzqX4B0AMAiuHFtkFQCl5dY4B2QdAoBUYsrqVBUDLnC6LiU0FQLUy4Zf6+QdAt9EA3gIJB0CUE+0qpLwHQIbJVMGoZAtAs+pztRU7CkDJjo1AvK4IQJg0RuuoagNAkxgEVg7tA0Bk6UMX1HcHQDlFR3L5TwRAkwA1tWztBkCbyTfb3NgHQBHHuriNBgdAatlaXyR0CEDmllZD4l4JQMNHxJRIYghAIO9VKxO+B0DGxObj2pAKQAwCK4cWmQpAI6Et51JcCUC5quy7IngIQFlRg2kY/gZA5Ga4AZ9fCkA9CtejcH0CQHZPHhZqDQRAryXkg54NBUCjdVQ1QVQHQJ88LNSaJgdABhIUP8ZcC0Az4Zf6eVMJQNBE2PD0iglARrHc0mqIB0Aq499nXLgGQG6GG/D5IQpA1v85zJcXCkAawFsgQTEGQGfV52orlhBAZK93f7zXB0BWfa62Yj8FQC4EOShhpv4/EfxvJTu2BkDulA7W/3kIQLmNBvAWyAVApKXydoQTCkCbOLnfoegJQOfj2lAxzgVAhZm2f2XlCED9E1ysqIEGQIhjXdxGwwpA48KBkCwgBkDhXS7iOzEJQDnulA7WvwpAzqW4quy7CEC4rwPnjOgJQIaPiCmRxAlA19081SG3B0DQRNjw9MoHQOtWz0nv2wdAz04GR8nrCUBWt3pOel8FQBDM0eP3NgpATfOOU3TkBkA+0AoMWV0FQP59xoUDIQ9AyR8MPPeeB0Catn9lpQkCQDpdFhObzwpAbOwS1VvDBUAbTMPwETEKQEFIFjCB2wFAMCqpE9DEBkAf9GxWfe4EQCBGCI82DgZAyTzyBwOPCkAgmKPH720LQN/98V61sgdAkzoBTYSNCUDv/nivWlkJQGxDxTh/kwdA/DVZox4iCUBGCI82jlgHQG2oGOdvAghAXVDfMqdLCUBWt3pOel8EQPLvMy4cSApAMIFbd/MUBUCsHFpkO58JQKHbSxqj9QtAVACMZ9BQCkAx0/avrLQJQF1Q3zKnCwlAL4Zyol2FB0AE/1vJjs0DQF3Ed2LWSwZAmfBL/bxpCkD+DkWBPhEHQPuuCP630gZAOPjCZKrgBUAlkuhlFIsNQIPAyqFFdgpAkIgpkUTvCUAOoUrNHugDQLXgRV9BGgdAv2A3bFtUBkDXTL7Z5kYGQKVOQBNhgwNAlialoNsLBkD3r6w0KQUNQOC+DpwzYgtARwN4CyQoBUDgEKrU7AEJQMyXF2Af3QNANUHUfQCSCUCLMhtkklEJQPMC7KNTFwFAeuQPBp57CUD9E1ysqEEJQFu21hcJ7QVAF7zoK0jzCECvWpnwS/0LQMRafAqAsQJA93XgnBElCUA9CtejcL0GQNLj9zb9GQhAnwJgPIPGB0ACmggbnh4JQMGLvoI0IwlAbw1slWAxCECeQUP/BJcDQKuy74rgfwlAkKD4MeYuBEC21hcJbTkGQDSAt0CCIg1ACHJQwkzbCUCQ96qVCf8MQGa9GMqJNghAxqLp7GTwB0DeAgmKH2MJQBmto6oJIglAWvCiryBNBEDrVs9J7xsFQCJUqdkDbQZA9P3UeOnmB0DGpwAYzyAJQG6GG/D54QlAwYu+gjQjBUD7ljldFhMHQJBmLJrODglAhxbZzvfTBED0N6EQAYcIQAVR9wFILQZA32xzY3pCCEALYwtBDkoFQKQZi6azUwhA1/oioS0nCUApXI/C9agHQLA4nPnV3AFABRcrajDNB0C/fR04Z8QEQJG4x9KHbghAIxXGFoIcBEDRdHYyOEoHQEWBPpEnCQdAqFKzB1pBB0Ap6PaSxigKQM7Cnnb4KwtAdhppqbzdBUCkiAyreGMKQHNoke18PwdAVwkWhzP/CEAtIR/0bFYKQKVOQBNhQwpACHJQwkzbCkAnwoanV4oFQE91yM1wQwVAEDtT6LzGBEC1w1+TNWoKQI7MI38w8AhA6StIMxYNBUASoKaWrbUHQKXap+MxgwlAJGJKJNHLCUDhtOBFXwEMQCYZOQt7WghAznADPj8MDUBdxHdi1osLQAKfH0YIjwVAlIeFWtM8BECOzCN/MLABQKyQ8pNqHwlAZeQs7GmHBkAabsDnh1EFQJayDHGsywhAyatzDMheBkBmvRjKifYIQPVKWYY4VgtA2ZlC5zX2AkBnD7QCQ1YAQJhMFYxK6gRAJ6Wg20taB0BgsBu2LQoHQOSghJm2/whAGt1B7EyhBkDJPPIHA08KQKDDfHkBtgNAogvqW+b0CkAXZTbIJKMIQOlILv8hfQZAIbByaJGtAUCgibDh6VUGQP5l9+Rh4QhA29yYnrAECkDf4AuTqYIGQDEIrBxapAVAyAc9m1WfBECOAdnr3V8GQF2nkZbKmwJAcHfWbruQCEB0tRX7y24EQBb2tMNfkwVA5gXYR6euBUADJnDrbh4IQAZkr3d/PAhAVz7L8+BuCUAX8Z2Y9aIFQPH0SlmGOAlAVRhbCHKQB0D2RUJbzmUGQHjRV5BmbARA4nX9gt3wA0A/xty1hHwKQO0qpPykWghAIqZEEr1MB0ADeAskKL4MQP94r1qZ8AdA5EnSNZOvB0CFfNCzWbUJQCgK9Ik8yQlAl1ZD4h4LCEDeVKTC2EIGQM8xIHu9+wtA4umVsgyxBECNf59x4QAIQAqd19glKghAQj7o2az6/D+rIXGPpc8EQDsBTYQNTwlAZaVJKeg2B0BcyY6NQPwFQNyAzw8jRAhA0GG+vAB7B0Cz0qQUdHsJQB8uOe6UzgdAGGAfnbryCkCfH0YIj7YDQHxhMlUwqghAWFaalIJuCEA+lj50QT0LQFDHYwYqYwxA9aEL6lvmBECrCaLuA1AKQC+jWG5pNQtA4GdcOBBSCkAHmWTkLKwKQKgAGM+g4QpAgNQmTu53CEBUbw1sleAMQKcFL/oKEgRAq1s9J73vBkBseHqlLIMGQMjvbfqznwdAkQpjC0GOBkDQ1VbsLzsFQMcpOpLL/wlAUPwYc9cSB0DWbrvQXCcOQBHkoISZ9gVAeQYN/RMcDUDCFyZTBeMLQPWhC+pbpgdA/vFetTKhCUBb07zjFN0CQIHs9e6PNwhAbCbfbHNjBkDHgOz17g8JQHC2uTE9IQZAE7h1N091BkB+xoUDIVkFQKFKzR5oRQhA7bsi+N/KCUCloNtLGqMIQF8M5US7igZAX9IYraMqCUChZ7Pqc3UEQL+36c9+pAdA7C+7Jw+LCUDV52or9hcJQJg0RuuoKghAZkmAmlp2BUA0aOif4KIFQE8jLZW3owtAbw1slWBxBkC4WFGDadgGQJs90AoM2QVANxrAWyBBCUDWc9L7xlcKQLwFEhQ/RghASino9pIGDEBBvK5fsJsHQIS7s3bbBQlA1eyBVmBIB0DnqQ65GS4NQIzbaABvYRBAp7OTwVGyCEDghEIEHMIIQHf4a7JGPQhARiV1ApoIBkBhiQeUTTkHQGItPgXAuAhAnwJgPIPGBUA5fxMKEbAIQNI6qpog6gpAIxXGFoKcCEAo1T4dj1kMQJijx+9t+gBAjNtoAG8BCkBxAz4/jNALQHlA2ZQrfANAp3nHKTqSB0AcsRafAiACQGlXIeUn1QZAoFT7dDxmA0CHinH+JlQEQBNJ9DKKpQdAjZduEoOABkDPFDqvsUsLQGpq2VpfZARAFAX6RJ6kCUBA3qtWJjwIQOELk6mCUQVA6znpfePrBkAa+ie4WJEGQOp4zEBl/A5AWcAEbt0NDEAouFhRg+kAQNJvXwfOmQZAl5APejarBkARcAhVarYHQOQUHcnl/wdAo1huaTUkDEB3Z+22C00KQApoImx4ugtA3zKny2IiB0AEyqZc4Z0JQHAlOzYCMQdAERlW8UYmCEAAOsyXFyAJQF35LM+DuwRAKgDGM2goBkALXvQVpFkEQOFFX0GasQhAuJIdG4G4B0BQGf8+40IHQGh5Htyd9QdAkdWtnpPe+j+4O2u3XSgGQAYv+grSjAdAIxCv6xfsB0Cu2F92T14EQJnTZTGxOQdAyTzyBwNPB0CJ78SsF0MNQNxGA3gLZAxA1EM0uoMYBUA7AU2EDU8GQCKOdXEbTQRAio7k8h/SBkB4RfC/lawHQPYLdsO2BQpA9fOmIhVGBEAIjzaOWMsFQGuCqPsAZAhAvfvjvWqlC0AWE5uPayMQQHWr56T3jQZAK6T8pNonBUBXJvxSP68HQD1EozuIXQhAwRw9fm8TB0CbOLnfoYgSQBppqbwdoQdAFNBE2PB0B0DHEWvxKcAGQBb7y+7JgwdAt11ortMIDEAX2c73U2MKQFQ1QdR9AAJAd9Zuu9BcBUBv9Zz0vrEKQL6fGi/dZAZAWhKgppatB0DkLOxph38LQHfbheY6TQdA9u6P96oVCUAH0zB8RMwMQO8DkNrECQpAIR/0bFZ9C0C2+BQA45kLQGTpQxfU9wlAMbYQ5KBEB0DVCWgibLgHQCScFrzo6wlA+rMfKSJDB0C78lmeB3cIQLZnlgSoKQxAIc1YNJ1dB0C3lzRG66gHQM6qz9VWLAtAVWr2QCtwBkABMJ5BQ78FQMGtu3mqQwhAguLHmLuWCEBNLVvri4QJQGO5pdWQeAZACks8oGwKBkAxmSoYlVQIQJ1LcVXZ9wxAAfvo1JVPC0CygAncuhsHQLdif9k9OQlAGa2jqgniDkC536Eo0CcFQP/KSpNSEAlAvp8aL92kBkBangd3Z60EQIM0Y9F0NglAKLhYUYPpB0DbFmU2yCQNQPsioS3nUgFA3UHsTKGzBEBD5zV2iWoFQJnwS/28KQhAp7OTwVHyC0CYLy/AProKQJFhFW9k3glAIo51cRsNAUBSuB6F61EJQLd6TnrfuAxAwOeHEcIjCEAe+YOB514JQImYEkn0sgtArYbEPZY+BUD6m1CIgAMJQPTDCOHRxgRAF0hQ/BhzCUCpvB3htCAOQH7ja88siQlA4zYawFvgCkCU3je+9swDQDf92Y8U0QxAj+TyH9LvCUBMjjulg/UHQDHT9q+sNAdAysNCrWneCUCkU1c+y7MGQA7bFmU2CAhA2SWqtwa2CUCR1a2ek94AQAZkr3d/vAhAF0hQ/BjzB0D1oQvqWyYHQAaeew+XHAdABp57D5ccCECXOV0WExsIQBKlvcEXpgpABhIUP8acC0BLdmwE4jUGQITYmULn9QpAyJi7lpAPCUAMHxFTIgkHQEErMGR16wZAswdagSErB0BFL6NYbqkKQJBOXfksTwhAEojX9Qt2CUCJXkax3JIEQFpHVRNE3QpAqrcGtkqwB0D8HYoCfWIFQHWOAdnr3QlAdsO2RZnNCkCjAbwFEhQHQFQdcjPcwAlA2xZlNsgkB0DHKTqSy78MQLr3cMlxpwlAfLjkuFP6BkCFsYUgB2UHQAhVavZAqwdAzCiWW1pNCEDFrBdDORELQFOu8C4XcQdAC0YldQKaBkCOAdnr3V8JQHl1jgHZqwdAvJF55A8GB0AhyEEJMy0IQEeP39v0ZwpAJ9pVSPnJCEAQ6bevAycGQD9XW7G/bANA626e6pAbCUC1GhL3WLoCQENznUZaagdAFR3J5T9kBECVfVcE/9sPQBGN7iB2pghAqBjnb0IhCUDOpbiq7DsGQLAbti3KbAlAsW1RZoPMB0C+3v3xXnUJQIbJVMGo5ANAB5lk5CzsC0BWfa62Yv8OQAN9Ik+SLgZAdjdPdcjNCECuKvuuCL4DQDy9UpYhjgtA5wDBHD1+BUAXvOgrSDMJQCV1ApoIGwZAls/yPLh7CUDGhQMhWcAGQO/Jw0KtaQ5AEJIFTODWCkBlx0YgXtcHQD24O2u3XQFAbJVgcThzC0DmeXB31q4GQJ8CYDyDxglA+1xtxf4yC0DKN9vcmN4MQFEU6BN50gRAak3zjlO0BkBd/kP67esGQHkj88gfzAZAiJ0pdF5jBEAurYbEPRYHQIKo+wCkdgRAshGI1/VLB0Dlm21uTE8IQHam0HmNXQdAo5I6AU1EBUB4uYjvxGwKQEyJJHoZRQpAl+Kqsu8KBEBBguLHmDsJQMR3YtaLYQdAI/jfSnbsBEBOet/42rMCQJjArbt56gdAMdP2r6w0DECeQUP/BBcHQIkMq3gjcwZA4dHGEWtxAkBRoE/kSdIHQBYwgVt3MwpAQGoTJ/d7BkDdmJ6wxIMCQGe4AZ8fhghAW0I+6NnsCkAP7s7abVcIQLFQa5p3nAZAqfbpeMwACEATYcPTK0UQQAtGJXUCWgZAmdh8XBsqBkBy+Q/pt+8EQMNHxJRI4gdAiIVa07wjCEAKur2kMZoQQEsfuqC+ZQVAevzepj87B0B0mC8vwH4MQITwaOOIdQhAzqW4quy7BkAicY+lD50CQFH3AUht4gFAqmVrfZEQCkAdVU0QdV8LQKnBNAwfkQtAMgOV8e9zC0BfDOVEu4oOQAclzLT9awdApDZxcr+DDECPwvUoXI8HQJnTZTGxuQpARIZVvJG5CUDHgOz17s8JQD5cctwpXQpAoyO5/Ie0BkBxGw3gLRAIQAjm6PF7GwdAehnFcktrCUDs+gW7YZsFQEz9vKlIxQdAmiUBamqZBkC70FynkdYEQCkF3V7SWAZABK3AkNWtBUDq501FKowHQPFG5pE/GApAEF1Q3zJnDUAYJlMFoxIIQKYPXVDf8gNAbcoV3uXiA0AEIVnABG4JQB3J5T+knwRAUu3T8ZgBBkAO2xZlNsgEQFJEhlW8UQZAT5KumXyzBUDMejGUE60EQOjewyXHXQlAUkSGVbxRCEDNI38w8NwDQLh1N091SA1A95LGaB0VB0ADfSJPkq4HQGLboswGWQZAqfsApDaxB0DcEU4LXrQHQD8AqU2c3AtABirj32fcBEBpqbwd4fQHQInvxKwXwwdA6KT3ja99BkAbL90kBkEOQM0Bgjl6vAZATaHzGrtEDEDcY+lDF1QEQOzAOSNK+wZAJvxSP28qDUCGcqJdhVQKQH5v05/9iAlA8bp+wW5YFEB3oblOIy0KQLSOqiaIOgRA5dAi2/n+A0BbQj7o2SwCQMucLouJjQdA/kP67esACUDJyFnY004IQEKVmj3QygxASrVPx2PGB0DbM0sC1BQGQErvG197ZgdAttYXCW35CkA4vvbMkgADQGLboswGWQhAC5jArbv5CEBNvtnmxnQEQCApIsMqHgpAtRoS91h6B0C1VN6OcFoKQBvYKsHicAdAh6dXyjLEA0C1w1+TNaoJQBg+IqZEUghAbOwS1VsDB0ADJnDrbp4KQNyAzw8jhApAIeUn1T4dCEB/EwoRcIgLQOwS1VsDGwRAq3gj88hfCUD0GrtE9VYMQI51cRsN4AVAwARu3c1TCUBeS8gHPRsNQKgY529CIQNAwyreyDyyBkB+jLlrCTkJQA1xrIvb6AFAWvW52op9CEBTy9b6IsERQApLPKBsygNAozuInSm0AkAdlDDT9m8FQDMbZJKR8wdAAg6hSs2eCEAYz6ChfwIFQLyuX7Ab9ghA4uR+h6JAB0CRm+EGfH4QQLb4FADj2QdAdF5jl6h+EUCil1Est3QGQIj029eBMwhA+fcZFw6EBkCAn3HhQEgIQMVyS6shcQdABWnGouksCkCwj05d+ewJQGQjEK/rlwdAeEXwv5UsBEDRyyiWWxoDQHzVyoRfagVA7DTSUnm7CUAIILWJk/sHQHQHsTOFDglAntLB+j+HCEBcyY6NQPwHQE1KQbeXdAVASaKXUSx3CUA5RUdy+U8IQKZh+IiYEgpA0vvG156ZBUDo2az6XO0HQA3DR8SUSApAeuQPBp47CEA7U+i8xq4FQHfWbrvQ3AhAj3Ba8KLvCkA4FakwttAFQCgPC7Wm+QZAn+V5cHcWCECnlq31RYINQLu4jQbwFgdAM8SxLm5jBUClZg+0AkMHQLR224XmugVAFK5H4XrUCkAJxOv6Bbv8P2h5HtyddQNA8tJNYhBYBkBWmpSCbi8NQJEPejar/gVAVTAqqRNQA0ByUMJM278DQCTusfShCwlA2/l+arx0A0AKou4DkNoBQD0K16Nw/QVA845TdCTXCkAfSx+6oL4EQMDsnjwslAZA+dozSwJUBkDYZI16iAYIQEoH6/8cZgZAdQKaCBteCUAtz4O7s3YJQFQdcjPcwAhA/ACkNnHyCkCzDHGsi1sFQNxj6UMXFARAgqj7AKQ2BECBW3fzVAcHQPDce7jk+AZAGZC93v0xB0AJbTmX4moHQDcawFsgAQRAFQDjGTQ0C0Ca6zTSUvkIQJ+wxAPKZgpAEsKjjSMWCUCs4o3MI/8JQG6GG/D54QhACoUIOIQqA0AiN8MN+DwIQHGPpQ9dUAlAQMHFihqMCkAXmus00lIGQFMFo5I6QQlAcM6I0t4gA0BZUYNpGP4HQF2/YDdsmwdAqcE0DB9RB0AiVKnZA60KQC7KbJBJRgVARl9BmrGoBkAuxVVl35UFQGowDcNHhApABaipZWt9BUDFckurIbEHQMA+OnXl8whAgJpattaXDEAmjdE6qpoLQFYrE36p3wZAy9sRTgveA0DQ0D/BxcoHQOPfZ1w4kAdAamrZWl9kDEBpjNZR1QQIQKshcY+lTwlAopdRLLe0BkDvVSsTfikKQGQGKuPfJwdAEwoRcAiVBUBHWipvR3gGQIeiQJ/I0wZAQni0ccQaB0CUE+0qpHwFQD55WKg1TQlAqDXNO04RBEB07+GS444HQIeiQJ/I0wlAkIMSZto+BUDUZTGx+fgJQJC93v3xHgZAPDHrxVDOCEBNLVvri8QJQPCFyVTBqAlA2A3bFmX2BUBgdk8eFmoJQA3gLZCguAdA34lZL4byBkCU9gZfmIwHQHva4a/JmgZAVKnZA62ABUCe6pCb4UYNQNRIS+XtCAZA2nIuxVWlB0BrDhDM0eMEQF/SGK2jagNAeUDZlCt8BkC5cCAkC9gIQL1vfO2ZJQpAG9gqweLwBUCInSl0XqMGQJI/GHjufQlA6PaSxmgdB0CMuWsJ+SAIQJvJN9vcGARATdaoh2h0B0DaVUj5SfUHQMGopE5AUwRAlzldFhNbBkAcsRafAmAEQBwIyQImMAVA+Q/pt68DBUBy/iYUIiAFQH+HokCfSAZA0lJ5O8IpCkAM6lvmdBkFQKd5xyk6EgxAq7LviuB/B0BQqn06HrMEQO6x9KELKgtAp7OTwVGyB0AFFytqMA0HQMstrYbEfQhAArwFEhR/C0BJLv8h/TYHQDm536EokAhAPdUhN8MNCUCyEYjX9csGQGJKJNHLKApAyCQjZ2GPDEAc0xOWeEAIQODb9Gc/0glA4iNiSiTRB0CJB5RNucIBQDxO0ZFcvgZAWJBmLJqOBUAijnVxG00EQK4NFeP8DQdA5nlwd9auBEA0aOif4KIIQJ3X2CWqNwlAEMzR4/e2DECASL99HfgIQAuYwK27+QdARgiPNo4YBEDlszwP7s4GQIofY+5aAgdA+MJkqmBUBUCMLQQ5KKEHQGMLQQ5KWANAsAPnjChtB0BftTLhl7oKQI4G8BZI0AxAi8OZX82BBkBTeTvCaYEKQK+UZYhjHQtAIchBCTPtBkAtIR/0bFYGQD1+b9OfPQZADf0TXKzoCUC30QDeAgkDQBV0e0ljNAhAIQclzLQ9CUAcCMkCJnAJQNXKhF/qJwhAzJcXYB9dBUCitDf4wuQNQDMWTWcnQwdAXf5D+u2rBUAtCVBTy1YDQKGEmbZ/JQZAw7ZFmQ1yCkAJbTmX4ioGQI/8wcBzLwlAkrOwpx0+CEC9UpYhjjUHQFrY0w5/jQFAlltaDYl7CUA0hc5r7NIJQOpb5nRZzANA51JcVfZdB0DfbHNjegIDQERRoE/kyQhApDZxcr8DDkBPIy2VtyMFQPfMkgA1tQVAe0563/iaB0CoNc07ThEGQCrj32dceAtAOWItPgWAB0BUUiegifAKQN481SE3wwxA73IR34mZCED+mqxRD1EFQN7IPPIHgwNAnil0XmNXBkDXFwltOdcMQOIeSx+6oARAE2ba/pVVBUAnTu53KEoKQKOSOgFNBAVA8kHPZtWnBUBGmQ0yyUgKQKmfNxWpsANATn/2I0UkDUDulA7W/7kEQPSJPEm6RhFA2GSNeoiGDECOHr+36c8HQHR7SWO0TgtArS8S2nIuCECoABjPoGEHQIm1+BQAYwZA1y/YDdtWDECze/KwUGsIQOLMr+YAwQRAY7SOqiZICUA9LNSa5p0EQGSvd3+8FwpANV66SQzCA0AxmSoYldQGQIDUJk7utwdAARO4dTcPCUBKKej2kkYFQINRSZ2A5gdAYYkHlE05B0Ciemtgq8QGQMUDyqZcoQtAzJcXYB/dAECph2h0B/EIQFUwKqkTkA5A/isrTUoBCEBUOlj/57AFQOMZNPRPMANABHP0+L2NCUABE7h1N88HQCCYo8fv7QlAUORJ0jWTDEDpZRTLLe0FQIHs9e6P9wlAJZLoZRTLBkDNAYI5ejwLQAA6zJcXIAlAtHHEWnxKDEBRiIBDqJIHQI/HDFTG/wRAfA+XHHfKCEDJAiZw6+4GQNoDrcCQ1QtAahMn9zuUBEA7x4Ds9S4IQBdIUPwYcw1ACoDxDBr6BUAkC5jArbsGQPtXVpqUAgpAxJlfzQGCB0CGVbyReaQEQMxAZfz7jAlADhXj/E3oC0Ac0xOWeIAFQAqA8QwaugtAesISDygbCUCJ6q2BrRINQJYEqKllawhA48eYu5aQBkB5O8JpwQsIQEEOSphp+wxA7fDXZI06CkAZxXJLq2EGQCe9b3zt2QVAkdWtnpMeB0ABwRw9fm8GQEIJM23/CghANSkF3V7SC0ArMGR1q+cHQCjyJOmaSQdAh/4JLlZUBECIEcKjjeMHQNwuNNdp5AVAo1huaTWkDEAk0csollsIQBY1mIbhYwpAXOZ0WUysDkAYPiKmRBIMQEoMAiuHVglAoE/kSdI1B0Dir8ka9VAHQI0o7Q2+8AlANUbrqGqCB0Csi9toAC8QQBHkoISZNglAvjCZKhgVDECzB1qBIWsHQN83vvbM0ghAlZ9U+3T8CkC6vaQxWscIQH3Qs1n1ufk/Jsed0sH6CED7dDxmoHIGQKT8pNqnYwJAZmt9kdBWCEDB/1ayYyMHQIZVvJF55AJA6KT3ja+9BkC5wrtcxPcHQA3gLZCguAlAWp4Hd2ftAEDDZKpgVFIGQIhodAex8wZA5iK+E7NeB0A3jliLTwEKQGFPO/w1GQVAV0PiHktfAkC1w1+TNSoGQFjnGJC9nglA2J5ZEqBmCkCoABjPoGEHQJ30vvG1Jw1AfcucLovJBUDdQexMoRMQQMH/VrJjYwtAgsXhzK+GEEDEmV/NAYIMQGtgqwSLwwJAbhea6zQSBEDpDmJnCt0KQD0s1Jrm3QdAlZ9U+3R8B0Bb07zjFB0HQKpDboYbMAZA3sg88gfDB0DZ690f79UIQGRYxRuZxwlAmEwVjEqqB0A2AvG6fgEHQLmq7LsieAlAzNHj9zb9CECFzmvsEtUGQPMC7KNTFwhAKH6MuWsJBUC4rwPnjOgDQO8gdqbQ+QhAO420VN4OCkABE7h1N48EQG8qUmFsIQdA7ginBS96BkC/fR04Z0QJQAGHUKVmTwRAb/Wc9L7xA0CgMv59xkUIQLd6TnrfuAdAqFKzB1qBB0AQzNHj97YKQA6hSs0eqAxAy6FFtvO9BkBLyAc9m9UHQAPso1NX/gdAtHHEWnwKCEBR9wFIbeIIQJMYBFYOLQZAUu3T8ZjBCUDZlCu8y0UHQIKQLGACNwdAWYtPATBeCEBE+u3rwDkLQMTr+gW7oQZAu0T11sCWCUCoNc07ThEGQGdhTzv8tQRApMLYQpCDCkAn2lVI+QkMQEnXTL7ZpgdADOpb5nTZCEBf7/54rxoJQOyjU1c+CwpAat5xio4kCEAqV3iXi/gAQBGN7iB25gZAls/yPLh7B0DG3LWEfFALQPkP6bevQwdA56kOuRnuCUD6YYTwaOMFQNxoAG+BhA1Ab2Qe+YOBCECJ6q2BrdINQGB2Tx4WKghAwZDVrZ7TBUB5I/PIHwwNQA1Uxr/PeAdAfCx96IK6AkBS7dPxmEEHQKvP1VbsLxFA5gXYR6euBUAlI2dhTzsFQJJ55A8GngtAjgbwFkiQCkCKdhVSfpIFQL72zJIAdQhAHM78ag7QCUBTeTvCaYEJQA74/DBCeANAfeiC+pa5B0AlkuhlFEsNQLQ8D+7OGghAIchBCTOtBEA/jBAebZwHQP+VlSaloAdA5DEDlfFv+z+E04IXfcUHQLddaK7TiAlA1pC4x9JHBkDzyB8MPDcHQBHHuriNRgZAlfHvMy5cB0AYPiKmRBIKQIUIOIQq9QhA9DKK5ZZWBkDcupunOmQFQEyJJHoZRQZAw7tcxHfiA0B+VwT/WwkJQFk0nZ0MDghAF9S3zOmyBkAL73IR30kJQBsqxvmb0AlAvR3htOAFCECDbi9pjBYJQGZOl8XE5gdAwXPv4ZJjCEBEF9S3zGkMQN0MN+DzAwlAdEaU9gbfDEDlCu9yEd8IQNP2r6w0KQhAgufewyXHCkD1hCUeUHYMQDAvwD46NQZAdLUV+8suC0BcIEHxY8wCQEw3iUFgZQdAsI9OXfnsB0DItaFinL8DQOBKdmwEIgVAgVt381SHCkAjSnuDL8wKQB04Z0Rp7wZAaqSl8nbECEC1MuGX+rkJQGuCqPsAJAdAF9S3zOkyA0Daci7FVSUHQGoYPiKmBApAgLdAguJHB0AyPWGJB1QEQD9XW7G/LAdAS80eaAVGCEAe4bTgRR8GQBb2tMNfkwZAPu3w12SNCEC8V61M+KUKQK1M+KV+HgpAZF3cRgP4BkAtz4O7szYJQLbbLjTXKQtAou4DkNoECEBNvtnmxvQJQPiImBJJtAdAzQaZZOSsBUBUxr/PuDAIQMFWCRaHMw1ARnwnZr3YB0AEHEKVmr0IQPq4NlSMMwlAiIBDqFKzA0DmriXkg94EQD9SRIZVPAdAlMFR8urcAEAuHAjJAmYEQOaWVkPiXgZAmSoYldTJCUCiXYWUnxQKQBn/PuPCAfQ/2xZlNshkCUAIPZtVn2sJQAaeew+X3AhA6UMX1LdMCUCb/uxHisgGQEjElEiiVwlA0CfyJOlaBUAE/1vJjg0MQCy3tBoStwdAKT+p9um4CUAc6+I2GoAKQBV0e0ljdAFAQznRrkKKBECKAn0iTxIHQBMPKJtyBQdAGVbxRuZRCECDUUmdgGYNQDuNtFTejgdAp5GWytsRCkAqHaz/cxgGQCdmvRjKCQZA0xOWeEBZB0AkYkok0csGQGx4eqUsAwtAyXGndLB+BkBx5ldzgCAIQFhzgGCOHgVAD0WBPpFnCkABE7h1N48GQDKP/MHAcwdARPrt68C5CUD4U+Olm4QIQE3bv7LSZAxA+3lTkQpjBUDRlnMpruoEQDVj0XR2cghAYVRSJ6CJCEC9HeG04MUGQO/mqQ65GQlAQkP/BBerBEAuBDkoYSYFQDF8REyJ5ABAp3Sw/s8hCEDhXS7iO7EIQNdMvtnmBghAdR+A1CbOBkBhiQeUTfkHQMR8eQH2kQpAiLoPQGqTBkBKJNHLKJYHQMdLN4lBoAdA8rBQa5r3EEDek4eFWlMGQIY97fDXpAhAiZgSSfSyB0AfotEdxA4KQEJ4tHHEGhBA14aKcf5mBUD4qpUJv9QGQLaEfNCzmQRA+GuyRj1EBEA26iEa3QEIQD90QX3L3AdA0egOYmdKBUC3Yn/ZPTkJQLMpV3iXywRA81meB3dnDEDiWBe30cALQOMZNPRPcAhAPZtVn6vtCkCnBS/6ClIHQFPovMYu0QdAIF7XL9jNB0Ce6pCb4cYGQIeKcf4m1AlAuoPYmUInDUD7ljldFlMFQGYUyy2txgRAWYtPATBeCkC/mgMEc3QGQAStwJDV7QNAyxDHuriNA0C/8bVnloQOQDeJQWDlUAVA4uR+h6KACEDD8BExJZIJQIV80LNZ9QpA4Sh5dY4BCkD4GRcOhOQLQAH20akrXwhApKXydoRTCEAUyy2thoQEQMwolltajQVA2IFzRpQ2B0AHfH4YIbwEQBVXlX1XBAJAwLLSpBQ0CEAB++jUlY8FQM9OBkfJ6w5AldQJaCIsCUALXvQVpJkFQPevrDQpBQRAtwvNdRrpCEC4rwPnjKgIQHO6LCY2Hw1AERlW8UYmB0A2yCQjZ+EGQGQjEK/rlwNACcTr+gU7CkATYcPTK2ULQCWS6GUUSwVAQ61p3nHKB0Ai4BCq1CwJQGh5HtydtQdAbef7qfGSBECm8naE0wIJQOxRuB6FKwRA0xOWeEAZC0DUZTGx+XgJQLddaK7TiAlA3bWEfNAzCUAczvxqDhAMQPSJPEm6JgdArDlAMEdPBUDfT42XbtIEQAggtYmT+whAUBn/PuNCCkA+y/Pg7uwCQHEgJAuYgAZAm6xRD9GoBkCc3O9QFKgFQOG04EVfgQpA4nX9gt3wCEAyPWGJB5QFQHAlOzYC8QRAGH0FacYiCECR1a2ek54KQBIxJZLoJQdAFmpN845TC0CEDU+vlKUOQAETuHU3TwVAKowtBDkoDECU9gZfmMwLQDMbZJKR8wdA4jsx68VQCUAR/G8lO7YGQE3WqIdotApARuuoaoKoBUAqOpLLf4gKQNJSeTvCaQhAZd8Vwf9WCkCiemtgq4QJQO5aQj7oWQtAuB6F61G4BEA4hCo1eyAJQJqxaDo7WQhA98d71coEA0B65A8GnrsCQM7HtaFiHAZAOKEQAYfQBkCvd3+8V+0DQJayDHGsywlAxcn9DkUBCECvX7Abtq0IQKTH72368whAjnVxGw2gCECwPbMkQM0EQLKd76fGSwdAAvG6fsHu8T/Az7hwICQEQJ0Rpb3BFwdAYVRSJ6AJCUB6xyk6kgsHQLYQ5KCE2QhAoaF/gosVDED7rgj+t1IIQOXVOQZk7wNAfZHQlnOpB0CbVZ+rrVgMQLgehetRuAZAbmk1JO4xDUDQRNjw9AoJQO3T8ZiBigZAgGCOHr+3BUANVMa/z/gIQEJbzqW4qgVA1/oioS3nD0A6QDBHjx8JQIczv5oDBAZABfpEniRdC0ATZtr+lZUIQNSCF30FqQtAYwtBDkpYBkA1DB8RU+IIQLRxxFp8ighAIR/0bFb9B0AaFw6EZIEFQMzuycNCbQdA+KV+3lTkAUAM5US7CukEQAzqW+Z0mQRA9u6P96qVC0Cl2qfjMUMGQLyuX7AbdgZAs5jYfFzbDkAr3sg88kcJQHWOAdnrHQdA7ZklAWpqBUCoqWVrfdEFQG8qUmFsoQpAFsH/VrIjBUAg0m9fB84JQGiz6nO1VQVAc4Bgjh5/AUAbKsb5m1ANQNydtdsu9AVAUrgehesRB0BBguLHmHsDQOiHEcKjDQRAWi+GcqLdCkCvWpnwS/0FQFUwKqkTkAlAiqvKvitCCkD/lZUmpaACQJ/Ik6RrZglAxcn9DkVBC0Dn+6nx0k0JQFRSJ6CJcApA3xXB/1ayCEAjoS3nUtwEQOTaUDHO3wRAymyQSUbOBUDyDBr6JzgJQOUK73IRHwlAMj1hiQcUCkA1e6AVGDIGQIyEtpxLcQhAzEBl/PtMCEB2GmmpvN0JQOscA7LX+wdAc9cS8kHPBkCFfNCzWTUHQLZKsDicuQdABW7dzVPdBUB4tHHEWvwHQOC593DJMQlA/G8lOzZCB0AErcCQ1a0LQFGgT+RJ0gJAe2tgqwQLBUAofoy5a8kKQAqA8QwaOglAaVch5ScVB0CwPbMkQA0FQMFWCRaH8wdAYr68APuoDEB5Xb9gN6wHQL72zJIAdQhAkuhlFMstBkAiq1s9Jz0HQBZqTfOOUwtA3rBtUWaDCUB4KAr0iXwGQGE3bFuUmQdAGcVyS6vhCEBqh78ma5QJQAdCsoAJnAlAjLlrCfkgDkBAE2HD0ysDQGK+vAD7aARAgsr49xlXDEC5/If025cQQLMMcayLmwBAzzEge717BUC5wrtcxPcHQMCV7NgIhAhAY7SOqiYICUB5WKg1zfsIQN/42jNLQghAAtnr3R8vCEDnNXaJ6q0DQLxcxHdiFghATYQNT68UA0AGDf0TXOwIQIM0Y9F0dgJAy74rgv/tBkC5wrtcxDcKQA6EZAETeA9ASZ2AJsLGCUDeH+9VK9MIQM+goX+CywZA4L4OnDPiBkBuTE9Y4kEJQPCiryDNmAZAgc8PI4RHBUATChFwCBUMQJijx+9t+ghA4/xNKEQACkDEmV/NAQIJQJVgcTjz6wlAV0PiHkufBUD9E1ysqIEJQMR3YtaLIQJAjliLTwFwB0A0gLdAgqIHQKMG0zB8xAlAsW1RZoMMCEBpdAexM0UCQAk4hCo1ewZAPUSjO4idCkALDFnd6nkJQMbhzK/mgP8/pDZxcr/DBEDsTKHzGnsKQIOG/gkuFgZAX0GasWi6CUCDNGPRdHYHQI1donprIAVAntLB+j8HB0DusfShC6oMQIiFWtO8owtAArfu5qlOBEAvwD46daUKQOKvyRr10AdAMEymCkblBkDGFoIclLAFQDylg/V/Tg1AsaIG0zA8CUCeJF0z+aYHQKMjufyHtAlAZyeDo+RVDEB1jgHZ650IQPLvMy4cSAxAF7fRAN4CBkAwgVt381QIQHxETIkkegdAdavnpPeNBkB1kxgEVg4KQFRXPsvzoAhALlbUYBoGB0BV9l0R/G8HQNpVSPlJ9QZAGOyGbYuyCUCdS3FV2TcJQB+A1CZObgdAbxKDwMohCkBfB84ZUdoDQIrIsIo38gRAAFKbOLlfBUBnJ4Oj5FUFQBn/PuPCAQVACFVq9kArBkAW3uUivhMIQI+qJoi6DwhA0QX1LXN6A0AtIR/0bBYIQAXFjzF37QJAlN43vvYMCkA6I0p7g68FQPW52or9pQRASWO0jqpmDECbG9MTljgGQEc4LXjRVwlA5Pc2/dkPCUCLNzKP/AEHQNrJ4Ch59QdAsi5uowG8CECz74rgfysLQBzr4jYawAVARKM7iJ1pBkAfLjnulI4IQESoUrMHmgpAngyOklcnBUBSRIZVvNEEQEOQgxJm2vw/y2d5HtzdDEAdcjPcgE8HQDSFzmvsEgdAJ6CJsOHpBkB+HThnRKkEQJLLf0i/PQVA0GG+vAB7BUAyychZ2FMJQKhvmdNlMQZAQ/8EFysqBkDs3R/vVSsIQDW1bK0v0ghAW86luKpsB0DiWBe30UAGQOYivhOzXgdAVKnZA63ABkA+XHLcKV0FQNS3zOmymA1Aaoe/JmvUAUAxfERMiSQEQCx96IL61gZAVHQkl/8QB0Ap6PaSxugFQN2YnrDEAwtAeUDZlCv8B0BVwaikTgALQLbbLjTXKQdAdNL7xtceCEAqUmFsIUgHQFg5tMh2vglAxF+TNeohBkACmggbnp4NQE5FKowtBA9ApfeNrz1zCEBmFMstrQYJQHqlLEMc6wJAzTtO0ZHcCkC7uI0G8NYKQJy/CYUI+AJAvYxiuaUVB0Aa+ie4WNEGQO2BVmDIqgJAlWBxOPOrCEDJ5T+k3z4MQO0qpPykWgdAHVpkO9+PA0Aw8Nx7uGQJQPz7jAsHQglA5e0IpwXvBkATDyibckUJQF4u4jsx6wNACTiEKjW7B0CBlUOLbGcOQPVnP1JERgZArBxaZDvf/j8lQE0tWysKQK1RD9HojgVAtcNfkzXqBkDwv5Xs2IgGQOpb5nRZjARAQMHFihpMBkBkzF1LyMcGQFExzt+EggVA3GPpQxcUC0Dl8h/Sbx8IQGdEaW/wBQhANUHUfQCSBUDzjlN0JFcDQCeIug9AKglA6UMX1LdMBUCNl24Sg4AHQDElkuhl1AdAt11ortPICUC2+BQA45n9P3kGDf0TnARAZkmAmlr2B0A0nZ0MjtIFQKq3BrZK8AxAaTUk7rE0CUA4vvbMksADQEGasWg6+wdAM6fLYmLzCUCKjuTyH9IBQDCeQUP/xAdAMlUwKqnTDEDRkVz+QzoFQMb5m1CIQAlAY5eo3hrYC0Bangd3Z+0IQLSrkPKTqgJAgosVNZjGCEDO/GoOEMwJQNrhr8kadQhA/z7jwoHQBUC8eapDbkYCQNnr3R/vVQZAijxJumYyCEB9XBsqxrkEQN6OcFrw4gVAqFKzB1oBBkB/3lSkwhgLQGZmZmZmZglA7N0f71WrCUCtTPilfp4GQPksz4O7MwdAsp3vp8ZLCEDD2EKQg1IJQB+duvJZXglAbkxPWOLBC0CqglFJnYAHQCgs8YCyqQhA9mIoJ9oVDkDlfoeiQJ8LQJMYBFYO7QJAtyizQSbZBUBXPsvz4K4FQMpskElGTglARRK9jGK5BkDUt8zpstgFQPryAuyjUwlAw552+GvyA0ArE36pn7cHQFuxv+yefAhAUiegibAhCUBRg2kYPmIJQAMmcOtu3gJAv7fpz35kCEBpxqLp7GQDQHsUrkfheghAMiB7vftjBECvWpnwS30GQIvDmV/NQQVAlufB3Vk7CUBLAtTUsjUKQBfxnZj1ogpAnRGlvcEXB0Aydy0hHzQHQK5kx0YgHgxAIzKs4o0MB0B4l4v4TowPQEYIjzaOWARA3/jaM0tCBkCqtwa2SrAIQHNLqyFxjwlAhc5r7BKVBEDjx5i7lpAHQOLplbIMMQJAeuQPBp67BkCuKvuuCD4FQF66SQwC6wdATUpBt5e0CUCZnrDEA4oEQADGM2joXwxAhXzQs1n1CUAKEXAIVWoKQHqqQ26GWwlAnKc65GZ4BUAvaYzWUdUJQOxph78m6whAFw6EZAFTCEAZBFYOLbIFQA9iZwqdVwpAjQsHQrLACECu8C4X8d0IQGk6OxkcpQlAj6omiLrPCkAVjErqBLQIQPvL7snDQgVAWvCiryCNBUBvu9Bcp5ECQNC4cCAkCwlAlSu8y0V8AkCqtwa2SnAJQEZCW86luA9AGXPXEvIBB0Bzol2FlN8GQEZfQZqxqAdA5ZttbkwPCUCbG9MTlrgDQHuIRncQewhA4Ep2bATiCkBFKowtBHkGQEWeJF0zOQZAK9mxEYgXCEB+Oh4zUNkIQFVNEHUfgAdAmGn7V1aaCUBOucK7XAQOQFWH3Aw3oAZA/FI/byqSC0CyEYjX9QsLQITYmULndQhALspskElGDUB+Oh4zUJkLQPbRqSufJQVAS7A4nPmVCEAxJZLoZZQIQPphhPBoowdAwcWKGkwDCECPpQ9dUN8HQAwCK4cW2QRAUfcBSG0iBUDTpBR0e8kFQDS/mgMEswNAGCE82jjiBUDohxHCo40FQBE2PL1SlghAeLRxxFr8BkBHyatzDAgFQDBHj9/bVBBAZjGx+bh2BUAFUfcBSG0IQIwtBDkooQhAttsuNNcpBUDnHafoSG4EQMSZX80BAgtAokW28/2UBEAC8bp+we4KQOAtkKD4sQlA3bWEfNBzBEClTkATYcMJQJzc71AUqAdAQfFjzF2LCkB1kxgEVo4GQEKVmj3QygZAumbyzTY3BkD8Uj9vKhIHQDnRrkLKzwdAnWhXIeUnCECgbMoV3qUKQCUjZ2FPOwdA+3lTkQojC0DMXUvIB/0FQPoK0oxF0wdAKLhYUYOpBUB/wW7YtqgFQPJetTLhFwhAnZ0MjpIXB0D52jNLApQIQCSX/5B+OwlAk6mCUUldBkB+42vPLAkGQNNNYhBYOQpAQznRrkLKCUD7kSIyrGILQDV7oBUYcglA81meB3dnCEB6GcVyS2sLQFtfJLTlHApAFMstrYYECEAIyQImcOsEQN8Vwf9WMglALhwIyQLmCUCLw5lfzYH5P73GLlG99QlAaNDQP8HFB0ADeAskKP4JQJ88LNSaZgpAg4b+CS5WBkAIjzaOWMsQQNsWZTbIpARAn82qz9UWCUBGtvP91LgIQMl2vp8aLwpAJh5QNuUKBUDxKQDGM6gIQKIo0Cfy5AdAtTf4wmSqCED3zJIANXUIQMIXJlMFowhAGyrG+ZtQDEAlQE0tW6sHQILn3sMlhwZAl8rbEU4LBkC1FfvL7kkJQDEIrBxapAJAH7+36c/+B0BpAG+BBAUEQFLt0/GYQQlAu2HboswGB0DjwoGQLKAHQKAaL90kBgNA/1vJjo3ACEAJ/reSHZsBQMB4Bg39EwpAMC/APjo1BECvlGWIY90OQDnulA7WfwlA8YCyKVf4B0B/2T15WOgEQPLNNjemJwpAopxoVyHlC0DaG3xhMpUMQDnulA7WPwpArK3YX3YPCUDt0/GYgcoGQHTS+8bXHgdAEyf3OxTFCED+KytNSkEJQB7+mqxRDwZAJvxSP2/qBUDbUDHO34QIQGWNeohGdwRA5dU5BmQvCkD3WPrQBTULQNE/wcWKGglAYM0Bgjm6DkA0v5oDBPMJQEsC1NSy9QpA2IFzRpQ2CUB9kdCWc2kHQJ8fRgiP9gJAoDL+fcYFCkBqpKXydkQGQM0eaAWG7AhASNxj6UMXCUDKFd7lIj4HQN8yp8tiYgZAFCLgEKpUCEADz72HS44GQKm8HeG0YA5Aaam8HeG0B0DUYBqGjwgLQJC93v3xnglAur2kMVpHAkDFjzF3LaEEQFWkwthCUAhATtGRXP4DB0BaEqCmli0IQJSkaybfrAhAkSxgAreuCkBnYU87/HUJQBTLLa2GxAVAnPnVHCCYCECP5PIf0m8HQFjiAWVTrglATE9Y4gElCUBwQiECDqEIQA/W/znMVwtAH7+36c/+B0BZTGw+rs0IQBB6Nqs+lwdAM9yAzw+jDEBJY7SOqmYJQGzsEtVbAwRAiQyreCOzBUBIp658lmcLQCbHndLBugNA+yKhLeeSCkAXSFD8GPMJQIIclDDTdgdAO+RmuAGfBEBY5xiQvV4FQGQe+YOBpwhAZRniWBc3BkA4+MJkqmAJQOPHmLuWEARAY7ml1ZB4A0DaA63AkFUFQKMjufyHNAVAzGJi83GtC0BcA1slWJwKQNVbA1slWApA/Yf029cBB0BcPSe9b/wKQKcFL/oK0v4/AiuHFtkOCkA10lJ5O4IMQGXCL/XzZgVAObnfoSjQB0C0PA/uzpoFQAQhWcAErgZAjdE6qppgB0AsSDMWTecGQPw1WaMeogRAnMQgsHJoBUAWpBmLpnMGQNWytb5IqA1A+FPjpZuEBUAx68VQTvQGQN3NUx1yMwdATYQNT68UCkDxY8xdS8gFQJLoZRTLbQtAFD/G3LWEB0AQI4RHG8cIQKIo0Cfy5AdA1y/YDdvWBUBm9+RhodYKQEXwv5Xs2AZAeAskKH6MB0DHYwYq4x8BQDNt/8pKUwVAcuFASBbwB0BQNuUK7zIKQItUGFsIshVAMbYQ5KBECUAYWwhyUIIHQO53KAr0CQlAfdCzWfV5BECcUIiAQygHQDSAt0CCogFAPZtVn6ttB0AgDDz3Hi4FQCVdM/lmmwhAd6G5TiOtD0C4I5wWvKgJQGnjiLX4lAhAAFeyYyMQA0ACgjl6/J4KQBFTIoleRgtATKYKRiX1CkCA1CZO7rcGQK1p3nGKzgRAJSNnYU97BEDPg7uzdpsJQBeCHJQwEwZA0ETY8PQKBEB2MjhKXl0GQOZXc4BgTg1AjXqIRneQA0DwhclUwWgJQIkMq3gjcwlASphp+1cWBkAychb2tAMGQKM7iJ0pdAlAFHmSdM2EEEAaFw6EZMEGQCxlGeJYlwpAcHztmSUBB0Ds+gW7YZsNQJy/CYUI+AlANh/XhorxB0BVGFsIcpAHQHTv4ZLjjgxAoYSZtn8lCECbrFEP0WgJQMy0/SsrzQZAtRoS91j6CUDQuHAgJAsEQGFUUiegyQlA1IIXfQUpA0D4wmSqYFQIQMoyxLEuLgZAN1SM8zdhCUBnCp3X2CUGQFrY0w5/jQdA7zhFR3J5D0BPzHoxlBMGQB+duvJZ3ghAgnNGlPYGCkCMvoI0Y1EIQNjTDn9NVgZASKeufJbnCEDPMSB7vXsIQLYtymyQiQtAYkok0ctoBEAE/1vJjs0HQKuVCb/UTwpA11HVBFF3BkBJ10y+2eYDQMDsnjwsVAdAm49rQ8W4B0C22y4016kIQESLbOf7aQhA5ldzgGAODkANN+Dzw8gHQGtI3GPpQwdASbpm8s02CEArE36pn/cHQOIeSx+6IAVAPL1SliHOCkBC7Eyh89oOQICaWrbWVwlArrt5qkNuB0BYkGYsms4GQOaWVkPinglAxuHMr+bACkB3Z+22C00HQF2/YDdsWwZAEqW9wRdmBEDA7J48LNQHQEOQgxJmmgVA1cqEX+rnBEAGL/oK0kwIQBVvZB75AwpA/wQXK2rwB0Cvd3+8V60LQE5FKowthARAYRqGj4hpBUCQa0PFOH8MQI8ZqIx/XwdAqWqCqPvABUCdhT3t8FcLQACpTZzc7wtAih9j7loCCkBjKCfaVcgNQDIge737YwlANNdppKUyCEB31m670BwGQAQ5KGGm7QRA/vFetTLhBEAW9rTDXxMLQDarPldbMQpAaD9SRIaVCUAfotEdxA4GQH4dOGdEKQ9AwcqhRbazDEBRTrSrkHIOQCo6kst/CAhAoBov3SQGCEBpOjsZHCUKQHcVUn5SrQZAHcnlP6QfBUAYfQVpxqINQKBsyhXe5QhA8s02N6YnDEDI7236s18JQHnMQGX8+wVASfQyiuVWCUAaFw6EZAETQCaN0TqqmgpADM11GmlpBkBy3CkdrD8JQNjTDn9NVvs/zNHj9zb9BkAUeZJ0zaQDQJz51RwgGANAGQRWDi1yDkCVtyOcFrwBQH0/NV66iQVAR3L5D+m3AkAhk4ychf0DQBh47j1c8gNAlbcjnBb8AkDhYkUNpiELQCO+E7NerBFAGFsIclCCDEAQI4RHG0cMQNSa5h2nqAhAtwvNdRrpCUAwKqkT0IQIQCdmvRjKCQdAglZgyOqWB0CKWS+GcmISQHuDL0ymighA+3Q8ZqAyBkAUs14M5cQEQHfzVIfcDAhA4UBIFjABBkAKou4DkNoCQGuCqPsApAJAWFaalILuCECazk4GRwkGQCNnYU87vAdAjPM3oRCBBUDBkNWtnhMHQPrVHCCYIwlARfXWwFbJAkDByqFFtnMKQDElkuhl1AdAjliLTwFwBUA2WaMeolEGQHJtqBjnbwpA9zsUBfrECkD9wcBz7+EHQIy+gjRjkQNArmTHRiCeBkBljXqIRncOQMB4Bg39Uw5AwhIPKJvyDEAMdsO2RRkJQJRNucK73ApAJ9pVSPmJBEBHrMWnANgHQJz51Rwg2AZA6njMQGU8A0CBPpEnSVcEQA0a+ie4mAVAJnDrbp4qCkBa9bnair0GQMSUSKKXkQZATzv8NVmjDEBnYU87/PUJQHqlLEMcawdAARO4dTcPCkAAV7JjI1AGQIZa07zjlAhAb2Qe+YPBDEDHuriNBjAJQIkpkUQv4wdASFD8GHOXCUBn8s02N+YBQM6luKrs+whAuECC4seYDkCvJeSDng0HQJXUCWgiLAZAUDblCu9yB0CWIY51cRsMQA+5GW7ApwdAE7h1N081CUBJS+XtCCcJQFqBIatbPQRATihEwCGUCEDPg7uzdhsHQBGN7iB2phBAPWGJB5SNBkDB/1ayYyMKQKOvIM1YtAxAyM1wAz4/B0AdrP9zmO8IQKNYbmk1JAdAwCZr1EN0CUAiiV5GsdwDQPSmIhXGlgpA2XdF8L+VCEBtqBjnb8IGQO5aQj7oGQ5AeGLWi6FcBUAx0/avrHQHQKAVGLK61QlAFVeVfVcECUBv2LYoswEHQL8rgv+tJAlA4Zf6eVMRBUBp44i1+JQIQCy8y0V85wdAFytqMA3DCEBBt5c0RqsOQJnYfFwbKgdAC7WmecdpBkCjBtMwfMQJQAwCK4cW2QVA6j4AqU0cB0CmuKrsuyIJQP2H9NvXgQRAGlHaG3xhBUB1zeSbbS4GQHJtqBjnrwZA0CfyJOnaC0BE3QcgtckFQOLMr+YAQQpAH6LRHcSOBkDkDwaeew8IQHEDPj+MUAlARtPZyeDoBUCUvDrHgKwIQOwS1VsDmwVA6PaSxmjdBEAhyEEJM60JQEX11sBWSQZAjgHZ692fCEA0uoPYmQIJQPLvMy4cSAhA6IcRwqONBUBJaMu5FNcIQKqaIOo+AAlAZmZmZmamCECFsYUgB6UFQBEZVvFGZgNAx7q4jQbwBEC9NbBVgsUJQCcxCKwc2ghASrVPx2MGBkBVTRB1HwAEQKeufJbngQZAv4I0Y9F0CEBXJvxSP68DQA8om3KFNwNA0hito6qJBkCt3Xahuc4DQCYZOQt7WgVARYE+kSfJCEAuc7osJvYFQNLj9zb92QlA1lbsL7vnB0DYtiizQWYJQBaHM7+aAw5AodY07zjFAUDlfoeiQF8HQHsxlBPt6ghAWVGDaRg+BUC5UzpY/6cGQAHBHD1+bwlAsmMjEK+rB0CgT+RJ0vUEQLhYUYNpWAxA7nw/NV46CEB65A8GnnsKQAdfmEwVjApApMfvbfqzCkCj6exkcFQJQOBnXDgQkgZAgzRj0XS2CECeJF0z+aYNQAOy17s/XghA9+Rhodb0AEA0uoPYmYIDQIKLFTWYxgZAcv4mFCLgBUCqglFJnYAHQGcKndfYJQVA26fjMQPVBkC/gjRj0bQFQPZ698d7lQdAdAzIXu8+BUB5r1qZ8MsHQNUJaCJsOAZA61bPSe8bB0CBeF2/YPcMQJccd0oHawlAtTLhl/r5B0D8+4wLB8IDQEMEHEKVmghAD39N1qgHCkCHxD2WPvQHQPzjvWplQgZAkzoBTYQNEkChuU4jLRUGQOPHmLuWkAdAXCBB8WNMB0AxlBPtKmQGQIEJ3LqbZwxARzgteNHXBkB2/YLdsC0KQJ2FPe3w1wZAR6zFpwDYBkApP6n26bgFQP7xXrUyYQdAxsTm49rQC0AJG55eKUsFQG8vaYzWkQdAlZ9U+3T8BEA+y/Pg7qwPQFoNiXssvQNARs7Cnnb4A0BhiQeUTXkHQHcQO1PoPAhAOX8TChGwCUBhw9MrZZkIQMdGIF7XLwJAKCzxgLIpBkBEboYb8HkOQAn+t5IdmwRAg2kYPiLmB0DdmJ6wxEMIQOlILv8h/QpA/z7jwoEQCEClaybfbDMKQOZ5cHfW7glAuAa2SrD4B0ACZVOu8O4DQPt0PGagchBAtHHEWnyKCEBq9kArMOQIQOC+DpwzogdAVTAqqRNQBUBY4gFlUy4EQLNeDOVEOwVAXFX2XRE8DEDYKsHicOYLQGMLQQ5KWA1ADB8RUyIJCkAC2evdH68JQPcGX5hM1QZA0XmNXaI6CUDF/rJ78jAGQEyJJHoZhQVAs3vysFDrBkAvo1huaXUGQCswZHWrZwZAMevFUE70BUDUt8zpspgIQAStwJDVLQdAZtr+lZWmCUB7iEZ3EHsGQIidKXReowhAmzi536HoCECQgxJm2r4JQKvP1VbsbwhAdEaU9gbfBkCl942vPTP/P9rJ4Ch59QRAGedvQiHCB0A5ud+hKJAHQPIMGvon+ABAOe6UDtZ/CkAZ4lgXt1EJQABSmzi5HwVAjiPW4lPAAkALKT+p9ikIQEF9y5wuiwdAn+V5cHcWCkAE4nX9gt0AQBmQvd79MQ1A2ubG9ISlCEDQ1VbsL3sIQKshcY+lzwlARQ2mYfgIAEDLnC6Lic0GQJSHhVrTvARAf7xXrUy4CUD6RJ4kXfMFQECH+fICLAlAbLJGPUQjB0B56SYxCGwIQBHfiVkvhgZAu9Vz0vsGDEDqBDQRNnwDQJWaPdAKzApAduCcEaW9BkCNYrml1VAJQO4IpwUvOglAM4rlllYDBkB6whIPKNsGQAWGrG71HPE/KVyPwvVoBkBFEr2MYnkIQBjshm2LMgpATUpBt5e0DEBSmzi536EJQGwm32xz4wdA5x2n6EiuCEApeXWOAdkIQPyMCwdCcgVA1XjpJjFIBkCdLouJzccHQF2Kq8q+qwZAkSxgArcuC0AtJjYf10YLQIPdsG1RpgdAQiYZOQt7BkBnJ4Oj5FUNQPpEniRdswpAnIpUGFtIB0DT2cngKHkFQIvgfyvZ8QBArOKNzCN/BkCUTbnCu5wKQMtKk1LQrQlAescpOpILCEBoBYasbrUAQIBIv30d+AVAOBWpMLYQB0DP91PjpZsEQCmzQSYZOQZAUn5S7dOxCUDboswGmeQIQH5XBP9baRBAMJ5BQ/9EB0CfAmA8gwYLQHZsBOJ1HRBAMiB7vfujBUB31m670JwIQABvgQTFjwhA6IcRwqMNBUBaR1UTRN0GQAkbnl4pSwlAq1s9J72vBUBGfCdmvdgGQM+Du7N22wdAeTvCacHLBkAPKJtyhfcIQPFL/bypyAtA76zddqF5CkB3FVJ+Um0LQEIJM23/iglAbJVgcTjzCEA9D+7O2i0GQHpTkQpjiwpAxr/PuHDgCUB1kxgEVo4FQJ4Hd2ft9gRAcEIhAg6hCUAFFytqMA0HQBJr8SkABgRAo3VUNUHUCUCcxCCwcigIQHEDPj+M0AZAS6shcY/lCEDN5JttbgwKQMiYu5aQzwtAR6zFpwAYDEA6deWzPI8FQNvcmJ6whAlA5fIf0m8fCkAU7Sqk/KQLQI3ROqqaYAVA2GSNeoiGBUAWNZiG4eMEQOT3Nv3ZDwZAkst/SL/9BUCHvyZr1MMEQOyGbYsyGwlAr5l8s83NDEAKou4DkNoCQAexM4XOaw1A662BrRKsCEAR5KCEmfYHQA8om3KFdwlAxxFr8SnACEBLk1LQ7aUEQCpSYWwhiAZArvVFQluOBUAKgPEMGjoHQII5evzeZgdAyXGndLB+CEDTakjcY+kGQPZAKzBktQVAmFEst7TaCUD7rgj+t5IKQKVmD7QCwwhA64uEtpzLB0ATSfQyiqUIQFBwsaIG0wVAhqxu9Zz0BEB07+GS484FQCYBamrZmgZA+I2vPbOkAkCp+wCkNnEJQDPEsS5uYwhAqG+Z02UxBkDd71AU6FMFQPfkYaHWdAlACObo8XtbDEB3hNOCFz0IQMcuUb01sAVALJ/leXA3CEBvu9BcpxEIQMVVZd8VgQxASino9pLGB0BWZd8Vwf8DQJC93v3xHgZANSkF3V4SC0D7kSIyrGIGQJBJRs7CHgRA2A3bFmW2BkDEd2LWiyEJQJIFTODWXQRAzLT9KytNBEB0XmOXqN4HQDxrt11orgxAYhBYObQIBUABpDZxcv8JQOCcEaW9wQZAI/PIHwz8B0BTeTvCaUEGQGnjiLX4FAhAaR1VTRD1B0ANGvonuNgHQAXdXtIYbQtAWfrQBfUtDkA/dEF9yxwHQIRHG0esxQpAlSu8y0V8C0Dkg57Nqk8DQN7lIr4TswNAbosyG2SSCEC1T8djBmoNQO6UDtb/uQtAexSuR+E6D0CyEYjX9UsLQOXyH9JvXwhArYbEPZY+CEC0dtuF5noIQN3vUBTo0whAvw6cM6I0CkA+lj50Qf0FQHx+GCE8mghAUgq6vaSxB0C+vAD76NQIQOTaUDHOnwdA3eo56X1jCUA7/DVZo14JQJPGaB1VzQ5AT0ATYcMTCEDDKt7IPDIHQC/dJAaBFQZAEHo2qz6XCUDSxhFr8ekEQP7UeOkmsQdApYP1fw7zCUAqxvmbUMgIQNbiUwCMZwlAOZz51RwgB0B96IL6lvkEQBqGj4gpEQVAQBh47j1cCEAUeZJ0zeQIQMPYQpCDUgdAsmg6OxkcDEDYgXNGlDYKQEIJM23/SghAIv32deAcB0AwL8A+OrUJQLqD2JlCZwpAf8Fu2LZoCkCmJyzxgHICQDf92Y8UUQlAb57qkJvhCEDZd0Xwv5UHQAYq499nXAhAcCU7NgJxCkAPlxx3SkcHQIDUJk7utwhAU9DtJY0RCUD2fw7z5YUHQKbVkLjHkgdA78nDQq2pCUC4WFGDaVgFQFgczvxqTglAlPsdigI9CkCPjUC8rl8DQJ4Hd2fttgZAyR8MPPdeA0Cl2qfjMUMMQMPYQpCD0gdAjukJSzwgCEDImLuWkE8HQNTUsrW+iAdAtmeWBKgpB0CP/MHAc68MQPCiryDNWAdAK/uuCP63DEC7Cik/qXYKQNgN2xZltgdAaoe/JmuUCUCEDU+vlKUFQLJoOjsZXAdAjL6CNGORCUCrlQm/1I8IQLVsrS8SWgVARQ2mYfiIB0Cuga0SLM4JQF1txf6yuwRAnNzvUBQoBUD67evAOaMJQAWoqWVrvQhABg39E1ysCUAJFoczv1oNQCtqMA3DBwhAYLAbti0KBkBzgGCOHn8MQMyXF2AfHQxAHAjJAibwC0C3f2WlSekJQMmwijcyDwdAX7Uy4Zd6CUCP/MHAcy8FQBKlvcEXpgVAOC140VeQBEAUyy2thsQGQA4yychZ2AdACRueXilLBUBoBYasbjUFQFSM8zehEAZAMnIW9rSDBECgGi/dJIYJQHC2uTE9YQxAba0vEtqyDEARcAhVajYGQJnYfFwbagpA/dmPFJGhBUB798d71YoMQGRd3EYDeAZABkzg1t28C0AtPgXAeAYJQEP/BBcrKgZAhXe5iO8ECUBbJVgczjwJQFuZ8Ev9vApAsoAJ3LobC0BvgQTFj/EFQBqjdVQ1gQZA8rVnlgToCEC28/3UeKkIQLVPx2MGqgNAkGtDxTh/CECvd3+8V+0HQPFG5pE/GAdAniRdM/kmCEA5Yi0+BQAOQPlmmxvT0wVAs0EmGTlLCUA10lJ5O4IIQOscA7LXOwRAzo3pCUv8CEBGtvP91DgMQPiqlQm/FAlA0H6kiAxrCkCkx+9t+jMKQGsr9pfdUwVAIxCv6xcsA0D0wwjh0QYLQJTZIJOMnAhAb57qkJuhDEC7uI0G8JYLQAHBHD1+bwZARWRYxRuZCEBvZB75g0EJQM5THXIzXAJA443MI38wBkBFL6NYbukGQGlSCrq9ZAlA4IRCBBwCDUCnBS/6ChIJQMXJ/Q5FwQlAZJKRs7CnDUDaG3xhMpUGQLq9pDFaxwJAl3Mprip7CkDCUfLqHMMFQLnfoSjQZwpAWfrQBfVtCUAO8+UF2AcIQNS3zOmyWAZAYTdsW5QZCEDNHmgFhqwKQL0A++jUFQpAVp+rrdgfCUDi6ZWyDHELQFmGONbFrQVA4lgXt9HABUByUMJM2/8FQHfWbrvQ3AZAmN2Th4UaCUCthsQ9lv4FQP/nMF9ewARAZ/LNNjemB0BnJ4Oj5NUBQGN/2T152A9A1nPS+8ZXBkAYYB+duvILQO/+eK9aWQ1A5ldzgGAOCUAf9GxWfe4IQFUwKqkTkAlAbOwS1VvDAEAPRYE+kWcHQKH4MeauBRBATzv8NVmjB0D9ag4QzNEJQJ1GWipvBwZA9BWkGYtmB0DfFcH/VnILQDGUE+0qZAhAD9b/OcxXCkAm5IOezWoGQCE82jhibQNA07zjFB2JBUD68gLsoxMEQJiG4SNiCglAowbTMHxEBECMEB5tHDEHQHSYLy/AvgRASDMWTWcnCkAN/RNcrKgPQJn1Yign2gdANIXOa+xSBkDrOel946sJQFGlZg+0AgtABTQRNjx9CUAgmKPH760HQE/MejGUUwtAtrkxPWFJCUBG09nJ4OgFQMAEbt3NkwRAvhOzXgxlDECYhuEjYooEQN5Zu+1CMwpAlLw6x4BsBUDHLlG9NXAHQKiMf59x4QdAtAJDVrd6CEBrDhDM0aMHQIfcDDfgswtAyqZc4V1uCUD3r6w0KUUHQA9/TdaoxwdAtU/HYwZqAkCqglFJncAFQKmfNxWpcAZAGf8+48KBBEAS91j60IUGQNYcIJijBwxAsfm4NlRMBED2C3bDtgUJQImYEkn0cghAMlUwKqlTAkCeXinLEAcIQFOWIY51MQFACtejcD0KB0BWDi2yna8HQJCIKZFEbw5AUaVmD7TCCkBcj8L1KBwGQA/uztpt1wdA6fF7m/5sAkC8V61M+GUIQD6zJEBNLQxARgiPNo4YCEAKaCJsePoJQK/rF+yGbQVA2A3bFmW2CED1EI3uILYKQFlRg2kY/gVAwD46deWzBUDmeXB31q4GQMVyS6shMQNA68VQTrSrC0ACnx9GCE8MQJyiI7n8xwlA24r9ZfekCEAtQxzr4vYHQKWD9X8OcwhA9x4uOe6UB0DYZI16iEYHQMBbIEHxIwlAnL8JhQg4BUAIyQImcOsKQFInoImw4QRAc/T4vU2/DEAGZK93f3wHQKEQAYdQ5QdA1uJTAIznB0AQO1PovIYJQBPVWwNbJQNAcayL22iABkBDkIMSZtoHQBzw+WGEsAxAwCFUqdmDCUB4tHHEWjwIQOHRxhFrsQdAjgbwFkjQBkAj88gfDLwKQKg1zTtOkQhALNSa5h1nB0DuJY3ROioFQKtbPSe9rwVAcTjzqzlAC0ASoKaWrbUGQFqBIatbfQZApIgMq3ijCECt+lxtxT4GQAA6zJcXYARAMC/APjo1CUACSG3i5D4GQDP5ZpsbkwlAxAjh0caRB0DtuyL434oHQIbmOo20lAxAuAGfH0bIAUBy+Q/pty8FQCjVPh2PGQlAopxoVyGlCkAKndfYJWoGQBbB/1ayIwlAW7G/7J78CUDECOHRxnEQQFjiAWVT7ghA0zB8RExJB0DDu1zEdyIMQFRXPsvzYANAc7osJjYfDkBXIeUn1T4HQCWS6GUUCwZAWyVYHM48CECqK5/lebAFQMb5m1CIQAJAQ8U4fxOqEEDyXrUy4dcFQCOhLedSXApAW5TZIJNMBkDhQEgWMEEGQNKMRdPZiQhARDS6g9jZBkBQcLGiBtMFQEyJJHoZhQdAxlBOtKsQA0CRD3o2q/4KQFaCxeHMLwlAfA+XHHeKCkC6g9iZQucLQHEbDeAtEAhA+z+H+fLCBEAr9pfdk8cJQOS9amXCrwZAjiPW4lPABUDx9EpZhvgBQIqryr4rwghAgSGrWz2nCkCXrfVFQlsIQDjzqzlAMAdAgJpattbXB0D0GrtE9RYIQODzwwjh0QVA7+apDrmZAUAE/1vJjs0HQA6hSs0eaAZAswdagSHrBUCneccpOhIOQFaalIJuLwRATgte9BUkB0BMw/ARMaULQIts5/upMQlAk+NO6WC9BkAUP8bctQQLQLnH0ocuqApA4Nv0Zz8SBECbj2tDxXgKQAEYz6Ch/wVAAwmKH2MuBkBRTrSrkPIDQMNkqmBU0gZAMlUwKqkTA0Aprir7rggHQLzoK0gzVghAwLLSpBT0B0DXhopx/mYGQECk374OHAVAxvmbUIiAC0Clg/V/DjMFQO2ePCzU2ghAK97IPPLHC0DPMSB7vfsEQD3VITfDjQdAyHvVyoRfBkA4Z0Rpb/AGQCAkC5jALQhAMXxETInkAkDEJced0kEKQDRo6J/g4gVAE5uPa0OFCEBFKowtBPkAQBL3WPrQBQhABWnGounsCEAqUmFsIUgMQD+MEB5tnAdAQBNhw9PrCUAb2CrB4nAHQBMKEXAIVQRARbsKKT/pBUC/1M+bipQKQB7+mqxRzwRAp3Sw/s8hCkA=\"},\"shape\":[10000],\"dtype\":\"float64\",\"order\":\"little\"}],[\"sigma\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"6A4ovIBuOj/Es0vujMNEP9pMg3f5ozY/3typygi5PD9fcBLyXSQ2P4Dw6BnXzEU/bIIz7olSOz++1k9GL38yP+nu7oysuDU/2CLC70EwQD9cn8Dbhsg+P4j+j2clGjU/PWBlB3HyNj/k0rRoWpI+P2UKQB07Gjo/NHeAaUkuPD8HubtpWxYxPw0+8NifKUM/oZmrD7lTOT9oyF/3qWxQP6yQJ4Y6ZTs/nM26sWaFPj+Jv2qI0UNCPyINGyPhlDw/nHgOMrflPT+Ism6+PF1APyAN81oTTzk/gt4MGNM1Sz8dSM0NPK0xP9u7zNFfvzI/r1z9RcFtPD+Ay2s+EThAP6eg+aF0Fzg/o0EegilRNj/1sEVCw7E6P92osHoJEzs/46aZ/aB/OT/bhP+dgjY4PwceWaVmokc/iy+qqm8XPD8HZQOxuHRGPxDE7kX4OkA/iy/iVM6LQT/CvSNEqDs3PzEO7AChWDs/gRKXynjnQj9v9nkfVp5BP7M2tmzn2js/fC+GvjCjPD9hVb38TpM5PzD6ZYv/lks/bmZXzpz9Oj+7KwfvteQ0PwPfqYrtEUE/aK/Rgcu0RD/fpv3ev9w7P7w/e4GbvTo/s1RO4y1DSz88Y5KjlmxAPwQjOd3VUkA/NXtPzhgyQz/K3bx4DH06P6LflkbO7T4/37oC1EvBRz9AT3Cid9k4PwFn01iVWUE/nxpx+fZLNz+rK7071OQ5P+bJw69JmEg/wGWuCfJ+Tz8NEkIKFVFAP7LVTXj1aTY/8288REiCRT+5Ej3NIkQ0P6G9s6NcDTU/ieHejekvQj94ggdKLTs0P6HR2abRFDw/WPcloUiFPj97hyzpYLFBPzgb+D8qP0U/W/FjhYi/OT/QUy6ei9BZPwmCzyjAJEM/iss44M/9QD81e+Ix6vdAP+sSRbDAQ0A/ZbA9Dt6yPj9rsCe8Lyc7P0Tkxr2RKj4/WvCOyzkqNz+aqIKqAeU3PzbXCHsVRD0/gqf4Dmr+OT+meUHwakw3PxD4VDImGzQ//k8XjL5AOD/vFsyIoKQ/P6GOno0ijDs/CxGOXq/eSD9kAzXxGGI4P6vyOmuCazg/T7cFrp+8Nz9OvxaEilspP27WgAspdDs/hR/PQMK2OT+br+1IUFdSP3zi3eppIjQ/QNoWneAmOT8OQ/rZB9o2P0Z2HyzVmD8/0JtzuKIJPj/VGADs1ENBP0r+uOGdmkA/fpAHUMMfRD8GyowI3V07Pw3rK+cJhj4/0S5YCn6kQz+QJOCOcls7P5971+y9AkU/zYWPXak0QD+ftH+EsgdCP7H547awgD8/tkvKxkuDNz/S99Zk5jJAPwz2t+iKcDg/+f4DNUcZOz+qDpgLhZ08P5Z1G663yDs/ATAGJbjQRj8DcY6iHSM4P3A6sLn2R0A/aBSnZzW1QD/S1LVtTfdAP3yYcd71VTY/zN0wzx/aND8Nib1ITy5JPyvg2JLZSVI/BPD7qYQ2Pz9TUN2eGEA1PzTJ8CGmGTI/vLTmae5YRD/cpi7POS45P9Znit2XYzQ/OcxiJZBZQD/JOEayR6g5P1ee9koP+T0/mnW3zJhrOT9qMW4mg/w8P0omZVq0Yzc/iZcZyS3MQz+Yi5UkERJAPz0U0gigkj8/sLv8K4QFQj9xxbFt0uY4P6R2RUS/Izs/LANpJ8x5Oz8lw3D88PZHP/PxMaFHYT4/fPgq4Du9ND+avvVmdgtEPxDjjmcyRDc/ivVSIM8IOD8ZdUAhIRtPP5JVRF/XtUE/IKqLPJKQPT+43h22gBI3P1lP9JNG2TY/VSVzJzbxPj870Bru6Qs9P4kseQz0KDM/Sf+sqKqYNj+5wyF5uRg7Pzaw9xDE4Ts/kGBw7ivmQj/X0oVTRFg9P8gdIq2yaDo/yHPbkA8SQz+YTFeoHDA7P1TkEHFzKjk/ahx1auoZOz+ywmIRGQ88P34TiZBaK0E/G0ZYjG5IOT/PAWMsvJM7P8GMjIKe1Ts/ALUCVzqePT+/qo+U6L1FP8SfRvkA3zg/5/sHY9RNQz8kw8m0OI44Pyfm82bhpjc/CCjf/B6mQT8JT3HnheVGP8zvVafa2U0/NOvRw+w/ND9lq9pULms6P0l5tfU2qjE/N4qGbvFOQD+YGjm8NAY8P6y13AtfbkY/XG1v/vmSOj9TPZl/9E06P0V9z56E/zg/F1IvDBkOQj/vzzNgCrs6PzH/z/6TATg/nhylFVZfOj/WdYxR9TBGPyBctfY040E/qHU0cR93OT/Vj3sqDyFKP9yr3RYvjTQ/nU0UD5J/Qj9hYdIp2fs+P15HoOolAE4/SG0uc8SeOT9vFielPbFQP89hHC4C+zk/LfhOezMyND/PiC2YU11bPyatSc7B5zI/p+u55yGcRD+WKMySON8zP2+bfpAy0D8/NS89UF2vPz8VdRZYKBtEP6xnuje8qUM/E+SxsPGqOD/I2D4hkW88P2J57VjAkjg/AacUx8NzPT/uWFivoyM5PwGRWjXDnko/btmvqHmoPD9kmZzf0l8/Px48blOX5zw/chiFipXEPj9ohgbCS/lLP9sD7CTUbDs/9sr0/zUWQD9anZfo/no9P0CvcHlJ700/GQXQDgn2Nz90gGoAkpA4P1LT/myDkTk/7cdTepltNj/gNtShM2Y7P0rcRNyFrkA/aQ64yu1AOD+P5biu88pAPxM21toIfzc/2VgpByoYQj/8inK//Hs0Px/3JOUr10Q/SM3BrWd6PD9tWFNZFHZRPx7ze0f/Xjk/8ukeyjEIRT8Ze0OiTzJJP3uSxxUP1jw/qAU+JTgMPj+NxFd9pkVaPzM+fRji1zY/Vs/kwzU8Mj8YI1ShaLs1P8VEPkDbkD0/eXUAV8GOQD/TAbh1EYhCP3AsiH727kI/6ciKFNylMz+2HgJqESEzP/deb6ccrzo/T6Pfqiq1QD+coyHyfFc7P39dvfJvgzk/DaAXos7SQT8kjaly3FRNP4ThT5kKDT4/sezawhkaRD+TSl+lDjQ3P63fnZMW4jw/oyh8KGT2OD+tzv/lOaY3P+CI+MtKOjo/G+msGZDyQD/4VJVQ1nxAPyriwCDzRT4/YFM7UX+uNz+UlbJOjX5BP/HqSjudekA/z89qB3f1Nz9cyXI4EQI0Pyl2lziwJEI/eWPWxUwmNz81v2zLGNA/P7IWYp9HXz0/4lyGqXRKPD+8v2CIs1o0P8Jbj95KWDY/pWvfCeHEPD9RJxDebcpEP8HaIKwpPVE/+2dKDn8dPT84DNw9HehBP8a46lPx8z0/t5zCf/fkOj8fVuVmq9c8P9vmTC5Ua0I/bvqIn8wtNz/6iLZoo2hFPxLuw7GWUTg/nY+vYMI4PT8KktTIArQ6P9QpsHxtaEA/ZAaXfw6iPj9RCwz2si9BP/vSEJJbTDk/35Qxv0x0Mz93Cn+nRVRDP7rg/9N8sUE/+HmTrLHuOT+BWzAeydg1Pz4WensSAz0/cci6Q4CPPj8UKW91cBg7P/E59DkeAzc/d/1KM1L5Oz/GZOvFwqNMP33w80Kukjc/7hNo+X+qQT86qjX1Axw3P3I0rznz6j0/38oFc2OWNz+cFHmhn/o+P65VcZmJ2DY/W+rZ2XvkOz8FYyGTvNU7PzlrCVzLIkw/pcRa7l9oND/ur4baIqg7PzXhQENddjg/ISgXYKiOOD9I6GQy59w3P/34wpmcMDo/CDoE1dmlOj/rRBcOY1Y4P8pb/A3dYz4/Tj1WGVtCPT8r6Grp2cU3P990K4EdykM/KqgQ3gqgOT/zFxWZApc8PxSaOHp7XkE/FDDGL9jnMz/jAHZFW1s5Px2PGaiMfz8/QM6otw4nMz+rxyervPk6P83ghTMTmjE/Tyo4wdnbPT8TFilVIWw4P7WL/AlNY0I/kqEZenpbPz+uLbM9tyY2P9U1xan30EU/LiBHgo8SQj+4VNgeU/0+Py7TmfUOKTk/Y9yiBrIiMz8Pj8LKqP86P/XBiDYtnDc/1D3Wf+JvNz/aYFDCJhRNP3ZIHVy7ZkI/XtUurVPTOD85R01WbYBHPzB7DGh/JjY/GPO3YFB2SD+81gG3vq0zP3U//SD4A0E/bE1G132uQz8YWkLjLmdLP7CafO14Fzg/DbXYswhBPj8ab50SH75NP+9+r/1xtkE/JhmXfHzaQj/M2y+kZdJGP2HrKaTC+UA/0pWJ1BT+NT+Y493dPyA0P6TreIKzSj8/nAWVSfEXQT9pUCAree49P8Oyihgl0TM/3pOR982kPT/SjCTF8KY1P51I5EaHQ0M/evXTeh1DMD/q9fm4znA3P/ViI24g7Tc/t62G9HasOz+sHMcAahkyPx+XRRxD5Do/Uk+vLIITQj92L+ieJEY3P5hti1jiBj4/JuXSHk36PT/yXGPAJxBFP8FpxENNMU0/ZRNyO7plRT9WG7re2OEvP/mODelfrj8/qasu7NgkOT/to3GtmD82P7i6umhqB0M/hMgzeRT4RD9aIGW3251BP+aM5M8QvjI/kb6pRc0iRz/5aJxGjRs0P1MB6BFSoDc/8MoKUuShQz/vsiIUohZPP3AWzuz1GTA/NaHZDYzQQD9CW55sok0wPzEyT063Yz8/0ARxuyOlQT9IaXirlaZEP78Kg0G4U0E/po1ayd3TND/kHZt1qqI2P8h09R6/mzQ/n3OyMuzAQT9aPtdmf3pFP0whgyEa+TY/0+B+DJJIPz/fovuIS80/P4MpOvqu9Dk/v1zuQFvWRj/OdG13KG0+PzsM0RRGIkA/HqN+D0UeND9LwW5mYUBAP8KMDQO0sj8/xuclMc4AMz9zRm4vZNM8PycylI+0hjg/mbKUq6aLNz8akUvDwNg6PzakvByX7To/wyog5Q44Pj9/9vjEB2Q5Pw6GNfO2Yjc/9oKJHnxRQD9jHuWfmkQ9PzIyQiS14zU/woX1rI96ND/s70THECs8PyiBag+9vUI/Tl4JSQs8PD+/0PMMudA3P4oRfc8sLzc/mMoVvdc5Oz/x2miqbsg7P0Tk7IQ0tjk/UJgM1B0cQD+k16s3hto4P7QGjIG3OEE/omUSMuZnQD9lNVPdAIw3P4hOs2aC5jU/HHgdwA7bNz8lMmzH5kBFP3hYSMOggUU/j25/jIszTj/M7GC1E9RJP3pUbjX6tzw/8cT17fmhPz8r21w8ifY7P2cWIlkgdzo/yMAWyKdYOT9MP4g0j5s4P5G5Mqg2ODE/EbudGruGQT9ZJuL+Om83PzL7wH4dckI/oYuVt3TjNT+WNGA/rWpFP8fh77763UM/f0A/CtmkOz9qiA6n6iNCPwLSqAefwj4/xXUuuiyOOT86n2Ie94JGP4jPWUMCdkA/LVQGJwWKNj8wpPg16AQ6P9IWMLGUjUA/voi7HKQXPT8/T4KFM8JCP69JhDTNtUQ/LTuwW4VGQD8KgLwaSjQ7P86jAw54yzs/QTr4ZvTTOj+6vr6/CdE2P7O8Umbodzg/NTinGDtvQD8RqNh6gbcyP5E8jiEruEI/XLD2pe4yQj8XOAaIde9AP3mtdcNl/jk/QSB0Kd5jQT/0TwMVdMxAP2of/b+C5Tw/ayldUJhdOz8huXRN+ts7P0Bt9jUCWT4/Gpsq08BzNT9jaPbym79CP8Tr2ffRPjA/yP3AtRBtMj+byC8w6fc2P03Gemj0qjs/Oay1n6hGQT+5XjivaHU9PxKhTs903DQ//JeAbE1LQD9aYeZ6XM06Pxcsk+nphjo/Z5g9fcLhPj/M1y1O8cI6P2+/0rIboTI/AoatJVmRNT/x6ywf7o88P90Qbig4mUE/liuOk1rZQj8prRjeR5Y1Py0goDrXqUI/0X1upS1nPD/H4YIizKNBP39FyIoreDs/KWkw0xe+NT8UGi2swDU8P/JFsK5g1Ds/KgYVQ9wWQT+02KTdE+Q6P/bJDWMrmDM/nNflT6w3QD/0I3ZU0hY5P17Q2B2mCz4/PPuuLsVaPj9Ek8Ha40hBPx2VQvBdIkU/LCaeAkxYPD+jkxzlnZk5P1xvcCm0mjg/KA2sGOtxOD+Wque22kk4PwBJJ/5nTkA/3zsWTfqKRD/TXQKFtKVSP4i/5E4C/j0/utkVtkMcOz/8T4InwsBCP/Z3narOrD0/Y60yNwVQQT/FT4Ns0MxAP5e4I9bBRVc/GFIdKV0lOD/ZSAChb7c2P74CRepFBjw/ZvCXGa3YPD8s398SE+M7P+aNxrNh0z4/msncIWpHRj9nT5f/b3AyP5Qb8daMGz0/m7ntZjkVOD9R69/w4PlFP86QivyDEzQ/e6HCCTMKRT/5i9EhDfo0P+2WPTml5D4/ROx+2zQyPz8IQe7yEjtBP2bBGiD+hUE/5G9zEXxfPj9Puo0DOIg5P7/1vHbEfFQ/ymRhHQG7Pj+bu+6R8xxGP7cumm0ldkg/3n6qHvGqRT8MuixCi05BP6Xeg3IDh0U/ftLuLznwNT+hU9S8ilxFP2uwc0p1PjI/6390QsxLPD9fjpiF6KM7P71tdgkmtUI/LfJL+gQbOj9GyVC6mXZGP5WDLwXRfjc/NEbcfT1INz9n1aCVn0dBP9Iy/O7wsz4/3suyZOTlNj9qIixd0xk+Pyo+Mfc470k/PH2pRH6iVz/71Ov1csg7P5lyB68yWjQ/L3hKZ10sRz/pyj+xUJZKP+7nk2NSRkM/5lMWcXktOj8L6FUCAek9PxDOFCuEhEE/IrVlzYNMNj8xdY8gIFVAP0dQLwoY4zc/qDAw1xRbQD/BfBxHWMY5PyfY3Q6dNjQ/wLP2pDfPPT+Nj9cCyds0P4lENMmuBUQ//k1i70lQMT9YvXVeYN85P5GaWtydukQ/TJK0CZoQPz9Fugc3BXE/P7v4OxFNa0Y/46FpNZZDOj9wfSDFdZY9Px3/aKy7gTs/vI5KR7/RPD9tZ4M/CHBGP7h6ruwLs0M/cIfZDdOlPD8Ki+9jg4c0P49JlRSXZDY/6oBH++8mNz9FrexfsiE6P2FrsTnZljk/bbjUsPtoOj81M5heGVY8P0b5WZfg9TU/Qe+pdi/yQD95m72H2ThDP8s8cNCJ/Tg/cZ+ornQlPz8OH8x+wZQ/P+35S5/eCzo/4/dDJ9wPPj9YM9zHpJtBP0kL+n+TdUE/aGU/rrRcOz/eYsdEHzM9PyQVbV46hUM/+tmaPWgnNz95u4sbqm49P9abgy2XCTY/JUVSdQkzTz/m/5djYLo8P2qcNKpfKzk/u98sG1nWRj9YuMYWa4A+PyVBnK3aOko/i6mMMFmdOz+rBKzRgoI4P05oDiCuYkI/p1YOFhYoPj+STJPBbUc6Pzq+4TFIaUI/+K0LfJu3Nz/Hqc5R5Jw6P85DFRpinkA/EksoT+n4OT8QCxrSX+pCP4IufKV1GUM/vlbpvgEFNT9lEkTJIzlCP+eN31AC30A/DpEcrqqeOT+ko+ySEGNEP/zJC/Vjr0E/ombTB05aQT88/7CEOWpKPw+G8B5Wbkg/USCs+QN7Qj/JQWTs31BDP1Sh1VfEoTg/BYPOGKToOj8rInTkCQM9P3jISzmKbDo/Tq1eSP6VQj/GeddXWQY1Pyda02ucFT0/Bl03ry7KMz+dUHadh784P1ePxmQb/0g/dDV3yT8ANz/a5uy7J7FJP1ibTeeNCkE/RVn/tD+6Qj/1F4nvFfQ2PzALl5ytmD4/yO9ys22IST9XqvxMbCcyP08wFXtlZzw/O54iyaRtOT/ZLV0c8FQ7PynfXJHSS0A/R/oIioz/PD/p+a+A/WgsP0ZHVqTgLj0/Fak1b8pMQT9OBghlaNw+P/1oxg+GGz8/sBCpqzOlQj8kBCpq0Jo2PwOJle0dF0A/LB24chIkOD+S+m6XVnM7PxLYUPUhKzw/2BtrNdpgNz/iztbYXVQ2P/x0Jcoq4TM/cx4vU3xEOD+oofQiZjg2P2RNjRmmi0Q/dd1C9PeURD+6qkwuT7I4PwYDW2d07jM/f7ptHghCMj/12iqQ8vZEP+idY3AvkUQ/mXq/zNVhNT8gg3rSQC48P4+3BPz0gU8/xDRfZzuNQT/bPm8g4O06P4l/SiiMTEE/jwbtXrmhQz9BhFCPgf1GP+iquPILD0c/rTdYoi2TQz8d/WeBAXo9P3d2po5duzc/goDB3XUQPT/Dn1jcvMdCPzdZlvSfUUQ/wthUcz/7Pz+KX3ncLGg+PyTFpBhQCjs/NMgdaYI+Nz+k8zVZELtAP7iw21hqbDg/yngfPQHxMz/NCRlJNOE0P0QA0F4GLkI/1UPt5PcpQz+f1Lq0sXc+PxDNZzkDNTI/MPNuQ8SBOz+qYAjE4YhCP9uQ39g82TA/+8LGHbjIMj87C+p3O6QzP8b/TYq3F0Y/yzaTFv5xOj99UTRv0r05P9OJdqi1Tzg/6Oa17vPTQD89/TWTTqhQPyqlmmsuvUE/thxc+MlqPT8iMJyMpoo0P08/ke+eeEg/DvfYMB8dMj8cf1vd1Z4+P0HYlvI7/D4/Bu0NcqJTQz/b8cZMGW0yP3ipqxdQY0M/Tlgsj3+wPT/rmPDU7ho+P1vXOgHloDg/nPlHcgg7Nj/Iwx+eVQE/Pz3yb+ZDjzk/TCSM98ehPD/LhUHOOGNBP7SQEzW3kz8/7VMo55jnOT9rHe9qxl01P7EwiyPrfT4/ILXQaIfMQD/W+pxnXqE+P0s3T5bWtjM/T1bSq30RPz8FAY0tX/I6Py7LdDs951U/Q/6UiML3Nj83WXAt/cVIP2xJsR042Tk/1SiECwL2ND9xxgWnC583PyK2uQa9BDU/Ebr9Ujy3Oz/FLCjKrWJEP5mbzbX4rDw/aUghOEo4Rj/ImjPQ7CI7P3fr2cxR4js/sJlOe+LqRD/PSU2NYHs3Pxoa0ISG+0E/oQTLS90ZNj8rHRErWrs4P9rk65BtqTs/4THMofZvPz8nPKiRhOc/P5L4TF6zSEI/k81NgtR5Nj/gLkJLM+pFP+YBPtWncEI/4p8NUWnqMz/HSGheHeY8PzApe6E5GEU/sXov2r2+QT9im6gzZC0/P9gIzFxDHTQ/668DWeIQQD8ZK7MGxCs2P2JFqHp71T8/Q6v2Xc/fPT9HzsdXMGE8P6K/6cDm2j8/ByUJGBYJQT8rcipHOJVLP2o2feCkFUE/MJyMpooUQD/rg3aYQFs4P40ygI94tDw/g8U3zWjPSD+vXSu4V5o/P/XvpMygtjo//aLop1ZkNj8Qz/YO1Zk9PzzWVxqiUUQ/U5r9HEf1Oz+Xm14Yn7hCP1ubY8yfZzo/kqE/QR3nOj+pMXItkio1PycXmFLtjDw/YJQchyyYOT/+lTptMk9TP+XqCUPLV0U/anMiFVTBOT+jol6uTXw4P4ebp8iOfkU/g4r7puj8Pz8ufBISSA1WP3t5cUqPkjY/jvXuPrCrRT+r3ZpnMSA3P4DmL9F5vUY/U3cU0AwuMj8uK3USD/06P/ZRurITdz8/uAufPS/GRD+Vu1By579AP9VuojO8mz8/UufxflONOz8atLhInytBP8aAYQNm4TI/JvmQPk0wMz8qgi3mT2o7Pwwv8+NQO0M/eLBJp0PhMj+JOc6O0KZVP2exBZ4qyDc/fif2aFvhPj+Z2tOHjho8P1GKGYvtiD8/nd3RNGX9Pz+byosUFlE9P7cWpQXhajo/BL/qIUoWSD9Vhy1UNmA7P8f4aiZjpTc/2yojVshaOD86bivPGdczP+NkC9ZyRjg/SpZHwrQrQT+TeiGtyQQwP0EpNPJ0DDo/Sixo2+J6QT/Eq5PQ6btDP5YjHUtDgDg/yKii4HgqPz/qh2QKzsdCP/Bj2YdNSEE/Zf6rcMaOSD8Rq4aXvA5AP9iSedflAz4/tBqyhCxAOD+Y5sDsSj0+P67COEggDzE/QArtiIKaQz9QIfl4WBA5Pyi0Ne0lN0E/kXSq1YeQOz8t3P4EM4A5P2tpyT4jbEM/FHgLSu8gOD8RJCnIU39CP8qvxqk77kI/lQgfDVHMND/ytgdeg3c/PwPJab8d9zk/EXXBDtMmPT9TIEFeAPs3P0T6X0Gp3DU/VBzmT0RUOz9BtWEXvB0+P8na5pMD4Ek/OJSacMGvNz90UVXqVw9PPxQM8YzZOT0/KQ8uxLpWOj/D41TL00JEP7oTOE4UZTI/ROrJPsBBOD+kVHaFNOZCPzaJ5qZyfzo/SeIuwBO6SD8EOo59m444P07LPZTQrEg/dx6lqrpbOj9gXkjTFXZFP5rWnkB1/0o/pe0g9SW7PD96fq48nE4/P0tNL+95F0I/xhAS/zbfNj/afU0qqBU3Pz8MaHptXD0/6vwqrJO0ND/WDNvcuaw5PzzvGoJQzzw/l/uEthNaMz/V9B0f1BVBP+DOG62+SEU/+4YVsBUbQD/BbGU2hghBP1s9q/UTCDo/MWLKgOaFQT+/hIbVivw7P93OTJ04mkI/bdNjUZQoRD+1wFa9h0FMP0DUX6r3JjY/L9seIg0lRT/eZ3aMFJI4P4cUAySaQDE/ZuABF8Q9Pz9t3t1vWSo0P+eQDu5SE0I/b0+DruyeRj/P1SH6X/U6Pw47aIMHXjE/s00x1E+iPz8ZYa2Bfdk1P8qddlEk+k0/6FqV865CRj8qVBFQ3E84Py55l+axwT0/KG7GfWwRPz+4oGsdJF02P4u0Ut1jtkI/+dvOWcc6Oj9YvU+XvVNOPyU6JOWJSEY/qe4iMPz+Qj87zj+K0o86Pw98/SpvMDw/YsfIV9eoRD8JbZzBnRNEPySQfVa6NzY/HVLz8sf2Qj9sZW4wZ8VGP3PGB6g2WT8/qZ+aP2SZNz+N3lo6p9gvP2dwt8tOpEM/cVJ/WpjHMj8AYwT0xVU6Pxm2WQEteTY/wkvTFL8xPT86znJ7d5s/P4ia+tYNLzY/ou9SEFoUOD9prEksM+kyPzdPkR39Kj4/Nx90XM8ITT9QKdddnqM1P3iBgB9Pd0A/FdBG2RuvQj9/pwM4QcQ7P+GHzFrfxz4/iSh3tn8ZRz81vjEvgCMzP8QKM0SAmVA/QSs1HS8UOD+ELDamWh02P/nb9CBqxjU//8FD9S95Pj8nyXV+Ssg5P6REJ1jX+Ts/y+dol2cMQD8IoaI7nzk/PySv1qJokkY/Gt9/eh+GRz+tq8oKusc2P7kHiwT/zT4/pef8ZQ6BRz9yJ5RioJs4P+2C8W6NUTw/zYQVXc3wVT86If3BgxBHPxBRt3kEszk/oB/HiKQTQj8jemNSjag6P+05EUaxsUI/jfGRL8lKQT+mPRED3ns4P3sDRYzUBDw/pT/+SbHgRD/ufAeL/0VEP2xiZVq5HEE/iU7tEQwVQz/vvQ6IT7tBPx9H/FVDjD4//UzCJ8uAOz/DRvHbJMc8P/lnIkax1zk/fzF8wBPlOD/SbxN5iAJKPxecvCZ2/To/xM/2HQDHRz/jK6/Mw1gyP4u1RqRwtDg/Q+XyLv2cOT9jdSWu1bFJPwMa4fezezk/gQyUSUrQOD/N2gMz+l87P2V6NmkihTU/N4CBl04oOj//WPDx9fRCP97mrqGr3zI/zDgVws1WPD8RXEV8sFc7P4Kao4yNgEc/ByeLw+XtMj/XQU4tlZY1P/P/pWqN0UI/tHiQIlsrRD+c1ywlOOZGP/QwqsjFcUA/XkWkeCVhQD83UhlzlfY/P22BhvwIAzw/o6Fq50B+Qj9ONnG02xVXP5hMfW+/uzY/s9Ig3M/vPD+dMR1R2WQ4P1+uV+6Ln0Q/CzL6uNMpUT/PMdmlMU09P3Rarc955jU/Ej9Nzei+QT+3LZLCMdVAPyqJ3Vj/0EQ/IU8oyvnwOT/r7eji49E1P3bDrNMlPEE/fD9CiLzJRT9fTsSz6MNBP7LdK107/TI/KNQVZLJVRT+1+X/VkSM9P1EbwwaF7Tk/No9op4u5QD/Idqq7M4w7P5coc9rwR0M/U9Ne369LQj/2RowilIxGP34dPSD+0T8/+lSFbkVOTj/YOp665S88PwXLcaS8IUA/Ql5btArfPj8GHaqyupgwP4VZyxHwczU/Od+1b+GFPD8vk2eyDUk+P4fDGZYbGT8/FZxNiRwJQT8DiV1Dv6I6P8WpzFC54jI/JVrRanFbNT+0i8JewzRFP4A3AMJX2TY/YK3Qw63bQD8XVDA30xVAP49kxkMuJD8/rBmYYxnlQD+SSkvBJ5FFPxMg4p1+ezc/A/bqRsyqRz/f9/OWQIRHPyhUfOvfz0I/0WFE9s9APT94c5+52sw5P5q3kYIMvEE/HOBoGFW+Oz8lfiDUoMNHP8XTwMkVYj4/Y85AICibOD+cyjJczrk8Pya3Ahcf90E/Pp6qA59tRT8VkNrqkKA6P3Yi2vHTdis/8tw25IPERD/FlmJq8mQ8P/N7hGJ39j8/PFBOhHJ6NT8Ya7+CIoA1P/lmweJ1nzE/ejpFsVaZOz+rvxTUpqBBP3qBgiB6MUg/0ykJNbX/QD8XyP1Y0ptLP+pAuv579TM/TWeUH9IeOD9i9koKQGRAPy4sbpLVY1E/+DcrTCZBND9geetXldgwPyMHMT9TiUQ/uK4mvPV7QT8bjfC0BDI+P/q1ylMj4kA/QzHzyfw2Qz8kWCn4/uo3PzkgYrO+qUE/Xa8j7cpXNz+XbJWQqk5AP2uV5Kncflg/Kq8HJka1ST/ltarW1hA7P8700/5V5zs/x7SU/u61QT8rA2cmob9DP/940GiCEzc/3WZIGn5lNT8+GFXfKX8/PzrvzPLf/T0/0YspRP+FNz/RJJ/BIJVEPwppnGxUvj8/OHKTB9j9OT+KQXTJt8U8P4PGneldcEE/VugUyBL0TD9vjrxxJxg7P5tFwtM4jzs/cSeSYXXhMD/bdpCN9i5EP5+k6YHJbDQ/+0LNMrmIRz/iYzYcJLE1P+/3vso3YTY/+kRN3V2zQT8vqlRvXrM0P+Up/DB6IjM/l3WcLs2lPz+/kU2tTx1BPxEjw6te3jk/DtXRxzVrND/rlw7xnQVCP50FXZ+Sozs/Iv+rElWNOD/LYzplT7FDP6MX3nqHulM/MQHRKU4JNj+SXE+L+W0zPxTXltmeW0M/c8gI0/BgPT9PUkKr8aQ1PxXcIVsc6To/3D9qodEOOT8XbfOegZM4PyfFcyjWuD0/blEDWZHJQD8sENCMZOA3P+pOKQ8I/Tc/rHajSCT1QT9sIsZ6iQI0PzjW4cJjOkI/swZz5BYtLz90kNo72J86P9W4DkAwaD0/2X8CxxwGPj8K4tEAvfQ/P203jEV92UA/VW+EejdsND+iLNc2IJ01PxzIZoYOMzQ/vHepGLR+PT93l5Npl+NDPxolEPjBzkQ/H7bEL5TKNj/srgrZG6o5P4oeP+435zs/M7TwqygUSD+rSLqjVeYzP5dTOgxxojk/gXiuBmC3Mz/XXy15Z607PzTGwYRV5UA/v/vgBdy2OT+yl09RU50+P1sSvvzwITg/Zt1Ez1usQD+RSOojQc8+P8ZPcYkU5DY/2bLNpIV/PD+h82GQ0KM9P/YiF/LBmDg/ogC8y2aKQD+/dhfF/vQ3PweHRMUrVUE/n8sgs71aQT9fS7YkgbI7P8CBpceqmTk/aVN1j2yuOj93SubcFvo6P6Wo5LC8Kj4/jaoIMmCbPT8sWWngtNE6P0au+cNfK0I/CQgOsb/BPj9DAR3eWsM4P1N6Haa61jc/kv1CezRWND/G3Y32WRRPP2lFGGKcj0A/uyF0bftgMT+6w+6HFA02P+xGv4DVxjU/rojP2sMXQz+8I4l8nAtBP2UFkdVFuz4/YUh8Xlm4OD/El2gUu0s8P3v2qDRs2DI/n3pQwt8+QT/tWb7LmMRBPzdvCbEUeEA/aBNBS0AUSD/CUKgjVxw0P6RgnZV6N0I/20oDzVR5PD+5lYZjW9s7P5QH/sS8Hzs/qye75V/VPT+pkb6SqVdBP1VfyLCrRUs/0ApJvPXHPz9xt6/5dBlHP1zzxCJvgUA/dkzTI+peRz8ge2f7KtVCP3qxn+GnUzk/aiOSeci6Rj8QqbhdpxI3P5hT4VMpCzk/6IIMevVFQD+4fj7tlx89P5brbTMV4kE/q/rMwYLnPT86ubFpPS1DPycfUHCQlD0/DTt1rQneOj9H4R9bO/ZYP0yTrYlgdzU/85QmvDxRPT+Y2mTqNCZCP6JAScjau0M/1TLxxRnuPD/E9JnAaOc4P58IfxLhV0M/suIPlwAiOz/oPLan3CtAP/2KGQe15EM/PAAFvnIiOT+hC4+icyNBP7BkXKsc3jw/+JGa97HiQT/HRjJBkxgyP7+zLk+WQ0M/3lSkwthCQD9KLck+HrM5P0HO4mKYVUA/QD+02OuyPz8EfUoXYPQ8P5KRqT40TD0/XDO/uxHtRT+YHhVLBoo8P0kxJE3aWUY/bHp70OZKOj8b3xTfGwY9P74faBlqkzE/xqvhX1qNQj8V52HOV7w9P2ZOnH5+TzQ/+ED993jSRj+BHFAT1vZBP+2j8CyDYkI/aFijVkwwMj/J5kdP0182PwdbtwSKnzk/zARoABTIQT+p2ELXWJ40P6PKnYo1Cz0/QLUGXknMNT8bOT21G/kzP5bkvcBlezg/qgIEXxASOz83uwSTWqk5P+iPOzUvODc/uyhZ0nqNRz8sSeXAhx9HP95uzUZ8YTE/ZU9JcP+eMz+HaLYjg3k7P1xYG4nuXkA/Fq6GRb6rOz/1QJuEIV42P1d3ZGCouUg/8zC38sfxOT+WlyIXoXo5P/E2IFZAID4/aBI5oExzMD/x0ajh1x8zP8KExzr5TTE/HOGWiuvqPj/qx16jcDM4P2bpDW6g/T4/cvbbkq0SQj+BxzE+PrQ+P3TwOoXWbzg/lk+lUivNTz9EEW4M42lHPzaT630VpkA/nf4KnuQ8Qz9km0JRGhY1PyWq9GnOJzY/eA0vxatlOD88oMo7F95GP9dVwL5PtTM/bSf2QpQ+Qz/Kib3q3Sw5P30HlXG55UY/qO7ohHLQRT9g76XAZ8M4P01bJjoAH0I/GjzSNLZEPz9PkTSZoG9DPzoSKJUCaDo/Ao3KNDcyQT+n1yGPxPFKP9b6wi4BLTo/IuAs/wOnTD+CoxyAmHo5P8ske2hF8jo/kr/9fgbbRT9eq4EJgwJEP3diNP2inDk/zTOMQXuDPD8Srja1IiBFP4DmCQrXMTs/8hOSwniqPD9JO7fOlN05P/oZKDrcWDo/pLuBiCi0OT8P6D2vJ6MyP6DXW6fqTkI/Gkiyb3DnNz927Q3psPU+PwD00zYARjA/K+c8d0OZND/OZ1Kg1R05PzwICWpbQVE/4RGRcff/Qj9kL/WiXyM1PxJDvL+LCEA/6oWqtJ9uOz/sAAk8kPI8P+Mex+YVFUI/j26lUy6/OT/8lAVBt/83PxCyeCY+uz8/CW/4pcpsOj842t5fHuE9P/6dhe6mHDI/Ba+0kY01Qz94hRAg2+M5P+DjAoabQj0/3CO/cV4LRj/F4w/3ck5FP/CDuf7ZZkU/2kpchZwQPT9qBqf0AqI2P9/PNTtu0jY/ps6Ut9JUNz9ZqEmxIvFCP3KjndrmtEE/DeDrc86yOz9kU363GLpEP7x/h/35ETo/9sJd8HsxOj/3+dFrESNEP/sQnWMVdj4/1rBWIo1gTD+O1egAgQE2P+0dLmzfOTo/tKNXVNuFOj+0UNLGiHkzP72JjtXH8jc/70q2rXIQQD+LIuiLZF83P9xSCXpoUjw/RmqLf2ANPj+pqVOIwag2P8gjksoPukY/Hmc6PtGqQz85Ab3Yyjc6P8UxeaChwT4/M5ZYNeKrOD/84TNOTcZEP0MzFQOgYTw/HMzVeLF8Qj+Gdsp6nC83PwxFQNki1kM/urs2anEFNT+Sz80seaRAPyq3H7YVdzM/IzTT1OpfPT/kqmhicINAP38wz86SlTk/hIimfKDGQT8dep9r3r85P6vi/SDhZzs/VgTFsD9gQD8vsOWapCc8PzimMZ5kUkM/wmdJUmJvQz/5OjQi1Ok5P4YkgInizzw/DrB1+lj5ST/dT4Ek0IY6P14oJpCOgkI/4qI87rkeNT+H+Atm4SU3Pz59Pql6Ij0/nauAV9jHOz9+hihAw4Q5P8jE8lZ53Dk/DyUvchxmQj9Fj9NoVtxGP4ZgV74nCTs/9N8ykC/tQD9LLsS/D9Q3PyDydZ02eDk/fjOw3HL4Oz/O4mKYVdA7P2X7Nf7pq0A/5MJq9LYOOD9ROEHvG8w3P+z4LxAEyEA/gLton/liQD84jOJSHqg2P0+U9pnCaUI/9iu2rG8eVj+FYgpacT86P6zEeY6Boj0/BUwnrGnrSz+VzZsRRUs1PydxwCjtf0M/xZ7llcWmQD9PPmN9CExFP75KL0vq7Tc/IeHZ8IT2Sz89B+oi8k4/PwU7PXBHmD8/q79vjRnyOT8K2RE4Jkw3P1HvAlU+LD0/Dhs8fjUoNj98htqwUrM6P3fWhVdGrkE/3/Qfs2KhPj9cwht+qTI7PxblU3mbNDY/bnF2M++tQj/bCcneX/g5PzjR+M/krDk/w2ofN2sMND+LxW8KKxVEPyIvydOCrzk/DNMVcdxXRT+JXktqljs7P7uUX6up0UA/uRSrlAuGRD/yh6tyvUdPP68BGVMT8TQ/5o5AtD0XOT8dr0WtXrU6P9F1AhbQdkI/MkD9woYCQT+/1f0NIYE7P+yXaaoQVzo/uo074uYNTT+X/o2MwQI5P5AgUI7m7kE/KjtJL3RpPz+XuZ3WnYlBP1TM6BeKEzY/t+05uI1pOj9BFG4ngTU9P13r1FptBTo/SHfnuyGuOD/f3p3LwEBBPzAxepRozjw/I2fqQJnwMj8qDs1gfx5CP3fzker06Tw/9Z+nlOZ1NT8KO8xkJrtDPyd82tSFxzo/R/03J90zTj8ewV1bFzU6P/xOHAvNHzo/PaZ0BP5dQD9T/eW73ZA7PwxeA0HRUzw/GnYalCkZQj8tkT6/hfs8P6E7GQDQfzQ/biHA0MAbND8wwXYef+M3P/5+BttVNjY/IdI8bmLCRD/FBRdgXABDP2JjepxLbDw/wt+rLafKOD9NzwU/u403PzhSeeXBsEg/FTerlFcUOj87m8A6ry1DP4ydn8ucejk/tChtI/5eMz8rreftzUQ4PzraLO+Osjw/ZIQioySgOT+LnKRKq1k7P1lAjAP0ajw/9k79aqvlQD/d4N4RItQ9PyllVERGOjU/+3Z/rSyAMj9eeb7WDSpNPxdOwBl2xEM/aOf/GOR1Rz8y1Byx+klDP7iykPXeXD8/9TkR2RSDSD+tfcJYLVBFP+eHI6Vfdk0/haEQLAetOT/vXS+/Zsg3P5H7wM9kcUI/AtCslZ4jQT9x9c4uAAk6P3gnfhDyDzU/35bmW8FkOj/d1dZIRXVAP9NL6tb7JUM/UvzqOuxvPT+418b7GEM+PwzGU1LRn0A/K+5tagjdQT+OhHHI6nxGPxQEXzbZvTc/UK+oSW8GPz9UJUtfaKs7P6zsg3iZazU/D+PnH3rbNz8qyUSO0HY8P08zndD9Mj4//OvslqrVQz8/jVUseZpOP08/EG+Jm0Q/AEXZGa4nPT+xkCMXSMJBP432GrAbHkE/7/785/4kPT9yMB85Z35EP0tftDlh0UM/3a7Zwtq1UD+4+m0sgcRBP0H/8+rSdTc/xxwGHtgkQT9iWQ3iM3REPw8znoKobUY/Cz1015grQT/5y92da040P1rtBnahXlU/fhuIg4nhOD8fTKudOOs5P8VpGY2iJTQ/h7h+aW30Qz9QozpknQY5P1Ge/XGQSkA/woWpHkpjPT/xtIWys5JNP6yuUmBSkzg/xX0yZhWtQT9n/ydyzYw6P000XKU6a0c/K2GgfUL8Nz+TBBu2sQJBP911ZByLvDg/ifYyA/VjPD/J9a/fJc5APwKVljbB3DM/+OkIeIN8QT+bvAggo6ZHP8mDEyL3rD8/jRDFtNQZNj8nGGsLEWg3P8BZQCQgfzk/ZA/JnY3tOT9NOKXQOilKP9U89py8FEM//luFcZBAPj9oda/p+ms9P64e8PPxZkM/vp87PcZHQT8uMXiTPRQ1PxFfUwsYaUE/KX18nS9ROD8kKg1ii9A0P/5hG1aQHUY/AjoaJ4gxPj9wm0ufjcQ6P2nRfzJtz0E/HjK1CjrYPT8MViVci8A/P/0QEboo0zg/dw8IKJgnQz/rm+p/b4kyP3DVIakY9jo/oqpvhDgbOj8UtBVw2WVLP3nZkC4fET8/AdYp3f30Nj/yoDnom/86P/9paNgvpTw/UebV73hJQj8Z4poziRc3Pw+DVOXW/0Q/I9eU/jpENz+4dxKzjERAP0kN9vGTFD8/8Bp1Js0cOz8b4e9CM4JPPx6X6mLQkjI/y5YFQ7gqQj9EXqlDe7A9PyAC2a56BzI/ovVVkYgrQj/KvGIBpBo8P1od2KiJaT8/bQ+CW2UQOT9hmnrBzQA8P4veWDl8Hjg/QG32NQJZPj+FtHoSzipAP4LwEOKkEjk/VYd54nt3Qj+cIjRAcRk6P+UXPzw09Ds/+MuRDyY3PT+C4wI1VEM9PwJSaEcU1Dw/ovXCLbdlRD99T7TELZM/P4pWFM0IET4/XX5/Ab9xQj+CQZr99n9CPxyArxYPVz0/1cITF9OOMz9XFYklvydBP8YNvZpDHzo/MEcTGICAND8JMBib14o2P+iot8dRBzk/L+Ldv+nFPz8fBOcDN485P7cjjeuOrjo/4tuY92gMOz8zGUcSqPE3P+iAeOtpeDQ/Ss/qoO/HPT/7UncZicY2P4cz6hpg+D4/3r5+8PCKLz/zGLVggWZCPzPFIb3WFTs/e6HCCTMKRT9GH74PsQg4P8raDlzRJT0/680IbFezMT/9rnxUy+83P1A0d0MGMUE/nHZZlUL1Nj9LRBG14W44PzXSMWtSnz4/zovtl0qdQj/WwKVP6kxDPwBhT1dRZTM/gln8AWrFQj9m/lK4fvc3P4swoyo2fkI/+Ytkhd6/Qj/gleCx+H06P0030hcXTj8/dYVBEFU1Nz+oDkp8FMw9P2vO0xZdMjw/LNpWksAPPD/q6YvT/HAxPxSGWUySBUE/tvdLuTIQOj9Z0Lt+r4s8P67M8ZB9HkA/WC4ZnMiZND+vmK6zYxs/Px2fr6p1Gj0/ghLyg+s4Oz9ZHE99gOszP/DsWJBZAjg/afMHHGxeQz+z9pUMouNKPxyzxoK950I/b0OjczL8PT8lYq9Pt+5BP09pl0u34D0/iLF1Pnb2OT/QCm+DmFM7P/6h9OBJZkA/09gSfTRYNT94jcg9fus6P6tf7jUy/0A/weW72NdhPD/O/oxHs/Y6P+2B6cOZsEQ/uvyWHwkSMz+E+tDk5kRAP9qvRU/ts0o/bdXRGH1qND+AxIEg2KI5P8uMuZaJVUU/lH2FPOr+PT/GAldgZcA7P0LkHXWuBzc/gEUCNrWmSD+BrttyvnA4Px5eQsvbjTU/ZIZJlYEzQz+f32x91e1DP7FFiZg9yUA/W6P1IqDjPz/5vnY40+c3P9pOXtsQIDk/Gc67BaC+Rj9IAEa2REVEP4R6EaVxM0I/eECuFM/HPz/DRLu+mvkxPwmBIjc/1VM/KXHo8LrFNj/qO4o2cbk0P6eI9w8ujEA/qXiJ1RI3Rj897JIsuAM7P1U+TStawEE/1Skx/YJFRD/77WeIlZc9P+uNVahA9jI/L0Uk0IFhQD+hb2sIF71GP4C5Qa2czzY/w3UY1RoxQD9+OCwzw0syP+3WFsReLTk/aCgHFjTrND+ihbr+ExI/P3XX+J09z0M/Qz2ohFrlPz9Zp2IUGHNGP1w5L9luPkI/0lUxynCSPz9G2wj2JTw9P4RVInTD+zk/AUJ3i7jnNj9rjiBTRnU9P7pIcfNlIEE/P5K9nuJKQz+Xv1TJholEPxgOaA/SWD0/I8WiFyVQMz+o5jBnz8hEPxziQ3xsOj4/uPC04yO1Qj9QXFatwQU9P1mbOwTSITc/RLMi0oVEOT9vrI6T9643P/t1hi1mGTw/ZBkVSrzCRj9sN782IuVFP4mgWBGvlzg/7ZxmgXaHND++SHqudf0wP9DX7zN18UM/V/zU6D3kOT9PMDtCCPM3P/m6LQ3TKUU/PvychbT7Qj/NCJ9IWJ06PwyRGq1/5EE/UuNhfscgMj89uBpdzjo9P2KfhMI1sT8/z31G3V8hOT9FT7MIEeU1Pzzf0A2tSzY/FWAqxpG4Sz8A7SPEUN82Pz9Wrr8+nT8/3ozSWfEDMz/TpvSQTC42P+CHS9rJ6jo/45ZPif37Qj8+EMOIKQM6PzDjMfkifj4/7fGTgTsEOT9wUNfnJVdFP5Zz+XQUnkI/kuX0WqizNT+4FgV4DSVDP1cJYhV51kE/Bk98EF2rOD8lJd+aq049P1cHzobtCEY/LBL3fsFzQT/B7eVLYwxAPzysK/fmXUM/k4UIaL1AQj9d9HMVG4tHPy0+3/jVekE/pX+dKeH6QT+TQKZcsSQ4P0cgpay7hkQ/EhUhqi3LQD+XWZhGEgs8PyVzTf2TKjc/G4zCQm4FOz8+9R8EqqA+Pwh3VQr7IjM/P2/1X5GmRD9L3FjAbFFCP0JyrDfc2kE/z7vSrhlLPj+VtyhV0CQ5P5dMsGBkxzs//N6XFM5XQT8p4OO7sA80P7witsN4MEY/+9qi6FvIPj87D8YGDSg0P2YSn4KWijo/4hlLkMXBSz/QI8oH0v9BPxDFiVS9oUU/0O89VAGUQj8LMW7VO/08P4YnVG3AskU/KEowP7H6NT9IMX0FIvE2P7if0A5f9kA/PH8XDGfkRz9OyLU+OOFGP6JN5R9D6Dw/xDo3aA2wPz9+xUD1FNtCP/h4iwG+TTI/hEI3DeegPz92qtLPAW0+P7Ww5oFBMjo/BWFs9kflND9AKY2qvKM6P1h4hag8ZkI/EfppQcfFQz/VDI1NSds6PxY9wvlszkU/j791RAzbOT9mVlScIVc1P5m0bw++Bzo/Do1m5numND+qbHaps4g4PyEVnk601jA/n/E4nUhWPD/s9JpWvvI2PxIeFGRpfz4/g1RzgRfyQj/JY7IqVbE3P9D50NW7FzY/NQNuc+mzMT/XULa95wRQP0+nlXJZrUU/2HpRfvzsOj/DH1/xvYc3P/MUswoNVzY/rEIFspegOD/7vUrHZ3U8P2CNNyKta0M/aqLrnEgrPD/7cT0CZltJPxy7EQQytUE/W0HTEiujQT8DUUGPYspBP3L+WwbypT0/PIMZYtvzQz/0vSsnRjszP+HmfbExjkU/yLLNfr7cQD+vpkOLkq4+P8XPnWW4L0c/e0TLCA+dRT/nAqbyx8tCPwqHWqo9sko//VHeC+8ZST9PPaKnoFk0P7UJPJ8dSjY/OJESGynkNT/p4DPu2pk6P06Xfu9aNTQ/oHLNlgz9PD+kVRGU+UxIP/+JuqSkZlM/FMzkEHvlPT+EJDL6cf49P9ZMoIOMUkI/upUH5HC4Pz/7Rr2lca85P8iDuGiEWzc/EM9CnRqxND+nz+jwCw02P8uAfqJcYTQ/mBg4kXr+PT+sQf0GpP9AP/M8cWbfCDc/B8RWlgk7PD9TaKw/ur83P2DeG/dxKkU/3HYRDgwMOD8wQj4J6JU9PwRFwcbU4VE/MfUWtjbyOD/wDobA5T9BPygOWQpswUc/BiJoJd0xPT905rQtHmw+P32pkAzobj8/NDlPUQJWPz/5in3o00FGP79qgxiKaTY/FNxZBXtdQD8f8/zHFDw9P0GUZxKAdUg/KntuSHPJQD9Y93Evjpw1P5JlR/7uikE/X2ruYkbqQD8r8tej8b0/P0nSvoTNqjY/UXZgJKe7Sj9eSGHAjfI+P0CwMU+x4T4/8Apeo86kOT9iFL2540BEP3v4g5iDVDU/YompIky5MT8bhgtQhQU4P4uDqTieZz0/y8c8kpXWRD+/65aRODNTPyiZ2T0ygzw/PKJM5+bCSD8mA5FcNu5IP+x5il4+QEQ/ZWtzH13FQj98h9MwGRpBP4fqdo6ykjc/lIWvr3WpQT8ADb1lUU9EP/V/+g7/YjY/xoY+vfFsQT9S2dsmDx04P26b/Q8d8zs/dAvrM1hSPT8vmr5sdRg3P+Hb0KHHgEA/5FZDDZ+nQz8W8oI01SZNP48zSB/FyTU/BNqutLKbPj+CeOix6eVAP7PycqhEsUM/ikJtSX4sMz8peAUAmWZCPzByba3RoEg/88hF096COj+HsRqFA6VBP304GE/cqEA/OHaVXUwNNj8Dy0QjNXM8P8wtLgfaGjo/aPPzN4W7QT9PrrKBN05BP4Rlkq8JCzw/m1jgK7r1Oj+h89PluEZAP6t1KUhIsUc/VJqDVhY7QD8NvVvf24IyP2khV6OEhDs/nWShWbYvQD+ySXkL9u8yP5ogC03pyzg/Yc9skZMNND98uHccJQA2P9QdqnoQOjw/1AGmklWfOD8FAY0tX/I6P0czi1reeD4/M1DufuLuNj/4qKjC628zP2L5rJg1pDY/iFdzLxmPPj/lB06A2Ac2P+qlMXPk9T4/auHdivf1ST/mdiWFVoA/P780QshEDUA/DSQgDUSiMj/D1kYeg3M4PxPIYTrx+D0/AvMoRqqwOD/ICKhwBKk0PwKE0sFBFTM//KjSi+RvPj9T3maojKo/P6AJ5y8Bs0M/niUw7BxCNj/HYrepY5BJP81MCNSdUj4/OwSGk9FUMT/KhylcUl9NP/38V1PiBUQ/vLrXB2GHND+MBzjd4nwyP+e0yvOwtTY/cMY4mLCqPD8TvzTVKxZDPzns9g3XYD0/F+2g+zq8TD8C3ohCWWU3P5266OcqNjY/zhFS5+zFOT/3jYS9VjA0P2Bk/8X+dTg/KyLAck8aND+VJwu90OxCP9JD5ioTBzs/d0+7667kMT+amVLEDetCPxmZO4vCVEE/BWm3d7yyQz/o4tlfIlBAP/wKZ/FBUz8/EtQZrd1VMz+M8HDnNJ43P3SJnB4R3EM/2aoBo/vUST8NLLJjRB44P047+jQu6TY/wLXWwQi0QD8NVKpqoP5FPwcPlluh4jQ/TgwL5pbzOD9uNDnitNM7P7puHEHC4Tk/GpPLbWUDNT/fezatP4JFPz/JLGG+0zw/PabhoCyYQj/yWPTNhMY2P6ehAU1ouD8/l1KNGvBSOj/do8xARO4yP+ae1rYmsjY/xcF1KrjWOT8EwzNNStQ6P4VLyZ2SpkM/TGYaH/baPT8Jcwzf+mRAP3DXNLeO5kI/lL8TZBg4Pz+d12bQwRQ0P7FB9N738zY/AVqf5KH+OT86/H/mvXtBP02NdxeNVDY/HLLzyZkMOD8DHLxby/c7PzORz7SP2Dg/l1Vh/s01Mz8jQA7JF1Q+P2Xags45slE/yfFh+2unPT8mlryDnTdFPxVRoSdWJ0Y/iNrTYcd3QD/1ILsNlT9CP0H2RwYjcEA/Fa4rjEtaMz/s60cqVoRAP8WMdC/FjzA/0PokD/XPND+X1k6w2XM0P50gJuu0kTI/OZ8oc21UOT+FiLpgh2lDP/CpQz5NBUM/cwWN+bbpOj8rCZ+Zn5w6P5tFwtM4jzs/zG+WZ2XIPz8dYBsuyE9AP5W9BQ9csDc/AVXwnKyfPj+VO+rquUVDP7V2EHi2ADo/waMtsakoOz93Rdzbrkk3P66sef1l0T0//EY+JoeMPT8u6ebq4MM5Pwk6hVXvgi4/5iwFByjLOD9PujRL8PA4P1baf/DjYD0/3cAkYjhBNT/KWKxiowxCP2jOKs55DzU/qMP7i0/qMz8IyiYmk0ZBPyABGNkSFUE/XqwcGEhpOT+0xkVaz7VEP4DQ4tunIjY/xl+7/bdnPT9RaAP31pxAPwKc+horLDY/DMJR/FyQRD+1MgKm45w+P3oS4A3Mfjs/me3Q0SZeQD/oPLan3CtAP+D8pN9gnTo/OU0ESVaAOj8XmOCXpHk6P81VJg42+0c/PHPcFzrwNj+OGCQaMIo2P/uXRsHDHEM/aCrieUtnRz8LPFWQLzk/P+TB48nYSkQ/+av9Jt8vQD+LysDgHnQ+P6tpp36PDkA/i1y+le+QRz941X+tfcdBPzSL8voDTTo/lIVjITCSOj+E6s1Fz29AP3LlBTtyYkc/MenbwQn+Nz+IXqQi3tI7P2MU92Rtb0E/Ec3C8nWGOj+L2McNNqpAP2NMX6cPX0E/8zLe5CSFQz/8z+iu7zpAP8nwAJgwbzU/63AyeRxpPT8heDpfBVs5PxNEkXnanUI/2zC0gQ7PPz+//rTpuZlCP9eejANFsjs/MZJU3kLiRD913UL095RUP6h/x/LZ+jw/X9OuAq+oPj/w1sTF+7hAP5zSNgi32DQ/Rta3HzLdQj86jV5UJaY4P9yiZCMkk0I/M07HjIVbPT+bF8wEaAA0P6exUHrFpEY/JhXw33ocPz8gQL44fMg3P13GxBvWqjY/iSFsil1hNT88EJvAW71GP+DDoY75RjU/8qyshidoQT+HUWGDvT1DPyMVeog8BT0/kYb6LZ+EQD8Pi+Y713s6P9LkJamTBjM/EEwu+bHfST+3TJ+Amhg6P04W2BLbpUk/pBM8lz9lQD/IPSjr4RI6P0JLm82KeEA/hEI3DeegPz+odTRxH3c5P0UBxiY+5j8/bd/lGk3LOz+7PfnVy9g4P6geBkag8jY/3VRWM2hxQT8ML/PjUDtDP+cjRz+83Dc/oeZ5qiJgPT+d7aHi18ZKP413CGInXEI/jLQaMwVCPT94rPvCibo/PywYiKoH6Eg/3fOCo3KAQT8TEJgp2/dAP/4aS4Obvzs/J/vGW9f9PT+XbzHKKb1DPygCn5ZUqjo/H1SJgn5+Nj+913b+4IhNPwWfZWQwSUw/DE65zC3QNT813uveabY7P9c49kdzvz4/ZESVprBuNj+1cWEwwaE+P/FnENCRHTo/NQ+2kRgoPD9vy0CY7aA4P/MzZQ8DSTc/rwwADgctNz8bj5YmTOhDP1xoGW9Myz8/AbHz1sMOOD+iRP+PCbQ4P5DusiIUojY/8kY8kvgAQD9q0FPBAV1GP6U0XmRJUzk//sN8ykj1QT823fcXXbhFPy8brB6BVjg/PyQCKT8WMz96YHQ3V+ZAPzeeP9U3HEU/exUCgRozMz9B/GuVOqo1P9IDf/VBYUM/U93ffa7mOz+ha0Pr/yFPPzDoQLNEl0I/NuiX/cRFQT/PfpoWmdk3P2JoAx2ePzw/4sgf5nRUMz8P38S7HKlAP5C+lWHmfzU/fAovqg2aQj+aDZI79RNBPy6PVjFs/0A/D8xG8W6IOD8q/5fB0bs8Pw4XYO9jpDU/9Kb3lGkiRj9auQ0morhDP38txvjk7DM/yoSNItPwOT9ss0kvftsyP5ZcnxuV+Tk/MOj0JP9/Sz+9HIBRpQ1HP1COdJmpLzw/+lCp33PKTT9xEJh6IvcwP7wtY9PiPTs/x2dUDp0GSz/hEWuqVHQ3PynboRDq6ko/HkBK4mhrPT9wQ7wQ0wdAP94sPx9OKEA/jTUhgrGLQD/ubCX60JM/P9AVVj6Mj00/ojRpjSAZSz/5nBQWd+RBP0TZBcpAejc/joXFASQ1NT9UkBHjRNo3Pzpvsvn3mjc/VS9kGvJ0Qz8z8A62+fs8P6h24WKgxjg/S/0f1APuQj9r8CYOjPtAPwl6OBkGQD0/kpjaMfmPOj8Mzix+Xco8P4+buT6uODU/6U16HFzzMD/uiHVw0UU6Pz0QQggUJjY/aeiuC5B/Pj+DneYNxVc6P9F6n3oJ7UM/dOcIZ1ckPT/EMdJY6Vg/P5j9LCmGykA/K9B1gZW6OT++f/tTDW9EPzEOpSsVqkQ/XncvATzFQT/+weg7vSc2Pw+ZVUxjgz4/vCq1tqfmPT+XAiNGB9hCP19ifRovkTY/KrUei1tvRT+AE0S8+TZCP895kBUxKTQ/sGX8cputQj8U1JwuHu0+PwY+ccZRNUE/dZJc56eEPD8AtHssXNo5P/0DT5sdGzQ/wDsVSghRTD/EtucnDDI4P5mJghabITg/rqLAtAjCPj/RTqUdOf05P7ePAGHsLEY/wOnwH/F8PT9lfCOw9elBP3euVaaLWT4/AGe6u/RNPz/t+B0tSN9GP2KcSPvi/DQ/WFhZo2owNz86h1vT9o4+Py0JplOEv0I/hECCcHKwOD/ZWJajWFI0P32JVdzo/kI/bxa1T1UOPj+HUzzn1Lk1P3sCFxo+2Dg/i6ATPU6jST8ptyzgF/c8P/yBwSGTDU0/h5Ft/xuSMj+k7XmtbVI9P3duFDhdP0I/sO8obSi3OD+JLAxwxe5AP6WME7qmmz8/keR6WsxvOz8YreANIn9EP3F1tDUYpjM/TCZGTfb6Qz+TXVc27Q47Pwvy7Tx11VE/zzDl3iRPRz/p9locCqk/P/avBe1wnE0/c8gI0/BgPT/WI/uKryI1P0UfqivKZUY/KyRPSCF/Pz8taFLxHB1JP9T9yQOEG0g/N3Tt6tmcOD/9OvYHWBhDP/Kshr+E3EU/d43aIDrURD/cdyucu5VJP4dELQ/K4js/q03EpL2WNz+V+TX86IA2P6fIXkX/MUg/mHmRWj81Qj/Oeikjy9VRP7AbkGYn4UQ/aM9qI8wkQj9NE5WRo842P3mmN6aeOjM/juczoN6MOj+gqXQDR/o7P23X0kM3cjI/mcq8BJCiOj+BjYH7VQ46P6VfJZbJrT8/lHx9kfZdNj8AF+NK3ZhFPz7TPmJjejw/iao3Ia8yMz80AcYAd0M0P2U6Xd5oPDs/f+XtevztQT9GErBiYDk8P9gfbYtOcEM/lQjTfgu1PT+8ccxeKPM+PwoE2Wmmpj0/P0Nbde1wMz8f0fVeK4o/P9IaUxXyvzc/oKr7LSW+Lz+vF8EBWN09P6zuhKNTc0M/WhTyGFA1Oz/pz9wVigxMPzEpj4UguzY/o6CDSjYANj+sFyqcMKNAP71Eq0mm+Tk/o2ArQJKUPz/TfhBu1/BJP64HT8XmEzQ/rm7HZAkcPT/KfQN3xhU8P8WiHN4JfDk/gG+Oy5xUQj9UXsAFuKRDP1mlzoWMpTo/FJAN3DWsPz+NzOnTpsE/P1npNxHSWj4/S3zmk7KYOj9YN9lkX0I9Pw1/KseUqjU/pEt+Ej/JRD/Fft9XlvxAP2EnbnU2bTE/hmu9+AVoOT8ZqMQp/uU2P0w70mxgozM/6vsxLM1NPj+WHMtJlRlAP25AGR1vdjQ/k74+qsmiPD/qqzT0Eg05P/AUmGxBkTw/SAe+fpU3OD8qzPKqC845P9gemtIqlTg/Kvh/a62DQT8roib6fJRBPwISqFn7lkQ/qFWH6zdkSj8fj9mM5fNAPxd/ZAWCqjg/3i70u8IYNz+h6XNVo85BP3XxtIWyszI/qOjlA0S5Oz9AmEGgJj9BP99x1hwqCjc/sAXC8D9pQD/Eu5ZvAZEzP/S34dCLdUI/14E04lBfOT/CUfxckNRCP38Y2mZOijs/TxYkoSC9QD8aWCKrtvY5P+bFDegaoFM/wWr3bp3GQD+Cf5Nr3+M5PzJiuJ0qnTc/hvlsyRxePz8s+S5eWY04P8T0GEBTCjU/yw06rGZZRD/lxRoSHSA9P3zM6a3fHjQ/LYQj6DKsNz+tf+SR0HouP62ZEs8tAkA/KKlJeXiSPj+Ya4otKP8/P/iucZiQWEA/SbQSKqCfRT891b4MCKVGPxYOjNVJKkE/AyicloWaND+ecF3O+ABFP1dukrRVKEY/BfX4gOpmOT+6vesG5vU7P95CGr83ID4/CJMSHSoPQD8AKKe/XGA2P5sixaIXJUA/dAw/bZEKPD/iiJLpACNAP+a0I6z4TDc/CzgeSOtjNj+WfCba2YA9P+IUG8i6hTw/QCCnGoNvNj9aIq23IVQ2P+1OHuYwNzY/rws/OJ86Rj/ApoAUci5AP8HmjpH7PDc/GIjQzookUT91PAN2d5U8P3wPOat1SkY/7TkyVJrUPT/OiKwXPoA3Px9jmFqJVUA/spkJp4H2RT8CDXiR8Fo1Pz01ntXwl0A/HlMPgqI6PD918Wj3bJw7P9mmkrBYizs/YEqwerjLSz/Z9NpLnts5P+uvt8qc+Tg/+jOdTMWOQj+3Wg6RJiA+P/rbdaF/o1k/VPf710+FQz/p8VAbovg7P+kWreh+ajY/2eKPrEBQNT8COPjt5AZFP1Q/Z7kJSkM/L3VBka+DQT8pYWTRjRNDP3vrdesyhTk/wT+YIJI9PD/UItpCG3Y7P/GiuZJAKjU/cNPFxOucND/WrHqTu9w7P3ZbqFBrBzQ/6Ggqy93VNT/jPk6lWpxFP9JQJ8kI4js/9GqA0lCjUD8GoqjlZyA/P/A/qywHAzo/54nd+o3PND+2WSyt1QoyPxEXL//pUjg/2JbHu58qQT9NcB/2mAE0P4Bupy6S1jU/vCoBRe39ND+s7gUkaVA3Pz8GsYeEXDo/Y8u4yo/PNj9rA1lK9ARCPxIFZeChpEc/SJ74JXMQOj8J+OkDv8kzP+nLk+qJTjk/De14oAmlMz9A2Ds5yao2P583o1NIEz4/9gambdjDQj+tccEPiopBP0txJaBh6EM/raKLwjj8QT97wq/kbDJBP4ZPuRBLzTU/oCRk7d2JQz9+PLwzT7g7P3kxcQTZTUE/aab/1XgjQj8ClXBvHlFIP5dPF6gTcEI/eKhF+1rCOj+KJcmZRMI5P+OSXxZF1UA/k3VyZdSlND/cZyj9o8A5P/cP+ZlAMjk/8UIAkfrCNj91MdXl96pDPwl0gSYdQDo/zytIeuvYNT/4eTjzPp1BPz+A35uz+UA/XybMrIzjMz91g4xz4ERAP5heokd6uz8/aQQlSTO9ND8py3iqL4o/PxqTy21lAzU/kZQxlMwXPz+y5Or6F549PzeBrwnlVD0/3ZNcBf7eQD+jPBSBwaBCP7LeWc/RKUY/ArF0V9nrOz+WIWiuzo9BP8x/ePiTekQ/0ZrGxiG6Pj/EXgwLDF5GPwK5Ujwffzg/lHTFc1NWNT/0VW55F7U8P8vL8lnEzjk/MnLPICkVOT8e3G18xdFHPx+TaY1xYDo/oTDmtpYsOz+1ILcGhhE6P2ijFw60nTc/Vv0mIUziQD9U9SB0OAlBP8nkIF12zDw/oWH894q1Mj8Hz2MYoAI6PzeAp17xszU/6IRUejv8RD+RZeeLwtA4PzRvFNrrPUI/hdbcNCouNj/A783ZfAg8P2kGude+ikA/kXLPcXAUOT8hO5UqVq9APwGzGskgokE/9oEjAoewNz+LmIHmTSdEP7oDVr3lsj0/MV2unMLsQz873tWMuyo4P4ciJqbgMD4/AU2EDU+vRD+YuqWBkSo5P+PvavtP5UE/4120Gwt3Lz913O66vtw1P3n6XPtvFkA/rbaxxa0DOT/AAR4ylPxAP4OVh6hp5zk/sFMZt7LzPz+H9ONIyoo/P/GMIA8peD0/TYsvF0eeQT/pmMgMIdU6P6m3wphNsDo/+b9+48aIPz88NdHGlaM1P6Ff1QUuIkk/5lU9Y9bAMz9nFVRZtgRAP4Ud9NyqOjc/WUM6IC/COT+GHZskY6M2P3An2TYBkEc/4mMQVYElSj8LbWvRI8I2P8uWTBhE2Tg/mLHluPqBQD9k62VQd+I1PxoYTtm2FkA/a3uBeq8xOj9byX9iE4I9P5olbgaZEz0/3V4jYKwjQj/W815Kl903P5bN1bzOeUI/YYrkvuRlPj9BJAQqatA6P3siHVhtgjg/7bvllMdtQD9ISET7z88xP2MQqYCzSD4/ey1QoabVQT8rxVvV/HIyPwu8zfoYnEY/NSnfFbxGPT/LlEvtidE6P5ZhdCot5EA/zoqHe1X8OT9S+Yis9i9HPyntEnfqAUs/wH/KY5MdNz8uSXolhJ88P4i55oaNT0Q/atwNNRl0Qz9IrGc2/xc+P72tStsllUw/Ik3O5vdROz9NHCBoarFCPx7MRBYLcTw/gWwnhO2rOz/dmJn3Cps5P305DBbppkY/55NwfEhTSD966GwVhdwzPwg5far74TY/k7quqT02Mz8rUNwIwzQ3P6qcbaM+Hz4/x3sNdePTPz/Z7ysEqXw+Pz5k6N363jY/1UUC9JjUQj/vsCaioXdBP4U6Jjf8AT4/Vtym4kD0Rj+ZGiySMoYyPwxYTE7oUzk/IVzq6ASpPj/z1dL/GXUyPwnm0VUGSjQ/Y81tZwTATT/bVD2Wx2U/P5f8Zppkbz8/TQxknt6KOT+WWxjxtjU2PwttfbTfqkA/Y4dwTTM9Tj9MEOVzPb1BP+PVrhPbADM/MpnybTZgRD8HCucTrIM5P++ndQQ4CTo/fyEyTHBhQj9Ed94AEtFIP1v8SkB8+zs/yAswxpx0Nj/QpCRWDHg1P96rBd/80jc/5u75tYN+Nz8jazNsma5FP/s/jLKsazw/1y/J4q3cQz/CwCwaVuQ8P21HEGWqi0Q/XfIFTjJJNz8DsfXX7sg/P3eeCzLo1Tc/IipzRNXnPj9n/SZHE4U8P5QInow770A/7gPS9pYPND9YZ3Wld4c6P5DcmnRbIjc/S7CEKj/tMz+Z7z6ZD6BAP2nEl0y/izE/+2tyK5a4ND8bQlY2+jg9P1e5GE95fjU/0UsdyKAxOD/cvKGLrlRFPzf7t1ZxZjg/NEDZ/A4xTT+6/gTn8VNDP7mPTvBc/jQ/T/EBf815Mz/r9hoBYx1BP3X/1wf5oz8/Kn1JrIpFQz+KLtXwIIJJP1lI6WckITU/Uix6UQI1QT/JPrbPpPlFPwMKg58pVUE/7wy4htBDOD81L7zPR9I7P87lXEPWPkA/Ti34wNAbRT+28RNGNDMzP7qpnzzOYjk/3fR2an9+Nz+JjYZHc0hAPypXGiaK+D0/rHthu0aOPj8s1qDKkRc3P4nABZeWqjc/nBOXvU7lQj9dcT5jyZZBP67Hr+W2+UY/ywZ2VdBPST8Z//JUfWo5P6dd5E9oGkM/ZnbbWmbeOD8KkCxWkEM9PwLZ2fpjBjw//Laz8VgaNT83E7+hcVpAPz7Gogr7TTM/yyxZTYuFNz8SKBk7DKY0P4XvMgCqcTw/gpdiDIFjPD+NBuak1H47P8TRiqyLlEM/oDavjDsVSD/UeNr7A846PwnN/Aqc4zE/Jk8kWwdOQD8GOwp/oow6P6adfnbeyz8/QbzemMZ4Qj9d/nMzBEk9P11QmF0bHTw/+RDBKY1HQj/ogaZdAKVHP79BS7zbczs/LjiphgJYQj89qKohiCs7P1YD3hM14kM/YlZxqLQFQT/FyNkOIiY8P3DpTGVHZkI/XhEG4pgMNz92XtftuztFP/95twWNkUM/YU8s0QgfMj+6TZwCt/M/P7jVWDQwAU4/6S8DtP6tPD8Wgb7og0k3P8ayM2EI9Do/tlXeyBvkPj8Wrf8a4Oc3P7fRjogaZjc/y0UhbvNrQD+ZJRNNJsI0PwbhecUtyEE/mfHzNYSQNz9ux1AlNXpGP5Oq8t+xDzo/BoT8ijoVPj/2LqueNiQ6Pygj+Q29DDk/hTcdYU5ZSD/aiz27Sfo+P/x8A69wdEA/0fymusS0Nj/miHXdbXREP7Sm0n9x0TI/s5ZJp4q2Pj/Irwt+nOJBP/WzGSahlDM/gsj3zF8PQD9Tv+xN9SxEPzmNkUXKsT0/L4wDzqP5Oz9r/+lXUbtDP80yql0qbkA/rqIyCvFkMT+b0rWHofswP0Wzo1KbIT0/NkIotzkKSj88GwH7ORw1P//eQF2xejg/e7EgYr0wPT9lQjvDrs83PzllLKI/lz0/bwcYzTLaNj9yIIk2fuNGPz8h52/VhEM/BjV5U1wYMz+ppKRAzElLP9hbHvnwHUY/CpPNSMkaQT+WBnmbCRY/PwNMWJzjPDk/Lg4d8RqqOD8TjrH3CFM5PxoJU+WS4jc/Byc/NaDWOz85xXgHV8RJPwv3vZJTVzg/TAjhx1SeOT+LLMebZPpBP00YHhL2oTY/3vaxQMO0Qj/oStkpIxw9P396FRRk1js/SgAB4uNQNT/Q4rAnxqE6P9ugTxSD6DI/FwJT4kfwNz9qGdkwa6tHP+MxZr+sWDU//gHP8HjwOT8RHrmq9i02P2oIzuZfNUA/noGgwmLrQT8kmWPm82s6P6/f6yKHszs/1iGzimlsQD+i9S/K5Z82P06OTNHb6Tg/5dDM2kCWMj+BQzu2hM03P2Y2AtCslT4/9zeEBG7YND/lCqPky8dCP1EBdLs+Qz0/K+Cyyza+Nj9XxtpthDY6Pziw6ubBYUI/Ea/jpqNvND/dVtjeN1ZDPyqkgN1+M0A/vFulMPnjOT/sObHThPc5P/737+B4VT8/Oa4RhNWfNz+nevDiFlY+PytZwpj8aDs/t5YxVLFwQz8R0pcBDnFBP1amByH6lz8/m4KSiEQvQD+C0DBrGPQ0P7X6LMcSczw/TZwUmq+IPT8lTQ9MZqNAPyvOdFbbsjs/eEJ6TbkJQT9mHdLLz90zP1w/U2iGeDc/XxB/t7pIMz+t+GW0fshFP+16GEMBJ0A/I/C11+rBQD93RZUGI5tAP/pVWCdpKUk/0O3wmgF1PT9Fg9IfsxYzPwwM3xa6fz0/+7+XgGeUQT/f2aL1hco+P2JAsl36x00/Aqfh1R5oOD89F4Al2+k8P5y6QaByzUY/0uYm1E0OQT+ejVV9wJk+P5jlbLMRhT8/Yi2AIZK+TD8+tsB5zJs+P4fvgI8aQzs/6wuVPRHdRj+8ZDAHwMY1P3B0OjU8Yjk/iUMaO/97Qj+FW8w8qntDP6BroVwBIkA/HpDfNq7aUD/iAxB+rw9FP7POw8zojjg/kjTq525TMz/m1gROP3M5Pyjl/5/UqEE//bFQOKnSQD/W46KAC7c+P69m3FXBCDc/soR9hxdONj/MjaAzlNNBP/UNqt8VWTw/EuifIn8XQz8Vu+2qVhI4P2peXEpg6jw/zGSvrHGMPT9hC9Jw8KM/P1JrRngOdEM/GFYff9E0ND9o8MSaNIdAPwfLGu2fREc/SFHe/MPsPj+EqhqCuLJBPwhLpztwSkA/dzxRBehmOz8kI4O2fvVGP4sDSGoqVkA/0Un21UOePj/OB+Us1c0xP8dqSQBkDD8/a1aXArtiQj9COwXLod1CPyxEFWupnUA/cC1JVF7hMz/msfQOqBg2P0U1Heg+jEI/V3SQfMrWPz9WhoBitRA8P17w0THTNTQ/blId50BTQj9zh4cPcDFEP4/h/S0Lajs/5JcxbU4RPz/xgRhGTBlAP+Q5WIjZjkM/Dw6OQxETQz8aKVkjwow3P4aNxGHvGTc/oB6HM1L+RD/fxCi51wo5P9ftAhEhLz0/wG2M7jcSPD9a9eRa5/ExPzcR34SgdT0/4Zo2QaZFNT8pgIVz3fk9P8WNoqFbvEM/cY/xnaJnRj9aXqqzCRlAP2UuyTH0sDk/KsGMcC1vOz/FTaNP/+dNP5glIHcoQj4/rlSe4GX9Oz/ghGjLvs1AP21jp7A27DU/hPOz1QikRD8dPqcosGNAP0gyq3e4HTo/tE9Yxqw1OT+7l9UdhrQ4P9DGBfhSnjc/psHSmMecMj+n3mRlRR5SP8PMjdUlZDk/vy8AHX7oNj/SB1uEE+UzP1kPQdAvHDg/emrh8W7eSD9IYcCN8p5DP0YVBcdT+Tg/HSLETt7rNz9s3uqZW6o9PwPtzAw0Aj4/BudWf7lTQD//Xa5kGI4/PzDT54R/+jc/l1eXG1gDPj9Ess6YTIw6P0RVw7NBfDk/up7eSH2yMj+Zko5td+E3PzP3GeIbtD4/cNujqTEwQT8W8BRt7OQ8P9arGTCApDM/c7Noz58VPD8QP2zapic1P16gz0BfjE4/frNi8uWJUD+6pLsCCT5BP4+D/oHzW0Q/OaaMV9ejOz/5+l9Q1AlAPyKEdVMyTzo/WIUA8rtvQD8zfjDc+JRFPyVhyLKscEU/+CzSO0piPz+vFZ/ItLJEP9qEWFbKzTg/gFJXuJEkOz9OZAzKOVM2P9EiHRZRsEI/yl8QRw1cRD/RZBjarSM2P5VC9Rbc/TQ/YsfpZcDLPz99YNaqrlpBPyNSfy8Yaz4/UY5nb6evQj+eILlOhldAPxV8jiB5DTg/Mry6rIcEMz+bVTIPf549P2jpbeDMt0c/jdI44xrwQD89u+5ArB1GP3iQ99rOHzw/YWoWKxQwRD+9RPfX6xBBP3xzYZ9e+0I/CGerIyvlQz+QSEPciGY/P29Cm8g+WzY//2Y5O99wOz+jZdqHh/M6P5m6TMlJkzg/QrVU7bmdND9wj925u8REP3EZ18KjwkU/aX81QbNvNz+6yzkJidpEP00Vlrxd1jQ/wOE4Ak51PD8vbDU608NBP2M/Ufq+j0U/WafPsEatOD8R/It6avA8PwbTPaZGzEI/docPSmoxMD8okKzYbKBBPwLP6782MUA/9GwPqCIIPD+LK/TiQB83Px4D7IJFbjs/wpn16GH2Pz8zUYmNp1VMP9frAeZmJz8/Hm04BkZZPT8uReok+DJDP3x+x9k8WjE/I0W9EA2zOT8k8Mm70WRCP95FbyMr4Do/zsC057O1Pj9PaI+gwz82PxQW0JzZ1Dc/nkO2f6fBOz+TqXjf1cs/P0ISOgsiIjo/syMXlFCXOD+N70R2ySs8Py0CvDVLKjw/iDO3KbvsOT+aHwOi9SpBPwenSgNb/0A/IM7fXnthQD/bK1HIXoc7PxoFMIE1sEA/HOtP00j6PT8U8VLBE0BCPzOXrG4bZDc/IDQExWSxOj+ZC+rIgqNDP1IUutuN7z8/u7KFzAeXPT9UYi/4Wu5BPyh11mJIMkE/Gh/GoQcJND+Z34LPg3k3P6PpHJ6G8Tg/TpIoYK1tOT/EKoBXO/JGP2384oLOzEU/jxlSjMa2ST9C8n9bOI9BP8zeXkG2Bjg/HT/2qC+zPj+8+VxZ4RdQPyFxLzPjojc/F0YI/NK8Qj+gR+Cd6RY7P5EKhBkqMTU/FfwB0qgHPz9v2nB+4ZpNP96bu2pZT0E/wI6fkBTGQz/T9M+PY0RCP0H02T46LkA/2lsg+hvYPT+Acl32wM46P+PQfkvQxEM/TB3NWesAQj8IUp6Dq19AP4E8/Zi9CUE/vPQGyjNQNT8jp50EsK1BP4N9GHr0IUA/7f4grnb2QD9+SlELfks7P2tqdjCku0I/6phJjTayPj/g4ScihMY6P3eEFZ/pwjs/1objKUa+ND+M5EnX7kxIP8rm7paLyDU/sLamnNY9Nz9vtkfcVL42P6tEX5WZPzc/ZBengtOANj9Svit4jTpDP2qlZsjedkQ/sPwQU9b6OD9olVxv4n48P4mI5CmAaT4/vXWbw/f2RT/xeq+oKGE9PwVVsoIwzjc/A/89czQZPj+kha3UEZI1P45VqED2EjQ/IB+wT1l9QD8eqzYt6CU1P+ECT6hHHTQ/K/IjMjfVRj+kkG7IYkI8P5G0N9L7wT4/guBUGBnsPz9pMRNtEKtEP6tkPwwmXjs/z3ZheOD0Qj8H8ZBILEBDP2HBiysfYz0/Ypb+pCg3RD8funr3wsI7P+iiANVoBzY/w6nFltS/Sj/i61TB9DI0PxAdZXG9dTc/OSzQmJCpNz9C5LDYf81EP3MAvaPYZ0Q/tx3W+KWuNz+m7pr1Af82P5HBxP42tDY/sj9TJmqmQT9aohM/T84zP6q+wJpt6DI/fNyTlK9cQz/gFM04SrQ9P9SgUYJK0UQ/36y00ajcPj+ncYvT8v49P6VSCr92Xjo/w//rFmCjRT8Hs96vz4oyP7T1/P4HNz0/A5LCUuP5Sj/sSpsPp0o2P+w9syn5BjY/MwRbgBGPLz/oTYdGXnM6P+w3sKjK7zs/9P+5TnR0ND+xTrb9Aqw7P//gnEHe0z4/OEuCnYabOD8uZvgNG346P5Y/ITP+Gjw/CZTT8pEBQT+dRxGOY2g4P21k++lvpDQ/eMJNcRW+QD/iP3oWxg5BP729LGxURzE/1eWhqpoERT9CK9xk53w3P51OLp1BCUQ/hqmVWAWpNT/uFMlcu+I5P1iZuVgCPTU/9kBCzNnGNT8JLZBFP780Px/DBc6JpTc/52f8WEepQj/6bwIsIiU+P2OW7MFsTjo/snKLoAFaQj+MCceytOE9P90zV3VyYDs/Xl6utV+NPz9IpNXf/ps4Px72A52XKjs/dNSPVWNsNT/uOJ7/uZBAP0FwJdNSjT8/bUZPj0KZMz+7vvhqk/9DP4P2lOPoBjc/+D619zIcMj/AO2HYTWhDP6Q+liyRhTQ/m79+kn+JPz8vFMe5ASpCPz4gEraG70A/pqiL+HSTPT8X+e3SI5k3P922axnbMTY/KEUAd6a+Nj+o8p5Mocg6P/yeZdHMdzY/f6sFjrXTNz/M552JN9I8P3sjcZGmOjc/RMdunJ3XOz/1J/kqXAM5P4mdhC3RtD8/zqOCjWLuNz9paJQSqBw4P8u5gfPDtzk/R7EWfvR2ST+WYXQqLeRAPxU6JsDtX0I/Y3SKnxBLND/TbqAykeE3PwHBHD1+b0M/bMVN+U+4QD+92wu4Jl5HPzoBPlngFD4/9avvshXqPz8wK8Ohf845P+zb+Pz4lzk/BBAbhVTsQD+OMXrlr81MPyRyngroIEA/yq158DvPPT+madG0JD01P7MFkQDGF0M/RaeOJRG5Nz+kC6WHhYA6Pw+pN92RNVM/epJsXJyERD8K1uKa1RdGP0z5xMVHRzY/VjKnmylMRj/xbGZfP+U0P7CMwU6n+Dw//2tpA+qsOj+xJp3ovahCP1WyGk1ZRj0/7lH0yjnUNj9fiOGS/6M4P2qKD9KkK0A/ckG95kO6OT/A+FiwQ+s3PweQN39nCT8/MBGaHdyvOD868awPseJAP8qiOX0A/Do/ryq+S/AgQj/CPBDL+XE6P06f6n64JT4/9gjubR56Nz+7UNBYwZBRPz6tALE180U/wVBclREFPT84A6ofnpxGP+CiyJemwTo/OHpx7B2RNj+Nsd5rso1CP9CyuS07CzU/DoGGq8EDPD/padm9id88PyamvyK1DEU/wVEJh5JUPD+7NDkNNTBAPy0a5I40QT8/La01fT4WNz+2NvfRVSxBP4NeLMp0AUI/pnS4bxh5Nz8NytYoW4xAP//34rZ21UU/F1B1tuq0Oj93jM28jMo8P1e3PethAkM/MLmYOTlQOz/VyZ3C32lBPxSk8cLYbUA/itREN6y9QD+WEYYdoN1MP2O08dTh8Ds/arEgPPaNMT9/+SdiWJg6PyTkoquLE0M/4ZR/Tr1FQj/g6wYyhGE1PzhFXg5vYUM/XE4Wsks4Oj906cK8hX1EP6gtgrrZA0M/cMfliTH6Oz+ciDeYcUZJP1NpM2qYgzs/ls8dvRQwNz8oc/ZFd00+P9Fs9r7ztjI//X9GMKhLQz/iED856QE8P1qB346J90A/rz4e+u5WNj8iQg3zpqE0Pz2c8K1wFD4/9tKGVjaSRT/YeyQ3IMhFPwOHAV+SSTQ/WAMso6WzQj8SzWk6Lu85Pz7yvXW0YDg/CCcMRPvKNj8KQV2QbC87Pwfwz3LETUI/oHWheurfRT+znieM0Ek7P+kI8kmtSzs/V2+Ge2ImPD8Y6tHQFkJEP9XIfnt2dz8/EpTnadx1OD/l2WuV7htAP/aqNZeSGjc/XGkS7xIyNj99eseE8wQ9PwAZ5HWXoDM/f9arsUwLQz90XK76M+5DPzFFOrWTvjk/MlcsnKmyPT8tpfzehTEyPx83suGfCDg/DgJ0Xc1BPT9dCQA1hTM3P08dL81CdUI/hCwQ37eROj9DWHHQfNNGP/zsLOz86kA/htfk3x3PPT+/vVQ0Io00P8FF4nZMA00/LFKqQtgwQD+pOPzYngUzP33aWr+W4D8/EQU9GNReND+i5b+On5BEP3aSKfYCeTc/xd2f2RX9OD96hFYEWBRBP44hQlTIMkA/+CSMc4/9QD+8szl4bQlFP0nJjGZOXzs/hWTEr5+YQT//5B0XPQY3P5SvbjYCY0A/isavX30qMT8v3CbNAMY8P4M0AKe5DUE/TfGNKLocOT/jBya4CsJCP5iP3k8R0DI/mNm3+LPWQj+CX40tsDk6P5Jc4u7KM0E/zCb9ExXXPD+KowgvFak9PyY07nK2JTc/1kGn5dwtNj8xPgnCzno8Py0SLHGROT4/3donHznUOj9K3B4V4yI1P/+sybiBuTg/J1r5Mj+hOD8+n0USZNQ6P6GsyWc6ujg/nZzj1LWTND+cZBsg5+k7PyN1fxjIg0I/OCvDNOOfTz/uxgFCi28/P8e1royeP0M/HhqzePNMNj+2ywqH1nE5P8LrZaG+4TU/6s5pz5LrOT9K1e0hHt83P+9ZUzCVRDc/K9CbSDhGNT+XbpECq+09PxD3tGqnSz4/LOzH+MAmPD+getFC9Rs1P0L7chV0Qz8/UXWfTj/JOT+iRrnlNw1AP8G1fQnBHEA/66naEBFuOj/QzGMy9AY6Pykle7mM8To/Rh3/AMlGUD9qlYQ3sMQvP/MmJHENbjY/YISYZ//lRT+LQUHYEro3PyOpeGjHKUQ/SNbNBEQ6PD+C3MQXjX82P8TXG9jRCDs/idEixF0JOT9C0mU5IkJAPwZWYXXc1z4/v2SmXv7dNz8xKUP32qM/P+fkehiwnUU/BnxEbZcNPT97oS+mYURHP1umcE42Lzg/TFNVf7wLPz8ndyuNkGg/P01qQjwNdjU/mm0ldpjvMz8cPke2g6k3P0gf5td+Tjs/IlLY518CPz9ETF6kHSU5P6iYDpMsBEI//oKW2+GiPz8a/JDGhypDP6nOHPLMVEM/SAGGC5daQT+JlOor3ZcyP8itClPi2kM/n5YIHFXCPT9fK7DmUQg8P/RfJ8J0xDs/qMH6YJXiRT9kT/vgjs00P41gnCXszj8/MQjuOCyqQT8SM9ouXVY7P36ngrcr5zc/Mp5pC81KOj8tYHQM14k8P5UO1v85zDc/SvE9mB6RMj/J8NrQjeM5PyTfzZzzKDw/akBXN+tHOz+n2/0dlnU7P0GTpjwYgzc/xMgRuYCaQT+wAMcaBfM9P4sR/k9CDDs/6q9cESqoMD+hAMn1aAo6P8QnZZ7RYDc/dVIvXWANQj83GZeiQ30+P0l0X2aJ4kY/kpXRW0vnND9m7OFRfuA3PxvmeMOFVT8/ksfvRzMRRD+fgWgYBHc8PwZG8TmWyDw/JHMlNcbkMz/xeCDTVvwxPx4VNyKj+T8/2Bm2mGVwQD/Jiz2VgldDP4bu0ZxuOUQ/S4/eJJFzPj9XlOJIP5g2P7JOqdMALDI/h5+pHgOOMT8ibgKXvSg+P+QZ0cmUB0A/P7LXwPiXRD+5j07wXP5EP07levxabjs/YdSIdbemQT9ex1IAmZFCP+PSoIRz70w/wjdhgwQTPz86414NDv43PwbzV8hcGVQ/UcjQ3AOnQD9gYXdwZqo2P/fLjw77fEU/ieTBnPRMPD+ELZcJllU+P4tWuxTBeT0/xfMSloojNT9fV5ZfO1VEP6UVvkIPSkI/hkxkrFcNOT9takVAKmpFP7oLNKIrRjo/wFsbiDf7Oz/GrU8nQ89CP5eWHG3Ykzk/L44qwACNRT/HLxKTnaJGP0gFl4w4pD4/Ziht+H0CPz97JydZ1TI8P3kiiPNwAkM/MgEL1dc3Qz9oPAwLwM9AP967dRpD4jk/IOEyqcyNPD8HDMJ3w/87P52rX0nvpEA/bRi0eeRbRD9bY47tzj04Pyhu7EQPnTo/7QTYoF/2Qz9UaQB583c2P6q+U/4+rkA/YOU4BlDLQD9TaX/43ZoyP+unkhDLt0U/6m4JhpQbPD9LbyR1p+BVP+jYUwhqTDY/UZtPVVXzQj+n/ljAuN83P76pFZQMejs/nAg+rXIGPj/y6/ktSYQ3P2fWO6RkrjY/ADRhM3R3Qz+d+cjyHRg6P1SWFGRz8UE/TXsseC/JQT8/mOEt+oQ4P2EdtSzZXTI/0eha8KwhRD9FVUQ0V1k9P9bkwcd0qUA/BD+YfgM/PD8kUpjMuHZAP57Rw8G/t0I/6rRzPJTYPT+4QeCNdCI7P0P43ZXZ9zM/hIeZGPO8OT/qO4o2cbk0Pxk2dPoU3Dw/nPlZVcQjQD+E5n9hFUk9PwmBaQzLgzo/Js59foe+NT8uQaH593RAP0rGKthYH0U/wksfowRJND8omgewyK8/P5L71LNLFEQ/NcdKsF5jPD/VaZgyVOs7P0t9k4Uz6Ek/j8inYosmNT/XvnEzizlAPyc1D7tK0jA/vdY7YkjcQD9Oj/nCXDlIP0nQvVkTozg/tzkAqAPVNj8gg3rSQC48PzpW3a6NNDU/klFCCWOmRT/PYBSDDlpCP9LYazV87zU/nkwbj8sYPD8+k7Fl70g5Pzd4FQjxNzA/E1i3fE+lOT9qS7BHxyZAPwjcS/5NRjo/AQYzukR0Rj8m3qbkQR9BPxyucPMPIDg/8YJGuOJFQz9sA0dnOBw4P0Hq1GeXB0o/psOHNTyNOT/JwnKs1LE/PxD3tGqnSz4/9/MaeSgjQT9JEfhHCCQ7P+JdEo0Md0A/Y/5d4VW9OT8qfmM6Os9EP5AnW7oIp0M/NhwksZWxQD+850SrKJhAPw7uJ5O1rjo/SOcQ+a0kOT/vYN3boR9FP1ZIT0puOD8/IDQExWSxOj9FrL7tG/U2P6I+/A7bnE4/nnlVQe4dMz+MfkZ/7h85P/rBy5zGpzQ/7Oy8cXhfOj/02S8PAdY2P0l+mS/8zjk/GbXz5DfYTT+XAb0pEjc6PzqDOG+ZXEc/hywFtuDLOD+Jhzc4/xk/P07cTZeVi0A/eQP3/GMzTT8RX1MLGGlBPw4Np6YGlTY/6nf0zoe4QD+MFtVfBbE5P1ZSVCERXzU/PLWQBgu1Mz8DUz0BY2k/P7Sb68R9lUA/aiHYI5phPz+3chXcJhRGP50d901kXUE/gMeK9oVLPz+wyWs8EA02P2PjBusbcjU/D5N9S5FgQD9Jf0YhfR45P6wODGKY+jY/kJZWhf7wQD8wlZCllZY/PyuYABXxSkA/5YY6Byo+OT/wcyP88Ms3PyYSwUIq6D0/oHN6iI1MPD9r3o/g6Fg1PwGsww650jg/5L5onkL/Oz+AFqZK73Y4P59EVkcmkUE/fxgALvEVNz+rb/HUSdRAPxiA8ulEkUQ/aJs5KW4KOz9dzlZy1iY8P4LvPSmBNz4/Dj0dIHxOOD8UleLqzZY2Px48uuHc/kM/GkSwGfzXOz+0eXe/ZalAP4Z7LTRMdzs/KKNxeKZvQD+T1wbLMYk1Pzbjwu4sWzo/R22HKww2Oj/DZrBEyMJFP3jtpwZn3jQ/LVbhihwGOT9CKK3Hlkg2P8w7VkLac0c/veIW5EgWOT/0KF9HUaRBP1gTUFCmqz0/O/lSSpgBOD8HFlX5fYM/PwHV1aPEPEg/vJ80g+EkOT/sCg4TMxkzPz9jlqXs4D8/sG20kD61Qz8L2d5GgUAyP3q1oTccYzU/1vp7WXV+Qz9DJ6cdzmE2P92hyxWK5jQ/snGSIDvzOz/LNrndoP1FPyekP3gQ4jo/5p1ctkpuPD+RjwHMwds/P4pgzRVmID0/FiMGEvjpNj/G5KoFOLU6PwEViWfb+TY/2SQe1G6JNj/5nUKIDRE1PwHlEu5lQDU/H9CAFwmvVT8mOR47wWE2P+y5PSJV/TI/ccIpGDobNz993lwVC/A7P1eIAg6F9T0/NE5u1D3EPD8sA0NgKe4/P3dfKyf180M/80UxL3axPz9+3dXqLCw4Pzpq4qMZGUE/TmILn39LOD9DBCa0CGw+P3nMqEhxzT4/VkdtZh0jMz+e75Aq1uU+PxXKii15Rj8/TOuIpmBLNz89BkLqKmhAP0xWA5z3Yjw/477BVoqWPD9Mn+h9jWtGP+2ZER2Dxzc/pMSzpqf/ND96cnNIb1o+Pyey+hbiADY/uSRVe9vDQz/XVcC+T7UzP6a+/rTpuTk/IfyOWMBBQT9hadbVwRo3P0Ns42E38jQ/P9mcnATjPj+6QLnVwhhAP5KHPIQcVDU/Q9WoulkZQz96SxsJkklGP8Tq8lrHwEM/QTfvkEYrNT/vxw6mOHlHPy4aMh6lEj4/8FkgP/A4Qj+h1bU1o5gsP/aU+oR8aEA/42knupbfRT8/q8yU1t9CP7bGk+k/h0M/UAKgLKq1OD89o6AgIHs3P6kIOtHjNDo/xOryWsfAQz/9pur9ynNCPyWPnXOU3EE/ZgDnRgrFQz/BYXnC2GM+P1r0N2lmojI/kLOI30+4Nz8iiaUbPYs5P2zAMRUsHzM/8MicivtfQz/uSTytlsw1PyJJGB/JWTY/jmnOQ2saOz/qjAFvBz5EP3QLN8KdaTQ/tddDetirQj+932jHDb87P88Up0vghTY/06TNnu+aPD+sUHTCI6g8P9BvpNsuDkA/iyW8b0JCQD8KHE1R1dQ3P2mTp9JtjjU/XuN8r/a3QT+dOuLSKXZBP9MwyNKRoDs/ggH7HcdlNT9wccTCX39BP98YAoBjzz4/y8nxLgrHOz+xjTtPgzxHPwBPkmILNzw/fNDFPLGiND+iaQ/PoA48P+YLZLozukM/kPINMdBIMz95dIZW5UpGP34AxPAgXEI/NaKG/wwgQD/pI28HiiI7PzjswRsHm0A/0XzBs6wXPT+Xjh16qd1BP36oVXBPwlI/GEXcimdKNz+plI29zdFJPxEZMCqkWkY/OufzxlPTQT/Y5T3Je6dCP0GdOb7SBjs/yMTMj9ZQPj9ntkdJ8exAP+41/QyBuTw/koTBWIYIPT/rIkhP2BhAP3EZizReqz4/156MA0WyOz+oyzQqCM84P4XvWMdM/Tc/Dw+8tac/Rj9gJJiQLdBAP58bsU5JYUQ/ALgx9IrSPj+qPoDa4vlAP2DMcOXn5Dc/ZhUarizWQj8YXI+cLoZAPyza+9hNvkM/+y1n2vFrMz/1+C+jZ5k2P51g5tjNzjo/bjPYfnmbMz/x+5xaNJ8+P9uo4WqDZDg/PcWBwmahOT8Dz2xATA40P41xvgttlkE/ZSeYPi9tPD8m3BJWtlE1P8B9yTjZFTk/XxdkHDp1OT8jaBizLx02PxG3LigYPUM/HjxuU5fnPD81yFcUDG1EPzAjC4Tcxjg/gA1nAm6rQz+d3bAmfNpEP81RA6rYyEA/6/8AkZxRNT+aL7qyx+hJP3XJ0GI9dkY/lBc7D14jOD9MRpNgsVM6P57zuEftgDY/ayhpiYtfRT9sSF3k/iA7P1XT80Osyzc/sZuqXw9EOz99z3MEo6QtP3L1LqEsw0I/QRCSmK+xPD8uJiQ8G55AP+ooRhdNxzk/ImpMz44wOT92zLgqAvxAPwqnzYSbljw/9k8r3UESND+qGiy4+Sg+Px3RJk+l2zw/w0yozg3HPz+UiRnpXoo/PzKYa0NYnEA/X+Bh9owmQj8hhs82NO44P7vsOsippUI/jPDLoKfvPz+4mI043slJP33Z5Xd0BUY/Ag0sA6tDPj+6B6Shn9lAPytS3TN9PDU/4GrzuNWXOD8mcOtunupAPx5b7WbozTg/sRIrVwOKRD8ZbCegQttFPwfZQiignUQ/m2hQZwAFPT+mv/c0sCBAPy8MfDiNXEM/mhiGIOvPPD9A1WdV68c9P3RFDcwomzQ/b98N4xoRPz8Bnc3TTgdBP6XDLHzJOzE/6v8zgkFdOj8lOP3yLLU8P7TnDG5mUjU/6bvc2beQQD/7jqcGFpc1P8OG/VeDGzw/lziwJJJLQD/kKVXpwbkzP0XSVVeREz4/xmnA1FqOQz8TDnE3fmQ3PwIKpK0SeDw/lhSAyCBMQT9KZAMPKnZGP/3v3Alj/DU/1do7cLylNj/8oe0mZUM4P40PcXubYTc/yKTGUaemPj+NzQgbELQxP97Z+63NYT8/FWvKq/lFNz93OE+vc1c/P+gtzZZ04EE/CprEkAQwQT/wPKJWWVo0PyrK8X9Rxjs/V86Siyc+Oz/oqWS50lY4P04KizvyyD4/qCM2DqsuRj94Wc/tfkU5P4Q7eG8KADU/GiQ9P57zST9Svf0F9w1AP2yH4jV/sTY/1u5USS8tND/oDVUDXZM/P/KME+Um+EM/dNCN/+5cOT/fC4zvnS5BP0cWf8cvPTM/AZp4b1tHND8uQ+n5PStFP8G4zbT6czw/dbifUY90Qz9D6MYS239CP/NWdCPgmzw/wBQE4LbuOj+FdG6Wb9ZAPxF48KsjW04/g3QMIxhiQD9PXZYCFBtaPyi67N8ON0Q/aDfcQrWTQT8i6sQ5eJNAP65JA7S32EA/tHe9aTdQOT+BIIdbGsw6PxErVQJfWj8/NVDwfw2pPj87LUyal6dJPwdzBSUWQjg/u59ndIYwPj9HPL14XcQ5P+CVuupV8j4/BPYk8lXZND8y/Eep+zU2P5rYeaSMez0/J/ENE3ruPj8/Do9syu82P7HasDGlsTo/wMi8byumOj8xVlfiWh07Pzz+TyH+MUI/N+lG8HBPOD9LybQuHKU+Pw+t7aTALTg/MCwX27iGOD96GFArKdBHP3FNiT0XukA/0umIYkNONz+LFwHRcCNFP5Yy4JQIQDs/2idNcb+9Nz+sCZXEARBBP9t5PqoxhkE/mVqTxwMsOj8w5+x5C99DP4AzSvoo4UE/b2omM2wBMj+bs6MQf09HP6Pt0mW16T0/NdED+btyOz8UiulMHnJKP5Qphq67rjw/3lSkwthCMD/75a9q8o88P2rW5OxH0T0/FAm1xYaFMj+gyXpBdqQ7P6aYwAO8MkM/Pw6PbMrvNj9e5Be+ux43P1X0J/Rxojo/i6q6ou/JPj8O9Yt3H/48P+0JdQWZbFU/DEXTPPSbQT+Sqx5RHYI1P65ZTShbXDc/pGbVCHkUOT+SDY3v19k6P4OIbNEWmDQ/EvRU3dzFLz+K+Qjo/QA9P4uza0BZODY/hYudb5KGTT+h7DVWxchAPz2ZDZ9l9zM/82MVNAIxRj9FVOPQGyE1PzMF+0eQXjU/HqYsLIB1QT/fK8cfnZ49P69ycAI2lDg/89S4cWrrQD90gkVkqQw7P6W/UO33t0A/zKDSb/zcQj+5t0b3uN5CP0cz/a/GG0E/5MF2LaoQQj+2o8uq7uJEP0KFkuX+zDs/etyM2so5Oz/7T0h8OJI1PxBPlUBhiEA/z6B7uN//OT/CiH0CKEZGPyKq2csCYjw/N2w1zTaVNz+nhSMsUKk3P+ii2g3Gezo/BfimnSW+Nj+C20oXsTs8P5urWI8Kgjg/RBzURsHIRT/2zBY52UA5P/PibleCoTs/4Igek+3FRT9Gt0zwx5k4P9kyRg9v4kM/9557I3sDOj/tIIPQ0vk2PwmxvndXGkE/eX6GdM4IPD8WoyAL4Ew9Px82XqhmUDk/1XZfChkMQT+Wvg26T1E/P5EhJUg1hEQ/8ufREDLpPz83oNNjw+lAP0Ss8d7AADw/AOTxpdGTOz/f6J3pqf5GP/7WB7/4lTM/1YjxfgJGPD96Haa61pdCPx8GwmdOCzw/PRJDM84tND+gU8DYo7kzP7qvor38eTM/P2eY+2DwOz/kveFzZDs4P7XZHt7vJzU/P0RjIOEROz850KtQkBdDP22dV/Mekjo/90/SJPp6Qz8BAkVItwc8P0gfwBDcwj8/+jSRE9KMSD/kShz9WFZEP2rIm6NeVUU/A1GuK5EEND/ql65+cUtJPwV6wsHHKDs/a0qRAF40Pj+Y29kxVwE8P6+mteB6UUE/FmVucoOXPD/2Zwxhn3pAPwRFm/8xVjY/JTok5YlINj8s9DhB2H9GPyHWzG7uLj4/xkxos2Y7MT96BdcZNRhAPy/t6kGAjT0/vdEsqCbDPD+GbFgHy85OP0CT2S29jjw/FHbkV5KNPj+jYCtAkpQ/PxQiC5EGyUg/yTsaliWLQj/sSchWg287P0UHSCdXIDY/XqKJlo3lNT/qJGqIe0M5P05y20zyFEM/uecpDV3SRj9AWFYysQ09PwvrAx88QDs/VVwalHDuPT8jLBu3R1g8PwLy1Axx+Dk/fBQJAVTMPD/CrruzVc08P+McWR8t00E/K8nr1YjfOz9hXMgocUs7P8FhxVAee0U/KhZft3+aNz/81pNo5Tg5P/vJvWXz3VI/y+VBpQp5Nj/vJohSLMs4P8qloMSvpEE/yeBEzqRIPD8qpDRPORw5P9/385ZAhDc/zpXttTNbOD/5ayScJec1P4IAW1ZIlj8/P5BP1/kIMz8aI6Iw2Yw0P6RenGrAL0Q/WTh5LN4RQz9FpWcztCU+P/pd6n1ppT4/QAEoBzKJOj/PpauA6js5P3kXaY4eUks/g7S6LXW2Pj8eDtM9Oao9P9vZvwEZeUo/SxDynT89Oz9rlVFGC7k6PzsW0TIv4DU/MzxWJoVEPT+1gHAIzHg4P3Q6tLtMvD8/IZ6e19VtOz+yfh9NduUzP2XfLF11qDw/gZ8+8Js8QT/MZI6eiGlCP4Itb0HIDzs/BsrYliJ1Qj+a4d6zsNI9Px6OuERRRzc/PxEXwmK7OD/zYtXerxs5P8JgcxgQfT4/RwAy0l2iQj8Y6/9CrW43P+0LdjBTdEM/kXH8uEw5Pj9FO0F3VsY3P9ccPu79OzI/l6Cv7pIXPT87KtYnu8RBP3Sz7ghvW0A/mJjE30oENz+qYuMn+QQ1P2aVjV9c0Dk/bmoNlsv1Pz85ZhM/ShVKP+WChD/7RTQ/LsXeVj0KPj8FZUiFGWk1P57feafXbT0/lJ2xQbw0OT9+Xz2dFK4zP93TwzrPhDg/hvCsAIa1Nj+BNNMlMl89PwQI0APgHkI/OFprru7mNj9f4jxapKI0P6x2EOVSL0Q/1KB3Se1cQD+/hKycLYg3P/LRKWLt/DY/Uv2KAms/Mz9wDKNOsGc+P3ZjuyeBYD0/CH/BmVgTPT+zXOXy5ydBP6U1sp2CC0g/l9kxv+SQPj84MgYLZMw2PzrX3ENVW0A/L469I9JSQz8nrPeVs+k7P9ovK1YFUTQ/nSq5bG8VNj+j8s078F9APzXvjkUAW0E/Kzq12pMlMj9R3zdghctCP6AI2stTqTs/vDVBuCjRNz8Yg+fbC5c4P7e99i+9uz0/UmQpaTDTRz9ek8ZMyCUzP11bJF+cBzY/pDSRVe5ePj954GZocQNEP+qDiHv8Q0I/s1Z11YrWRD9JB2XGTaA3P5dhditYnjg/VRbWpBO9Nz9PdMqU8DM3P9vGs4xT+zQ/UNeMbORDOz9IBWKaaN4xP3zEMZA8F0M/nDGc0MOHRD+nC3SXCy89P5Wt7otdODY/fxQknx+SNj8r9dFOcixEP2scrxV0SEg/ykXnwmk9Uz+CcFGiLwE7P0wr8Nsx8T4/jeYXEQRJQT+jHummqXI1P1fYcZsn2TU/LEilazUKOj8OGTtTeyA4P3800SQHpUU/urEQheW7Qz8vWAp+pFNKPwJXUTqTYUU/ZTkJpS+EPD9HQlNdXaFBPx9Srh5nAjQ/O98D/1FXOz8PN6DYHH1CPzVzJVuNhy8/sUBH7XakNz+Vev3mUTM8P4ZTu2a/3DE/BI+ab3foQT9WvlVBhjo+PyZv8u7Xgzo/xzCZvXtmOj/oX5/0FvM5P+n9w7ktYUI/ocyctMRYMz/KZK2rRtI1P85cJBBWM0A/PhWYl8HtQD8CH8MwTuY5P633EXtFEDc/Fi7tzOslOT908BS+M+Q8Pz22+CMrEEQ/jc42jabgND/8SkB8+5s5Pwa2QD7Fykg/C/8u22qwQj8GMJBg3YpKP/kEdFKkakc/QzLnkAk1OT+VdGy7C780P1RfIWnz3Ds/9RVi/bhgPT9WZ03dqUE3P+kEPIJ+UzY/30YP66mvMD9g9rDsiXs6P6r59wc0Ujs/GGXiyJb0Nj/C6dESMxRKP+Hw3UFHBjQ/32pyOMC6ND/SRfk4ifdCP3iA4FfQpzo/APcC1FB6MT+8pr4u7v82PxN3NpCgizU/OZJmVGKcND9jjZmVBOBDP4QzmorEbDg/7+fNDtx0QD94waB/lG5BP3taGP7gNzY/oWuPeUU5Nj9GE1Aq3whCP1Bz1s3jNUE/CuV/HfhLPT920JS5039BP9QFzq9sOkA/ksC+VG7NNj82Tgjy86xCP/VXYnrPPEE/rz+lJM0aOj9iF3+6BTszP8K6T2DKWD4/8lUg6qbjLT9aeojUISg4PwchmiVzv0I/JzKUj7SGOD8LmFjKRqg4P8aO0BPy6DY/U4SwJ3VaOz9pTb6cg643P4ptNHv+hjk/AP9NVcVHQD8ahzfB8HdDP78g0DaK7kE/Y4ShIg/DNT/ioBX8XIs7P4Dn3ML6DDY/NT7xbvU0QT9yQ5hKWzY8P+zF95VsFFA/tOCoifwCMz9tX6Vawtw5P54v6TR6UTU/IRDJPxzsOT/WI47ugOhCP3mJ34Sq50A/immkenIaQD+Ysu1j7iI4P8oCGUbp7jQ/Nt2Key5+Mz/OlPnuJl1CP6Uz1zlrj0U/cJA+Hff8PD9X2CUN4sE+P8Dgw7ormkI/urnIoojDRD/Br8FdHrQ8P6xfkMQw/z8/cAWYIo6vPD+u3BU+fhY7PzJuchFCtDQ/hWE3oU1kPz8JOtHjNJo1P1ph5npczTo/bgbEk/khOD+kNbCcV1FAP/ffgiDLeDc/RJLuIcBtNj/bs6Je1BQ/P7EB1H6y/EU/h8OL6wO8QT/M68WmTm00P3kVIY7Ym0Y/Xr6zResLRT9JVSzhfRNCPyDtpUdY9kI/Do1AH9kaOT/9b/cCS188Px5kjCGWU0Y/JzENZdbCRD85jPY2BUtIPxy04BBtcUQ/S0yjC+LqPT+To8Hs7Ms8P5wCYfPmej8/KoodrlHmQT+ly3f9PQlAP+pAuv579TM/nRuqlGQ+PD9fPsEU0e5BP4dfY/caC0U/AQfOyAnbOz/ytNFA+alEPz+WYYNVWj4/l6s78BMCNz9ODTlYLSA8P7/KFlMtRTk/wKTsheZgRD8jzwKoOshBP3Y44BEaY0U/KvgNFsXgPj+oZktgtys7Px5+SAkLOEU/L//N/WhHQD9RgmFtSoE+PyqyglHcAEI/RpIW6o2zOT8CycJ3ZY46P0P4JGtlpko/jESWPAZ6ND+iCaJboL40P9av9b5RKEQ/pEBLyQV2Kz9uujVO4ipBP0ezPXBRCkM/pylsgH5RNT+ORL4E1L83P8LMDFUQhzU/P/7Soj7JPT+HbLh594g3P/afTtye3jQ/2Jg1g4hsQT+dW11Ye/s6P7GGsaN2YTk/oZwNnq6TPz/w/qMvt408PxbCHp4bVjU/6hJS2sLDOT+svSeN0ztFP3K1wrKhtDo/BYBYpscFQz8D2Vp7eeM/P4GAjOulSjA/pozgyAGQSj/n6XA1Mas3P2TFXJEZITw/w0qYeCaFQD8/TBs+hBk8P5Dtpb5mmE4/IqmFksmpPT/DdGvjmeFAPxa2ZCoEPzg/HVW18+nwQT/A/WKxq5s7PwML19hiDUA/gTTTJTJfPT8z+0H/Mk82P+U/SSZMvUM/wSL5KRI8Uz8w3zRcaNdCP04NGEpE/UA/XAdYwhLDOT/7wd+ArUpGP5ku+dxf9jg/AXoFlf1iQj+cYBnKcto/P19r9g06i0g/CEsU2J6EQj8uFU7k3+01P4+1vPuuyzo//rcJLL2MOz+rzVDzjZwwP6AJLgWNYUo/N7z9EiEQQD9xfL9hOl5FPw0yjx3QqTY/QTTA8/X2Qz944hsF5vM6P6OcFFiTtkc/JZnkZglJPj/TCZGhnbI+P0DFsEQZCkU/iokFchQWOD93ueGnDEQ4P0yIAHr2aUA/mXq/zNVhNT/npbsbpt48P/5PF4y+QDg/1TOet5o9PD/S1I+mqms1P2miRFWQwjw/ZZ+fYAF3OT/3mMQwkgM3P9lDK5LXzD8/mpzu/YxZNj+fBlgghMQ5P5a/YfOICT4/0C5EJpcBQj+fHbJ5A2lSP2AshaCgnT4/QRLfUa/QQT8OZi+1h7g3PwnTZ28/zD0/8BBhJP27Mz+r0mce+Mw9P7SS81GIeEI/6HfHTQAKPT+nObb0IdU7P/YGgKY1OEc/FFATQ5NASj+uD5pGW+FCPwpfrjEn6TM/8THwjTXkPj+0xmshckFAP2GtP2EH0Do/nUvtHDXsSD9517XKB5U8P5aXbqXmkUA/t3lGz+tXQz+sNsq9aqw3Pzx3OSchUTs/tZmR4Xv2MT/v5SedlL46P/o3DD9o2EA/vHbbGEoMQz/NcWShesQ4P5K6msVWk0E/GBGXrCKNPj8M9AJMFoBBP+C49H6POVA/YUiiJfxDND9xephv3co7P6T1fVlWcUU/itr7KZW9Mz8kvHL60L4/P5aDsIXmWzs/eqFBiR0tQT+GVZbK1lg0PyRzE1IK/Ek/hyevJjMEPj/uvfXqrq8/P+e9sIPq6To/bn13fJJzNj/Bs+l6NU80P9FYqvTbI0A/F3H19PWiRD9Y7j8RD1E6P9fVf/7ExkE/8wTCTrFqUD8oZZkYpy5EP6t+aJDJfDw/iNkzmkioOj9iCZ5UkZA8P4Crhg7LsDs/PJ32Vzn7PT8x6gk0oCo7Pz8E/OoPbEM/H7O7WeYhMT/wU9boNXNBP+V+qLApwjM/fTY4MgvEPT96pLf7+Q85P+k+7MRm+To/mkI4fXUJMj/5JU1J9+9BPyTmV0gABDo/BlF9OxezNj+ZNV3ByUU7P9ss/rnf1jo/GJitpv9tNT8tbaiAyuRDP7NzOpOtYzk/Vz68yLO0Oz8jLbt+xicyPzTgRcJrVTo/1m8cNJjfOT+/pNih/71CPw10931bVzw/IBIjIx6LOD9zGYALh+U8P0YMRf68UDA/HoyRUvSzPT+I4Pfw3rFFP/5Z0NQbUDc/obuyeKIFNz/ccwg4XmMyP97fJPaeBDU/OfoyLb5cPD+41D6mgHc8P+pEcMaq7Tg/TSe7lBjWPT8C65bvqTQzPwzo/Em5UT0/SRmwZasrTD+WzKKRfuQ+PwHEcaFxL0A/N70FvhSxNz9QdiZ5HY0tP6LLyfugfTg/kpuITjTnNz/hpx4nVIk1Pww+okkvWDQ/hoA3NbQnPz+2YGrKnM44P2NgGA5WLDY/VwGq99XOQD8DhYG07R46P+646+lG/zs/1XKkiTCrOz9Fs6NSmyE9P1VpgfkIVTo/6fw31pU0Pj/YCSCWfNVCP1JtjnhUKjg/g2EP2X8ePD+/nQJorcs9P2dlmGb88zs/qmX+4GKWRD8PXPfsP4Y8P5k1g4hs0UY/Md3aeGY4RD80TeepXwA5PyKxiT6yyDU/WlamByH6Nz8ev4L3/7g3P1W60mr8TT4/32omqnqjPT8eWxMui1k0P5KEDefLH0Q/X1fxGK6mPD/ozvV4f44/P49v+Yxndzg/nrL92OIiQD/2BXNCiC4/PwUyV+ANZDs/vTlFD8iaOz+76lqr2MA/PxOxwAvmpT4/bh8sQjVOSD/6IGsQXYVBP2t/qZfGzEE/rpQr3dkuPz+X41xdKkNAP3rmH1yFvT4/osMR3v11Nz8x8DJ8cc1APx1Za7sY6UY/kj4kseE/Nj8qVhJ7llc2PzNNQGKnlzk/AyfbwB2oUz/IDjmcSh08P4zXLgCc/UI/8CH/0dn3OD9oadRn+jFFPzT7e6q8fUM/QsNqRf4NOD/XuvBdLAdIP9o5ZR94PTc/A7gFvcrpQT/9rQJU76s9P34naL5DhEE/3iEM1hTVNj/8crcCQp9DPwmMz0ap4jg/pIcJuT7rOz+QrRjC8mZLP2kNMaAPfTQ/HH05pDJ0RT//XIDygWE8P2GRbmrxQDw//fbBbuIoPD8GDNRaf+hFP+HLzQKwq0A/FCLlyWM9TT9LF0lYpww0P3r4AhhudzE/dHiMG0z9Oz/Nr/ByNO49P2SEbjFqt0A/H1Qc5k9ERD8dj4v9dCIyPwJvwGgIJz8/AXH5PSGjQj8jnCPm6qtBP6V8yUUDGDk/Rn9RSlTkOj9LLUq/M5A9P3A8P4/IrDs/ecNDOU12Pj/jkyDsrMdBP7Ezhc5r7EI/RlM235rRRT+X81/8QRhAP/a5CsQTw0M/QSmAgLojQT9zJacbzTZMP/XVII+KRkE/eRePVcHdNj/j0Yb2w2U7P8tZoirbxC8/Pw1h+jPDQz8rhTt1t3tBP0qeIO5AVj0/1o+j8txmPT/R8DjV8rRAP9C4lufGlkM/7I4Em+z/OT+p3rL0te9AP9EH2gP+B0A/glRfnTBPQT+OnvUFAe0/PwTAq/exCDk/quRXBOMGOj/0a5pgAC1CP7J0QD12Sjk/ow24lftwQj99QD0JruozP1RptOqtYD8/Taf7VKPEPz9XuGtd+C42Pz9oJN/4HEA/Epp9TtxSQD+le/aM3zw+P5XUJb1RJjM/YWEeuB4TNj/ELu9J3js1PzX32cZ0KEA/pNzb/5AWOD9lmUMni8g+P+NPRQt/b0s/KbFPJoxrPj9G+kA063NCP1Icd7LqX0E/ut3xRBWgOz+2a1GFkAo7P1+B1mbd6zY/4AHniifCQz9yxqzuwwc3P+GDPFpTWzU/owxkXMK4Qz8hRQLlbadIP0LN/ca4kTs/lzUPMll0TD/6Z6PGxrQ9P0kcOLtD9z0/3aeozxVyQz8OIT//Yz9APz7wO8rkezY/Ferc+e0HNj+6Ra/yQyZCP0qu3LfMfEY/OS19ihH5Nj8gZiKxTNs5P0X9RwluYkA/SYNId/EtNT8vmURsmdQ8P2uDGIppFkA/uCSuMyNbND9TB3k9mBQ/P/OLwawY+jw/+LSDROypSz+47tl/DDlAP0Zq1w2mJDU/O5e+5DoeNz9O0ADArK41P/ZK1U2USjk/nNJcz1lkQD8F36uLGMw4PxLuME7Fi0o/9/OHFVddQz9/5VoXKyg0P5tgdzt02kA/wlOx+QTFOT9gHG4doiU9P5X2YRgLnj0/AD2OmDlaTj/SO4fFt5Y6PxuyJrs+GD0/eXaHgZ9SRD/oxe7aXDdAP9gAyLBa/js/3R1CKv85QD/viEJ/LDo1PymB64/SmkY/dSNhHLI6Pz8nfNrUhcc6P4wS+dAzLTk/QqsuCC5UQz+zoiniRFk3P34fZBJbZTk/WPO7Z1+kQD/HB4cocPw6P7i1xEvp+UA/VBfcTtyjNz9ih6j3kbEzPxSyOgzC6Tg/OUMq8g9OQD/4l5i/JpE7P1l+CaqAWkA/mx03aQvpPz+3fJZ6Ja9PP4PPN+tRjT4/bXsbmGUaQD/+zTUTpgRBP1fucgK0XD8/wzK39MgcRD94OsIvFgJAP/m6dOJe2Ds/XRLA/RvcLz8ihxGNsb1NP/rotj91fjo/uQQ7WcV2Qj8XpVvhI4NIP1x+svJjfTc/7I+xjG1POT/af6kO1W49P6GYfZ0iJ0Y/dinlHfYuPT+d1t+l41BAPzCnTZrbxDY/SzxZlz5nRz8D2Vp7eeM/P+uVwTee5jw/3+B4L9i8Qz8feb+IuGQ1P27PTxhkMD4/3iOOgeS5OD+WnlMKZr42Pw52n/DNxzk/ZhY0PNxfRD/0LoPWaN42P88ehlvgIEE/Df7whkNVPT8KsLjNjjNBP8AnIjg4VTo/VHO5wVCHNT/heFWfXx9DP/Y2iYN8tzY/2+C2SVSOSj8Hn0ZXcuA4P3Lg1XJnJjg/wW8Omgf3PT8rmc4UW71KP0TOi6t7eEc/kv/WCcAjQD/5NhG+drdCP/7MKK/4+jg/L1sTVFL8Pz9DEw/FcLc8P4xWiCMcbjg/8Eo3LojtMz//BwwdMTZBP+xQUgKQSjk/KWS0fMdqPz+2rSs7BFtDP29n95UbzUA/ElgQNZc8Oj8UpQtRiPdBP3cF4kIM3kE/mC//hijdOD9d9JncvRZDP88wLLSw/T0/4PiiieyNTj9qXjs8d8dBP4OqczoASkI/WEho5w5EQT+2bwwGeWtAP11CKU2PFTg/U3zSQi/HPj/qEfF2h4tBPy6a8V0aJEw/3pBiWn1wPD9cISiObko6P6bydoTTgjc/3e/HIoofPD8xxMuCcqM0P3DgraqZ4DQ/bQ2n902UNj8RPGUFJDk3P+9iuD+5mzc/dT5dWXk0Oz/rcDJ5HGktP80gOfcpV0A/QUnzWhgIQz+Y1GFpBg9IPyXHJsQf7zw/67hoaAZoQD/2h0eRnupMP1w8SpLYz0E/4e9jQWvCOT+Q+kbPiC04P3uxWAwcpUI/SPMlJjiNPj+Tl1MHG8w2PzpsKqRfzzU/tazkK80iPj/m6rCKg8BEPyrjbRJ0lT0/cml7QhZsOj84xT5czZU8P3rGvmTjwTY/QbMZF3ZnST9OQN5u8w0/P8rVUOmujEA/9ZabPQq2NT+wchdK7vw3P9OK8KiRk0I/BpiU45e/Nz8YkvazFm5SPzF/aXdmhzo/BOHfp3ffOz8+bntftWI6P0dECPrRkUg/hMpVsrciPj9A/SWxvXk+P6WoifdJ2TU/xDn8y3QDQz9pjNZR1QRRP8JkT6fhAE8/18vGtWe3Mj+L2FW4TQc+P3Nom1/wEDY/7oCXi4uyPT8kDyMIgL9CPwidxqzNtT4/UIvsQxFkSj+sy4S6o1pPP/8E8WPHpEE/3XwocyHGQz9reczdOkFDP8MtLnR2SUQ/26cOsl+JPT9qCM7mXzVAP8z8iRvONEU/PvdG9gY0SD+xjfR5941AP5vkACf/hjU/oR9ICbrwNT/Be+7UwZlGP5xGFg1yRzo/3AbCCd0JPD9RQLI3MyVCP1S5ST/zzzI/0C/LUHXFNT82gNpPlr86PyCfg3O1MUA/xIZ+2Jj4Pz+aTswp6pQzPw+iQJVWIEM/N1ZnV08dMz9ooWJxP60wP3PsXPXZMUA/FU/n0SfOTj+DbaOF9Kk9P5mzwh09uDo/r1M9fSrFMz+Mo3yFKAY4PzgMSdpLIkQ/HOREpyZCPD8dTjhy35U9P7XDPoVMx0Y/AQ2Fu/LaPj+b93k48z49P2egZ/BNjDI/glmPZTuLQD9i+P+mtFQ3P5l3ytoOXEE/0QtEPefoPT9j+FpgJ6YvP+BHK3qE80k/vhTcF+moNz8JQdwPV1I3P0jIt6z/yTg/ka14NB8hND+C6WBv9asvP5vk2l9c+zk/zORhwuQdQj8NIER+ch4yP2gj100przU/ND3QJmGINz+Fu/LaHh1EPxDqmZNU/Dg/awZ0A16WQT/P3FLtJDk4P7nnKQ1d0jY/c0dnryo6Qz/ujFH/osk6PyH+/B+pgzE/8Ek+rsGGPT9YwdJtR0A+P4xCAq56rEg/FMQ+1pPGRj8h+U3YsyQ2P17ml2hgSUE/rmJ/RtqnQj+REBVFcKU8P1/v/nivWjk/fZ7PGJe+SD8htXewPzVAP1ABGQLM8TQ/AKG2jCILOz+FLYrfk9U0P/+k69M7Jjw/Ki/bSaJpOT8ds0cD08Q2P4zqbWYGhz0/c0fUS1l0RT/UATn2JmVGP3qGMWhvkDM/JmzpGCrbND8wHIHYz+s6P+on8t0TDzs//brqOZ3vPT/rgU+m48c+P9sYsu/HQzg/RZnThj+aPD/WHx/83Z5EPxUPx3Hi1j0/6udk4Z/dNz/vPtZyuG03P34CwGIh+z8/EYjSPFINMz/qfkbQNR9JP+gTpBLRwUA/HuvDKVxXOD85zelPbh1EP5pMy/4vjUU/dzMkoCKEQD93cdY4fzlBPwH2nLdb2Ug/efRZekH/NT8/bEdDVk83P9Y6nLm6dTQ/W6+vlrf6PD8EUtydJzE3PzZc0rvyBT8/i6SCL/HsNz+rAoXfJe8+Pwa61fcKoFI/Ym7g1inLOj/fxALyNH89P/2R/ms0ETo/SNTM2YkyPj/jkEwIz+Q4Py89jcDHfDo/cArusTt3Nz9g7X7OCjA/Px4ylPxQtUI/DpQlhFhHPz9oenIV121KP1KR8cVqNTw/9/P0sYWXRT9cnoU/7hsyP7Ar2trKZDs/ud+XtlxWQT9k1B/b3uA+PzJAsTRB6zk/TgB3OSJoNz9aWQiWFjo+P9OSXDjvgzw/q80EZUiFOT8Hez7DziY9P8AlR9Qg2Tc/HjPoNYptQT/rykZrNblSP5nOd4V4A0A/tIEv3QixQT9aJGJUlkQ9P7vMe18Gqjk/USir7DIxOj/xcoruVh9KP1Pk1sXp+0s/EtArO1DpSD83tQESLJI/P51cCkr8Sjo/3iT0ndlaQT8fqK7XT1pDP7RyRsygZUM/jAXrI+NdPT/UF2AkVnRLP4X5N9dMmDI/Ll4aKdXqPT/BpgGVhws0P5WTxQe6GTU//pmDmDINNj8RM1muR3k3P6Ubm/ya1UA/OsbgJHcfOj8Fgc3t6eA8PzIdVpIegT0/cvSivZSWPj8Yt7pkaLE+Pyy2GQxNkDM/uMJMv2qDOD9HZMdidY1BP6IK0M026zc/oDJmYTtXNT8Wco4CkE9CP0wLXPPq6UE/355XpNi9RD+Dm4opmP5DPxnyVv0UPkA/0Xvfz1sCQT84NuKZNVA3P9jKwAuf0DI/UWCAywNbPD9Z5zuf0btAP8ZTBkNauUA/72jwsrd4Pj8GsIlL3Mo1P2ZW5//yHEM/9afMTri3SD934f91C7BBP2lRLY8m+EU/u9G9Cs3OQj+NkF4tp584Pyq1+MO44zk/5MucEjZaMz+2so70s6I3P3N4nv4H5kU/BHvuMjObRj9whf6puylKPzhjqvZvsjs/pKLfLmNZPD8UMMYv2OdDP47UJysZD0U/rCwRdQ2dSD8ieuLRd8tGP4SnbGV9WzQ/dzNrda4yNz/NVjNy4wRAP2Du+M7mczk/1ExzAgWkPj8Z8jA2crI0P6xxBuTqfkA/Mhr0AylBNz9981XRo9I9P587/mEEujo/fwSOnDb3SD8zma2Z1WtFP/KO7kg+dDY/Sxe29NVGRj/g+MhQjxk6PwsApCKNizw/rcAjOX9kQT98GjJJJW9CP3ggJ1aKQDw/hNWa3qxeQT/GGx+BzaZEP5l16r09dz4/AnBgMIf2ND+u6f0jLFo7P60lLhG5Klo/65XBN57mPD80uw+8MW87P48kGDnRz0A/3dfrV+YfQD/fPTiGnbU9P9KqT58I1UI/nxOMlHcfMT+lCZcyyfhCP0Pr9a8rtDM/Da+gQApkRz+MEX/QV+k+PzojRcLJxjs/tPfXYh+zPz8ozx9HMUhTP1o/BdkVpzg/LLvcNymSQD90mZ+9KLFDP60C+TU5TDk/k/KpT7HrQD8Ryw1WAZYzP9DEhU2ucz0/bKzMrXOAPj9u0MkYQHQ4P893tbEZrUE/sQgmgGBjPj/SR/pjQ/9AP2KlCMR5pT0/edCqnuXcOj+BkIrRA7c/Pyw3uy8Ttz0/t3jgsva2Oj/a/IU/P2NBPw97UDnu4Dw/1KESWLLDNT9RpZZIyl8/P1uuAqU2qz0/KQpKivUxQj9fvDObRuE6Pwx9qBvFxUM/+e7ssUihOT9aoOxM8jo6P6O+Cd7Afzs/PIv3RiGHQD/UiHD+7Gg4P9xdlXvpPDY/6GQodWnGOT9RFIXpvSkzPyW2Yk+gJzw/MmSTAUIZOj+gWXfLjLlGP21am1laLDY/+Sk9vK8WRD/aoqn3hIcxP7AYYcnWrDM/OZCL8EogQj9srvOf0BM4P4fxW/Mxvz0/lkIvwmUsQj/NqDHVV00zP0ZCrBWlOEI/kOXMktptQj8L3vVx63A/P4SQXppDzkI/R4BergHuQj/N8C8a49dAP0xWA5z3Yjw/MqPlYR2eQD9fjtAvRxhBP/sdhUnDuT4/2U63k1i3OT+3oJ4OyWg7P2fkhO1NKj8/Mgi2js01PD8DXWifqBtBP32NC6QX9zc/zvbUKRDvOT+GAteR+h1AP11jlaezYEA/lONnhgEJQj+RmtlbiN1APy4+FOulQD4/fpdFbYrjOj8wvZqPrV83P/0LLYBjrkA/pUvZy7EaPT8SxbEci+c4P9I3qzbmEjo/3icjOyqPQj93xlzxi01GP/TpRpL/TTg/+G4/VY94RT9OE2Kg/sJBP2YbZATnm0M/gnmQ6rDMPz/koGOLzVw6P/M1Zjq9UDU/v+Cv1kT3QD9tWe5n2dw2Pydy2racCUU/pcB+X47kQz+H8aeBd9Y0P6SiviB6NkE/G/R/8JyLQT9LB9kcYf1BP3+XEnzl10U/qQnB+8H4PT8dDIk8yDlBPyDpo/Hj5kY/yoiPeEcARj+5j07wXP40Pz9I+Nkm50Q/cWwDmK43PD/prjvJlfs2PxZOGdK9WzQ/rNI0LVPBOD893XYqq6w3P+PExNe4rTY/yYQMor0TRj//eImT9mRAP0x98/dfokI/XQJQwtXMPT8QYqG1JgY2P3lPvezZnjk/EC3VrAOFOT/TrhlLHnBJP2SwvI3I1Uo/8m1N/EljUT/jxT7YlPFAP5FwGtX7IzI/PAAFvnIiOT/M1VLq2UY4Pw7eo3OI/EY/MVdkRggnQz/Brw3sY8szP4kw6P6WckE/WgvA+tDpPz+gs3na6SAyPx9VkS1yHz4/CfeVyoURNT+q+UOWeWkyP2du3Gc3KEE/OLpKd9fZQD/mF8C8SdE/P8KQ7ko/n0A/5RlAZ+77OT/ihZg+gLQ7P1jEgIqClzs/CUeTAkBSOj8fEKF3TqY2P7MytBZzyz8/M5jG/MrtSD9zBgf6ki01P+hdQxDqmUM/Wg3BJYvxPT9+H2QSW2U5P/+cM7aYHjs/Cki0StT+Mz9TcaSyr9xFP0S+rtMGL0M/sLX5qlXuNz8Jyfq0J9Q1P+omfZbxM0E/aRnFTIQINj9JN5RqN6tCP5bGNy3b+0I/+rcSVGmYNT+2OD/Sm+JFPz6VspCpUDc/rSV6n/5BQT+Y2yXAnBgzP+pxXuqH2zg/ekdlQWNRQT9MA+uq05BHP/dM/kAcmDo/4xYPyXINQT9L/MuayjVEP1ISBT8Z/zg/rxK3APAsOj+ZVTAOVORFPzEZ07uUlD0///AyRMduPD/zZFWJVEZDP1Vui/pwBT4/9CwVD4CcRj93ND4u0g0yPyqZAQYAyT8/OKkUrW9vPT89kLW5QyA9P7XMkbG0NT0/BgM1oNFiSD+cS8VUZ6Y1P5CaZwagOj4/X2Z/cKOgQj+SryCnkZFBPw2YX4Qry0A/4XXNScdTQT90p3tq4/I5P+7zTddpXUA/kLsaNlA0PT8aRVDheqdBP8JBjCFKxUA/LabewtZGPj+k1NdTqPc/Pw9dg9DXskA/+QOzfDx4Nj+2FiSFy402P/Rmfnzck0Q/lv8Ut5/GPD8o/MHcyB48P24JTOmR7Tk/snvezGnISD9Z3gmBUnBFPw9Ui13ilUI/9OGgVxgvQT84WOkCHwI1PwF91L8h3To/HryuEyLWPj9BfrqqgSA/P5MbKYHrj0I/fMQxkDwXMz+da82TwQo9P91Idvitzjg/iR8kiherQD8+zloonlVEP8MGZN+wlTk/ZwktSXCzQD9QRRXx4mxGP1s+/y5NwDg/m4jc3v70QD/V8vYsd4JHP/74j6j3JDU/G/WtYjO4ND+bexUHOtQ7P+Pf9QZQbT8/LXFeSPncOD+iX1aGQ/88Py9cDNQYYzY/1mtmbGnnND/5kYgU9vk3PxxHedQC9TI/DjdAZvDCOT9LWjjjEH49P/65r50EQ0E/mcNYICZTOD+MQaFKP3RAP+S6ZkjO7z8/yfy6C0iGQj8YQwEnUM40P7JXoUb2SEA/qDCdc0OVQj/GHqfWZXI2P8vTqndn1jo/ltUgPkNHQT/+oe8nkP0/P03WNjKA0TQ/fAKYmlO1PD/m1LxN+bxEPzOOelCcGDw/Y3Q+EcszPT8hyZ2ztDxHP9tLMT/rpT8/zbv2dJEcMj/b/uEjbLw3P9n5wz4daUI/XRyfDRx3Oj+9jWpkmXZIP7rSsdHZzEg/Cj+CLFWzOD9DikMuH+Y+P9mCihy10T8/d53dv1GpND+0qohHoMlXPzmUQbh5GDc/9WOJihWOQD9fMWfZOgg/Pxmr88ZOGjg/CpZVnmHmMj9n4s9Q2Tk4PwuFbWNqTT4/KebAdTybMj+P6GESdbk9P0ROOQg1oTs/NhcV93OYPD/QKmiXxX1BP3wPOat1SkY/lSkt9nMXPD9QBv07kRY9P8JqLGFtjE0/dps1Td84Rz+mBmqWo345P48ja0dQgEE/T22ZoSvwOT9fibRLI39DP7Jk0AEwOzc/kuXOkwUoOj+jvuMWHvQ/PygUXIua2FE/unb6JQh1Rj9MR4zgd7pAP6rPOIGnmDw/HFHmjhrtSj/HOTh4KexHP/fewUpjhkY/JZwTBFp9Pz+tIErX8wUyP9MB/0qdNkk/rYrxE2dCPD+sHDSdmFNEPwjJLabM3zo/nSbd3Z2RNT+TnDdB4PA+P63PB5EtRz8/EKdwXWFcQj/WdyDggP5BP4IJRp87M0Q/pJfFgsoRNT86SYgssbZCP00XS1nSxjs/MBcwAtyMQD+z1c74Ckc6P171WrIlCUQ/tP6H1c4ZOT+RlQRN8PI5P/0kg0vj8TY/edBjyVkuRD/7oL+0zhY1P5v5emOtRjs/iMVUbF9PSj9d8Wo/beJBPwBkMmZcgj0/MwxfLPqtRz/hj9AGyOY2P6n9Uhbw+Dc/OGa4hdfDQT/mPGgYbFpBPwzGdGC6wjs/1CQBNXgJNT8jAQj3geY+Pyd0Irfiv0k/oyd0fXBVQT9KJHYStkRTPxV/PD20ZDU/BRe5FEhqQD/RSMhjrXE7P0yglW8OuzU/euXQ2wVuQD/tgvFujVE8PyTROMXElTw/BqLOrAqsOj9wGTB761k2P71hT/nfY0M/DNYwKkbpND9OSzd/z+wzP6UmyYwawDk/YkTaehFjRT9DhfJXK4dEPwiKJ9Q2cjs/0aP45KAFOj8tPJI/1ls8Pzb8diuunkE/mI7EwWFGQT/JEuI5d5U3P+WYeHyFSTQ/bZwpgYhlNz9nONAJwpE3PwZH6rlcL0M/Z9QUsgcbPT8HQY6A5oA4Pzu2PfiLBDM/uqOcu59LPz8UpXjttjE0PzX5aJxGjTs/nVgI9Ic7Pj9/R0o2+1w9P1rMYHDz5D8/4S0W2sd3Oj+BNq6JSds/P4Ud9NyqOjc/qEM8TNrYRT9YhW2O6qkyPzROumKD20M/x2/FVrRfNT9sV/8f271CPxfM2eejHzw/iXP9UKNvRj9mG4US0L5OP200uGGf9jc/mjkGX/a9Nj94BYmKxEZBP9HS5zM4+zc/84bdclPVND/ZPJK7nbdAP/dFzU1XVD0/vxKCNOcJOT/uAYU9l/A+P58ps8KmLjY/HRMBBRksNT+4mGdxOz4+Pz5zqyfAnjk/0Yx9fTg+Rj+162l9TbM5P9lSFKM/GD4/k+V1272QOT9gD3kN8mEzP3iDNbzDZ0c/wGCX3odOMj9keujZsbM2P+jlFSd1BDs/AGoPIOgNPD9DFRDwKr86P3bjWVkNT0A/oZZWq8WTPD+p+n4yEhY/PzIFCHKS3j4/e1bw4MmcPj8nKraqbvM7Pz+6taU+KzE/qYcmWDVrPT+nI0M4ra4/PzzMC25zfDc/8yRJDfbxQz+q8ayGv4RMP9xuWfBoBDc/ZW4hPJgcQD8wn5V8OL01PzsEYMwuyUU/GyIJIz/gRj9u+BrY4+tGP2JN0u0GgDM/m+OGJiNDOz+Pjvcfo4BAP4eZpp3Udjc/aKMXDrSdNz9nuZf0KkQ9P0KZKj5cd0U/FuSmhxrlNj97APAn4UQ/P86S+MNsVUQ/mWQmSb6vPT8yF5+fNYE6P0NEuGk2BkI/k6EMUHjbNT+IuVMjvIk2PwpwJhhhmT0/jipvuY0VOz/RBdnYQwAyP0KCPYELDT8/ymw/AkdOOz9t3NxEnyI2P9aWB9dGtj8/hVZ2rfyzOD8Bv2LnTxY8PzaHZPuimkg/SApG1C0DOj/VRwMfU9xAP6mE97rkNjw/BbFpLgImOj940VeQZixKP49HJ02uIkY/FapP/XnWQj/eFF6b8L9DP6bXVIBp/T8/YQISqFn7Nj9aMXAB5xM5PxXSRwTWtkA/erOgDGJbNz+AtBHlkZM3P93/g+wVRkU/Kc5yVbD4Mz/DhCL0a585P7dlGxO95zs/31DcF+5hQT8KXYc/ylU6PzmIYX2/dT4/jmtQ7zr/PD8WlwveVeQ3P/QgFMbc1kI/DXWXRdomQj8pC3j8i141P4Tj0UTa8T8/Bu2g1XMZQT9cAK0IHcVAP9Djg+DpfDU/HRZWaQzsQT9LgQJ41jFIP06cB3CtCDQ/t9C7z/aKPD9NrdgOL1A+P4y2QSVi1TY/do5zLtSAMj/wvGGWzmtCP0kwd1tZCjc/15BDuls2Qz/lEO06ho1DP7J1uj1SjkM/TMeAEr2ROz8B2cUWfWNKPw39nE0KnS4/kF2IJmdgOD+4Ym32gZA+P8MYIdT2w0A/nq6v9Cj8PD8MmrSucwE/P0rrFFBN7jw/gUgkqQNbQD+5sbASuQE7P4/L1v/bWjY/0QWzEaF0Nj/q1GxQwQI0P+O0wTih2EY/rZqHFlDdOT9N2eROuyhCP/ViI24g7Tc/60XE/+OlNz9FHg8dBf9APwMcvFvL9zs/isvsUYrmOT+YDl46NMxDP5pCErbSfTY/5cMZ52IYPz/CkYlZBAY2PxXolPmnUUE/pAgvFamdQj+20BSIPiI9PzMtk9y/hDo/bsEslh1AMT9sWvQRosM2P1zSsYCSzTg/s10TZX5URD8zd9khkcU8P2RBjNACxkA/NQdKArs3Qj/EjoKEgRc4P74ns5reYEA/cNAXqLBFNz8cDxGSYAVDP7A8MbMb8kk/pSPAtmwXRD8U1sMge4A4P4GiIf+mWTs/TuZNtX5JRj8s2qIgBidDP7PN8BPFsz0/j6lOFt3LND9s2DOncqo6P6OappCqdDc/um4cQcLhOT/TIn+JqCQzP01Q8/DGyzg/A81rFZIGNj8+AlR4nftFP4SCEJig6Tk/YiJSkRLUQz//neCnGW5KP0ing/w58zU/2f8NldcuQz/CzZN/7ko5PyDaTURNYTY/F1+EjvWLND8+ZW8I2aI6P8yIhE9wOjQ/Ot3N4ceJQD8zylGF4VE6P2eSrFF8bUc/irAovyFhQz+LxQJu/NpBP51SUQGfOzs/9fAr9356Pj81KFjr3YI5P7lRQ5+4sUM/y8Z7vC3kQz/hLg9ajt5AP4x4Q/6/CD8/M83/oRypNz/Y1ZPiq2lDP45YakEYDUM/X4IWvC8BRD/KQZ6XaX9AP95zCjmJHUo/VBgwiBVcNj9T1cymmI0yPxy7WNm9Y0g/t3SDow9WNj+j4uuqwa07P5+3iFpgsDc/ZC61TQ0OSD9cj5wuhtAzPwEicU2JPTc/jqKcogKrMz+R4nkvEmg9P7QV4i5OvkE/KP2Ulez5Nj+G4VZT7y9GP4f1N4IDQz4/uvqV9E4KNT+V/21v5109PxfF9IIk8zU/EfSMhzs6RT9ZwR78jFdFP+G6UGO8kkY/1H4DRNVwQD8TZZ9i/eg5P1ke3lJSUD8/zLJD1vzzQj9SgQAKD0k2P2SRPXp37z4/4Bb0KqdHNz/wwUXQk5A6Pzmu67wyFDw//SqGzBEJQT83iBPuTqRPPz9SHr+yMDY/bcsY0B9bNT9REwvp4eU4P7xJDgNWQT4/hIeZGPO8OT8N8wnMTxk7P+nFAr9D2kE/QkYzWyHIOz/sV10usgI7Pzy0vU3n2Tg/aasvnoNfUT8XRC2Yu0BAP8w+zLS2Vj8/UyMVQt7dQD9ZE0MmpCs0P+U9bsI0QUE/T+qqxGWqOj9R01clyyg6P4zYIseo+zg/FDkrP/w+ND8QIUEAj/k3P7W6eQP8tT0/kepXFFj7OT9UYpyUiSg0PyRjQ6SXMj8/fcPfVy4ZPD+DIPuxLSlFP/s8qaOhTlI/yRpTgo7uQT/Ebyk407w3P8comspMsEI/JkOxvHvlOT+p7eLaqek1P2lu8kxJhUo/+iXirfNvNz+RnQj52BFCP8sOegG5bjE/Ja18v2bzNz8CUS2reydAP+UdaIQFl0E/J25F/VY0Oz+dKLhBtQ04P7T72biTwjs/2F0fJKslND+hKzdvoc0/P1BjQMv6mkM/5x8k216qQD+SoT9BHec6P/fBsP764To/EH/51hpZOD8pAXMl6TdPP307wbJdlz0/zGKNc85hRD+F0YalfGY7P4ZVcAM0zTg/OXfploXFND+z3P/rz4o3Px1DHsZGTjY/ra+mmYtLNz+cm0MNN8Q+P4ysmr/ArkE/YKlh0QqSQj9jz5RZYVM3Px+d2wBDwUI/IHqUQgf6Rz+39upV99dBP9fAFO1DQT0/zyBhv/ecQz+xDk/IMQZEP/JVRrFJbzk/+ZVko8d9OD/JG+6QU1U3PxZ/l/Ymtj0/fYsKeV3vOT9g5RI/rT9FP0jCkx3oj0M/jWbrNGD9QD8qV79sF6c1P9/awTzvvEA/DwBAQW4uOj9Y9tYgyTVAP5YMVlWVoT0/D28IG79sQj9ECPUY2G81P+gRo+cWukI/FZOuzm6DQz+/29rHrAw6P9s758pHIjk/l4TRzXoINT8OJc//76s5P9Akd/lST0E/SG0IrCETPj+dBjBYtn42P1Z5rGDub00/NVyJ5TudQD+19gljtUBFP74B8bAMTj0/AKtJDt2OPj8T/Lj78Z5AP0h0E9hDyz8/U34f/C7mQz8sPVEUE5RFPyyXUyNw+1A/3FO2a+mhOz9oG7KTV21CP+6Al4uLsj0/W3jnG5TaQj9rtE/ZRsIyP58jsEF4Fzw/C91uRw2tOz8nUIx4J6lAP4eGmigP+UE/f4yGemTtOz9nErNmfS1cPxqjlmIeZD8/Fw/08mmFQT8omlM+Dsc2PwvJSESYpUQ/kdXd16k7ND/t3hpwR0xBP5fLwq5YiTo/3w8c8CmbOj+Mn8a9+Q1DP5Wmiqfz6EM/EfveiOmgPT9xSMYRO7hDPy69JjmaAj0/8J2JyjXuNT94MJeR0E8+PxUDf1OzYlM/BxbHTmYmMj8FtZFLGcFBPxsVtKBiYlQ/lL04AAG8PD/1c2Ziitc0P/5Z0NQbUDc/m/Eb/lHWOj+KFD/QTilGP+a3LIKm9Tw/GYvZpDjNRj+k1NdTqPc/PxKDtlgudEU/RB1vVYYvOz8R+TvPMJlAP/YpDjr9rUg/bqRiH0FKPD/bHWE3vaIzP+L5w9GAOkg/N4+Qb1n/Mz9qtt6uGCc+P+btf7WnOj0/WxHrQ81GPT8eQEriaGs9P8k1PdyZ/zM/e+Dp6bGaPz+NyeD9+BhKP8eGmXZkvjk//8dGdl6QOD9le72TAEk5Px2ANVDenEE/clapeNocQj+E+M+5LD1CP5riMu3pijw/+Kkv7ckzNz8cHtTbJcVFP/1pQBBiXzk/c0sdd1kyOD8wd1agUC5BP3vHueXU4jQ/lQT37zkxPT9C25Ke5yQ7P2+/rOt4FUc/Imhxa3e0Nj8rpCJsfTNPP6r0bofhfjs/bskriUz2SD/TBQGhEUY1PxCQdnYOckI/+0RhwURWQz/KkO7donA2P1u9I2D9akE/IyUDYSMgQT+j9bBK+3w6PylmlJmYT0I/N8TqIpTdPT8sgHpKBjQ8PzFBA21P6UA/oa5+BK+qLz/UXuRoBbs+P7ENNTqCfEI/zDgVws1WPD+ryq8AVcU8P1y6r+5LQkE/YBDacC2aOz/a4Ok6+Zk/PxvpzSd5FTw/9lKzMtrdRT/5Sl2IjkpFP9BdwR9GVD0/GXxQBv07UT9JHl+toIo3PzpHqA/g0T8/wJcYhB/ANT9DOiAvwhk+PwlnmUBv/Dk/Y0hdUZtPRT+JGOGzln45P35OU2HyWjc/du6tsC/FND+ipLiRTxs3P1qyqUE4aUE/O6udEiR3Rz9jgEQTKGJBPw7D88QGGkI/RkbPeQJrOT+YG2cuyzI/P+F1p4IkyEU/vTWhKlWLQD+96qg6SZI+P5jluEFXnDY/P5ftZu2GQj8mjfcBTSY8P9cAIWmilTw/Z1kqgSr0NT8Mu0bQOthCPyEU8Vwzh0E//cTvEEAWRD871yUaDMQ+P8sjGgUKujI/OqpbvKanQj984Ny/rxo2PwTWHrQmLzU/gETC4GKROz+4ifC1u5VCP0Z2HyzVmD8/Ncp5Ta+XPT/kHZt1qqJGP6dzjP6sBjw/1SY8C7w/QD9M4Pyk32A9PyuNOmjmMTk/B2uowOWLPz+LVuHbYwU5P1PYr7Wjqjw/Td1TQV5yQD+CclLN6Qg5PzgN0AQq5jc/gXMysA9kPT82rJoB3YA3Pxz/5yumpDc/Ae2kRGa8Oj9ZSGroOf44P86UZotVl0Q/4kr0NIsQQT/nP5e1vI4yP1Cv9Ne0HTY/O28zeg14Oz8wQaP6Ii9IP7wWIhcEpUQ/D+Q7WbOTNj+fli7j9005P9UbUJcOmz0/KguM4HIBRz/yYQAlYYY2Px7scBvdpjc/6zELmZ3YQj++A8wUJMo/P6iLW59Ohj4/9uu7E82yQD+3iL2KawBPP7sCz5IH7zk/UelxKfi3NT/gNiAweX0yPxw8RovJoTk/01f/A4aOOD8rW8PDtnA5P9Ht43D/9EM/HIaylz1uRz+zBxOslfw0Py4i6jtIGj8/DdbXcf5RRD+2lGManHQ6P4UQxSFxSEA/190RVcVCNz8Lbj6KR51BP/5XGzinX0A/VLv+22fAOT8cWeo6AwxDP6bNZkU8KDQ/pf5j6Y+lOT+MSCY9kuY9Pz6ZtOYdYEM/DB5QfbqWPT+LIMGZB8w9PymhXmowfzg/lJMewAGxNT9v8HaeJ4c3P7Th4yWVrz8/B7TmWsMrOj/ZzkPiKL1CPxrDnKBNDj8/ztLyXA/BOT/EWAmK3UY8P+8PDevDAzU/y11Jx9yCQz/UE6pcJ3xGP+/rBFcgSjk/w+xMPslfQj+Kw+1eWzBCP/hRCEKESD4/GiGhBR+FNj/aIbxFeUlAP4l6T1JR1j4/ezBrWhBnQT9PrB7zq4A1P8VNo0//5z0/4obYk9LJSD8hIY20m7M6P3fwQT+7kkA/n4cfC+12Pz/dNRHLoLlCP+H8BFKNV0M/tK235PD9OD8XICUEGIdEP8t9qr5+fjs/d2NibznJPD/1Ykk1w3hDPw2GR9ZyS0E/BKaUVsrSQT+xeHWEj2U6P/0Eo9RW0zI/3t39A0JxSz8EWefJSek4Px5bEy6LWTQ/WKpXBt94Oj+WRf7siaY6P9OTCSpw0zs/ILoAMZIIQD/qMfe0tjVBP438UiMa+0c/k3FwD2CWOD/+ARt/vgdBPxNzNDosfDk/3Si8SMQ7QD8doqlV9ohBP5RpGGTpSEA/y7OkOTgsOz924cXKgYE0PyO6FhakZTk/tsoC3OLQQT9p1PWkSbJJP7jABL8kzUM/L7+o5GnnPj+r+MuWyN8/PxSWNiQHTzU/P1yxQG20OT9r+t9W6QpAP4m/aojRQ0I/+BIbDY/mQD/war7szHQ3P+A6MbEaxz8//0iAtq/lQD/75dUxlRs4PzPqEO6ETUM/LVzkC0sdMz9/zcBoWW4+P7mBuRguazU/lLgIOPZ/PT8Fl2ZxAZM0P9DIBiMNpjU/xOKn2VLzRD+Tah4Osi9AP4UK6GflvEE/afHgKQ/LOT+0pobxK7o7P6V062C9hDw//8zP9rBjOD8v1rtoXd1APykKJMNSpjY/6QeR5nETQz8dSFu4Uwo/PyzRA2ZYoUU/btpcmvr3Oz+fn2ABd5lEP2U0put/PDg/eQ2wRcFCTD/nMwMJSANRP/d5a+TjqDY/YoWBBTUeOj/KY9ryIvc6PxF2lMf2ATg/9i//12/cOD9mq4Gc5tM5PxU10DBAmDc/Vh/i++98Nz839SYrK/JQPydwbO+zxzQ/k+6n+TzcRD9fKDp0dSVEP/a1wZgTBTE/SMzfyRZlMD9oik/tS7c+Pwi5z01CuUI/5vLVRFUCSD8TQxd5/lk4P+0mOsO7+Tk/lgEW4lnOOj9hsBNF5bJDP+ZdUDrsGT0/5jkTtHiaRD+b6JAni/M+PxcZ9BBTQzc/6oi4QweAQT8auwpKTZI5P0RcrdF6EUA/bxQAs+AdNz/u3SHwgOU6P3hTzGxQLj8/I0Ih141ERj/ni/8zMfpNP/6wtyoPJkM/bdzcRJ8iNj8Mjp+B6Zg5P6ajOiKBNEM/dPIV6e3rOj+FLt4YzY1DP5iVuwmdW0E/PbgaXc46PT8cAelWYKw1P4djhlt4PTw/TLjjj5pdRD/n7sbE3nJCP7zjaBxXFEA/kLy6/c4DMz9Abx0oX+w3P2rCcluNsj8/Ol67k9PHQT9g6hxAFfA4P5YfQbxx/Dc/xiY5LWbuOz+1fNtOhqNOP2amKw05DD8/qq3WXkuVRj8ycVUgTdE+P5W7UHLnv0A/KL41Cw/1Nj8qlsU+rRQ1P/+QHokOtjU/ewYZcLLnND+x/t6M6/YxP8cYcWSST0c/FiYP6KWSPD+7lKaANYA3PzN+5E2zfT4/bWtfztnzNj+8NpXxYYk2PwK0ybvMqzg/ZTSAJN2wPD99TxI2L5NAP5QAdBmwRD0/KRZxmjuDQT/KtdhVlz8+P6+y/f6pxTs/QjJmEPRXNT+ZgB0Hd8o3P7AWhmW/MEE/FNyg2gYMNz+HlncAhEI2P/+f4dLTdTg/4pYB+owqRD8iuxzAbEw5P2uzfCAj5zc/JyJKGxEDMj8xwkvYzXg6P8nIm/SlVDU/n42jDDFrPT8iypg0pl1FP8TVGq0XAT0/+m/NOVJfMT9PCPxlIGRDP3nwVyTN7zk/q1iFmA5HPj+60osKN0E9P4HHfcyDy0U/fNPOEl9LOj/Wj9ucO9tCP6r0J7JV0EQ/TJEZ+9SpST87LSbT9Bs+P5sQdUoAMTs/wf5dMp28OT/v1D1hcms+P9OJdqi1Tzg/1Reaz9+iOD9CdqnUloE9P7CdBEMR4zk/T3wVFmUBRj8nsNMkhW08P+NT2sTEREU/NXviMer3UD+EHKCjcYJIPycuuADjAkg/uy+9tuTcOT9tSX4sk800P3WV1xI+0DQ/vkwwdqT1NT9cbUk3VwcvPwOv+WXuKUI/Hf3Z1ukcQD8YY5rIUD5CP0uFS6PW7zo/ngSPnygxQT/msABImxpAP5ZrYmVauTw/+hD2G10NPz/ssnnLvvNHP3IS9F5PUDc/neorcPvjQj9iee1YwJI4P5ZBIl64Ijo/0GCVAyQ3Nj/GYbwocm87P6O+4xYe9D8/LJDJd2MgQz+SQawGegs4P1cxofFgZUY/Y7vb8hqGQj8vR0YJJYw5Px1Rs5114TU/q7KHp2uuOT8tWOK11g03P0yln3B2azk/nuIamhBFQT8WihEV7LdNPxC4oW4PXkU/IFlgkkEjNT99RPPQ3OI4P2dM1f5NdkM/4FbNtWCQQT84vCXb7lVDPzR5p1umwUU/gFRY40ssOT87fGfuANNCP1w9eARv/DQ/tU8l1QcqND+wJtDZYrQ3PxFZYm2lOlE/bs6BGPq9Qz87VeQux80+Pw0yaVYtHjs/1BhHwWDyNz+NV5WHyXdAPxU+lbKQqUA/Cetuuj/ART/XIhuoiccwP0F+mZyY/UM/Vh8Iw5IIQz9dlijbvWU5P80A5yq1lTk/jQ6ewneGPD/4S3cWPtRGP+5RzgOXSDs/dSY1AJAdOD+27coaNHVAP695ofX61zU/DkewoTbSOz+jIUs1n7JLPwHxgNM3QDs/NdviCLwNNj8bVsjHtFc7Pxyc2cVsfTw/Xza9aOjPST95jW+FNlQ6P+8dNSbEXFI/vxoUi+eFPj/OLVbPp2A9P1X4KUrmsTY/wynlSHaLQT8Y0S93Uec2P6k53rzvGj8/jqV/sQ3IPT/NRneoV942P2PnvLJKajo/nHNQv5RMQT+ix+1sz/k3Pw+CAKydRzY/Yo6NXBHeOT8Cibb7Bjo7P2slp4hpZTY/sSYwTI9uQD/kX4JVIHM4P4R0VfnOyj4/MdZ2lPzoQT/+am6C+Is8P3I7LLv9RVI/1SN6CppFMT+3NnhSawk1P9MSaAaqrEE/ZFkP414uPD/zulVCPZ4yPyHQFXwFLzs/jR3giydpOz9dClRuvus1P8eE5NnvzUI/jYf5HYNIOD+mvCNR0j03P/46+AiD0jo/XIua2BHBNz+J9H1mgHM1P4YNK+kclDQ/E3nKHixZQT+tPQ+VFpNGPyRyvxjRQ0s/YpFhQO/AQj9BI33/iww3P33mFDOu9zw/Gr5frkBSNj/9vOtkV/c7P9EEORHFMDw/skt6NrD3QD9BqP9q3R9CP/Dduw03zkA/K6aQM2Z1Pz/sYWIFVSlBP6s62T3hOz0/52PUOzAOOz+eKw2mqM00P/lSKYoY9Tc/TR10oaNpQT/QbCmwmMI3P41sfGCmcTg/HVVDngFOPz82GCJbIaJEP2RG3ab2JEs/Ugn55zw/OT+L03F+iOI1P1Eg886PKUk/Bqd99P8KNj+bs+rlCv49P4MEBPR0Djs/X6Tlero+PD86eJiJMc87P2xH1rkgXTc/XhUIOA0cQz9kdmcEU4E+P2wSr/eKikI/dgj9+3VvQT9umqnW4zo9P+MHW6rahz8/uFV45tHMND9gjB2U/eFBPyg/I70aMzg/zzcC7gLwMj9TP5qqrlU4P2eMz5fw4Tg/jnsenIIOQD9bZHWK2btEP3lR5N42MkM/zQsGkAdGQT8Ukg4H8LM9PxoC/CorEz8/p6UDo9zHOz94EnFwcopBPwStn4LsilM/pKTgWR1hOj/dQ6aiz0xCP5iKVc++/DI/egf5UthCOT/2TNZ4TlI3Pz0hBn2T7UY/p4u0V5YdPz/JHlAfSZU9P8yNoDOU00E/rq6g78JkNz/q8Epx2RE8P/73ztKPMkQ/3zguhTUFOj+oIAdxWvpEPwBqR8pGgkE/pzncu8RgNz+xy+3n3/E3PyBTFjyHXUQ/U2qtanTHNT9WcA2mQOo/Pwd5HIor/EM/U/JrnRiPSz9+RsEK8t4xP/kZAHIOEzc/ULP2LSktQj+sTpleDCw6PxUkjTzWrUo/NGvG9TEXPz/KcZWR9BU2P9ZspsG7/EE/vR7uGI5PNz/eZIGaTYxEP25A81XM6jg/TNMUvzEdPT+8PJhykKBAP+CXB6RVETQ/orz0zh/VSz/Z63U8eoRJPzlkyz4EXzU/8Unl9XnvPD/cioOfxio2P3GRE9dFkk8/Q/+uFnKBSD9DNfBmt90+P3Y2TIOOlTk/7/whhOeoOj8F5YhFpFc3P2Bo21TQ+Tg/E6rbpmZ5OD/Bg3MBwJUyP0APvd5gHDo/ia9BIhfjRj9c8AIiTYdBPzPZuRU0wDQ/cGAUMsdaMj9/6Im0e1w1P6bNZkU8KDQ/rq6g78JkNz/IuwzHP6g1P4uk78sfJ0o/U4UEYa4SOj+AABKAkS1BP7MlPoatKjI/xpSHBtvoOT82r+9l0EA0P2KlrQoHVDU/+UQTMtSERD/AEa97wy4+P1AHiR8pQ0E/DP/2MAw8PT9/GlwSHm89P34cWzytvDM/pakD+CUdQD9++FKoCQM4P08Qjrwg4Dg/R+bihhf4RT8p3OFlPAA4P+RKPQtCeT8/sYvzTj2GQj/hrk8aGc1CP6ErAn3RBzM/fntBhc9INz+aYBfJRyA4P+qUk8UHujk/lG4OgWpWQj/K9TBgO6s0P7yLZzi0tDI/gsVJsCS4Mj83twI95pk9P3kC71FwkjU/NdJ9+Ze2NT/ldoP2V4BAP5v0cGJFljc/zex0mfp2Oz/Dx96NMAU+P2rZkgmDKDs/mn7DI3UrOT8ROGOvrylLP3tpAQ9JgzQ/WH8PVElBQD8KWCSGGg42P/DqfSxChjU/2mro/JoAQT9t7gEdWiI/PwneGThjQkM/wICdHLf4QT/YhzlkqjA7P2RL+Yoavjg/ecVqK6oJSD+dLAFttctKP1SN9inbSEg/X+FpoYDHOT8cHxQxeNpCPx9Z3xEsRkE/6wluS7RJPT9Pi8R7Qx5HPyA/EUf7eDg/tV7CVypeOz9ppEWASspKP16Et3S9Tjk/KLFNJWGxNj8CLKsW/Ck6P3EhaRmkPjs/JgVLsmRHQD8xy4ogT0RPP6wV8cYXJz0/9fCdTGcdQT9vkcoAjylBP+rg2jWTAjo/JIZXcS7uRD9QlaWMbnM5P6YO/Oyj+k4/hu//DgVmNz+y0B2w6i03P6n/U0GqADY/Xj16BZq2PD+A5AjfHCo9P2xjAGl+gzY/IypAUzDcST9enIYVX847PxQpuwO2L0I//4ORXNPDPT/G07OfE+I0P8zCZ4P96z0/G9LlI+ITRj/vJEBS5hREP+QHpzggnzY/TpF7biweOj9GOcHMsZs9P054uAZ+oEE/cXAF7iJHOD8OhWI6k4c8P4k7PFa56DU/8vGKWY/4Pj/Gx9NkWT88P4gOJmoOtTI/Cb3lh51rQD+fv2Y/pkM0PxyA+6RUbjQ/lZI+3dtVQT8tFC2cS0E8P4IRa1kNdTc/Uxwe+qLIQD8priCJOzc9P0qLOkAeZEM/oCquQ5hPND9gQh4kuE9GP9CikMeAqkk/XajlzwOUQD8rW8PDtnA5P010fAWAYjg/W6cdQLd+Nz//UXNw65k+P1RxS/pnRUU/JQ0Q+gnPOj/V46B/4Pw2P4Sr21cgpUI/ly9+BhMANT8g5ge4ZHgzP5kL6siCozM/n8Zxa8j7NT+1cjTp5Hw5P02BCTK7VEA/hhS1lClvQj+2sGcCVw8+P2BkJY2hAUQ/PVpihkLbPD96UT+YqYM7P+HGd3MC5DU/EAsa0l/qMj/7Sr/75b41P433/JNsMz0/UCePXVjtUD/HILzlBh1GP1rG9QtQ/DM/Kx6YVTh/PD85AEiRqFxAP8zf5WuUyjs/AcOKBGexQz/o6ETExTg8P2EwLj7NFTo/luTjhwgHVD8s1ETmZL4wP5L5Zuxi0jM/JAQEoy0POz+dZg8hn3FAPywnS/TMpzs/YUSgz4c0SD/OE3nZSVkzP9sF7U+OdDk/SIirMKF1OT/dJknIIZE/PxDhjTx4PDk/gLX4gZwRRD92ELUZGXdCP9zUgg8MvUE/VeSR8YgHPT+EZ99oCSpBP1zea/Sp5DU/Zkjli5VPQT/GEjnxk3JAPz4CCOpX5D4/3SKTAPOYOj+cbiD3iRBCPznuHQA09DY/WctqqLssQj/pQ09+FkE/P7FpDfQ89z8/0OD7ilGxQz+Uyuvz3jlAP6CUII47xkE/GhMy9ZJ9Qj8ygcoUTUlBP3BiFV2BYkA/tg4g2eJuPj8d0UwWSGc4P3OkTM2Svjg/EDbhA+BEOT8DojKOKQlNPys02CAImjM/RS/TkYTGQT9HP2uVmBtHPwJ0PL9YekU/ypDu3aJwNj/CdAtxbSc4PxYQ1NWP4EU/q79JxnZmPj+ShsKDQBA7Py+DQwUNUTM/0U7L5NuINT9qQH3+jdM2P0U6ukx4AjQ/WNyo42uuPj+5wnSHOMk7Pwhu3BbwKEE/aCtIlkAIQD99ZyisXME5P+x+bpgDZTw/qcFVGgg0Pj/zulVCPZ5CP/BsvxeHfDU/5ZH7+nruPz/I0SbLbDdBP+UlIKKonjI/LrxEVUntQD/u86iQ3K5IP4nUUWGuPTo/NVitVmoZQD+d7nSb+6FFP7SRMnwghkE/lPXY7AEgQj8Jtu4/YlZAP1K0TGiNnzg/FJg3T8FWMz//mwVEAvI3P9seIg0llUQ/AM9RooBIOj/1Bz97cnBAPy0JE/Cy+TQ/rQdc7+iTPT/n498J6zZAP7P/s0Y6jDQ/Mu0F4EtTNz+dTRQPkn9CP3AKgRUNPUU/trxHPRGyRj/zRu1LJDtQP2kfogYQlDQ/KAVzejKNQz9fZb6aO65BPwOniB3X0Dc/pAK/90tMNj/u+sWfuk9EP1JcS4TqPzs/+JUJ6lQsQD/QUCXI3Sc0PzaYdP5neUA/D1E2+e7VNT+iIaTt5kk8P6dtCP1oEj4/8D2qAU37Oz9TiIy2Rt47P0hkIhzo3jk/kJ/whvINPj+RDeanH3E7PyeTx5HWMUE/b1sXW2EqOD9edrUAYIFHP+jqa7YizDU/gkjs/qTmOj89ctZtcQk3P+BBmk4+f0I/9JDxdCM2PD+W1qdoIQs1P5kzqCRVVUQ/ujSSxXzHQD/bBe1PjnQ5P4rZTjgUbjQ/JOeFupYwPT9fLDzK6TRAP/Nc+CQkkDo/w3XgKry8Oj8KygJgG3U9P6xrhOPRREo/BZtox3WiQD/vCLYwXDQ8Pz+cZASEcTg/rq8GDLgFQD/P3nnfgcxBP3i4AcXm6DM/sEwOi5A7Pj8lr6Oxw4ZBP5kCkuNgzDw/Ky2nLUNWNj9QeCek15Q7P//2D/5S+jo/VDk+cTinPT/qXplKTgw6P+eJkWxIuD0/3iCFqzYRMz/mbN6R4RMzP/5mkvMmCDw/RVO1XoX0QT+gWpFZPENIPwB1dVrGbDo/bbc5ojYCRT9C1mLW3Og7PzpLqmVU4Ts/emJPm25iMz/k1tyFcS02P43YyQ5hZDg/i3twmuWCOD/df8SsoDQ3P+Hd8tpqqzk/dDsI9YV0Pj8KGcX7PAlGP/bjkaBBCD0/UV5KrnmNQT+KWaHbWkVAP5S8Co5qj0k/M29Hy5BJNz8ujzBqyXM1P3H/rT4ApDQ/61CrutfhST97ns0XbARBPwZgZkx//jQ/UUKuqTPEPz9oQC9vHQI4P6whqzovPjo/Xb7Ab+2LLj80SANwmttAP3wufhM9AkU/DRaLNRUPMz/SvsEww/MwP1b60bxYIkQ/ozNj41cyOz/EqFJQ3Z44P9vX0LkaWjY/x08+mG/YQT8aXZ4BB0pAP1Z9wJkeaEM/8syg4ZopRz9sOfCa8klQP15ZpLT33Ds/S7WOK6edNz9nKs6VZMRFP4gRL0C8XTg/Tt5v0Di2OT/ghkMv1kkzP3qIDMyGDDY/lv4y006xMD+44cvSu2lEP5OsrDXgaEE/aF6AENi7QD9qwpgiMD47P/JZbs5gCkE/P/US2qcgRT+8V8mhJ2A5P39TBKoSdDo/fGSeVZk7QD9WAQOwHWZBP2hOnn+pCTw/dcKfb3gyOT+07heaiApHP8YiXZ6Uajs/rlp7mvGIOj8eth3o22E3P3KCQ2N+UjM/kAk9CvP4Pz/nWRvz0v47PzD6+O7QXDk/BazykGs7RD9ej1daJdxEPysimqusjjg/ennKAtcpRz914H67Skk/P/LaD/ImMUs/YxKqq21QPD/fKcb04pY/P0WcTrLV5TQ/OJRTmzUBQT/+wpUtPndFP7DLRqAniTg/a5raxl2MOj/P1UfBAoFGP5b8C+HxHUc/Ws+11OakPD/a+IPpylNFPzLQQCIpxkI/CNxxxfDRNT9T55jGC/Y6PxME3rXD4EM/eNADVy10Oz8L1Ii303g3P2ClujQJ1D4/gai346Y2Qz8nP1auvz49P6aGAw92BDw/oxnfpUHCQT+ECK2RoYY2P95lwe+foUE/CACOPXsuUz9pp8Cr4BVDP7PmS5j+X0Q/O6B+rdHGPz/4ntuVp71CP1M3m7d/n0A/+WK/jAGQNT80TcHivHQ9P7v3R0pAbUA/sJmVUG6ZSz/Q7I83xjw1P2srhEL18DQ/FLFGRbXrUj+mwYYKgoU7P4InuE7fDzg/q5VVTRrnMj8jFzTeal5EP0e1PpsLEkE/tLqxrVoqQz+WuHyOCd03P7xon/liEEQ/GvuXRsHDPD+Id3ltSDk+P//gwgiBXzo/rN4UaA1kQT9AUnl4JYI+Py1FQ90/yjM/5lCOG+FhOD++L7KNDRc4P7ADdTdASks/Gm+dEh++PT8VcnoeqawwP+NhAgDFnTI/nLNwH9pDQj8TVUEKc8JBP/2Sv0GcA0s/Vfy+AyyHQD8R/fGWX5FFP0olESF7qzg/RS2snyczOD9GY01imUk3P/kXS9WZIkA/dNza1tc5RD9X8+5YBLBFP6wNpkWjWU4/2zHTyHfBMT8WStCmvZ1BPx6lM6y5Djs/V8z+/JtwTz+awSQExz81P4xPfff5tTY/wfHB2jSQQD+kK1INbZM5P1fN5Zmm7js/0r3IsPyMOj9e91vd3xBCP77JG9I7JDs/viezmt5gQD+8cT60EJYxP+D47hcypUU/lpor7U4jPz8Nyvc2RK87P8s2OF2LIEI/GHUsPTp4PT8aEeU7k149P52N1PyqvDo/YkvRwkx4NT8Lln1mLyw2P1SQ6xuiTkw/CCnB4G+7PT+pPmc9Qu4+PzggTs/XBkA/cSDi7sV6Nz9F/rxQkD06P9wGezRRW0U/gxPtBN1ZOT//toIB38g3P3EpgalzAEU/59u1ll+MPD+zmAP9uA9GP37TaDAVNEA/CSkhU5x1Rj+Krec+FUQ4P5DGc0YsEzI/TZeLGV21PT+NLKPV7Cg+P/Xk49hPBkQ/S6w7/z4vQT9tX/HoB/RAP7vCDqXusUE/g8fxIpcoQD+TwSZyjihHPyzcV716F0o/zobRsyYENT8yD6CsBstCP7Z0b78os0Q/ATU27cIMNj8azXuwTak5P/MO1lCByzc/JvOzhMGkND+i/khLxN8/P0DZj3ICYzU/x4sVzbQRMD+drC1JWRc7P0+JfHv9Z0I/VeK2jXGLOj/zQaEu6kRGPzv2SXTqWEI/NxOZ2s7ORD/l5UYX71VIP9xJI+ouHjg/G5ahUm6gRT9/S8sLWo81P48s0FZ010E/0nNcpIjAPD94MAnnuPJAP2QkQ9o7rT8/0b1t94k7Mj+BPV78+EE5P1Utd9MeEEc/g30TwTq5Pz9soISPRAxEP1R38AmVXD4/7vvzEVF8Nz9W4jcOh2g+P11aMJiPCUA/xuL1aMPEMz9tQzTW2AdEPxCLjYOP5Dk/XHFLjcsWOz+gKw+n04c8P6MeD25M/kA/6f44AVA8PD8dsHMf9eE9Pw9LM3jAvks/fHM72LtvNz9N0g4VaTY9Pw1R6Gl+BDc/RmqLf2ANPj/YY0Ozwl9JP9WxAxQOsDs/QyHKY0LWNz/y4SwBBdJGP9bSBNMuezk/9vvfwM2qOz/mXPwAs2E+P4Flndjg0D0/un9fNSzMNj8BaxyElRdEPyhkWcNUGTc/iLjM+N3FQj8IeTBuEp81Pzcio/kfPU4/9kj66XzORj9VfCDSn5hNPyFDTUj5tkE/VKmNdWepOT/XHj8ZuENAP1kLHmzS6VA/dxIR/kXQOD+YYMk51045P7NITZqKfTc/Y56k3w9WOz/te1PfmdNMP+tRJbuzJUQ/IJPJ/50aQz+f9AyBJjk1P+8UF+wrtDg/om0RJRUeOD+jjKQcTadFPwl7a0RW1UA/aN5TNDRwQD/jmr57oEVBP6zzaN0YmDs/SKOnbWhvNT/iQwoXUns6P3kY8Lj8FT8/8oLt/5quQj/Yb2rDCLE4P1pXDCQWm0A/N6W3nYgOOT85d1YztP9GP267KRXvKDc/PdPjqPAoND+So4z6HAZAP18S7X6jikM/2Dyf5Z83Sj8NEmMY/nM7P6SkLOhieEE/4zf36vLMPD+JOA25aLREPxUvPwX6I0A/YuNfo2MJNj+bGHn26E8zP74FP5XGdDA/RB5o1UyWQT9Dzis5T74+P+HJphBTGDc/6A+ivFyyND9Axx4MAkw1P5JQSYmcPz8/7lRWWS8UPT93N0cEgLY3P6BfCPfSLT4/4YfyIYJTOj+PVHzPiqA4P6WpkaI9ej0/ENamgYQANz97fiCShPFBP7ndSv1cNzw/nByPMEQCQT8CIj5c5DEyPw8nMJ3WbWA/RIAxLXo/Pz+KXipcrRhAP0VoCdSQKDw/88fxmaXKOz/YvYyXq3U7P1OhVNeuxDQ/XkV+sYLVND+ytPMAjQc4P74sUP8X10E/Yo1f6nqxRj9eBPg0SD07P20ICpMUHkU/IMq3QWTGOD86a9ZqJhc3P48jjFU5ozw/LBqJ1cHvNj9EgQTmnRo6P7Ndx9Y4PT0/HXKgeK8JQj8fXKESTkBAP/UfG0YWcDw/PSKzbhQ9Nj/FXROLRfc/P9RgC1tiTjg/gF7rZAawPD9OGfPLRDc5PzWhjX9GuUk/7HVBMz6CQT+Mrvaj7QdIP4H9CqsOP0M/3o2TL1n2Qz9UpKk7ooRBP+UWEcqdxzg/kjrHofreMT/vbXkzCkw+P38w9ZU1ITU/4omalPTDNz9Z0TV/i882P/L8PCKzbjQ/MYCX6fyzPT97pcRfpxlBPwHJGzCtJTs/OOiZ/u//OD8XZ/AdU3w+P6Smmq9LukE/ZAek47urRj/2RPiTCL86P+8iZe7OmFE/OmZN6tNDRz8IWTda5XQ/Pw/TnavWVzE/yfutp5p8Sj8bo2NxeVg6P1t/GA9ZHkA/FTIiFAVBOj8gJ0KmWfk1PwHdNAkgrTg/uJVem42VOD/TRhXIYzs8Pxf1Nwv1oEI/iMoXmDtRNz8lSGAEcUQ1P1ttyLZBKjs/ywpS5KHTOT/mBm6dsqxBP3CUQHNrDDk/IsIn7I4EOz8F7MZiaxs+P/KRL8lKkUE/9gWZCSu6Oj9IvCMAiz43P0yUlCZr9UE/lt6FTWeeQT9rhmg1o208Px599M/RfzY/SIHGyyFJQz9kLtsUsJlDP0P1rviIwzI/E3s45hSbQT9zfA3xqi80PxS7IJz7HT0/Jw6M+xDNPD9wjbbHXjE7P9KQk7eT8EM/xuH86PxdPT/PoHu43/85P0hG90HQsDw/VDARDHPEQj9VqmIvtj48P7kMOkz0LDo/qR+ARnw2QT8RiRKSpCJAP3xoeuRqvzA/LsKvuezVPD+aNwU0PLY4P5XNdUqivzk/nemxbx+gOD9ZR8/ZdJdDPxOTYD/+sTQ/dHT8GsCQQj8FeA0lUzhEP24c68EoMT0/fx/lknBCPT8I9RMftixDP8MkQyuDrD8/uDeA/V6qPD8RMX5KMP00P4YRB3juFzU/a0S0RtKoPz+SjCC+4Xg9P/4F0Ubt/zU/+dMWPCQzOT+Piqk76Vk9P9/fONqFp0Y/JKhM91u3OD8vCRXx3bM8P1GU0tNKmD4/wftUXO8TND+jE2+I5HBFPw3S1RuKQjg/o3cEGfxbRD8D4FZ8bmFAP2lpDhOEYDI/RI2+WbUxNz+VQGGIUDBJPx9ew0vxajk/cYeAVYsOPD8Lsy5AaxY5P+o8uKgH5jc/Fzuv6/bdPT/0+bbNRV06P5GUV1tvozo/JnWp4cCDPT/qoSDyQqxBP6y13AtfbkY/Bfzd5WmTPz+PN/7m88E6P30Q1Lk6sTs/NZKkbt5tOz8rSP4jfaE6PzUgegaY7zw/uipnJzcVPz/X+1ATxBNGPzmc0w56lDw/ugoGMJUZNz/XXiXOcww0P3Coay+afEA/KTxCrzrQNT9/djmFklI7PxIkF+WXljg/gKoRx6jVQT+k+L7ZYo5QP8Pa/OWxaz0/2YKKHLXRLz9TJybDfyc+P7d89Osmr0A/NhU6k1wcOj9uvn554uhDP+TgKDKgAkM/CngE/aYsOj80c8qhGjY3P0kNHLk2oEo/uZRY8cSuOD9w1Kxh9hpBP5Yy4JQIQDs/CpOBuoMDOj+fCYe91Pg6PyUb33zCkEc/qEmsaTcqQj8PP3kEqac+P4D9hHE/+T4/+UZvFgHeOj/tfGBDR91EP7W/z5KpfTg/l5Ptz4dfOD9RsKPKYCc9PxfUkQVHJz0/STZUFeWVNT8NGhs2oXs8P37QlEw3UTc/MrUwAXspNT8uz5efmhk9P2XZmzEvNDU/YOwda8/3Rj8IxP3dwaM7P6jDaCh+JEY/v4ocuorZQz9Yy1bE1IlAP1EohSWQpT4/yFdRb4UxOz+jHUnfKqM/P25lKVwG0Tc/9dgpZTjvNj8Vs1tUVpZCP7RSrSqg9TU/uLK2vIHoOj8tOJWiG7VAP6eYG70uhDs/McLKV7ibNj/VEI+jveo2PxxfVZ+m9D4/wOTAV+ZATj+MHIxS7rA8P0ODhJBCRUQ/TE6XDJpyMj9oBjOe70Q8P3JSgVvDgTo/biBatMt6Sz+pws8a5Hc4P9JLQ49DvTM/GHamPRa8Nz93jPODL1Y4P+1S1K1fLzs/INOd0Z36PD+yC/xkaQA/P9mEajmGtkI/5lH0N9YCQT87QZhkrzo8P80UM/XMKDw/rdhxWQsHQD/XqGsTRU02PwYRXdvRu0U/+unDoyKIQj+r6wl4vSc7P9t/z9V3+jg/j9o+kC7JQD8FgnrfajA8P5SEW3Y88TI/VfQn9HGiOj+m07Cb9u1EP9v9NDLrbDg/10sHdvKlND8LvGBe6mFEP8rW1xONUDQ/t9VqF+zpNz/rsGS8HUk4PxxWldYPTDY/UdxjfKfoOT8q529o6KQ5P4h3Mpi8ikc/HxJ822UiOT8k5NedW9k/PwPnYaiQGTI/BOe8YQNrOj/9NM2/hnU9PwrXNtQO0DQ//u6wmPeJOj+nnkQFACdBP90zV3VyYDs/26JQPz3wQD9YXA9rmSg8P0Acy4ux6zU/OrMbhT1QOz8bVO1jnds4P3uxxahK3zQ/Nwdyyoh9NT9JpeJDrKVAP+nGHE3zY0M/CPhCvAZhND97mywlMy09P7+xdPln6js/Cha8JY9gQD8E2tR7VSc6P0HknPSYKkM/oJ26jy/jPj+WQpxelGY0P/V3r42KlUc/AD1tilA3Mz9SMMN8AvNDP6xVIwoZB0g/r3l7LlhMOj92b5tiOwM2Pwa7yb4Xnjg//UgyJz8UUj+AUarGENU7P0oBL1R6fTg/+F4W79QXOj895LRHcnA+P3EnbJrSVTU/UDC8wh3QOz+YNFUW1qQzPwuc7YOMfUI/cC39xRjKPD/G2UTLWVY8P7IQq6xeXzo/3Jrz2gw6SD/APMI7iaA7P1FzniOFwTs/MHUvrvOaRz+ucKeB2gBAP9LCnb+Ud0E/zURQtvpKPT8cCXutYCg7PxNvpDmgD0A/pgZEzwDzPT9uAGZZWLk1Pz6hRj0e3Eg/QDz3kIMhQT/TK+SYzHtDP62UqlzEUTs/Qbv3+7v6RT+lOBQseEs+Pyh30tRI0T4/hRUW+GSnOj9KEia6nlA+Pz0zK1VO7T8/QWTdtCMZRT/w4HhVn18/P7l52zPo1zg/PgWV+KkYQT/Lj/oWlnJAPx2kXvJqeTg/tMUFBX2gNz+/6SjKT/FCP/Sj3Nv/kDY/zGFNHnxMNz8OERaZqd5EP9HVScItOz4/DlKXXCoOPj/cb7pTpDw/PwWQ7qiwoEA/B77rMWZSQD+FoJYrK2k/P7etZeaNiUA/tuVZ0hwcRj/ahSsP7qgzP4gt2m8vYTs/6Kq48gsPNz8YBrDxLlE8P1ez9L9hREA/OTW2KMrdOz8lONzkQ5JRPzkaXzKQkjc/72Xn3AnQOD/gYQ0pnGM0P8CqXKNDsjA/9JSs9QuXQT/ToeqP5H1CPw2Kfh63IEo/t/if8mvIOD8A2+VO9dM7P4Bt+jwRhzY/x4h02ns6PD8CaoN2+2o2P8wEQjlxPEY/vIiTVNbROT8Eaqs+ybA5P2ae5UR+p0A/a4qQUroIND/vzw2ZZy8/P3aHw7skGjk/XeTJLktNOD/sxfeVbBRAP67hHz/mxj4/4cPJVseMOD8yqpAbE5xJP/ztx/rBUUY/e1bP0uB5Qz8ws+FGUFBIPwY7Vg3oozE/WS/uVRcvNz8p718w6iBAP/v1H6Y4ny4/O/6CEqM9Nz9xzJbSURM/P2qNzBkNvT4/vXec7rH+Qz/xMxeAkndIP/KwqSPiDj0/SYMisE6iOT9IXh+bucc/Pzg8c8V7xD4/lJgowWlhOT8PIZq41pA4Pws1A4+B0kY/QoY/138cOz8AA0vyf+47P8berD3DBlE/qlLgiOEvRT9PAB6B2tA2PyJ6dTVJkUQ/qcH8YcCcPT+FWDADKw1AP5hTLeJuIkA/bIhcNlv1QD9Yh265pLFAPzq2KRSlYUE/Uxxlzy53Nz+GiPQLEZhAP8lYcrcZ3jQ/kO4xov7EQj9rx8jqOno6PxrLeoWToTs/vQ8rz8iPND9bVJiyZHJAP8OlVqQxdjw/7WfAP/aRMz86GrrrAuQ/P6hwlwzmAEg/HW5SlPXiTj/cI0Dyc+g5Pxej7Rk7QTg/TduZ6y8ZOT+iEe3cFIxDP1HVMonipDw/9uwcdwjrOD8m7AMSEj47P51vz+k1Gjk/4jj9lLuzPD+rNyshpuQ/P7dLGFa8VEY/b34FYVVaQj+S8O34V9hBP91EwDB/1jM/3DQ3WJi7Lz/2AeNB/ME1P/p9YhGB8kA/y+aV3kMxNT9aBhZslfNEPz0OQd1ZHjg//Hq29XBVOz/L5G7s5p07P1SRGY44ez8/vZuSn5nPRT/KItP10oE9P40gNfAaKTg/DYQOAVrPPT/uAFfLAMQ7P0QjTA8Suzk/64OcX+PmMz+oeeo4Tm8+P1PQQyZGukI/JdPgNzcGOj9jW0P/vUE/P+n/+da3Lk0/N5ncG4jUQD/bwYPESL9FP7gadGqwbkE/1TLxxRnuTD9EmwxcWBZAP4d11rOPMUE/4JCKIku2Pz9tYq4wcIU/P1fLCjaPcjk/mRrgA+1uOz/BNQWf17k4Pw4MDJhBLkE/7mlosmgCQT8i7WBz9wFEPwpTqC/Kuk8/Ocph+tVRQj9owRwhKUA5Pw9PDweSQjw/GwgndCdwPD/glIx4v8U7P/WtFqVyfTk/WKgPBpnCRT+jrZH3hs9BP0hf5SnbIkE/V5AsgRCgQT9UpIN0//g1Py7dqD4lIVA/kR8kHXt8Nj+eMPHfbfI8P3CSZQ9UkDY/0Ho/CN0yOz+Pm0yif/5CP0K8XxncVTY/ajfyJ8fwOj+YLIkUTPpAP0nadqJwsjc/2CwvqlkoOD94/h/toI4+P8E139c0Lj0/osuCJhXPQT9rW1V13fs+PzOQNKbKcUM/YN8Pvn4oOz+7p2sgb082Px832KhClDM/JZsLWWbcRz87SqS7i/o7P6Q5Daw+sjQ/5MKQu1maQz/yGsO1Pe5JPxu0zCyGzjI/P6ZDFIQMQz/6vaN/rww9P+zm37fs0zs/6Ifws7pqWD+PCA+YXMw8P4q1eZUVwD0/F5drUIKeQD+O+PcUXlRLP20WZ8DkPD8/0CsViUbNQD+h5RhH5yc1P9Hrlrf/1T4/wIs4SWUdPT8PnKqwVkM7P4OvV3TFbjo/o64+6QcfQT+EBdmtw6M9PwZppZQAyjk/wZ796J7sOz+yHowS0wlBP85M+6mb0jQ/TnP12qGeND+4VQtKo5JCP+QGs3EToUA/ELUZGXeSMz/aLaurYCY6Pzp1/E+yYEg/IGr+Px5fOj9cNiFKBy08P4Qpu3rE0T0/xCFiHaNJPT91rwCX4e41P932nVzcEUE/pWEmwYO1PT/eQUy/za1DP8ZwpTnaujk/whzkxSc8Pz/WPAqBo7dEP0jqP5b+WDo/uJUXxgHnQT/ef2v0WJ02P7mnHZH+fUc/uv2eyvyyOj8oiGFX+NJCP3NpSFFxYDU/1sJu0EXgOz80PiRgmkBGPyk7yK5ejDs/G2SpLSkCQj9NwngSgJs/P8wI+ACgNDs/+71Kx2d1PD9YQFJYajxPP2Zj8POJgz4/YpxuwoWIQD9Qffyyb38yP/8UO9hqKDg/e7nYf2A4Pj/PKD+kPTAwP8ossgXTHEg/FIAP9tc/QD+W2gR4CGw5PwI+QkSfzDU/OdLNiTNCTD8JGjhCNCpIP5SY4evdskI/BjYAfjrcNj9ROhxTM0g6PxoT5mZNZjs/93SW1Uu+Pz/XZwterUA4PzsK8fd0PT0/gwk0vH9KOj/U1mwL7aEvP5lzNSHJhjc/wTu8kcC5Oz+xQc4XVWg7P4rL7FGK5jk/EdWg17sZRz/9H7P1BHBAP4SI7VEsdTg/VcOpzwhIQT/bjQv1XvY3P5loAtiPMz4/m/rgf6LnQz/MRXwnZr04PzZMdGNo30Y/vF6uBqeMPz+nyl9wuTk2P6RIKa5LCTg/ZTaBT5e4Oj8VQ4vPEbdSP87WczJu80E/6uVjtuXVOT8P5O/KbXw/PzPUMJXh7EQ/Ki+1gv/dPT/x1Gri+RlCP3S3EW3MjTc/DNsUZAsOPT88OMa4XKlJP6X5ADDgXTU/rZiG65XVOz+1V15zwA45P8jH+ywnhT8/eCgFO9DTOD/FrtZRIZM2P8Y4qpNmBTw/Aqt2j2Q9Uj/SSJVyCGY2Pz2RVYHC7zI/jTTuVmH2TD9hb0bzHmxDP/Q3jy1FnjY/h+vwjo7WQT+0ResLlT1BPzLYZdz6BzY/lctTEf+UQD+oJZDxrM00P5B23vHmoz4/lfnIX7pGRD+qfxWCSsw7P9MFAaERRjU/qvxyM8qdMz/Z6kfK41dGPzLYi6OdkzE/nIw57uVVRT+aUKeNARE2P9jMm2+2TDU/ijvjnXFRNT9NpwAOXS1AP6gMbxj9Tzs/esHpVUvXPz82uaiuLVAzP8a3T0UsjUg/rnFoV0LzQD+mfbDiDZZFPxqtdXIe/zk/WMGde3d6QT8vfJOSXeo5PzFkOEjPx0E/WbKQpJddPz+866G6D/k0P7eblA1huDc/UoOUmJoWQj962RZo7lZDP00KPayB9z8/RWB3fZCsNj+bvcn1Cpk4Px0KG3Xf9zA/1iYEYV3LOj8rypjHCS87P3mcEcES8UE/m8Omr5YkNz+1zLd4V8E4P4BEDm+oqDI/TdmYwHUROz8P+K3qbbI0P0k+5mvlETs/OcjNa0qERj9KAgINnlgzP9B5EZZGBjg/RDPiEftVNz+jfKF9NdI1P5lGITZJDTw/3ahD3trYSD80lffRpnNAP+/ujKy4FTs/h6/NywOGPD8KVG6+6xVBP7JKgbbpkDo/vIBumgSQRj+YV2Qqs/c4P4RxTCMhIjk/jNmcx4Q/Mz9KupYr5JMzP67Zs6+I1jQ/wWlXpx73Oj+VZPx/xa9CP3ez3ibeLD4/MYqcwJ/aMz8G88Rki1M2PxbZUjD4blI/7bu/zSTiND9WyXSm2OpFP8x0a3b9sjY/61pkAzXxOD/vAQt3ZjZDP7a4a64/LkY/EL5YYfhdOD/0qD+Vr9g6PzgMSdpLIjQ/kCvKrKvwQT+0rd2rk4k0P5mGIIil4UE/VL3/BiLINz/itYAN3hBAP6b6ryKMZzw/hZ67xxPtPD/8GiO7zXk4P7GcSieOE0E/xyy9LqriOT/FcwfIz/o/P0+xTru2vEQ/w3VfqqbfNj84NVtvV4wzP+xpOzHhU00/8Uy52VfSNT+8ekoL7VVBPwbwlcc6HzU/fhlhkSxOPz96XHLh4tY0Pzvrl6vG4jw/GewttUObOj+uWlXTTv0+PxKDSbz/OTM/4OFN6SZSNj/ZO5k711A6PyP7UASZ5js/4ibYvAC0Mz/MpTUprCRHP5zO7dy2GkI/zhkKBZDNOj87/CYuduRAP6U2X48DWzc/HLLzyZkMOD8XKz+wsM47P2Hwxgj8bzI/Wm1HNixNNz8ajGeJ+7MyP12+wG/tiz4//77zSfYhUj9o+T2OP4EyP5YLzyq33Tk//BkJLR7wRj8z2W2H7qg9P4ooRMXaDUI/trNPyhuVSD+KW+nboPs0P9+pZCZvhUI/sngczEfOOT9hmwalZS1AP1ZsMRdvZj8/kRPpKE6INT9zhfOA5GM4P6oDsVCRYTo/C99vcse0OT+dA4I7eydJPwhR8ZEqEEE/yjK1hgE0Qj9ovm4E7ug7P6kHeft7Qkk/JjClR7ZnRD9NzwU/u403P9DnOagYdTo/UFXyyFe2Oj/uQ7irUtg3P2euinKUfD8/2IPcVMPPNj/LSN61W/1OPy5CFkEaUDo/Ou6egEnROj9dOEo9j3o9PxldqysJykk//cfSH0szPj/1y/XwRJQ/P0oeYa7LRD8/ii6vKX72PT8jSeUtJE5BP2fKgTBNlzk/b0PJOtWHOT+bjJKmLe1FP6UqpRvsQzo/gtlJ7PYzPj8u1BP26mxDP1HVWFCFMDg/jco0NzLROD/SoiUsfSo/PylpMNMXvkU/dJi4IB4zNz/BHj6pKds9P976obN72zQ/Oa++dVbvNj+Y1lCxBC48P5d6lwQIHEI/bNNPba2FMj+xpYlvD981PxC3zrXrgjo/jy9GyVC6OT9FB0gnVyA2P5AiK/L9akQ/EoNJvP85Qz/u0uF8RRI4P3wSLp08UEo/qQt7UfBRRT+TaIp/JmI0PzxM8XSLGUE/TsvQ96FyNj9SyJgypTI7P5cFUuNXDEQ/CBRHpMH7Nz/P6DIo39tAPw888a4Q3Dw/RRgMnNbnNj8sIkHzZPc3P0QeaNVMlkE/90+sXVfvNz86PTtVyNk3P/7iLs8+50I/VGSdv0MwQj8//tKiPsk9P4G+zC4aXT4/G+kZtr4sQz+9pj+vA906P6+KGdw0iD8/VJ8gu0+xQT/AU4kxN382P2TGVRHgh0I/v/L6daKCNT9rIh8z0Zk0PzIryltk8UE/uxeVXfvFNj9CZBdgrUdCP7QmbPhDVzU/Ze9D4HMgPj/fKRKDKK42P9S86M3WMTY/XuTx9hiTOz/VwMZd028+PxPjqQX+CUE/ADtYe6+MQz9DKVy6QlI9P8xEG8QqhUA/Dzg75+HjNz9ysBNrrFU/P0dwD4GkATw/o138okFgPj9lzjX3UNU2P7/juKzyn0Y/x2a5/9efNT8tkN1bSsM0P4nLa9F0CUY/2DLA1Z+cPz8thYkEKE1AP64z/ZNx7EY/2hUC0mEyQz8FvitNDd4+PyccIdM/YDw/LFmPp1ddNj8Y79vRfvJHPyvt82ksmTc/jQlu+mxKPT/DsGMmyD06P1vLgI3NiTs/Vnl3bh6qQD8RR6V4Xww6P3IzAkhymz4/D9oBkECnMz+6OPz+Zag+Py3rQM7iYjg//leI1NWZQj8H//9YuEc3P5qwYI9HeEQ/EHrv1bKoND+E3OzfWsU5P26aqdbjOj0/JlBSzZ16Qz81b0nMuwM/P61g/ZoKw0A/XDHkV/pwQz9PmNIolO0yP4r+OLAIPTw/9MPiGS87Nj9xDnGIxWM3P6Iv4AzORTs/ZlYIDtw/Pj+bxC3adOg6P2UQHdfGpTg/BG0zlGF8Oz+h9unlaG8/P26MYI36vjQ/66SEgWOmLz+EwEGw58E2P4L4FI6NMUE/6ThbmSCFMz8OKjK5n/M9P1x8scepdUk/tBqyhCxAOD8N9BYw/SJDP/t0MvQsYT0/4ikHWlHoRD9Wvyj6qRU5PycYkdKz80I/OZz51RwgSD/BfmRHnnxOP31T7sQAF0E/6QgYEVDXNj/iOCNcXj9IP1lV0U3SZEU/V1L7aMnHRD8ZNFLBcbFDP06NHl9FvTU/tfUixqrCOD+6hI/9Ngg2P0fIEGVHYTk/i0vUWc09Oz88cW5QUa5GP6RTNjDi0DU/TRw0TFFURD/MdZnok985P8EciQy16kY/0Q//vc9JQz9inysK7hk/P4slvG9CQkA/q4F2HzGOQj+eJDwlEERAPwKlLDmqd0E/XCEojm5KOj9v4geOm38zPygNmDQEz1Y/jPt9actlNT9d+AjPYGBBP+234z5TXjQ/oz6CSKriQj9YVDGGU5U/P5VFMd4usj8/RZRKBu3GPD+J1FFhrj06P7j9UDuM4Ts/8qI6E1YHST8sWs/8qXJDP8TuYU1qCkI/i9EpfkIsQT/yZjDta8I1P1qndvj+FUg/nYRv7YZlOj+e3BcZ4i03P0CAhuNrYkA/EaqNF/anOT8seUlXQfA+P3lSOBhw6kE/j8ypuP81QT/RGtKU3OJDP3YBgHprFD0/76q2hEQmRT+5GJsHxKw2P1T3+9dPhTM/XlESXvdgRj8qv2o3ikRCP0I9BvZb5UA/KkaiP1BIRD8elJX+3NI1P4nM5dFQTUA/ZnM/IedvRT9EEq5hNX80P5ykGnJDvkE/Nigl+jh3RD+JS4bKXGw8P3/nW0LlLzI/1aoer46DNT/GJ0aRE/hDP7WFH1DB1zM/h/wNvFU1Qz8/yLcZnPhCP5hPBcVXhzg/ISwZthyeND86ZdPp9/88P2h31ttX/zY/APdvcH+0Qz8cjGmKJm46P40v0nI9XT8/jYLvHBuYND/2LxG7K8VCP04lYbEWNz8/D7ayJhE/QT9mUApGZ5FEP9eci9iKqj0/Kukpvhb+QD9SPMTFpbg3P1PFo0DeLEc/jN7/gDSHNz/KIXKSl0k1P48TwWCAQkI/1OrenKfAPT/TjwyNtSxAP6GqonXdJj8/iBHCo40jRj9RN242+PA8P8/GhHc9wUM/vnNB4PVXNz+I9IqQgvM+P5BteeLCTD4/kwGgihu3SD+pydpGBjA6P7VVN4Fjez8/vPaaWL8dUT811lmIaTo2P2xNRtd9rkM/7NxMNjJQOD+nFwhEgLo+P8+vZMlHSzg/JLtEiDqSPD9ZPgpYJIY6PxnjIV5n2zo/NCep+DF5Qj8tw1yrbSU8P6/c4kzZCjY/esuinqjmPj8iOlXVA5pDP5Eg99WeV0E/YQqD8HBUQT+RnhCkzLI5PxJzs7kWnzU/xZ7llcWmQD89lAOe/UYwP2kyZ6ZJY0M/GRVmEfKQRT/gR+Sk+ERDPzPqfYqzhzU/XWtNxVZoQT/ud9fC9AlFP3jzODKtUjw/QkjH6ayVRz+/MduAlWQ5P0kYXCxycz0/MD0OQd1ZPj/OGTDMMllGP87zy1NiRjQ/pR3j/OCLNT99IpGugN9CPy5AO90C1Dc/hfLgHOXIOT//U5piSC04PzkHwFn5TjQ/z70faBlqQz8gK3nunc4+P7/f3B0hHDY/ipZs16x8ND+Ipkeu9gtBPxr1mX5MFUM/Fsp9A3fGNT/vVVHaIDU7PwUr8/ujFEk/V0enEadRQD8qdyBkuaI9PxCWdD6DIDw/mCTyBJIVOz8NJK63W/8/PzQNNOZIQzo/VVCG5/tiTD+Fj5/FBpY5PzLytCdBskI/d71kfpYwOD/ApYeUq8c5P4temfkGDTo/TT1639ITQT/H5lJ4qiU4PxD9kSQz1zw/1wKjFHJ6Pj/x+w6wHEJBP3RsHjZ6/TU/kGf6mTjBQD+tB4K2ix85PwKdTlRk5DQ/CdITNgYUPz+P9Un4Iv09PyAQIvhjgzo/Y+XhTjPuNz+PS0qxC1VNP1Lcd2COi0s/QrB/3iGzPT/bQ3khSJ4+PzFUVregFT0/nJoVm6CXOz+Mj8Me4jhDP1IaCesBHkE/s8ifPdFUUz8Cyjx4QdI0Pw/5Dk6p6jw/FbC6YR2/Pj+Yy0MvbmY+Py4lmFiDcUw//f0lU0x4Pj/N0x7OejM1P5i0ogBjEz8/djqpknX2PT/GyKYdfRpHPwLjkkPBFTs/UTE2w/kTRj+CiUy0PPM4P9wJKVGMskI/Gzsq/O5dQD8sbohj8D9IPwoX1rM+6kE/JVlXapUXOz8pMOHzalBJPzBfvPF+dDs/QLBXFlRtOj9ek6CFJZo3P5/G8OqyHkI/LFSFpu+sMj+1lLzS4ws7P5DjXsvxK0I/fZWd+hdzPT8C4GOmcOE5P4VBffFj0TY/95xZ6tfYQD+8/L7n1lc2PyM3KDneHzo//2KpOlMEQj//IM+E37M5P+QMamT8oEM/diS1VevyPT+t7KtAZ7E4P+9xe4l+Wzo/Fh0pWGxeOD+Y2yXAnBhDPxflIIj2KEE/3qsF3/zSNz+Ve52u0AIyPz7GNW7ME0E/y4hch6L0QD9lHd/10V09P/vqhHmKejM/jGb4XmJ9Oj/GWjJ9ZZRNP3DIOcNqsko//soBvZtnPz9Yl3FYvIZAPx7a2e05BEw/8CzmjM0zOz8LWqYx6vI3Pyz8XfupwTk/I0F05Qz1Rj+kQXk7nKI+P4IGhJ4ZOTU/cUn0g9HkNj99EQIs0d0+P0V1PUiEgzM/4Cr5HzMsQz8S/g0mOtU+P7/KYuFyXEA/M/jsmj+POT+OKG6O0w09P4jrS0gBKDo/pkgrr3bDPz9AzdX+6ks4P03fdXoBnTk/DEs+oZeEPT/GsSu2FFMzP5INs7Z6ZTY/0S5YCn6kQz+jjT8rEg47P3f+nmyLsTo/pkIt5wEVRj83KoHeZdA6P4wD6vgoVj8/p9tJrNuMMj8Mpm4iixhMP06WUH3ECEE/tCjuoxM8Nz++2FBx6YZAPyhwx6gmGT0/CadyyyhFND8QqxRC1Gs9P7f4WB3gGUI/C0YO2YxIPj+uBQIM5/Q+P52hWnJMfko/1tnpN66nPz+UFxVIu5c8P34nQveg+DU/XiTYq9RbPz99hy7qi2s5P/dDzCKdTD8/3OBdkQz3OT9bH6binmVIPyE/3lVWbUM/MvBGYFhwQj+YvltJwCI+P5qsXjnTaDg/pLV+B/qcPz/pbK2hZ8I1P8y4IJCIf0E/AFT61HTnQD+zbjCSRbNFP6AP5fd1YT0/bn94p0x7ND/FXxS2//49Pw40uBBY9zc/mUr9xBqRPD+Z8YaZVVZFP3/93SmHkD8/WTGj8osfPj8/358dM/o4P4AswE4cBkQ/KVM8lo26RT8cMIwXsopMP/TVrjmioz4/taenOcBmNT+hFAiWfh0zP4FHvowOujc/sW01EVSSNz9EhQY8Eio2P+m+qwTcCjk/t6Z7yFT0OT+6VgbLlLNAP9WOGsfT6DE/1DYmDTMJPj++tz3PDNNIP4kH1mmLCEI/rI6l2mqAOT+sfFo7DfU0P5oEYB12yDU/KbNQUUZzPD88Q4xlZ8JAPwPE4D7LIzo/hFhj9M8YRT8gTNNlBjE9P7Ej78uCUTU/C8IXUdNhNz9I+tWY5/M3P54J4HUckDs/gNtu3SgNQD+TZbabSH87P0JDBL7Qkzo/nh/Azr/wST/vZBQk5vQ9P2oCy2UxHjY/r/Ve3/vZNz8h/U8uKDRCP5dHX4pwaEE/ptmhOWkcNT9iALjEV1w4P0xsdlhsiTg/fsdiLrgFPD9ehwzZsA42P2GKCoaH8Tk/IhXnJGs/Xz/6I4bJxhZBP8dDXl21NTk/6OKzmH/END8qHZCqRN40P7VlzYNMFj0/9mPkQ4jfSD/s8+1kPaM3P2qx1K2wdjo/d5wwztBZNT/NnCvT+h4/P5hOfpp5wzQ/XqQ+MwLWPD+H66QASb86P6/oQwipikI/xCg4V/U7Qj87RkespJk3P2prkL5TRUQ/ywp4q0RfRT/VM8R+PclHP8xpBTwfVDg/U0T9Y16dTD9x0ZGojIlBPyZb/9wHiDg/dHy0OGOYMz+V2gJ33bExPziJWv2F3DQ/TnzbatvSOD9xzE/9xWRIP+bHnL3sBD8/jlyNpXU/Sj+dH9Kxe9kzPyFh5b4/H0E/ulsx2uWGPz/RSMhjrXE7P7Vt0S81NTU/iN1bt19DQj/D51YhSFJAP2ePV+2IrTo/50h9RfbCNj9VPN9jcX5BP3EkmLb0cjw/FISf9mOsOT9Uw5AyaDw/P+fsxZkkazQ/VM/dCVEZWj8QnJ2GVMNBP6FuvhaWbTc/V8jbmD4+OD/HOr+iB7BLP9pCg1kQ5kA/saYDcOsiQD9Ftp39G5BBP10XFo3Jozo/ZFfZxdRgQT9RtLcDkR9DP3boT3aOXEI/M4PfI+7zQD8erD7Y28Y8P9TJ0LOEdTY/NvTfG/S5Oz+shqbnO8pBPyhjrNHTyTc/YUDEQLawNz81Ci0RxlQ8P6bbVtbdDDw/bSX1F9o2NT95+hBtKv84P789by0K8Do/VH6gfETDNz8XP1iJI1Y5P/FWJpRvyj0/NKnq43ZvQj8tvX/x4Zk9P/q0iv7QzDM/WPx7MPZMOT8VZHPxkXY+P9a7rzJpP0E/9RyT8H2kOj9U5uvUiqY7P//ci8A8ikE/WQ2MM7srQT+ERcQbOdVBPydUHHmzFTo/2Qr1T8tqNT9lmw9gdQpAPxMiZElOYDk/ZfLLNQzsPz86L4C29ro8P6E0wkVosDs/mIsCwT9MMj9sgwanrS02P1IuL+52JUg/rSjcLfSBNz9YhyIrX5o5P8OPCa9f2zs/Yq/n03lAOD8SpQSXo9Q5P7PM6GjREjY/NJLcGD3iQD8W+SDEyKQ8P13QfWQzukU/ja7Dskj8Qj/B1h5WtS1FPxaXxAjKNUE/Yeye6+TUOj+UixoUGZI9P1noL2beuTY/YkBriG4ZNz9GF78cglJAP45oRxmNVjc/CuWl5JrXOD/0NGCQ9Gk1P2mW1m++wkY/VVRids3mTD+UPCWHUvI/P9+kx8E1D0E/XhLZmrznQT8JruqTeTdIPyaowE1vFFM/PtTKRfumQD+f7105Mdo5PwAP3570eT0/1PuiESeIPj+muc7s3n06P+bWBE4/czk/YrXqVKhXMj/7fsouoU1BPwjgAcZ8Pj8/G8a+E5zCNj9ThrFSL2I5Py5ll6rfRTI/IScPtbTtQD9z1RaAQTA5P8mfPdFU0z4/hMp7eVquOT/8+hx9ns84Pzymp/WiaTU/6YgyCjg6PT8ZWMfxQ6VBP0aLC75r+zc/zJ6Ftvy9PT8nuItCKHU9PwvjBCwNikM/Yvj/prRUNz/+E+eeMXA5P8YpR7zN/0E/YjFcsGNCPT+Q/Ptr/R0/Pzo8DeMxrUQ/yGrwRxx1Pj9WzSpuB+NKPzokv8KlCkY/Zv9aY3KYPz847JtUZA81P2+yH789Iz8/kS+UWMGLOD99ymkDO/Q5PzvqjwDTQUU/IgiSoo7BPD/8ERdk8bk4P+1WsDwxszs/pX+dKeH6QT/g17pnbM5CP+l+Hgho2TU//hHmc3doOz/kV6Rw2t87P0Hs1ZJRDzg/7+6yc1uhRj9+7L77lHc2P40oE9VgvDQ/otawtpS5Oj/SiEg2HyNFP3WvAJfh7jU/6H3Kzi4hRz9qllfw0586PwTVS/sCVDo/ouJEYwlFPD+yjhAJ0tE5P53+UXNw6zk/7R4n7KWgQD8o0Mw4spcyPxQM8YzZOT0/4dk8EzyzRD8aCVPlkuI3P5f+s1NkjjQ/WxVsGSx5RT9/NmWzknJBP40k67dJIT0/K29bHBQbMz+IuCWxJV1DP0PlzGdaET4/9Bd1Cy9RRT/3HbQ4ElE0P15NXJbIaEE/UJDBUqlOQT8XyiRLLy81P/nnGzGwF0U/gxz5W7kZOT9ZbnOnl78yP9iQfWXlZEA//s01E6YEQT/+56Vs1dE4P/pC3xV1cUE/44yCXLlJQj9JYsg45j87PzXB30u7ekA/hQlchE2QPT/4yQ9kVlI7PwT+AtebbEE/OhhR3dMKQD8o60n2jm5CP1X+h4SHGjk/UHMdo2/kNz/+hzj51IFBP3M7h3Rwlzo/oSIKCtzqRD+kFrIJHEg4Pz6idK+0CEw/stJ5lBeHPT8Txr6AOPFAP7GD76JUZ0o/1LdfTYReNj+yXD6rL79BP/ZZd4lw50A/WEVNLqWyQT/umRMeroE/P08367S3WUE/vHzZ4L66PD/tlGLVjWg8P10WoUWnyEA/HOdzRHd2PT/102Y5XO1JP46BneQMmj0/cxEhpit1PD9L2yWVHLw+P0rLDhIeRD0/8IAL4p4POD/TGSekhk08P3QJ6gieSj8/PxYAteFIQT/Jvghz69BBP2ek9/DZ+Ds/QTWnkAB1QD+s2OsfPME7P1laJ91/LEA/76fBkn0gQT+mxLWn0rk8PyNGkMkwjkQ/Iu3z1sjHQT/QkV+20qg2PwmX3Mg/qjY/fD5JCPZiPz/gq1NubaQ2PzINn4FMw0Q/DFxOpFxjNT/yClN69943P4vPKFOIJEM/+N0CdiZOPT8ix2mXVSlEP8OVecy8LEg/Hsk7QF3IRj8sLCADZZJCP5eC0KLAADc/RwE6fVFDOj+4LkG13d43P+y8eemnsT0/eGOu/X7gMz//pBGb3rE3PwlBAtf53UI/oS7li9wkPT9e3JKRvSI7P9nEZNIoIjg/89jb1ccdOD8fdZdrock9PyPPthn1sDo/7mVAlVFnOT/a8/poeIA1P3au+uwYCDY/rtnZditiQD90vok1HYBLPzMoClxtsTo/Cp87LpsaNz/VIs0YGfYxP24xVtOptkE/hq0ES6jyQz/oxe7aXDdAPx3/R57SXkA/9iXFDv3vRT+GIIPsJylBP6/rf8/7Pj0/l0iN/AaVRD/PKW0W1FwzP/WSUhIK+EI/wjoPoD9qTD+PwIKoueRBP4bnxnBMgUI/zA4hSXHXMD9sq2tKOEhGP77TVZuuED4/MqsrKtgCPz9jrDm3Puk6P3e/GRsLIT8/f8+ghSpTQT9CZTHuXNFDP/qStoaMJjs/P7dgQUtrND9zRxsh5SI8P4fweQ/hqUE/wcCrmUAHOT/Mad90fMg8P06Ild7y6TU/dcnQYj12Nj8ftp5o8T47P/eKL1ljcDc/PuEfyNckMz+NcjNTj3E7P8Vx93HouEA/PHBUwqEkRT9cThaySzhKPwS0hOdrt0k/IXFV+oUuUz+d7gf/zGdDPxe/PZA78zI/mOW4QVecNj//xj7Lau9AP0FVqBV2tj8/1zI/VYq/Oz+aZ7VYO55HPw6kmnhYv0E/mvakfqSpOj+r0Qa7vJQ1Pz/x6ryQhU0/HWfay6TwOj+pxmTUKU1CPxqtmznBijU/+a66bkfBPj9uKPHDhV9BP6OEEsZMK0A/SqNQtkuSPD9+rgxjOMJFPysevhzbCjg/YfgRinA9QT8o/5XApgFFP8gQ8/F4dkM/AVnMK34jPz+K/F1M8cBJP2aFQ+u4TFM/eFEX0Ns9OD8ESVHHYE47PzZadtfFrDg/pzKryP8cOj8oZBLuyGpAP5sKvlcXMTg/JHp3NnRLTD/I4tZbBVxAP5KGDhKGJ0I/od+CYudKTT//L95c6opDP6tToV5JIkY/CAAhoUz0QD/MH3NoCPw+Py5xvroll0E/M/7vG26mQz+hh5NhANQ5P/KmYjBtokA/4JoQegO6OT8yQwaZNKs2PwZ+/sLFZkQ/hPKFY3J3QT/WISAnmKYyP7XxRjfZPjg/vaORksiFPT/bpmHA3jlOP62sRAuWC0E/AhUK6PDWOj96nEaz4rZOP5EW0fASDkA/dEehWrRoQD9Fq0TtP7E8P5try5KWUEU/tF8CrXxzSD9udBJtbhxGP/lg5CjqE0M/GxbiEvmONz8MgYSqlklEPxYC0mEyE0Q/0dLnMzj7Nz9+eJNolPE5P8lQlNLTSkg/Kr+xDBbzOD/NOgnDhd5AP2ML//F3UkM/o68gzVg0PT8nXq/6bZk9P+4gqZd1hUI/OAYgknp/Pj/J7mwJpaFJP1IMAr7q5z4/AMG8ylG1Sj8Yf56wC9lFP4max+VoI0E/YqL/7cv8Nz+wFhQQ140+P/3jSF3ucEQ/yg0AAd0qNz+BAtsA7cA5P1KnZILfWzg/EfOl6jC8OD/c2/rXXK81Py8YNqykc0A/7QTYoF/2Mz+bVASd6HE6P+G9axwmJEY/uAaVPMcVQT814oCYr4tFP5q9SHX1u0Q/4vueNZi2Oj9tVJjYKxU8P2bAWUqWk0A/4B/auuB7Oz+Oso1eXpc5PxsbRcyo1js/Wie3uIkEOj9DaxCpExc6P6tIzoc8iUU//4aLB1QyQj/HVtwnY1ZBP+kKza3Exz0/V4Bwt4R5OD8L9eIuPNs1Pw/IamKdBDg/mANlnISnNz+EQIJwcrA4P2XvQ+BzID4/RCzX5didNT+RRA6Vb0s+P4KKoO11qzc/0L5zoVIiQj/iYM/UdAhPP+G12cUlqEA/orS7MGfwRj/7hskh0AM5P7zIbN+PGkQ/OHn360FNPD82dEajITQ5PzyFzv5P5Do/tm7/octhOD+J1f5SL405P3LjKtda5jQ/cZ77vPPVPz8vPL/AXQpAP+UdHPa/fzo/p7zwXy0yMj+a0yjOmBxDP145nnbIMjw/hs9SiR1TOD8jHwDg9Ag3Py1jo6knvj0/AxLiBIXFQT93OW723ElBPwsMOM8BFz4/CRfCz1dHQD+pNtXmQXI5P0m8ykdDpzY/KaXzI3ZUQj886jZIi6pEP3aShK91yj8/nyVE0APlRz+6Qy9In/s3P4/RjfLEWjk/7WG9vsd6OT90XxCJKS46PxbYxkxgQj4/5vVdmu3NOT9Nd1DpXUVBP5fl6zL8pzs/p2zNYNBlQT/dT1tdLfs+P9T9yQOEGzg/yPwTxI8dQz/bHI5+mcc4P6DBwiPTnEo/wouG2NXuOz/apjn4EPQ6P0LiHEr0/zg/LSM8dFYYNj/ewVLUzm04PzW85HWABD4/6AvGLYsuND+aj7qJmf4+P/3L1HW/Qjo/WFEosKXsOT+BrNpHBGlKP268McDiyT4/jJ+g9laCNz96imiws2U8P+LkpE5FzDo/ewQYRfjfRj8RIm9yJSY7P96oV8LBezo/oHlXQhnYOj+8Q1cQbUE7P8WwauCsYEI/1vig9V0CQT9RLzWYPww4P0jOlGaLVTc/zI97l6tPRD/u5f/Uxng3PzB63vXo+TI/gdE2FeHaND8egdBeowM3P2cDUI/kJ0I/EbyR4ceERz/Pcl8ibOU2P+EkVhExz0E/gUwhRr4BPD8PvysaHDlDP5ubnMV+Wz8/ayTUz0WKOz8A22bPCrE/P6RS4vaoGDc/75xogqFBPD8RBZjRRrA8P6ihzlvDrDo/5xQ4Z7EFPj+rp6Dsd3I3P6GsXMsLgEY/RbgLxQTSQT/GiyL3tpE5P+mCexdPOjo/ba8U6GTAQT8aVm0OQgZTP7ppxrEUGj8/yh/eAwx8ST9edwk6mTlGP8TeXq5SNUI/5iPGvqb/Mz/hs4wMJok7P8JBZlqnOTU/DweDF+9aQT+EomJkFatAP3P1HL5w2jg/lCMbShjGQD/vQwY7w6k2Py3PPOYnyDQ/pMPy0D8NRD/vmtmsz9xAP5hvsko/mjc/4Uy7tLvpQT8ZIuFacZpDP3ELaLIXu0E/QwtXp82vOz9NwBwuU0I5P+/VEBqWRjk/nKjQOXK2Nj8JtFqx1ohEP7iS/AyYVUI/jjYDZgKhPD+uZu44ffFAP3gjfLp9ADk/1Q0HTiUfNT+1tRZKTG45P7ngn2FQ9zg/+g2mcCO2Qj/xyh42y0Q1P60Tvaq4Ezo/kvv1wTQ3Pz8BiUderUVBP6MRJ4ieukA/AwISVxL8Nj88zbhf9MtGP5+Zg0frDUY/flU4xnGHPT8FniUP3jM/P+KvEPCAv0M/UPlg5CjqMz+ra+9+1cQ0P1ZEzHPkSz8/HSqiMyR/RD/SkNqMH586PxqktamHVkE/h4sRxqXjNz9aKGSqClQ5Pz9nhBd6TUo/vZ5AvNQmQz/lTgxwEX1GP3uapfpUaTk/CY3cqlbsQD9rExBbxsI6P9xM980MAUE/nTQmJ4cNPj8l7VVKIDxCP2DAtnHQzTo/I4hEuAFTQT+TB31Ep0I3PzcUWrA2wTU/q7SumchBMz/X+iKhLedCP+x3Y2zhrDo/xUvusor3Nj9A2fwOMZ1HP0W8df7tsl8/+Z/3JIIBPD/smnKAvv8/PxbbdGmbmTs/HqMRcxbkQT9JpleLzoA6PwDwhVJGHz0/f2y45pO3QT8xNf1q8ro8P6qQfj1XQjQ/nZExDJIdPz/F9mf6feNBP9L5RCzPdDA/PIHyb35gSj+vZAHyqYxEP4hjLaMwpjs/X0uVFpiPQD+l8fyD9z49Px2af+Jq3j0/8RCJ7MoBNz+dqArl++RDP37KEEvzXDk/idX+Ui+NOT85hoYZqPk7P1KOnGF3dT8/z/WouKR8Pj/1Takxci1CP0iP7gYiokA/BuvAuKI0Pj8LPg/mXZJGP0W/N/8PrT4/8kgX9g99Qj9wTo/n36BAP56q+Sz6Azg/cwdoXc5lPT+tpmdRCoBCP1YLKZWpr0I/+IyxBDNVOT/TiqQaTHw7P7Oq4f/nYEg/7ZBlONPBQD8MMOeqXTk5P8mb05dr8kA/sqFUKPbDND9ER+cGhzpDP3BBSZAwXT8/hcB7W3HwQz+d+purQfNEP/VVFcHPHTw/nYsfYDbMMz/oLuckJGpDP4Kv1vOvkTY/4gWkDDvdQD+y8wu23l1BP0MI4TTxzEM/vtsfnA0BST8/bXW17Hs6P6b3pkzevjY/DXyvm/5eTT+jPRwstUE6P1Da4dDXAzg/GmaEkUB+RD8ycaGukug1PzT8b3HJezk/JMMibYAlOT94EHBFuIJDP1I5FqlqYTo/X5+1sq8CPT9ayNBvZ3g2Pw1OOk1DrTk/wLpzJkIqQj8I2+qaEg5CP8XSkld/NTs/NF9YEGAXOT8I/4DZzSQ7P9L/fJ/NUTc/WBvnX2CQQz/5qAN8XsE7PzRsGi9rzz0/CkSMLb1jPD8Anofv0dY5P4TV4bM4DTg/74FYYfOkTj9n4PTswb01P7p3pxeJxDU/VY7dxuXGND/EnWuV6WI2PzTvCAwxFT0/9HYUf8UuQj/8OXwHfNQ4Pwld4PcR7To/6vcgqysEQT/jA/6a8yY7PyJt+uvJhzY/LmL2t6ZuPj/Bfveqb0JMP6kjt47ACzo/MwMg5HjiQj+Fscz1ktNCP3A00/9qvEE/7MA0apASQz9TKNO0AHc9P9egjS7/uTk/AQv25SB2Qz+uaz8PcVA7P5i9+uWE6jU/HRRVPlLkMz8gAYV1QU9DPy5jSvHfJj0/qsN+DZCBPz+CY0P13jE/P7vJTMK1dUg/1bbYIqaaQj/FhX3niXpAP+ReIfLkOkA/ep1l+kupQD96j/EwBjk8Pyc5n7vWPjo/92UfGswVRD83zQhdLIZHP4ow/OJ9FTM//M3ngzUzQj9N25nrLxk5P2Co+7QV8Uk/wWt+mXuKND9dPxYFbpthP7VsMWi2ZT8/65HlqMxiPD/bu8zRX79CP3YhDPJpBFE/89iUADxvQT8APyInxSc6Pz+q0xQQeTw/2WT3XijSQD8pbt8aDR1BP1gpI39HjEI/xfA+sqxAPD+vfOJ1B/VAPzP3GeIbtD4/BE/nq2ArQz+T8FyWscw7PzTDNHYDsU4/IfsCdSgVPT9rLbpff74/P3bkTSAaTUY/zu72RMpbPT9/2Bl5NU0zPwJOReO2oUU/GDNXQICQRT/VtGpbvVhCP+dmXJHI2Tw/nhV0IpEbPT/kVaNFINg9P4Z28EE/uzI/iOr3DshvOz/O8X6aYic/P7dmp/ZUFEA/VcKwT0LhOj8ehgAnrj9GP2zQe4nPojk/RdtAoISwQj8ufu11X4k4Pz1o1k+IS0E/wkTurz8FRz9BAklPxjVEP5yKXorO2UI/qT+aaJKDQj9PWiCQNzgyP1ET5SE/Wj0/sNKqhJHYOj9gNJsvRaVAP65cfMWrkDg/Jyy31Sj7OT9ZSEQhl3I9P1cS/BZt8z4/EnAXgJcwQj+U5x1OMAE3P895ak6OnTg/G/QNm7ToPj9GeqICX4U/PxwClkjh+zQ/ILM82vv+ND9CMZNX0Hw6P5Umt4OXNEQ/WBjMpvb+Qz+uFjjWTl9CP+7H1PquSjo/m3ayTYqMNz/2hPflZJMwP82LjSUe4zk/cDndANNsRT9kmG5tPDM8P0un+VN4Cjg/Bvd6LLpLOz/mpo7Uybk3P8zagrLkgjc/0cLQsDmDNj/SHc5AiAtAP5TnHU4wATc/r9la90A/RD8crikehHFBP1J8UcIZ6jo/bF8k2qz/NT9HIsflXrE9P2vYsiZdzTY/zVcVVjQaPD/FPN/afyA9Pz4bqkMdPzw/M4qewcqUOz8G6+Z/RcA5P6+Foj6enUk/ymPa8iL3Oj9GbSxymeRBP06lgGO4AkY/mHW1y22xQT97lslrg+U4P+W7h5BinDk/tOJdJnHzOT85eZ4z+rU7P+TCavS2Djg/kO7EBdCKQD+r5Sy+MZw8P/n64NDp5kM/3f1c+riyOz/+56Vs1dE4P2c1oWxxXTY/62Swr2PGRT84o126hm86P+RUaKmHK0E/zl9TraZnUT/kIVE92Zo7PwepuMpDQUE/jNUZ8fpSQz+X2TG/5JA+PzfKE2tlgEM/ED6ZIYNMOj/mC1LXd9E5P6fW8xwuxUc/SXCD17deRj83sd6tzl9IP+DQY60E/0k/5azqDUBoMj95q1OKwtNAP5sjYLHci0U/5ptbi5BmPj9g/I2mFQc5P9MnvHu14Ds/lfiICmgxNz9nvGvYCCc2P3LRk6m3Qzk/NAl+HhpLNT/hfDEuMaNDP8+IB9Gw0T8/rw0IufrNPj/Vv3Ikmrc/P9EhA4ihJkE/HcGQTLxAPz+g2D2LO2Q+P5gXsWacOjo/H2LFoWV6NT/FNk6vOaw1P0LlS+dENDo/AR/2IfPxPj8gmzWP+wpNP+PzIMN+3UY/D6vseQYmOj9zqgPAe747PxJWW5giTGM/0xKd+HlyPj8b4e9CM4I/P9okWH/4t0M/sKEsYCh+QT9DNKHmN45AP/0KNACdRzo/DL20lyMaMz+7vbgVQeo2P5kITo8DNUA/W46hrZSvNT9r3ZZgIvI+Pz6Xs7tjWDU/iqvATLiwPj9bjMZJfTMzP0ZgRIzroEE/ToyXNGf5QT+rGtP/sZE9P9OXC4Dk4jc/uE10OumtPD85jZFFyrE9P3cONW90TDg/bUBMDhSCOT/WkdzH9eJAP2mLFXxtEkA/MJiKUBYFND/OHhQG+H0+P+8qiqig2jQ/scAs9I5BQT+hsqYhxkU3P5TMesmwnjs/Guj4bSqAOT8YLcFbgLM9P4yE/XHXHzw/cSCbGTrMQD99lPAIlyM+PwghCcPMszw/edaHWHFoOT8bef2iNDY8PzTf8YgynTs/+uUIIzonPT/RX7Ug/tsxPwRtM5RhfDs/dgGmQQ6gSD8lSjtoiMA3Pxs4fN+zBkM/FcenHm4pRT/E0WTl6Ag4PwmZkWW0mj0/+TB72XbaOj+dZp3Lts49P6Z5QfBqTDc/behw8ROuNz+42RO1GGJDP71LtnXIsTs/63G+XLSVUT8GN1S3c5Q1Px629yA51js/P3iUGj8sQj+RZaC2NiJCPzSsJqvJIz0/9ovcSuS/Rj8CYwuuqnhCP3GDpMa5ijs/Wh3YqIlpPz/omAC3f0lAP8dMtkLXDEA/lun/ayygQT9J1nRM/KI7P8YgXHPaYj0/nXLYv+PCPj9F0sesebZAP91iRsQJVjk/L/H+erCFQz/kuNdy/Io0P3fHQ46WyzI/7quEhK6YPz8IN3x/Qdo4Py7HKxA9KUM/q8PKm9WYNj/D1T5zj9JAP9MGYgRNfj0/nfTkuFjzQT8zZbRJ1sUzP7KggW/S6Dk/4/ONX60XOT8QKqYPs1A4P1XpoKuqIEE/7hgmbKJDPj+GYmrMnflCPw8znoKobUY/QD+02OuyPz9HOOHpi0A5P4aqQkqG+EQ/sY88ej1ENT+1YdDmkW9BP4oFD+paL0E/hzIINw/jQj/fepueehtAP+IhTzyu4EM/lPIECSQ9OT+/BcAV3FE0P1pJviFztjc/PxCQl4T3RD/6V38ZxrxCP9M6zak0x0E/reV6TaJtOz9ZKL1iUus5P3qGjCHi4Ts/FZflFrNYPD9ZJAebI/M0P3i3h8QKpTk/d+DyEV6mOT9ZN4CsF6s8P9gwCzkrrDg/8R7SNbR9Pz+ptjtub+w2P5f41pnYAjY/QMtnNwIKSD8BOL5CW9hHP6NO8oPw8UQ/jRShQ6adNj96CVU3BZwvP9JtOBVxhkc/EnNnK9GHPj/GsMWZH7JKP8/jkArs/D4/xcyUjwqHQT8KhL5wvkM3PxhqkRCMUzI/+YuFk8fiPT8xjFFdFMs6P278icqGNUU/H2FLoYk2Oz9EhjSuqFY5PyKkItkZYjk/PXbYw+UYQz9ZNHfWaQI3P8eWijLAqj8/36eECZ6gPz8HnJg6N4k7P97vlDHlEzc/EGerto62OT9oVFVykgk/P75j92tS1EA/sNrjIkq9Pz9JRHxQ5e5CP9jXXGMH/Ts/Fl4ccdUwRD91elpVYfk0P2DSJ9jQ5Do/dbO2XhDnOj+n65MgfxA5PxgcpC65VEw/2Yv05JKRQD/bxTmMd7c6P3kC71FwkjU/bPtogvKIOz9Spa/lamtBP0UNS6iFN0A/WHEu7tSWOT9ZfLzwgDs7PwM65zXjJTk/7vTo5S7ENT/V7GUBMQ5AP128C9N4mzc/zMmYdsIvOz9GXBxv1AU6P5hogVd6Vjo/8pR/dIToPT8OKliAQn85P9XmqVWOpTw/kjvPTO5/WT8FfA97x0dAP1sUmWAInko/ShPGgR0gRD/nLbmyjT1AP/XQJblP0D4/VVg+BZ9qPT/40BqQeApNP9J62SWTG0E//CkMzDXFNj83e1HPQ+w6P3RiPyZ6Yjs/o4wRuXvhNz/tbVFrPAY7PyBFgWRYykQ/I99MHN5LOD9xE7MzjIhAPx4ejwfF0EY/LjB/E3etPj91bnoap1Y8PxOPOCLnFj0/xaXwwedeQj8vGavzxk46PxXb8+iFvDc/Hm7YzcQoQz8nj8U7YiI1P0BGMVr2DUQ//n4sovjBMT/ffHYCkpdCP0ithn1oCjA/8tRY/z0xOD/OjEHRg1VBP8UqTWaW5kE/CXMM3/pkQD/m8afSvtVEP02Fv/npTDU/8Tb/R1f9Qj/bYouYakpIP8srrFsKNjg/kH0P5avnOz9tz/Re8d41PwaiBldpIEA/MzbF+j7QNT/enniyweA/P/yMTSMU+DY/DWo+Nf5HPT8QhirK35w1PyDw9fKRTT8/zlt3HtXjQD8HOjfGfrE/P+D+XjWP9kE/Z6t0cuRTQD+EwbuwwwVBP4zpDAPLTjU/TUOyUtHwNz/QxATNmJY5PzxwVMKhJDU/0av8kIkkMj9FXpwZeTA0P667Yg7OHDw/DmMm39kPQj+AOgmYBYI8P21JpPM1WUA/pBTXpQTMNT8jdQCZ3WA2PzklxWxu8UU/jPqqsKeKOj/T0O3CYhZCP/BqPWy3lzM/AmZbWeTPPj8cBs2QJdE9P/RfJ8J0xDs/auVgYYHiST+3DRovGog+P9kO96U/ekE/sZPMesmwPj8q6p4FOdk6PyQWVPtEA0A/9FCwBvUbQD/IVMkZ7WU5P569UTAFmUQ/s/mwxQt1Sj+CDBXKX61MP47tyYTeaUI/NL+kdXdERT/lDjPlVzQ8P821GbsFkTM/7R8vl5lBOD+WeBVZODdAPwAIe7qKKjs/Kcl8OC/rQT+1hdPBe8A8PzITwxBk/Tk/2egg2IbEPD+bktz857I2P556yogQ+Uw/yCP/Zj70OD9N4ILerqZBP/NLWndHVDU/GDdZlvSfQT+s+r+XgGc0P+ZqAy7Kl0A/eG/DKglJOT8VkACyMyw2P+Takk2gJTs/m1laLJY5RT8fhjrSN25DPzIP54GSeTk/39rBPO+8MD8J10P+EFA+P5+DjwphCjY/ZWYdkK/9Nz8v70Qlgiw8P9h4L0VZwkE/68axse/jOD9dslKKG4w4P6gyCzss10I/26gHMibwQz8h12w2bf4zP8P8T93gNEI/rQ5nGwtMPz+Nw4TEgmo/P6R+tozWfEU/QaggecZCPT8OjdOCquBGPw5IKqISFjY/lMJU5CRVSj+dnRFHTMA3P3+UPpgH9Tw/+R3cAOCWNz+czSwHTygxP3ohFa154TA/bSHzwWUnOT9xD9ekugRAP72Qq+Slk0M/uHsPUEfrOz9mRJen2yg+P5hQWf6QPzc/ExxhyB9JPz90F6Wnb2k6P/r0lnovIUM/DjM+EHyzPT+vqkXhBr46P2oRaOhTUj0/NN1is2A4QD9KCQ05wBBFP7Q1CXtmizw/9oLQ8wcANz/SR+iAhxY3Pwx1yjZ/Mjc/RoiDaNMvNj9M4tcI99w/PxhLTKjEm0M/Emo6xgulQz/X++N2ldkzPwdYCehOSDw/4szVraNMOD8+daxSeqY3P9g98x7Z7zg/x0kVUJ41PD9Tl08ADJ4+P3xZawxg6DY/+63aiyFmOj/Fn4Ckig1GP5RTa/zq8zY/6v4r1028Mj+J52KPLSRAP3MULzWThkI/EB7sm5s5Oz+cwwFpCXY/PxG7UYx1bzo/KN5hEOEqMj+gys56r1w6P98jNcmcIjg/qkFj6e0WOz+Z0xTqsXkxP/QJJwmMbDw/yF1U8LNIRT8A0oA/0Xw7P6Gjih+57jM/jAF8MUAUTz9y/+fpidJBP5PVvsrr0kA/XOakkmLJOj/ODZwfvs00P63oqeryoTw/7oS/qKJNNT8RLuIQsY5BP6MdSd8qoy8/qw3KCxsrQj+2AmsehcBBPyElQ3zKqz8/tNl3lje/NT8WPjdBj6k/P4ID/EiBbUM/zbeokNf1Pj8tqAW1M9o3Px6tN1iiLTM/QN2RyHZyQT+ZTVIpDlE5P8TJBYCNmDc/mbKUq6aLNz8VJDKDY1xSP2Uhu4Sj4T0/ztbgzpwtRD+X8ERD2IZAPxsLr8m/Oz4/zV55Op5pPj8dFC93r1g4P3BqzXokajE/5tHHWzK3QD8pQvmhI9A4P0suxL8P1Dc/45Km69CDNz/Tflz8HAhBP/+zrh0B5j4/9D7NSgxiPT+d0WNPk/05PypXmaV0Gzo/eSbRHnHANT+P0F+ALi42P5OWgE738Ds/S29KPEpsQT92XTcmPWw/PwTQQfqao0Y/bsrGlxFdPj/+6YDQ7E07P175yaTIUkI/oBgp+bCVQj9U+7Gffn04P2vBpFsjQEU/AJDMUAC4Pj+7kMrxY/w2P9n0tIT7Tz4/fxF2guQ6OT8Fe5V66wNGPyJF8AGyvj4/foBxTdqENj8Bepj4zihAP6hF0NplpkE/S8na9b4wOj/hMsUhvdY1P87/4IDsrjk/5A2E8qsqNT9sPspiRJ03Py0+3/jVekE/+bdrDLEvNj8qqxm0uEg/P+A3AhTKkj4/lnIS2AkgNj/e/96liJc9P+2APNIYYUU/zkXwfXkaQz8R6TgwGcRAPytb1aZyWUM/TSBXsK6GOz+GxOxOP/Q5P0F4vOIMckU/zSn5v8D/OD/H7C8yNrE2Py3IZqzV1T8/Ql+v7UOXPT8J928D44VJP8eyAHBj6DU/HzGvYHHxPT+ZzRFpg2I3P06Re24sHjo/NdZ/TwzGQT8S0HIQ3Jc/P68aThCqEUA/Tk2lRrguRD+DhpFt/xsyP+yu5BF5Hj4/qVSBQW99Sj8Ft0bojbE4P14neZ4NM0M/f1pHgJOgQT/grXpgyjdAP+yNsGGzRzs/RHL6xkysQD9Cv2jvif47P/XSTKusYzg/9ycA5UAmQT9Vj56cTblFP5QNXP9diD0/FcF+1pyGLz90g+UrKNxAP1k8VbuvlUM/03ua+/oNQj+3CWRn6485P7ptgTL9ekQ/d/Xeo/QIMj/ap0Zcvv1CPxRJdbOfwjo/DRgaC+dzPj8Fugjpr6tHPyavkc4Hnkc/XyEdZZeEOD8SjsPaxDtDP6LGZkLxNUQ/63IN3TPlPz/FdLS5UEo/Pxl9i6KV6D0/Nh5ssdtnRT+l+QAw4F01P8goG0tijUY/oJT6xpg6Nj8dRbJU0htCP/7cvrHhlTY/71t6IvLXMD+YO21s+tw+P6f0+C+jZzk/rGoPnK9pQD8KODArp0xAP58Z9/gaCD0/HBTUvTwHMD8nicK6Mws7P2Q7PcGOlz8/GLayuXQQRz+YajutqK9BP9q1tWxKBUc/JgSewOP3QD8s2vvYTb5DP7rgRqkIYDg/mVa3ODKoOT/vAZ7aN/xAPx0jlwcCx0I/B3sdteUDQj8eumYT3B9KPwiqrpJ7+T4/RHRojjXuQD9qIJ2HAbVCPxJ1tOTQpkM/KIv9kHdBRj+nRh1aujs4Pzaf7Ma4a0Q/7NFlez4UNj8dqGBI34g0P/7byurUl0A/j46rkV1pOT/ICKhwBKlEPxhO1P1cZ0U/eLeti60wNT8Sqg6YC4U9P8pWGNQXPzY/0XG0MRZQPz/lddYE1zBBPwwb7u7EVjc/WA+aiHezSD/1WGolw904P/bQhSt8ikc/Iz+6j96bPz+nUlhO5y85PwCZSv3EGkE/EWRJKJl2Qz8L9hCh0gc5P5ha7H9Lw0o/PAmQlDkFRT/SAVgD5c05PyL81y53qj8/3a7Zwtq1QD8rKlLJT5Y5P5wOQS6hHTg/0J1041wRPD9CrO/dlUY0P14WaZtIVDs/dgqymOpfOD9iYCU4WKw/PxLk5KGWtj0/Jh2ttteMQD94DdQLORRAP2GLkbBltT0/4tCLddJEPT+P87oiUZhCP1FTvqz4okc/nMdPTcOcQj+0r3E6H1dAP7o4blROS0E/fUs2p10PQD92rPnBXgA4P1pp6iZF7EI/FIQyWjVyRz9CFGH9frUzPwOEeQn6fTI/iotzOf1XSD8m4oJzE6NBP2h3sBS1czs/WE6yPckJQj9DMqC7fYZCP3R0/BrAkDI/QGTq3iWZPj8wiccGUUVBP92I4uY43UA/cYHJYqIOOT8FQ0EcMLdHPyM2rjgC3D8/1e6tAXfERD9uM4zwM4Q8P7nZTWCikEA/6bBiu/KOQD/cUi9BC95HPyE9A/I+8TA/tfZQOEHvOz8hHDzep1RAPxz0AHGyaDU/vXHl+8j+QD8Lr1KxmZI4Px01PWDSoz8/yZajz2C2QT9jxZQ7eJVBP6O/kAifQz8/aKx8Hdj0Nz9In/GlOXdAP476Hge75zQ/OXBf63jqRj9mzLVMrKo8P9IbzRXOA0I/Tg55rX81ST8Da2oTBulCPxYL3rgO0zM/yEt27YT3Qj8nZLJ7nLA3PyYeDhoTxUg/hO+LuPEIPT8L10q49XJGPwviHY8CDEc/O/tTdVIJRj/UerVfG0o9P7J6ipMwEEo/SFJq4FsZQz8l9+jL2r81P7lNG4KhFjw/fYFRMADgOj9sW9uurEFDP3tBL8+PLkI/KYj2u/RSSD/qCe3Knmw5P1RUhjxFuEA/JQVY3GbHOT9VCBsGQp48P0Kj44a5hjQ/XGQ94HpHPz+CDhb1GbU6P5dJgcMTkzo/dpN9LzwxNj9bl4c9zuM5P3dHkXgjOj4/z8OKzLxSPz8XKpK+L388P9eT8daWjUA/W23ItkEqOz/CnvC+nGwyP4HuR2FJf0A/RmvfuJnFPD+2ONI1bahDP7CmNmGQLjU/jQAJ60jzPD8BqOd/505IP6g65Ga4AT8/93yagTTdRz+R+8DPZHFCP2fU86Me+EE/FczX5nhlRD9SZClpMNM3Pygwhjr4/kA/5cNldagvRj+Ubg6BalZCP7XINKLN1Dg/NcsmPzDnPD+DOYknDOFAP+3YF+8YNTc/zrhIWFbFND8ppI0HgbM5PydbgF0dZTw/rMYz5K/7RD/icSatxZU9P9Kne7sq8jk/ghfbdmrGQz/Q1tWlxWdCP9kvqtXvc0A/f9QXI8E9Rz/ikXh5Olc0P0kwK80T8z8/hU/sAfDYOj9+62rCW783P4RTRxCsfzc/kazxCUFdQD9ASbmvjtlFP4GlUJz3jTw/HVmRgrt0Qj8tyzqQs7g4P+2zB7CB2jM/ncX1acH9Mz+wNW1cheg+P361F49aejc/Gst6hZOhSz863HmojtFBP8c8ruoFzz8/XjufoYI6Oj/4NVDoDsVBP7SczajOqjw/n/bBHZspPD8xtOnxQ/E/PybL9Sjv8jM/Xd7sdL/BOT9N6oL8l2RHPzET9gEJCT8/AksEY6qESj/ssV89D2pGP8e8k/EdbDk/hzttRjM6Mz8=\"},\"shape\":[10000],\"dtype\":\"float64\",\"order\":\"little\"}],[\"chain__\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AQAAAAIAAAACAAAAAAAAAAIAAAABAAAAAQAAAAEAAAADAAAAAQAAAAIAAAAAAAAAAwAAAAIAAAADAAAAAgAAAAAAAAACAAAAAQAAAAAAAAACAAAAAgAAAAEAAAAAAAAAAQAAAAIAAAABAAAAAgAAAAIAAAABAAAAAAAAAAIAAAABAAAAAgAAAAAAAAAAAAAAAwAAAAMAAAAAAAAAAgAAAAMAAAACAAAAAwAAAAIAAAABAAAAAwAAAAIAAAABAAAAAgAAAAEAAAAAAAAAAAAAAAIAAAABAAAAAgAAAAIAAAADAAAAAgAAAAAAAAAAAAAAAQAAAAEAAAAAAAAAAgAAAAEAAAABAAAAAwAAAAAAAAACAAAAAQAAAAEAAAACAAAAAwAAAAIAAAAAAAAAAQAAAAIAAAAAAAAAAgAAAAMAAAAAAAAAAAAAAAAAAAABAAAAAgAAAAEAAAAAAAAAAwAAAAMAAAAAAAAAAAAAAAEAAAABAAAAAAAAAAEAAAAAAAAAAQAAAAAAAAADAAAAAQAAAAAAAAAAAAAAAQAAAAAAAAADAAAAAQAAAAIAAAABAAAAAgAAAAIAAAABAAAAAgAAAAEAAAAAAAAAAwAAAAAAAAABAAAAAgAAAAEAAAAAAAAAAwAAAAIAAAABAAAAAwAAAAEAAAAAAAAAAAAAAAIAAAAAAAAAAQAAAAMAAAACAAAAAQAAAAAAAAACAAAAAgAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAgAAAAMAAAACAAAAAQAAAAAAAAAAAAAAAgAAAAIAAAABAAAAAQAAAAEAAAABAAAAAwAAAAAAAAABAAAAAAAAAAMAAAABAAAAAAAAAAIAAAAAAAAAAAAAAAIAAAADAAAAAAAAAAMAAAADAAAAAQAAAAIAAAADAAAAAAAAAAEAAAADAAAAAQAAAAIAAAACAAAAAgAAAAEAAAABAAAAAwAAAAIAAAADAAAAAwAAAAAAAAADAAAAAgAAAAMAAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAMAAAAAAAAAAgAAAAAAAAAAAAAAAwAAAAIAAAADAAAAAwAAAAMAAAABAAAAAQAAAAIAAAADAAAAAgAAAAAAAAACAAAAAgAAAAEAAAADAAAAAQAAAAIAAAADAAAAAwAAAAAAAAACAAAAAAAAAAIAAAACAAAAAgAAAAEAAAACAAAAAAAAAAMAAAAAAAAAAAAAAAMAAAACAAAAAwAAAAAAAAABAAAAAgAAAAIAAAAAAAAAAQAAAAIAAAAAAAAAAAAAAAEAAAADAAAAAwAAAAMAAAABAAAAAQAAAAEAAAABAAAAAgAAAAIAAAACAAAAAQAAAAIAAAACAAAAAQAAAAMAAAAAAAAAAAAAAAMAAAABAAAAAgAAAAIAAAADAAAAAgAAAAMAAAABAAAAAwAAAAMAAAAAAAAAAgAAAAAAAAADAAAAAQAAAAEAAAADAAAAAQAAAAAAAAADAAAAAgAAAAAAAAABAAAAAgAAAAMAAAABAAAAAwAAAAMAAAACAAAAAwAAAAEAAAADAAAAAgAAAAAAAAADAAAAAgAAAAMAAAAAAAAAAQAAAAIAAAAAAAAAAAAAAAEAAAACAAAAAwAAAAMAAAACAAAAAwAAAAMAAAADAAAAAQAAAAEAAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAMAAAAAAAAAAgAAAAIAAAABAAAAAQAAAAEAAAABAAAAAAAAAAEAAAADAAAAAAAAAAIAAAABAAAAAgAAAAMAAAADAAAAAQAAAAMAAAADAAAAAAAAAAEAAAADAAAAAAAAAAAAAAABAAAAAQAAAAMAAAAAAAAAAQAAAAAAAAADAAAAAgAAAAEAAAAAAAAAAQAAAAEAAAAAAAAAAgAAAAAAAAAAAAAAAwAAAAAAAAAAAAAAAAAAAAEAAAADAAAAAQAAAAIAAAADAAAAAgAAAAEAAAABAAAAAAAAAAIAAAACAAAAAwAAAAAAAAADAAAAAwAAAAAAAAABAAAAAAAAAAMAAAADAAAAAgAAAAIAAAABAAAAAAAAAAMAAAAAAAAAAQAAAAMAAAABAAAAAAAAAAAAAAACAAAAAwAAAAEAAAABAAAAAAAAAAIAAAADAAAAAgAAAAIAAAACAAAAAAAAAAIAAAADAAAAAAAAAAIAAAACAAAAAAAAAAMAAAABAAAAAgAAAAMAAAADAAAAAgAAAAAAAAABAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAADAAAAAgAAAAAAAAAAAAAAAwAAAAAAAAABAAAAAQAAAAEAAAABAAAAAwAAAAAAAAABAAAAAQAAAAEAAAAAAAAAAwAAAAMAAAABAAAAAgAAAAEAAAAAAAAAAwAAAAAAAAACAAAAAQAAAAIAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAgAAAAMAAAABAAAAAgAAAAIAAAADAAAAAAAAAAIAAAACAAAAAQAAAAIAAAADAAAAAgAAAAAAAAACAAAAAQAAAAMAAAADAAAAAwAAAAIAAAAAAAAAAQAAAAMAAAAAAAAAAwAAAAAAAAABAAAAAAAAAAIAAAACAAAAAgAAAAIAAAADAAAAAwAAAAMAAAABAAAAAwAAAAMAAAAAAAAAAAAAAAMAAAABAAAAAwAAAAMAAAADAAAAAQAAAAAAAAABAAAAAAAAAAIAAAAAAAAAAAAAAAIAAAAAAAAAAwAAAAEAAAADAAAAAgAAAAEAAAACAAAAAwAAAAEAAAACAAAAAAAAAAEAAAAAAAAAAQAAAAIAAAACAAAAAAAAAAMAAAADAAAAAQAAAAIAAAACAAAAAwAAAAEAAAACAAAAAwAAAAAAAAAAAAAAAwAAAAAAAAAAAAAAAwAAAAAAAAACAAAAAAAAAAMAAAAAAAAAAQAAAAIAAAAAAAAAAQAAAAAAAAAAAAAAAwAAAAEAAAADAAAAAwAAAAMAAAADAAAAAAAAAAEAAAADAAAAAQAAAAEAAAAAAAAAAgAAAAIAAAADAAAAAQAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAwAAAAAAAAABAAAAAwAAAAMAAAACAAAAAAAAAAEAAAACAAAAAwAAAAIAAAABAAAAAwAAAAAAAAACAAAAAwAAAAIAAAAAAAAAAgAAAAIAAAAAAAAAAQAAAAAAAAADAAAAAgAAAAEAAAAAAAAAAgAAAAIAAAADAAAAAAAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAMAAAACAAAAAAAAAAAAAAADAAAAAgAAAAIAAAACAAAAAwAAAAMAAAABAAAAAQAAAAAAAAADAAAAAgAAAAMAAAADAAAAAQAAAAMAAAADAAAAAgAAAAAAAAAAAAAAAgAAAAIAAAACAAAAAQAAAAMAAAACAAAAAQAAAAMAAAADAAAAAAAAAAMAAAACAAAAAAAAAAEAAAABAAAAAAAAAAIAAAAAAAAAAQAAAAMAAAACAAAAAQAAAAIAAAADAAAAAQAAAAEAAAABAAAAAQAAAAMAAAAAAAAAAwAAAAMAAAAAAAAAAwAAAAEAAAACAAAAAgAAAAEAAAAAAAAAAgAAAAAAAAAAAAAAAwAAAAIAAAABAAAAAQAAAAEAAAACAAAAAwAAAAAAAAACAAAAAQAAAAAAAAADAAAAAQAAAAMAAAACAAAAAgAAAAIAAAACAAAAAwAAAAAAAAAAAAAAAwAAAAEAAAADAAAAAwAAAAEAAAADAAAAAAAAAAEAAAACAAAAAgAAAAEAAAADAAAAAwAAAAAAAAAAAAAAAQAAAAEAAAACAAAAAwAAAAMAAAAAAAAAAwAAAAIAAAADAAAAAgAAAAMAAAACAAAAAgAAAAMAAAAAAAAAAgAAAAAAAAABAAAAAQAAAAAAAAAAAAAAAwAAAAAAAAABAAAAAAAAAAMAAAAAAAAAAQAAAAAAAAABAAAAAwAAAAAAAAADAAAAAwAAAAEAAAACAAAAAgAAAAIAAAADAAAAAgAAAAMAAAAAAAAAAwAAAAMAAAADAAAAAAAAAAMAAAACAAAAAwAAAAAAAAAAAAAAAQAAAAAAAAAAAAAAAQAAAAIAAAAAAAAAAQAAAAAAAAABAAAAAAAAAAIAAAABAAAAAAAAAAMAAAADAAAAAAAAAAEAAAADAAAAAAAAAAIAAAACAAAAAwAAAAIAAAADAAAAAAAAAAMAAAADAAAAAAAAAAAAAAADAAAAAwAAAAMAAAACAAAAAQAAAAMAAAAAAAAAAwAAAAIAAAABAAAAAAAAAAIAAAACAAAAAwAAAAAAAAADAAAAAgAAAAEAAAADAAAAAwAAAAIAAAACAAAAAAAAAAMAAAABAAAAAAAAAAEAAAADAAAAAgAAAAMAAAADAAAAAgAAAAAAAAAAAAAAAwAAAAMAAAABAAAAAAAAAAAAAAABAAAAAAAAAAIAAAADAAAAAQAAAAMAAAADAAAAAwAAAAIAAAADAAAAAwAAAAAAAAADAAAAAgAAAAEAAAAAAAAAAgAAAAAAAAACAAAAAgAAAAEAAAACAAAAAAAAAAEAAAACAAAAAAAAAAEAAAACAAAAAQAAAAMAAAACAAAAAAAAAAMAAAABAAAAAQAAAAMAAAADAAAAAQAAAAIAAAAAAAAAAgAAAAMAAAAAAAAAAgAAAAAAAAADAAAAAAAAAAEAAAADAAAAAgAAAAEAAAABAAAAAQAAAAEAAAACAAAAAAAAAAIAAAABAAAAAwAAAAAAAAAAAAAAAQAAAAIAAAABAAAAAAAAAAIAAAADAAAAAwAAAAIAAAACAAAAAQAAAAEAAAAAAAAAAwAAAAMAAAAAAAAAAwAAAAMAAAABAAAAAwAAAAMAAAACAAAAAwAAAAIAAAABAAAAAwAAAAIAAAAAAAAAAAAAAAMAAAADAAAAAAAAAAAAAAACAAAAAwAAAAEAAAACAAAAAAAAAAIAAAACAAAAAAAAAAEAAAACAAAAAAAAAAEAAAACAAAAAgAAAAIAAAAAAAAAAAAAAAMAAAAAAAAAAgAAAAAAAAACAAAAAQAAAAMAAAABAAAAAwAAAAIAAAABAAAAAwAAAAMAAAABAAAAAAAAAAAAAAADAAAAAwAAAAMAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAEAAAAAAAAAAQAAAAIAAAAAAAAAAQAAAAAAAAACAAAAAQAAAAIAAAADAAAAAAAAAAAAAAACAAAAAQAAAAEAAAABAAAAAQAAAAMAAAABAAAAAQAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAACAAAAAQAAAAAAAAAAAAAAAgAAAAMAAAABAAAAAQAAAAEAAAABAAAAAQAAAAAAAAABAAAAAQAAAAIAAAAAAAAAAwAAAAMAAAADAAAAAgAAAAIAAAAAAAAAAwAAAAAAAAADAAAAAQAAAAAAAAACAAAAAQAAAAEAAAAAAAAAAQAAAAMAAAABAAAAAAAAAAMAAAACAAAAAgAAAAEAAAAAAAAAAwAAAAIAAAADAAAAAQAAAAEAAAABAAAAAgAAAAIAAAAAAAAAAwAAAAIAAAAAAAAAAwAAAAIAAAACAAAAAgAAAAAAAAABAAAAAQAAAAIAAAAAAAAAAAAAAAIAAAADAAAAAwAAAAIAAAADAAAAAwAAAAEAAAADAAAAAQAAAAMAAAABAAAAAAAAAAAAAAADAAAAAAAAAAIAAAABAAAAAQAAAAEAAAAAAAAAAwAAAAMAAAAAAAAAAwAAAAMAAAADAAAAAAAAAAIAAAABAAAAAQAAAAIAAAADAAAAAwAAAAEAAAADAAAAAgAAAAMAAAABAAAAAAAAAAMAAAABAAAAAQAAAAAAAAABAAAAAAAAAAMAAAADAAAAAgAAAAIAAAAAAAAAAwAAAAMAAAABAAAAAAAAAAIAAAABAAAAAgAAAAAAAAABAAAAAAAAAAMAAAACAAAAAwAAAAMAAAACAAAAAQAAAAAAAAABAAAAAAAAAAMAAAADAAAAAAAAAAEAAAAAAAAAAgAAAAEAAAACAAAAAAAAAAIAAAADAAAAAgAAAAEAAAAAAAAAAAAAAAAAAAACAAAAAQAAAAIAAAADAAAAAQAAAAIAAAABAAAAAgAAAAEAAAACAAAAAAAAAAIAAAACAAAAAgAAAAMAAAACAAAAAAAAAAMAAAABAAAAAgAAAAAAAAADAAAAAQAAAAEAAAABAAAAAAAAAAAAAAABAAAAAwAAAAAAAAAAAAAAAwAAAAEAAAAAAAAAAgAAAAIAAAACAAAAAAAAAAAAAAACAAAAAAAAAAEAAAABAAAAAgAAAAMAAAADAAAAAQAAAAMAAAAAAAAAAwAAAAAAAAACAAAAAQAAAAAAAAADAAAAAgAAAAMAAAADAAAAAAAAAAEAAAADAAAAAQAAAAMAAAACAAAAAgAAAAIAAAACAAAAAQAAAAEAAAACAAAAAQAAAAAAAAADAAAAAAAAAAEAAAADAAAAAQAAAAIAAAABAAAAAwAAAAMAAAAAAAAAAwAAAAIAAAADAAAAAgAAAAIAAAAAAAAAAAAAAAMAAAABAAAAAgAAAAMAAAABAAAAAgAAAAIAAAAAAAAAAwAAAAEAAAABAAAAAAAAAAIAAAABAAAAAAAAAAAAAAABAAAAAQAAAAIAAAACAAAAAgAAAAAAAAACAAAAAwAAAAIAAAAAAAAAAAAAAAIAAAACAAAAAAAAAAAAAAABAAAAAAAAAAAAAAABAAAAAAAAAAMAAAADAAAAAAAAAAEAAAADAAAAAQAAAAEAAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAIAAAACAAAAAQAAAAMAAAABAAAAAgAAAAMAAAADAAAAAQAAAAAAAAADAAAAAAAAAAAAAAACAAAAAwAAAAAAAAABAAAAAwAAAAAAAAADAAAAAAAAAAAAAAAAAAAAAwAAAAIAAAABAAAAAAAAAAMAAAABAAAAAwAAAAMAAAAAAAAAAwAAAAMAAAADAAAAAwAAAAAAAAACAAAAAQAAAAMAAAADAAAAAgAAAAIAAAABAAAAAwAAAAIAAAAAAAAAAgAAAAIAAAAAAAAAAQAAAAIAAAACAAAAAgAAAAMAAAACAAAAAAAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAMAAAABAAAAAAAAAAAAAAABAAAAAgAAAAEAAAABAAAAAAAAAAIAAAABAAAAAgAAAAMAAAACAAAAAAAAAAAAAAACAAAAAwAAAAMAAAAAAAAAAgAAAAAAAAACAAAAAgAAAAEAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAEAAAAAAAAAAAAAAAEAAAADAAAAAQAAAAMAAAAAAAAAAAAAAAMAAAAAAAAAAgAAAAIAAAABAAAAAwAAAAIAAAADAAAAAgAAAAMAAAADAAAAAAAAAAIAAAADAAAAAQAAAAMAAAABAAAAAAAAAAMAAAABAAAAAQAAAAIAAAADAAAAAQAAAAMAAAACAAAAAQAAAAMAAAABAAAAAwAAAAMAAAAAAAAAAgAAAAIAAAABAAAAAwAAAAIAAAADAAAAAAAAAAIAAAAAAAAAAQAAAAAAAAACAAAAAQAAAAEAAAADAAAAAQAAAAEAAAAAAAAAAQAAAAAAAAADAAAAAAAAAAEAAAABAAAAAwAAAAEAAAADAAAAAQAAAAIAAAACAAAAAwAAAAIAAAAAAAAAAgAAAAIAAAAAAAAAAQAAAAEAAAACAAAAAAAAAAEAAAAAAAAAAQAAAAIAAAADAAAAAwAAAAIAAAACAAAAAQAAAAIAAAABAAAAAgAAAAEAAAABAAAAAwAAAAAAAAAAAAAAAAAAAAMAAAABAAAAAAAAAAIAAAAAAAAAAwAAAAAAAAABAAAAAAAAAAMAAAAAAAAAAgAAAAEAAAACAAAAAAAAAAMAAAADAAAAAAAAAAEAAAABAAAAAgAAAAEAAAABAAAAAwAAAAIAAAABAAAAAwAAAAAAAAAAAAAAAwAAAAMAAAABAAAAAAAAAAEAAAACAAAAAQAAAAIAAAABAAAAAQAAAAMAAAADAAAAAwAAAAIAAAACAAAAAAAAAAIAAAACAAAAAgAAAAAAAAACAAAAAAAAAAMAAAAAAAAAAAAAAAEAAAADAAAAAgAAAAEAAAAAAAAAAgAAAAMAAAAAAAAAAwAAAAEAAAABAAAAAQAAAAIAAAABAAAAAwAAAAEAAAABAAAAAwAAAAIAAAABAAAAAgAAAAEAAAAAAAAAAQAAAAEAAAACAAAAAwAAAAMAAAADAAAAAAAAAAEAAAAAAAAAAQAAAAEAAAAAAAAAAgAAAAEAAAADAAAAAAAAAAEAAAADAAAAAQAAAAAAAAADAAAAAwAAAAAAAAADAAAAAgAAAAAAAAABAAAAAAAAAAEAAAAAAAAAAwAAAAIAAAACAAAAAAAAAAMAAAADAAAAAgAAAAMAAAADAAAAAgAAAAIAAAAAAAAAAgAAAAMAAAADAAAAAwAAAAEAAAAAAAAAAQAAAAAAAAACAAAAAQAAAAAAAAADAAAAAQAAAAAAAAADAAAAAAAAAAEAAAABAAAAAQAAAAAAAAACAAAAAgAAAAIAAAABAAAAAAAAAAMAAAADAAAAAwAAAAMAAAACAAAAAQAAAAEAAAABAAAAAAAAAAEAAAABAAAAAQAAAAEAAAACAAAAAwAAAAAAAAAAAAAAAwAAAAIAAAAAAAAAAQAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAADAAAAAwAAAAMAAAADAAAAAQAAAAIAAAAAAAAAAQAAAAIAAAABAAAAAAAAAAEAAAADAAAAAgAAAAIAAAACAAAAAQAAAAEAAAAAAAAAAgAAAAMAAAACAAAAAgAAAAIAAAACAAAAAgAAAAMAAAACAAAAAgAAAAAAAAABAAAAAwAAAAAAAAACAAAAAQAAAAIAAAABAAAAAgAAAAEAAAABAAAAAgAAAAIAAAACAAAAAwAAAAAAAAACAAAAAQAAAAMAAAACAAAAAQAAAAAAAAACAAAAAAAAAAIAAAADAAAAAQAAAAAAAAAAAAAAAQAAAAEAAAAAAAAAAwAAAAIAAAABAAAAAgAAAAEAAAABAAAAAAAAAAMAAAABAAAAAgAAAAEAAAABAAAAAQAAAAEAAAADAAAAAQAAAAIAAAACAAAAAwAAAAMAAAABAAAAAwAAAAIAAAACAAAAAwAAAAEAAAAAAAAAAAAAAAAAAAABAAAAAQAAAAIAAAADAAAAAgAAAAMAAAABAAAAAwAAAAIAAAABAAAAAgAAAAMAAAABAAAAAwAAAAEAAAABAAAAAAAAAAEAAAADAAAAAgAAAAEAAAACAAAAAwAAAAEAAAABAAAAAgAAAAEAAAABAAAAAgAAAAIAAAAAAAAAAgAAAAIAAAABAAAAAwAAAAAAAAAAAAAAAgAAAAEAAAABAAAAAgAAAAIAAAAAAAAAAQAAAAMAAAABAAAAAQAAAAMAAAADAAAAAAAAAAIAAAAAAAAAAQAAAAEAAAACAAAAAQAAAAIAAAABAAAAAAAAAAEAAAACAAAAAgAAAAMAAAADAAAAAAAAAAIAAAACAAAAAQAAAAIAAAAAAAAAAAAAAAIAAAADAAAAAQAAAAMAAAACAAAAAwAAAAEAAAABAAAAAwAAAAIAAAAAAAAAAQAAAAEAAAABAAAAAQAAAAMAAAABAAAAAgAAAAAAAAADAAAAAwAAAAAAAAACAAAAAwAAAAMAAAADAAAAAQAAAAAAAAABAAAAAAAAAAIAAAACAAAAAQAAAAAAAAABAAAAAQAAAAIAAAAAAAAAAQAAAAMAAAAAAAAAAAAAAAEAAAABAAAAAwAAAAMAAAACAAAAAwAAAAIAAAABAAAAAAAAAAAAAAABAAAAAwAAAAAAAAABAAAAAQAAAAIAAAADAAAAAgAAAAMAAAAAAAAAAwAAAAEAAAABAAAAAgAAAAIAAAABAAAAAQAAAAIAAAACAAAAAgAAAAMAAAADAAAAAQAAAAEAAAADAAAAAgAAAAAAAAAAAAAAAQAAAAMAAAACAAAAAQAAAAAAAAADAAAAAAAAAAAAAAAAAAAAAwAAAAMAAAAAAAAAAAAAAAEAAAACAAAAAwAAAAMAAAADAAAAAgAAAAEAAAAAAAAAAAAAAAAAAAACAAAAAwAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAgAAAAMAAAAAAAAAAAAAAAMAAAABAAAAAAAAAAMAAAADAAAAAwAAAAEAAAABAAAAAwAAAAEAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAABAAAAAwAAAAAAAAACAAAAAgAAAAEAAAAAAAAAAQAAAAIAAAAAAAAAAgAAAAMAAAACAAAAAQAAAAIAAAACAAAAAQAAAAAAAAAAAAAAAgAAAAIAAAAAAAAAAwAAAAAAAAAAAAAAAQAAAAMAAAADAAAAAAAAAAEAAAADAAAAAAAAAAAAAAABAAAAAgAAAAIAAAABAAAAAwAAAAEAAAACAAAAAgAAAAAAAAADAAAAAQAAAAAAAAACAAAAAgAAAAIAAAADAAAAAwAAAAEAAAACAAAAAAAAAAMAAAAAAAAAAwAAAAEAAAACAAAAAgAAAAIAAAAAAAAAAAAAAAMAAAAAAAAAAwAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAMAAAACAAAAAwAAAAAAAAAAAAAAAgAAAAEAAAACAAAAAAAAAAMAAAADAAAAAQAAAAMAAAAAAAAAAAAAAAMAAAAAAAAAAgAAAAAAAAABAAAAAwAAAAIAAAACAAAAAwAAAAAAAAACAAAAAAAAAAIAAAACAAAAAAAAAAEAAAADAAAAAQAAAAIAAAABAAAAAQAAAAIAAAACAAAAAQAAAAIAAAACAAAAAAAAAAEAAAADAAAAAwAAAAEAAAABAAAAAQAAAAEAAAACAAAAAAAAAAAAAAADAAAAAgAAAAIAAAADAAAAAgAAAAMAAAACAAAAAAAAAAAAAAACAAAAAwAAAAAAAAADAAAAAAAAAAMAAAACAAAAAwAAAAMAAAAAAAAAAQAAAAIAAAADAAAAAAAAAAEAAAABAAAAAgAAAAAAAAACAAAAAgAAAAAAAAABAAAAAAAAAAAAAAADAAAAAQAAAAEAAAACAAAAAgAAAAEAAAAAAAAAAQAAAAIAAAAAAAAAAwAAAAMAAAABAAAAAwAAAAEAAAABAAAAAAAAAAEAAAACAAAAAQAAAAAAAAABAAAAAQAAAAIAAAAAAAAAAgAAAAEAAAABAAAAAQAAAAMAAAABAAAAAwAAAAEAAAABAAAAAQAAAAEAAAACAAAAAQAAAAMAAAADAAAAAwAAAAAAAAAAAAAAAgAAAAIAAAADAAAAAAAAAAIAAAABAAAAAQAAAAEAAAACAAAAAAAAAAMAAAADAAAAAwAAAAMAAAABAAAAAQAAAAIAAAABAAAAAwAAAAEAAAABAAAAAgAAAAEAAAACAAAAAQAAAAIAAAABAAAAAQAAAAMAAAADAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAABAAAAAAAAAAMAAAABAAAAAgAAAAAAAAADAAAAAwAAAAEAAAADAAAAAAAAAAIAAAABAAAAAAAAAAEAAAADAAAAAgAAAAAAAAADAAAAAAAAAAIAAAADAAAAAAAAAAEAAAACAAAAAAAAAAEAAAACAAAAAQAAAAEAAAAAAAAAAgAAAAMAAAAAAAAAAgAAAAAAAAADAAAAAAAAAAEAAAABAAAAAAAAAAMAAAAAAAAAAAAAAAIAAAAAAAAAAQAAAAIAAAAAAAAAAQAAAAAAAAACAAAAAAAAAAIAAAABAAAAAQAAAAAAAAABAAAAAgAAAAAAAAACAAAAAwAAAAEAAAAAAAAAAgAAAAEAAAADAAAAAwAAAAMAAAABAAAAAQAAAAEAAAAAAAAAAAAAAAAAAAABAAAAAwAAAAEAAAACAAAAAwAAAAMAAAAAAAAAAwAAAAEAAAACAAAAAwAAAAAAAAAAAAAAAwAAAAAAAAACAAAAAQAAAAMAAAABAAAAAwAAAAIAAAADAAAAAgAAAAAAAAAAAAAAAgAAAAEAAAAAAAAAAwAAAAAAAAACAAAAAwAAAAEAAAACAAAAAAAAAAAAAAADAAAAAwAAAAEAAAABAAAAAQAAAAMAAAAAAAAAAAAAAAAAAAABAAAAAgAAAAMAAAAAAAAAAQAAAAIAAAAAAAAAAAAAAAIAAAABAAAAAgAAAAIAAAABAAAAAQAAAAEAAAADAAAAAQAAAAEAAAABAAAAAAAAAAEAAAADAAAAAQAAAAEAAAAAAAAAAgAAAAAAAAADAAAAAgAAAAIAAAADAAAAAwAAAAEAAAADAAAAAQAAAAEAAAACAAAAAAAAAAIAAAABAAAAAQAAAAEAAAAAAAAAAQAAAAMAAAABAAAAAAAAAAEAAAAAAAAAAAAAAAMAAAADAAAAAAAAAAEAAAADAAAAAgAAAAAAAAAAAAAAAgAAAAMAAAACAAAAAwAAAAEAAAACAAAAAAAAAAEAAAAAAAAAAQAAAAEAAAAAAAAAAQAAAAEAAAAAAAAAAwAAAAIAAAAAAAAAAwAAAAEAAAACAAAAAgAAAAIAAAADAAAAAgAAAAEAAAABAAAAAAAAAAAAAAACAAAAAAAAAAMAAAACAAAAAgAAAAIAAAACAAAAAwAAAAAAAAACAAAAAgAAAAMAAAAAAAAAAQAAAAEAAAAAAAAAAwAAAAAAAAADAAAAAAAAAAEAAAABAAAAAQAAAAAAAAABAAAAAwAAAAAAAAABAAAAAwAAAAIAAAAAAAAAAgAAAAAAAAABAAAAAQAAAAMAAAADAAAAAgAAAAIAAAAAAAAAAwAAAAEAAAABAAAAAwAAAAEAAAAAAAAAAQAAAAIAAAADAAAAAQAAAAAAAAACAAAAAwAAAAEAAAABAAAAAgAAAAAAAAABAAAAAgAAAAIAAAAAAAAAAgAAAAEAAAACAAAAAwAAAAIAAAACAAAAAwAAAAEAAAACAAAAAgAAAAIAAAAAAAAAAQAAAAEAAAACAAAAAQAAAAIAAAADAAAAAQAAAAIAAAABAAAAAwAAAAMAAAABAAAAAwAAAAIAAAADAAAAAAAAAAMAAAABAAAAAQAAAAEAAAADAAAAAwAAAAEAAAADAAAAAAAAAAIAAAADAAAAAAAAAAIAAAACAAAAAAAAAAIAAAABAAAAAQAAAAIAAAABAAAAAgAAAAAAAAACAAAAAgAAAAMAAAADAAAAAwAAAAIAAAADAAAAAwAAAAAAAAADAAAAAAAAAAAAAAABAAAAAQAAAAIAAAADAAAAAQAAAAEAAAABAAAAAQAAAAAAAAACAAAAAgAAAAEAAAABAAAAAAAAAAIAAAABAAAAAwAAAAIAAAABAAAAAQAAAAIAAAAAAAAAAQAAAAEAAAADAAAAAQAAAAMAAAABAAAAAAAAAAEAAAACAAAAAgAAAAEAAAABAAAAAAAAAAAAAAACAAAAAwAAAAMAAAAAAAAAAgAAAAAAAAAAAAAAAwAAAAMAAAAAAAAAAgAAAAMAAAABAAAAAgAAAAEAAAADAAAAAwAAAAMAAAADAAAAAgAAAAEAAAACAAAAAgAAAAMAAAACAAAAAwAAAAIAAAACAAAAAQAAAAAAAAAAAAAAAQAAAAAAAAAAAAAAAgAAAAMAAAABAAAAAAAAAAMAAAADAAAAAAAAAAEAAAADAAAAAQAAAAIAAAABAAAAAQAAAAAAAAABAAAAAgAAAAEAAAADAAAAAwAAAAAAAAADAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAABAAAAAwAAAAAAAAADAAAAAgAAAAAAAAADAAAAAAAAAAMAAAADAAAAAgAAAAMAAAACAAAAAQAAAAMAAAADAAAAAQAAAAMAAAAAAAAAAgAAAAIAAAAAAAAAAAAAAAAAAAABAAAAAwAAAAIAAAADAAAAAwAAAAEAAAAAAAAAAwAAAAAAAAAAAAAAAwAAAAIAAAABAAAAAQAAAAEAAAABAAAAAgAAAAAAAAABAAAAAAAAAAIAAAAAAAAAAAAAAAEAAAABAAAAAgAAAAEAAAACAAAAAQAAAAAAAAAAAAAAAQAAAAAAAAABAAAAAgAAAAAAAAACAAAAAQAAAAAAAAABAAAAAQAAAAEAAAABAAAAAAAAAAEAAAACAAAAAgAAAAIAAAABAAAAAwAAAAIAAAACAAAAAwAAAAMAAAABAAAAAQAAAAIAAAACAAAAAQAAAAMAAAADAAAAAgAAAAEAAAACAAAAAAAAAAIAAAACAAAAAgAAAAAAAAACAAAAAQAAAAAAAAADAAAAAAAAAAEAAAABAAAAAQAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAwAAAAMAAAABAAAAAgAAAAIAAAACAAAAAwAAAAEAAAABAAAAAgAAAAMAAAABAAAAAQAAAAEAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAMAAAADAAAAAwAAAAEAAAADAAAAAAAAAAMAAAACAAAAAgAAAAEAAAABAAAAAgAAAAIAAAABAAAAAAAAAAMAAAADAAAAAwAAAAIAAAACAAAAAQAAAAIAAAAAAAAAAQAAAAEAAAACAAAAAQAAAAMAAAABAAAAAAAAAAMAAAAAAAAAAAAAAAAAAAACAAAAAgAAAAEAAAAAAAAAAwAAAAIAAAADAAAAAQAAAAIAAAADAAAAAgAAAAMAAAABAAAAAwAAAAAAAAADAAAAAQAAAAAAAAACAAAAAQAAAAAAAAACAAAAAwAAAAEAAAADAAAAAgAAAAAAAAAAAAAAAwAAAAAAAAABAAAAAgAAAAAAAAABAAAAAwAAAAAAAAABAAAAAQAAAAAAAAABAAAAAwAAAAMAAAADAAAAAAAAAAIAAAADAAAAAgAAAAIAAAACAAAAAQAAAAIAAAADAAAAAgAAAAIAAAACAAAAAwAAAAAAAAABAAAAAgAAAAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwAAAAEAAAACAAAAAwAAAAEAAAACAAAAAgAAAAMAAAABAAAAAQAAAAMAAAADAAAAAQAAAAIAAAABAAAAAQAAAAAAAAAAAAAAAwAAAAAAAAACAAAAAgAAAAAAAAAAAAAAAAAAAAEAAAADAAAAAAAAAAIAAAADAAAAAgAAAAMAAAABAAAAAwAAAAMAAAAAAAAAAgAAAAIAAAACAAAAAwAAAAMAAAABAAAAAQAAAAIAAAABAAAAAAAAAAAAAAADAAAAAQAAAAEAAAACAAAAAwAAAAAAAAAAAAAAAQAAAAEAAAACAAAAAgAAAAMAAAAAAAAAAQAAAAIAAAACAAAAAQAAAAEAAAACAAAAAgAAAAMAAAABAAAAAwAAAAMAAAAAAAAAAQAAAAEAAAAAAAAAAQAAAAIAAAACAAAAAQAAAAAAAAADAAAAAwAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAwAAAAMAAAACAAAAAAAAAAIAAAACAAAAAwAAAAAAAAACAAAAAwAAAAAAAAACAAAAAAAAAAMAAAABAAAAAwAAAAIAAAAAAAAAAAAAAAAAAAABAAAAAQAAAAEAAAABAAAAAgAAAAMAAAAAAAAAAAAAAAIAAAAAAAAAAQAAAAIAAAADAAAAAQAAAAMAAAABAAAAAwAAAAIAAAABAAAAAwAAAAIAAAAAAAAAAgAAAAIAAAAAAAAAAAAAAAEAAAAAAAAAAwAAAAEAAAAAAAAAAgAAAAIAAAADAAAAAgAAAAAAAAADAAAAAQAAAAEAAAABAAAAAgAAAAEAAAACAAAAAQAAAAAAAAADAAAAAgAAAAEAAAAAAAAAAQAAAAMAAAACAAAAAgAAAAMAAAACAAAAAQAAAAEAAAAAAAAAAgAAAAIAAAADAAAAAwAAAAIAAAADAAAAAQAAAAEAAAADAAAAAgAAAAEAAAADAAAAAQAAAAEAAAAAAAAAAAAAAAMAAAACAAAAAQAAAAAAAAACAAAAAAAAAAEAAAADAAAAAwAAAAEAAAAAAAAAAwAAAAEAAAACAAAAAgAAAAEAAAADAAAAAgAAAAAAAAADAAAAAwAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAABAAAAAgAAAAMAAAADAAAAAQAAAAIAAAAAAAAAAQAAAAIAAAABAAAAAwAAAAEAAAAAAAAAAwAAAAMAAAACAAAAAgAAAAAAAAACAAAAAgAAAAAAAAAAAAAAAQAAAAIAAAACAAAAAgAAAAEAAAABAAAAAwAAAAMAAAABAAAAAAAAAAMAAAABAAAAAwAAAAEAAAACAAAAAwAAAAMAAAADAAAAAAAAAAEAAAAAAAAAAAAAAAMAAAADAAAAAQAAAAAAAAADAAAAAwAAAAEAAAABAAAAAQAAAAEAAAABAAAAAgAAAAEAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAwAAAAEAAAABAAAAAwAAAAEAAAADAAAAAwAAAAAAAAADAAAAAgAAAAEAAAABAAAAAgAAAAEAAAACAAAAAAAAAAEAAAABAAAAAQAAAAIAAAAAAAAAAwAAAAAAAAAAAAAAAAAAAAAAAAABAAAAAwAAAAEAAAAAAAAAAAAAAAIAAAACAAAAAgAAAAMAAAABAAAAAQAAAAEAAAABAAAAAAAAAAMAAAACAAAAAwAAAAEAAAACAAAAAQAAAAEAAAABAAAAAQAAAAAAAAABAAAAAAAAAAMAAAADAAAAAQAAAAMAAAABAAAAAgAAAAMAAAADAAAAAQAAAAAAAAACAAAAAAAAAAIAAAACAAAAAwAAAAAAAAAAAAAAAAAAAAMAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAEAAAACAAAAAgAAAAEAAAADAAAAAgAAAAIAAAADAAAAAQAAAAMAAAAAAAAAAQAAAAEAAAAAAAAAAwAAAAIAAAACAAAAAgAAAAAAAAADAAAAAgAAAAIAAAACAAAAAwAAAAIAAAACAAAAAgAAAAIAAAADAAAAAQAAAAEAAAAAAAAAAQAAAAEAAAAAAAAAAAAAAAMAAAACAAAAAQAAAAAAAAADAAAAAQAAAAEAAAAAAAAAAAAAAAEAAAACAAAAAAAAAAEAAAACAAAAAgAAAAMAAAADAAAAAwAAAAMAAAADAAAAAQAAAAIAAAACAAAAAgAAAAEAAAAAAAAAAwAAAAIAAAAAAAAAAgAAAAEAAAACAAAAAQAAAAEAAAABAAAAAwAAAAMAAAACAAAAAwAAAAAAAAABAAAAAAAAAAAAAAACAAAAAwAAAAIAAAACAAAAAgAAAAIAAAABAAAAAAAAAAMAAAACAAAAAAAAAAAAAAACAAAAAQAAAAAAAAADAAAAAAAAAAEAAAABAAAAAAAAAAIAAAACAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAACAAAAAgAAAAEAAAACAAAAAQAAAAAAAAADAAAAAgAAAAMAAAAAAAAAAwAAAAIAAAAAAAAAAwAAAAAAAAADAAAAAwAAAAAAAAAAAAAAAQAAAAAAAAADAAAAAwAAAAMAAAABAAAAAwAAAAEAAAAAAAAAAgAAAAMAAAACAAAAAgAAAAEAAAABAAAAAQAAAAAAAAAAAAAAAgAAAAMAAAABAAAAAwAAAAEAAAABAAAAAgAAAAIAAAABAAAAAQAAAAAAAAABAAAAAQAAAAMAAAABAAAAAQAAAAIAAAABAAAAAgAAAAIAAAADAAAAAgAAAAEAAAACAAAAAwAAAAMAAAACAAAAAwAAAAAAAAACAAAAAwAAAAEAAAAAAAAAAwAAAAMAAAACAAAAAwAAAAEAAAABAAAAAgAAAAMAAAACAAAAAAAAAAIAAAADAAAAAAAAAAEAAAACAAAAAwAAAAIAAAAAAAAAAAAAAAAAAAADAAAAAwAAAAEAAAADAAAAAgAAAAMAAAAAAAAAAAAAAAIAAAABAAAAAgAAAAMAAAAAAAAAAQAAAAMAAAACAAAAAAAAAAIAAAAAAAAAAQAAAAAAAAABAAAAAAAAAAMAAAABAAAAAAAAAAMAAAABAAAAAQAAAAMAAAADAAAAAAAAAAIAAAACAAAAAgAAAAEAAAABAAAAAwAAAAAAAAACAAAAAwAAAAAAAAACAAAAAQAAAAMAAAABAAAAAAAAAAIAAAADAAAAAAAAAAIAAAACAAAAAwAAAAIAAAABAAAAAAAAAAMAAAADAAAAAAAAAAIAAAAAAAAAAAAAAAMAAAADAAAAAQAAAAEAAAACAAAAAgAAAAIAAAACAAAAAQAAAAAAAAABAAAAAAAAAAAAAAACAAAAAwAAAAAAAAACAAAAAAAAAAEAAAABAAAAAQAAAAIAAAACAAAAAAAAAAIAAAABAAAAAwAAAAEAAAABAAAAAgAAAAAAAAABAAAAAQAAAAMAAAADAAAAAwAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAgAAAAEAAAADAAAAAwAAAAIAAAAAAAAAAAAAAAEAAAABAAAAAAAAAAIAAAACAAAAAAAAAAIAAAACAAAAAQAAAAIAAAACAAAAAwAAAAAAAAADAAAAAwAAAAMAAAADAAAAAgAAAAAAAAABAAAAAQAAAAMAAAABAAAAAgAAAAEAAAACAAAAAAAAAAEAAAABAAAAAgAAAAMAAAACAAAAAgAAAAMAAAADAAAAAAAAAAEAAAACAAAAAQAAAAAAAAABAAAAAgAAAAIAAAADAAAAAAAAAAMAAAAAAAAAAQAAAAMAAAADAAAAAAAAAAEAAAACAAAAAQAAAAEAAAABAAAAAgAAAAEAAAADAAAAAwAAAAEAAAACAAAAAgAAAAAAAAACAAAAAQAAAAAAAAABAAAAAQAAAAMAAAAAAAAAAwAAAAMAAAABAAAAAQAAAAMAAAADAAAAAwAAAAIAAAADAAAAAwAAAAAAAAAAAAAAAwAAAAMAAAABAAAAAwAAAAAAAAAAAAAAAQAAAAMAAAABAAAAAAAAAAIAAAAAAAAAAgAAAAMAAAABAAAAAAAAAAAAAAABAAAAAQAAAAMAAAABAAAAAQAAAAIAAAAAAAAAAgAAAAAAAAABAAAAAQAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAABAAAAAwAAAAIAAAACAAAAAgAAAAMAAAACAAAAAwAAAAAAAAAAAAAAAQAAAAEAAAACAAAAAQAAAAMAAAAAAAAAAQAAAAIAAAAAAAAAAwAAAAMAAAABAAAAAAAAAAMAAAACAAAAAgAAAAEAAAABAAAAAwAAAAIAAAADAAAAAAAAAAIAAAADAAAAAgAAAAIAAAABAAAAAAAAAAMAAAADAAAAAQAAAAIAAAADAAAAAAAAAAMAAAADAAAAAgAAAAMAAAABAAAAAQAAAAAAAAAAAAAAAwAAAAEAAAABAAAAAgAAAAEAAAAAAAAAAgAAAAAAAAACAAAAAgAAAAIAAAAAAAAAAgAAAAIAAAABAAAAAQAAAAEAAAABAAAAAgAAAAIAAAABAAAAAwAAAAMAAAABAAAAAgAAAAMAAAADAAAAAgAAAAEAAAABAAAAAgAAAAIAAAABAAAAAwAAAAEAAAAAAAAAAwAAAAMAAAAAAAAAAQAAAAEAAAACAAAAAwAAAAAAAAABAAAAAAAAAAAAAAADAAAAAwAAAAAAAAACAAAAAgAAAAAAAAAAAAAAAgAAAAIAAAABAAAAAgAAAAAAAAABAAAAAgAAAAEAAAABAAAAAwAAAAMAAAAAAAAAAQAAAAIAAAADAAAAAAAAAAMAAAAAAAAAAgAAAAIAAAAAAAAAAQAAAAIAAAADAAAAAgAAAAEAAAADAAAAAgAAAAIAAAADAAAAAgAAAAEAAAADAAAAAwAAAAMAAAAAAAAAAQAAAAMAAAABAAAAAgAAAAAAAAADAAAAAAAAAAMAAAACAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAgAAAAMAAAAAAAAAAQAAAAAAAAABAAAAAQAAAAAAAAADAAAAAwAAAAEAAAADAAAAAQAAAAIAAAACAAAAAQAAAAMAAAABAAAAAQAAAAMAAAACAAAAAwAAAAIAAAABAAAAAwAAAAMAAAACAAAAAAAAAAAAAAABAAAAAQAAAAEAAAABAAAAAQAAAAAAAAACAAAAAwAAAAMAAAABAAAAAgAAAAEAAAABAAAAAQAAAAAAAAAAAAAAAgAAAAIAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAMAAAACAAAAAgAAAAIAAAACAAAAAgAAAAIAAAAAAAAAAgAAAAMAAAACAAAAAAAAAAIAAAACAAAAAQAAAAMAAAACAAAAAQAAAAIAAAAAAAAAAQAAAAEAAAABAAAAAgAAAAIAAAAAAAAAAAAAAAMAAAABAAAAAgAAAAAAAAAAAAAAAQAAAAMAAAAAAAAAAAAAAAEAAAACAAAAAAAAAAIAAAADAAAAAwAAAAIAAAACAAAAAwAAAAIAAAACAAAAAwAAAAMAAAAAAAAAAQAAAAAAAAACAAAAAwAAAAAAAAABAAAAAgAAAAEAAAACAAAAAAAAAAAAAAAAAAAAAQAAAAEAAAACAAAAAwAAAAIAAAAAAAAAAwAAAAIAAAAAAAAAAAAAAAMAAAABAAAAAAAAAAIAAAACAAAAAgAAAAMAAAAAAAAAAwAAAAIAAAAAAAAAAgAAAAMAAAAAAAAAAgAAAAEAAAAAAAAAAQAAAAIAAAADAAAAAQAAAAIAAAACAAAAAQAAAAIAAAABAAAAAAAAAAEAAAADAAAAAQAAAAMAAAADAAAAAAAAAAIAAAACAAAAAAAAAAEAAAADAAAAAQAAAAIAAAABAAAAAgAAAAEAAAABAAAAAAAAAAEAAAADAAAAAAAAAAIAAAAAAAAAAQAAAAMAAAADAAAAAAAAAAIAAAABAAAAAwAAAAEAAAACAAAAAQAAAAAAAAACAAAAAwAAAAEAAAABAAAAAgAAAAEAAAAAAAAAAwAAAAIAAAAAAAAAAgAAAAIAAAADAAAAAAAAAAEAAAAAAAAAAgAAAAEAAAAAAAAAAAAAAAAAAAADAAAAAQAAAAMAAAAAAAAAAAAAAAMAAAADAAAAAwAAAAAAAAADAAAAAQAAAAIAAAADAAAAAAAAAAEAAAAAAAAAAAAAAAMAAAABAAAAAQAAAAMAAAADAAAAAQAAAAAAAAACAAAAAwAAAAIAAAACAAAAAgAAAAIAAAACAAAAAgAAAAIAAAACAAAAAAAAAAAAAAABAAAAAAAAAAIAAAAAAAAAAwAAAAIAAAADAAAAAAAAAAEAAAADAAAAAQAAAAEAAAABAAAAAQAAAAMAAAABAAAAAgAAAAAAAAACAAAAAQAAAAMAAAADAAAAAgAAAAEAAAACAAAAAAAAAAMAAAACAAAAAAAAAAMAAAABAAAAAAAAAAMAAAABAAAAAAAAAAEAAAABAAAAAgAAAAEAAAAAAAAAAQAAAAEAAAAAAAAAAwAAAAAAAAACAAAAAAAAAAMAAAABAAAAAAAAAAEAAAABAAAAAgAAAAAAAAABAAAAAwAAAAEAAAABAAAAAwAAAAEAAAAAAAAAAAAAAAEAAAABAAAAAwAAAAAAAAABAAAAAgAAAAIAAAACAAAAAgAAAAAAAAACAAAAAQAAAAEAAAAAAAAAAQAAAAEAAAABAAAAAwAAAAMAAAABAAAAAAAAAAAAAAACAAAAAwAAAAMAAAABAAAAAgAAAAAAAAAAAAAAAwAAAAAAAAADAAAAAwAAAAIAAAABAAAAAQAAAAAAAAADAAAAAQAAAAEAAAAAAAAAAAAAAAEAAAABAAAAAQAAAAMAAAACAAAAAQAAAAIAAAAAAAAAAwAAAAEAAAADAAAAAwAAAAAAAAADAAAAAAAAAAMAAAAAAAAAAwAAAAAAAAADAAAAAAAAAAIAAAACAAAAAAAAAAIAAAADAAAAAQAAAAIAAAABAAAAAwAAAAIAAAAAAAAAAAAAAAIAAAADAAAAAgAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAADAAAAAgAAAAMAAAABAAAAAwAAAAMAAAAAAAAAAgAAAAAAAAACAAAAAQAAAAMAAAABAAAAAQAAAAIAAAAAAAAAAwAAAAAAAAADAAAAAQAAAAEAAAADAAAAAwAAAAEAAAABAAAAAwAAAAEAAAAAAAAAAwAAAAEAAAACAAAAAgAAAAIAAAAAAAAAAQAAAAAAAAABAAAAAQAAAAIAAAAAAAAAAgAAAAIAAAACAAAAAwAAAAAAAAABAAAAAwAAAAAAAAACAAAAAAAAAAEAAAAAAAAAAwAAAAEAAAAAAAAAAwAAAAIAAAABAAAAAQAAAAMAAAAAAAAAAQAAAAAAAAACAAAAAQAAAAAAAAACAAAAAQAAAAIAAAACAAAAAQAAAAEAAAACAAAAAgAAAAAAAAACAAAAAQAAAAAAAAAAAAAAAgAAAAEAAAACAAAAAAAAAAEAAAABAAAAAgAAAAMAAAABAAAAAwAAAAIAAAACAAAAAgAAAAAAAAABAAAAAgAAAAAAAAACAAAAAQAAAAIAAAAAAAAAAAAAAAMAAAAAAAAAAQAAAAAAAAAAAAAAAwAAAAAAAAACAAAAAgAAAAEAAAADAAAAAgAAAAIAAAAAAAAAAAAAAAMAAAABAAAAAwAAAAAAAAACAAAAAwAAAAEAAAABAAAAAwAAAAMAAAABAAAAAQAAAAIAAAACAAAAAwAAAAIAAAADAAAAAgAAAAIAAAABAAAAAQAAAAMAAAACAAAAAgAAAAEAAAADAAAAAgAAAAAAAAADAAAAAQAAAAEAAAACAAAAAgAAAAIAAAACAAAAAgAAAAIAAAABAAAAAQAAAAEAAAAAAAAAAQAAAAMAAAACAAAAAQAAAAEAAAACAAAAAAAAAAAAAAADAAAAAQAAAAMAAAABAAAAAgAAAAEAAAAAAAAAAQAAAAIAAAACAAAAAQAAAAMAAAADAAAAAgAAAAAAAAABAAAAAAAAAAMAAAAAAAAAAAAAAAMAAAACAAAAAQAAAAAAAAACAAAAAwAAAAIAAAABAAAAAQAAAAEAAAADAAAAAAAAAAMAAAABAAAAAgAAAAIAAAACAAAAAQAAAAEAAAAAAAAAAQAAAAMAAAAAAAAAAwAAAAIAAAABAAAAAQAAAAEAAAAAAAAAAwAAAAMAAAACAAAAAQAAAAEAAAAAAAAAAQAAAAEAAAADAAAAAQAAAAMAAAACAAAAAQAAAAIAAAABAAAAAQAAAAEAAAABAAAAAQAAAAAAAAADAAAAAgAAAAEAAAADAAAAAwAAAAMAAAAAAAAAAQAAAAMAAAABAAAAAAAAAAMAAAADAAAAAwAAAAAAAAAAAAAAAwAAAAMAAAADAAAAAAAAAAEAAAAAAAAAAQAAAAEAAAAAAAAAAAAAAAMAAAAAAAAAAAAAAAMAAAAAAAAAAgAAAAMAAAADAAAAAAAAAAAAAAAAAAAAAAAAAAMAAAAAAAAAAQAAAAAAAAABAAAAAwAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAQAAAAIAAAACAAAAAwAAAAAAAAADAAAAAwAAAAEAAAABAAAAAgAAAAIAAAAAAAAAAQAAAAEAAAAAAAAAAQAAAAAAAAADAAAAAwAAAAMAAAACAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAQAAAAEAAAAAAAAAAgAAAAEAAAADAAAAAAAAAAIAAAADAAAAAwAAAAEAAAAAAAAAAQAAAAIAAAAAAAAAAwAAAAIAAAAAAAAAAQAAAAMAAAACAAAAAQAAAAIAAAADAAAAAQAAAAIAAAABAAAAAQAAAAIAAAACAAAAAwAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAMAAAAAAAAAAwAAAAAAAAACAAAAAAAAAAAAAAABAAAAAgAAAAEAAAABAAAAAwAAAAMAAAADAAAAAwAAAAMAAAAAAAAAAgAAAAEAAAABAAAAAwAAAAMAAAADAAAAAQAAAAEAAAADAAAAAwAAAAMAAAADAAAAAAAAAAEAAAAAAAAAAwAAAAAAAAACAAAAAgAAAAMAAAACAAAAAAAAAAIAAAAAAAAAAwAAAAMAAAACAAAAAAAAAAIAAAACAAAAAwAAAAAAAAABAAAAAAAAAAEAAAABAAAAAQAAAAEAAAAAAAAAAQAAAAMAAAACAAAAAgAAAAIAAAAAAAAAAAAAAAAAAAABAAAAAwAAAAIAAAABAAAAAwAAAAIAAAADAAAAAwAAAAAAAAAAAAAAAwAAAAAAAAABAAAAAQAAAAEAAAAAAAAAAgAAAAEAAAAAAAAAAwAAAAEAAAABAAAAAQAAAAMAAAACAAAAAwAAAAIAAAABAAAAAgAAAAAAAAABAAAAAAAAAAAAAAADAAAAAwAAAAMAAAABAAAAAAAAAAEAAAADAAAAAQAAAAAAAAABAAAAAAAAAAAAAAACAAAAAQAAAAMAAAADAAAAAQAAAAAAAAAAAAAAAAAAAAIAAAADAAAAAgAAAAMAAAADAAAAAQAAAAIAAAABAAAAAQAAAAMAAAABAAAAAAAAAAEAAAACAAAAAQAAAAEAAAABAAAAAwAAAAAAAAAAAAAAAwAAAAMAAAACAAAAAgAAAAAAAAAAAAAAAAAAAAEAAAACAAAAAQAAAAIAAAAAAAAAAAAAAAIAAAABAAAAAQAAAAEAAAABAAAAAQAAAAAAAAACAAAAAQAAAAEAAAAAAAAAAgAAAAIAAAACAAAAAAAAAAIAAAABAAAAAgAAAAMAAAACAAAAAgAAAAMAAAABAAAAAAAAAAIAAAABAAAAAgAAAAEAAAADAAAAAgAAAAMAAAADAAAAAAAAAAMAAAADAAAAAAAAAAMAAAADAAAAAgAAAAIAAAACAAAAAAAAAAMAAAAAAAAAAAAAAAMAAAABAAAAAwAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAEAAAACAAAAAgAAAAIAAAAAAAAAAQAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAQAAAAEAAAADAAAAAgAAAAIAAAAAAAAAAwAAAAEAAAABAAAAAQAAAAMAAAACAAAAAgAAAAEAAAAAAAAAAQAAAAAAAAABAAAAAgAAAAAAAAAAAAAAAwAAAAEAAAABAAAAAgAAAAEAAAADAAAAAwAAAAMAAAAAAAAAAwAAAAEAAAAAAAAAAgAAAAAAAAADAAAAAgAAAAAAAAACAAAAAAAAAAMAAAACAAAAAQAAAAEAAAABAAAAAgAAAAEAAAACAAAAAAAAAAMAAAAAAAAAAAAAAAMAAAAAAAAAAwAAAAEAAAABAAAAAQAAAAEAAAABAAAAAQAAAAMAAAABAAAAAQAAAAAAAAACAAAAAQAAAAIAAAABAAAAAgAAAAEAAAACAAAAAQAAAAAAAAABAAAAAwAAAAMAAAAAAAAAAwAAAAMAAAABAAAAAwAAAAMAAAAAAAAAAwAAAAAAAAACAAAAAwAAAAMAAAACAAAAAQAAAAEAAAAAAAAAAgAAAAAAAAADAAAAAAAAAAEAAAABAAAAAwAAAAIAAAAAAAAAAAAAAAMAAAABAAAAAQAAAAAAAAACAAAAAgAAAAIAAAAAAAAAAAAAAAMAAAADAAAAAwAAAAMAAAAAAAAAAQAAAAEAAAADAAAAAgAAAAIAAAAAAAAAAQAAAAEAAAAAAAAAAgAAAAEAAAAAAAAAAQAAAAMAAAACAAAAAAAAAAIAAAACAAAAAQAAAAMAAAACAAAAAwAAAAEAAAADAAAAAAAAAAMAAAACAAAAAAAAAAMAAAABAAAAAgAAAAMAAAACAAAAAwAAAAEAAAABAAAAAAAAAAMAAAAAAAAAAgAAAAAAAAADAAAAAwAAAAMAAAABAAAAAAAAAAAAAAABAAAAAgAAAAEAAAADAAAAAwAAAAIAAAACAAAAAAAAAAIAAAACAAAAAwAAAAIAAAABAAAAAAAAAAIAAAADAAAAAQAAAAMAAAADAAAAAgAAAAEAAAADAAAAAAAAAAMAAAADAAAAAAAAAAAAAAABAAAAAwAAAAIAAAAAAAAAAwAAAAMAAAADAAAAAAAAAAEAAAACAAAAAQAAAAIAAAACAAAAAgAAAAAAAAADAAAAAQAAAAAAAAABAAAAAgAAAAEAAAACAAAAAQAAAAIAAAAAAAAAAgAAAAEAAAACAAAAAAAAAAEAAAACAAAAAQAAAAAAAAACAAAAAAAAAAMAAAACAAAAAQAAAAMAAAACAAAAAgAAAAAAAAAAAAAAAwAAAAEAAAABAAAAAAAAAAAAAAACAAAAAQAAAAIAAAAAAAAAAQAAAAIAAAABAAAAAQAAAAMAAAABAAAAAwAAAAAAAAACAAAAAAAAAAAAAAACAAAAAgAAAAAAAAACAAAAAwAAAAMAAAABAAAAAwAAAAEAAAABAAAAAwAAAAIAAAABAAAAAAAAAAIAAAADAAAAAQAAAAIAAAADAAAAAgAAAAAAAAACAAAAAwAAAAMAAAADAAAAAgAAAAIAAAACAAAAAwAAAAMAAAACAAAAAQAAAAMAAAAAAAAAAQAAAAIAAAAAAAAAAgAAAAIAAAAAAAAAAwAAAAEAAAABAAAAAQAAAAIAAAADAAAAAgAAAAIAAAABAAAAAwAAAAIAAAACAAAAAwAAAAEAAAABAAAAAgAAAAMAAAAAAAAAAAAAAAMAAAACAAAAAQAAAAAAAAACAAAAAAAAAAAAAAACAAAAAQAAAAAAAAABAAAAAgAAAAMAAAAAAAAAAQAAAAMAAAACAAAAAQAAAAEAAAAAAAAAAwAAAAEAAAAAAAAAAgAAAAMAAAADAAAAAgAAAAIAAAADAAAAAwAAAAAAAAACAAAAAAAAAAAAAAACAAAAAAAAAAMAAAADAAAAAgAAAAEAAAABAAAAAQAAAAMAAAAAAAAAAgAAAAEAAAABAAAAAgAAAAMAAAAAAAAAAQAAAAIAAAACAAAAAgAAAAIAAAADAAAAAAAAAAIAAAADAAAAAQAAAAEAAAADAAAAAwAAAAIAAAABAAAAAAAAAAAAAAADAAAAAQAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAwAAAAAAAAADAAAAAAAAAAEAAAACAAAAAQAAAAMAAAACAAAAAQAAAAAAAAAAAAAAAgAAAAMAAAAAAAAAAAAAAAAAAAACAAAAAQAAAAIAAAACAAAAAgAAAAIAAAACAAAAAwAAAAEAAAADAAAAAgAAAAIAAAADAAAAAgAAAAMAAAAAAAAAAAAAAAEAAAABAAAAAQAAAAIAAAACAAAAAAAAAAIAAAABAAAAAAAAAAIAAAABAAAAAwAAAAAAAAADAAAAAwAAAAEAAAACAAAAAQAAAAIAAAABAAAAAgAAAAEAAAACAAAAAQAAAAIAAAADAAAAAQAAAAIAAAADAAAAAgAAAAMAAAACAAAAAQAAAAAAAAADAAAAAwAAAAMAAAAAAAAAAgAAAAMAAAABAAAAAQAAAAIAAAABAAAAAQAAAAAAAAADAAAAAwAAAAMAAAABAAAAAAAAAAEAAAACAAAAAQAAAAMAAAACAAAAAgAAAAEAAAABAAAAAQAAAAAAAAAAAAAAAwAAAAIAAAABAAAAAAAAAAEAAAAAAAAAAwAAAAEAAAABAAAAAwAAAAIAAAADAAAAAgAAAAIAAAAAAAAAAgAAAAIAAAAAAAAAAgAAAAEAAAABAAAAAAAAAAIAAAACAAAAAQAAAAIAAAACAAAAAQAAAAIAAAACAAAAAQAAAAAAAAACAAAAAAAAAAMAAAAAAAAAAwAAAAEAAAACAAAAAQAAAAMAAAADAAAAAgAAAAIAAAABAAAAAwAAAAMAAAAAAAAAAAAAAAAAAAADAAAAAgAAAAAAAAACAAAAAAAAAAEAAAADAAAAAQAAAAIAAAADAAAAAAAAAAEAAAADAAAAAAAAAAIAAAACAAAAAwAAAAEAAAACAAAAAgAAAAMAAAADAAAAAwAAAAEAAAADAAAAAAAAAAIAAAADAAAAAgAAAAEAAAABAAAAAwAAAAIAAAACAAAAAwAAAAMAAAADAAAAAwAAAAEAAAACAAAAAAAAAAMAAAAAAAAAAwAAAAAAAAABAAAAAQAAAAAAAAABAAAAAQAAAAIAAAADAAAAAgAAAAIAAAACAAAAAwAAAAAAAAADAAAAAwAAAAIAAAABAAAAAwAAAAAAAAABAAAAAwAAAAEAAAAAAAAAAgAAAAIAAAAAAAAAAQAAAAAAAAABAAAAAQAAAAAAAAADAAAAAgAAAAAAAAABAAAAAgAAAAAAAAADAAAAAQAAAAMAAAADAAAAAwAAAAAAAAACAAAAAgAAAAAAAAACAAAAAQAAAAMAAAABAAAAAgAAAAAAAAADAAAAAgAAAAAAAAADAAAAAAAAAAAAAAAAAAAAAgAAAAEAAAADAAAAAgAAAAIAAAABAAAAAwAAAAEAAAABAAAAAAAAAAMAAAABAAAAAgAAAAEAAAADAAAAAQAAAAIAAAADAAAAAAAAAAMAAAACAAAAAgAAAAMAAAACAAAAAwAAAAEAAAABAAAAAQAAAAEAAAABAAAAAwAAAAAAAAABAAAAAAAAAAMAAAADAAAAAgAAAAEAAAADAAAAAwAAAAIAAAABAAAAAQAAAAMAAAADAAAAAAAAAAMAAAABAAAAAQAAAAIAAAACAAAAAwAAAAEAAAADAAAAAQAAAAMAAAACAAAAAgAAAAEAAAABAAAAAAAAAAAAAAAAAAAAAQAAAAEAAAADAAAAAgAAAAEAAAABAAAAAwAAAAMAAAAAAAAAAwAAAAEAAAACAAAAAgAAAAIAAAADAAAAAQAAAAAAAAABAAAAAgAAAAAAAAABAAAAAAAAAAMAAAAAAAAAAQAAAAAAAAACAAAAAgAAAAMAAAADAAAAAQAAAAEAAAACAAAAAwAAAAIAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAMAAAACAAAAAQAAAAEAAAADAAAAAwAAAAIAAAADAAAAAwAAAAMAAAADAAAAAQAAAAEAAAABAAAAAAAAAAAAAAADAAAAAAAAAAMAAAADAAAAAwAAAAIAAAADAAAAAgAAAAEAAAAAAAAAAQAAAAIAAAACAAAAAwAAAAEAAAAAAAAAAAAAAAMAAAADAAAAAAAAAAAAAAADAAAAAQAAAAEAAAACAAAAAAAAAAIAAAADAAAAAQAAAAEAAAADAAAAAgAAAAIAAAADAAAAAwAAAAEAAAAAAAAAAQAAAAIAAAAAAAAAAAAAAAMAAAACAAAAAgAAAAEAAAADAAAAAgAAAAMAAAAAAAAAAgAAAAIAAAACAAAAAgAAAAAAAAABAAAAAQAAAAAAAAACAAAAAAAAAAEAAAADAAAAAgAAAAIAAAABAAAAAgAAAAAAAAACAAAAAwAAAAEAAAACAAAAAwAAAAIAAAAAAAAAAgAAAAIAAAACAAAAAgAAAAEAAAAAAAAAAAAAAAIAAAACAAAAAAAAAAEAAAAAAAAAAAAAAAIAAAACAAAAAQAAAAAAAAACAAAAAAAAAAIAAAADAAAAAwAAAAAAAAACAAAAAAAAAAMAAAACAAAAAwAAAAAAAAADAAAAAwAAAAAAAAADAAAAAwAAAAIAAAABAAAAAwAAAAEAAAABAAAAAQAAAAEAAAADAAAAAwAAAAAAAAACAAAAAQAAAAAAAAACAAAAAAAAAAEAAAACAAAAAQAAAAEAAAAAAAAAAAAAAAMAAAACAAAAAwAAAAEAAAABAAAAAQAAAAMAAAACAAAAAQAAAAIAAAACAAAAAAAAAAAAAAABAAAAAQAAAAMAAAABAAAAAgAAAAAAAAACAAAAAQAAAAMAAAABAAAAAAAAAAMAAAAAAAAAAwAAAAEAAAADAAAAAgAAAAMAAAAAAAAAAgAAAAEAAAAAAAAAAAAAAAIAAAABAAAAAwAAAAEAAAACAAAAAgAAAAAAAAAAAAAAAwAAAAIAAAAAAAAAAAAAAAAAAAADAAAAAwAAAAIAAAABAAAAAgAAAAIAAAACAAAAAwAAAAIAAAADAAAAAwAAAAIAAAADAAAAAwAAAAIAAAACAAAAAgAAAAEAAAACAAAAAwAAAAEAAAACAAAAAQAAAAEAAAADAAAAAAAAAAAAAAABAAAAAAAAAAMAAAAAAAAAAgAAAAEAAAAAAAAAAwAAAAAAAAAAAAAAAwAAAAMAAAAAAAAAAwAAAAIAAAACAAAAAwAAAAEAAAADAAAAAgAAAAMAAAABAAAAAQAAAAEAAAADAAAAAQAAAAMAAAABAAAAAAAAAAMAAAABAAAAAwAAAAIAAAADAAAAAQAAAAMAAAAAAAAAAQAAAAEAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAIAAAADAAAAAgAAAAIAAAADAAAAAQAAAAAAAAABAAAAAQAAAAIAAAAAAAAAAAAAAAMAAAABAAAAAAAAAAAAAAACAAAAAwAAAAEAAAABAAAAAQAAAAAAAAACAAAAAQAAAAMAAAABAAAAAgAAAAIAAAACAAAAAAAAAAMAAAADAAAAAQAAAAIAAAACAAAAAwAAAAMAAAAAAAAAAQAAAAIAAAAAAAAAAgAAAAMAAAAAAAAAAwAAAAEAAAACAAAAAAAAAAAAAAACAAAAAQAAAAIAAAACAAAAAAAAAAIAAAACAAAAAQAAAAMAAAACAAAAAwAAAAAAAAACAAAAAAAAAAIAAAACAAAAAAAAAAAAAAADAAAAAwAAAAEAAAABAAAAAwAAAAEAAAAAAAAAAgAAAAAAAAABAAAAAQAAAAMAAAABAAAAAQAAAAMAAAADAAAAAAAAAAIAAAADAAAAAgAAAAAAAAACAAAAAQAAAAMAAAADAAAAAAAAAAEAAAAAAAAAAwAAAAEAAAACAAAAAQAAAAEAAAAAAAAAAwAAAAEAAAAAAAAAAwAAAAMAAAAAAAAAAgAAAAMAAAABAAAAAwAAAAIAAAADAAAAAwAAAAMAAAAAAAAAAwAAAAAAAAAAAAAAAgAAAAAAAAADAAAAAwAAAAMAAAAAAAAAAQAAAAEAAAACAAAAAgAAAAAAAAACAAAAAgAAAAEAAAADAAAAAgAAAAMAAAAAAAAAAwAAAAIAAAABAAAAAwAAAAIAAAACAAAAAwAAAAAAAAAAAAAAAQAAAAEAAAAAAAAAAQAAAAEAAAADAAAAAwAAAAIAAAABAAAAAwAAAAMAAAABAAAAAgAAAAEAAAABAAAAAgAAAAMAAAAAAAAAAQAAAAIAAAADAAAAAAAAAAMAAAACAAAAAwAAAAAAAAAAAAAAAAAAAAMAAAABAAAAAAAAAAIAAAABAAAAAQAAAAEAAAAAAAAAAwAAAAEAAAAAAAAAAwAAAAIAAAADAAAAAQAAAAMAAAACAAAAAAAAAAIAAAABAAAAAgAAAAMAAAADAAAAAQAAAAIAAAABAAAAAAAAAAAAAAABAAAAAwAAAAEAAAABAAAAAQAAAAMAAAAAAAAAAgAAAAEAAAABAAAAAwAAAAAAAAADAAAAAQAAAAIAAAACAAAAAQAAAAAAAAAAAAAAAwAAAAMAAAABAAAAAAAAAAMAAAADAAAAAwAAAAIAAAABAAAAAQAAAAIAAAABAAAAAAAAAAMAAAABAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAAAAAAAAwAAAAMAAAADAAAAAAAAAAMAAAAAAAAAAgAAAAMAAAABAAAAAQAAAAMAAAACAAAAAQAAAAMAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAACAAAAAwAAAAIAAAABAAAAAQAAAAMAAAAAAAAAAQAAAAMAAAABAAAAAQAAAAAAAAADAAAAAgAAAAEAAAADAAAAAgAAAAIAAAADAAAAAwAAAAAAAAACAAAAAAAAAAAAAAACAAAAAQAAAAAAAAADAAAAAAAAAAAAAAAAAAAAAAAAAAIAAAACAAAAAAAAAAEAAAACAAAAAAAAAAAAAAACAAAAAQAAAAEAAAABAAAAAgAAAAMAAAACAAAAAQAAAAIAAAACAAAAAwAAAAMAAAADAAAAAAAAAAMAAAACAAAAAQAAAAMAAAADAAAAAwAAAAAAAAACAAAAAwAAAAMAAAADAAAAAgAAAAAAAAADAAAAAAAAAAMAAAAAAAAAAAAAAAMAAAACAAAAAgAAAAMAAAACAAAAAgAAAAMAAAAAAAAAAQAAAAEAAAAAAAAAAgAAAAIAAAADAAAAAgAAAAIAAAADAAAAAQAAAAAAAAACAAAAAQAAAAMAAAADAAAAAQAAAAMAAAABAAAAAQAAAAEAAAABAAAAAwAAAAMAAAABAAAAAAAAAAIAAAABAAAAAgAAAAMAAAADAAAAAgAAAAIAAAADAAAAAAAAAAAAAAAAAAAAAgAAAAEAAAADAAAAAwAAAAEAAAAAAAAAAgAAAAIAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAABAAAAAQAAAAMAAAADAAAAAwAAAAMAAAADAAAAAQAAAAIAAAAAAAAAAwAAAAIAAAAAAAAAAgAAAAIAAAADAAAAAAAAAAIAAAACAAAAAQAAAAIAAAABAAAAAgAAAAAAAAACAAAAAAAAAAEAAAADAAAAAQAAAAIAAAABAAAAAAAAAAEAAAABAAAAAAAAAAMAAAAAAAAAAQAAAAEAAAADAAAAAgAAAAIAAAAAAAAAAQAAAAIAAAABAAAAAQAAAAEAAAADAAAAAwAAAAMAAAACAAAAAAAAAAMAAAAAAAAAAwAAAAIAAAABAAAAAQAAAAAAAAAAAAAAAAAAAAEAAAABAAAAAgAAAAMAAAABAAAAAwAAAAIAAAADAAAAAwAAAAIAAAADAAAAAQAAAAEAAAAAAAAAAAAAAAEAAAACAAAAAgAAAAEAAAADAAAAAgAAAAEAAAADAAAAAgAAAAAAAAADAAAAAQAAAAEAAAACAAAAAAAAAAEAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAMAAAABAAAAAQAAAAEAAAADAAAAAQAAAAIAAAADAAAAAQAAAAIAAAABAAAAAQAAAAIAAAAAAAAAAgAAAAMAAAABAAAAAgAAAAIAAAADAAAAAAAAAAEAAAADAAAAAgAAAAIAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAMAAAACAAAAAgAAAAAAAAADAAAAAwAAAAEAAAACAAAAAQAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAEAAAADAAAAAgAAAAEAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAMAAAADAAAAAwAAAAEAAAADAAAAAwAAAAEAAAADAAAAAQAAAAMAAAAAAAAAAAAAAAEAAAABAAAAAgAAAAEAAAACAAAAAgAAAAAAAAABAAAAAwAAAAEAAAAAAAAAAwAAAAAAAAABAAAAAAAAAAIAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAAAAAwAAAAIAAAAAAAAAAAAAAAMAAAACAAAAAAAAAAIAAAADAAAAAAAAAAIAAAACAAAAAgAAAAEAAAADAAAAAwAAAAEAAAADAAAAAQAAAAEAAAACAAAAAAAAAAIAAAABAAAAAwAAAAMAAAAAAAAAAwAAAAEAAAAAAAAAAAAAAAMAAAABAAAAAwAAAAEAAAAAAAAAAQAAAAIAAAADAAAAAgAAAAAAAAAAAAAAAgAAAAAAAAADAAAAAQAAAAIAAAACAAAAAAAAAAMAAAABAAAAAQAAAAEAAAAAAAAAAAAAAAEAAAACAAAAAgAAAAMAAAADAAAAAwAAAAIAAAADAAAAAgAAAAEAAAAAAAAAAQAAAAMAAAACAAAAAQAAAAAAAAABAAAAAAAAAAMAAAAAAAAAAQAAAAMAAAAAAAAAAQAAAAEAAAACAAAAAAAAAAEAAAADAAAAAAAAAAAAAAADAAAAAgAAAAIAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAIAAAACAAAAAwAAAAIAAAABAAAAAAAAAAEAAAAAAAAAAgAAAAMAAAAAAAAAAAAAAAMAAAADAAAAAwAAAAIAAAAAAAAAAgAAAAEAAAAAAAAAAwAAAAMAAAADAAAAAwAAAAAAAAADAAAAAgAAAAMAAAABAAAAAQAAAAIAAAABAAAAAwAAAAMAAAABAAAAAAAAAAEAAAAAAAAAAQAAAAAAAAADAAAAAwAAAAAAAAABAAAAAAAAAAIAAAACAAAAAQAAAAEAAAAAAAAAAgAAAAMAAAAAAAAAAwAAAAEAAAACAAAAAAAAAAMAAAADAAAAAQAAAAEAAAABAAAAAQAAAAMAAAAAAAAAAgAAAAMAAAABAAAAAAAAAAAAAAACAAAAAQAAAAAAAAACAAAAAgAAAAEAAAAAAAAAAwAAAAAAAAABAAAAAgAAAAIAAAACAAAAAgAAAAAAAAADAAAAAQAAAAIAAAACAAAAAwAAAAEAAAADAAAAAQAAAAMAAAABAAAAAQAAAAAAAAAAAAAAAwAAAAMAAAADAAAAAQAAAAEAAAACAAAAAwAAAAMAAAAAAAAAAgAAAAEAAAAAAAAAAwAAAAAAAAADAAAAAgAAAAIAAAAAAAAAAgAAAAMAAAADAAAAAgAAAAMAAAACAAAAAAAAAAAAAAADAAAAAgAAAAAAAAACAAAAAAAAAAIAAAACAAAAAwAAAAIAAAABAAAAAAAAAAEAAAAAAAAAAwAAAAEAAAABAAAAAwAAAAMAAAACAAAAAwAAAAIAAAABAAAAAAAAAAAAAAADAAAAAgAAAAMAAAABAAAAAwAAAAIAAAACAAAAAAAAAAEAAAACAAAAAwAAAAAAAAADAAAAAQAAAAMAAAACAAAAAwAAAAAAAAADAAAAAwAAAAMAAAAAAAAAAwAAAAAAAAAAAAAAAAAAAAAAAAADAAAAAwAAAAEAAAADAAAAAQAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAwAAAAMAAAAAAAAAAwAAAAEAAAACAAAAAgAAAAMAAAAAAAAAAAAAAAAAAAAAAAAAAQAAAAMAAAADAAAAAAAAAAIAAAACAAAAAQAAAAIAAAACAAAAAwAAAAAAAAACAAAAAAAAAAEAAAABAAAAAAAAAAEAAAACAAAAAQAAAAAAAAABAAAAAgAAAAAAAAADAAAAAgAAAAAAAAADAAAAAgAAAAIAAAACAAAAAQAAAAIAAAABAAAAAgAAAAMAAAABAAAAAgAAAAAAAAABAAAAAAAAAAAAAAACAAAAAQAAAAMAAAADAAAAAAAAAAIAAAADAAAAAAAAAAEAAAACAAAAAAAAAAIAAAACAAAAAAAAAAMAAAADAAAAAQAAAAEAAAACAAAAAgAAAAIAAAACAAAAAwAAAAAAAAABAAAAAwAAAAMAAAAAAAAAAgAAAAIAAAADAAAAAAAAAAMAAAADAAAAAwAAAAIAAAAAAAAAAwAAAAMAAAADAAAAAQAAAAEAAAAAAAAAAQAAAAEAAAACAAAAAgAAAAAAAAAAAAAAAwAAAAAAAAADAAAAAwAAAAIAAAADAAAAAwAAAAMAAAACAAAAAwAAAAEAAAADAAAAAwAAAAEAAAACAAAAAwAAAAMAAAABAAAAAgAAAAEAAAABAAAAAwAAAAEAAAADAAAAAwAAAAAAAAACAAAAAAAAAAMAAAAAAAAAAQAAAAMAAAACAAAAAAAAAAIAAAABAAAAAwAAAAMAAAACAAAAAQAAAAEAAAADAAAAAAAAAAIAAAAAAAAAAQAAAAMAAAAAAAAAAQAAAAAAAAAAAAAAAwAAAAEAAAADAAAAAgAAAAAAAAADAAAAAQAAAAEAAAAAAAAAAgAAAAAAAAAAAAAAAQAAAAAAAAACAAAAAgAAAAEAAAADAAAAAgAAAAMAAAABAAAAAwAAAAMAAAADAAAAAQAAAAAAAAADAAAAAgAAAAMAAAADAAAAAwAAAAEAAAABAAAAAwAAAAEAAAACAAAAAgAAAAIAAAACAAAAAgAAAAMAAAADAAAAAgAAAAAAAAACAAAAAAAAAAAAAAACAAAAAgAAAAIAAAADAAAAAAAAAAEAAAABAAAAAAAAAAMAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAEAAAADAAAAAAAAAAMAAAADAAAAAgAAAAMAAAACAAAAAgAAAAEAAAABAAAAAwAAAAIAAAABAAAAAAAAAAIAAAADAAAAAAAAAAEAAAADAAAAAwAAAAEAAAADAAAAAwAAAAMAAAAAAAAAAwAAAAAAAAACAAAAAQAAAAAAAAACAAAAAAAAAAIAAAACAAAAAAAAAAMAAAADAAAAAQAAAAAAAAAAAAAAAwAAAAIAAAADAAAAAAAAAAIAAAACAAAAAQAAAAMAAAACAAAAAQAAAAAAAAACAAAAAAAAAAEAAAAAAAAAAQAAAAAAAAADAAAAAQAAAAIAAAAAAAAAAgAAAAEAAAABAAAAAgAAAAMAAAADAAAAAQAAAAIAAAADAAAAAQAAAAMAAAAAAAAAAAAAAAMAAAACAAAAAwAAAAAAAAABAAAAAwAAAAEAAAACAAAAAwAAAAIAAAAAAAAAAwAAAAEAAAACAAAAAgAAAAIAAAACAAAAAgAAAAEAAAADAAAAAwAAAAEAAAACAAAAAAAAAAEAAAADAAAAAAAAAAAAAAACAAAAAAAAAAMAAAAAAAAAAAAAAAAAAAADAAAAAwAAAAAAAAACAAAAAQAAAAAAAAABAAAAAAAAAAMAAAACAAAAAgAAAAIAAAAAAAAAAwAAAAEAAAADAAAAAAAAAAIAAAACAAAAAwAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAwAAAAEAAAAAAAAAAgAAAAEAAAADAAAAAAAAAAIAAAADAAAAAAAAAAMAAAACAAAAAwAAAAMAAAACAAAAAwAAAAEAAAAAAAAAAwAAAAAAAAACAAAAAAAAAAIAAAADAAAAAgAAAAMAAAACAAAAAgAAAAAAAAACAAAAAgAAAAMAAAABAAAAAwAAAAMAAAACAAAAAQAAAAIAAAAAAAAAAgAAAAEAAAABAAAAAAAAAAAAAAADAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAQAAAAIAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAEAAAACAAAAAAAAAAIAAAADAAAAAwAAAAIAAAADAAAAAwAAAAIAAAAAAAAAAAAAAAEAAAACAAAAAwAAAAMAAAACAAAAAgAAAAAAAAADAAAAAQAAAAEAAAABAAAAAAAAAAAAAAABAAAAAwAAAAEAAAACAAAAAgAAAAAAAAACAAAAAgAAAAAAAAADAAAAAAAAAAAAAAADAAAAAgAAAAIAAAACAAAAAwAAAAIAAAAAAAAAAAAAAAMAAAADAAAAAwAAAAAAAAADAAAAAwAAAAIAAAACAAAAAgAAAAAAAAADAAAAAQAAAAEAAAACAAAAAQAAAAEAAAABAAAAAQAAAAEAAAACAAAAAgAAAAIAAAAAAAAAAwAAAAEAAAAAAAAAAQAAAAMAAAABAAAAAQAAAAAAAAABAAAAAwAAAAAAAAAAAAAAAQAAAAMAAAACAAAAAgAAAAMAAAABAAAAAgAAAAAAAAACAAAAAAAAAAMAAAABAAAAAQAAAAEAAAACAAAAAgAAAAAAAAAAAAAAAgAAAAIAAAADAAAAAwAAAAAAAAAAAAAAAQAAAAIAAAADAAAAAwAAAAMAAAAAAAAAAQAAAAEAAAABAAAAAQAAAAEAAAADAAAAAgAAAAIAAAAAAAAAAwAAAAAAAAACAAAAAQAAAAEAAAADAAAAAwAAAAAAAAACAAAAAAAAAAEAAAACAAAAAAAAAAMAAAACAAAAAwAAAAMAAAAAAAAAAgAAAAMAAAACAAAAAgAAAAMAAAAAAAAAAgAAAAIAAAACAAAAAgAAAAEAAAACAAAAAgAAAAMAAAADAAAAAgAAAAAAAAAAAAAAAwAAAAAAAAABAAAAAAAAAAIAAAADAAAAAAAAAAAAAAACAAAAAgAAAAMAAAABAAAAAAAAAAAAAAAAAAAAAQAAAAEAAAAAAAAAAgAAAAIAAAAAAAAAAAAAAAMAAAAAAAAAAAAAAAAAAAABAAAAAQAAAAIAAAAAAAAAAgAAAAIAAAADAAAAAgAAAAEAAAAAAAAAAQAAAAIAAAACAAAAAAAAAAEAAAADAAAAAwAAAAIAAAAAAAAAAQAAAAAAAAADAAAAAAAAAAIAAAACAAAAAQAAAAEAAAACAAAAAAAAAAEAAAADAAAAAwAAAAEAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAACAAAAAQAAAAMAAAABAAAAAwAAAAEAAAACAAAAAgAAAAEAAAACAAAAAQAAAAEAAAAAAAAAAwAAAAMAAAADAAAAAAAAAAIAAAADAAAAAQAAAAIAAAABAAAAAAAAAAMAAAACAAAAAQAAAAAAAAADAAAAAQAAAAAAAAACAAAAAQAAAAAAAAACAAAAAgAAAAEAAAADAAAAAgAAAAAAAAAAAAAAAgAAAAEAAAAAAAAAAQAAAAIAAAACAAAAAgAAAAEAAAACAAAAAQAAAAIAAAADAAAAAAAAAAAAAAADAAAAAAAAAAEAAAABAAAAAQAAAAAAAAACAAAAAAAAAAMAAAADAAAAAwAAAAEAAAABAAAAAgAAAAAAAAACAAAAAQAAAAAAAAACAAAAAwAAAAIAAAACAAAAAAAAAAAAAAABAAAAAAAAAAEAAAADAAAAAAAAAAIAAAABAAAAAQAAAAIAAAAAAAAAAgAAAAMAAAAAAAAAAgAAAAEAAAABAAAAAgAAAAIAAAAAAAAAAAAAAAMAAAACAAAAAAAAAAAAAAAAAAAAAQAAAAMAAAABAAAAAgAAAAIAAAADAAAAAgAAAAAAAAACAAAAAAAAAAEAAAAAAAAAAgAAAAMAAAABAAAAAAAAAAEAAAADAAAAAQAAAAIAAAABAAAAAwAAAAAAAAABAAAAAAAAAAEAAAADAAAAAQAAAAEAAAACAAAAAAAAAAAAAAADAAAAAAAAAAEAAAACAAAAAwAAAAIAAAABAAAAAAAAAAAAAAABAAAAAwAAAAIAAAADAAAAAgAAAAEAAAADAAAAAwAAAAMAAAAAAAAAAgAAAAMAAAABAAAAAwAAAAAAAAAAAAAAAQAAAAAAAAAAAAAAAQAAAAMAAAADAAAAAAAAAAMAAAABAAAAAwAAAAIAAAADAAAAAQAAAAAAAAAAAAAAAQAAAAIAAAABAAAAAQAAAAEAAAACAAAAAgAAAAMAAAABAAAAAAAAAAAAAAABAAAAAAAAAAIAAAACAAAAAwAAAAIAAAADAAAAAgAAAAAAAAAAAAAAAwAAAAEAAAACAAAAAgAAAAIAAAABAAAAAQAAAAMAAAADAAAAAAAAAAIAAAADAAAAAgAAAAIAAAADAAAAAgAAAAIAAAAAAAAAAwAAAAMAAAAAAAAAAAAAAAIAAAADAAAAAAAAAAIAAAABAAAAAQAAAAIAAAABAAAAAwAAAAAAAAABAAAAAgAAAAEAAAACAAAAAAAAAAAAAAACAAAAAQAAAAAAAAABAAAAAgAAAAIAAAADAAAAAAAAAAMAAAAAAAAAAAAAAAIAAAADAAAAAQAAAAEAAAAAAAAAAgAAAAEAAAAAAAAAAAAAAAMAAAAAAAAAAQAAAAEAAAADAAAAAgAAAAIAAAADAAAAAQAAAAAAAAADAAAAAwAAAAEAAAACAAAAAwAAAAEAAAABAAAAAAAAAAMAAAADAAAAAwAAAAIAAAABAAAAAQAAAAAAAAAAAAAAAwAAAAMAAAADAAAAAQAAAAEAAAAAAAAAAQAAAAIAAAABAAAAAgAAAAMAAAABAAAAAgAAAAAAAAABAAAAAAAAAAIAAAABAAAAAQAAAAAAAAABAAAAAQAAAAAAAAADAAAAAAAAAAEAAAACAAAAAQAAAAIAAAACAAAAAAAAAAEAAAAAAAAAAQAAAAEAAAAAAAAAAQAAAAIAAAACAAAAAwAAAAIAAAADAAAAAQAAAAEAAAAAAAAAAwAAAAEAAAABAAAAAAAAAAMAAAADAAAAAQAAAAMAAAACAAAAAgAAAAMAAAADAAAAAgAAAAMAAAAAAAAAAQAAAAMAAAACAAAAAQAAAAAAAAADAAAAAQAAAAEAAAAAAAAAAAAAAAMAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwAAAAMAAAABAAAAAgAAAAEAAAAAAAAAAQAAAAEAAAADAAAAAgAAAAMAAAADAAAAAQAAAAAAAAABAAAAAgAAAAEAAAABAAAAAAAAAAMAAAABAAAAAgAAAAMAAAABAAAAAwAAAAAAAAACAAAAAAAAAAAAAAADAAAAAgAAAAIAAAACAAAAAgAAAAMAAAABAAAAAQAAAAMAAAADAAAAAgAAAAAAAAABAAAAAwAAAAIAAAABAAAAAAAAAAEAAAAAAAAAAAAAAAMAAAADAAAAAwAAAAIAAAAAAAAAAwAAAAAAAAAAAAAAAwAAAAMAAAACAAAAAwAAAAMAAAAAAAAAAAAAAAEAAAACAAAAAgAAAAAAAAADAAAAAwAAAAEAAAACAAAAAQAAAAAAAAAAAAAAAwAAAAIAAAABAAAAAAAAAAMAAAADAAAAAAAAAAIAAAADAAAAAwAAAAMAAAACAAAAAgAAAAMAAAACAAAAAAAAAAMAAAABAAAAAAAAAAMAAAABAAAAAgAAAAMAAAABAAAAAAAAAAIAAAACAAAAAAAAAAAAAAACAAAAAgAAAAIAAAADAAAAAwAAAAAAAAAAAAAAAAAAAAMAAAABAAAAAwAAAAIAAAACAAAAAwAAAAIAAAAAAAAAAgAAAAIAAAADAAAAAAAAAAMAAAADAAAAAwAAAAIAAAACAAAAAAAAAAAAAAABAAAAAgAAAAIAAAABAAAAAQAAAAAAAAADAAAAAwAAAAMAAAABAAAAAQAAAAIAAAAAAAAAAgAAAAMAAAACAAAAAwAAAAMAAAADAAAAAwAAAAAAAAACAAAAAAAAAAEAAAABAAAAAwAAAAMAAAADAAAAAAAAAAIAAAABAAAAAgAAAAEAAAABAAAAAwAAAAEAAAABAAAAAQAAAAIAAAADAAAAAgAAAAAAAAADAAAAAgAAAAEAAAAAAAAAAQAAAAEAAAAAAAAAAgAAAAEAAAAAAAAAAQAAAAMAAAABAAAAAwAAAAEAAAACAAAAAQAAAAIAAAACAAAAAgAAAAAAAAACAAAAAQAAAAIAAAABAAAAAwAAAAAAAAAAAAAAAAAAAAMAAAADAAAAAwAAAAMAAAADAAAAAgAAAAEAAAACAAAAAAAAAAEAAAADAAAAAgAAAAEAAAACAAAAAAAAAAMAAAACAAAAAgAAAAMAAAADAAAAAAAAAAEAAAAAAAAAAgAAAAEAAAAAAAAAAQAAAAMAAAADAAAAAwAAAAAAAAACAAAAAwAAAAAAAAACAAAAAgAAAAIAAAADAAAAAAAAAAAAAAABAAAAAAAAAAAAAAACAAAAAQAAAAEAAAAAAAAAAAAAAAAAAAACAAAAAgAAAAIAAAACAAAAAQAAAAEAAAABAAAAAwAAAAIAAAADAAAAAwAAAAEAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAMAAAABAAAAAgAAAAEAAAABAAAAAQAAAAEAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAMAAAAAAAAAAQAAAAEAAAAAAAAAAgAAAAIAAAADAAAAAgAAAAIAAAABAAAAAgAAAAMAAAABAAAAAgAAAAAAAAABAAAAAAAAAAIAAAAAAAAAAwAAAAIAAAABAAAAAAAAAAEAAAADAAAAAQAAAAEAAAAAAAAAAwAAAAIAAAABAAAAAgAAAAIAAAADAAAAAAAAAAMAAAACAAAAAAAAAAIAAAADAAAAAgAAAAIAAAACAAAAAwAAAAMAAAABAAAAAwAAAAEAAAABAAAAAwAAAAIAAAACAAAAAAAAAAIAAAAAAAAAAQAAAAEAAAADAAAAAQAAAAAAAAAAAAAAAAAAAAMAAAADAAAAAgAAAAIAAAAAAAAAAwAAAAEAAAAAAAAAAgAAAAEAAAACAAAAAwAAAAIAAAACAAAAAgAAAAMAAAAAAAAAAQAAAAEAAAAAAAAAAwAAAAAAAAAAAAAAAAAAAAAAAAABAAAAAgAAAAIAAAAAAAAAAAAAAAIAAAAAAAAAAgAAAAIAAAAAAAAAAQAAAAEAAAABAAAAAQAAAAMAAAACAAAAAwAAAAMAAAAAAAAAAgAAAAMAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAMAAAADAAAAAAAAAAMAAAABAAAAAwAAAAIAAAACAAAAAwAAAAIAAAABAAAAAQAAAAEAAAABAAAAAQAAAAIAAAAAAAAAAAAAAAEAAAADAAAAAwAAAAEAAAADAAAAAAAAAAIAAAABAAAAAAAAAAMAAAAAAAAAAQAAAAAAAAAAAAAAAgAAAAAAAAADAAAAAwAAAAIAAAABAAAAAgAAAAAAAAADAAAAAwAAAAAAAAADAAAAAAAAAAAAAAABAAAAAAAAAAMAAAABAAAAAAAAAAMAAAADAAAAAAAAAAMAAAABAAAAAwAAAAAAAAADAAAAAAAAAAMAAAACAAAAAgAAAAMAAAACAAAAAwAAAAEAAAAAAAAAAAAAAAMAAAACAAAAAAAAAAMAAAAAAAAAAQAAAAAAAAABAAAAAgAAAAAAAAAAAAAAAQAAAAMAAAAAAAAAAAAAAAMAAAADAAAAAAAAAAAAAAAAAAAAAQAAAAMAAAADAAAAAgAAAAEAAAADAAAAAQAAAAIAAAAAAAAAAgAAAAMAAAAAAAAAAgAAAAEAAAADAAAAAwAAAAMAAAACAAAAAwAAAAAAAAAAAAAAAgAAAAMAAAAAAAAAAAAAAAMAAAAAAAAAAQAAAAAAAAADAAAAAAAAAAIAAAADAAAAAwAAAAAAAAACAAAAAgAAAAEAAAAAAAAAAQAAAAIAAAADAAAAAwAAAAMAAAABAAAAAwAAAAIAAAADAAAAAQAAAAAAAAAAAAAAAwAAAAEAAAADAAAAAgAAAAMAAAADAAAAAQAAAAAAAAABAAAAAgAAAAEAAAAAAAAAAQAAAAEAAAADAAAAAgAAAAMAAAACAAAAAwAAAAEAAAACAAAAAAAAAAIAAAAAAAAAAQAAAAEAAAABAAAAAgAAAAAAAAAAAAAAAAAAAAMAAAACAAAAAAAAAAEAAAACAAAAAwAAAAEAAAAAAAAAAgAAAAMAAAABAAAAAgAAAAIAAAABAAAAAgAAAAIAAAAAAAAAAQAAAAMAAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAQAAAAIAAAAAAAAAAQAAAAMAAAACAAAAAQAAAAEAAAADAAAAAQAAAAIAAAACAAAAAQAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAEAAAABAAAAAwAAAAAAAAAAAAAAAAAAAAAAAAADAAAAAwAAAAAAAAADAAAAAgAAAAAAAAADAAAAAQAAAAAAAAABAAAAAQAAAAMAAAAAAAAAAQAAAAMAAAABAAAAAwAAAAAAAAADAAAAAQAAAAIAAAABAAAAAAAAAAEAAAADAAAAAQAAAAAAAAABAAAAAwAAAAAAAAACAAAAAwAAAAIAAAACAAAAAAAAAAEAAAABAAAAAAAAAAAAAAADAAAAAwAAAAAAAAACAAAAAAAAAAMAAAACAAAAAwAAAAAAAAAAAAAAAAAAAAMAAAACAAAAAgAAAAIAAAADAAAAAgAAAAIAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAIAAAAAAAAAAgAAAAIAAAADAAAAAwAAAAMAAAACAAAAAQAAAAIAAAADAAAAAAAAAAMAAAACAAAAAgAAAAMAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAMAAAADAAAAAAAAAAMAAAACAAAAAQAAAAAAAAABAAAAAgAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAwAAAAAAAAADAAAAAwAAAAAAAAABAAAAAgAAAAEAAAACAAAAAAAAAAMAAAABAAAAAgAAAAIAAAADAAAAAgAAAAMAAAABAAAAAgAAAAIAAAAAAAAAAQAAAAEAAAACAAAAAQAAAAAAAAAAAAAAAQAAAAIAAAABAAAAAgAAAAMAAAABAAAAAgAAAAMAAAADAAAAAAAAAAMAAAABAAAAAAAAAAIAAAACAAAAAwAAAAEAAAADAAAAAQAAAAIAAAABAAAAAgAAAAMAAAACAAAAAwAAAAAAAAACAAAAAQAAAAMAAAABAAAAAQAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAgAAAAIAAAADAAAAAAAAAAAAAAABAAAAAAAAAAEAAAABAAAAAQAAAAAAAAABAAAAAgAAAAMAAAADAAAAAAAAAAIAAAADAAAAAwAAAAIAAAAAAAAAAwAAAAIAAAACAAAAAgAAAAEAAAADAAAAAAAAAAMAAAACAAAAAAAAAAEAAAACAAAAAgAAAAIAAAACAAAAAAAAAAIAAAADAAAAAwAAAAAAAAACAAAAAAAAAAAAAAACAAAAAwAAAAIAAAAAAAAAAAAAAAMAAAAAAAAAAwAAAAIAAAABAAAAAwAAAAIAAAAAAAAAAgAAAAAAAAABAAAAAwAAAAEAAAABAAAAAQAAAAIAAAACAAAAAgAAAAAAAAADAAAAAwAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAADAAAAAQAAAAEAAAABAAAAAAAAAAAAAAAAAAAAAQAAAAMAAAAAAAAAAwAAAAAAAAAAAAAAAgAAAAIAAAABAAAAAQAAAAAAAAAAAAAAAwAAAAIAAAACAAAAAgAAAAAAAAABAAAAAQAAAAEAAAADAAAAAQAAAAIAAAABAAAAAwAAAAAAAAADAAAAAgAAAAEAAAABAAAAAwAAAAAAAAACAAAAAwAAAAAAAAACAAAAAAAAAAEAAAACAAAAAAAAAAMAAAABAAAAAwAAAAIAAAADAAAAAgAAAAAAAAABAAAAAwAAAAIAAAAAAAAAAQAAAAAAAAAAAAAAAQAAAAMAAAACAAAAAQAAAAIAAAACAAAAAQAAAAMAAAAAAAAAAAAAAAEAAAACAAAAAAAAAAIAAAAAAAAAAQAAAAEAAAADAAAAAwAAAAMAAAADAAAAAgAAAAIAAAACAAAAAQAAAAIAAAACAAAAAwAAAAAAAAABAAAAAwAAAAEAAAABAAAAAAAAAAIAAAACAAAAAAAAAAMAAAADAAAAAwAAAAIAAAABAAAAAAAAAAIAAAABAAAAAgAAAAMAAAADAAAAAAAAAAIAAAABAAAAAAAAAAAAAAABAAAAAAAAAAEAAAADAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAADAAAAAwAAAAMAAAACAAAAAwAAAAMAAAABAAAAAAAAAAAAAAADAAAAAAAAAAEAAAADAAAAAQAAAAMAAAAAAAAAAwAAAAAAAAACAAAAAgAAAAMAAAAAAAAAAQAAAAIAAAAAAAAAAQAAAAMAAAAAAAAAAAAAAAMAAAABAAAAAgAAAAMAAAACAAAAAAAAAAAAAAABAAAAAQAAAAAAAAABAAAAAwAAAAMAAAAAAAAAAQAAAAMAAAADAAAAAQAAAAMAAAACAAAAAQAAAAAAAAABAAAAAwAAAAEAAAABAAAAAgAAAAEAAAAAAAAAAwAAAAIAAAABAAAAAgAAAAAAAAACAAAAAwAAAAMAAAAAAAAAAwAAAAMAAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAwAAAAEAAAAAAAAAAwAAAAEAAAADAAAAAQAAAAEAAAACAAAAAQAAAAAAAAABAAAAAAAAAAAAAAABAAAAAQAAAAAAAAADAAAAAwAAAAEAAAACAAAAAwAAAAIAAAADAAAAAgAAAAIAAAABAAAAAAAAAAIAAAADAAAAAQAAAAAAAAACAAAAAQAAAAEAAAADAAAAAgAAAAAAAAADAAAAAQAAAAMAAAACAAAAAwAAAAIAAAADAAAAAgAAAAIAAAAAAAAAAgAAAAIAAAADAAAAAQAAAAEAAAADAAAAAgAAAAAAAAACAAAAAAAAAAMAAAAAAAAAAgAAAAAAAAABAAAAAQAAAAEAAAADAAAAAAAAAAAAAAADAAAAAgAAAAAAAAADAAAAAgAAAAAAAAADAAAAAgAAAAMAAAACAAAAAQAAAAAAAAABAAAAAQAAAAMAAAACAAAAAwAAAAMAAAACAAAAAQAAAAEAAAAAAAAAAgAAAAAAAAADAAAAAwAAAAIAAAADAAAAAwAAAAMAAAACAAAAAAAAAAMAAAADAAAAAAAAAAEAAAADAAAAAAAAAAAAAAADAAAAAAAAAAEAAAADAAAAAAAAAAIAAAADAAAAAgAAAAIAAAAAAAAAAwAAAAAAAAAAAAAAAQAAAAMAAAADAAAAAQAAAAIAAAABAAAAAwAAAAAAAAADAAAAAAAAAAMAAAACAAAAAwAAAAMAAAADAAAAAgAAAAEAAAAAAAAAAgAAAAEAAAABAAAAAgAAAAEAAAABAAAAAgAAAAMAAAAAAAAAAQAAAAMAAAABAAAAAgAAAAEAAAACAAAAAwAAAAAAAAAAAAAAAAAAAAMAAAABAAAAAgAAAAEAAAAAAAAAAQAAAAAAAAADAAAAAwAAAAEAAAABAAAAAgAAAAAAAAADAAAAAwAAAAIAAAABAAAAAAAAAAMAAAACAAAAAQAAAAAAAAAAAAAAAwAAAAMAAAADAAAAAgAAAAMAAAADAAAAAwAAAAEAAAACAAAAAAAAAAEAAAAAAAAAAgAAAAAAAAACAAAAAgAAAAEAAAACAAAAAAAAAAMAAAAAAAAAAAAAAAAAAAABAAAAAwAAAAEAAAADAAAAAwAAAAMAAAABAAAAAgAAAAMAAAAAAAAAAAAAAAIAAAABAAAAAAAAAAEAAAAAAAAAAgAAAAEAAAAAAAAAAwAAAAAAAAACAAAAAAAAAAAAAAACAAAAAQAAAAIAAAABAAAAAQAAAAIAAAABAAAAAAAAAAIAAAACAAAAAwAAAAEAAAABAAAAAgAAAAMAAAAAAAAAAgAAAAMAAAADAAAAAgAAAAAAAAAAAAAAAQAAAAAAAAADAAAAAAAAAAAAAAABAAAAAwAAAAAAAAADAAAAAQAAAAEAAAAAAAAAAgAAAAMAAAACAAAAAQAAAAEAAAACAAAAAgAAAAMAAAADAAAAAwAAAAEAAAACAAAAAAAAAAMAAAACAAAAAAAAAAAAAAABAAAAAgAAAAAAAAABAAAAAQAAAAMAAAACAAAAAgAAAAEAAAACAAAAAgAAAAMAAAADAAAAAwAAAAAAAAACAAAAAgAAAAMAAAABAAAAAwAAAAAAAAAAAAAAAgAAAAEAAAABAAAAAwAAAAEAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAEAAAADAAAAAwAAAAMAAAAAAAAAAAAAAAEAAAABAAAAAgAAAAAAAAAAAAAAAwAAAAAAAAAAAAAAAQAAAAIAAAABAAAAAgAAAAMAAAADAAAAAAAAAAIAAAACAAAAAQAAAAAAAAABAAAAAgAAAAEAAAAAAAAAAQAAAAIAAAADAAAAAAAAAAEAAAACAAAAAQAAAAAAAAADAAAAAwAAAAAAAAADAAAAAQAAAAIAAAACAAAAAAAAAAEAAAADAAAAAQAAAAAAAAABAAAAAwAAAAAAAAACAAAAAwAAAAIAAAACAAAAAgAAAAMAAAACAAAAAwAAAAMAAAADAAAAAwAAAAEAAAACAAAAAwAAAAAAAAABAAAAAAAAAAEAAAABAAAAAAAAAAAAAAACAAAAAwAAAAIAAAACAAAAAgAAAAMAAAADAAAAAgAAAAAAAAABAAAAAQAAAAIAAAAAAAAAAwAAAAEAAAABAAAAAgAAAAMAAAABAAAAAAAAAAAAAAABAAAAAgAAAAEAAAADAAAAAAAAAAMAAAACAAAAAQAAAAIAAAAAAAAAAAAAAAIAAAADAAAAAAAAAAMAAAADAAAAAQAAAAIAAAACAAAAAwAAAAAAAAADAAAAAgAAAAMAAAADAAAAAAAAAAMAAAADAAAAAgAAAAMAAAABAAAAAAAAAAAAAAACAAAAAwAAAAMAAAAAAAAAAgAAAAIAAAADAAAAAQAAAAMAAAAAAAAAAAAAAAMAAAACAAAAAwAAAAMAAAAAAAAAAQAAAAEAAAAAAAAAAwAAAAAAAAACAAAAAgAAAAAAAAADAAAAAwAAAAMAAAAAAAAAAwAAAAAAAAABAAAAAQAAAAEAAAACAAAAAwAAAAMAAAABAAAAAAAAAAEAAAAAAAAAAQAAAAIAAAADAAAAAAAAAAEAAAABAAAAAAAAAAEAAAABAAAAAgAAAAIAAAABAAAAAAAAAAMAAAACAAAAAgAAAAAAAAACAAAAAAAAAAEAAAACAAAAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAAAACAAAAAgAAAAMAAAABAAAAAAAAAAMAAAAAAAAAAwAAAAMAAAAAAAAAAQAAAAAAAAACAAAAAwAAAAAAAAACAAAAAQAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAADAAAAAQAAAAAAAAABAAAAAAAAAAIAAAADAAAAAAAAAAEAAAABAAAAAgAAAAEAAAABAAAAAAAAAAMAAAADAAAAAQAAAAIAAAABAAAAAQAAAAAAAAADAAAAAQAAAAIAAAADAAAAAAAAAAIAAAACAAAAAwAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAwAAAAAAAAAAAAAAAQAAAAAAAAABAAAAAwAAAAEAAAACAAAAAQAAAAMAAAABAAAAAwAAAAAAAAAAAAAAAwAAAAIAAAAAAAAAAwAAAAEAAAABAAAAAAAAAAIAAAACAAAAAwAAAAIAAAABAAAAAgAAAAMAAAABAAAAAAAAAAEAAAADAAAAAAAAAAIAAAABAAAAAAAAAAEAAAAAAAAAAgAAAAAAAAADAAAAAgAAAAMAAAACAAAAAgAAAAAAAAABAAAAAgAAAAMAAAADAAAAAgAAAAMAAAAAAAAAAwAAAAAAAAADAAAAAwAAAAAAAAAAAAAAAgAAAAIAAAACAAAAAQAAAAEAAAACAAAAAQAAAAIAAAADAAAAAAAAAAEAAAABAAAAAAAAAAMAAAADAAAAAgAAAAMAAAADAAAAAQAAAAEAAAADAAAAAgAAAAIAAAADAAAAAQAAAAIAAAACAAAAAwAAAAIAAAAAAAAAAwAAAAMAAAAAAAAAAgAAAAAAAAABAAAAAwAAAAMAAAACAAAAAgAAAAAAAAACAAAAAAAAAAIAAAABAAAAAAAAAAIAAAACAAAAAwAAAAEAAAADAAAAAgAAAAIAAAADAAAAAwAAAAEAAAACAAAAAAAAAAMAAAABAAAAAwAAAAAAAAACAAAAAQAAAAEAAAADAAAAAQAAAAEAAAACAAAAAwAAAAEAAAACAAAAAwAAAAMAAAABAAAAAgAAAAIAAAACAAAAAwAAAAMAAAAAAAAAAQAAAAIAAAAAAAAAAgAAAAEAAAADAAAAAwAAAAEAAAAAAAAAAQAAAAIAAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAIAAAADAAAAAwAAAAIAAAABAAAAAQAAAAEAAAACAAAAAwAAAAEAAAACAAAAAAAAAAEAAAAAAAAAAwAAAAIAAAACAAAAAQAAAAEAAAABAAAAAQAAAAAAAAABAAAAAwAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAwAAAAIAAAABAAAAAwAAAAIAAAADAAAAAQAAAAMAAAADAAAAAwAAAAMAAAADAAAAAwAAAAIAAAACAAAAAQAAAAMAAAABAAAAAQAAAAMAAAAAAAAAAQAAAAIAAAACAAAAAAAAAAMAAAABAAAAAQAAAAMAAAACAAAAAQAAAAIAAAACAAAAAgAAAAEAAAAAAAAAAgAAAAIAAAAAAAAAAgAAAAMAAAAAAAAAAgAAAAIAAAABAAAAAQAAAAIAAAACAAAAAAAAAAIAAAABAAAAAAAAAAEAAAACAAAAAwAAAAEAAAADAAAAAAAAAAIAAAACAAAAAAAAAAEAAAACAAAAAgAAAAMAAAADAAAAAQAAAAIAAAACAAAAAgAAAAEAAAABAAAAAgAAAAIAAAABAAAAAwAAAAEAAAAAAAAAAgAAAAIAAAACAAAAAQAAAAAAAAACAAAAAwAAAAIAAAABAAAAAAAAAAEAAAAAAAAAAgAAAAEAAAACAAAAAwAAAAEAAAABAAAAAwAAAAMAAAADAAAAAgAAAAEAAAABAAAAAwAAAAMAAAADAAAAAQAAAAAAAAAAAAAAAwAAAAAAAAAAAAAAAwAAAAMAAAABAAAAAwAAAAIAAAADAAAAAgAAAAEAAAACAAAAAgAAAAAAAAABAAAAAgAAAAAAAAADAAAAAgAAAAEAAAACAAAAAwAAAAMAAAADAAAAAgAAAAMAAAAAAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAADAAAAAwAAAAEAAAADAAAAAQAAAAMAAAABAAAAAwAAAAIAAAACAAAAAwAAAAMAAAACAAAAAwAAAAAAAAAAAAAAAQAAAAIAAAADAAAAAwAAAAAAAAAAAAAAAwAAAAMAAAABAAAAAwAAAAIAAAABAAAAAwAAAAIAAAADAAAAAAAAAAMAAAAAAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAwAAAAEAAAADAAAAAQAAAAAAAAABAAAAAQAAAAIAAAABAAAAAQAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAQAAAAEAAAAAAAAAAQAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAQAAAAIAAAABAAAAAQAAAAAAAAABAAAAAAAAAAMAAAABAAAAAAAAAAMAAAAAAAAAAAAAAAAAAAAAAAAAAwAAAAIAAAACAAAAAAAAAAAAAAADAAAAAgAAAAIAAAACAAAAAQAAAAMAAAAAAAAAAgAAAAMAAAADAAAAAgAAAAMAAAAAAAAAAQAAAAEAAAABAAAAAwAAAAAAAAABAAAAAQAAAAIAAAACAAAAAAAAAAIAAAADAAAAAQAAAAEAAAADAAAAAQAAAAEAAAABAAAAAAAAAAAAAAACAAAAAwAAAAAAAAADAAAAAwAAAAMAAAABAAAAAgAAAAAAAAABAAAAAgAAAAIAAAABAAAAAQAAAAEAAAADAAAAAAAAAAAAAAACAAAAAQAAAAEAAAABAAAAAwAAAAEAAAABAAAAAgAAAAIAAAADAAAAAAAAAAEAAAABAAAAAAAAAAIAAAADAAAAAAAAAAIAAAACAAAAAgAAAAEAAAABAAAAAAAAAAEAAAADAAAAAgAAAAIAAAACAAAAAwAAAAMAAAADAAAAAgAAAAMAAAADAAAAAwAAAAAAAAACAAAAAgAAAAMAAAACAAAAAAAAAAIAAAABAAAAAgAAAAIAAAABAAAAAQAAAAEAAAADAAAAAQAAAAAAAAABAAAAAAAAAAAAAAACAAAAAAAAAAAAAAACAAAAAAAAAAIAAAABAAAAAwAAAAIAAAAAAAAAAwAAAAEAAAADAAAAAQAAAAIAAAAAAAAAAwAAAAAAAAADAAAAAgAAAAIAAAAAAAAAAgAAAAIAAAACAAAAAQAAAAAAAAACAAAAAQAAAAEAAAABAAAAAAAAAAEAAAABAAAAAwAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAQAAAAIAAAAAAAAAAQAAAAEAAAACAAAAAQAAAAMAAAABAAAAAgAAAAMAAAABAAAAAAAAAAIAAAABAAAAAwAAAAAAAAADAAAAAQAAAAMAAAADAAAAAAAAAAAAAAABAAAAAwAAAAIAAAAAAAAAAQAAAAMAAAADAAAAAgAAAAIAAAABAAAAAAAAAAMAAAADAAAAAAAAAAMAAAAAAAAAAwAAAAEAAAACAAAAAAAAAAEAAAADAAAAAAAAAAIAAAACAAAAAwAAAAMAAAACAAAAAAAAAAMAAAADAAAAAQAAAAIAAAAAAAAAAAAAAAEAAAAAAAAAAgAAAAIAAAACAAAAAgAAAAIAAAABAAAAAAAAAAAAAAADAAAAAAAAAAMAAAABAAAAAgAAAAAAAAABAAAAAwAAAAEAAAACAAAAAAAAAAMAAAABAAAAAgAAAAMAAAADAAAAAAAAAAAAAAACAAAAAwAAAAIAAAABAAAAAgAAAAMAAAABAAAAAwAAAAIAAAACAAAAAQAAAAAAAAADAAAAAQAAAAAAAAAAAAAAAAAAAAIAAAABAAAAAwAAAAEAAAAAAAAAAgAAAAMAAAABAAAAAgAAAAAAAAACAAAAAAAAAAMAAAADAAAAAwAAAAAAAAACAAAAAwAAAAMAAAACAAAAAQAAAAEAAAADAAAAAQAAAAIAAAAAAAAAAgAAAAIAAAADAAAAAwAAAAMAAAACAAAAAgAAAAIAAAADAAAAAgAAAAIAAAABAAAAAwAAAAMAAAACAAAAAQAAAAEAAAAAAAAAAgAAAAIAAAACAAAAAQAAAAIAAAACAAAAAwAAAAMAAAADAAAAAgAAAAAAAAAAAAAAAQAAAAEAAAAAAAAAAwAAAAMAAAACAAAAAAAAAAEAAAABAAAAAgAAAAAAAAADAAAAAwAAAAEAAAABAAAAAwAAAAAAAAABAAAAAQAAAAIAAAABAAAAAgAAAAMAAAAAAAAAAgAAAAMAAAAAAAAAAQAAAAMAAAADAAAAAAAAAAAAAAADAAAAAAAAAAAAAAACAAAAAAAAAAMAAAADAAAAAAAAAAEAAAABAAAAAQAAAAAAAAACAAAAAgAAAAEAAAADAAAAAQAAAAIAAAACAAAAAQAAAAAAAAADAAAAAgAAAAEAAAACAAAAAQAAAAEAAAACAAAAAgAAAAAAAAADAAAAAQAAAAMAAAAAAAAAAwAAAAAAAAAAAAAAAgAAAAAAAAADAAAAAgAAAAIAAAABAAAAAQAAAAAAAAACAAAAAAAAAAIAAAABAAAAAAAAAAIAAAACAAAAAQAAAAEAAAAAAAAAAwAAAAMAAAABAAAAAgAAAAAAAAABAAAAAwAAAAAAAAADAAAAAAAAAAEAAAABAAAAAAAAAAEAAAABAAAAAgAAAA==\"},\"shape\":[10000],\"dtype\":\"int32\",\"order\":\"little\"}],[\"draw__\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"Wg8AAEoBAABQAwAASAsAAOcLAADgCAAAUQwAABUNAACjCgAAlgcAAPoLAABVDwAAYQoAAPMNAABxCQAAmQAAAJEHAACCBgAAEw4AACUKAADBBwAAMQ4AAJoEAAAICQAApAUAAPcFAABoCgAA2AEAACoIAAD7CgAA2AUAALIDAADQBgAAaAUAAOYHAADdCAAA8g0AAG0LAADoCAAALAkAACEFAAAYDwAARAwAAMADAAArAwAAXQcAAA4DAACfDgAAkgcAACMJAAChBgAAQg8AAHUCAACWBgAAQwEAABsEAAATDwAAtA4AAPUDAADwAQAAAw8AANkAAAB/CgAAQAcAALwJAACUCgAAXQkAAPsNAAA3AAAAWwIAAC4OAABOCAAAPAoAAMoNAAB3CQAACQwAAOkGAADOBQAAAw8AAKEIAACXAgAAgQcAAJYBAABuBgAA1wMAAOkHAAA3CwAAqAkAACgJAAACCAAAgQEAABQAAACPCwAA/QEAAGQIAADUCQAAoQoAAIcNAADBDgAAQgQAAHMCAAD6CQAA0gsAAG0LAACcCgAATQ8AAHgKAACDBgAAugQAAJwGAAAcDwAAig0AAB8CAACIAAAAaggAANoLAACFDQAAgQ0AAKEDAAB5DAAAnwcAAB4CAADKCQAAxwsAALgEAABOAAAAZwcAAH0KAAA6DgAAYgwAAGMBAAA+DQAAsgEAAHMEAAAbDgAAKgMAAJwBAABxBQAA9AcAAJ8DAADGDQAARgEAAGgFAABoAwAAEQ0AAPUGAAA6BgAAagQAACQPAADkCwAA3wwAAFgLAADQCQAAuQkAAFUBAAAyCwAA+wIAAAIOAAC9BQAArgkAANYKAAB7BAAAsQUAADYHAAAeBwAA9AEAAN8HAABXAwAAtwQAAP4GAAAKBAAAawgAALkAAADyBgAA6QwAAHoFAAAkCQAAAAEAAIQNAACJCgAAhgsAACMPAACTDQAAww0AAMECAAC5AAAAigYAAPgCAAA/AQAA9AQAAEQDAAD/CwAA9wEAABAAAACIAQAAewoAAGEJAAC2AAAAWgEAAD0EAAB9DAAAVgEAAN4HAAA7CQAA8AYAAPEKAADNDQAAIAUAABwLAACOCAAAfg0AAHADAACrCwAAcA4AAIcFAAD1AwAA3A0AAJ4GAAD5AQAAAAgAAIQLAAC+DgAABg0AABMIAABeDwAAogUAAFYNAAAqDQAAawwAAGcFAAAFCgAA8wsAALQKAADLBwAAgwMAALcHAABIDAAAdgYAAMQAAACZDwAA8gkAAOEIAAAGDgAAjAoAAN8MAAAcAQAAkAIAANMEAABmAwAAYAkAAP0MAAC2DQAAsAkAAO4HAAAyAwAAQwUAAFELAADyBgAAIAUAADkHAABKCAAA2QgAAMsAAADACQAA8AwAAFwJAADwBwAAeQcAAHsDAAC1DAAAagMAAMQKAABjBAAAVgUAAKIDAAAjCQAAUAoAAHwOAAArAwAAkQIAAGsCAACsAQAAigAAAEgCAAAcCgAAvgoAAH4GAACVBwAAFAkAAOUJAAB6BwAAgw4AADoJAACEBAAACg8AAH0NAAAsAAAAXQQAAJAPAACrAgAAUQ8AABQMAADVAQAA6A0AAKYAAAAoDgAAvw4AAFsKAADSDgAA8gIAAKoFAACNAAAAEwYAAEgGAABKAwAAtQQAAG4BAABRBAAAEQQAAOMFAABbAQAAvAYAAAgLAABvCgAAQggAAB8EAADGAgAA+gwAAMUAAADXAgAArgIAAAEMAADFBgAApwwAAF0FAABnCwAALgAAAKsJAABJAwAA7Q4AAGEPAABQBgAAYQgAAIoDAAAcDQAARwcAABIDAABOAAAALwEAAOUGAACeDAAALgsAANQDAAB0AQAAFA0AAMMOAACuBAAABwcAADQAAADPAQAAmwMAALICAADnAgAAdQEAAG0NAAClAgAA7gwAALoEAADuDAAAlQcAAKwKAAB1AwAAMgIAADkLAACNCQAACQEAAK8LAAAZDwAAlQIAAMIAAABRAAAAJgoAAMoFAACUAQAALAIAACUGAADxBwAAOQUAANYGAACxCgAA6AMAAE0MAACwAgAAZA0AAGMKAAASCAAAFQQAAHQBAABuDAAAnQwAAO4JAAAnBgAALwQAAFwJAAB0CQAAAQwAAFAMAADqBQAAlQkAAOYHAACIBwAAlAcAANIJAAAFCQAAuAAAAAwFAAC8BQAA3wEAAIcGAAD2DgAAzwUAAHUAAACQBwAARgIAAPoDAADjBAAAOQMAAHkEAAC+AQAAigsAAJAJAAAMAgAAMwIAAPQMAAD1DQAApwgAANABAADdDQAA5QEAANMHAABHDwAApQsAAAMDAAARCgAAwQgAACcNAACSDAAApQQAAFYLAABPAAAAGgYAAJkJAACiAwAADgwAAMQLAAAQCAAA4wgAAMMOAACyBwAA5QkAAPgNAADvAwAAfg4AACUAAAA8AwAAGgoAAG8JAAADDAAAewUAAJQIAAC0CAAAMgUAABcJAACMDQAALwMAAJsBAACDCgAAbQsAAIACAABSDAAAFg0AANcHAACbDQAA0AoAADIEAAAiBwAAEAMAALsLAADOAQAAUAoAAD8KAAB7CgAAzwMAAJIKAADtCgAA2QwAAIcJAADHBQAAYg0AALcIAACYAgAAfQwAAGwIAACKCAAA0AYAANILAADFBQAA3ggAAJ8JAAArCwAAEwwAAM0EAAD8DgAAzQ0AAKACAACgBwAAmAkAACsGAAB+DgAAaAgAABIOAABaAQAAvw4AADUKAAD0BwAA3g0AANoGAADPDAAAawoAAEoKAABBDAAAZwEAAJ0KAABYAAAAfA8AAHECAAAzAgAAUQkAAHcEAADrBQAAfggAALQIAACoCQAA6AsAAIoOAAD3BgAAFAQAACoJAAC2CwAA3g4AAOoDAABnDQAAVA8AADMKAAAHBQAAEQ4AAE8OAABSAwAAMAIAAE4CAAAaAwAAWAkAAIICAAAkAgAAdg4AAIIJAAB3AQAAtgAAAAIGAAASCQAAUgsAAPwMAACaAQAAfAMAAHoHAACvAgAAwAIAADEOAAA9DAAADQQAAO4CAAAPDgAAGgoAAKoCAADRCAAAPQgAABsIAACyBgAAFg4AAKIJAACQBAAAXAwAAHgGAAAGAAAA+g4AAKIEAACBDAAANQIAAAEJAAChCQAAJgsAAAADAABsAAAAKw4AAGoLAABpCgAAkQ4AABkIAAAXCgAA2gwAAIsIAAB7AQAAPAsAAFMAAACSBAAAiwEAAPIBAADsCgAAgAoAAE8LAACrDQAANwsAABgNAAAIDgAAnw8AADgGAABeBgAAUgAAANUBAADdDQAAzAkAAJgBAAD6DgAAtgIAANMAAADjAAAAyQEAAMsDAABcAwAAHAIAAGQEAACZCgAANgEAAIYJAADMDgAA7wIAALsMAAATBAAAYAoAAN4BAAA8DAAAPwMAAOcIAABEAgAA5gUAAHQNAACgBgAAbg0AADAFAABTBwAAiAAAACkFAADwCwAAPwQAADUPAABbCAAA4g4AAPsHAACMAwAAdAIAAMgDAACRDAAAkwEAACcOAAA0DwAAcgoAAE8JAABbDgAA9A4AABICAABGBgAAlgoAAJsLAAAtBwAAHQMAABkMAACQAQAAhwQAAKMFAACzBQAASQUAAFQNAADlDgAAXw8AAC8KAAAOCQAAcQsAADENAABNBwAAMgkAAM8EAAAdCgAAoQQAADEOAACcDAAAlgcAAMwIAABiDQAAswUAAFMNAABFDwAAlg0AAL8CAAC7BQAANAIAAFgIAACBAwAAEAgAALUCAACGAAAAOw8AAKoBAADECwAAMgIAADQKAAAOAgAAWAYAAAIIAADhAAAApQcAADsMAACYDwAAzAsAAKQOAAB4AgAAtggAAJQOAACQBAAAjg0AADUDAADkCwAA8gQAABMKAAA/CwAARwMAAFsHAAA0BwAATAsAAKgBAAA6CQAAXAcAABIAAAACAwAAgQwAAJcAAADBDAAAFgoAAGgBAACyBAAAeQEAAE8AAADaAgAAkQMAACINAACsBwAApQcAAFACAADmAgAA6wIAAM4DAAB4AwAAiA4AAB0AAABoCQAA1wQAAJYIAABHCwAABQQAAKoKAADMBQAASgoAAOQKAADHDAAA7wQAAFgEAADfAgAAMgQAALIIAADaCQAAWA4AAE0PAAClAAAAUwoAAAgKAABcAQAAWQIAACoHAABkCgAA0wEAADwNAABYAwAAGQkAAEYNAABhDwAAPQYAAJgIAAAHAwAAeQEAABECAADfCAAAPQEAAHYNAADqAQAAxQEAAHMDAACADwAA6AkAALEEAAA8AAAAvAsAAMgHAADKCAAAxAcAANYLAACeCQAACwoAAEQLAAC1DgAAFAEAABoBAACECQAACQQAAJMLAACmDAAAugEAAJwIAAAgCQAAEwEAADgDAAB1DgAAJw8AAHANAADlBgAAxwAAAFYJAABoBwAAtQYAAKgCAAAkBwAAKwkAADEHAABICgAAVAwAANkGAADnAwAAoAAAAGQEAAALDwAA2QcAAHYAAABADQAAhA8AAPEEAAAIDAAAcwgAAHsCAAASAgAAWgAAAI8PAAD7AgAA4wAAAM4OAABqCAAATAIAANoIAAAfCwAAhwQAADYAAABsDQAAZgYAAOUEAAD1AAAAhAkAAHMJAADWCAAA1AYAAMUFAADPDAAAqAIAACEKAAAOAgAAGgoAAGYHAAAqCgAAng0AAEwBAACZAQAAbQAAAKUFAAB6CQAA2QYAACwAAAC2BgAAwAwAAGkJAABfBwAAYgsAADkCAAAnBQAAlggAAAMAAACtCAAAOgoAACkOAABOCwAAbAsAACoMAAAhBAAAsgMAANsDAAASBgAApwkAAMIGAABJCwAAuAsAAKIIAABYDgAA5AsAADgAAAAsAgAAIA0AAHsNAADJCQAAAgcAAI8DAABmAgAANgMAAGkIAABPCgAAPgoAANMHAAA8AgAACgIAAKEDAABFDQAALwYAAEUDAAAECQAA6QEAAFYHAAA3CgAAAwkAAGQDAABqBwAAnQIAAPwGAADnCgAAMQQAAAcMAAB5CAAAQAgAAH0EAAD1CgAASg4AALECAADwBwAA5wwAAP4IAABtBwAAQAYAADQAAACRCAAAYwEAAF0GAADKBwAAnQcAAO8DAABhCwAATw8AAOsDAADwCAAARwYAADkNAABJCgAAhgoAANoDAAB/DQAAXgAAANULAAB3DQAAMwgAANgOAACKBgAAWAsAAOMJAABBBQAAWAEAAMcIAABGCgAA5A4AAIsJAABzDgAALQMAAHkJAABeCgAAswsAAK4MAABHDQAAcwIAAHQMAAC4CgAApQwAAOkDAADSCAAA6A0AAAcKAAB4CgAAuAgAACcLAAAvDAAAAQsAAP0HAAB/CwAAwwgAAHEPAADwBgAA6gYAALECAABAAwAAkQwAAEsKAAB3BQAAjgYAAHMIAACtBQAADQAAAG0GAADBBwAA9AUAAKAAAAA5BgAAHwIAAKAKAADkDgAAHQAAADEEAAAgAwAA4AcAAG4EAACRDQAAEgoAABsNAAADDAAA2QIAAJ8DAAAuBgAAkwgAAHINAABlBAAAqA0AABILAAAQAwAA0goAAAgBAAAaBAAAuwQAACEHAAAOCAAAVw8AABUMAADCDAAAzQkAAO8CAAC3AwAA8QQAABYMAADQBQAACA0AAPkCAABJAQAA1QIAAEIJAACiDAAAagEAAM0AAADhBQAAzAUAAP8FAABPBAAAeAIAAAwGAAAsBAAASQ8AAOkAAAA5BwAALgEAAJ8FAAAIBgAAMgkAAGkDAAAKCwAAZQUAADoEAAAUCAAAHg0AALsDAABuAgAAvAYAAHYEAACVCwAA4wUAAHMJAAD9AgAApwQAAIwHAACXAwAA6AIAAKoLAAAGCwAATAcAANIEAADoBgAAbQAAAAkBAACUAAAAkgoAAE0CAAD0DQAAVwYAADEJAABCBAAA6Q0AAP0HAABVDAAAiwYAAN0FAAB/CQAAHQwAAFsGAAAlBQAAfwYAABoAAAB2DAAAjAgAAG4FAADMAgAAWgQAAAQAAACZBAAALAQAAAAHAABLCAAAmwkAAE0AAACzCgAArg4AAJIGAADRAAAAYgsAALMAAABCAQAATwYAAD0IAAB6DAAAfgUAAI4PAADKCAAAfwkAAKYHAAARCQAAWA4AAPEBAACMAQAAXQQAAAkEAAD5CgAA0AUAAA4HAAACDwAAZQsAAKYEAAB4CQAAdAgAAKcLAAC5BgAAQQ4AAA8NAAAoAwAA+QMAAIcLAAAvCgAAMwQAAGgMAADZCgAAqgwAAIQHAACZBgAAEwcAAHgMAACDBAAAVQcAAN8LAAAWCAAAzwUAAIUMAABABgAArwwAANkJAABXBwAA4QsAABQLAAAaDAAAFAYAAPoEAAD+AQAAWgoAAKUKAADLCQAAnwIAAGEOAACnAQAA7gUAAJ8DAABnCAAA7AsAAGcNAAA/AgAAvwUAAIwPAACdBAAASgQAAGQKAAB9CwAAyAEAAJMEAAAlCgAAywsAAG4OAABcCgAAKwYAACwCAACtCgAAcQ0AAGAEAAAHBgAANgIAAJMNAAA9AgAAQAcAAD0PAADRDQAAwAAAAIYMAAAMBgAAHgwAAOcEAACJDgAALgQAAPUKAADFAQAAzAYAAA0MAABfAwAA0goAAP4BAACABAAAkgQAADsEAADPCwAAAwYAAF8CAADAAAAAxQoAAJUOAAD1AQAAyw4AAOgAAAD8DQAAdAkAAGQIAABbBAAAtQEAAIYPAABVBQAA2gEAAHYOAACOCQAAKA0AAA0AAABADAAAMQUAAGAOAACXAwAAYQ8AAIQKAAC3BwAABA4AACQDAADHCgAA6QcAAN0HAACzCgAAYQ4AAI8MAAAvDwAATQ8AAJQFAADoDQAAGg4AAGwJAABwCwAA+QcAAJEKAACuAgAARAMAANQDAADHAAAAGQoAAPEKAADqDgAAtQIAAAYCAADbAAAAFw8AAGYBAAAsBwAAtwsAAAAGAACKCgAArAQAADgJAADfCQAA5AAAAOMOAAC7DQAAwwQAAFgKAAAgCwAAKQ4AAIUFAABEAQAA6g0AALYKAAC5AgAAmw8AAL0IAAA4BgAAtAAAALYGAAAJDgAARwgAAL8JAABMAwAAvwoAAPUGAAC0DQAAYAsAALwNAABWDwAAuA4AADoFAAAeBwAAOQQAALwCAADNDAAAsw0AAKEOAAAwBQAA5QQAACgBAACvBQAA+goAADYEAACCBAAAuQUAAGAFAADQAAAAsAYAAAwAAABuCAAA4QMAAL4DAABiCAAAbwYAAAwFAACIBAAA3QQAACMIAACUAQAAvw0AANkNAABBDwAA0AwAAFkNAABSDgAA6wAAAH0CAAAeBwAAWQkAABgOAAC/AAAASg8AAL4FAAA5DAAAiQgAAIwJAADqAQAABQkAAG8LAABKBQAA9AYAANkLAAB9AQAAoQ0AADkKAABdAwAAowIAAFUGAAAbAAAAZQgAAKcGAABvDAAAMwwAALgBAAAWCAAAZg4AAGIIAADSBwAAUwMAAC8GAABLAgAAIgIAAFUKAACUBgAA8wAAAIMLAAD8BQAAGQcAAKMFAACgAQAAQgwAAJwDAABtBwAAGAsAAEQBAACqDgAA2gAAAP4KAAA1CgAAmgAAALsMAAAiAAAAbgcAABoCAABDCAAAiQwAAHAAAAAxBgAAXAoAAHYBAADRBQAAFAIAAGoGAADeAwAARQsAAEQHAAChDAAALwEAAAUMAAARAQAA1QwAAIoBAADsDgAAIQAAAH0FAABaDgAAhQ8AACACAAC4BgAASwMAAJIBAABOAgAAWA0AAC0PAACeAwAAMgsAAO0IAAAFAQAAYw0AAJUNAADnBAAAfAAAANAIAABhDgAARggAAAkFAAA+DQAAWAoAAJkKAAA3CgAADQYAAG0NAABfDQAAGQoAAOMGAAC7AQAAJwEAAOAAAAA9BAAApwMAAKEAAAAiBAAAKwoAAC8FAABWDgAAhA4AAMMEAADhCwAAgAsAAH4CAABRAQAAxw4AAKEBAADNBQAAJwEAAMYCAABvAQAA1A4AAJsPAAD9BgAA6gkAAO4EAADRCAAAXg0AAFwBAAB2BQAAkwQAALQFAADmCAAALQYAAKUDAAAMDwAAmgMAAC8JAADdAwAA1gMAAD4AAACdAwAAqAwAACgIAADeBAAA1AQAAKIDAADeAwAAPQUAAOgCAADGBAAARQwAALYKAAC9DgAASQkAAJ8AAACTAwAAywQAAHMMAABWCwAA3wQAAIAOAABHCQAAfQsAABUDAADGCwAAAQ8AAGsBAAD7AwAAMQMAAOALAAAmAQAA0AIAAEUNAABxCAAATAEAAIEOAACKBgAAFgcAAOAAAABNCwAAfQwAAC4LAADZAgAAGA0AAIMBAADOBAAAHggAAJ4HAAC2CAAAGAIAAHMGAACfAQAAJwkAALwBAADSAgAANAkAAPYKAABwAgAAnQAAAMQJAABxAQAAOAwAAMEEAAA8BQAANQsAAC0FAAB5CgAAvgkAAHUPAACmCAAAIAMAAP0CAACzDgAAhAAAAL0EAACLCgAAFgoAAJQFAAAODQAABQoAAMIAAAAlCAAAPwMAAPYBAADLCgAASAYAAKECAAD1AgAAXQEAAHUIAAA7CgAAaQIAANwCAADZCgAA1gEAANYCAAB2BgAAMQ8AAFsMAADUAgAADA8AABwIAAAwBAAA/AoAAJcFAABaCwAAjQcAAI0LAABeCwAA8QUAACgLAAATDQAAmQMAAAYGAACxDQAAdQsAADcDAABJDQAAXgUAALkJAACEAAAAsQQAAH8PAAD3AgAAzAgAALEIAAC7CgAAEgMAAH0OAACaAgAAygEAAFgPAABVAgAA+wAAAH0GAAArBgAAoAEAACMEAAA6CwAAEQoAAIQMAACvCgAARwkAAMsFAABODwAAZQkAAP4LAAAOCwAAvA0AACoMAAAzCgAAygsAALwFAABKDwAAnAUAAC4CAAAtCQAAKgAAAL8JAAB5AwAAIggAABALAAAFAQAA4AsAAPcDAACmDQAAHAcAABIPAADfAgAAoQgAAN0KAAAyAAAAWAkAAA0DAADIAgAAlAIAAIsNAAABAgAAoAYAAHkBAADgCQAAdwwAADEKAADtDAAA4gUAADgIAAC8CQAAxwIAAO0LAACfAgAAaAcAADQOAACQDQAArgEAACIBAAB/AAAAHgcAAEQLAAAHBAAAcwkAAIEOAABeCQAAuwAAAJUGAACpBgAAFwsAAH0EAABFAAAArAUAAGgOAAB4CwAArAcAANUJAABLAgAAPgMAAM4GAACtBAAAjwcAAIsMAAB7BQAAUA8AAJMIAABCDgAAhg0AAH8NAACRBQAAWQoAAIgCAABBCwAAqg0AAGMDAABnCgAAiQIAAG8FAAC1CQAAHAYAAE0MAAAhCQAAcQQAAOcJAADcBwAAFAIAAKgHAAA3BAAAGQUAAI8NAACCDQAA6AEAAHEDAACmAwAAwAcAAEQMAAD4CwAAHAsAAPkBAABbCwAAgwwAAFwFAADRAQAAqwQAAL0NAACTCgAAuwMAAMYIAADWDQAATwAAAIUJAADTDAAAKQcAAFUPAABAAQAALggAABAEAAB/CwAAOAcAAC8HAABACAAA4gMAAMwDAABNBQAAHgMAABYIAACPCAAAHgkAAKECAAC3AAAA4AoAAIwPAACzBAAAdgEAAL8LAABBBQAADwMAABMGAADrBAAApgQAABIFAABVAAAA0wwAAJkFAACKCAAAcA8AALcOAABFAQAARAQAAPIJAABWCAAArgsAAI8KAAAzDAAA9AcAAAsMAACkDgAAOw4AALUCAACxAwAAZgMAANYKAAB/DAAAWwQAALUIAAACCwAASgYAAMQHAACABQAASwIAAOwGAAB9DgAAnQUAALsJAADfAwAAZA8AAKkMAAAODQAAlwUAABUIAAC7AAAANQYAALgCAADNAQAA+AwAAOwAAACsAQAAZwsAAFYFAAB7CwAAgwUAAHIEAAA1CQAAngsAAPsHAAAuAgAAjQYAAGwDAAD3CAAAjw0AAG8JAACpDgAAvQ4AAE4PAAC9DAAAqAUAAE0GAADfAQAAHgIAALUKAADpAgAA1QYAAIoHAABqBgAAaAkAAMQHAAAfBgAA3w4AAO0FAAAQBQAA5g4AAN4GAAD6AgAAfgcAABwMAAAdCAAA/AsAACYKAAB2DwAAGwUAAFkGAADWBAAAxgIAAMkKAABbBwAAegMAAPIEAAAABAAAhgEAADwHAADtDQAAmwoAAOoOAACXCgAA0QUAANwCAADBBQAAmAQAAGIKAADxDgAAhwkAAO8LAAAfBgAAOgQAAGQHAACGCgAAXgUAAJoNAACcCgAAaA4AAHMKAACUCgAAgwgAAEoPAADGDAAASg0AAPgOAABJCgAAdAcAABMAAABPDgAAkgAAAGwPAAC5BwAA/QMAADIIAAD/AwAApw0AAH0KAADxAAAATwMAAC4JAAAsCAAAuggAAFwBAADtCQAAKQEAAMsKAADMCQAAHQIAAEMGAADnDQAAXw0AAF8FAACRDwAATgkAAJMPAADpDAAAeQgAAIUEAABVBAAAJgEAAF0KAAAlCAAA9wwAALEAAABPDgAA8gIAALQJAACuBwAAiAcAAKsNAAC1BgAAAAkAAHECAAAZAQAAcA4AAEALAAC9BwAA9AIAAN8OAAC3BAAAJAoAANMEAAA9CgAAFAwAAAkFAAAzBwAAFQYAAOcMAABADgAA7gwAAAMAAABRBgAAGQkAADUAAAD8DQAAhAwAANcDAACUDwAAgAoAAAIBAABXDwAAagEAAGQNAAByBQAAvg4AAP8EAADTAAAAzQ0AAF0CAAANDAAA2QgAADcFAAC1AwAA9wgAAD4JAAB1DwAAHwEAALIJAAA3DwAAdwYAAMMJAADyDgAAUwwAADMMAAAcDAAAKQYAADIBAAB2DwAAHQ8AANINAAAFBgAAYQAAAFwDAABlAAAABwIAAFAJAACkCgAAkAYAAA0BAABYBwAA0Q0AAP8JAAClBQAALwsAAPwAAAC1BAAAqgMAANsAAAD9DQAAUw8AACEJAABeCAAAHgMAAMAOAABJCAAAfAYAAPcAAADJCAAAGwgAAB4BAADAAwAAkwcAAFsEAABrDAAAtAEAAPYGAADBBQAAwQ4AAIINAAATCwAAQQQAAFAIAABcCAAAPgoAAHoMAAB/BQAA3QQAAK4DAACoCgAAFgsAAJ4IAACkAQAAZQcAAEIGAACMCQAAMwYAAIoKAACXCgAARwMAANMDAAAqAQAA9QoAAGACAADyCAAAaQwAAL8IAAC7CgAAPgsAAHYLAADsCQAAQQIAAAUEAABaBQAAlQ8AAPECAACEBgAAlQgAAPwBAAAwAQAAXgYAACMMAADbBAAAQAIAAJwAAAAOBwAAawoAAEIJAADgBgAAqwYAABQCAADLCAAA6gMAAFcAAACWBQAAJAAAAOEHAAB3BwAAQg0AAHQHAACzBwAAswQAAIsOAACDAQAAFwIAABYNAAAsCQAAtgEAAE0HAAC4AgAA4QEAAOIBAAB4BQAAEwYAAEQGAABzDwAAmQwAAFIHAABHBQAAVgAAAD8BAACCBwAAPgMAAEsBAAAeCwAAwA4AAMkGAABYBQAAtggAAGsIAABxCwAAbQwAALcJAAAsCgAA0w4AAGABAACrAgAAiQAAAHELAACHDAAAAQoAAAsNAADIBgAAowEAAJ8PAAAtCQAA2AQAAOoIAABWDgAAqQ4AAEUPAACoAgAAMAsAAJMMAAB4BwAAhgcAAMkLAAD8DQAAeQsAAIoCAACxDQAAVwIAAO0FAABKDwAAgg4AAP4DAAAJDwAAwAgAAM0EAAAXDwAAdwsAAEIIAAArBgAAxQcAAL4IAACCBwAA1AcAAI8JAABPAQAAUQIAAMgOAADTBwAAzQkAANwMAAAZDQAApwoAAH8AAACrBQAAcAUAADsJAADzCAAA3gkAADABAADBCQAAAwIAAEMHAACPBQAAQAAAAE4OAADgDgAAngEAAJMBAAAwDAAAKQYAANcAAADOBgAATgUAALMGAABDDgAA7AoAAPUNAABSAQAA5wgAAGYJAADKAQAA7wIAABYPAAC1BwAAUQkAAGMFAAD7BAAAsgsAAHQIAAD+AwAAOgcAAFgIAACmCwAAnAYAAHAIAAAbCgAAYAYAADIHAADdAAAAmAMAACwIAAARBAAADQUAANMDAACzBAAAhwwAACoLAACrAAAASw4AALAMAAACBQAATg0AAPwKAABYDAAAoAQAAAcGAABXCgAAxgMAAC0JAACNCgAAGwsAAPMKAAAuAAAA2gIAAKcAAAAvCQAASwIAAGIDAADlDgAA/AoAAEECAAD/AwAAYAgAAPYAAABZAgAAZgMAAMgEAABSBgAAwwcAABgFAABSCwAAowgAAH8BAAB2DQAAMAgAAKAMAAB/AQAAagkAAGYHAAD3AQAAKQMAAM8JAADiAgAARQMAAA0HAAAmAwAAwQAAALIIAAA8DgAAjQcAADwMAAD8AwAAVAUAAEwKAAA6DwAAYQoAAC4IAAAxDAAAfwQAAFMGAADJCAAA/QQAAFUGAAAvBAAAvAoAAFkGAADHDAAAWgIAAIMHAADHDgAA6QYAAO4IAACVAgAAPAIAAMwAAAChAQAAdwYAAJEEAACADAAAOg8AAGUAAADwCQAAlgkAAAEGAABKCQAA2ggAAC8FAADWCQAAlw0AACsKAADnAQAA/g4AABAAAADpCwAAlQYAABEIAAClDAAAJAgAAB4NAADbAAAAFAsAANcIAACuCAAAiw8AADAAAADCCgAAMQgAAAsOAACnBgAArQYAAIQIAAAMCgAAYwkAADoBAABIAwAANgcAAG0NAACzAAAAAwQAAN8CAABUCgAAxwQAAGkBAADWCAAAoQ4AACsKAAD9CgAA0AgAACMFAACJBgAAyAsAAD8HAAAPDQAAQAMAAPsFAADXDgAA3QUAAD8DAACYDgAAUgcAABoNAACkAgAAJAoAAKcDAACBBAAAYAIAAOIDAAA8CwAA2wUAAKEMAABZAQAAHAUAAA8GAADoAwAAIA8AAB0OAADtAgAAHgsAAC8CAACiBwAAdwsAAE0CAACKBwAAxQoAAIUCAACSCwAABQMAAIsKAACDDQAAkgMAAHQKAADdBwAA7AYAAB4JAACEBwAAkgoAAKwFAADDDAAA5QUAAGYJAADfAgAA1AsAAF8CAACJAwAAnwsAAI4JAABvAAAAxQwAACUDAADODQAA8QcAAO8NAABTBwAA4QYAAP8GAADPAwAAQg4AAMQEAAA4CwAAtA4AACYBAAB6DwAA0QMAAPkIAAD5CwAAYgkAAPgOAAC/BwAAegwAADsCAADCAgAANQsAAKMFAABGCQAAkgUAAHkHAABhDAAA6QMAALcCAABmCwAAGg8AAEsOAAA3BAAA8wgAANEMAAAKDQAA2AMAAHoEAADlBQAAVgoAAJ0IAABGBgAA1wwAABYCAABuCwAAqg4AAHAEAADjDAAAkQEAALABAADEAQAApAIAAHQCAAB5CAAArgEAAOoLAACyBgAAvQQAADgAAACmCwAA9AAAAB0OAACqAwAAqQMAAOMHAAC4DQAAYwUAAEYDAACYAgAARwQAADsGAAAjAwAANgcAAOYAAACvBAAA5gIAABYLAAA0BAAAYAgAACEEAADzDgAAXgQAAIUHAACyDgAAeQIAAMsNAACICQAA1QgAAKEGAAAUBAAAtgoAAAENAAADAAAAyQkAAOUDAACsDQAA7QsAADsBAAAFAwAACQAAANEIAABtCQAA4g0AAFcIAABtCwAA6w4AAOQHAADKCgAA7gIAAP4AAAD0BgAA9wQAAKkNAABbBQAAkg4AACQGAAAjAwAA8A0AAMYKAABMBAAATA0AAO8FAADxDgAAEAkAAHcCAABjDgAAZAcAAOwFAAB/DwAAuQwAAAYDAACCCAAAzQcAAIYHAACQCAAAvgUAAGkDAAB9CQAAdQEAAMYJAABkCQAAbwAAAAwAAABHAgAArwUAABoLAACQCwAAZw8AAEwFAAChCwAADAIAACcKAACGDwAAKQAAADIMAABfBgAAfwYAAFQLAAD3DgAAqgcAAJoMAAAsDgAAeAIAAB0NAAAEBgAAtQsAABEFAADuAwAAiQUAALcLAAAyDgAA2goAAIsGAAA0CQAAVAQAAMsFAADhBQAAoAkAAEkGAAAmAgAAMQoAANoHAADMAgAAfgEAAHYFAAC1AAAAbQwAAEcMAACiAAAApAsAALoBAAD1BQAA8gsAACYGAADMDAAArwsAAMIEAABzAQAA8AgAAFoDAAAOCQAAVQ0AACIPAADrCgAAhgQAAB8AAACmDgAALAMAAC0FAACRAwAACgEAAAYFAAAhBgAAaQcAAO8LAABIAQAAbgsAAI0AAACwDAAAugsAAFMOAAAtCwAAWAEAAKYBAAB3BwAAbQkAAIoFAAD0CwAAfwcAAAkDAADFAwAAWQYAAHIGAADzAgAA4A4AAHkHAADbAQAAIgYAAAUBAAB7AgAA1gMAAB0JAACKCAAAvQcAAAAPAACaCQAABAsAAHkNAADYAwAAbAEAADwGAACbDQAAcQkAAH4CAAAPDAAACgoAAD4OAABJDQAAqwAAADkCAACXDgAAEwUAAHcEAABqCAAAEQYAAJ4NAABmBwAALwQAAMULAAAzAAAAXAkAAHAPAABmCwAANgIAAIsJAABADgAAtAoAALQEAAC8BgAAZggAAP8MAADvAwAA2wYAAHEAAADNDgAA9gAAAAIKAACJAAAAtwUAAOANAABMAgAAHwEAAFkEAAB7CAAAAgYAAIcBAADTAgAASAsAAHsMAAAoCAAAAA0AAOYOAABFBQAAXgwAAPkOAADRCQAA1gAAABAPAAAOCwAAPAAAABAFAAA2CAAA7wgAADcNAABpBwAAYw8AAOIIAADxAwAAEgYAAAoFAABaCgAA1gQAADUMAADTDQAAAA8AAPoEAAD/CAAAXwcAAAAGAAD4DgAAHwcAAAIMAAAiBAAAOQgAAB8FAADtAQAAxw4AAHQMAAA7BQAAOw4AALgJAAB/AgAAvQEAAJ0IAAAfAAAAkwIAAPoJAADaBAAAPgYAAGoFAAC1BQAA5QcAAF4DAADpBQAALgQAAJINAACWBwAAEwkAALoAAAC+AgAA7wAAAKMGAAC7BQAAsAsAAHULAADfBAAAgwMAADIPAACkDgAA9wcAAC4FAABrAAAA/wQAACQDAABMBwAAdAkAAP0EAAD5AQAA4Q0AADwJAACQCgAAggwAAGcHAACrBQAAfAkAAHYJAABbBwAAzwAAAJ4EAACODgAAHQgAABwEAAD0AgAAXAAAAKIBAABMDgAANwgAAHADAADiBwAAVwQAALkHAACHAQAAEgsAAIwGAABQDgAAGQQAABsDAAA0AwAAYgQAABsHAABqBwAAGAkAAN8AAACRAwAAQwgAANgAAACLAAAAFAgAACoLAAC8CwAAdw4AAKUDAAASDQAA7A0AALoDAAAoCwAAAQMAAK4EAACgDgAA1w0AAJoFAABBAQAAhAIAAJwLAAB2DwAAnggAAPwFAACmBwAAkAsAADcNAAAFDgAAeAgAAK4LAABMBwAA7QoAAJMOAACaAgAAKQsAAIMEAACoBgAAaQUAAOMEAAAIDwAAZAMAANQNAABoAAAAbgsAAC4NAADyAwAAHgwAAMAKAAAbDwAAYgcAAKYBAADuBAAAfg8AAPEAAACxCwAAVAIAAPwGAAAMAgAArQUAACMPAABrBwAAbAYAAFQGAADxCwAAKQMAAFsOAADqDgAASg4AAKoEAAA8AAAA6QQAAIkFAADNDgAAFAQAAIUMAAAfCQAAVQsAANkDAABTBQAAjA4AAE4DAAD1CAAAWgsAANsDAABDCgAAkgwAAGkGAACkCwAA+gQAAEQNAAAHBwAASA8AAHkGAAAtAAAA3AkAAEwLAACUDwAAwAsAAPoAAADeCAAANQYAAOwDAABLCQAAeQQAAE4LAAAqCgAAVAgAALMJAACrCQAAUgUAAFkIAACbBgAA5AMAAP8IAAAuBwAAvA0AAGMKAABADQAABwgAAGEFAAAXAgAApwYAAKwDAAAVBgAAaQ0AAJoOAACJAgAADAMAABkCAABGBgAAww0AAHwCAABOAwAAjQUAABMDAAAqBQAA+QQAAAgPAAAnCgAAFgEAAGUDAAC4BwAAQgEAAAQDAABkBgAAmQsAAEEMAACXCQAAJgcAAH0GAAC9BwAAnw0AAAUAAABzBgAAzQEAAMYEAADoBAAA3wMAACsIAAByBwAAugIAAKcEAACbDAAAaw0AAFMAAAAxBAAA2QsAACQOAAB6BwAAkAsAAE8CAADnCAAAiAoAANsFAADfCwAAzwQAACcAAABSAgAA8AMAAOUHAACeBQAAIw4AACQGAADdAQAADwsAAEkLAABTCQAAdQ4AAIEMAADvCQAAqggAAPAOAAAtCAAAwgwAAF4BAABgDgAAUgsAAKcMAAAmCgAAJAIAAFgLAACpBQAA0gcAAH0FAADoBgAA+QkAABkGAACjCgAAtAEAAFsBAACaCwAA6AkAAEoCAADzAwAAKwEAAA8KAAAfBQAA4AYAAFkAAABUAwAAdgAAADcPAABbDgAAUQkAAJIGAAAlAQAAtQwAAEEAAABzAwAAPQMAAL8NAACjBAAASQIAAAAHAAD1BAAA/wAAALMCAABPCwAAVwwAAFQJAAA7DQAAZQMAABUOAABrAwAAeQsAABEJAADZCAAAsgYAALcEAADmAAAANwcAAGgHAABQAwAAdQYAAAoNAADSBAAAygoAAIoDAACgAAAALQYAAJEGAAALDgAAHwwAAKENAADCBgAAkgoAAJ0GAACnAAAAlgYAAEYJAACtBwAAXwkAAJYLAABsAgAACg0AABsDAADJCAAAkwEAAIUGAAAhDwAA1gwAAKcCAACYDQAANwYAADYAAADbCwAAoQkAAJQNAAAzDgAA5QgAAHQGAADCBgAA2g4AACUEAAB1CAAA1Q4AAIcGAABzAQAAlAkAAEgAAAAZBgAApgEAAL0DAABsBgAANgIAAJ8JAAD2DQAA3AgAAMkMAABJBgAAzgkAAKIGAACNBAAA+gEAAE4AAADqBwAAXgIAAGQPAABZCgAAmgwAAGkPAAArAwAAQQkAABAPAADKDQAA2QcAAOYAAAAzAgAAOAIAANIOAABSBAAAbwQAAEcJAABLBwAAHgUAADQBAADlCAAAJAEAAMwNAADzCwAAggkAAPgBAACABgAAHwgAAHUMAACAAAAAxwQAADQGAACWAAAASQYAAI0DAAB9AgAAhQgAAKkFAACmAwAAOw0AAFAFAAArAAAAfgkAAEcBAAB3AQAAYwwAAGwCAADkCwAAfAoAAGINAADDBAAA6wAAAMcGAABPCwAAuQIAAIUPAAAKDgAANAkAALsBAACoBQAAbg4AAEYEAADpAwAA7AoAAP8HAABeDAAAzgsAAKcFAADQCgAAsQsAAAoDAAA1BQAAbwcAAB4GAAClBgAAyAAAAJADAACSDAAAUgUAABcJAADRAwAAAwsAACsJAAAUBQAAYgYAANEIAAC4CQAApgUAAIwLAAD9AwAAmwYAAB8EAABaBwAAfgAAAIsDAAAGCQAAkQ4AAOUHAAALCQAABw4AAOEGAACcBAAAiQoAAIEAAAC3CgAA+AQAAIAIAAAyBQAAvAUAAKkCAAA7AQAAdgsAANQMAACOBgAAAgYAANcIAABACwAAYAkAAPIDAAB0AAAA+wwAALkMAADVDgAABwIAAAEJAAAmDQAAjgcAAJMNAACJDQAArwkAAJUDAABsCQAArAkAAJwEAAAtBAAAYQ0AAIUIAACWBAAAZQgAAPcLAAAYAAAAMg4AAH0PAADJCQAA2gsAAJsKAAA6AwAAxg4AADMGAACdDwAAAwUAAE0EAACzDAAAKAAAAN8EAAD/DgAAEwcAADcIAABIDQAAIAcAAJEGAABTBQAAeAwAAAsDAADqBwAAVQgAAEsAAACcAAAAlQ4AAN4IAADiAAAAZAYAAG8LAAD1BQAAbwAAAN4CAAA2CQAAAwcAACUFAADLAAAASw8AADQNAACvDAAAFwsAABQAAADwCgAASAcAACUJAAAyDQAAVAEAAPkMAAAVAwAARQ4AABoIAABtCAAACAIAAAMGAABrAwAAjg0AAD0BAADqCwAAFwwAAIUAAAA+BQAA1QAAAMYLAADDBgAAlgQAACkLAADNBgAA+gEAAPwOAACYBQAAhQMAAHMGAACiAgAA8QoAAKkDAADhBwAAywgAAJUAAAB4AgAAvAEAAM4FAAAqCgAAMA8AAA0PAABCAAAAlAYAAAkOAACtDQAA3gEAAOQJAAAKCwAA0Q4AAFUAAADFCAAANw4AAEsMAAALCwAAKw0AAAELAADyDAAAzAQAAFoFAAC6CQAAywAAAP4NAACHAwAAIgkAAJQAAADECAAA8w0AAP0NAABvDAAASwUAAAAHAABIDwAAOAYAAJ4CAABGCgAAYgMAALAHAACJCQAArQEAAIIPAABgAAAALgEAABYGAADMBQAA6gEAADAFAAA1CgAA/gEAAJsFAADWAAAAhgAAAFUJAAA/BAAAIg8AACUHAAB4AAAAPQkAAKELAADoDgAAKAEAAGAHAACBBwAABAkAAL0LAACLAgAAfAkAAA4PAAAbCAAAiAwAACgMAACbCQAAcQ0AAAoEAAA5AQAA8A4AALUGAACZAAAA6AMAABQHAAAIDQAAcwIAAG4PAAC/CwAATw8AAGYBAAAXBwAA8gwAAN4MAAD8BAAAyw4AAEgBAADYCwAAcwQAADwFAAA5CwAAUwIAAMUIAADtBgAA+wUAAHkHAADGAQAARgYAAAEBAAAqBwAAug0AAGwMAAAOAwAAMwAAADQOAAAHDwAAowYAACAHAACZDQAArwcAABILAABnCAAAOgcAAAINAACcCQAAbAwAAK0KAADtAQAAAQkAADUCAABcCQAAbgoAADELAABXCQAAwQQAADkOAAA9BAAA2AkAAOYGAADoBgAApwoAANsJAADYAQAA0wUAAC4KAABPAwAATgwAAKgMAADfBAAA3AYAAOoGAAAVCgAANwIAALYOAABoBgAAww4AADcAAAClAwAASw8AAOkAAAAGCwAAqQwAADQLAACEDgAAgAcAAG8GAADWBwAALgkAABkDAAA9DQAAyAIAAIMGAAD6BQAAggMAAF4NAADJCwAAeQIAALsIAADqDQAAaQAAABkNAADVBAAAyA4AAJsLAAB9CAAA3goAAJ4GAAAsBQAAEgwAAFYGAABXCAAAtwwAAEYBAADuDAAAtwMAAIcBAAD7DgAACQ4AAF8KAAAFDgAAxQsAAI0MAACaBgAA2QQAABEPAABaCQAAGwAAADoNAACnDgAAlw4AAN0CAAC7AgAAVAkAAD0CAAB+DgAAVggAAKUKAACLAgAAjA0AAI8JAABfAgAAPgAAAAAIAAC/DQAA+Q0AAAoHAABzBQAAFwIAAPoKAACHAAAAdgYAACwAAADvDgAAnwsAAFYPAABCCQAAqAEAAG0NAAAFDQAAwgMAAI8BAADpCgAAHwcAANEHAABQAgAAFA4AAAUKAAA5CAAA9goAAPsHAAClCAAAjAgAAEIBAAB/AQAAnA8AAKIEAACuCQAAXAAAAOgIAADwDAAA1AQAAKkHAAAcDQAABAwAAB0NAABDBAAAbgwAABQJAAAJCQAAnA8AAD8NAABRAwAA2QUAAOAGAAASDQAAngoAACICAAC3BgAAwQEAAAULAABUCQAAJQAAAOkMAADZCwAA2QQAACoFAACjCgAApAEAAI0KAACZBAAAKg8AAGwHAACRCgAAoQoAAPsAAAApBQAAwAsAAPMFAAB+BgAAjQoAAIQIAAAHAAAA7AgAAPkJAACYBAAAYQoAAEAGAABiDwAAHQwAACMKAAAVBwAAlwQAABQDAAAQDAAARAIAAOgHAADiBgAA9gEAAGgLAAD2AAAABQoAAF4LAAATBAAAygYAALEBAAAQAgAADw8AAP0LAAC6CwAAhwUAALIFAADiCAAA8wYAADEIAADYBwAA8Q4AAN4FAAAcCQAA7wgAAD8NAABECgAAvQIAAGsGAAAbAwAAOwwAAIwDAAA4DgAAvwQAALEFAABxCgAAtQkAAOwOAAAcDwAAvQsAACsBAAAmBAAAbw8AAHAJAABbBAAAwQkAAPoIAACtAwAAawQAAFMFAAC4DQAA3AQAAPUEAABzCwAAbQ8AAOkMAADBCwAAEQ4AADcAAABqBgAA5gAAAPQNAADlAgAAQA0AAPAHAAAJCgAAyA0AAE0CAADOCAAAogUAAH4EAAB3DwAAoQQAAEcMAAAfDgAAagUAADQFAACyCQAArwAAANwDAABKAwAAhAkAAOALAAAlDAAAEg8AAEcMAADcCwAArAsAABUAAAAlDwAAjggAAD4PAAB9BwAALA8AAA0KAACAAwAAfggAAEgKAADOAQAAow0AAFIGAABKCwAA1wMAAHUEAAAMCwAATwcAAIgIAAA5BAAADggAABwKAAAbDQAA/gcAALYEAABGBQAANwYAANABAABqBwAAtwIAAAcFAAAjDwAAggQAABgPAAB5BQAA5AgAAEMOAAB0AgAA9AEAAGsAAADeCwAAJwgAANkMAABzDAAAXAoAAK0EAACGDwAAXwoAALgDAABCCgAAuw0AADwOAAALCQAA5AcAALsCAABFAgAArA0AACwLAACDBwAA8g0AANUIAACBDgAAIwMAAB4KAAAXAgAAMwcAAJcAAAAIBwAAzQsAAKgIAAAYDQAAuAAAAD0AAACtCAAAFA8AAL0IAADgCgAA9wYAADcOAAArBwAAFAEAAPAOAADbDAAAGw4AAOsHAABXBAAASgkAAFQOAACuBQAAgQkAAIIKAADKBgAAUwcAAB8PAADKDAAAPQIAAMoMAACYDwAAUgoAAJsCAADFAgAA1QAAAJoHAADuCQAAAQAAAH8CAABoBgAA7goAAJUNAABMCgAAKAwAADYKAAAQDQAArgIAAD8IAAAKAQAAHAoAAOACAAC/CgAA9wQAAOEIAACTAgAAswUAACkIAAC2AAAA4Q4AAKkGAABKBwAAFAYAAI4DAAB9BwAAZQoAAPcNAAAwBAAAsAYAALgJAABnDwAAbQEAAMwHAABMBQAAFQkAAF8NAAAWBwAAPQIAACMOAABBCAAAyQIAANsNAABtBQAAKwQAAHkBAADhCgAA2AcAADgLAAADCQAAlQoAAKQMAADSAgAAyQMAAEgOAABdCwAAogMAAI4CAAA6BgAAawUAAPELAACRBwAA9gcAAAkJAAB8DwAAPwcAAHsHAADFDQAAgAgAABoIAABAAgAAEgEAADYJAAAFBQAAPgQAAHwMAABLCQAAkg8AAHEJAACiAAAAsAEAAK0JAAD5CgAAXg8AAOcAAADzBAAA6wIAAKgAAACmCQAAFwcAAFQAAAAICAAANAMAAOcGAAAiBAAA7AgAAPcFAAACCgAAyQAAAFYLAABiDQAAJQIAAFUIAABkBQAAiAsAAMsLAAAtBAAAIgEAAG8FAABLBgAA3AAAAJQIAABXCwAA3g0AAK4OAAAgCAAAxgcAAFULAACsBgAAhAsAAM8NAAAfAQAAqwQAAG4AAAANBQAA7woAALUNAACeAQAASQkAADcPAAC0AwAAowgAANEGAACKAAAAegYAAGgIAACRAwAAHg8AACYMAAAWBwAAQgoAAD0MAAD3AAAA3wYAAMoAAABpDAAAcAsAAKYLAABrAgAA8QYAAB0NAABSBQAAmQgAAEoDAAB0DwAAYwkAAIsKAAABAAAAMA8AAKAIAACcDQAAFwAAAC8PAAAfDwAA3QQAACcJAACWAwAA2QEAANANAACbDQAA3QMAAGMCAAAeDgAA0wIAAIcPAACoBwAAyAUAAHgGAAB9DwAAUQgAAPMCAACFBQAASAgAAHsGAABMCAAAJwwAAGkAAADeBQAA9QcAAAgEAAARDgAAwAcAAMYIAAD2CAAAywEAAHIIAADpAQAAmw4AAJoGAADgCAAAjAEAAMgIAAC+DQAAmwMAAFoJAAD2DQAABwoAAJQPAABKBQAABwAAAOcIAAANCgAAZgYAAHsCAABkCwAAJgAAAKQBAACmCgAAfQ8AAHACAABzBQAAbwoAAJcMAADhBAAAFwMAALAOAADdAQAAbgMAACIIAADMBwAABAQAAOQMAACPAgAAVgIAAEwOAAC7BgAA2QwAAFsFAAAlDgAAJQ8AAHcJAADgCQAAJA8AAKIAAADmAgAAUQAAADwPAADgBAAAKgUAAAULAAAVDQAA8goAAHIMAACaBQAA/QAAAIUOAABdDQAA4gkAAAMHAABJAgAAawkAAD0PAABCBQAAMwUAAMcLAADTCgAAoQkAAMYFAADrCwAACAUAABQBAABOCgAA0AgAAPsOAADtCAAAYAMAAM0IAAD3CwAAjgEAAHENAAANAwAAPAkAANAKAABQBAAAbQEAACQNAAC4CAAAmgYAALoNAACIAgAAKwgAAOkKAACyBQAAJwMAAJgGAAAoAAAAMQwAAAwLAAADBQAAEwAAAKYJAAA5AAAACAgAAEoNAABHAQAAlgEAAIcGAACEAgAAHAwAAIYMAAAfDQAA9Q0AAEAFAADUCAAA1g0AAO8HAAB9DQAAQAoAAEQKAABdBAAAnAoAAKQNAAA+DAAACAAAANEBAAA9BwAASwMAABAJAAAyCQAA5AwAAL4NAAAIBgAAJAcAACkAAAC2CwAAmQIAAOwEAADCCwAA3A4AAIQBAABeAwAAswIAAPgJAAA1BAAApAMAAHMJAABICgAAiAUAAGYBAAC9DgAALgcAALcGAAAJCgAAFQIAAJkBAAA7DwAAAgQAAAoCAABFCAAA3w0AAD8PAAAwCQAAfgQAAFUCAABACgAA9QkAALsBAAAgAQAAwAkAAPMIAAAVBQAAUAgAAPUCAADvAQAAlgwAADIBAAC5BwAA/gUAACYIAACnBAAAawQAAHEMAAA5AwAAJAEAAPAKAACJCgAAEgkAADIPAADpDgAABAoAABINAADpBAAAIQoAAAUHAAB9DQAA/AAAALMMAAD4BQAAeQQAAC4GAADICAAADwgAAAcAAABZDQAAkwgAAA0IAACvCAAA5AYAAFwPAAAbBgAAZQEAAOsDAABbCAAAqwIAAFsCAACNDgAASAEAAP0LAADaAgAAkgcAAI4DAAA1BAAAHQQAAIMPAADJAAAAqgAAAOcNAABGBAAAAwgAAIENAACCCAAAPgsAAIoMAADkDgAAAQ8AAGgMAAC6CAAArgAAAOYLAABVAgAAXAsAAC8NAAC7CQAA4gkAALQOAABvAQAAigkAALMHAADrCwAAmQIAAAQPAAASAAAAZAkAABECAACzCAAAIw0AANMJAADiDgAA1QoAABEAAACGBQAAJgYAAEYHAACQDwAANwsAAC0BAABcCgAADggAAGkLAAAoAgAAlA0AACMGAADjBwAArQAAACIJAAAiAQAA+wgAAGMIAACeDgAAEwoAAKUNAAADAQAA6AQAAHkGAAAvAAAAOQwAAHEDAABiCQAAPgAAAHQCAABHAgAApQkAAK8MAADIAAAAIgMAAJcIAADGBAAAugAAAO4EAABVDAAAywAAAC0OAAAPCwAAdgkAAO8FAAD2DQAApAwAAOABAACyAAAAkggAAGQFAACuBAAAjwQAAO4KAACNDQAARAAAAN8MAADvDgAAXQsAACUFAAD4BgAA/AwAAKQJAAAhCwAAkgIAANEHAABlBgAAAAoAAEkJAAAfDgAA6wsAAEIFAABeDQAAfAEAAL4KAAA3AgAArgMAAPIKAAB1CwAAfA4AAHEAAAB2CAAAnQ4AAHEAAADmBQAAGgYAAGUOAABmDwAAZQMAAPEOAACjBwAABgIAAHYFAADHBAAAOA8AAPAFAAAtDQAAgAkAAOwBAAD1BwAAEQUAANAEAADtCAAAfAUAAA4KAACOBQAAuwUAAKQOAAAcBgAA5AAAADIMAAC3BQAA+AkAAJYOAAC/DgAATAgAAM8FAAAgDgAAIQEAAAYCAAAfCgAAggUAAFkHAAC/BwAAzQoAAHQIAADZAQAA/wsAAGwPAABcCAAAEAUAAJ0OAABsDgAAdQ0AAFEKAADfAAAAnQMAAHsHAAAgBgAAywIAACoBAABSDAAABAIAANEFAACwBgAAcg0AAFIDAACcAwAAYwIAAAcFAACPCgAAXQ8AAIYIAAAhDwAA3wUAACgGAACeCgAAeAoAAMELAABYBwAAOwcAAMICAAAvDQAAZwcAAIELAAABDQAAKw8AADgEAAC1CQAAMgMAACkMAAD+CwAApQEAAOoLAABGBwAABgEAAIgEAADSDQAAJQMAAAkDAAArDwAAdQYAAOQIAADtBwAA+AQAAMAGAAAjDAAAYAUAAPUJAACMBQAAag0AAHQPAAB1DAAASgwAAB4PAADgAAAARAkAACwHAABaDQAAkAIAAE0NAAALAgAAjAoAAAwJAAAUDgAAkQUAAAwHAACaAAAA1gMAAO4HAAC1AwAAvAwAABMEAAB4CwAAdwoAAFYKAADICAAAKAUAABYKAADMAgAAagQAALYOAAC/AQAANQQAADwIAACFAgAAzgcAAMkOAABHAwAAHQYAANkMAAASAgAAmAMAAJMNAACeCwAAMgYAAHYDAAAODgAAfwMAAA0LAADWCQAABwsAAF0MAACkBgAA3gEAAPQFAAARAQAA8wQAAF8PAABUAwAAgAkAAA8OAABMAQAAEwgAANcLAABDAgAArAYAAGAPAAAuCwAAKwQAAAUMAACIAAAAaQ4AAFkPAAC3DAAANg8AANgAAAAaBQAAEwYAAJAMAABnCwAAlQ8AABEOAADSBAAAwQgAALACAADuAQAACgQAAOgIAABgAwAAiwQAAHoJAACoDQAAxAYAAJ8IAADIAgAAiAwAAHwBAADtCwAAHAoAAIYEAABIBwAAwAEAAAgHAACHCAAAzAMAAKYCAAAfCwAAxwMAADsKAAC+BwAALgoAAEoCAAAzDgAASwsAAGEOAACSCAAA6QgAAOkDAABZDQAAlgYAALcLAAAQDgAAkQcAAGQIAAC5AAAA3AMAAPoHAAA5CgAArQkAAFoEAABWDwAA3QYAAAkMAACiCQAAkg0AAFQOAADoCgAAKwUAAPIGAABNCAAA5wIAAMINAACYAAAA4gQAAMEBAACZDgAAKQ0AACQEAAAeDAAA9w0AAE8LAACLBQAAxwMAAGgEAAB2BwAARA0AAEAHAACVAwAAVQ4AAKwDAAAyCwAAoAQAALcFAAAMDAAAmQMAAFsDAADsAgAAugoAAB8KAAD8DgAAFgkAAKcBAABmDgAAWwIAAFMLAADaAgAAygIAAEwIAADPCAAABgMAAOAHAAADCQAAYgUAALYEAAA7BgAApggAAO4KAACkBwAAvgkAABwJAABwDAAALQEAABABAAC7CQAA3Q4AAAAHAAA9DAAA5QcAAAAOAADqDAAA3w0AABkGAABUBwAAMw8AAGQJAADzCwAABgUAAGoDAACPAgAANgEAAPcJAADjBgAAqQEAAM0FAAB1AQAA9wYAADcKAAD+BAAARwgAAOQAAAAQAQAAUgQAAMUOAACdDwAAQgIAAF8OAAAfBwAA1w0AAEkLAABWBQAA8AwAAHQDAAAFCAAAnQ0AAHkIAAAwCwAAXQ4AAAsCAACwDQAAxQAAAEgNAABRCwAAxQkAAEgAAADVAwAAugIAAPsLAADlAAAAEQsAANkKAAAbAQAAlgMAALIFAAB8BAAAgwgAAEYOAAAEAgAAmQkAABQFAACZCgAAoA0AADwNAACCBAAA9woAAAYDAABuAAAAiAsAACcNAAACCgAA2AUAAGEPAADIDAAAFg4AALEJAAD/BgAAygYAAOwMAADXBwAAeAcAAHQFAADEDQAARAcAABkIAAAPCgAAQwEAAF0PAACeAgAAmg8AANMGAACCBwAADgYAAFIKAADABQAAWAYAAOoJAABVAwAAgw4AADsAAAAKAAAADQAAACoAAACpCgAAAQEAAHsPAABmDQAA4gUAAPsNAABhBgAARQsAAOwBAAASDwAAPwUAANsFAABHCwAAXwwAAFwNAAA5BgAACwYAAPALAACtDgAAVQUAADsIAABbCwAAOwwAAGMCAACvDgAAFwAAAJABAAAVBQAAdQsAAIIKAACgAwAA5goAAF8JAAAaBAAAbAkAAI4AAADhAgAAPwYAAEsGAADPDAAAVQgAALoHAACvDQAAdg8AAJcNAAB/BQAAzwcAAMUJAABlDQAA+gYAALkGAADLCgAApgMAANoMAADrBQAAFQ8AAD4FAAD1AQAAngoAADwIAABQBAAAIgIAABMKAACdAQAASQsAAKYJAAClAwAAwgMAABYPAABwBAAAGgUAAPsOAADmBAAAjwkAADcJAAAlCwAAjgUAAHEBAACjDQAACQ0AAKQHAABUDAAAmw4AAEQHAAAoCgAABwEAACMKAAAvBgAAMA0AAJ4GAABlDAAACQIAAKEEAABjBQAAGwUAAIkMAADQBwAAGwsAADsIAADeBQAAdQoAANoLAAAkDQAAjQMAACwPAAD4DQAAxAYAADsOAAAMAwAAFgIAACgIAAADCgAAIAgAAIcPAAAJBwAA6QUAAKYNAAAuDAAAng4AAM8HAAAsDAAApQIAAHUDAADjCQAAFwoAAK8LAABBDwAAXAIAAJsFAAD6CwAAew4AAAUMAAAcBQAAhAEAAHcKAAAkBwAASgYAAMUEAACmDQAAkQUAAO4JAADICQAA7QQAAGkMAAAcAAAAsAsAAP4OAACoCAAAdgwAAGIHAACLCQAAnAUAAOsKAACZDAAAfAgAAG8MAADPDQAAQQAAAAkMAACNDgAAFQ8AAPQMAABvAwAARQIAAPQIAAADDQAAjgsAABMHAABDBAAAbgsAAAIAAABSAAAApwEAAE4BAADkAAAAjwAAAEAFAABnCgAAMwkAAH0IAABaAAAAwQMAAIoAAACeDQAAbwYAAMcJAABdBgAAoQIAADIGAABVDwAALAYAAHQNAAAFCQAAiA0AADQEAACzAQAAXA8AADgAAABKBAAAeQIAACEHAAD+AAAATQcAAJQKAAAjCwAAwAYAAD8PAABGDAAAeQ8AACUEAACiCgAA2g4AAMYGAACjAgAAygkAABsPAACsDAAA9AcAAJcIAABWCQAA+ggAAEkFAAAiBQAAtgMAAJ8OAAAuDQAApwsAANMNAADOCgAAxQsAAMMFAAB2BwAAUQ4AAMgHAAAgAwAA3QwAABcAAABGDwAAqAkAAJ8NAABvAgAAXAwAANkHAAD5CwAAAA4AAJUJAACQCQAA/QkAAFAOAABNCAAAxwcAAH0HAABAAAAADgwAAJcLAAD4BQAAvAwAABIHAAC2BAAAPwUAAPMNAAAkDAAA2wgAABQOAABBAQAABwoAAEMMAAA2CwAAjg4AAIgIAADcAAAA6gIAAPkNAABeBAAAjgkAANMBAADYAgAA/AIAAPcJAAAmDwAA/gAAANUDAACnDQAAew0AAIsPAACSBQAACAsAACEOAAB4DQAAqgIAAJ0AAABCCgAAEA0AALADAABUCAAAvwEAADYNAAAwCgAAKQgAAGMDAAAhDQAACgIAAMQDAABqCQAAPgYAALIHAAAQCQAAJwQAACwGAAC5AgAAHg0AAD8NAACWAwAACAkAAKsBAABYAQAADQwAAGkCAABsDgAAQQAAABMDAADKBAAA6g0AALMDAADvBQAAxQwAACAKAACVBQAAxwcAANIMAADxBwAAcgoAAPUAAAAGDwAA9wkAAFcCAACaCAAApggAAGAKAAACBAAAHw8AABcNAACRCwAAXwUAAPEMAAALCQAA/gMAAAANAACpAgAAHAsAALIDAADHCQAAYgwAAC0KAACrDQAASQcAAHoCAABdDAAADQ0AAMMAAABgBQAASw4AAHQFAABFAAAANA0AADwHAABbDAAAag4AAMYKAACgAgAAkwIAALwMAADiBAAA1wsAALMOAADFBwAADAoAACIFAACkCAAAUw8AABYEAAAxCgAAfgkAAKsKAACaCwAAbw4AAFcGAADJCgAApwYAAGIPAADRAAAA7g4AALENAADmBgAAAgYAABkOAAD/BQAA/AMAABkPAAAfCQAA/wYAAJ8FAACWDAAAhgMAAPMOAAAaAwAA1AsAAO8MAABbCQAAkgsAAA8EAADSBgAACwQAAO8JAABECgAAZQYAACQOAAAECAAA9w0AAJcDAAAGDgAAZgcAALUFAABBCwAA3QsAALoCAACWAgAAkwYAAN8NAACrAwAAYAEAAMoOAAC+CQAAXAYAAD4JAADkAQAAEQoAAG0EAABFBgAAvgQAAAoLAABNBAAAXgEAAHAGAADOCQAAvAAAABMIAAD9CAAAzwMAAMAKAACfCwAAKQkAAI4EAAABDgAATgwAANgNAAAEBQAAHQ0AAOgIAACPDAAA/wQAAHMNAADzAQAA3gwAADwJAAAhAAAAcQ4AAHoBAADmAwAALA0AABEDAACcDAAAOwUAAOMDAABgDAAA4wwAAHgAAACFAAAA+AgAAKgAAADtAAAAvgcAANQCAAAaDwAAxgYAAGUBAAALBQAAnQcAAPIFAAD4AwAAKA8AAPoFAAD1CAAAgQIAAPIBAABzDAAAGAsAAAYAAAACDwAA4AMAAGUKAAD/AQAAaQUAAJwIAABzBwAA0wEAAKUIAAD9AAAAWA0AAGoNAAAVDAAAKwoAADQDAADKAAAAegEAAEwPAACQBQAADwIAAMoMAADiBAAAgQgAAH4NAAAcBgAAtwgAAP8NAABRAgAAxQwAAHUIAACOCQAAoAMAAE4EAAAfAAAAUAsAAAIMAAD5AgAABggAAP8HAAD5AwAA+QUAAEUDAACqDAAAnQUAAOkOAAAmDwAAywkAACoJAABlDQAAZQIAACgCAADhBgAAtgcAAGMGAAAdCwAATgcAAKcIAAC4BwAAxwkAADkCAAAlBgAAXQ4AAJsHAAAeCQAA2AcAAI8BAABaBgAAoA4AAGEAAABiBAAAMwYAANoEAABvBAAAqg4AAAUAAACgAQAAlwgAAA0LAABBDQAAcgIAAJ4EAABgBAAAKwwAAOkOAACBCwAA8wQAADQAAAAXDAAAdQ8AAIQDAACPAAAAGAkAAP8DAACFDQAAfQsAAPwJAADRCgAADAgAAEMOAAABCwAANQUAACYPAAALAQAAFQYAAE4GAAB2AgAAowIAAHcMAABPBAAAtgUAAPwHAADrCgAA/AYAAGIGAAC0CAAACgEAABEHAADFCgAACggAAIANAAC3AgAA4Q4AANECAAD4CQAAZQcAAL0GAABpDQAATwwAAOoAAADtCQAAzw4AAKkEAABdAgAA9wkAABkMAAD5BwAARwMAAGYEAACnCgAA6wgAAH0AAAA1DwAAsQYAAE4FAAAcBwAAQgAAAKYAAABzDgAAMgcAANYBAADlAAAA0QUAAAoAAAAbDAAAsgAAAOsCAAAODAAAsQoAAK0NAADuCAAAiAQAAFwPAABqAgAA0AAAAO8HAAAZBQAAIgcAAFwDAACYAQAAjw8AAFoNAABoCgAALwEAAP4FAACIDgAAGQcAAFYOAABeAgAAJwgAAA0HAAChBwAAWQcAAPYCAAAGDAAAggsAAJoEAAAQBwAAUgwAANIHAADKBgAA8QgAAFMGAABvDQAACgwAALoJAABiAQAAMg4AANgBAAAjAAAAeA0AAPMGAABwDQAAXQ0AAJABAADAAgAAOQAAAJYOAADJBgAAGAMAAAQPAADJAAAAHgoAAMECAAAIDgAAJQIAAIsEAACJDgAAfAgAAPYMAADZAQAATgcAAFUOAAA6BAAAYA4AADELAAC5CAAAHQMAABkEAABnDQAAiQ0AAEIAAAAJBgAAQgwAAKkLAACQDAAAAQQAANUNAAAwDwAAeggAANQMAAA9DQAAgwwAAMQFAAAPBAAA3woAABMLAACMDAAAcQ0AANwFAAD5DAAA0gkAANwLAACoAgAACAgAANQAAACQBQAAWw0AAOcFAAA5AwAACgkAAIcCAADlCgAAVQ8AAOAAAACyDQAAfAwAAKEOAAA8DQAAPAcAACAIAADiAwAAiAUAACQCAAB6AgAAlQkAAAAAAACbAQAACw8AAKgEAAA1CAAAbwgAAIAGAACSAQAAQwIAAOYIAAD9CgAA8gIAAEMEAABqDwAAPQgAAFMBAADNBgAANgwAAJwFAAB+CgAAmggAAHUFAABDBQAAZgsAANYOAACADgAAtAcAAFEDAABQBwAAiQ8AAOoLAABwCQAAWwoAAB8KAACIDwAAjwwAAK4BAABIBgAAbAIAAPYIAAD0AQAAEQEAANUBAADUCQAAWQ8AAHIJAABGBwAA7QAAACMLAAA4AQAAmwIAALQMAAAHCAAAswYAACMNAADtAAAArgsAAOAHAADcDgAA7w0AABwOAABaDwAAGAkAAEQCAACpAAAApQIAAJcBAACmCgAA/gYAABkLAABLDAAA4woAAM0CAAAWBgAAKwIAAIoBAAADDgAARwsAAGkPAABCCAAAqgoAAC0DAABUBgAANwMAAEIHAAChBQAAHAcAAO4CAADBCwAABwEAAOAEAACbAAAA2w0AAM8IAABJAwAARwAAACkBAAAzCwAAzggAACcDAABLBwAAawIAAOsNAAAdCwAAYw0AANoHAAAPBwAAHAwAAE4EAABgBwAAOAUAAJgJAACAAgAAEgsAAOMEAAD4AAAAAQMAAK8OAABSCAAACA8AAB0DAABxBwAAMQYAALkOAAA+AgAAJQwAAB0MAABiBQAAJwAAAEcGAAAECAAA8gYAAIMGAAAaCwAAbggAAPIOAACUDgAAPAAAAD4FAAD7CwAAVAIAAGYIAAC5CQAAzAEAAIsAAABvCgAAcAEAAB0FAADEBQAAKAkAAKoHAADDDgAA+wEAAMgBAADbCgAA/AwAAEcOAAAqAgAAAwgAAD0GAAAYBQAAkwYAAJ8MAAD+BgAAzQsAAAEAAABQBgAA/gkAAAYIAAAkCAAA0QwAAPcDAADeBgAAbQ4AABEFAADaBQAAkgQAACwMAABfAAAAIg4AAOYCAADgDAAAQgIAAOkIAAA3CQAAgQIAAOQJAAB+DQAAwQ4AAFkCAAD1AgAAowwAAMkFAABKBQAAew4AANwMAAAzDQAA+wUAAN0GAADNAwAABgcAAOoGAAAPAAAASwsAACkKAADuAwAAngwAAE0MAAAoDAAAdAEAAI0PAABnDAAAzAYAAF4KAADkAQAArw0AAC0CAAByCAAA9Q0AAPMHAAAqDQAAPQcAAP0CAADFBgAA7g4AADgKAADuDgAAdwIAAJEBAACUBAAAAg0AAAkDAAAZDgAA5gMAANYOAADYAwAA/wsAALEKAAAsCgAA7gkAAOsFAADUBgAAwAsAAIoPAAAvDgAAlw8AAKEMAAD8BAAABAMAAFICAAA6BwAA3goAABEGAADGCwAAIwAAAMMMAADtDQAA4wIAAFwGAADfDgAABQcAALQFAABmCQAA9AgAACsJAABvBwAAgAoAAHUCAAD2CAAAVw4AAPoGAADCAAAA4gAAAIYNAACzDgAA9QsAACcLAADlDQAAywIAAGoHAABRBwAA3QEAAJsMAAAEBQAAKgcAAJ0LAACwDAAAVQgAAN4MAACNDAAAOAgAAHYHAAAlDQAADwkAAJQLAABsAAAAdQAAAOEGAACxBQAAAwYAAHMLAAD9DgAA3g0AANINAAC8CwAAUgQAAIAGAACGCAAAjgsAAO4LAACXBgAAsAcAAAQFAAAgDQAAvwMAAAAAAABlDgAAwQkAAHAKAACzAAAAWA0AAAoPAABIDQAAXQQAAEQIAAAzCwAAPwwAANMCAAA2DwAA+QUAAHAJAADADAAAXAMAAMkCAABDAgAAcQcAAAwOAAD5BAAAqwsAADUBAAAWAwAAgAUAAIUBAAAVBAAAAQkAAFQFAAD2BwAAgQ8AAGQBAACyBgAAugkAAPEAAADdAgAAOwAAANwOAADpAgAAmwEAAAcGAABTAAAAiwUAAPEJAADFDQAAcQUAAHoFAABeAQAAIgMAAI4DAADmCAAAKQIAAKADAABSDwAAZAQAAKoJAAAzDgAAnwUAAP0MAAA7BwAASwkAAJgLAAAPDwAARA8AANEAAAAhBQAA5wsAAPUHAABIAQAA7AgAALsFAAC7CwAANgUAAEoCAACTCgAAXwUAAMADAAB3CAAAzQMAABgJAAD+BwAA+A4AAAUIAABzAwAAswYAAM4IAADgDQAA0wkAAPsAAADkBQAAoQEAAJcEAAC3CQAAtQsAAIYNAADfBgAAGAgAANsIAAATBQAA3Q0AALcHAAAvCwAAHwYAAGgKAAD+BQAAvAEAAFMOAADHAgAAAg0AALcIAABuBQAAbwQAAPUEAADODgAA4gYAAD8DAAAeCAAAMQcAAHgNAAAeAgAAvAEAAHoLAACXDwAAFwUAAK0DAAB7CwAARgsAACACAADCBwAA8wUAADEBAAD2CwAAOgwAAIsMAAAMAwAAGQAAAAIFAAAWBwAAkQAAAKoKAACVDgAAqQoAABkKAADLBQAAUQUAAIcKAAB6DQAAwQIAAKMDAAAECgAABwcAAHIEAABoDgAA7QQAAAUEAAArDQAAiQUAAM0OAACyCwAAPAoAAEoBAACFBgAAJwIAAC0CAADTAAAAKQUAAM8OAABeDgAAOA8AAHkKAAA1CwAA+gYAABYNAADOCgAAVgEAAKwKAACTAgAASA8AAKIJAACKCgAAagEAAOcCAABEDwAA2wcAAIIBAABFCgAADw8AAKULAADTBAAAcAEAAJYLAADQDgAAFQsAANoMAABjCgAAMAQAAG8KAAAgCwAA3QsAAFoHAABeCwAA9QYAACkCAADQDgAAeAsAAGgHAACsCwAALwgAAC4MAAC0CQAAFQ4AAD4HAAA0AQAA2wkAADAGAAC2CQAABQkAANMLAAC/AAAAUwgAAC0MAAADBQAA8ggAADYDAACUCwAAkwwAAIMNAABoAgAAZQEAAH8FAADxDAAAyQUAAFEBAADCCAAA/QwAALILAAADAAAAUAwAAAsDAABvCQAApgwAALAKAAAGDQAAEw0AABwAAAArDgAAOQUAAC4DAACqAQAAIQgAAEUFAAC6DAAABQ8AAGkHAAAFAgAAkAQAAJYJAACMAgAAOwMAAEIHAABBBgAA2QgAAIIAAABcAQAA3AUAAFEPAAArDAAAxAsAAAcKAADSAQAA0wMAAN4DAAA/CQAA5AoAAEwNAABwBQAAkgMAAOUMAADWAgAA2Q4AALQEAABdAQAA+AoAAMQJAACrBwAANgYAAPcAAABWAwAAsgwAAGULAAAdDAAAwwsAAJILAADDAQAARQoAAKAFAAB5DgAASQMAANoJAADEBAAApgEAAKsIAACdCwAANgwAADgEAADkBgAAVgcAAFgDAABuCAAAAAoAAEgHAAD2AwAAHwoAACcHAAC2DQAAiQIAANoFAABoDwAAhQsAAHcGAADmDAAAAQ0AABkNAABWAgAAbQIAAHUFAAAFBQAAxgYAAIACAAA4DgAAegQAAJwJAACnAwAApAQAAHYNAAC2AQAADgsAAMoEAABGAgAAmAUAAEQBAAA0CwAA7QMAABoNAAAYAgAAiwMAAKELAAA7AQAAFwoAAHoAAACcCQAAvA4AAGsDAAAkBQAA2w4AACIGAAAOBgAAuwoAAOoIAACsAAAAXgQAAKsHAADlAAAA6Q4AAHoPAADXAQAA+AEAANMIAAAvAgAA0A0AABEPAADRAQAA+g0AAEUGAADRCQAA7AsAAPMCAAAODwAAyggAAE0BAAACAwAAEAwAAAABAABICwAAIgwAAI4BAAAEAQAASwMAAJYNAADCAQAAcQEAAGAPAAAuDwAAbAAAADYGAABwAAAAswMAAAkFAADzAQAAyQIAAHUGAABjDAAAFg0AACkJAAD4BwAAXwwAACUCAABlBgAA1ggAAMsBAAD/DQAAIQYAAJkOAAD9DgAAvgcAAN0BAADxAgAAYw8AAOILAADPAAAA0QwAAJcPAACiCwAAfgMAAJAAAACPAAAAuAoAAHkCAAAXDgAAiw4AAFMKAADyAQAAtwoAALoDAADODQAABgQAAKsFAAAiAwAA8AUAAEkMAAApDQAA/QUAAJwIAADGAQAA9Q4AAJ4JAADeDQAAvAIAAJYLAADdBgAATwUAAKUBAABmDAAADQsAAOcEAABBAgAA4wUAAFgEAAAfAAAA3AcAAOYKAADsBgAAkAMAAJoNAADiCwAAQAoAAMsOAAAgDwAAWwAAAIQDAADpDQAASgsAAIsJAADXAQAAVwwAAPcMAADbDAAAYgYAAC8IAAAHCQAAzwMAAOgMAABFBAAAAgAAAD4EAADwAAAACQcAACIKAABtDwAAnwwAALEIAAA/DgAANwEAAMoFAAByBQAAnQQAAG8PAACGBgAA6gcAAIgDAAAyAAAAJQ4AAE4JAAAgDAAASwMAAM0FAADdAAAAZQoAAJgAAAAIAgAA7wQAAIwPAACOAgAAxwYAAGAKAABSDwAAawoAAJ4JAABVAwAAnwEAAIUJAADMDgAAywgAAOYBAACECAAAaQ8AAKEFAABhCQAAwwAAADwBAAD2CgAAEQwAAFYDAAC4DQAAog0AAHgOAABlAgAAhwMAALIMAABwDwAAewoAAGEEAACMBwAA3gQAAMgLAAC1DQAAJQkAALkGAADGAwAA3wsAAC4LAADUAwAAOggAADwCAAB1AgAAKg4AAHQDAABTBwAAQgMAAOsGAAApAAAA8w0AAGcDAACvBgAAVAMAAHoBAAD/AgAAUwsAABsEAADoCwAATwUAAHMFAABdDAAA0wwAAJcFAABkCwAAhAYAAFACAACMCQAAQA8AANIFAAB9BwAAmQYAAA0OAAAZDwAA+AMAAK0MAAAdCwAAjQIAANgCAACKAgAAvA0AAOQKAADtDgAAXQgAAPMAAACaDwAARgMAACUFAABMCwAA3gAAACEKAAAMAwAAbQoAAPsGAABzAgAAMAYAADUBAADIAQAA+wMAAOEFAADHDQAAoAUAAAQEAABiDgAAAAIAAA0DAACeDwAAiQMAAJUAAACHAAAA6A0AAPsEAACTBAAAhAUAANkDAABVBAAA1wYAAPIAAAB+CgAAKA0AAHMBAAB8AQAAVg8AAJ0GAAA0DgAAoQMAAPgGAABjCwAA4g0AABMAAADlBQAAUQ4AAGIPAAAMBAAAEgEAAL0KAADqBQAAvQEAAHgFAADXCwAA5wkAAAEMAACJAAAAuwAAAIAFAABuBAAAdgEAALEKAADFBgAA+gwAAHcDAAAaCQAAUQMAAA0EAACdDQAA0A0AALkKAAB8BAAAYgsAAHAEAACPCAAA6gIAAGQFAADsCQAAJAkAAJIFAACbCwAA0wgAAB8FAADaDAAAqAAAAP8MAAD3CAAAswsAAFAIAACyAgAAJQoAABkAAADXAAAAJAgAACMCAADZDgAAMQ4AAGgAAAAYAAAAWwcAAE8HAAA6AAAAfw8AAFEFAAAyDwAAOAkAAEsEAABgDgAApAUAAPABAAD1DAAA7wEAAH4MAAB1AQAAuwYAAAsHAAB/BAAASwAAABcHAADBBgAA3gYAAJoBAABEAAAA6AwAAD8IAACRAAAAkwoAAOsGAAAsDAAAGAAAACEHAABKCwAAmQgAANQBAABjBgAARw0AAPMGAADHCgAAmwoAAJsIAADZDQAA2QIAALgOAAAjCgAAJgwAABcEAAA+AQAApQcAADwBAACOAgAA4QcAAHwLAABEBAAAoQMAAKwHAAATBQAANwwAALUNAACkCgAA3wkAALANAADqDAAAaAsAAHwFAAAsCwAAEwEAAGYMAAC9AAAAmwYAAI0HAAACBAAAYQMAAIIOAAA6DgAA0AYAAH8MAACABwAABQ0AAJ4MAACVDwAAVQkAAJAOAACdDAAA4gkAAHYGAACrDgAANA0AAAgDAABDDwAAcQwAALUEAADXAAAAewEAAA4BAABeDgAAtAkAADIDAACjAAAARgEAALcEAABdAAAA4g4AAG0AAAAyDAAA8AoAANMHAAC2AwAAnAEAAHEDAABVBwAA0AYAAGECAACPBQAAhg4AAAMDAAASBAAAEQIAACYPAABaCQAA2QUAANwFAAALAAAAlwkAALcBAACpCwAAGg8AAPUFAACkAgAAqQEAAPsCAADsAwAAnAMAAM4MAAD9BwAAlgUAALgEAAD6AAAADQAAAJQDAADgAwAAVwkAAF8OAABUBgAApAMAAMQIAABPCgAAWwwAALEDAABMBAAAig4AAJABAAAKCAAA6w0AAOIJAACkCQAABgcAABwNAADUBQAAqgkAAM8BAADDCAAA6AoAAJUMAAAWDwAAFAsAAJILAABsDgAASAQAAHgDAAAUCgAAGQsAAPACAAB7BQAAKggAAHYDAADmBgAAgAUAAFoHAAAJAgAALQkAABUEAAALCgAAjQIAAGMPAADJBwAAdAAAALYFAADlDQAAxgAAABAAAABBDwAAAwEAAKsOAABBBAAAYgMAAFoIAABaDQAAXAUAADYNAAA1AwAA/QYAAKkLAAAnDwAAggYAAIcMAADnBQAAJAwAAFoPAAAPAAAAmA8AAIAJAAASBwAA9gIAAAIDAAAYDAAAMwgAAGsMAACEDQAATQsAAMcBAAD8AQAAWQwAAPkCAABfBAAAPAcAADkAAADxDAAAOAIAAAgHAAAAAQAAFQYAAE0AAAA9BQAAXw8AAOkEAAA1CAAAJQ8AACMEAACADQAABgcAADoIAAD7DQAAZA0AANALAAAACQAAMAEAAJAFAAC6CgAAGAEAAJQBAADACQAAuQkAALkKAACOBQAA3QUAAF0DAABWAQAAEAoAAPEIAAADDwAADQ4AAAYLAACfCQAASAUAALsOAAAkCwAAsAkAAHIOAAA8BAAAPQ8AAAUGAAA8DAAAgA8AAOAKAAD8BwAAYQUAABMOAADcBwAA9wIAAK8OAACtCAAAuw0AAKoNAABSAwAAOA8AAM8AAACCBgAAKAgAAEwEAAAJBAAAXwoAAAkIAAANDQAAEwsAAPENAABQCgAALAEAACMIAABtAQAAlgQAALECAAATDgAAxw4AAIIFAAA0CAAAqwEAAP4IAABpDgAAPQsAABwOAABfDAAAIgQAAK4BAACdAQAABAIAALMNAACZBQAADwQAAHwEAACiDgAAMAcAAOkHAACeDQAAdwoAAGsBAADkDAAA4gMAAL0NAAD0AAAA9QEAAB8CAAAKBgAAcgMAAM0KAADxBAAAbgYAADgIAACtBgAASwgAABEKAAAaDgAA1AUAALINAAB+AQAAtAcAAMUBAACmAAAAtwYAAMUFAACACgAAkgkAACwJAAANBAAAfAYAAJkBAAC+AAAAWgIAAEoJAADIBgAA9gUAAHoCAABMBwAAnQsAAOUIAABECwAAMwEAAGEIAAD7AgAAxgwAAKMJAACDDAAAFgQAAF8JAACbBAAAgQsAAMACAADhDgAAuAwAAJYKAADxCQAAwgkAAE0MAABZBQAArwsAAJcOAAARDwAAFwgAAHgFAADFDQAAfQkAAKkEAAC3AQAACgcAAIYEAAAqBgAATAwAACcMAACRDAAA/AoAAHkDAAAIAAAAkgUAALQMAAD/BwAAwwoAALgIAAAbAQAAIwUAAC4NAADvBgAAvwUAAEcCAADMBAAA6wEAAFUFAADNBAAA6QcAAO8MAAAgAQAAaAkAAB8CAAB8DwAA1QwAANgDAABWDQAAqgsAADgGAAAGBgAABQIAAKIBAABUBQAA8gMAAAgGAADVAAAAaw4AAHgMAADnDgAA3woAAHgIAAD1CAAA+Q4AAGEIAABaBAAA9w0AAI4AAADZCwAAdA4AAEwFAACGDgAAlwsAAN4EAAB2BwAATgwAAJMMAAAGDwAAdAgAAN4BAAAjBAAAJQAAAD0EAAAMBAAAqAkAAPsDAAAzDwAA9gkAAJwMAAALBAAAogoAAJADAAB7CQAA2AQAAOAEAABzDgAAGw4AAO4FAACQAgAAsAUAAHYLAAA1DgAATw8AAFUJAACBBQAAAAwAAIYEAADbBgAAGQMAAJcNAACDBQAAoQUAADkJAAC9DAAA8wwAAJwNAABICwAAmAQAAI8KAAAnDwAAigMAAPADAABXBwAAiwMAAFgFAABeCQAAWgEAALsIAADUAAAAfgEAAKwNAABRAAAAwAQAAL8CAABjCAAA0gIAAB4OAADJCQAAFA8AABgFAACCAQAAJgsAAIgEAAClCAAA3wkAAB0OAAAtBgAAQAIAAPwEAAB4BAAAwQcAAKAKAACHDwAAuAUAAD8GAABJAAAASgYAAAcLAADPCgAAwAsAAG0KAADFBQAA1wsAACcMAADyDgAAFwkAACMFAAAsDwAAHQcAAD8GAACwBwAAPw8AAPcCAACpAgAAkQgAAAgOAACIAwAAaAsAAFMAAACgCwAAjAQAAA8FAADSBQAAdQwAABYDAAA+BAAABwYAAFYMAAAwAAAASg0AAAAAAAACAQAAQQMAAKwAAABcAgAAjwUAANoGAAAaDwAAlwgAAMINAADPBAAArQAAAOAIAACZDQAAIAkAAI0BAAAgBgAAoAUAAMEOAACBAwAAOw0AAL0BAAD8CwAAqQoAAJoAAADpAAAAZAEAANwHAABYBQAAqgYAAFoBAAALCwAApQcAAPMDAADKDgAAtgQAAOcFAAD0AwAAmQsAAMwGAAByCgAAfAsAANMIAACEAAAALw4AABQHAADQAAAAlQYAAFQBAACRBgAA0AoAAOwAAAALCgAAMAEAAPIAAAAtCAAAxgwAAIwGAAClDgAAiAAAALEMAAC6DAAA8QsAAL8MAABxDAAAKAIAAF8BAAB3DgAAWQMAAHcFAAAbCgAAbg0AADwKAACoDAAAwA0AAHYIAABGBwAAzgAAAAkHAABGDAAA2wEAAEsEAAAGDAAARAkAAJwHAAB7AAAAjQwAAIYDAACKDAAANg8AAPsBAACuDgAAgA0AAB0GAABBCAAAOgEAAPUEAACNBAAAoAoAANQNAACRDQAAIQ4AAJoMAACnCgAAAQYAABMPAAD6BwAAbQkAACsCAADpCAAAXgwAAKcFAACkCwAAhQMAABwHAABCDwAA0ggAADIKAAAtBwAAMgMAAAcEAAB1AwAA/Q0AAJoEAABQCwAAZQAAAEcBAACoDgAATQYAACgJAADwAgAAwgQAAGoOAADJDAAAyQ0AAFUKAAAgAQAAYAwAAAoPAADoDAAA8gMAAHoPAACCAgAAEwIAAMsNAADBBQAAgQ8AADsKAACCCgAA2woAANcOAAAgBAAAIwEAADQLAAApCwAADgYAAD8EAAD4DAAApgUAAL0CAAA9BQAAOAcAAF4IAAAOBAAAFAcAAMwAAADyCwAAcggAADcPAABXDgAAYwYAAKoLAAD0DQAAPQ0AAMgOAADWCgAAhQwAAP0LAAC0BwAAaAEAAIsNAABhBQAAbgUAAKsFAACuBwAA3AwAAEMBAAD0CAAAaQ0AAK8IAAD6BgAAQAAAAFkAAACoBgAAvgEAAGcEAABWBAAARwkAAHwPAABwDgAALwQAAOkCAABqCgAAHQ4AACYGAADZBwAALgoAADgIAABlDwAAUQYAACgPAABZCwAAVwUAAPECAABnCQAAvwcAACIAAADcBAAARQcAABcLAACNAwAAgQYAAHsEAADGAwAAowEAAOACAACDDwAAhwsAAKwMAABSCgAACgwAAG8DAABZCQAAXg8AAK0NAAChBgAAxgcAAJgDAAAhDQAANwEAACUEAABvAgAAdwMAALEGAABZCAAAcw8AAL0GAAApDAAAZAoAALYNAAAqCAAAnQUAANEMAABbBgAALgkAAO4AAACkBQAA/AgAAE0LAAAHDwAAjgsAAC8FAACaAQAAgw8AAI4HAACxDgAAKgIAADYFAAAzBQAAqAQAAMMDAABZCAAAQwMAAEQOAADRCQAA7Q4AAOUKAADmBQAAbQgAAPgFAAB+AAAARgAAABANAADPBgAAlgUAAKwGAAAbBgAAwwsAAHsGAAC2AgAAWwEAAEgAAABxBgAALw8AAAsHAACYDgAArwYAAFkIAAAeCwAAiAgAAIoJAADwDgAA6wwAAA4CAAAjBAAApAwAANQOAADPDgAAxgEAAFQNAACoBwAAzA0AALYGAAD0DAAAXQ4AABoIAAAcCwAAmgcAALMLAAA6CwAA8wMAALkLAACyDQAAVwsAAFwAAADIBgAAaA0AAJEPAABGDgAAxgEAAOoGAADEDAAARQ4AAIMAAABRDQAANwYAAPoCAAC1BAAAawkAABoMAABoAwAA6Q0AAPwJAAA8CAAA6QUAAB8FAAC7CgAAGwkAAHgPAADxDQAA4QoAALMJAAAXBgAAfg8AABwDAAC6BwAAoQUAAH4GAAAICgAATwkAADwFAABqDgAAZwQAAOYDAABMDwAAHggAAH0CAAAqAQAAFgYAAOoKAADuCwAA+gcAAMoHAAAIAQAAwggAAPAEAAAoBwAAKAUAAMgAAAA2BgAAMQUAAAYLAACiCwAAkwcAALoEAADcCQAAHQEAACYMAACHBwAAQQgAAPEHAAC2AgAAhA8AAHEGAAAgBgAAMQYAAO0LAADvCQAA/A4AAGYFAACqAwAAgAQAAF0JAABjBwAATwQAAMoAAABkDgAAqgQAAL4IAACLDwAAywoAAM4FAAC3CQAAYwEAAFoAAADgCQAAtAYAANsJAABVAwAAFgsAABwDAACODwAAMQAAAMABAACZAAAA8QkAAKsAAAAXAQAALw4AALkHAABxAwAAaw8AAD8HAAAJCAAADgwAAPwDAACjDgAA7AAAAHYDAABeAgAA6wcAAIYIAABoBgAAbwkAAN4HAAAiCAAAvQkAAO0KAAAxDQAADgcAAK4EAAClBQAAdQ8AANcEAAAqDwAA8gUAAHcMAABwBQAAEQ8AAMMBAAC3DgAA7gUAADoKAADYAgAA7QEAAF4HAADqDAAAMwQAAOsMAACFDQAA1QQAAJkDAABWBgAAKgYAAJgKAAAWCwAAvgwAADoLAAAhDwAASQcAAPgGAAAxBgAAVAcAAJMGAADIDAAAzgEAAPYEAAAEAwAAzwsAAAkPAADlCwAA3AwAAA0BAABADgAAAgAAACoJAACvDgAAZAkAAKMOAACUBAAA+goAAAEIAABSAgAAYgIAAJoNAABlDAAAMA0AAH8OAACBBwAAFAAAANoBAAALBwAAWAIAADoOAAAQDAAASwUAANwBAAA0BwAAWgMAAMkMAABOBwAAqgYAAKAKAADFAgAAQA8AAO8KAABqAgAAuAUAAGYAAAB3AgAAjgwAAJ4AAABxCAAAEgcAABEDAABTAgAAbQMAAFkOAADfBgAACAwAADoAAABeBQAAUgAAAOIBAADFAwAA6QgAAAkAAADbAAAAWgoAAIsHAAAkDAAAQw0AAAQNAABLDQAAcggAAA8DAADKAwAAjwsAAB0FAACwDAAA+AAAABIMAABEDgAAtAsAAEwAAACuBQAAeQMAAOUCAAAiDgAAKwQAAPgBAAAoBAAAQQcAAGkDAABkDAAA2AgAAAALAAAmBAAA+AAAADkIAADlCQAAdw0AANIOAAA2CwAA9AIAAIsCAACVCQAAyAsAAFMBAAD7BgAApAQAAL4DAABSDQAA6wQAAL0JAADLBAAACgoAAGAHAAAjBgAAMQoAAKoDAACCAgAA4AYAAOYIAADBCwAAVgcAAFMNAABgAwAADgkAAKwJAABUDgAAAA4AAEYMAABSBwAAXwIAAO4IAADSCQAAFwgAAM0IAABfCwAAeg4AAMkHAAAFAQAACwwAAPsJAADFBgAAPQEAAJEFAAC3DQAAZA0AAFUHAAAqBgAAdAYAADUDAAC2DAAAiwQAAKwKAAAjAAAAzgQAAFwNAAD+DgAAvAoAAGUJAAD7AQAALg8AAEIPAABxAAAA3w0AACwFAABuAwAAvgcAAIQHAACtAwAAUwEAAAsDAADYBAAA9goAAI0GAAA5AAAADA4AAIUKAACeAAAAwgoAACoHAADqDgAACwoAADgNAABiAQAAUQkAAOMMAABNBQAABwEAANUIAABlDgAAMAMAAFoIAACCDAAATQ0AAIwAAAA1DQAAZgAAAKIFAAC1BwAAewMAAAsJAACQCAAA1gMAAHkEAADTDQAAuwwAAIcOAAB0DQAAggkAAE0BAAA2CAAA2wsAAA8HAABpAgAAyQEAAGEDAABBDQAASQcAAJgNAAAuDAAAjAIAACgHAADZCQAAow0AAIUKAABTCAAA8AAAANsNAAAbAgAARA8AAKsMAAClBAAAvAQAAC0GAACLDwAAiQ4AAAYMAAA/CwAAlAAAAAECAAD+AgAAeQYAACgEAADEBQAA/wcAALMCAABAAAAAdQcAAAwKAABQAQAAwQoAADgMAAAYDQAA7wcAAOcBAABMDAAAjAwAANUOAADgBQAAawsAAKoJAACJAQAABwUAAFgGAADjDgAAVggAAHIFAADLCAAAXQEAAK4KAAApCgAAmAwAAMcBAAByAAAAVAMAAGcHAABnAgAAwAUAAEwKAAAkAAAArwQAAGgKAACpCgAALAQAAGoBAACLCwAAGA8AAA8CAAAqAwAAUQgAAEwLAADbBwAAqggAAAYJAADFCgAAqwYAAG4BAABzAAAA1wEAAPYGAADBDQAAJQcAACcOAACPBAAANg4AAAkAAABMAgAA/g0AAPgFAACTCwAAOQ8AAOcBAABdAwAAHQcAAGYKAABNAAAAiQ0AAGAKAAD1CwAAIQcAALsCAABQBQAAIwMAAJQNAACtAQAAMAcAAPsIAAACDgAAwwIAAC0KAACqDAAA5AgAAIkLAACuCQAAhwAAAF0GAADIBAAAFwYAAFIIAACnCAAAggYAAPMJAACCDAAAZAsAADACAABXDgAAAQ0AAOQNAACMCAAAjQgAAAwGAABTCgAAGAoAAA4BAABXCAAAtgEAAO4AAAAVDAAAFg4AAC0BAACxDgAASQ8AAMEMAAAbAgAAKQkAANsOAAC1AwAAjwgAAJIAAAACAAAApAgAADIKAADXAwAAyQQAAK8DAADOAAAAsAQAAIMKAAAGDAAA8AsAAMgJAADQAwAA4gwAAHwJAADNAgAA0woAANULAAAFBgAAqQEAAKgLAABnBgAA5gQAAKIBAAAsBQAAfwgAADMBAAAIAQAAUwQAADgDAABCCwAAiQsAAF8IAADcAwAA3AgAAPUGAAAWAgAABAkAAHkFAAA5AQAAzwEAAHILAADhBAAAkgQAAAsOAAB6CAAAwg4AAJYKAAC5AQAA7QYAAIEIAADkBwAAOQEAAGwBAAAjAQAAiwgAAE8IAACKCQAA0gAAAOcCAAANAgAA3QcAABMBAABeCQAAawcAAKoKAAAyDQAA0QsAACEFAAC5CwAABA4AAKwIAABrDQAA3wgAAGcOAADjDAAADAUAAIgJAABECAAAKwAAAEILAABrDQAAkgEAAOkAAACwAAAAaAIAAG0KAACsDgAAFAMAAFUNAAB+AwAARwEAAH0GAADECgAAgQQAAHkLAABeDQAAJQwAADsDAAA5CAAA7gAAAEsMAAB9BAAAHgUAAC8JAADmCgAA9wQAACwIAABXCgAAygEAADUAAACeBgAAHwQAAAUAAACoBwAAwQUAAIUJAADMCgAAuQQAACwOAADwAQAAHQUAABoFAABnDwAA5AkAALkMAACiDQAAxAgAAPcBAADeDgAAzgMAAEMJAAATBwAASwcAALgJAABVCwAA4g4AAMYOAAAfDAAAIA4AANUDAADEBwAAIgsAAIIIAABLAQAAQQ4AAH8HAADaBAAABA8AAJcDAAD9AAAAhAwAAHkJAADxBAAA2gUAAHIGAAB8CAAAygkAAJoDAAC+AgAAgQ0AAHMMAAB4BAAA1AEAANcJAAA5CQAA1gwAAFgIAADlDQAADwoAAP8JAAAYBwAAwg4AAI0FAADXBAAAGQsAALMEAAB3AwAAHg8AAH8JAACPCAAAtwAAABYBAACrDAAAvwsAAHQDAACkCAAAVQIAAGQOAAB/BAAAUwgAAH8IAABBAwAAwAkAAC8CAABFDQAArA4AAMUEAAACCAAAXwgAABUJAAAhCwAAGgcAABgFAACKAgAAAAAAAIoEAAAQCgAAFQAAAIsIAADxAAAAnwwAAOcAAABPAQAAtQAAANAOAAA/DAAAWAAAAJgNAADLAwAAXgYAAGIIAAAoDwAAzgQAAJEEAAAsDQAA2g4AAAgCAAAoDwAAqwoAANYAAABbDwAAcg8AAKwCAACwAwAAfwMAADYEAADFBAAA6gUAAPkDAADNDAAA4QAAAD8LAADJCgAAYAAAANEHAAB+CwAAyQUAAGkIAAAnBwAADw4AAJgLAAAGDgAAlwcAABYCAAAlCgAA3QoAALsOAAByDAAAiA8AAFsPAAA6DAAAjAUAAHsOAAANBwAAcgsAACEEAABAAwAASwsAAFEKAAD+DQAApQsAABgIAAArDgAAYQwAAOULAAB2CwAAVgoAABcBAAAPBwAA2wQAAM0GAACLCwAAOwsAAHgPAAD/DgAAjwMAAMMMAAByDwAAtgcAAMoAAABDCQAAWw8AAI4FAACzBQAA0QoAAMYAAAAXBQAANAoAAJsDAABIBAAAjgIAAEsKAACBAAAAMQUAADYPAAAVAgAAuwkAAEgOAADqAAAAQQQAAL8AAABTDwAALgAAACgLAAAzAwAAVwYAAIEAAAD2BAAArwAAANEAAADLAwAAigcAAK8EAAAwCAAAZAIAAFYEAACAAQAAzwUAANQNAAC9AgAADAkAACMOAAAdAQAA5QQAAK8MAAA1DAAASgEAABwGAADjAgAAngoAAJYBAABpAAAAugsAAJwFAADkDgAAXgAAALMIAABiAQAAXA4AALcCAAAICgAASwYAAFUHAABeCgAA4gcAAC0DAABBAgAAvwYAADEPAABmDwAAvQAAAHkOAAB/AAAAJg0AAMYJAAATBQAANgwAAEMHAAB9AAAAlwEAAAUOAAAABgAASwYAAAMCAABtAgAAsQwAAPQFAAA2AwAAwwMAABsBAACeDwAAww0AALgCAAD8CAAAiQsAAKkBAAA0BwAAHAEAABUKAAD/AQAACwcAANYCAAAGCgAAIA8AANULAADqCAAAMAIAABcLAABeBwAA+AgAANIAAACzCgAA5QQAAMMKAAAwAwAAZgIAAJAIAAB4CQAA9woAAMIFAACZCQAAYwAAADcMAABuDQAAnA8AALENAABxBwAARQoAAIYGAACGAgAAzQwAACEIAACFBwAAyAwAAKAGAAAuCQAAUgkAAAoBAAB9DwAA3wgAACAJAAA2CgAAsQIAAB4BAAD2DAAAGwcAALwDAAAjDQAAhgoAAIADAACdCQAAKQwAANEGAAAEAAAA4A4AACAPAADZCQAAKQAAAGYEAAD1CQAATQ8AAIEDAACdAgAArwYAAJAKAACDDAAAfgcAAHYCAAA4BQAA2g0AALALAAA7BAAAFwQAAI8GAADqBAAAlwcAAHMKAACcAQAAQgsAAEcNAABlBgAAhQ4AAMsGAAD2BAAASQoAALQMAAB0DgAAswgAAHwCAACtCQAA4gcAAJAOAACXAgAA/goAAC0MAACRDQAAhAwAAH0GAAAtDAAAuwEAAKcLAABoBAAAiwwAAHQHAACtCQAA1wkAAIQLAABcBgAAGQwAAMcCAABOBgAALAcAABoBAABOAQAAHQAAAPQKAAB5DwAACQ0AAKMEAADWBgAATAkAADUAAABVDgAA8AIAACECAAC0AwAAUwMAADYFAACUAgAA6A4AAH4GAAD7BQAA4wgAABwCAADBBAAARQgAALcLAAD8CQAAWw4AAJMAAADiCAAAuAcAALoOAABNDgAAYQsAAFMNAAD7AAAAuAsAABoLAADuCAAA/QMAAEMGAAB5AAAA8w4AAN4GAABSDQAAeAYAAFoDAADJCAAAcAcAAJ0GAABlCQAA5AIAAG8FAAAMAgAAcgwAAHIHAAD6DQAAPgwAAIYNAACVAwAAeAQAAOEOAADXBgAAJAIAAHkJAACqAgAA4QAAAM4JAACKBQAANQ0AAJQDAABJAgAAQgUAAN0EAABFCQAAdAEAACEMAAA0CgAAug4AALQAAADcCAAAXQkAAK0MAACgDAAAOAcAAHUKAAD0AgAAfQEAAKsBAACoCgAAUwQAACACAACWBQAAHggAAJgKAAAPBQAAdw0AAEMLAADCDgAAfAkAAOILAABbBgAA3wsAAMQAAABuAAAAnwMAAOsJAADICAAAjgQAAO0FAACvCQAAdAAAAJcEAADgAgAA3AIAAGAFAADjAAAA0gcAAH4AAACXDAAAUw8AALgAAAD6DQAAtQEAAKcCAAAmDgAAzQMAALEDAAD+CwAAowQAAHwOAABTDQAAAQYAAKoBAAA6DgAAiQcAACkEAAC3DQAADwkAAFQKAABLCAAAig8AAF8AAABSDQAAdw8AALAIAADbBAAAVQYAAMoCAACZBwAAVggAAC8FAADiBQAA1AMAAMcIAACkBgAAiQMAAGMJAADLAwAApQYAAAsCAAANDwAAVwoAANYOAABbAAAAqwMAABUDAABbCwAAGwIAAC4NAACDCQAAKggAABAOAAC/AAAAgwoAAEkMAAA9BQAAjQIAADYJAAB5CgAA9wMAABMMAAA/AgAA4QoAAJQJAADfBwAANwgAADwBAACuCAAADwYAAEIDAACiAgAAYQwAAL8MAACOCgAAUQYAAAIOAADAAwAA/QYAAMYAAADyCgAAbQwAAH0DAABTCwAAjQwAAHwLAAB3DgAAdQgAAFQBAAAjBwAACgcAAGQAAACfDAAASwoAAI0JAAC4AwAAEAoAAF8OAADkAgAAqQMAABYGAAC5AAAACAAAAK8BAABDCQAAPAUAAJQEAAAoAwAAgAEAAHILAAAmBwAAIgkAAKIAAACdAAAAbgIAAP4MAACFCQAAdAsAAKMJAADLBwAAIwEAAKgLAADUBQAAagUAAPgCAAC1DAAAIQwAAIMCAADGCgAA3AUAAOAMAAD9CgAA7AIAABQNAABrDwAALQMAABkDAAC/AgAAiQsAAM8CAAAkAAAAOwMAAAcOAADZAAAAQgwAAJcNAADNCAAAyQYAAP4EAABxAgAA+gAAADQCAACYAQAAfgcAAOIAAACNDwAAYwQAAL8BAABFDwAAlwsAAEELAADeAAAAqwcAAKgIAABUAAAAFQ0AANQGAAA6BAAAEgYAABEAAADUCwAA+AMAAOIKAADWDQAAiwEAAHkFAAAwBgAAkwgAAL0BAAC8CQAAKQIAALgHAAAdAgAALQcAADANAADWBwAAOAoAADEFAADwBAAABw0AAPACAACnAgAAFQEAAIQJAAC+DAAA4gYAAIQEAAAwBgAAUAsAANQIAACCDwAAQgcAAIMDAAARAwAAYwgAANEDAAAKBQAAjQQAAJELAABIAwAAYAwAAHIPAABdAAAAtQ4AAO4OAAAOBAAADAAAAEYPAABZAwAAFgoAAEoIAAAnAwAAgwsAADkFAAC1BgAA2AAAAH8OAAAfCQAAXA0AAOMCAAAnBgAAtgwAAK0CAAC9CAAAjgYAADAJAAD/AQAAagwAAPsLAACDDwAASwEAACAOAADwBgAAEAQAAIABAADxDQAA1AIAAGcNAACSDgAABAgAAPAJAACjCQAABgEAAC0BAAADBgAALQAAAIcHAABoDAAAAQgAAMACAADTCQAAggMAACwOAADODAAATQ0AAOcGAACeAQAAkg8AAF8IAAB6DQAANQYAAOoHAACHCwAAjQkAAP4CAABWAgAAnw4AAD4FAAB9AwAA5QYAAI4AAADNAAAASA0AAAMPAAD7BgAASQ8AAOQKAABzBwAArAsAAPcKAACkCwAAGwcAAC4BAAAYBgAA6QkAAGMLAABvCAAAOQQAAO0HAAAMDAAAAAwAAJ8IAAD4CAAA3A0AAEcIAABrCQAACQEAAAIPAAB3BQAAgwEAAFkPAADVBgAAnwsAABUCAADABAAAiAUAAAILAAA4DgAALAAAABIEAAAAAwAAxAIAAPwIAAAFDwAAXAcAACQGAACeAAAAGQEAAEoCAAAQAwAAfAcAANUGAAApCAAAZg0AAAEOAABrDgAAFAAAAMsEAACwCgAAlQsAAOkEAACDBAAAUg8AAPoOAAByDgAAowcAAAsFAACTAwAAbw0AABcDAAByDwAAegoAAP8KAACkAwAAVgwAACYHAABUDwAAcAkAAHcBAAD7DAAA1AoAAEoNAACMAwAAYgcAAJoKAADxDQAAXQMAAGMLAAAOBQAADwcAACoOAADaAwAAvAcAANcJAAAbDAAAUwkAADcAAABvAgAAnQUAALwDAADtCQAA/gUAAO8JAAB6AAAA8A0AAKkJAADWCQAACgAAAKECAADlDQAAIAcAALkKAADPCAAAFgUAAJAGAAASDwAA6AcAAHEPAACYCwAALg4AAHoOAADGBQAArQgAAMsEAACXDAAAggQAAO0AAABoBgAAdQMAAK4KAACgBQAALAMAAG4OAACNDgAACwYAAA0IAACyDAAAAgIAACECAABiDgAAkwcAANELAABsBAAAlQIAADgNAABXBQAAhgkAAEUMAAAKDgAAdgkAAIELAAAHAgAA6AYAALoMAACgAAAAjg8AADQIAACfDQAAMgcAABUPAAAwBwAAHwsAANsCAAC0BQAADgMAANwKAACZBgAAkw4AAHEGAABkDAAAQAEAAKgKAAAPBQAAugoAACgKAACrCQAAGgcAAMcMAABnCQAAPgoAAGwHAADZBgAAsAgAAB4GAACACwAAsgoAAJUAAAC0CgAAtAMAAJwKAABpAQAALwcAAEYIAACjBAAAZwEAAJUHAADAAAAA/gQAAL0MAADBDQAARwcAAL8GAACsCAAAaw0AAIkHAADWBwAATgYAAP0BAADUAAAAigoAAHoDAAAIDAAAbQYAAEEFAACTCwAAAAQAAOYFAADEAQAASQwAAJAHAACSCQAAjQAAANcNAADKCQAAXQgAADcMAABfAwAApwMAAEYFAAAFAwAALQoAALIBAAAlDQAA7AgAAE8MAADlDAAAOQQAAAcCAABNCQAABA8AAKUAAAB/CgAAyAoAAGwNAAAYDgAA5wYAAIAEAAAqDgAA5w4AALYMAACsAgAAGQgAAAMIAACyCgAAqwYAAAsGAAAQCwAAjAoAAAIEAAC2CQAAggAAAFkKAACAAwAAiQYAAKUNAAAuBgAAfwMAAJcGAADRAgAA2AgAAEUGAAD7BgAA0gwAAMUCAAAOBAAA+QQAANgKAAC8DgAAJgsAAC8NAABaBAAA+A0AAEgMAAAiCwAABwsAADkLAADgBQAAHgQAAPoDAACECgAAEAEAACEEAADjCgAAYQAAADMDAAB7DwAAAAoAAG0OAAC+AwAA/gkAAMoLAADRAgAASwkAABIAAADuAwAAGgIAABAEAAAyDQAAvAMAAJoAAAB8CgAAmgsAAIEGAABWBQAARw4AAN0JAADGDQAA5AQAAMMKAAA7BwAAWw0AAHsHAAAEBwAAFw4AAMANAADjAQAAGAMAAKINAADhDAAAyw0AALwLAADyAgAABAMAAEMAAAAgDQAA4wMAAG0CAAAsBQAAUAEAADkHAAAdCQAA9gMAAHUHAAAKDwAARw8AAN0OAABgBAAAaAkAAHcDAABrBQAANAMAABYDAAAsCAAAiAYAAAYBAAAqDwAAZAwAAIkAAAByBgAAvQ0AAG4FAAARAwAAgAcAAOgCAADNCgAA4QwAAFUBAACsAAAAVAcAAFgPAABPDQAAiQ0AADMHAAA7CwAAGA8AAFkFAACfBgAA4wMAADUHAADfCgAAyggAAAgLAAC+CwAAugEAAG0HAAATDAAAYAgAAA4OAAC/AwAA8QYAAEcEAADSDAAASgwAANgFAADHBwAAwA0AAC0FAACaDgAAzgYAAGUAAAAoAQAA7w0AAKQMAAD/BgAAQAQAAFMMAACYBwAADQgAAAkKAADDBwAAVQoAAAkLAADMCwAAYgkAAJUIAACvCAAAFQwAAFcDAAAkBQAAMQMAAMIJAACiAgAAUgsAAIgKAAALDQAAgwIAABMJAAC8BAAAIAUAAAwBAAAJBQAAVgcAAHwFAADMAAAA1wIAABEGAADcBgAA4AUAAKIGAAAEBAAAugYAAEIDAAC+DgAArQoAAN4CAADFAAAATggAACMBAAA7DAAAigEAAIUHAADKDgAAqgcAADQIAAAcAwAA8AQAAIALAADSAAAABwMAABIFAAB6AAAANQ4AAE8JAABSBgAAzAAAAKINAABoDwAAbAQAAA4CAADUCgAAvgsAAMcAAABbCgAAtAwAAP8BAAAVCwAAawgAAKQBAAAGDgAAsAIAAG0MAAAVCAAAEwMAADUIAAB4DwAARw0AAGcOAAC3AAAACQEAAEsAAACMCwAAlQ8AAIIPAACsDAAACgUAAFsPAABwAQAAHQEAAMcMAAAsBAAADwwAAEsFAADQBwAASgQAABwEAAAZAAAA3AsAALsCAAAjCAAAkQsAAJgPAADdCgAA6wkAAO0DAADHAwAAhQAAAAkLAADLBwAAqgQAADMMAABcBQAAUgwAAJIAAADQCQAAAAsAADcNAABMCQAAhAMAANILAADdCAAA+QcAAJQMAADZBQAAFgEAAKAHAADHBQAAegAAAEcPAADtBQAAogcAAE8MAABwBwAAMwsAAJADAABcDAAAfw0AAAAEAACqDQAAtwEAAFYAAAAnCwAAYwsAANICAAC+BgAAegoAACABAADYDgAAmwAAAMMLAACFDwAAOwsAANcIAAACDwAAtwoAABMNAACmDgAAFgkAADgJAACpAAAAEQkAAH4EAAAPAAAAPA4AAFYAAADrDgAA2QMAALYCAACLBQAAZAAAANsCAAAbCAAArgwAACEDAABxDgAAFwEAALwEAABxCAAAIAoAAGECAADTBQAANQ8AAL4GAAB/DgAAIQ4AAIQEAAA9DgAAAggAAJEGAACbDAAA/AkAAPkMAADBAwAAIgoAABoHAAAuBwAA5gEAAOABAAAgBAAATw4AAHoMAACbBwAA+AgAAIYOAAC4DQAAGAYAAN0MAADTAAAAdQ4AAFcMAADHBQAA9QIAAH0FAAA2CAAAqg4AAKgOAADtBgAAfAMAAHkFAABpCwAAoQ4AAKkHAABuBwAAPgYAAHUKAABSAAAAxQ0AALkGAAArAAAA6QEAACUDAAAnDQAAqAMAAJ8NAACvDQAANwcAAP0JAADjBAAArQ4AAHEOAAATAwAALgUAACAEAABiCAAAAQsAAEMAAAAIBAAAeg4AANUHAABpCQAA5gsAABUKAAAtAgAAtAYAALsEAACFDwAA2AIAAFkKAACnBAAASgQAAHkKAAAiCQAANwMAANIIAACwBQAAMQEAAEYIAAA4CwAAeAUAAMcIAABRAgAA+gAAACEAAAAjBgAA/wwAAKoAAACNAQAA/gQAAAoGAADSAQAA2AgAAI0LAADIDQAAaQQAACwNAACgCQAAnQQAAIYBAABgDQAASw0AACgHAAD5CwAAWggAAHgBAAB6BQAAmgoAABsFAAAeAQAAvwMAACoEAACjBwAAdggAAAwIAAAMDAAAewsAALcMAADbAQAAaQsAAKwCAAB9AwAAPQAAAE0BAADVAgAApwkAAMwIAACEBwAAGw8AAD0GAADaAwAAEgIAAFoDAAByCQAAgQEAANgOAABFCQAAQgwAAMcNAADwCAAATgMAAGIEAAB7DAAAZQsAAA0BAACVAgAAJwgAALkIAACrDgAAZAMAAHgGAAAZAQAAGgEAAEAGAADeDgAAvAcAAFkBAABdBwAATAMAACQLAABtAAAA6goAAHoLAAAoDQAAPggAAJUHAAAiCgAAcQ4AAIoPAAAlAwAAdAMAANgLAAAaCAAA8AgAAHUHAAC2BgAAbAgAAMgKAABBCgAACgIAAC0MAAAHDAAAiw0AAFkAAAB8DQAAnQEAAGcCAADeCwAAAQMAAA8BAAALCAAAfwYAADAEAAA2CgAAhAUAAD8GAABSCQAAVwgAAHcNAADABAAASQUAAJsLAACjAgAABggAAOcGAAAEAAAAYgUAACgAAACGAQAASAMAABULAACxAQAANAUAAHwFAADEAgAACgkAAOEJAAA2AQAAqAEAAEgEAABGCAAAewUAAGEAAACRAQAAegMAAI0DAAACCwAA8gwAAJ8AAAC2CAAAPQcAAKgLAABuBgAALgMAAIEPAACsDQAAlgkAAIoIAAB7BgAArwEAANIDAACnDQAAPg8AANwKAAACCQAATg4AAOYEAABCDgAAswYAAAMKAADXBwAATAYAAG8OAACGCgAARQcAAPEDAAAzAQAAlwoAALIKAADXCQAAWwUAAGYBAABkAAAAUQ0AAOwKAAC2DAAAVwMAAOQNAACFCwAAZAIAACsHAADQCQAARgAAAAYGAACRDwAA5wkAAOwNAABdAQAA7QMAACQDAACSAQAAZgwAAKIMAADWCgAAQAEAAL4CAAB0BwAA7AQAAHwHAABFDgAAWAAAAL0LAAAmAwAAbggAAJkEAAA1DQAAkQEAAMMIAADqAgAA1QQAAFEMAABqAwAAUQEAAMwNAAAMBAAA7AEAAO4NAAC6DAAATQsAAK4GAADXAAAArg4AADwMAABQDwAAwwMAACwOAACvBwAAIgsAAGMBAACJAQAAXAsAADYDAADjAQAASQgAAB0IAABZBgAAZwEAAE0OAAA2CAAAlgEAAC8LAAAVAAAA1QoAAIgGAADuCwAAhAAAAGkBAAAQAgAAHgUAAL8FAACzAAAA7wgAAEwGAACMCwAAfQgAAIMIAAAUAgAAhQoAAIUIAABOCwAAYQ0AAIoEAAAcCQAAFAYAANwNAAAHDQAAAwoAAFcEAACjCwAABQgAACYIAAD1DAAApg0AAO8FAAAmAQAAwQgAAJwMAABuCgAAHgMAABEGAADVDAAAagsAABIBAACYDAAAfQwAAI4KAACcBAAAXAQAAA==\"},\"shape\":[10000],\"dtype\":\"int32\",\"order\":\"little\"}],[\"diverging__\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA==\"},\"shape\":[10000],\"dtype\":\"bool\",\"order\":\"little\"}]]}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1208\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1209\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Circle\",\"id\":\"p1204\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"Ea\"},\"y\":{\"type\":\"field\",\"field\":\"log10_A\"},\"size\":{\"type\":\"value\",\"value\":2},\"line_alpha\":{\"type\":\"value\",\"value\":0.02},\"fill_color\":{\"type\":\"value\",\"value\":\"black\"},\"fill_alpha\":{\"type\":\"value\",\"value\":0.02},\"hatch_alpha\":{\"type\":\"value\",\"value\":0.02}}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Circle\",\"id\":\"p1205\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"Ea\"},\"y\":{\"type\":\"field\",\"field\":\"log10_A\"},\"size\":{\"type\":\"value\",\"value\":2},\"line_alpha\":{\"type\":\"value\",\"value\":0},\"fill_color\":{\"type\":\"value\",\"value\":\"black\"},\"fill_alpha\":{\"type\":\"value\",\"value\":0},\"hatch_alpha\":{\"type\":\"value\",\"value\":0.1}}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Circle\",\"id\":\"p1206\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"Ea\"},\"y\":{\"type\":\"field\",\"field\":\"log10_A\"},\"size\":{\"type\":\"value\",\"value\":2},\"line_alpha\":{\"type\":\"value\",\"value\":0.2},\"fill_color\":{\"type\":\"value\",\"value\":\"black\"},\"fill_alpha\":{\"type\":\"value\",\"value\":0.2},\"hatch_alpha\":{\"type\":\"value\",\"value\":0.2}}}}},{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1216\",\"attributes\":{\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1123\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1124\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1125\"},\"data\":{\"type\":\"map\",\"entries\":[[\"index\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"\"},\"shape\":[0],\"dtype\":\"int32\",\"order\":\"little\"}],[\"Ea\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"\"},\"shape\":[0],\"dtype\":\"float64\",\"order\":\"little\"}],[\"log10_A\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"\"},\"shape\":[0],\"dtype\":\"float64\",\"order\":\"little\"}],[\"sigma\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"\"},\"shape\":[0],\"dtype\":\"float64\",\"order\":\"little\"}],[\"chain__\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"\"},\"shape\":[0],\"dtype\":\"int32\",\"order\":\"little\"}],[\"draw__\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"\"},\"shape\":[0],\"dtype\":\"int32\",\"order\":\"little\"}],[\"diverging__\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"\"},\"shape\":[0],\"dtype\":\"bool\",\"order\":\"little\"}]]}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1217\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1218\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Circle\",\"id\":\"p1213\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"Ea\"},\"y\":{\"type\":\"field\",\"field\":\"log10_A\"},\"size\":{\"type\":\"value\",\"value\":2},\"line_color\":{\"type\":\"value\",\"value\":\"orange\"},\"fill_color\":{\"type\":\"value\",\"value\":\"orange\"},\"hatch_color\":{\"type\":\"value\",\"value\":\"orange\"}}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Circle\",\"id\":\"p1214\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"Ea\"},\"y\":{\"type\":\"field\",\"field\":\"log10_A\"},\"size\":{\"type\":\"value\",\"value\":2},\"line_color\":{\"type\":\"value\",\"value\":\"orange\"},\"line_alpha\":{\"type\":\"value\",\"value\":0},\"fill_color\":{\"type\":\"value\",\"value\":\"orange\"},\"fill_alpha\":{\"type\":\"value\",\"value\":0},\"hatch_color\":{\"type\":\"value\",\"value\":\"orange\"},\"hatch_alpha\":{\"type\":\"value\",\"value\":0.1}}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Circle\",\"id\":\"p1215\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"Ea\"},\"y\":{\"type\":\"field\",\"field\":\"log10_A\"},\"size\":{\"type\":\"value\",\"value\":2},\"line_color\":{\"type\":\"value\",\"value\":\"orange\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.2},\"fill_color\":{\"type\":\"value\",\"value\":\"orange\"},\"fill_alpha\":{\"type\":\"value\",\"value\":0.2},\"hatch_color\":{\"type\":\"value\",\"value\":\"orange\"},\"hatch_alpha\":{\"type\":\"value\",\"value\":0.2}}}}}],\"toolbar\":{\"type\":\"object\",\"name\":\"Toolbar\",\"id\":\"p1176\",\"attributes\":{\"tools\":[{\"id\":\"p1191\"},{\"id\":\"p1192\"},{\"id\":\"p1194\"},{\"id\":\"p1195\"},{\"id\":\"p1197\"},{\"type\":\"object\",\"name\":\"SaveTool\",\"id\":\"p1199\"},{\"id\":\"p1200\"}]}},\"toolbar_location\":null,\"left\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1186\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1187\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1188\"},\"axis_label\":\"log10_A\",\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1189\"}}}],\"below\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1181\",\"attributes\":{\"visible\":false,\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1182\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1183\"},\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1184\"}}}],\"center\":[{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1185\",\"attributes\":{\"axis\":{\"id\":\"p1181\"}}},{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1190\",\"attributes\":{\"dimension\":1,\"axis\":{\"id\":\"p1186\"}}}],\"frame_width\":150,\"frame_height\":150,\"min_border_left\":80}},{\"type\":\"object\",\"name\":\"Figure\",\"id\":\"p1220\",\"attributes\":{\"align\":\"end\",\"x_range\":{\"id\":\"p1229\"},\"y_range\":{\"type\":\"object\",\"name\":\"DataRange1d\",\"id\":\"p1219\",\"attributes\":{\"start\":0.0}},\"x_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1230\"},\"y_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1231\"},\"title\":{\"type\":\"object\",\"name\":\"Title\",\"id\":\"p1227\"},\"renderers\":[{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1258\",\"attributes\":{\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1252\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1253\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1254\"},\"data\":{\"type\":\"map\",\"entries\":[[\"x\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"pg2HpYGf7j+mDYelgZ/uP0pP5SbXtu8/Sk/lJte27z93yCFUFmfwP3fIIVQWZ/A/SOnQFMHy8D9I6dAUwfLwPxoKgNVrfvE/GgqA1Wt+8T/sKi+WFgryP+wqL5YWCvI/vkveVsGV8j++S95WwZXyP5BsjRdsIfM/kGyNF2wh8z9hjTzYFq3zP2GNPNgWrfM/M67rmME49D8zruuYwTj0PwXPmllsxPQ/Bc+aWWzE9D/W70kaF1D1P9bvSRoXUPU/qBD52sHb9T+oEPnawdv1P3oxqJtsZ/Y/ejGom2xn9j9MUldcF/P2P0xSV1wX8/Y/HnMGHcJ+9z8ecwYdwn73P/CTtd1sCvg/8JO13WwK+D/CtGSeF5b4P8K0ZJ4Xlvg/k9UTX8Ih+T+T1RNfwiH5P2X2wh9trfk/ZfbCH22t+T82F3LgFzn6PzYXcuAXOfo/CDghocLE+j8IOCGhwsT6P9pY0GFtUPs/2ljQYW1Q+z+seX8iGNz7P6x5fyIY3Ps/fpou48Jn/D9+mi7jwmf8P1C73aNt8/w/ULvdo23z/D8i3IxkGH/9PyLcjGQYf/0/8/w7JcMK/j/z/Dslwwr+P8Ud6+Vtlv4/xR3r5W2W/j+WPpqmGCL/P5Y+mqYYIv8/aF9JZ8Ot/z9oX0lnw63/Px1A/BO3HABAHUD8E7ccAECG0FN0jGIAQIbQU3SMYgBA72Cr1GGoAEDvYKvUYagAQFjxAjU37gBAWPECNTfuAEDAgVqVDDQBQMCBWpUMNAFAKhKy9eF5AUAqErL14XkBQJKiCVa3vwFAkqIJVre/AUD8MmG2jAUCQPwyYbaMBQJAZMO4FmJLAkBkw7gWYksCQM1TEHc3kQJAzVMQdzeRAkA25GfXDNcCQDbkZ9cM1wJAn3S/N+IcA0CfdL834hwDQAgFF5i3YgNACAUXmLdiA0BwlW74jKgDQHCVbviMqANA2iXGWGLuA0DaJcZYYu4DQEK2Hbk3NARAQrYduTc0BECsRnUZDXoEQKxGdRkNegRAFNfMeeK/BEAU18x54r8EQH1nJNq3BQVAfWck2rcFBUDm93s6jUsFQOb3ezqNSwVAT4jTmmKRBUBPiNOaYpEFQLgYK/s31wVAuBgr+zfXBUAgqYJbDR0GQCCpglsNHQZAijnau+JiBkCKOdq74mIGQPLJMRy4qAZA8skxHLioBkBcWol8je4GQFxaiXyN7gZAxOrg3GI0B0DE6uDcYjQHQC17OD04egdALXs4PTh6B0CWC5CdDcAHQJYLkJ0NwAdA/pvn/eIFCED+m+f94gUIQGgsP164SwhAaCw/XrhLCEDQvJa+jZEIQNC8lr6NkQhAOk3uHmPXCEA6Te4eY9cIQKLdRX84HQlAot1FfzgdCUAMbp3fDWMJQAxund8NYwlAdP70P+OoCUB0/vQ/46gJQN6OTKC47glA3o5MoLjuCUBGH6QAjjQKQEYfpACONApArq/7YGN6CkCur/tgY3oKQBhAU8E4wApAGEBTwTjACkCA0KohDgYLQIDQqiEOBgtA6mACguNLC0DqYAKC40sLQFLxWeK4kQtAUvFZ4riRC0C8gbFCjtcLQLyBsUKO1wtAJBIJo2MdDEAkEgmjYx0MQI6iYAM5YwxAjqJgAzljDED2MrhjDqkMQPYyuGMOqQxAXsMPxOPuDEBeww/E4+4MQMhTZyS5NA1AyFNnJLk0DUAw5L6EjnoNQDDkvoSOeg1AmnQW5WPADUCadBblY8ANQAIFbkU5Bg5AAgVuRTkGDkBslcWlDkwOQGyVxaUOTA5A1CUdBuSRDkDUJR0G5JEOQD62dGa51w5APrZ0ZrnXDkCmRszGjh0PQKZGzMaOHQ9ADtcjJ2RjD0AO1yMnZGMPQHhne4c5qQ9AeGd7hzmpD0Dg99LnDu8PQOD30ucO7w9AJUQVJHIaEEAlRBUkchoQQFkMQdRcPRBAWQxB1Fw9EECO1GyER2AQQI7UbIRHYBBAwpyYNDKDEEDCnJg0MoMQQPdkxOQcphBA92TE5BymEEArLfCUB8kQQCst8JQHyRBAYPUbRfLrEEBg9RtF8usQQJS9R/XcDhFAlL1H9dwOEUDIhXOlxzERQMiFc6XHMRFA/U2fVbJUEUD9TZ9VslQRQDEWywWddxFAMRbLBZ13EUBm3va1h5oRQGbe9rWHmhFAmqYiZnK9EUCapiJmcr0RQM9uThZd4BFAz25OFl3gEUADN3rGRwMSQAM3esZHAxJAOP+ldjImEkA4/6V2MiYSQGzH0SYdSRJAbMfRJh1JEkCgj/3WB2wSQKCP/dYHbBJA1Vcph/KOEkDVVymH8o4SQAkgVTfdsRJACSBVN92xEkA+6IDnx9QSQD7ogOfH1BJAcrCsl7L3EkBysKyXsvcSQKd42EedGhNAp3jYR50aE0DbQAT4hz0TQNtABPiHPRNAEAkwqHJgE0AQCTCocmATQETRW1hdgxNARNFbWF2DE0B4mYcISKYTQHiZhwhIphNArWGzuDLJE0CtYbO4MskTQOIp32gd7BNA4infaB3sE0AW8goZCA8UQBbyChkIDxRASro2yfIxFEBKujbJ8jEUQH+CYnndVBRAf4Jied1UFECzSo4pyHcUQLNKjinIdxRA6BK62bKaFEDoErrZspoUQBzb5YmdvRRAHNvliZ29FEBRoxE6iOAUQFGjETqI4BRAhWs96nIDFUCFaz3qcgMVQLozaZpdJhVAujNpml0mFUDu+5RKSEkVQO77lEpISRVAIsTA+jJsFUAixMD6MmwVQFeM7KodjxVAV4zsqh2PFUCLVBhbCLIVQItUGFsIshVA\"},\"shape\":[264],\"dtype\":\"float64\",\"order\":\"little\"}],[\"y\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAAADBfpjW3gdeP8F+mNbeB14/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADBfpjW3gdeP8F+mNbeB14/wX6Y1t4HXj/BfpjW3gdePwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOV/yIOeFdj85X/Ig54V2P8F+mNbeB24/wX6Y1t4Hbj8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEF/yIOeFdj8QX/Ig54V2PwAAAAAAAAAAAAAAAAAAAAAQX/Ig54V2PxBf8iDnhXY/AAAAAAAAAAAAAAAAAAAAAPd+mNbeB14/936Y1t4HXj/BfpjW3gduP8F+mNbeB24/936Y1t4Hbj/3fpjW3gduPwAAAAAAAAAAAAAAAAAAAADBfpjW3gdeP8F+mNbeB14/wX6Y1t4Hbj/BfpjW3gduP8F+mNbeB24/wX6Y1t4Hbj8QX/Ig54WGPxBf8iDnhYY/EF/yIOeFhj8QX/Ig54WGPzlf8iDnhXY/OV/yIOeFdj8QX/Ig54WGPxBf8iDnhYY/KedbDmVmmD8p51sOZWaYP8F+mNbeB54/wX6Y1t4Hnj84Tx9G68SiPzhPH0brxKI/G5s9KqiVpT8bmz0qqJWlP0OLak+s1KE/Q4tqT6zUoT8uE9Q8KrWzPy4T1DwqtbM/aZs9KqiVtT9pmz0qqJW1P8X8l6XHDbY/xfyXpccNtj9G0R93Ar+6P0bRH3cCv7o/PqSnSD1wvz8+pKdIPXC/PyWlp0g9cL8/JaWnSD1wvz+xpKdIPXC/P7Gkp0g9cL8/JNeIM2mlxD8k14gzaaXEP82JNiKQ28w/zYk2IpDbzD+2Qk3NHfjOP7ZCTc0d+M4/erF5wQo90z96sXnBCj3TP1o+slRhh9Q/Wj6yVGGH1D9O3L3Cs5LZP07cvcKzktk/57+yhXiB3D/nv7KFeIHcPz6V1G1Br9s/PpXUbUGv2z9z/eSwDkzjP3P95LAOTOM/VxhW17vg5T9XGFbXu+DlP4Ad2HFNDOg/gB3YcU0M6D/uDGuAw87pP+4Ma4DDzuk/t/FfQ4i97D+38V9DiL3sP477sIPyUu4/jvuwg/JS7j9H3aTkiE3xP0fdpOSITfE/1KhpTmm98j/UqGlOab3yP9fUR2agj/M/19RHZqCP8z9wLpJuHojzP3Aukm4eiPM//5IttwYW9T//ki23Bhb1P6cYVte74PU/pxhW17vg9T+0ArRW57XyP7QCtFbntfI/fx5yiNuI8j9/HnKI24jyP38jQS608vE/fyNBLrTy8T+iYs0EPhjyP6JizQQ+GPI/3hViFToJ8j/eFWIVOgnyPzEdPlu/j+0/MR0+W7+P7T8uqsP5XBjsPy6qw/lcGOw/BLZhRQ7s6j8EtmFFDuzqP2pqkGyYWeU/amqQbJhZ5T/tsHnBCj3jP+2wecEKPeM/TEqdq1mZ4D9MSp2rWZngPxB0lKG7sNk/EHSUobuw2T8+ldRtQa/bPz6V1G1Br9s/IX8y7WyE2D8hfzLtbITYP28INvF44dQ/bwg28Xjh1D/tsHnBCj3TP+2wecEKPdM/hykQ1Ixc0T+HKRDUjFzRPzko3KZwY8w/OSjcpnBjzD+En3K58oLKP4Sfcrnygso/ZC5FY9dJxj9kLkVj10nGP5xItomE3rg/nEi2iYTeuD9m/Zelxw22P2b9l6XHDbY/0jjjrogdtT/SOOOuiB21P2b9l6XHDbY/Zv2XpccNtj8Bi2pPrNSxPwGLak+s1LE/Nbvj358XrT81u+PfnxetP0lvxfviRqo/SW/F++JGqj+WqhAFpFapP5aqEAWkVqk/Yl/yIOeFpj9iX/Ig54WmPzcGAsRc6J8/NwYCxFzonz9Jb8X74kaaP0lvxfviRpo/o+ZbDmVmmD+j5lsOZWaYP3cT1DwqtaM/dxPUPCq1oz8Ox7VYbeSQPw7HtVht5JA/Ln+Y1t4Hjj8uf5jW3geOPw7HtVht5JA/Dse1WG3kkD9iX/Ig54V2P2Jf8iDnhXY/Ln+Y1t4Hjj8uf5jW3geOP1J+mNbeB34/Un6Y1t4Hfj8uf5jW3gdePy5/mNbeB14/Un6Y1t4Hjj9SfpjW3geOP2Jf8iDnhXY/Yl/yIOeFdj/0Th9G68SCP/ROH0brxII/Ln+Y1t4HXj8uf5jW3gdeP/ROH0brxII/9E4fRuvEgj8uf5jW3gdePy5/mNbeB14/Ln+Y1t4Hbj8uf5jW3gduP4huxfviRoo/iG7F++JGij8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABSfpjW3gdeP1J+mNbeB14/AAAAAAAAAAAAAAAAAAAAAFJ+mNbeB14/Un6Y1t4HXj8uf5jW3gdePy5/mNbeB14/AAAAAAAAAAAAAAAAAAAAAFJ+mNbeB14/Un6Y1t4HXj9SfpjW3gdeP1J+mNbeB14/Ln+Y1t4HXj8uf5jW3gdePy5/mNbeB14/Ln+Y1t4HXj9SfpjW3gdeP1J+mNbeB14/Ln+Y1t4Hfj8uf5jW3gd+PwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALn+Y1t4HXj8uf5jW3gdePwAAAAAAAAAA\"},\"shape\":[264],\"dtype\":\"float64\",\"order\":\"little\"}]]}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1259\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1260\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1255\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_width\":2}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1256\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_alpha\":0.1,\"line_width\":2}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1257\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_alpha\":0.2,\"line_width\":2}}}}],\"toolbar\":{\"type\":\"object\",\"name\":\"Toolbar\",\"id\":\"p1228\",\"attributes\":{\"tools\":[{\"id\":\"p1242\"},{\"id\":\"p1243\"},{\"id\":\"p1245\"},{\"id\":\"p1246\"},{\"id\":\"p1248\"},{\"type\":\"object\",\"name\":\"SaveTool\",\"id\":\"p1250\"},{\"id\":\"p1251\"}]}},\"toolbar_location\":null,\"left\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1237\",\"attributes\":{\"visible\":false,\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1238\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1239\"},\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1240\"}}}],\"below\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1232\",\"attributes\":{\"visible\":false,\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1233\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1234\"},\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1235\"}}}],\"center\":[{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1236\",\"attributes\":{\"axis\":{\"id\":\"p1232\"}}},{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1241\",\"attributes\":{\"dimension\":1,\"axis\":{\"id\":\"p1237\"}}}],\"frame_width\":150,\"frame_height\":150}}]}},{\"type\":\"object\",\"name\":\"Row\",\"id\":\"p1415\",\"attributes\":{\"children\":[{\"type\":\"object\",\"name\":\"Figure\",\"id\":\"p1261\",\"attributes\":{\"align\":\"end\",\"x_range\":{\"id\":\"p1136\"},\"y_range\":{\"type\":\"object\",\"name\":\"Range1d\",\"id\":\"p1373\",\"attributes\":{\"start\":0.00015021946,\"end\":0.00239888354}},\"x_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1272\"},\"y_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1273\"},\"title\":{\"type\":\"object\",\"name\":\"Title\",\"id\":\"p1268\"},\"renderers\":[{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1300\",\"attributes\":{\"data_source\":{\"id\":\"p1120\"},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1301\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1302\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Circle\",\"id\":\"p1297\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"Ea\"},\"y\":{\"type\":\"field\",\"field\":\"sigma\"},\"size\":{\"type\":\"value\",\"value\":2},\"line_alpha\":{\"type\":\"value\",\"value\":0.02},\"fill_color\":{\"type\":\"value\",\"value\":\"black\"},\"fill_alpha\":{\"type\":\"value\",\"value\":0.02},\"hatch_alpha\":{\"type\":\"value\",\"value\":0.02}}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Circle\",\"id\":\"p1298\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"Ea\"},\"y\":{\"type\":\"field\",\"field\":\"sigma\"},\"size\":{\"type\":\"value\",\"value\":2},\"line_alpha\":{\"type\":\"value\",\"value\":0},\"fill_color\":{\"type\":\"value\",\"value\":\"black\"},\"fill_alpha\":{\"type\":\"value\",\"value\":0},\"hatch_alpha\":{\"type\":\"value\",\"value\":0.1}}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Circle\",\"id\":\"p1299\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"Ea\"},\"y\":{\"type\":\"field\",\"field\":\"sigma\"},\"size\":{\"type\":\"value\",\"value\":2},\"line_alpha\":{\"type\":\"value\",\"value\":0.2},\"fill_color\":{\"type\":\"value\",\"value\":\"black\"},\"fill_alpha\":{\"type\":\"value\",\"value\":0.2},\"hatch_alpha\":{\"type\":\"value\",\"value\":0.2}}}}},{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1309\",\"attributes\":{\"data_source\":{\"id\":\"p1123\"},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1310\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1311\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Circle\",\"id\":\"p1306\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"Ea\"},\"y\":{\"type\":\"field\",\"field\":\"sigma\"},\"size\":{\"type\":\"value\",\"value\":2},\"line_color\":{\"type\":\"value\",\"value\":\"orange\"},\"fill_color\":{\"type\":\"value\",\"value\":\"orange\"},\"hatch_color\":{\"type\":\"value\",\"value\":\"orange\"}}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Circle\",\"id\":\"p1307\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"Ea\"},\"y\":{\"type\":\"field\",\"field\":\"sigma\"},\"size\":{\"type\":\"value\",\"value\":2},\"line_color\":{\"type\":\"value\",\"value\":\"orange\"},\"line_alpha\":{\"type\":\"value\",\"value\":0},\"fill_color\":{\"type\":\"value\",\"value\":\"orange\"},\"fill_alpha\":{\"type\":\"value\",\"value\":0},\"hatch_color\":{\"type\":\"value\",\"value\":\"orange\"},\"hatch_alpha\":{\"type\":\"value\",\"value\":0.1}}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Circle\",\"id\":\"p1308\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"Ea\"},\"y\":{\"type\":\"field\",\"field\":\"sigma\"},\"size\":{\"type\":\"value\",\"value\":2},\"line_color\":{\"type\":\"value\",\"value\":\"orange\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.2},\"fill_color\":{\"type\":\"value\",\"value\":\"orange\"},\"fill_alpha\":{\"type\":\"value\",\"value\":0.2},\"hatch_color\":{\"type\":\"value\",\"value\":\"orange\"},\"hatch_alpha\":{\"type\":\"value\",\"value\":0.2}}}}}],\"toolbar\":{\"type\":\"object\",\"name\":\"Toolbar\",\"id\":\"p1269\",\"attributes\":{\"tools\":[{\"id\":\"p1284\"},{\"id\":\"p1285\"},{\"id\":\"p1287\"},{\"id\":\"p1288\"},{\"id\":\"p1290\"},{\"type\":\"object\",\"name\":\"SaveTool\",\"id\":\"p1292\"},{\"id\":\"p1293\"}]}},\"toolbar_location\":null,\"left\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1279\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1280\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1281\"},\"axis_label\":\"sigma\",\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1282\"}}}],\"below\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1274\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1275\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1276\"},\"axis_label\":\"Ea\",\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1277\"}}}],\"center\":[{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1278\",\"attributes\":{\"axis\":{\"id\":\"p1274\"}}},{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1283\",\"attributes\":{\"dimension\":1,\"axis\":{\"id\":\"p1279\"}}}],\"frame_width\":150,\"frame_height\":150,\"min_border_left\":80}},{\"type\":\"object\",\"name\":\"Figure\",\"id\":\"p1312\",\"attributes\":{\"align\":\"end\",\"x_range\":{\"id\":\"p1229\"},\"y_range\":{\"id\":\"p1373\"},\"x_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1323\"},\"y_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1324\"},\"title\":{\"type\":\"object\",\"name\":\"Title\",\"id\":\"p1319\"},\"renderers\":[{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1351\",\"attributes\":{\"data_source\":{\"id\":\"p1120\"},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1352\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1353\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Circle\",\"id\":\"p1348\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"log10_A\"},\"y\":{\"type\":\"field\",\"field\":\"sigma\"},\"size\":{\"type\":\"value\",\"value\":2},\"line_alpha\":{\"type\":\"value\",\"value\":0.02},\"fill_color\":{\"type\":\"value\",\"value\":\"black\"},\"fill_alpha\":{\"type\":\"value\",\"value\":0.02},\"hatch_alpha\":{\"type\":\"value\",\"value\":0.02}}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Circle\",\"id\":\"p1349\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"log10_A\"},\"y\":{\"type\":\"field\",\"field\":\"sigma\"},\"size\":{\"type\":\"value\",\"value\":2},\"line_alpha\":{\"type\":\"value\",\"value\":0},\"fill_color\":{\"type\":\"value\",\"value\":\"black\"},\"fill_alpha\":{\"type\":\"value\",\"value\":0},\"hatch_alpha\":{\"type\":\"value\",\"value\":0.1}}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Circle\",\"id\":\"p1350\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"log10_A\"},\"y\":{\"type\":\"field\",\"field\":\"sigma\"},\"size\":{\"type\":\"value\",\"value\":2},\"line_alpha\":{\"type\":\"value\",\"value\":0.2},\"fill_color\":{\"type\":\"value\",\"value\":\"black\"},\"fill_alpha\":{\"type\":\"value\",\"value\":0.2},\"hatch_alpha\":{\"type\":\"value\",\"value\":0.2}}}}},{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1360\",\"attributes\":{\"data_source\":{\"id\":\"p1123\"},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1361\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1362\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Circle\",\"id\":\"p1357\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"log10_A\"},\"y\":{\"type\":\"field\",\"field\":\"sigma\"},\"size\":{\"type\":\"value\",\"value\":2},\"line_color\":{\"type\":\"value\",\"value\":\"orange\"},\"fill_color\":{\"type\":\"value\",\"value\":\"orange\"},\"hatch_color\":{\"type\":\"value\",\"value\":\"orange\"}}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Circle\",\"id\":\"p1358\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"log10_A\"},\"y\":{\"type\":\"field\",\"field\":\"sigma\"},\"size\":{\"type\":\"value\",\"value\":2},\"line_color\":{\"type\":\"value\",\"value\":\"orange\"},\"line_alpha\":{\"type\":\"value\",\"value\":0},\"fill_color\":{\"type\":\"value\",\"value\":\"orange\"},\"fill_alpha\":{\"type\":\"value\",\"value\":0},\"hatch_color\":{\"type\":\"value\",\"value\":\"orange\"},\"hatch_alpha\":{\"type\":\"value\",\"value\":0.1}}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Circle\",\"id\":\"p1359\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"log10_A\"},\"y\":{\"type\":\"field\",\"field\":\"sigma\"},\"size\":{\"type\":\"value\",\"value\":2},\"line_color\":{\"type\":\"value\",\"value\":\"orange\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.2},\"fill_color\":{\"type\":\"value\",\"value\":\"orange\"},\"fill_alpha\":{\"type\":\"value\",\"value\":0.2},\"hatch_color\":{\"type\":\"value\",\"value\":\"orange\"},\"hatch_alpha\":{\"type\":\"value\",\"value\":0.2}}}}}],\"toolbar\":{\"type\":\"object\",\"name\":\"Toolbar\",\"id\":\"p1320\",\"attributes\":{\"tools\":[{\"id\":\"p1335\"},{\"id\":\"p1336\"},{\"id\":\"p1338\"},{\"id\":\"p1339\"},{\"id\":\"p1341\"},{\"type\":\"object\",\"name\":\"SaveTool\",\"id\":\"p1343\"},{\"id\":\"p1344\"}]}},\"toolbar_location\":null,\"left\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1330\",\"attributes\":{\"visible\":false,\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1331\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1332\"},\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1333\"}}}],\"below\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1325\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1326\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1327\"},\"axis_label\":\"log10_A\",\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1328\"}}}],\"center\":[{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1329\",\"attributes\":{\"axis\":{\"id\":\"p1325\"}}},{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1334\",\"attributes\":{\"dimension\":1,\"axis\":{\"id\":\"p1330\"}}}],\"frame_width\":150,\"frame_height\":150}},{\"type\":\"object\",\"name\":\"Figure\",\"id\":\"p1364\",\"attributes\":{\"align\":\"end\",\"x_range\":{\"id\":\"p1373\"},\"y_range\":{\"type\":\"object\",\"name\":\"DataRange1d\",\"id\":\"p1363\",\"attributes\":{\"start\":0.0}},\"x_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1374\"},\"y_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1375\"},\"title\":{\"type\":\"object\",\"name\":\"Title\",\"id\":\"p1371\"},\"renderers\":[{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1402\",\"attributes\":{\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1396\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1397\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1398\"},\"data\":{\"type\":\"map\",\"entries\":[[\"x\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"Tr8WhIpbKT9OvxaEilspP0lEgoIqHis/SUSCgioeKz9Eye2AyuAsP0TJ7YDK4Cw/P05Zf2qjLj8/Tll/aqMuP51p4j4FMzA/nWniPgUzMD8aLBg+VRQxPxosGD5VFDE/mO5NPaX1MT+Y7k09pfUxPxWxgzz11jI/FbGDPPXWMj+Tc7k7RbgzP5NzuTtFuDM/EDbvOpWZND8QNu86lZk0P474JDrlejU/jvgkOuV6NT8Lu1o5NVw2Pwu7Wjk1XDY/iH2QOIU9Nz+IfZA4hT03PwZAxjfVHjg/BkDGN9UeOD+EAvw2JQA5P4QC/DYlADk/AcUxNnXhOT8BxTE2deE5P36HZzXFwjo/fodnNcXCOj/8SZ00FaQ7P/xJnTQVpDs/egzTM2WFPD96DNMzZYU8P/fOCDO1Zj0/984IM7VmPT90kT4yBUg+P3SRPjIFSD4/8lN0MVUpPz/yU3QxVSk/PzgLVZhSBUA/OAtVmFIFQD927O+X+nVAP3bs75f6dUA/tc2Kl6LmQD+1zYqXouZAP/SuJZdKV0E/9K4ll0pXQT8ykMCW8sdBPzKQwJbyx0E/cnFblpo4Qj9ycVuWmjhCP7BS9pVCqUI/sFL2lUKpQj/vM5GV6hlDP+8zkZXqGUM/LhUslZKKQz8uFSyVkopDP2z2xpQ6+0M/bPbGlDr7Qz+r12GU4mtEP6vXYZTia0Q/6rj8k4rcRD/quPyTitxEPyial5MyTUU/KJqXkzJNRT9nezKT2r1FP2d7MpPavUU/plzNkoIuRj+mXM2Sgi5GP+Q9aJIqn0Y/5D1okiqfRj8kHwOS0g9HPyQfA5LSD0c/YgCekXqARz9iAJ6ReoBHP6DhOJEi8Uc/oOE4kSLxRz/gwtOQymFIP+DC05DKYUg/HqRukHLSSD8epG6QctJIP16FCZAaQ0k/XoUJkBpDST+cZqSPwrNJP5xmpI/Cs0k/2kc/j2okSj/aRz+PaiRKPxop2o4SlUo/GinajhKVSj9YCnWOugVLP1gKdY66BUs/lusPjmJ2Sz+W6w+OYnZLP9bMqo0K50s/1syqjQrnSz8UrkWNsldMPxSuRY2yV0w/Uo/gjFrITD9Sj+CMWshMP5Jwe4wCOU0/knB7jAI5TT/QURaMqqlNP9BRFoyqqU0/EDOxi1IaTj8QM7GLUhpOP04UTIv6ik4/ThRMi/qKTj+M9eaKovtOP4z15oqi+04/zNaBikpsTz/M1oGKSmxPPwq4HIry3E8/CrgcivLcTz+kzNtEzSZQP6TM20TNJlA/RD2pRCFfUD9EPalEIV9QP+OtdkR1l1A/4612RHWXUD+DHkREyc9QP4MeRETJz1A/Io8RRB0IUT8ijxFEHQhRP8H/3kNxQFE/wf/eQ3FAUT9hcKxDxXhRP2FwrEPFeFE/AOF5QxmxUT8A4XlDGbFRP59RR0Nt6VE/n1FHQ23pUT8/whRDwSFSPz/CFEPBIVI/3jLiQhVaUj/eMuJCFVpSP32jr0JpklI/faOvQmmSUj8dFH1CvcpSPx0UfUK9ylI/vIRKQhEDUz+8hEpCEQNTP1z1F0JlO1M/XPUXQmU7Uz/7ZeVBuXNTP/tl5UG5c1M/m9ayQQ2sUz+b1rJBDaxTPzpHgEFh5FM/OkeAQWHkUz/Zt01BtRxUP9m3TUG1HFQ/eSgbQQlVVD95KBtBCVVUPxiZ6EBdjVQ/GJnoQF2NVD+3CbZAscVUP7cJtkCxxVQ/V3qDQAX+VD9XeoNABf5UP/bqUEBZNlU/9upQQFk2VT+VWx5ArW5VP5VbHkCtblU/NczrPwGnVT81zOs/AadVP9Q8uT9V31U/1Dy5P1XfVT90rYY/qRdWP3Sthj+pF1Y/Ex5UP/1PVj8THlQ//U9WP7KOIT9RiFY/so4hP1GIVj9S/+4+pcBWP1L/7j6lwFY/8W+8Pvn4Vj/xb7w++fhWP5DgiT5NMVc/kOCJPk0xVz8wUVc+oWlXPzBRVz6haVc/z8EkPvWhVz/PwSQ+9aFXP28y8j1J2lc/bzLyPUnaVz8Oo789nRJYPw6jvz2dElg/rRONPfFKWD+tE4098UpYP02EWj1Fg1g/TYRaPUWDWD/s9Cc9mbtYP+z0Jz2Zu1g/i2X1PO3zWD+LZfU87fNYPyvWwjxBLFk/K9bCPEEsWT/KRpA8lWRZP8pGkDyVZFk/abddPOmcWT9pt1086ZxZPwkoKzw91Vk/CSgrPD3VWT+omPg7kQ1aP6iY+DuRDVo/SAnGO+VFWj9ICcY75UVaP+d5kzs5flo/53mTOzl+Wj+G6mA7jbZaP4bqYDuNtlo/JlsuO+HuWj8mWy474e5aP8XL+zo1J1s/xcv7OjUnWz9kPMk6iV9bP2Q8yTqJX1s/BK2WOt2XWz8ErZY63ZdbP6MdZDox0Fs/ox1kOjHQWz9CjjE6hQhcP0KOMTqFCFw/4v7+OdlAXD/i/v452UBcP4FvzDkteVw/gW/MOS15XD8h4Jk5gbFcPyHgmTmBsVw/wFBnOdXpXD/AUGc51elcP1/BNDkpIl0/X8E0OSkiXT//MQI5fVpdP/8xAjl9Wl0/nqLPONGSXT+eos840ZJdPz0TnTgly10/PROdOCXLXT/dg2o4eQNeP92Dajh5A14/fPQ3OM07Xj989Dc4zTtePxxlBTghdF4/HGUFOCF0Xj+71dI3daxeP7vV0jd1rF4/WkagN8nkXj9aRqA3yeReP/q2bTcdHV8/+rZtNx0dXz+ZJzs3cVVfP5knOzdxVV8/OJgIN8WNXz84mAg3xY1fP9gI1jYZxl8/2AjWNhnGXz93eaM2bf5fP3d5ozZt/l8/C3U4m2AbYD8LdTibYBtgP1stH5uKN2A/Wy0fm4o3YD+q5QWbtFNgP6rlBZu0U2A/+p3smt5vYD/6neya3m9gP0pW05oIjGA/SlbTmgiMYD+ZDrqaMqhgP5kOupoyqGA/6cagmlzEYD/pxqCaXMRgPzl/h5qG4GA/OX+HmobgYD+IN26asPxgP4g3bpqw/GA/2O9UmtoYYT/Y71Sa2hhhPyioO5oENWE/KKg7mgQ1YT94YCKaLlFhP3hgIpouUWE/xxgJmlhtYT/HGAmaWG1hPxfR75mCiWE/F9HvmYKJYT9nidaZrKVhP2eJ1pmspWE/tkG9mdbBYT+2Qb2Z1sFhPwb6o5kA3mE/BvqjmQDeYT9WsoqZKvphP1ayipkq+mE/pmpxmVQWYj+manGZVBZiP/UiWJl+MmI/9SJYmX4yYj9F2z6ZqE5iP0XbPpmoTmI/lZMlmdJqYj+VkyWZ0mpiP+RLDJn8hmI/5EsMmfyGYj80BPOYJqNiPzQE85gmo2I/hLzZmFC/Yj+EvNmYUL9iP9N0wJh622I/03TAmHrbYj8jLaeYpPdiPyMtp5ik92I/c+WNmM4TYz9z5Y2YzhNjP8KddJj4L2M/wp10mPgvYz8SVluYIkxjPxJWW5giTGM/\"},\"shape\":[324],\"dtype\":\"float64\",\"order\":\"little\"}],[\"y\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAAAC2d1Q6kZ0SQLZ3VDqRnRJAtndUOpGdMkC2d1Q6kZ0yQDswrya4c1FAOzCvJrhzUUBH5puI+NRuQEfmm4j41G5AsZXpiPVEd0CxlemI9UR3QJwgyVzMwoJAnCDJXMzCgkCaQsn+C0COQJpCyf4LQI5Ag0vzKPVSlkCDS/Mo9VKWQD6pOqa8y5xAPqk6przLnEBIbRAJ9HyjQEhtEAn0fKNAEK3CN1dOpUAQrcI3V06lQBmTmDzOfKdAGZOYPM58p0BNu3G8z0SrQE27cbzPRKtAk1bEXWz6qECTVsRdbPqoQNnqsB1t3qpA2eqwHW3eqkCRXPP5lBGsQJFc8/mUEaxAt6uL8uOTrEC3q4vy45OsQH/AE1Ue1apAf8ATVR7VqkBTfhDakzupQFN+ENqTO6lAcDm8EuLZp0BwObwS4tmnQCZzP6UclKZAJnM/pRyUpkDjFhIvCSmnQOMWEi8JKadADXBhVRtFo0ANcGFVG0WjQFPexeFBKaFAU97F4UEpoUDXSmYlG8yiQNdKZiUbzKJAA5Jh91rCnkADkmH3WsKeQLkUTua755pAuRRO5rvnmkCKObwS4tmXQIo5vBLi2ZdAVDm8EuLZl0BUObwS4tmXQManIJ8IvpVAxqcgnwi+lUAdx+wy4B+TQB3H7DLgH5NAyjIAc987kUDKMgBz3zuRQGAFaBzQNoxAYAVoHNA2jED4KdZI9iiJQPgp1kj2KIlA1WY3KzIyi0DVZjcrMjKLQBHdjpzObohAEd2OnM5uiECwWIimuTuFQLBYiKa5O4VAtmLM11ZchEC2YszXVlyEQD77I+syFn1APvsj6zIWfUD+nvZ0H6t9QP6e9nQfq31A/1ZRYUaBfED/VlFhRoF8QCkveOFEuXhAKS944US5eEDngZhrLr5xQOeBmGsuvnFAujrzV1WUcEC6OvNXVZRwQJuM3JzL3nBAm4zcnMvecECCd1Q6kZ1yQIJ3VDqRnXJA/p72dB+rbUD+nvZ0H6ttQE9ORHUcG2ZAT05EdRwbZkC2YszXVlxkQLZizNdWXGRAVL/5TWrHY0BUv/lNasdjQFS/+U1qx1NAVL/5TWrHU0DqTUR1HBtmQOpNRHUcG2ZAOYpuEuVpX0A5im4S5WlfQMtr2cOAwlpAy2vZw4DCWkDRBp9hQ/FUQNEGn2FD8VRAvELJ/gtAXkC8Qsn+C0BeQMtr2cOAwlpAy2vZw4DCWkBZMK8muHNRQFkwrya4c1FA1ndUOpGdQkDWd1Q6kZ1CQEOzftdZ7EtAQ7N+11nsS0DHJDSwp5hJQMckNLCnmElAcgafYUPxREByBp9hQ/FEQNZ3VDqRnVJA1ndUOpGdUkDRBp9hQ/FEQNEGn2FD8URAcgafYUPxREByBp9hQ/FEQNZ3VDqRnUJA1ndUOpGdQkDc6AkT30lAQNzoCRPfSUBAgndUOpGdMkCCd1Q6kZ0yQMyV6Yj1REdAzJXpiPVER0DMlemI9URHQMyV6Yj1REdAYpXpiPVER0BilemI9URHQMyV6Yj1RDdAzJXpiPVEN0BilemI9URHQGKV6Yj1REdAwrN+11nsS0DCs37XWexLQGKV6Yj1RDdAYpXpiPVEN0DWd1Q6kZ0iQNZ3VDqRnSJA1ndUOpGdIkDWd1Q6kZ0iQIJ3VDqRnSJAgndUOpGdIkDCs37XWewrQMKzftdZ7CtA1ndUOpGdIkDWd1Q6kZ0iQAAAAAAAAAAAAAAAAAAAAADWd1Q6kZ0iQNZ3VDqRnSJA1ndUOpGdIkDWd1Q6kZ0iQEOzftdZ7CtAQ7N+11nsK0DWd1Q6kZ0iQNZ3VDqRnSJAgndUOpGdMkCCd1Q6kZ0yQNZ3VDqRnRJA1ndUOpGdEkDWd1Q6kZ0iQNZ3VDqRnSJAgndUOpGdEkCCd1Q6kZ0SQNZ3VDqRnRJA1ndUOpGdEkDWd1Q6kZ0SQNZ3VDqRnRJAgndUOpGdEkCCd1Q6kZ0SQNZ3VDqRnSJA1ndUOpGdIkCCd1Q6kZ0iQIJ3VDqRnSJA1ndUOpGdEkDWd1Q6kZ0SQAAAAAAAAAAAAAAAAAAAAACCd1Q6kZ0yQIJ3VDqRnTJA1ndUOpGdEkDWd1Q6kZ0SQAAAAAAAAAAAAAAAAAAAAACCd1Q6kZ0SQIJ3VDqRnRJA1ndUOpGdEkDWd1Q6kZ0SQNZ3VDqRnRJA1ndUOpGdEkCCd1Q6kZ0iQIJ3VDqRnSJA1ndUOpGdEkDWd1Q6kZ0SQIJ3VDqRnTJAgndUOpGdMkAAAAAAAAAAAAAAAAAAAAAA1ndUOpGdEkDWd1Q6kZ0SQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1ndUOpGdEkDWd1Q6kZ0SQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIJ3VDqRnRJAgndUOpGdEkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1ndUOpGdEkDWd1Q6kZ0SQAAAAAAAAAAAAAAAAAAAAACCd1Q6kZ0SQIJ3VDqRnRJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIJ3VDqRnRJAgndUOpGdEkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgndUOpGdEkCCd1Q6kZ0SQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgndUOpGdEkCCd1Q6kZ0SQAAAAAAAAAAA\"},\"shape\":[324],\"dtype\":\"float64\",\"order\":\"little\"}]]}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1403\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1404\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1399\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_width\":2}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1400\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_alpha\":0.1,\"line_width\":2}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1401\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_alpha\":0.2,\"line_width\":2}}}}],\"toolbar\":{\"type\":\"object\",\"name\":\"Toolbar\",\"id\":\"p1372\",\"attributes\":{\"tools\":[{\"id\":\"p1386\"},{\"id\":\"p1387\"},{\"id\":\"p1389\"},{\"id\":\"p1390\"},{\"id\":\"p1392\"},{\"type\":\"object\",\"name\":\"SaveTool\",\"id\":\"p1394\"},{\"id\":\"p1395\"}]}},\"toolbar_location\":null,\"left\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1381\",\"attributes\":{\"visible\":false,\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1382\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1383\"},\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1384\"}}}],\"below\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1376\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1377\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1378\"},\"axis_label\":\"sigma\",\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1379\"}}}],\"center\":[{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1380\",\"attributes\":{\"axis\":{\"id\":\"p1376\"}}},{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1385\",\"attributes\":{\"dimension\":1,\"axis\":{\"id\":\"p1381\"}}}],\"frame_width\":150,\"frame_height\":150}}]}}]}}]}}],\"defs\":[{\"type\":\"model\",\"name\":\"ReactiveHTML1\"},{\"type\":\"model\",\"name\":\"FlexBox1\",\"properties\":[{\"name\":\"align_content\",\"kind\":\"Any\",\"default\":\"flex-start\"},{\"name\":\"align_items\",\"kind\":\"Any\",\"default\":\"flex-start\"},{\"name\":\"flex_direction\",\"kind\":\"Any\",\"default\":\"row\"},{\"name\":\"flex_wrap\",\"kind\":\"Any\",\"default\":\"wrap\"},{\"name\":\"justify_content\",\"kind\":\"Any\",\"default\":\"flex-start\"}]},{\"type\":\"model\",\"name\":\"FloatPanel1\",\"properties\":[{\"name\":\"config\",\"kind\":\"Any\",\"default\":{\"type\":\"map\"}},{\"name\":\"contained\",\"kind\":\"Any\",\"default\":true},{\"name\":\"position\",\"kind\":\"Any\",\"default\":\"right-top\"},{\"name\":\"offsetx\",\"kind\":\"Any\",\"default\":null},{\"name\":\"offsety\",\"kind\":\"Any\",\"default\":null},{\"name\":\"theme\",\"kind\":\"Any\",\"default\":\"primary\"},{\"name\":\"status\",\"kind\":\"Any\",\"default\":\"normalized\"}]},{\"type\":\"model\",\"name\":\"GridStack1\",\"properties\":[{\"name\":\"mode\",\"kind\":\"Any\",\"default\":\"warn\"},{\"name\":\"ncols\",\"kind\":\"Any\",\"default\":null},{\"name\":\"nrows\",\"kind\":\"Any\",\"default\":null},{\"name\":\"allow_resize\",\"kind\":\"Any\",\"default\":true},{\"name\":\"allow_drag\",\"kind\":\"Any\",\"default\":true},{\"name\":\"state\",\"kind\":\"Any\",\"default\":[]}]},{\"type\":\"model\",\"name\":\"drag1\",\"properties\":[{\"name\":\"slider_width\",\"kind\":\"Any\",\"default\":5},{\"name\":\"slider_color\",\"kind\":\"Any\",\"default\":\"black\"},{\"name\":\"value\",\"kind\":\"Any\",\"default\":50}]},{\"type\":\"model\",\"name\":\"click1\",\"properties\":[{\"name\":\"terminal_output\",\"kind\":\"Any\",\"default\":\"\"},{\"name\":\"debug_name\",\"kind\":\"Any\",\"default\":\"\"},{\"name\":\"clears\",\"kind\":\"Any\",\"default\":0}]},{\"type\":\"model\",\"name\":\"toggle_value1\",\"properties\":[{\"name\":\"active_icons\",\"kind\":\"Any\",\"default\":{\"type\":\"map\"}},{\"name\":\"options\",\"kind\":\"Any\",\"default\":{\"type\":\"map\",\"entries\":[[\"favorite\",\"heart\"]]}},{\"name\":\"value\",\"kind\":\"Any\",\"default\":[]},{\"name\":\"_reactions\",\"kind\":\"Any\",\"default\":[]},{\"name\":\"_base_url\",\"kind\":\"Any\",\"default\":\"https://tabler-icons.io/static/tabler-icons/icons/\"}]},{\"type\":\"model\",\"name\":\"copy_to_clipboard1\",\"properties\":[{\"name\":\"value\",\"kind\":\"Any\",\"default\":null},{\"name\":\"fill\",\"kind\":\"Any\",\"default\":\"none\"}]},{\"type\":\"model\",\"name\":\"FastWrapper1\",\"properties\":[{\"name\":\"object\",\"kind\":\"Any\",\"default\":null},{\"name\":\"style\",\"kind\":\"Any\",\"default\":null}]},{\"type\":\"model\",\"name\":\"NotificationAreaBase1\",\"properties\":[{\"name\":\"js_events\",\"kind\":\"Any\",\"default\":{\"type\":\"map\"}},{\"name\":\"position\",\"kind\":\"Any\",\"default\":\"bottom-right\"},{\"name\":\"_clear\",\"kind\":\"Any\",\"default\":0}]},{\"type\":\"model\",\"name\":\"NotificationArea1\",\"properties\":[{\"name\":\"js_events\",\"kind\":\"Any\",\"default\":{\"type\":\"map\"}},{\"name\":\"notifications\",\"kind\":\"Any\",\"default\":[]},{\"name\":\"position\",\"kind\":\"Any\",\"default\":\"bottom-right\"},{\"name\":\"_clear\",\"kind\":\"Any\",\"default\":0},{\"name\":\"types\",\"kind\":\"Any\",\"default\":[{\"type\":\"map\",\"entries\":[[\"type\",\"warning\"],[\"background\",\"#ffc107\"],[\"icon\",{\"type\":\"map\",\"entries\":[[\"className\",\"fas fa-exclamation-triangle\"],[\"tagName\",\"i\"],[\"color\",\"white\"]]}]]},{\"type\":\"map\",\"entries\":[[\"type\",\"info\"],[\"background\",\"#007bff\"],[\"icon\",{\"type\":\"map\",\"entries\":[[\"className\",\"fas fa-info-circle\"],[\"tagName\",\"i\"],[\"color\",\"white\"]]}]]}]}]},{\"type\":\"model\",\"name\":\"Notification\",\"properties\":[{\"name\":\"background\",\"kind\":\"Any\",\"default\":null},{\"name\":\"duration\",\"kind\":\"Any\",\"default\":3000},{\"name\":\"icon\",\"kind\":\"Any\",\"default\":null},{\"name\":\"message\",\"kind\":\"Any\",\"default\":\"\"},{\"name\":\"notification_type\",\"kind\":\"Any\",\"default\":null},{\"name\":\"_destroyed\",\"kind\":\"Any\",\"default\":false}]},{\"type\":\"model\",\"name\":\"TemplateActions1\",\"properties\":[{\"name\":\"open_modal\",\"kind\":\"Any\",\"default\":0},{\"name\":\"close_modal\",\"kind\":\"Any\",\"default\":0}]},{\"type\":\"model\",\"name\":\"BootstrapTemplateActions1\",\"properties\":[{\"name\":\"open_modal\",\"kind\":\"Any\",\"default\":0},{\"name\":\"close_modal\",\"kind\":\"Any\",\"default\":0}]},{\"type\":\"model\",\"name\":\"MaterialTemplateActions1\",\"properties\":[{\"name\":\"open_modal\",\"kind\":\"Any\",\"default\":0},{\"name\":\"close_modal\",\"kind\":\"Any\",\"default\":0}]}]}};\n", " const render_items = [{\"docid\":\"180d73ae-f3f8-4656-9cab-f60f1eb94a3a\",\"roots\":{\"p1417\":\"c25d9700-7441-4413-ba6d-76833a4883db\"},\"root_ids\":[\"p1417\"]}];\n", " root.Bokeh.embed.embed_items_notebook(docs_json, render_items);\n", " }\n", " if (root.Bokeh !== undefined) {\n", " embed_document(root);\n", " } else {\n", " let attempts = 0;\n", " const timer = setInterval(function(root) {\n", " if (root.Bokeh !== undefined) {\n", " clearInterval(timer);\n", " embed_document(root);\n", " } else {\n", " attempts++;\n", " if (attempts > 100) {\n", " clearInterval(timer);\n", " console.log(\"Bokeh: ERROR: Unable to run BokehJS code because BokehJS library is missing\");\n", " }\n", " }\n", " }, 10, root)\n", " }\n", "})(window);" ], "application/vnd.bokehjs_exec.v0+json": "" }, "metadata": { "application/vnd.bokehjs_exec.v0+json": { "id": "p1417" } }, "output_type": "display_data" } ], "source": [ "bokeh.io.show(\n", " bebi103.viz.corner(\n", " samples,\n", " parameters=[\"Ea\", \"log10_A\", \"sigma\"],\n", " )\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We see extremely strong correlation between the activation energy and the pre-exponential factor. We can identify both parameters, but they have broad distributions, varying over almost two orders of magnitude in the case of $A$.\n", "\n", "In doing this analysis, we got something important: physically meaningful parameter values. We also got the ability to *predict* what the rate constant would be for a temperature for which we have no measurement. The model affords us that. But what if only this prediction is important to us, and not the physical model? Or maybe we just cannot come up with a physical model because we don't know enough about chemical reactions kinetics to do so. We would nonetheless like to make predictions about rate constants and different temperatures. This is where **Gaussian processes** can be useful, and we will use this example as a data set to explore Gaussian processes." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Processes and nonparametric Bayesian inference\n", "\n", "Remember that Bayes's Theorem applies to any logical conjecture. It even applies to *functions*! So, imagine we have observed data $\\mathbf{X}$ and $\\mathbf{y}$. I use a capital $\\mathbf{X}$ here to allow for multidimensional dependent variables. For example, we might want to study both temperature and pH dependence of a rate constant. In this case, each row of $\\mathbf{X}$ is a pH, temperature pair. We define row $i$ of $\\mathbf{X}$ to be $\\mathbf{x}_i$.\n", "\n", "We expect that for each observation, $y_i = f(\\mathbf{x}_i) + \\epsilon_i$, where $\\epsilon_i$ is some measurement error and/or inherent stochasticity and $f(x)$ is an *unknown* function of $\\mathbf{x}$. We can still write Bayes's Theorem.\n", "\n", "\\begin{align}\n", "\\pi(f\\mid \\mathbf{y}, \\mathbf{X}) = \\frac{\\pi(\\mathbf{y}, \\mathbf{X} \\mid f)\\,\\pi(f)}{\\pi(\\mathbf{y}, \\mathbf{X})}.\n", "\\end{align}\n", "\n", "To avoid confusion with the symbol $f$ for the unknown functions, we will not use $f$ for the likelihood, nor $g$ for the prior and posterior, instead using $\\pi$ for all probabilities and probability densities.\n", "\n", "It may seem strange to write a probability of functions, but remember that this is allowed in the Bayesian interpretation of probability. We call a probability distribution over functions a **process**. So, the posterior, $\\pi(f\\mid \\mathbf{y}, \\mathbf{X})$, and the prior, $\\pi(f)$, are processes.\n", "\n", "Since we are primarily interested in predicting new measurements, we want to compute the posterior predictive distribution. Let $\\mathbf{x}_*$ be a set of $x$-values for which we want predictions of the corresponding $y$-values, $f(\\mathbf{x}_*)$. Then, assuming for a moment that we can compute the posterior, we can write a posterior predictive distribution,\n", "\n", "\\begin{align}\n", "\\pi(f(\\mathbf{x}_*) \\mid \\mathbf{x}_*, \\mathbf{y}, \\mathbf{X}) = \\int \\mathrm{d}f\\,\\pi(f(\\mathbf{x}_*)\\mid \\mathbf{x}_*, f)\\, \\pi(f\\mid \\mathbf{y}, \\mathbf{X}).\n", "\\end{align}\n", "\n", "\n", "This looks exactly the same as the posterior predictive distribution for parametric regression. Instead of writing a probability distribution over infinitely many parameter values in the parametric setting, we are now writing a process over infinitely many functions." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Gaussian processes with a finite number of points\n", "\n", "How can we treat a probability distribution over functions? We can instead define a probability distribution over the function's *values* at some arbitrary points. So, imagine we get function values at points $\\mathbf{X}$, with $N$ total observations. We can define a **joint distribution**, $\\pi(f(\\mathbf{x}_1), \\ldots, f(\\mathbf{x}_N))$. We use this probability density as a drop-in replacement for a process.\n", "\n", "What distribution should we choose for this joint distribution? We can choose many distributions for this, but we might choose a joint multivariate Normal (a.k.a. Gaussian) distribution. This defines a **Gaussian process**, or GP. To define the joint distribution, then, we need to define the two parameters of a multivariate Gaussian distribution, its mean and covariance. The mean must be defined for an arbitrary point $\\mathbf{x}$, and the covariance for an arbitrary *pair* of points $\\mathbf{x}, \\mathbf{x}'$. Thus, the **mean function**, $m(\\mathbf{x})$ and the covariance function, usually referred to as a **kernel function**, $k(\\mathbf{x}, \\mathbf{x}')$, uniquely define a Gaussian process. We can write a Gaussian process as\n", "\n", "\\begin{align}\n", "f(\\mathbf{x}) \\mid \\theta_m, \\theta_k \\sim \\text{GP}(m(\\mathbf{x} ; \\theta_m), k(\\mathbf{x}, \\mathbf{x}' ; \\theta_k)),\n", "\\end{align}\n", "\n", "where $\\theta_m$ and $\\theta_k$ are sets of **hyperparameters** that parametrize the mean and kernel functions.\n", "\n", "Because in practice we compute $f(\\mathbf{x}_*)$ in order to get the a picture of what the nonparametric functions given by a Gaussian process look like (that is, we compute the value of the function at a finite set of points $\\mathbf{x}_*$), we can write Bayes's theorem again as\n", "\n", "\\begin{align}\n", "\\pi(f(\\mathbf{x}_*)\\mid \\mathbf{x}_*, \\mathbf{y}, \\mathbf{X}) = \\frac{\\pi(\\mathbf{y}, \\mathbf{X}\\mid f(\\mathbf{x}_*), \\mathbf{x}_*)\\,\\pi(f(\\mathbf{x}_*) \\mid \\mathbf{x}_*)}{\\pi(\\mathbf{y}, \\mathbf{X})}.\n", "\\end{align}\n", "\n", "Or, if we want to evaluate $f$ at multidimensional points, $\\mathbf{X}_*$,\n", "\n", "\\begin{align}\n", "\\pi(f(\\mathbf{X}_*)\\mid \\mathbf{X}_*, \\mathbf{y}, \\mathbf{X}) = \\frac{\\pi(\\mathbf{y}, \\mathbf{X}\\mid f(\\mathbf{X}_*), \\mathbf{X}_*)\\,\\pi(f(\\mathbf{X}_*) \\mid \\mathbf{X}_*)}{\\pi(\\mathbf{y}, \\mathbf{X})}.\n", "\\end{align}\n", "\n", "The values of the nonparametric function, $f(\\mathbf{X}_*)$ are often referred to as **latent variables** because they are variables that are not directly observed." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### The mean function and centering and scaling\n", "\n", "In a purely nonparametric approach, we almost always take the mean function to be zero; $m(\\mathbf{x}) = 0$. We may, however, wish to do a **semi-parametric regression** and introduce an explicit bias via $m(\\mathbf{x})$. We often do this when we have, e.g., count data, that we cannot really transform such that the mean is zero.\n", "\n", "In general in machine learning applications, and many nonparametric contexts in general, it is good practice to **center and scale** the observed data to improve performance of your algorithms. I will not get into the details of this here (though see [this series of blog posts by Hugo Bowne-Anderson on the topic](https://www.datacamp.com/community/tutorials/preprocessing-in-data-science-part-1-centering-scaling-and-knn), but rather will encourage you to center and scale your data before performing inference with a GP, if you can. Specifically, if $\\bar{\\mathbf{y}}$ is the arithmetic mean of observations $\\mathbf{y}$, and $s_\\mathbf{y}$ is the sample standard deviation of $\\mathbf{y}$, then you should apply a linear transformation of $\\mathbf{y}$ to get a centered and scaled version.\n", "\n", "\\begin{align}\n", "\\mathbf{y}_\\mathrm{scaled} = \\frac{\\mathbf{y} - \\bar{\\mathbf{y}}}{s_\\mathbf{y}}.\n", "\\end{align}\n", "\n", "You should then work with $\\mathbf{y}_\\mathrm{scaled}$. You should do this to all $\\mathbf{y}$ values. You can then apply the inverse linear transformation to get back your original values.\n", "\n", "\\begin{align}\n", "\\mathbf{y} = s_\\mathbf{y} \\mathbf{y}_\\mathrm{scaled} + \\bar{\\mathbf{y}}.\n", "\\end{align}\n", "\n", "Henceforth, we will assume we are working with centered and scaled data such that the mean functions of Gaussian process priors are zero." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### The kernel and covariance matrix\n", "\n", "The covariance function, $k(\\mathbf{x}, \\mathbf{x}')$ is called a **kernel**. It must have certain properties. Remember that it defines the entries of a covariance matrix of a multivariate Normal distribution. Specifically, let's say that $\\mathbf{X}$ has $n$ rows. Then, we can define an $n\\times n$ matrix, $\\mathsf{K}(\\mathbf{X}, \\mathbf{X}')$ that has entries\n", "\n", "\\begin{align}\n", "K_{ij} = k(\\mathbf{x}_i, \\mathbf{x}'_j).\n", "\\end{align}\n", "\n", "This matrix is a covariance matrix, which is a special case of a **Gram matrix**. Because this is a joint Gaussian distribution, the covariance matrix $\\mathsf{K}(\\mathbf{X}, \\mathbf{X}')$ must be positive definite for *any* $\\mathbf{X}$, $\\mathbf{X}'$. This puts a restriction on what kernels that are allowed. Some common kernels that result in positive definite covariance matrices are shown below.\n", "\n", "\\begin{align}\n", "&\\text{linear: } k(\\mathbf{x}, \\mathbf{x}') = \\sigma_b^2 + \\sum_i \\sigma_i^2 x_i\\,x_i' \\\\[1em]\n", "&\\text{polynomial: } k(\\mathbf{x}, \\mathbf{x}') = (\\sigma_b^2 + \\sigma_p^2\\,\\mathbf{x}^\\mathsf{T} \\cdot \\mathbf{x}')^d, \\;\\;d = \\{1, 2, 3, \\ldots\\}\\\\[1em]\n", "&\\text{squared exponential (SE): } k(\\mathbf{x}, \\mathbf{x}') = \\alpha^2\\,\\exp\\left[-\\frac{\\left\\Vert\\mathbf{x} - \\mathbf{x}'\\right\\Vert_2^2}{2\\rho^2}\\right] \\\\[1em]\n", "&\\text{Matérn: }k(\\mathbf{x}, \\mathbf{x}') = \\alpha^2\\,\\frac{2^{1-\\nu}\\,\\beta^\\nu}{\\Gamma(\\nu)}\\,K_\\nu\\left(\\beta\\right), \\text{ where } \\beta = \\left(\\frac{2\\nu\\left\\Vert\\mathbf{x} - \\mathbf{x}'\\right\\Vert_2^2}{\\rho^2}\\right)^{\\frac{1}{2}}\\\\[1em]\n", "&\\text{Matérn ($\\nu=5/2$): } k(\\mathbf{x}, \\mathbf{x}') = \\alpha^2\\left(1 + \\left(\\frac{5\\left\\Vert\\mathbf{x} - \\mathbf{x}'\\right\\Vert_2^2}{\\rho^2}\\right)^{\\frac{1}{2}} + \\frac{5 \\left\\Vert\\mathbf{x} - \\mathbf{x}'\\right\\Vert_2^2}{3\\rho^2}\\right) \\exp\\left[-\\left(\\frac{5\\left\\Vert\\mathbf{x} - \\mathbf{x}'\\right\\Vert_2^2}{\\rho^2}\\right)^{\\frac{1}{2}}\\right],\\\\[1em]\n", "&\\text{periodic: } k(\\mathbf{x}, \\mathbf{x}') = \\alpha^2\\,\\exp\\left[-\\frac{2}{\\rho^2}\\,\\sin^2\\left(\\frac{\\pi}{T}\\,\\sqrt{\\Vert\\mathbf{x} - \\mathbf{x}'\\Vert_2^2}\\right)\\right].\n", "\\end{align}\n", "\n", "where\n", "\n", "\\begin{align}\n", "\\left\\Vert\\mathbf{x} - \\mathbf{x}'\\right\\Vert_2^2 = (\\mathbf{x} - \\mathbf{x}')^\\mathsf{T}\\cdot(\\mathbf{x} - \\mathbf{x}')\n", "\\end{align}\n", "\n", "is the 2-norm, and $K_\\nu$ is a modified Bessel function of the second kind. For the periodic kernel, which is used to model functions that vary periodically, $T$ is the period. I have given the special case of a Matérn kernel with $\\nu = 5/2$, since that is widely used. \n", "\n", "The squared exponential (SE) kernel is probably the most widely used, and it is also known as the **exponentiated quadratic kernel** or the **radial basis function kernel**, and it is built in to Stan (where it is referred to as the exponentiated quadratic kernel). In the spirit of principled modeling, in which we go from simple models to more complex models, it is worth noting that the SE kernel is the $\\nu \\to \\infty$ limit of the Matérn kernel. For finite $\\nu$, functions realized from the Matérn kernal will only have derivatives defined up to $\\nu$. So, the parameter $\\nu$ is a smoothness parameter. For $\\nu < 1$, the first derivatives are not defined, and the functions drawn out of a GP with a Matérn kernel with $\\nu < 1$ are therefore very rough.\n", "\n", "So, how do we interpret all of this? For ease of parsing the statements that follow, it may be useful to have the mathematical functions for the SE kernel in mind. If $\\mathbf{x}$ and $\\mathbf{x}'$ are close to each other, the kernel returns a large value. The value returned by the kernel falls off as $\\mathbf{x}$ and $\\mathbf{x}'$ grow farther apart. So, the covariance between $\\mathbf{x}$ and $\\mathbf{x}'$ is large if they are close, and small if they are farther apart. A large covariance means that $f(\\mathbf{x})$ and $f(\\mathbf{x}')$ should be close to one another, and a small covariance means that they are unrelated.\n", "\n", "Finally, we note that each of the kernels have parameters. In all of the kernels listed above, there are the **marginal standard deviation** $\\alpha$ and the **length scale** $\\rho$. The Matérn kernel also has the smoothness parameter $\\nu$ and the periodic kernel also has the period $T$. Other kernels not listed above may have other parameters. So, in this sense, this \"nonparametric\" model has some tunable parameters. Specifically, these parameters say something about how the possible functions $f(\\mathbf{x})$ might behave. In the examples above, the covariance is modulated by $\\rho$. If $\\rho$ is large, then $\\mathbf{x}$ and $\\mathbf{x}'$ do not have to be so close together to influence each other. This means that the function is not so rapidly varying. So, $\\rho$ sets a length scale over which the function $f(\\mathbf{x})$ varies. Similarly, $\\alpha$ sets the amplitude of the variations. The larger $\\alpha$ is, the more $f(\\mathbf{x})$ will vary in the vertical direction. The parameters $\\theta_k$ of the kernel are called **hyperparameters**, because their inclusion results in a hierarchical Bayesian model. Specifically, we can write Bayes's theorem for a model with a GP prior for $f$ with zero mean function as\n", "\n", "\\begin{align}\n", "\\pi(f, \\theta_k \\mid \\mathbf{y}, \\mathbf{X}) = \\frac{\\pi(\\mathbf{y}, \\mathbf{X} \\mid f)\\,\\pi(f \\mid \\theta_k)\\,\\pi(\\theta_k)}{\\pi(\\mathbf{y}, \\mathbf{X})},\n", "\\end{align}\n", "\n", "where\n", "\n", "\\begin{align}\n", "f \\mid \\theta_k \\sim \\text{GP}(0, k(\\mathbf{x}, \\mathbf{x}'; \\theta_k)).\n", "\\end{align}\n", "\n", "In summary, the kernel specifies key features of the functions we are using to describe our data. It sets lengths scales for typical variation in the horizontal and vertical directions." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Sampling out of a Gaussian process prior\n", "\n", "We would like to draw samples out of a Gaussian process (in this case with an SE kernel). As an example, let's sample the function $f$ at discrete points out of the Gaussian process\n", "\n", "\\begin{align}\n", "f \\mid \\alpha, \\rho \\sim \\text{GP}(\\mathbf{0}, k_\\mathrm{SE}(\\mathbf{x}, \\mathbf{x}'; \\alpha, \\rho)).\n", "\\end{align}\n", "\n", "Remember that we can represent the prior $\\pi(f\\mid \\alpha, \\rho)$ as a multivariate Normal distribution over a set of finite points. For ease, let's consider a one-dimensional dependent variable, so $\\mathbf{x} = x$. Say we want to evaluate $f(x)$ at a set of positions $\\mathbf{x}_*$. Then the latent variables are distributed as\n", "\n", "\\begin{align}\n", "f(\\mathbf{x}_*) \\mid \\alpha, \\rho \\sim \\text{MultiNorm}(\\mathbf{0}, \\mathsf{K}(\\mathbf{x}_*, \\mathbf{x}_*)).\n", "\\end{align}\n", "\n", "To sample out of a Gaussian process, we compute the matrix $\\mathsf{K}(\\mathbf{x}_*, \\mathbf{x}_*)$ for given values of $\\alpha$ and $\\rho$, and then we sample out of this multivariate Normal distribution. I will demonstrate how this is done in both Numpy and Stan." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Sampling out of a GP prior using Stan\n", "\n", "Code to generate samples out of a GP prior using Stan is shown below. I will first display the code and then comment on its contents.\n", "\n", "```stan\n", "data {\n", " // Data points\n", " int Nstar;\n", " array[Nstar] real xstar;\n", "\n", " // Fixed marginal deviance and length scale\n", " real alpha;\n", " real rho;\n", "}\n", "\n", "\n", "transformed data {\n", " // Covariance matrix\n", " matrix[Nstar, Nstar] cov = gp_exp_quad_cov(xstar, alpha, rho) \n", " + diag_matrix(rep_vector(1e-8, Nstar));\n", "\n", " // Better to use Cholesky decomposition\n", " matrix[Nstar, Nstar] L = cholesky_decompose(cov);\n", "}\n", "\n", "\n", "generated quantities {\n", " // Draw from multivariate normal parametrized with Cholesky decomposition\n", " vector[Nstar] f = multi_normal_cholesky_rng(rep_vector(0.0, Nstar), L);\n", "}\n", "```\n", "\n", "For this Stan code, we are fixing $\\alpha$ and $\\rho$. In a prior predictive check for a GP model, we would draw $\\alpha$ and $\\rho$ from their respective hyperpriors, but for this demonstration of sampling out of a GP prior, we will fix them.\n", "\n", "In setting up the covariance matrix based on the SE (exponentiated quadratic in Stan-speak) kernel, we can use Stan's built-in `gp_cov_exp_quad()` function. When we build the matrix, we add a small number to the diagonal purely for numerical stability. (Note that in Stan, `rep_vector()` makes a vector with repeated values, in this case `1e-8`.) Next, because it is generally more stable to work with Cholesky decompositions, we compute the Cholesky decomposition `L` of the covariance matrix. Finally, in the `generated quantities` block, we make our draws out of a multivariate Normal centered on zero (remember, we are considering centered and scaled data).\n", "\n", "Let's take a couple samples out of the prior and plot the results." ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "80940959e2384c1396dbcbff34275a88", "version_major": 2, "version_minor": 0 }, "text/plain": [ "chain 1 | | 00:00 Status" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ " \n" ] } ], "source": [ "# Parameters for GP prior\n", "Nstar = 250\n", "xstar = np.linspace(-5, 5, Nstar)\n", "alpha = 1.0\n", "rho = 1.0\n", "data = dict(Nstar=Nstar, xstar=xstar, alpha=alpha, rho=rho)\n", "\n", "# Compile and sample!\n", "with bebi103.stan.disable_logging():\n", " sm_prior = cmdstanpy.CmdStanModel(stan_file=\"gp_prior_fixed_rho_alpha.stan\")\n", "\n", " samples = sm_prior.sample(\n", " data=data,\n", " iter_sampling=1,\n", " fixed_param=True,\n", " chains=1,\n", " )\n", " \n", "samples = az.from_cmdstanpy(posterior=samples, prior=samples, prior_predictive=\"f\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's plot the result of our sample." ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "
\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/javascript": [ "(function(root) {\n", " function embed_document(root) {\n", " const docs_json = {\"0b37eeb4-ce36-4742-83c0-feb7ee7d7786\":{\"version\":\"3.3.0\",\"title\":\"Bokeh Application\",\"roots\":[{\"type\":\"object\",\"name\":\"Figure\",\"id\":\"p1438\",\"attributes\":{\"x_range\":{\"type\":\"object\",\"name\":\"Range1d\",\"id\":\"p1447\",\"attributes\":{\"start\":-5,\"end\":5}},\"y_range\":{\"type\":\"object\",\"name\":\"DataRange1d\",\"id\":\"p1440\"},\"x_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1448\"},\"y_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1449\"},\"title\":{\"type\":\"object\",\"name\":\"Title\",\"id\":\"p1445\"},\"renderers\":[{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1473\",\"attributes\":{\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1467\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1468\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1469\"},\"data\":{\"type\":\"map\",\"entries\":[[\"x\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"}],[\"y\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"MJ5BQ/+E8D+78lmeB3fwP8e6uI0GcPA/qkNuhhtw8D9lpUkp6HbwPxaHM7+ag/A/26fjMQOV8D9aEqCmlq3wPw3DR8SUyPA/fO2ZJQHq8D91q+ek9w3xP0sC1NSyNfE/yZOkayZf8T8Id2fttovxP2Kh1jTvuPE/9bnaiv3l8T9NhA1PrxTyP8aFAyFZQPI/sTOFzmts8j+GWtO845TyP+58PzVeuvI/eQYN/RPc8j+a6zTSUvnyPwKfH0YID/M/yjfb3Jge8z+7D0BqEyfzP/T91HjpJvM/WYtPATAe8z+Vgm4vaQzzPwHBHD1+7/I/uY0G8BbI8j8w9fOmIpXyPxB6Nqs+V/I/6J/gYkUN8j9iodY077jxP2Svd3+8V/E/luzYCMTr8D9Mjjulg3XwP2Qe+YOB5+8/VdtN8E3T7j/8NsR4zavtP16EKcqlcew//5YA/FMq6z/y6hwDstfpP0vMs5JWfOg/uXAgJAsY5z9y4UBIFrDlP7eadcb3ReQ/dEaU9gbf4j+x9+KL9njhP/sEUIwsGeA/lgfpKXKI3T/6uDZUjPPaPzpbQGg9fNg/Pdf34SAh1j9orz4e+u7TP0chyaze4dE/1v1jIToE0D8+yogLQKPMP3JNgczOosk/DTfg88MIxz93EDtT6LzEP/xtT5DY7sI/I/lKICV2wT9h/DTuzW/AP3yakxeZgL8/hSUeUDblvj88+fTYlgG/PyOGHcakv78/09wKYTWWwD9odXKG4o7BP7yxoDAo08I/VRhbCHJQxD+CyCJNvAPGPyf20D5W8Mc/fbJiuDoAyj+iKTv9oC7MPygOoN/3b84/FhdH5SZq0D8WTWcng6PRP0OR7ucU5NI/Xd+Hg4Qo1D8lrfiGwmfVPyofgqrRq9Y/FM/ZAkLr1z9Dc51GWirZP/MDV3kCYdo/7BhXXByV2z9EvkupS8bcPxxF1hpK7d0/G/M64pAN3z+0WmCPiRTgP9Ul4xjJnuA/3szoR8Mp4T90QX3LnK7hP9ifxOdOMOI/3PKRlPSw4j+TVRFuMirjP0TgSKDBpuM/Ft9Q+Gwd5D/WqfI9I5HkP8tkOJ7PAOU/26M33Edu5T9m9+RhodblPxhanZyhOOY/OZuOAG6W5j889x4uOe7mP9XrFoGxPuc/C0RPyqSG5z9OfLWjOMfnP+Ul/5O/++c/3PEmv0Un6D/DoEyjyUXoP5jdk4eFWug/krBvJxFh6D8Hl445z1joP7LZkeo7P+g/OnZQiesY6D9UGjGzz+PnPxTsv85Nm+c/2ekHdZFC5z/lnNhD+9jmPzpY/+cwX+Y/2BAcl3HT5T8c6ndhazblP9ibGJKTieQ/UmLX9nbL4z8FqKlla/3iP2q/tRMlIeI/y9dl+E834T8TLXk8LT/gPzMV4pF4ed4/ur963Lda3D+M9+P2yyfaPy0Kuyh64Nc/DypxHeOK1T86zQLtDinTP8eEmEuqttA/9bwbCwqDzD+nzTgNUYXHPzDa44V0eMI/f95UpMLYuj+Nei2NBL+wPw3DR8SUSJo/bh+oCZHCi79Pa+QEt/+qvzWFKSVfZLe/WeAruvWawL8n3gGetHDFv1AAxciSOcq/LpCg+DHmzr+UiPAvgsbRv9leC3pvDNS/KbSs+8dC1r+jO4idKXTYv+atug7VlNq/he/9Ddqr3L/RWtHmOLfev8sw7gbRWuC/8N+8OPFV4b9VwhN6/UnivxPvAE9aOOO/ZoS3ByEg5L+2SxsOSwPlv1InoImw4eW/x0eLM4a55r+Y+nlTkYrnv3lb6bXZWOi/JPCHn/8e6b/Bc+/hkuPpv68I/reSneq/FVJ+Uu1T67+HM7+aAwTsv/d2S3LAruy/2CjrNxNT7b/KxRhYx/Htvz9ya9Jtie6/7bYLzXUa7780Spf+Janvv2MLQQ5KGPC/YU87/DVZ8L/Zd0Xwv5XwvxxClZo90PC/f/s6cM4I8b8ge7374z3xv+HRxhFrcfG/bxKDwMqh8b+qZWt9kdDxv+gwX16A/fG/ud+hKNAn8r8bEvdY+lDyv9UJaCJsePK/O+RmuAGf8r+lZg+0AsPyv/NZngd35/K/tHHEWnwK878IPZtVnyvzv3Y3T3XITfO/AwmKH2Nu87/LEMe6uI3zv5VIopdRrPO/zxQ6r7HL87+4O2u3Xejzv7yReeQPBvS//mX35GEh9L8+IqZEEj30v2XfFcH/VvS/c4V3uYhv9L9HVRNE3Yf0v+auJeSDnvS/+kSeJF2z9L9jKCfaVcj0v9Lj9zb92fS/B5lk5Czs9L/N6bKY2Pz0v0F9y5wuC/W/YwtBDkoY9b+H4SNiSiT1v1aCxeHML/W/7pQO1v859b/7y+7Jw0L1v/AzLhwISfW/b0c4LXhR9b/Wc9L7xlf1v+mayTfbXPW/p1zhXS5i9b9KB+v/HGb1v+2BVmDIavW/knTN5Jtt9b/lYaHWNG/1v420VN6OcPW/cT0K16Nw9b+to6oJom71vwjJAiZwa/W/2CrB4nBm9b8Dste7P171v00QdR+AVPW/ur2kMVpH9b+gNxWpMDb1v8R3YtaLIfW/ZeQs7GkH9b8LQQ5KmOn0v9c07zhFx/S/H4XrUbie9L+OzCN/MHD0v5SHhVrTPPS/xLEubqMB9L/gnBGlvcHzv7Uy4Zf6efO/lDDT9q8s878=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"}]]}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1474\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1475\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Circle\",\"id\":\"p1470\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b4\"},\"fill_color\":{\"type\":\"value\",\"value\":\"#1f77b4\"}}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Circle\",\"id\":\"p1471\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b4\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.1},\"fill_color\":{\"type\":\"value\",\"value\":\"#1f77b4\"},\"fill_alpha\":{\"type\":\"value\",\"value\":0.1},\"hatch_alpha\":{\"type\":\"value\",\"value\":0.1}}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Circle\",\"id\":\"p1472\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b4\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.2},\"fill_color\":{\"type\":\"value\",\"value\":\"#1f77b4\"},\"fill_alpha\":{\"type\":\"value\",\"value\":0.2},\"hatch_alpha\":{\"type\":\"value\",\"value\":0.2}}}}}],\"toolbar\":{\"type\":\"object\",\"name\":\"Toolbar\",\"id\":\"p1446\",\"attributes\":{\"tools\":[{\"type\":\"object\",\"name\":\"PanTool\",\"id\":\"p1460\"},{\"type\":\"object\",\"name\":\"WheelZoomTool\",\"id\":\"p1461\",\"attributes\":{\"renderers\":\"auto\"}},{\"type\":\"object\",\"name\":\"BoxZoomTool\",\"id\":\"p1462\",\"attributes\":{\"overlay\":{\"type\":\"object\",\"name\":\"BoxAnnotation\",\"id\":\"p1463\",\"attributes\":{\"syncable\":false,\"level\":\"overlay\",\"visible\":false,\"left_units\":\"canvas\",\"right_units\":\"canvas\",\"top_units\":\"canvas\",\"bottom_units\":\"canvas\",\"line_color\":\"black\",\"line_alpha\":1.0,\"line_width\":2,\"line_dash\":[4,4],\"fill_color\":\"lightgrey\",\"fill_alpha\":0.5}}}},{\"type\":\"object\",\"name\":\"SaveTool\",\"id\":\"p1464\"},{\"type\":\"object\",\"name\":\"ResetTool\",\"id\":\"p1465\"},{\"type\":\"object\",\"name\":\"HelpTool\",\"id\":\"p1466\"}]}},\"left\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1455\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1456\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1457\"},\"axis_label\":\"f(x)\",\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1458\"}}}],\"below\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1450\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1451\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1452\"},\"axis_label\":\"x\",\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1453\"}}}],\"center\":[{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1454\",\"attributes\":{\"axis\":{\"id\":\"p1450\"}}},{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1459\",\"attributes\":{\"dimension\":1,\"axis\":{\"id\":\"p1455\"}}},{\"type\":\"object\",\"name\":\"Legend\",\"id\":\"p1476\",\"attributes\":{\"items\":[{\"type\":\"object\",\"name\":\"LegendItem\",\"id\":\"p1477\",\"attributes\":{\"label\":{\"type\":\"value\",\"value\":\"\\u03b1 = 1, \\u03c1 = 1\"},\"renderers\":[{\"id\":\"p1473\"}]}}]}}],\"frame_width\":450,\"frame_height\":250}}],\"defs\":[{\"type\":\"model\",\"name\":\"ReactiveHTML1\"},{\"type\":\"model\",\"name\":\"FlexBox1\",\"properties\":[{\"name\":\"align_content\",\"kind\":\"Any\",\"default\":\"flex-start\"},{\"name\":\"align_items\",\"kind\":\"Any\",\"default\":\"flex-start\"},{\"name\":\"flex_direction\",\"kind\":\"Any\",\"default\":\"row\"},{\"name\":\"flex_wrap\",\"kind\":\"Any\",\"default\":\"wrap\"},{\"name\":\"justify_content\",\"kind\":\"Any\",\"default\":\"flex-start\"}]},{\"type\":\"model\",\"name\":\"FloatPanel1\",\"properties\":[{\"name\":\"config\",\"kind\":\"Any\",\"default\":{\"type\":\"map\"}},{\"name\":\"contained\",\"kind\":\"Any\",\"default\":true},{\"name\":\"position\",\"kind\":\"Any\",\"default\":\"right-top\"},{\"name\":\"offsetx\",\"kind\":\"Any\",\"default\":null},{\"name\":\"offsety\",\"kind\":\"Any\",\"default\":null},{\"name\":\"theme\",\"kind\":\"Any\",\"default\":\"primary\"},{\"name\":\"status\",\"kind\":\"Any\",\"default\":\"normalized\"}]},{\"type\":\"model\",\"name\":\"GridStack1\",\"properties\":[{\"name\":\"mode\",\"kind\":\"Any\",\"default\":\"warn\"},{\"name\":\"ncols\",\"kind\":\"Any\",\"default\":null},{\"name\":\"nrows\",\"kind\":\"Any\",\"default\":null},{\"name\":\"allow_resize\",\"kind\":\"Any\",\"default\":true},{\"name\":\"allow_drag\",\"kind\":\"Any\",\"default\":true},{\"name\":\"state\",\"kind\":\"Any\",\"default\":[]}]},{\"type\":\"model\",\"name\":\"drag1\",\"properties\":[{\"name\":\"slider_width\",\"kind\":\"Any\",\"default\":5},{\"name\":\"slider_color\",\"kind\":\"Any\",\"default\":\"black\"},{\"name\":\"value\",\"kind\":\"Any\",\"default\":50}]},{\"type\":\"model\",\"name\":\"click1\",\"properties\":[{\"name\":\"terminal_output\",\"kind\":\"Any\",\"default\":\"\"},{\"name\":\"debug_name\",\"kind\":\"Any\",\"default\":\"\"},{\"name\":\"clears\",\"kind\":\"Any\",\"default\":0}]},{\"type\":\"model\",\"name\":\"toggle_value1\",\"properties\":[{\"name\":\"active_icons\",\"kind\":\"Any\",\"default\":{\"type\":\"map\"}},{\"name\":\"options\",\"kind\":\"Any\",\"default\":{\"type\":\"map\",\"entries\":[[\"favorite\",\"heart\"]]}},{\"name\":\"value\",\"kind\":\"Any\",\"default\":[]},{\"name\":\"_reactions\",\"kind\":\"Any\",\"default\":[]},{\"name\":\"_base_url\",\"kind\":\"Any\",\"default\":\"https://tabler-icons.io/static/tabler-icons/icons/\"}]},{\"type\":\"model\",\"name\":\"copy_to_clipboard1\",\"properties\":[{\"name\":\"value\",\"kind\":\"Any\",\"default\":null},{\"name\":\"fill\",\"kind\":\"Any\",\"default\":\"none\"}]},{\"type\":\"model\",\"name\":\"FastWrapper1\",\"properties\":[{\"name\":\"object\",\"kind\":\"Any\",\"default\":null},{\"name\":\"style\",\"kind\":\"Any\",\"default\":null}]},{\"type\":\"model\",\"name\":\"NotificationAreaBase1\",\"properties\":[{\"name\":\"js_events\",\"kind\":\"Any\",\"default\":{\"type\":\"map\"}},{\"name\":\"position\",\"kind\":\"Any\",\"default\":\"bottom-right\"},{\"name\":\"_clear\",\"kind\":\"Any\",\"default\":0}]},{\"type\":\"model\",\"name\":\"NotificationArea1\",\"properties\":[{\"name\":\"js_events\",\"kind\":\"Any\",\"default\":{\"type\":\"map\"}},{\"name\":\"notifications\",\"kind\":\"Any\",\"default\":[]},{\"name\":\"position\",\"kind\":\"Any\",\"default\":\"bottom-right\"},{\"name\":\"_clear\",\"kind\":\"Any\",\"default\":0},{\"name\":\"types\",\"kind\":\"Any\",\"default\":[{\"type\":\"map\",\"entries\":[[\"type\",\"warning\"],[\"background\",\"#ffc107\"],[\"icon\",{\"type\":\"map\",\"entries\":[[\"className\",\"fas fa-exclamation-triangle\"],[\"tagName\",\"i\"],[\"color\",\"white\"]]}]]},{\"type\":\"map\",\"entries\":[[\"type\",\"info\"],[\"background\",\"#007bff\"],[\"icon\",{\"type\":\"map\",\"entries\":[[\"className\",\"fas fa-info-circle\"],[\"tagName\",\"i\"],[\"color\",\"white\"]]}]]}]}]},{\"type\":\"model\",\"name\":\"Notification\",\"properties\":[{\"name\":\"background\",\"kind\":\"Any\",\"default\":null},{\"name\":\"duration\",\"kind\":\"Any\",\"default\":3000},{\"name\":\"icon\",\"kind\":\"Any\",\"default\":null},{\"name\":\"message\",\"kind\":\"Any\",\"default\":\"\"},{\"name\":\"notification_type\",\"kind\":\"Any\",\"default\":null},{\"name\":\"_destroyed\",\"kind\":\"Any\",\"default\":false}]},{\"type\":\"model\",\"name\":\"TemplateActions1\",\"properties\":[{\"name\":\"open_modal\",\"kind\":\"Any\",\"default\":0},{\"name\":\"close_modal\",\"kind\":\"Any\",\"default\":0}]},{\"type\":\"model\",\"name\":\"BootstrapTemplateActions1\",\"properties\":[{\"name\":\"open_modal\",\"kind\":\"Any\",\"default\":0},{\"name\":\"close_modal\",\"kind\":\"Any\",\"default\":0}]},{\"type\":\"model\",\"name\":\"MaterialTemplateActions1\",\"properties\":[{\"name\":\"open_modal\",\"kind\":\"Any\",\"default\":0},{\"name\":\"close_modal\",\"kind\":\"Any\",\"default\":0}]}]}};\n", " const render_items = [{\"docid\":\"0b37eeb4-ce36-4742-83c0-feb7ee7d7786\",\"roots\":{\"p1438\":\"df4cfbf9-5172-4e29-b69a-46e2d122b918\"},\"root_ids\":[\"p1438\"]}];\n", " root.Bokeh.embed.embed_items_notebook(docs_json, render_items);\n", " }\n", " if (root.Bokeh !== undefined) {\n", " embed_document(root);\n", " } else {\n", " let attempts = 0;\n", " const timer = setInterval(function(root) {\n", " if (root.Bokeh !== undefined) {\n", " clearInterval(timer);\n", " embed_document(root);\n", " } else {\n", " attempts++;\n", " if (attempts > 100) {\n", " clearInterval(timer);\n", " console.log(\"Bokeh: ERROR: Unable to run BokehJS code because BokehJS library is missing\");\n", " }\n", " }\n", " }, 10, root)\n", " }\n", "})(window);" ], "application/vnd.bokehjs_exec.v0+json": "" }, "metadata": { "application/vnd.bokehjs_exec.v0+json": { "id": "p1438" } }, "output_type": "display_data" } ], "source": [ "# Plot the result\n", "p = bokeh.plotting.figure(\n", " frame_height=250,\n", " frame_width=450,\n", " x_axis_label=\"x\",\n", " y_axis_label=\"f(x)\",\n", " x_range=[-5, 5],\n", ")\n", "\n", "p.circle(\n", " xstar, samples.prior_predictive[\"f\"].values.flatten(), legend_label=\"α = 1, ρ = 1\"\n", ")\n", "\n", "bokeh.io.show(p)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "I have plotted the function as points to emphasize that we are evaluating the function $f(x)$ at discrete points. Note that the function varies over a length scale of approximately 1 and the amplitude is also approximately 1. We can make the function vary more rapidly by tuning $\\rho$ down." ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "4d8bb03ce9f040179bec7cbcb2811c76", "version_major": 2, "version_minor": 0 }, "text/plain": [ "chain 1 | | 00:00 Status" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ " \n" ] }, { "data": { "text/html": [ "\n", "
\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/javascript": [ "(function(root) {\n", " function embed_document(root) {\n", " const docs_json = {\"5ff62d4a-3708-4813-b614-d29637c81ab9\":{\"version\":\"3.3.0\",\"title\":\"Bokeh Application\",\"roots\":[{\"type\":\"object\",\"name\":\"Figure\",\"id\":\"p1438\",\"attributes\":{\"x_range\":{\"type\":\"object\",\"name\":\"Range1d\",\"id\":\"p1447\",\"attributes\":{\"start\":-5,\"end\":5}},\"y_range\":{\"type\":\"object\",\"name\":\"DataRange1d\",\"id\":\"p1440\"},\"x_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1448\"},\"y_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1449\"},\"title\":{\"type\":\"object\",\"name\":\"Title\",\"id\":\"p1445\"},\"renderers\":[{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1473\",\"attributes\":{\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1467\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1468\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1469\"},\"data\":{\"type\":\"map\",\"entries\":[[\"x\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"}],[\"y\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"MJ5BQ/+E8D+78lmeB3fwP8e6uI0GcPA/qkNuhhtw8D9lpUkp6HbwPxaHM7+ag/A/26fjMQOV8D9aEqCmlq3wPw3DR8SUyPA/fO2ZJQHq8D91q+ek9w3xP0sC1NSyNfE/yZOkayZf8T8Id2fttovxP2Kh1jTvuPE/9bnaiv3l8T9NhA1PrxTyP8aFAyFZQPI/sTOFzmts8j+GWtO845TyP+58PzVeuvI/eQYN/RPc8j+a6zTSUvnyPwKfH0YID/M/yjfb3Jge8z+7D0BqEyfzP/T91HjpJvM/WYtPATAe8z+Vgm4vaQzzPwHBHD1+7/I/uY0G8BbI8j8w9fOmIpXyPxB6Nqs+V/I/6J/gYkUN8j9iodY077jxP2Svd3+8V/E/luzYCMTr8D9Mjjulg3XwP2Qe+YOB5+8/VdtN8E3T7j/8NsR4zavtP16EKcqlcew//5YA/FMq6z/y6hwDstfpP0vMs5JWfOg/uXAgJAsY5z9y4UBIFrDlP7eadcb3ReQ/dEaU9gbf4j+x9+KL9njhP/sEUIwsGeA/lgfpKXKI3T/6uDZUjPPaPzpbQGg9fNg/Pdf34SAh1j9orz4e+u7TP0chyaze4dE/1v1jIToE0D8+yogLQKPMP3JNgczOosk/DTfg88MIxz93EDtT6LzEP/xtT5DY7sI/I/lKICV2wT9h/DTuzW/AP3yakxeZgL8/hSUeUDblvj88+fTYlgG/PyOGHcakv78/09wKYTWWwD9odXKG4o7BP7yxoDAo08I/VRhbCHJQxD+CyCJNvAPGPyf20D5W8Mc/fbJiuDoAyj+iKTv9oC7MPygOoN/3b84/FhdH5SZq0D8WTWcng6PRP0OR7ucU5NI/Xd+Hg4Qo1D8lrfiGwmfVPyofgqrRq9Y/FM/ZAkLr1z9Dc51GWirZP/MDV3kCYdo/7BhXXByV2z9EvkupS8bcPxxF1hpK7d0/G/M64pAN3z+0WmCPiRTgP9Ul4xjJnuA/3szoR8Mp4T90QX3LnK7hP9ifxOdOMOI/3PKRlPSw4j+TVRFuMirjP0TgSKDBpuM/Ft9Q+Gwd5D/WqfI9I5HkP8tkOJ7PAOU/26M33Edu5T9m9+RhodblPxhanZyhOOY/OZuOAG6W5j889x4uOe7mP9XrFoGxPuc/C0RPyqSG5z9OfLWjOMfnP+Ul/5O/++c/3PEmv0Un6D/DoEyjyUXoP5jdk4eFWug/krBvJxFh6D8Hl445z1joP7LZkeo7P+g/OnZQiesY6D9UGjGzz+PnPxTsv85Nm+c/2ekHdZFC5z/lnNhD+9jmPzpY/+cwX+Y/2BAcl3HT5T8c6ndhazblP9ibGJKTieQ/UmLX9nbL4z8FqKlla/3iP2q/tRMlIeI/y9dl+E834T8TLXk8LT/gPzMV4pF4ed4/ur963Lda3D+M9+P2yyfaPy0Kuyh64Nc/DypxHeOK1T86zQLtDinTP8eEmEuqttA/9bwbCwqDzD+nzTgNUYXHPzDa44V0eMI/f95UpMLYuj+Nei2NBL+wPw3DR8SUSJo/bh+oCZHCi79Pa+QEt/+qvzWFKSVfZLe/WeAruvWawL8n3gGetHDFv1AAxciSOcq/LpCg+DHmzr+UiPAvgsbRv9leC3pvDNS/KbSs+8dC1r+jO4idKXTYv+atug7VlNq/he/9Ddqr3L/RWtHmOLfev8sw7gbRWuC/8N+8OPFV4b9VwhN6/UnivxPvAE9aOOO/ZoS3ByEg5L+2SxsOSwPlv1InoImw4eW/x0eLM4a55r+Y+nlTkYrnv3lb6bXZWOi/JPCHn/8e6b/Bc+/hkuPpv68I/reSneq/FVJ+Uu1T67+HM7+aAwTsv/d2S3LAruy/2CjrNxNT7b/KxRhYx/Htvz9ya9Jtie6/7bYLzXUa7780Spf+Janvv2MLQQ5KGPC/YU87/DVZ8L/Zd0Xwv5XwvxxClZo90PC/f/s6cM4I8b8ge7374z3xv+HRxhFrcfG/bxKDwMqh8b+qZWt9kdDxv+gwX16A/fG/ud+hKNAn8r8bEvdY+lDyv9UJaCJsePK/O+RmuAGf8r+lZg+0AsPyv/NZngd35/K/tHHEWnwK878IPZtVnyvzv3Y3T3XITfO/AwmKH2Nu87/LEMe6uI3zv5VIopdRrPO/zxQ6r7HL87+4O2u3Xejzv7yReeQPBvS//mX35GEh9L8+IqZEEj30v2XfFcH/VvS/c4V3uYhv9L9HVRNE3Yf0v+auJeSDnvS/+kSeJF2z9L9jKCfaVcj0v9Lj9zb92fS/B5lk5Czs9L/N6bKY2Pz0v0F9y5wuC/W/YwtBDkoY9b+H4SNiSiT1v1aCxeHML/W/7pQO1v859b/7y+7Jw0L1v/AzLhwISfW/b0c4LXhR9b/Wc9L7xlf1v+mayTfbXPW/p1zhXS5i9b9KB+v/HGb1v+2BVmDIavW/knTN5Jtt9b/lYaHWNG/1v420VN6OcPW/cT0K16Nw9b+to6oJom71vwjJAiZwa/W/2CrB4nBm9b8Dste7P171v00QdR+AVPW/ur2kMVpH9b+gNxWpMDb1v8R3YtaLIfW/ZeQs7GkH9b8LQQ5KmOn0v9c07zhFx/S/H4XrUbie9L+OzCN/MHD0v5SHhVrTPPS/xLEubqMB9L/gnBGlvcHzv7Uy4Zf6efO/lDDT9q8s878=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"}]]}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1474\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1475\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Circle\",\"id\":\"p1470\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b4\"},\"fill_color\":{\"type\":\"value\",\"value\":\"#1f77b4\"}}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Circle\",\"id\":\"p1471\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b4\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.1},\"fill_color\":{\"type\":\"value\",\"value\":\"#1f77b4\"},\"fill_alpha\":{\"type\":\"value\",\"value\":0.1},\"hatch_alpha\":{\"type\":\"value\",\"value\":0.1}}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Circle\",\"id\":\"p1472\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b4\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.2},\"fill_color\":{\"type\":\"value\",\"value\":\"#1f77b4\"},\"fill_alpha\":{\"type\":\"value\",\"value\":0.2},\"hatch_alpha\":{\"type\":\"value\",\"value\":0.2}}}}},{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1486\",\"attributes\":{\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1480\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1481\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1482\"},\"data\":{\"type\":\"map\",\"entries\":[[\"x\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"}],[\"y\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"GvonuFjR8b9/wW7Ytqjxv7nCu1zEd/G/Y9F0djI48b+EDU+vlOXwvwAAAAAAgPC/bkxPWOIB8L/92CQ/4tfuv7GiBtMwfO2/jIS2nEvx678vpMNDGD/qv82RlV8GY+i/uRYtQNtq5r8MAiuHFlnkv8eEmEuqNuK/D39N1qgH4L+p29lXHqTbvy2Y+KOoM9e/KSLDKt7I0r/XTL7Z5sbMv3KKjuTyH8S/R40JMZdUt7+sEKDwI8iav5HxKJXwhKI/2wcPiTGfuD9Wf4RhwJLDPziie9Y1Wso/MH+FzJVB0D8HmzqPiv/SPygLX1/rUtU/Xru04bA01z9mbOhmf6DYP6mDvB5Mitk/LpELzuDv2T+94T5ya9LZPx2u1R72Qtk/U5EKYwtB2D9YkjzX9+HWP8ecZ+xLNtU/lSh7Szlf0z96jPLMy2HRP7LZkeo7v84/I7pnXaPlyj9IN8KiIk7HP5s4ud+hKMQ/XknyXN+HwT8LJ2n+mNa+P1DHYwYq47s/lkOLbOf7uT8xI7w9CAG5P2HAN/Llqrg/a1id5i7TuD8hu8EG+vq4Pxf3elKB7rg/mzqPiv87uD/D3h9KD562P6YgiajTy7M/1nPS+8bXrj/7KH7nct6iP0midkNDlHk/Lgpxm1+DoL9Z2HhVDPyzv2u3XWiu08C/v7UTJSGRyL8r9wKzQpHQv8ecZ+xLNtW/FAX6RJ4k2r8ysI7jh0rfv+DyWDMySOK/7Sx6pwLu5L/JchJKX4jnv5XXSuguCeq/l3DoLR5e7L+13QTfNH3uv2JKJNHLKPC/JVgczvzq8L94tHHEWnzxvyzxgLIp1/G/Qj7o2az68b8xCKwcWuTxvxXGFoIclPG/l8rbEU4L8b92Tx4Wak3wvyqPboRFxe6/31D4bB2c7L/ZPXlYqDXqvyOD3EWYoue/iudsAaH15L/SHcTOFDrivwjNrnsrEt+/ijkIOlrV2b+mKm1xjc/Uv/kQVI1eDdC/M4ekFkomx78VkPY/wFq9v6+L7JRYY6q/X3JpHdEUhD+9GMqJdhWyP6PMBplk5MA/Szlf7L34yD/u0LAYda3QP56VtOIbCtU/7s1vmGiQ2T+sVFBR9SveP93qOel9Y+E/TmA6rdug4z9OY3st6L3lP5XyWgndpec/A+0OKQZI6T/Ca5c2HJbqP7VwWYXNgOs/ilbuBWYF7D+HTs+7sSDsP6GDLuHQ2+s/PQrXo3A96z+Rf2YQH1jqP/t1pztPPOk/1lJA2v8A6D9y+nq+ZrnmPzVFgNO7eOU/TwKbc/BM5D+3mQrxSDzjP6ZCPBIvT+I/SUc5mE2A4T+PHVTiOsbgP8qjG2FREeA/OQt72uGv3j8abOo8Kv7cP/Z9OEiI8to/jC5vDtdq2D/kwKvlzkzVP/HXZI16iNE/a/P/qiNHyj9xjjo6rkbAP3IUIApmTKU/atVTUPY7qb9zvW2mQjzCv+IC0Chd+s2/9kIB28GI1L+p2JjXEYfZv0j43t+gvd2/bw7Xag974L9w0jQomofhv/NaCd0l8eG/oE/kSdK14b/RdeEH59Pgv7U2je21oN6/M2q+Sj522r8ZH2Yv207Vv5QyqaENwM6/kEqxo3Gowb9RmnIqvkafv4WmNoKeF7Q/1BBV+DO8xz9uMNRhhVvSPwRz9Pi9Tdg/x9Rd2QWD3T9wz/OnjergP1VntcAek+I/lUkNbQC24z9GmQ0yyUjkP8xfIXNlUOQ/+vGXFvXJ4z8P8nowKb7iPzj0Fg/vOeE/2/y/6siR3j9OmZtvRPfZP3e8yW/RydQ/3gAz38FPzj8VGohlM4fCP4h0LnvISqo/nmtOFNfnpL/SVbq7zobAv8jrwaT4+Mq/qG4u/rYn0r9os+pztRXWv4odjUP9Ltm/CAWlaOVe278U6ukj8Ifcv5ChYweVuNy/8RDGT+Pe27/AeAYN/RPavzEIrBxaZNe/mE2AYfnz07/MRuf8FMfPv9sxdVd2wca/SZwVURN9ur/fsCPESyadv6rAf6lVqqY/HLEWnwJgvD/HKqVneonFP8Tr+gW7Ycs/6INlbOhmzz8fSN45lKHQPwgGED6UaNA/+dueILHdzT9sfCb752nIP2Ahc2VQbcA/cDxESIIVqD+p+1tdqcKqv35zf/W4b8W/fjfdskP80r8jvD0IAfnbv08+PbZlwOK/HhoWo661578nwRvSqMDsv0+vlGWI4/C/uOS4UzpY878R/G8lO7b1v3JtqBjn7/e/Ik+Srpn8+b+9jGK5pdX7v9wpHaz/c/2/bhea6zTS/r9angd3Z+3/v6d0sP7PYQDAfZHQlnOpAMDJyFnY084AwDP5Zpsb0wDA09nJ4Ci5AMCnrnyW54EAwDUHCOboMQDAYcPTK2WZ/78+y/Pg7qz+v0uTUtDtpf2/c2N6whKP/L8EOShhpm37v88UOq+xS/q/zQaZZOQs+b/xLhfxnRj4vzlFR3L5D/e/g/qWOV0W9r/xnZj1Yij1v0yJJHoZRfS/ttsuNNdp87/83qY/+5Hyv6J/gosVtfG/NlmjHqLR8L/xYmGInL7vv3rFU480uO2/zNJOzeWG678bYye8BCfpv7RzmgXanea/TwXc8/zp478ip6/naxbhv5Ny9zk+Wty/UIwsmWN51r/APc+fNqrQvz2BsFOsGsa/Mq64OCo3t78=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"}]]}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1487\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1488\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Circle\",\"id\":\"p1483\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":{\"type\":\"value\",\"value\":\"orange\"},\"fill_color\":{\"type\":\"value\",\"value\":\"orange\"},\"hatch_color\":{\"type\":\"value\",\"value\":\"orange\"}}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Circle\",\"id\":\"p1484\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":{\"type\":\"value\",\"value\":\"orange\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.1},\"fill_color\":{\"type\":\"value\",\"value\":\"orange\"},\"fill_alpha\":{\"type\":\"value\",\"value\":0.1},\"hatch_color\":{\"type\":\"value\",\"value\":\"orange\"},\"hatch_alpha\":{\"type\":\"value\",\"value\":0.1}}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Circle\",\"id\":\"p1485\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":{\"type\":\"value\",\"value\":\"orange\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.2},\"fill_color\":{\"type\":\"value\",\"value\":\"orange\"},\"fill_alpha\":{\"type\":\"value\",\"value\":0.2},\"hatch_color\":{\"type\":\"value\",\"value\":\"orange\"},\"hatch_alpha\":{\"type\":\"value\",\"value\":0.2}}}}}],\"toolbar\":{\"type\":\"object\",\"name\":\"Toolbar\",\"id\":\"p1446\",\"attributes\":{\"tools\":[{\"type\":\"object\",\"name\":\"PanTool\",\"id\":\"p1460\"},{\"type\":\"object\",\"name\":\"WheelZoomTool\",\"id\":\"p1461\",\"attributes\":{\"renderers\":\"auto\"}},{\"type\":\"object\",\"name\":\"BoxZoomTool\",\"id\":\"p1462\",\"attributes\":{\"overlay\":{\"type\":\"object\",\"name\":\"BoxAnnotation\",\"id\":\"p1463\",\"attributes\":{\"syncable\":false,\"level\":\"overlay\",\"visible\":false,\"left_units\":\"canvas\",\"right_units\":\"canvas\",\"top_units\":\"canvas\",\"bottom_units\":\"canvas\",\"line_color\":\"black\",\"line_alpha\":1.0,\"line_width\":2,\"line_dash\":[4,4],\"fill_color\":\"lightgrey\",\"fill_alpha\":0.5}}}},{\"type\":\"object\",\"name\":\"SaveTool\",\"id\":\"p1464\"},{\"type\":\"object\",\"name\":\"ResetTool\",\"id\":\"p1465\"},{\"type\":\"object\",\"name\":\"HelpTool\",\"id\":\"p1466\"}]}},\"left\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1455\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1456\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1457\"},\"axis_label\":\"f(x)\",\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1458\"}}}],\"below\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1450\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1451\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1452\"},\"axis_label\":\"x\",\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1453\"}}}],\"center\":[{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1454\",\"attributes\":{\"axis\":{\"id\":\"p1450\"}}},{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1459\",\"attributes\":{\"dimension\":1,\"axis\":{\"id\":\"p1455\"}}},{\"type\":\"object\",\"name\":\"Legend\",\"id\":\"p1476\",\"attributes\":{\"items\":[{\"type\":\"object\",\"name\":\"LegendItem\",\"id\":\"p1477\",\"attributes\":{\"label\":{\"type\":\"value\",\"value\":\"\\u03b1 = 1, \\u03c1 = 1\"},\"renderers\":[{\"id\":\"p1473\"}]}},{\"type\":\"object\",\"name\":\"LegendItem\",\"id\":\"p1489\",\"attributes\":{\"label\":{\"type\":\"value\",\"value\":\"\\u03b1 = 1, \\u03c1 = 0.5\"},\"renderers\":[{\"id\":\"p1486\"}]}}]}}],\"frame_width\":450,\"frame_height\":250}}],\"defs\":[{\"type\":\"model\",\"name\":\"ReactiveHTML1\"},{\"type\":\"model\",\"name\":\"FlexBox1\",\"properties\":[{\"name\":\"align_content\",\"kind\":\"Any\",\"default\":\"flex-start\"},{\"name\":\"align_items\",\"kind\":\"Any\",\"default\":\"flex-start\"},{\"name\":\"flex_direction\",\"kind\":\"Any\",\"default\":\"row\"},{\"name\":\"flex_wrap\",\"kind\":\"Any\",\"default\":\"wrap\"},{\"name\":\"justify_content\",\"kind\":\"Any\",\"default\":\"flex-start\"}]},{\"type\":\"model\",\"name\":\"FloatPanel1\",\"properties\":[{\"name\":\"config\",\"kind\":\"Any\",\"default\":{\"type\":\"map\"}},{\"name\":\"contained\",\"kind\":\"Any\",\"default\":true},{\"name\":\"position\",\"kind\":\"Any\",\"default\":\"right-top\"},{\"name\":\"offsetx\",\"kind\":\"Any\",\"default\":null},{\"name\":\"offsety\",\"kind\":\"Any\",\"default\":null},{\"name\":\"theme\",\"kind\":\"Any\",\"default\":\"primary\"},{\"name\":\"status\",\"kind\":\"Any\",\"default\":\"normalized\"}]},{\"type\":\"model\",\"name\":\"GridStack1\",\"properties\":[{\"name\":\"mode\",\"kind\":\"Any\",\"default\":\"warn\"},{\"name\":\"ncols\",\"kind\":\"Any\",\"default\":null},{\"name\":\"nrows\",\"kind\":\"Any\",\"default\":null},{\"name\":\"allow_resize\",\"kind\":\"Any\",\"default\":true},{\"name\":\"allow_drag\",\"kind\":\"Any\",\"default\":true},{\"name\":\"state\",\"kind\":\"Any\",\"default\":[]}]},{\"type\":\"model\",\"name\":\"drag1\",\"properties\":[{\"name\":\"slider_width\",\"kind\":\"Any\",\"default\":5},{\"name\":\"slider_color\",\"kind\":\"Any\",\"default\":\"black\"},{\"name\":\"value\",\"kind\":\"Any\",\"default\":50}]},{\"type\":\"model\",\"name\":\"click1\",\"properties\":[{\"name\":\"terminal_output\",\"kind\":\"Any\",\"default\":\"\"},{\"name\":\"debug_name\",\"kind\":\"Any\",\"default\":\"\"},{\"name\":\"clears\",\"kind\":\"Any\",\"default\":0}]},{\"type\":\"model\",\"name\":\"toggle_value1\",\"properties\":[{\"name\":\"active_icons\",\"kind\":\"Any\",\"default\":{\"type\":\"map\"}},{\"name\":\"options\",\"kind\":\"Any\",\"default\":{\"type\":\"map\",\"entries\":[[\"favorite\",\"heart\"]]}},{\"name\":\"value\",\"kind\":\"Any\",\"default\":[]},{\"name\":\"_reactions\",\"kind\":\"Any\",\"default\":[]},{\"name\":\"_base_url\",\"kind\":\"Any\",\"default\":\"https://tabler-icons.io/static/tabler-icons/icons/\"}]},{\"type\":\"model\",\"name\":\"copy_to_clipboard1\",\"properties\":[{\"name\":\"value\",\"kind\":\"Any\",\"default\":null},{\"name\":\"fill\",\"kind\":\"Any\",\"default\":\"none\"}]},{\"type\":\"model\",\"name\":\"FastWrapper1\",\"properties\":[{\"name\":\"object\",\"kind\":\"Any\",\"default\":null},{\"name\":\"style\",\"kind\":\"Any\",\"default\":null}]},{\"type\":\"model\",\"name\":\"NotificationAreaBase1\",\"properties\":[{\"name\":\"js_events\",\"kind\":\"Any\",\"default\":{\"type\":\"map\"}},{\"name\":\"position\",\"kind\":\"Any\",\"default\":\"bottom-right\"},{\"name\":\"_clear\",\"kind\":\"Any\",\"default\":0}]},{\"type\":\"model\",\"name\":\"NotificationArea1\",\"properties\":[{\"name\":\"js_events\",\"kind\":\"Any\",\"default\":{\"type\":\"map\"}},{\"name\":\"notifications\",\"kind\":\"Any\",\"default\":[]},{\"name\":\"position\",\"kind\":\"Any\",\"default\":\"bottom-right\"},{\"name\":\"_clear\",\"kind\":\"Any\",\"default\":0},{\"name\":\"types\",\"kind\":\"Any\",\"default\":[{\"type\":\"map\",\"entries\":[[\"type\",\"warning\"],[\"background\",\"#ffc107\"],[\"icon\",{\"type\":\"map\",\"entries\":[[\"className\",\"fas fa-exclamation-triangle\"],[\"tagName\",\"i\"],[\"color\",\"white\"]]}]]},{\"type\":\"map\",\"entries\":[[\"type\",\"info\"],[\"background\",\"#007bff\"],[\"icon\",{\"type\":\"map\",\"entries\":[[\"className\",\"fas fa-info-circle\"],[\"tagName\",\"i\"],[\"color\",\"white\"]]}]]}]}]},{\"type\":\"model\",\"name\":\"Notification\",\"properties\":[{\"name\":\"background\",\"kind\":\"Any\",\"default\":null},{\"name\":\"duration\",\"kind\":\"Any\",\"default\":3000},{\"name\":\"icon\",\"kind\":\"Any\",\"default\":null},{\"name\":\"message\",\"kind\":\"Any\",\"default\":\"\"},{\"name\":\"notification_type\",\"kind\":\"Any\",\"default\":null},{\"name\":\"_destroyed\",\"kind\":\"Any\",\"default\":false}]},{\"type\":\"model\",\"name\":\"TemplateActions1\",\"properties\":[{\"name\":\"open_modal\",\"kind\":\"Any\",\"default\":0},{\"name\":\"close_modal\",\"kind\":\"Any\",\"default\":0}]},{\"type\":\"model\",\"name\":\"BootstrapTemplateActions1\",\"properties\":[{\"name\":\"open_modal\",\"kind\":\"Any\",\"default\":0},{\"name\":\"close_modal\",\"kind\":\"Any\",\"default\":0}]},{\"type\":\"model\",\"name\":\"MaterialTemplateActions1\",\"properties\":[{\"name\":\"open_modal\",\"kind\":\"Any\",\"default\":0},{\"name\":\"close_modal\",\"kind\":\"Any\",\"default\":0}]}]}};\n", " const render_items = [{\"docid\":\"5ff62d4a-3708-4813-b614-d29637c81ab9\",\"roots\":{\"p1438\":\"f708fdb2-3117-4c07-93f3-013e128376ab\"},\"root_ids\":[\"p1438\"]}];\n", " root.Bokeh.embed.embed_items_notebook(docs_json, render_items);\n", " }\n", " if (root.Bokeh !== undefined) {\n", " embed_document(root);\n", " } else {\n", " let attempts = 0;\n", " const timer = setInterval(function(root) {\n", " if (root.Bokeh !== undefined) {\n", " clearInterval(timer);\n", " embed_document(root);\n", " } else {\n", " attempts++;\n", " if (attempts > 100) {\n", " clearInterval(timer);\n", " console.log(\"Bokeh: ERROR: Unable to run BokehJS code because BokehJS library is missing\");\n", " }\n", " }\n", " }, 10, root)\n", " }\n", "})(window);" ], "application/vnd.bokehjs_exec.v0+json": "" }, "metadata": { "application/vnd.bokehjs_exec.v0+json": { "id": "p1438" } }, "output_type": "display_data" } ], "source": [ "data[\"rho\"] = 0.5\n", "\n", "with bebi103.stan.disable_logging():\n", " samples = sm_prior.sample(data=data, iter_sampling=1, fixed_param=True, chains=1)\n", "\n", "samples = az.from_cmdstanpy(prior=samples, prior_predictive=\"f\")\n", "\n", "p.circle(\n", " xstar,\n", " samples.prior_predictive[\"f\"].values.flatten(),\n", " color=\"orange\",\n", " legend_label=\"α = 1, ρ = 0.5\",\n", ")\n", "\n", "bokeh.io.show(p)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "So, different hyperparameter values yield different kinds of functions." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Sampling out of a GP prior using Numpy\n", "\n", "At the heart of being able to sample out of a GP prior (and indeed all sampling with GP-based models) is the ability to compute the covariance matrix from for a given kernel and $x$-points. In Stan, only covariance matrices computed using SE kernels are built-in; you can always code up your own function for Stan to use to build covariance matrices for whatever kernel you please. Conveniently, the `bebi103.gp` module has functions to compute the covariance matrices for all of the kernels listed above. To demonstrate sampling out of a GP prior with Numpy, let's use the Matérn kernel with $\\nu = 3/2$. The resulting functions are only once differentiable and will therefore be much rougher than what we got with the SE kernel." ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "
\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/javascript": [ "(function(root) {\n", " function embed_document(root) {\n", " const docs_json = {\"2823de64-74a6-40ce-85dc-9570b515ca76\":{\"version\":\"3.3.0\",\"title\":\"Bokeh Application\",\"roots\":[{\"type\":\"object\",\"name\":\"Figure\",\"id\":\"p1438\",\"attributes\":{\"x_range\":{\"type\":\"object\",\"name\":\"Range1d\",\"id\":\"p1447\",\"attributes\":{\"start\":-5,\"end\":5}},\"y_range\":{\"type\":\"object\",\"name\":\"DataRange1d\",\"id\":\"p1440\"},\"x_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1448\"},\"y_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1449\"},\"title\":{\"type\":\"object\",\"name\":\"Title\",\"id\":\"p1445\"},\"renderers\":[{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1473\",\"attributes\":{\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1467\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1468\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1469\"},\"data\":{\"type\":\"map\",\"entries\":[[\"x\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"}],[\"y\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"MJ5BQ/+E8D+78lmeB3fwP8e6uI0GcPA/qkNuhhtw8D9lpUkp6HbwPxaHM7+ag/A/26fjMQOV8D9aEqCmlq3wPw3DR8SUyPA/fO2ZJQHq8D91q+ek9w3xP0sC1NSyNfE/yZOkayZf8T8Id2fttovxP2Kh1jTvuPE/9bnaiv3l8T9NhA1PrxTyP8aFAyFZQPI/sTOFzmts8j+GWtO845TyP+58PzVeuvI/eQYN/RPc8j+a6zTSUvnyPwKfH0YID/M/yjfb3Jge8z+7D0BqEyfzP/T91HjpJvM/WYtPATAe8z+Vgm4vaQzzPwHBHD1+7/I/uY0G8BbI8j8w9fOmIpXyPxB6Nqs+V/I/6J/gYkUN8j9iodY077jxP2Svd3+8V/E/luzYCMTr8D9Mjjulg3XwP2Qe+YOB5+8/VdtN8E3T7j/8NsR4zavtP16EKcqlcew//5YA/FMq6z/y6hwDstfpP0vMs5JWfOg/uXAgJAsY5z9y4UBIFrDlP7eadcb3ReQ/dEaU9gbf4j+x9+KL9njhP/sEUIwsGeA/lgfpKXKI3T/6uDZUjPPaPzpbQGg9fNg/Pdf34SAh1j9orz4e+u7TP0chyaze4dE/1v1jIToE0D8+yogLQKPMP3JNgczOosk/DTfg88MIxz93EDtT6LzEP/xtT5DY7sI/I/lKICV2wT9h/DTuzW/AP3yakxeZgL8/hSUeUDblvj88+fTYlgG/PyOGHcakv78/09wKYTWWwD9odXKG4o7BP7yxoDAo08I/VRhbCHJQxD+CyCJNvAPGPyf20D5W8Mc/fbJiuDoAyj+iKTv9oC7MPygOoN/3b84/FhdH5SZq0D8WTWcng6PRP0OR7ucU5NI/Xd+Hg4Qo1D8lrfiGwmfVPyofgqrRq9Y/FM/ZAkLr1z9Dc51GWirZP/MDV3kCYdo/7BhXXByV2z9EvkupS8bcPxxF1hpK7d0/G/M64pAN3z+0WmCPiRTgP9Ul4xjJnuA/3szoR8Mp4T90QX3LnK7hP9ifxOdOMOI/3PKRlPSw4j+TVRFuMirjP0TgSKDBpuM/Ft9Q+Gwd5D/WqfI9I5HkP8tkOJ7PAOU/26M33Edu5T9m9+RhodblPxhanZyhOOY/OZuOAG6W5j889x4uOe7mP9XrFoGxPuc/C0RPyqSG5z9OfLWjOMfnP+Ul/5O/++c/3PEmv0Un6D/DoEyjyUXoP5jdk4eFWug/krBvJxFh6D8Hl445z1joP7LZkeo7P+g/OnZQiesY6D9UGjGzz+PnPxTsv85Nm+c/2ekHdZFC5z/lnNhD+9jmPzpY/+cwX+Y/2BAcl3HT5T8c6ndhazblP9ibGJKTieQ/UmLX9nbL4z8FqKlla/3iP2q/tRMlIeI/y9dl+E834T8TLXk8LT/gPzMV4pF4ed4/ur963Lda3D+M9+P2yyfaPy0Kuyh64Nc/DypxHeOK1T86zQLtDinTP8eEmEuqttA/9bwbCwqDzD+nzTgNUYXHPzDa44V0eMI/f95UpMLYuj+Nei2NBL+wPw3DR8SUSJo/bh+oCZHCi79Pa+QEt/+qvzWFKSVfZLe/WeAruvWawL8n3gGetHDFv1AAxciSOcq/LpCg+DHmzr+UiPAvgsbRv9leC3pvDNS/KbSs+8dC1r+jO4idKXTYv+atug7VlNq/he/9Ddqr3L/RWtHmOLfev8sw7gbRWuC/8N+8OPFV4b9VwhN6/UnivxPvAE9aOOO/ZoS3ByEg5L+2SxsOSwPlv1InoImw4eW/x0eLM4a55r+Y+nlTkYrnv3lb6bXZWOi/JPCHn/8e6b/Bc+/hkuPpv68I/reSneq/FVJ+Uu1T67+HM7+aAwTsv/d2S3LAruy/2CjrNxNT7b/KxRhYx/Htvz9ya9Jtie6/7bYLzXUa7780Spf+Janvv2MLQQ5KGPC/YU87/DVZ8L/Zd0Xwv5XwvxxClZo90PC/f/s6cM4I8b8ge7374z3xv+HRxhFrcfG/bxKDwMqh8b+qZWt9kdDxv+gwX16A/fG/ud+hKNAn8r8bEvdY+lDyv9UJaCJsePK/O+RmuAGf8r+lZg+0AsPyv/NZngd35/K/tHHEWnwK878IPZtVnyvzv3Y3T3XITfO/AwmKH2Nu87/LEMe6uI3zv5VIopdRrPO/zxQ6r7HL87+4O2u3Xejzv7yReeQPBvS//mX35GEh9L8+IqZEEj30v2XfFcH/VvS/c4V3uYhv9L9HVRNE3Yf0v+auJeSDnvS/+kSeJF2z9L9jKCfaVcj0v9Lj9zb92fS/B5lk5Czs9L/N6bKY2Pz0v0F9y5wuC/W/YwtBDkoY9b+H4SNiSiT1v1aCxeHML/W/7pQO1v859b/7y+7Jw0L1v/AzLhwISfW/b0c4LXhR9b/Wc9L7xlf1v+mayTfbXPW/p1zhXS5i9b9KB+v/HGb1v+2BVmDIavW/knTN5Jtt9b/lYaHWNG/1v420VN6OcPW/cT0K16Nw9b+to6oJom71vwjJAiZwa/W/2CrB4nBm9b8Dste7P171v00QdR+AVPW/ur2kMVpH9b+gNxWpMDb1v8R3YtaLIfW/ZeQs7GkH9b8LQQ5KmOn0v9c07zhFx/S/H4XrUbie9L+OzCN/MHD0v5SHhVrTPPS/xLEubqMB9L/gnBGlvcHzv7Uy4Zf6efO/lDDT9q8s878=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"}]]}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1474\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1475\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Circle\",\"id\":\"p1470\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b4\"},\"fill_color\":{\"type\":\"value\",\"value\":\"#1f77b4\"}}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Circle\",\"id\":\"p1471\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b4\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.1},\"fill_color\":{\"type\":\"value\",\"value\":\"#1f77b4\"},\"fill_alpha\":{\"type\":\"value\",\"value\":0.1},\"hatch_alpha\":{\"type\":\"value\",\"value\":0.1}}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Circle\",\"id\":\"p1472\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b4\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.2},\"fill_color\":{\"type\":\"value\",\"value\":\"#1f77b4\"},\"fill_alpha\":{\"type\":\"value\",\"value\":0.2},\"hatch_alpha\":{\"type\":\"value\",\"value\":0.2}}}}},{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1486\",\"attributes\":{\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1480\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1481\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1482\"},\"data\":{\"type\":\"map\",\"entries\":[[\"x\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"}],[\"y\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"GvonuFjR8b9/wW7Ytqjxv7nCu1zEd/G/Y9F0djI48b+EDU+vlOXwvwAAAAAAgPC/bkxPWOIB8L/92CQ/4tfuv7GiBtMwfO2/jIS2nEvx678vpMNDGD/qv82RlV8GY+i/uRYtQNtq5r8MAiuHFlnkv8eEmEuqNuK/D39N1qgH4L+p29lXHqTbvy2Y+KOoM9e/KSLDKt7I0r/XTL7Z5sbMv3KKjuTyH8S/R40JMZdUt7+sEKDwI8iav5HxKJXwhKI/2wcPiTGfuD9Wf4RhwJLDPziie9Y1Wso/MH+FzJVB0D8HmzqPiv/SPygLX1/rUtU/Xru04bA01z9mbOhmf6DYP6mDvB5Mitk/LpELzuDv2T+94T5ya9LZPx2u1R72Qtk/U5EKYwtB2D9YkjzX9+HWP8ecZ+xLNtU/lSh7Szlf0z96jPLMy2HRP7LZkeo7v84/I7pnXaPlyj9IN8KiIk7HP5s4ud+hKMQ/XknyXN+HwT8LJ2n+mNa+P1DHYwYq47s/lkOLbOf7uT8xI7w9CAG5P2HAN/Llqrg/a1id5i7TuD8hu8EG+vq4Pxf3elKB7rg/mzqPiv87uD/D3h9KD562P6YgiajTy7M/1nPS+8bXrj/7KH7nct6iP0midkNDlHk/Lgpxm1+DoL9Z2HhVDPyzv2u3XWiu08C/v7UTJSGRyL8r9wKzQpHQv8ecZ+xLNtW/FAX6RJ4k2r8ysI7jh0rfv+DyWDMySOK/7Sx6pwLu5L/JchJKX4jnv5XXSuguCeq/l3DoLR5e7L+13QTfNH3uv2JKJNHLKPC/JVgczvzq8L94tHHEWnzxvyzxgLIp1/G/Qj7o2az68b8xCKwcWuTxvxXGFoIclPG/l8rbEU4L8b92Tx4Wak3wvyqPboRFxe6/31D4bB2c7L/ZPXlYqDXqvyOD3EWYoue/iudsAaH15L/SHcTOFDrivwjNrnsrEt+/ijkIOlrV2b+mKm1xjc/Uv/kQVI1eDdC/M4ekFkomx78VkPY/wFq9v6+L7JRYY6q/X3JpHdEUhD+9GMqJdhWyP6PMBplk5MA/Szlf7L34yD/u0LAYda3QP56VtOIbCtU/7s1vmGiQ2T+sVFBR9SveP93qOel9Y+E/TmA6rdug4z9OY3st6L3lP5XyWgndpec/A+0OKQZI6T/Ca5c2HJbqP7VwWYXNgOs/ilbuBWYF7D+HTs+7sSDsP6GDLuHQ2+s/PQrXo3A96z+Rf2YQH1jqP/t1pztPPOk/1lJA2v8A6D9y+nq+ZrnmPzVFgNO7eOU/TwKbc/BM5D+3mQrxSDzjP6ZCPBIvT+I/SUc5mE2A4T+PHVTiOsbgP8qjG2FREeA/OQt72uGv3j8abOo8Kv7cP/Z9OEiI8to/jC5vDtdq2D/kwKvlzkzVP/HXZI16iNE/a/P/qiNHyj9xjjo6rkbAP3IUIApmTKU/atVTUPY7qb9zvW2mQjzCv+IC0Chd+s2/9kIB28GI1L+p2JjXEYfZv0j43t+gvd2/bw7Xag974L9w0jQomofhv/NaCd0l8eG/oE/kSdK14b/RdeEH59Pgv7U2je21oN6/M2q+Sj522r8ZH2Yv207Vv5QyqaENwM6/kEqxo3Gowb9RmnIqvkafv4WmNoKeF7Q/1BBV+DO8xz9uMNRhhVvSPwRz9Pi9Tdg/x9Rd2QWD3T9wz/OnjergP1VntcAek+I/lUkNbQC24z9GmQ0yyUjkP8xfIXNlUOQ/+vGXFvXJ4z8P8nowKb7iPzj0Fg/vOeE/2/y/6siR3j9OmZtvRPfZP3e8yW/RydQ/3gAz38FPzj8VGohlM4fCP4h0LnvISqo/nmtOFNfnpL/SVbq7zobAv8jrwaT4+Mq/qG4u/rYn0r9os+pztRXWv4odjUP9Ltm/CAWlaOVe278U6ukj8Ifcv5ChYweVuNy/8RDGT+Pe27/AeAYN/RPavzEIrBxaZNe/mE2AYfnz07/MRuf8FMfPv9sxdVd2wca/SZwVURN9ur/fsCPESyadv6rAf6lVqqY/HLEWnwJgvD/HKqVneonFP8Tr+gW7Ycs/6INlbOhmzz8fSN45lKHQPwgGED6UaNA/+dueILHdzT9sfCb752nIP2Ahc2VQbcA/cDxESIIVqD+p+1tdqcKqv35zf/W4b8W/fjfdskP80r8jvD0IAfnbv08+PbZlwOK/HhoWo661578nwRvSqMDsv0+vlGWI4/C/uOS4UzpY878R/G8lO7b1v3JtqBjn7/e/Ik+Srpn8+b+9jGK5pdX7v9wpHaz/c/2/bhea6zTS/r9angd3Z+3/v6d0sP7PYQDAfZHQlnOpAMDJyFnY084AwDP5Zpsb0wDA09nJ4Ci5AMCnrnyW54EAwDUHCOboMQDAYcPTK2WZ/78+y/Pg7qz+v0uTUtDtpf2/c2N6whKP/L8EOShhpm37v88UOq+xS/q/zQaZZOQs+b/xLhfxnRj4vzlFR3L5D/e/g/qWOV0W9r/xnZj1Yij1v0yJJHoZRfS/ttsuNNdp87/83qY/+5Hyv6J/gosVtfG/NlmjHqLR8L/xYmGInL7vv3rFU480uO2/zNJOzeWG678bYye8BCfpv7RzmgXanea/TwXc8/zp478ip6/naxbhv5Ny9zk+Wty/UIwsmWN51r/APc+fNqrQvz2BsFOsGsa/Mq64OCo3t78=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"}]]}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1487\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1488\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Circle\",\"id\":\"p1483\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":{\"type\":\"value\",\"value\":\"orange\"},\"fill_color\":{\"type\":\"value\",\"value\":\"orange\"},\"hatch_color\":{\"type\":\"value\",\"value\":\"orange\"}}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Circle\",\"id\":\"p1484\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":{\"type\":\"value\",\"value\":\"orange\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.1},\"fill_color\":{\"type\":\"value\",\"value\":\"orange\"},\"fill_alpha\":{\"type\":\"value\",\"value\":0.1},\"hatch_color\":{\"type\":\"value\",\"value\":\"orange\"},\"hatch_alpha\":{\"type\":\"value\",\"value\":0.1}}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Circle\",\"id\":\"p1485\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":{\"type\":\"value\",\"value\":\"orange\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.2},\"fill_color\":{\"type\":\"value\",\"value\":\"orange\"},\"fill_alpha\":{\"type\":\"value\",\"value\":0.2},\"hatch_color\":{\"type\":\"value\",\"value\":\"orange\"},\"hatch_alpha\":{\"type\":\"value\",\"value\":0.2}}}}},{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1500\",\"attributes\":{\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1494\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1495\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1496\"},\"data\":{\"type\":\"map\",\"entries\":[[\"x\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"}],[\"y\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"t9Y8MC388r+4HnG58MTzv5CdkFsrIPS/xPvX3mcW9L/C4xcVQGT0v5IFmaFeevS/KD9nm8at9L/oOivRj8LzvwwCF/+7NPK/Zj15cWOx8b/Fl+kvQwXxv1r3eHBRXfC/5EP3bL3r779iv3ROPO3vv0C0ozDxFe+/cbRb//jY7L/NiX6rN/zqv2Gd7jpFxOm/Ty/ZVXKS6L9AaifThbHnv8Rh6y265uS/IOJdGacX4b/BAB9tOOHZv+zlWDn/q9O/ROJq2xhsyr8Iy3JFG5q/v8B2Y/XAGZO/6C2EIQVdsj+c2L3nWdDIP1CzRFru+dM/csGb+5YT3D898qkUs0/iPy9mCoE09uU/1/hQthWL6D+OmjJbzR7rPwkKQHF4gO0/OofC+Jrr7j9/fafiwVjvP6rk9zeqD+8/3HGm9B8X7z+uAg8ChPPuP4iyWwLyFu8/2jgY7Q4p8D/GlGL2LCjwP2ixvBEKh/A/JvjiKo/e8D8KS+OhZibxP6LePTPr8vE/MHjrfje48j/Ca8E/uBP0Pxq5MDedOPQ/iy/Kzk+/8z/xigMbSHvyP5H8DCeCK/E/yBevHokm8D/uI8c7d1zuP8L1nnXBfuo/MN26yf5r5z+49ehrqIrkP1K91loCnuI/tsmYQMJq4D/LCCKDkKDcP0pT4R/Th9g/hICTspzS1T825IOhK8TRP0Am+PAgBs4/xJWWAAPlxj84HuHyhwjCP8jrF9NjKsE/UNvLxxYrwT+gOL5dJfC5P4DKjBmmmbM/gCvbLTLctj/4HuQ8akXBP0jr3ucLTcU/8EWOdaDvxT98pkbwP2PGPzyaK6hih8g/IGOQdFSpzz+mVMfWbc7TP4r2B/f2Udc/Tvk/S0mL3D+MN748PpHePx6eAyxEqd4/YJ9RmS1m3D9gyMsVYuHbP/AE87QI29k/XEHFqybo2z+Ius1ud3bbP0wWG3Cci9w/NPFCD7YU3T/YN7xdgjjdP182UNogZuA/1FVjCjLr4j8MZ9nxxKLlP4Qq/dAKFOk/4nCchF6G6z/8PYPaW9juP8gyoccuJvE/CTLsYfHi8T+4+UAE3EnyP8dyJKF2XPM/AIT8FR+a9D9K/iMUc9P1P77drOQOy/Y/yjMa1Y7p9z/IwrPvjDz4P3ZdpEkR2vc/XB3L6cj19j+gsqEHj3j2P+k5c85UZ/Y/QNKhTcN49j9WRlThv9v2P88YDrI0+vY/CGe6j2vs9j9CPe6i/xT3P6eg6TTrYfc/SLnkieLf9j9STIwflbb2P0QtEyws4PY/yii9dbnm9j96UO1IGOP2P5hbMxNHD/c/wOcoUzwB9j+tJl1U8Zf0P7oT/HRJlPI/0JyuN6xT8T9hs/e+WtHvPyp2w5wmSes/2qkMedyh5z+9bfveKjnlP0myZ9GvT+Q/1ETZpQ+y4z/v46CiZM7kP0ZAQHaOUuY/Jccps7V35z+GX5c5+wnoPzzsK7FKdOk/3BCapYYq6z8xXfoE6xfuP0QemqEbB/E/+9Cgz0KJ8z9acO35v771Px8LZ6xpHvc/BKClJ8W/+D9QO50i7/n5P0MjPGZx//o/f0e8k9pD+z/opPZjmD77PxJlO9/fvPo/rJSaZ/oq+z/uZR6tN+X6P41JnP9ct/o/mh5wa2tX+j8aMsx3Oq76P343WIpDAPs/0vq4wF0p+j/QAAM9k635P9JSRZLli/g/NA1SbOSb9j8zl5StV4L0PyMFQUPjv/I/7Jfk4yHU8D+OuiPwzmLuP+wMUtGVu+s/EFyGBn8o6T9lfOlKNenmP9wGOUfxVuU/Nt3LsDHt4j89os0hZkLfP4EZwaqIv9g/0dUwgIiY1D8eSd+f/wbRP8ptwdwGfcs/sndquLJqxD+Mgy5TXoi0P1DYwehuSZM/YBZW4DNDgr+A2htyrEdwP5B9GsvZw5E/MPji9VOqpT8EDQUMCxC1P8C0e9TaDr4/tNRjg5q4xz/+gNLHxGjNPwDoecAn7cw/mhE0a6yAzz+IsViIHLDQP/8f8u/ziM4/CPYN8qmmzz9aLb3rm9vQP95Lc2iI19E/vONXwt3F0j8jygFEg03TP/9eOHbHe9I/tepTWxCG0j8ST6ZHiyXSP8xIJiYcq84/QusleV1dyT9oCGcSAOTAP/4U6yWuLqU/MJW1Z0/joL/EnoJhXVO1vyQ7Cy7g4cG/fgX2CtU+y7+xPCJHEuDSv/XEmhSwEti/vo1h/byG3r961O4J257hv1dumCPKj+O/8Ues+hyr5b/FyLh5PbLov8nTVhCTCOy/I6Iowz4Q8L+iBCnK90Tyv/I0XNh9w/O/cM+UUNry9L+SWnojBq71v6LydBLPJva/Wv+3mVNR9r9+fvPEbNz2v01dAhwsLfe/oETLfu1R978QTM5+2033vwRf4zJ+K/e/sZ5eYuZC97+0W5F9jBb3v6AA7S6eXPe/iWt8bk7o9r9GLxy28cD2v/7nomG/wfW/bLS8KHPS9b/EZ69aoqz2vyAbvQeyGvi/HE6DOrFl+L9z8i8MZXz4v/bTtMgsT/i/2B0JPn/++L9MXYR+3U35v1bdUG5EWfm/clDFg9A8+L/T6IzKh8/2v9BJ9N68/PW/CpcCi5+j9b+gSDd0cbX0v41miIZ85PK/MM3UWlhW8L8Ak8a6fTPsvxYfJrWWCei/etqctvnZ5L8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"}]]}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1501\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1502\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Circle\",\"id\":\"p1497\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":{\"type\":\"value\",\"value\":\"tomato\"},\"fill_color\":{\"type\":\"value\",\"value\":\"tomato\"},\"hatch_color\":{\"type\":\"value\",\"value\":\"tomato\"}}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Circle\",\"id\":\"p1498\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":{\"type\":\"value\",\"value\":\"tomato\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.1},\"fill_color\":{\"type\":\"value\",\"value\":\"tomato\"},\"fill_alpha\":{\"type\":\"value\",\"value\":0.1},\"hatch_color\":{\"type\":\"value\",\"value\":\"tomato\"},\"hatch_alpha\":{\"type\":\"value\",\"value\":0.1}}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Circle\",\"id\":\"p1499\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":{\"type\":\"value\",\"value\":\"tomato\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.2},\"fill_color\":{\"type\":\"value\",\"value\":\"tomato\"},\"fill_alpha\":{\"type\":\"value\",\"value\":0.2},\"hatch_color\":{\"type\":\"value\",\"value\":\"tomato\"},\"hatch_alpha\":{\"type\":\"value\",\"value\":0.2}}}}}],\"toolbar\":{\"type\":\"object\",\"name\":\"Toolbar\",\"id\":\"p1446\",\"attributes\":{\"tools\":[{\"type\":\"object\",\"name\":\"PanTool\",\"id\":\"p1460\"},{\"type\":\"object\",\"name\":\"WheelZoomTool\",\"id\":\"p1461\",\"attributes\":{\"renderers\":\"auto\"}},{\"type\":\"object\",\"name\":\"BoxZoomTool\",\"id\":\"p1462\",\"attributes\":{\"overlay\":{\"type\":\"object\",\"name\":\"BoxAnnotation\",\"id\":\"p1463\",\"attributes\":{\"syncable\":false,\"level\":\"overlay\",\"visible\":false,\"left_units\":\"canvas\",\"right_units\":\"canvas\",\"top_units\":\"canvas\",\"bottom_units\":\"canvas\",\"line_color\":\"black\",\"line_alpha\":1.0,\"line_width\":2,\"line_dash\":[4,4],\"fill_color\":\"lightgrey\",\"fill_alpha\":0.5}}}},{\"type\":\"object\",\"name\":\"SaveTool\",\"id\":\"p1464\"},{\"type\":\"object\",\"name\":\"ResetTool\",\"id\":\"p1465\"},{\"type\":\"object\",\"name\":\"HelpTool\",\"id\":\"p1466\"}]}},\"left\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1455\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1456\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1457\"},\"axis_label\":\"f(x)\",\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1458\"}}}],\"below\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1450\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1451\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1452\"},\"axis_label\":\"x\",\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1453\"}}}],\"center\":[{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1454\",\"attributes\":{\"axis\":{\"id\":\"p1450\"}}},{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1459\",\"attributes\":{\"dimension\":1,\"axis\":{\"id\":\"p1455\"}}},{\"type\":\"object\",\"name\":\"Legend\",\"id\":\"p1476\",\"attributes\":{\"items\":[{\"type\":\"object\",\"name\":\"LegendItem\",\"id\":\"p1477\",\"attributes\":{\"label\":{\"type\":\"value\",\"value\":\"\\u03b1 = 1, \\u03c1 = 1\"},\"renderers\":[{\"id\":\"p1473\"}]}},{\"type\":\"object\",\"name\":\"LegendItem\",\"id\":\"p1489\",\"attributes\":{\"label\":{\"type\":\"value\",\"value\":\"\\u03b1 = 1, \\u03c1 = 0.5\"},\"renderers\":[{\"id\":\"p1486\"}]}},{\"type\":\"object\",\"name\":\"LegendItem\",\"id\":\"p1503\",\"attributes\":{\"label\":{\"type\":\"value\",\"value\":\"\\u03b1 = 1, \\u03c1 = 1, Mat\\u00e9rn\"},\"renderers\":[{\"id\":\"p1500\"}]}}]}}],\"frame_width\":450,\"frame_height\":250}}],\"defs\":[{\"type\":\"model\",\"name\":\"ReactiveHTML1\"},{\"type\":\"model\",\"name\":\"FlexBox1\",\"properties\":[{\"name\":\"align_content\",\"kind\":\"Any\",\"default\":\"flex-start\"},{\"name\":\"align_items\",\"kind\":\"Any\",\"default\":\"flex-start\"},{\"name\":\"flex_direction\",\"kind\":\"Any\",\"default\":\"row\"},{\"name\":\"flex_wrap\",\"kind\":\"Any\",\"default\":\"wrap\"},{\"name\":\"justify_content\",\"kind\":\"Any\",\"default\":\"flex-start\"}]},{\"type\":\"model\",\"name\":\"FloatPanel1\",\"properties\":[{\"name\":\"config\",\"kind\":\"Any\",\"default\":{\"type\":\"map\"}},{\"name\":\"contained\",\"kind\":\"Any\",\"default\":true},{\"name\":\"position\",\"kind\":\"Any\",\"default\":\"right-top\"},{\"name\":\"offsetx\",\"kind\":\"Any\",\"default\":null},{\"name\":\"offsety\",\"kind\":\"Any\",\"default\":null},{\"name\":\"theme\",\"kind\":\"Any\",\"default\":\"primary\"},{\"name\":\"status\",\"kind\":\"Any\",\"default\":\"normalized\"}]},{\"type\":\"model\",\"name\":\"GridStack1\",\"properties\":[{\"name\":\"mode\",\"kind\":\"Any\",\"default\":\"warn\"},{\"name\":\"ncols\",\"kind\":\"Any\",\"default\":null},{\"name\":\"nrows\",\"kind\":\"Any\",\"default\":null},{\"name\":\"allow_resize\",\"kind\":\"Any\",\"default\":true},{\"name\":\"allow_drag\",\"kind\":\"Any\",\"default\":true},{\"name\":\"state\",\"kind\":\"Any\",\"default\":[]}]},{\"type\":\"model\",\"name\":\"drag1\",\"properties\":[{\"name\":\"slider_width\",\"kind\":\"Any\",\"default\":5},{\"name\":\"slider_color\",\"kind\":\"Any\",\"default\":\"black\"},{\"name\":\"value\",\"kind\":\"Any\",\"default\":50}]},{\"type\":\"model\",\"name\":\"click1\",\"properties\":[{\"name\":\"terminal_output\",\"kind\":\"Any\",\"default\":\"\"},{\"name\":\"debug_name\",\"kind\":\"Any\",\"default\":\"\"},{\"name\":\"clears\",\"kind\":\"Any\",\"default\":0}]},{\"type\":\"model\",\"name\":\"toggle_value1\",\"properties\":[{\"name\":\"active_icons\",\"kind\":\"Any\",\"default\":{\"type\":\"map\"}},{\"name\":\"options\",\"kind\":\"Any\",\"default\":{\"type\":\"map\",\"entries\":[[\"favorite\",\"heart\"]]}},{\"name\":\"value\",\"kind\":\"Any\",\"default\":[]},{\"name\":\"_reactions\",\"kind\":\"Any\",\"default\":[]},{\"name\":\"_base_url\",\"kind\":\"Any\",\"default\":\"https://tabler-icons.io/static/tabler-icons/icons/\"}]},{\"type\":\"model\",\"name\":\"copy_to_clipboard1\",\"properties\":[{\"name\":\"value\",\"kind\":\"Any\",\"default\":null},{\"name\":\"fill\",\"kind\":\"Any\",\"default\":\"none\"}]},{\"type\":\"model\",\"name\":\"FastWrapper1\",\"properties\":[{\"name\":\"object\",\"kind\":\"Any\",\"default\":null},{\"name\":\"style\",\"kind\":\"Any\",\"default\":null}]},{\"type\":\"model\",\"name\":\"NotificationAreaBase1\",\"properties\":[{\"name\":\"js_events\",\"kind\":\"Any\",\"default\":{\"type\":\"map\"}},{\"name\":\"position\",\"kind\":\"Any\",\"default\":\"bottom-right\"},{\"name\":\"_clear\",\"kind\":\"Any\",\"default\":0}]},{\"type\":\"model\",\"name\":\"NotificationArea1\",\"properties\":[{\"name\":\"js_events\",\"kind\":\"Any\",\"default\":{\"type\":\"map\"}},{\"name\":\"notifications\",\"kind\":\"Any\",\"default\":[]},{\"name\":\"position\",\"kind\":\"Any\",\"default\":\"bottom-right\"},{\"name\":\"_clear\",\"kind\":\"Any\",\"default\":0},{\"name\":\"types\",\"kind\":\"Any\",\"default\":[{\"type\":\"map\",\"entries\":[[\"type\",\"warning\"],[\"background\",\"#ffc107\"],[\"icon\",{\"type\":\"map\",\"entries\":[[\"className\",\"fas fa-exclamation-triangle\"],[\"tagName\",\"i\"],[\"color\",\"white\"]]}]]},{\"type\":\"map\",\"entries\":[[\"type\",\"info\"],[\"background\",\"#007bff\"],[\"icon\",{\"type\":\"map\",\"entries\":[[\"className\",\"fas fa-info-circle\"],[\"tagName\",\"i\"],[\"color\",\"white\"]]}]]}]}]},{\"type\":\"model\",\"name\":\"Notification\",\"properties\":[{\"name\":\"background\",\"kind\":\"Any\",\"default\":null},{\"name\":\"duration\",\"kind\":\"Any\",\"default\":3000},{\"name\":\"icon\",\"kind\":\"Any\",\"default\":null},{\"name\":\"message\",\"kind\":\"Any\",\"default\":\"\"},{\"name\":\"notification_type\",\"kind\":\"Any\",\"default\":null},{\"name\":\"_destroyed\",\"kind\":\"Any\",\"default\":false}]},{\"type\":\"model\",\"name\":\"TemplateActions1\",\"properties\":[{\"name\":\"open_modal\",\"kind\":\"Any\",\"default\":0},{\"name\":\"close_modal\",\"kind\":\"Any\",\"default\":0}]},{\"type\":\"model\",\"name\":\"BootstrapTemplateActions1\",\"properties\":[{\"name\":\"open_modal\",\"kind\":\"Any\",\"default\":0},{\"name\":\"close_modal\",\"kind\":\"Any\",\"default\":0}]},{\"type\":\"model\",\"name\":\"MaterialTemplateActions1\",\"properties\":[{\"name\":\"open_modal\",\"kind\":\"Any\",\"default\":0},{\"name\":\"close_modal\",\"kind\":\"Any\",\"default\":0}]}]}};\n", " const render_items = [{\"docid\":\"2823de64-74a6-40ce-85dc-9570b515ca76\",\"roots\":{\"p1438\":\"b60c026d-4d26-4a77-8fe3-c3e57b0301b9\"},\"root_ids\":[\"p1438\"]}];\n", " root.Bokeh.embed.embed_items_notebook(docs_json, render_items);\n", " }\n", " if (root.Bokeh !== undefined) {\n", " embed_document(root);\n", " } else {\n", " let attempts = 0;\n", " const timer = setInterval(function(root) {\n", " if (root.Bokeh !== undefined) {\n", " clearInterval(timer);\n", " embed_document(root);\n", " } else {\n", " attempts++;\n", " if (attempts > 100) {\n", " clearInterval(timer);\n", " console.log(\"Bokeh: ERROR: Unable to run BokehJS code because BokehJS library is missing\");\n", " }\n", " }\n", " }, 10, root)\n", " }\n", "})(window);" ], "application/vnd.bokehjs_exec.v0+json": "" }, "metadata": { "application/vnd.bokehjs_exec.v0+json": { "id": "p1438" } }, "output_type": "display_data" } ], "source": [ "# Again use rho = 1\n", "rho = 1.0\n", "\n", "# Make covariance matrix\n", "K = bebi103.gp.cov_matern(xstar, alpha=alpha, rho=rho, nu=1.5)\n", "\n", "# Sample out of multivariate normal\n", "rg = np.random.default_rng()\n", "f = rg.multivariate_normal(np.zeros_like(xstar), K)\n", "\n", "# Add the result to plot\n", "p.circle(\n", " xstar, f, color=\"tomato\", legend_label=\"α = 1, ρ = 1, Matérn\",\n", ")\n", "\n", "bokeh.io.show(p)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Since it is convenient to sample using Numpy, let's make a **spaghetti plot**, which is a good way to visualize the kind of functions you will get by sampling out of a GP prior. We will again use an SE kernel with $\\alpha = \\rho = 1$." ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "
\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/javascript": [ "(function(root) {\n", " function embed_document(root) {\n", " const docs_json = {\"a1be5d6d-68da-4f17-ad94-4876f32ab6cc\":{\"version\":\"3.3.0\",\"title\":\"Bokeh Application\",\"roots\":[{\"type\":\"object\",\"name\":\"Figure\",\"id\":\"p1510\",\"attributes\":{\"x_range\":{\"type\":\"object\",\"name\":\"Range1d\",\"id\":\"p1519\",\"attributes\":{\"start\":-5,\"end\":5}},\"y_range\":{\"type\":\"object\",\"name\":\"DataRange1d\",\"id\":\"p1512\"},\"x_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1520\"},\"y_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1521\"},\"title\":{\"type\":\"object\",\"name\":\"Title\",\"id\":\"p1517\"},\"renderers\":[{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1545\",\"attributes\":{\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1539\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1540\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1541\"},\"data\":{\"type\":\"map\",\"entries\":[[\"xs\",[{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"}]],[\"ys\",[{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"pBe+7rtcvT+4E4MToS7FP8zcdiuF0ss/9JzQKKNG0T8BsqP006jUP47H6msRCdg/T8u9uH5g2z/ovInePKjeP5pyzvO67OA/oU9Icbt24j/i/HUq3+7jP7nKumgIUuU/KMio70Wd5j87ojRs283nP3QR/bFL4eg/cjp11V7V6T9dbLNbK6jqP0/a1JIcWOs/qKs7/vjj6z/OIJFX5UrsPwyGbgFrjOw//YL+S3mo7D/yyYR/ZZ/sP25fT9Ltcew/D9INTTYh7D9KaLeixa7rP2zclK2DHOs/AjFmtrFs6j928O565qHpP9BV8ZIEv+g/vkSJcTPH5z/uN1mi1b3mP7DH2sZ+puU/SvkcXOiE5D+cWOUQ51zjP+rBECBeMuI/XjbjTzUJ4T9Ol5pjlsrfP6CmQoTUlN0/jiFrHnt42z/VFE+li3zZP2FL/4abp9c/KzQBxsL/1T8lch4GiYrUPy2An0XSTNM/gHomhtZK0j9mFKQ+DIjRP/4rZB8lB9E/Ttwr7QHK0D8+1qPAr9HQPxjn3QxcHtE/NBOML16v0T+4alD2MYPSPyxWaJN5l9M/u2DATQjp1D90InCy5nPWP7AkkBldM9g/8/11/AEi2j//yiD/xDncP7N8g8kAdN4/Z9KqW8Zk4D9Uy9LBZ5nhP7Qn7dPp0+I/uJWLPzAQ5D//juDMBErlP7JkJaMnfeY/IOd3M1el5z+qRSRgX77oP6AjkXMjxOk/zAPyQKqy6j9GWftVK4brP/BEo/0WO+w/1646ByTO7D8Jb3tJVjztP0yp/KEKg+0/MU5sovuf7T8g5PfOSpHtP510/LWEVe0/zJxYjKXr7D8a/+yHHFPsP4kYddfMi+s/4iK8xA2W6j/IxSmIqXLpP9u31arZIug/QdCTXESo5j+6NAwY9QTlPx5f8TNXO+M/GLTvrytO4T8oRa24BYHeP0L7m2pgK9o/hh6Ud3+i1T98igw61u3QP0Oa5d8vKsg/pEYp+YuAvD8o5h8/LbegP4BvYvPZ9ae/ZK75NvgxwL9anuAcn2DKv9VHeil5PdK/yOUeKp05179+wjlpVx7cv421M53jcuC/cJRl4U/F4r/42DsLGQTlv0Y0eCM7Lee/2mhjMgc/6b8aqgppJTjrv1qnBjeUF+2/30K8Y6bc7r8MigyDf0Pwv/wEhkRHC/G/KPaMKMXF8b8lqsFKNHPyvwYVlzjrE/O/klvS0leo879lsMoT+zD0v/DUbkJkrvS/rqIKCiwh9b9zu3l/74n1vyrrK8FL6fW/XodSutk/9r9+51qxKY72v/s7oAXA1Pa/VFmEihEU978Ua3IIgUz3v9pKMUhdfve/C4FiWt+p979Dl3GSKc/3vz7VC1xH7ve/QMQcVS0H+L/7jEy1uhn4v9z0+qG5Jfi/eMg8R+Iq+L8ROasr3Cj4vxHQeVJBH/i/pltbXKEN+L+0Fi0AhPP3vz/0bj5t0Pe/aqZkaOCj9792AZh4Y233vwp6sxODLPe/LEjFmtXg9r8EarbP/Yn2v04AL9uuJ/a/Bq495q659b+Qat952D/1vzryBR8euvS/9c6qWowo9L8HqERaSYvzv2nvi2qY4vK/pw/qktou8r+MqETZjHDxv479CjVMqPC/sdMNHaSt779AsM3C6/ntv3sqh6dWN+y/FzfBwAJo6r8qOmz4QY7ov/bhn8eWrOa/TS5wOK7F5L/M4tRoXNziv4idC5OW8+C/PAxkctoc3r9eUxDUBmDavyawznYUt9a/ryvCe24o0794NkhT8XTPv6z2d9H+5si/oApggkuzwr9EPlQYScu5v1AFis/6JK6/4G63hWdElb9ABgzGsy2LP2DKllqtAaY/6GsHfHFxsT9o5rceJ6u2P9Rb0FhSpLo/KPDXlS9WvT+0PJoR+by+P+yCewoQ2L4/GIbcowGqvT/wRpuSjji7P4CKWzmsjLc/gMfjtnKysj9AMuYq/HGpPzDhggAGyZY/QC+m3s9ogr9YQ8whDFymv0j/NI1G17S/8LmaN88tv7+EO+vfgArFvwHrEzeat8q/nFZRRnlH0L/TpCIakEDTv10fzmdeP9a/h79pdEw82b+u6+H7+S/cv073gnZTE9+/9Jf6SdXv4L/z6CBXZUfiv1j1ZQ6IjeO/uBMNtbq/5L95glJV0tvlv74wRv//3+a/wX5pYtjK5781hLg/VJvov9wGItrSUOm/+c95whjr6b+UQ7+MUGrqv5DFWNADz+q/5E8jDBoa67+gpO7qz0zrv4w9j+GwaOu/trSQTY5v67+eFRt+dmPrv023uEypRuu/sKBED40b67+iV0QnpOTqv2C3KPl/pOq/FOovg7Vd6r+mk7kS0hLqvx6TCbhOxum/uGSi7YV66b/KKK08qTHpv129rA647ei/Knbhznaw6L8RTSEKaHvovw6qqCPHT+i/VDQ3PIIu6L+hZvBzOBjov64EUNQ4Dei/uJVFwn8N6L/qAMtLvBjovy4oN+lPLui/3aj7VFVN6L84nsMmpXTov7GCgUrdoui/5krD1GnW6L94/dY1jQ3pv1jVH1xsRum/atMMABZ/6b/hxjYGkbXpv/aTjSrl5+m/aSdJEygU6r/Ihd/ihjjqv+UCIoRQU+q/WXTw5gBj6r9vsImGRmbqv9qKQPcOXOq/PO8WkIhD6r8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"IyAunxDz1b+oHfb+GJHXv7zE+HxX4Ni/RJ3XLOXf2b9N4LcXSI/av//5wjBz7tq/KFQofcP92r+uiDkG/b3avzUVyshLMNq/wlP0kjdW2b/lro+3pzHYv4pjrHHaxNa/PnWI7WAS1b+g8YvTGh3Tv9LmMaAv6NC/GAovtRLuzL8jvTWeoprHvz58RYnS3cG/yYyJPJh/t79Cj91vXiSlv6BLDj8A14c/OPK67EkVsT9IwX3kPKq/PxSsayM8U8c/QbzOAif7zj/MvBXXcGHTP27l1CckUNc/XIDPJo5E2z+hanmKgjnfPziH1MznlOE/Z4DoYyCI4z8ka14/0XPlP0AxvbFiVec/KnOtgUMq6T8OcmHg6u/qPyIojlvbo+w/wJm0FqhD7j9EO+H99szvPyqUfhvDnvA/Au5kVZhJ8T+s0zbH+eXxP3zUjO75cvI/yguE9MDv8j+gLNKYkFvzPxIS1rHGtfM/uzGnNt/98z9XEw6OdzP0P8gFUVpQVvQ/PaHnjE9m9D8x89hSgmP0P+h9tAodTvQ/A9UV8H0m9D+YaEI7K+3zP//lk9TTovM/qCCp7U1I8z/v1/iGlN7yP/GJsQHGZvI/ZpdMaiDi8T9/C+GQ/VHxP1KJG2vPt/A/eIazphoV8D9p8Y1F49buP5bE4sndeO0/0pug5V0T7D9GRPnNlanqP41OFjukPuk/ZMDC74fV5z82Y8jwFXHmP9/djWXtE+U/iu2NxmzA4z964rGqrHjiP1Vm0zl1PuE/sOUt6TcT4D+vio+qGvDdPx+dpQhg29s/+hNdyvjo2T9i2w5u4xjYP0ptORVmatY/vlCwBBvc1D8dsBVj9WvTPyR0JstUF9I/C8ND7RXb0D/Ysc/YRGfPP97LjpIROs0/IvLigyQmyz/7P7yotCLJP37xqYHRJsc/YL6RDY8pxT+UHVKpOyLDP5CnVm+ICME/2ke/Z32pvT9wVXLfwv+4P2pI0EaiB7Q/aiSWv81trT+OpqlCIAuiP+j38szib4c/0Fsj11aXjL+A3QqHV/ukvyCbui050LG/IrtwtuuFub+pNY9J0MvAv6WFoXLn/cS/naTL4VZTyb+c2d8ePMXNvwZkKWjjJdG/lquO1DFv079ytMbN7LnVv/A+qF85Adi/mOZm/xBA2r9brYO/VHHcv0almQDgj96/btZu5E9L4L/riThJUEDhv3str8KPJOK/tvWRbND14r+ECRBM+7Hjv8alk7woV+S/Z+fRbabj5L8hgckU+1XlvyvIeprqrOW/PugfzXjn5b9gZHmI6wTmv25JOP3LBOa/dPDQNubm5b/ISTT2SKvlv3KkgDVGUuW/yz8IYW/c5L9U6DpdlErkv0NQsTfBneO/tpo3LzvX4r+OyGHDfvjhvya+Tfw6A+G/AAZLsJ/y379ztCOIlrndv97JGavIX9u/EbZYS/Pp2L9kEgisHl3Wv+IPF7SRvtO/lLFt+NIT0b8ArdRqPcXMv9gPeHvFYce/aM73LG0Jwr9kL85wYpG5v6gQ6eYfsa6/ELxL2/UIlr/An7cJULyOPxAYwPf5NKk/YDxVPmCstD/4r2Q5C/O7P0qqjJJHKsE/fJ0nFbzbwz8ALg1AawHGP6wiswlDj8c/guCnm6Z5yD/mr9Z8kLXIP16BAbGiOMg/MlW7Ak/5xj/qyoA+6u7EP0SeLILOEcI/iPWKNOi2vD9kN5gMKo2zP/Cgo/AYPaE/ABApn0NnkL/4RbSXs52yvw5cHrrCdcG/NE9xag9/yr9yll3lMDPSv5Ix69S3kte/5xuZyP5Z3b9Qzd/X9cHhvzaulJg0BeW/+pOCkTFz6L/+v+ly5wfsv94bV2vavu+/EwcK6IzJ8b9PvCUrpb/zv99d9DjXvvW/wapIYxfE979kcp8TNMz5vwjxel3a0/u/LKnfMaDX/b+JUv6FCdT/v1CcH/jI4gDAkSoj/1rUAcAc27RB/bwCwDYJyOz7mgPArPx2OrFsBMDgMLLniTAFwL9zlUkK5QXATkVXVdKIBsDiGUxXohoHwGJRpDtemQfABCSpxREECMBy4FZy81kIwELpZnJnmgjA/dpmogHFCMCXE5Nah9kIwEBMLrDw1wjAwWlZ2WjACMBTN7r/TZMIwO7PNLgwUQjA+KGaOtL6B8ChsbfqIpEHwCw3aFI/FQfA0A6OAm2IBsADrOTLFuwFwCoPearIQQXArd78JiuLBMD4gTet/ckDwNryiwwSAAPA22YzP0YvAsDZkd69flkBwN6vwvmggADAsJdrIxpN/7/I/EJyMZr9v556mBMS7Pu/oLDHiBtG+r/bwFN2eKv4v/y69EkWH/e/9EqRGpyj9b9mhkrCZTv0v5GELo186PK/rAWJdJSs8b9YxtB/CInwv0Lg9EK0/e6/EnrcUmEd7b+1uahqtnHrv/IpRGil+um/DN629X636L+LnXRZ+qbnvy5yZyREx+a/oGbtrAsW5r/TePejk5Dlv2DGQL/EM+W/7xOmrTz85L/OxeQTZebkv1A3E8mC7uS/YikgKckQ5b8eZoRXbUnlv1Bguue0lOW/m8TY4AXv5b96+qVu9FTmv5KFdOxNw+a/CvTJhiQ3579x7ddR1K3nvwe94xAJJei/hZwOfMKa6L/YM+JUUg3pv2LPEfNce+m/DvVaBNXj6b8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"E2ixmUUZ3L+VxTq9+7Lbv1w7V/IxM9u/hDvOLZ+Z2r/pRXTO3uXZv+NkMHN8F9m/EDvA5/Et2L8OXiXFsyjXvwBvyN0yB9a/SiI54OXI1L+sKjkMTm3Tv/DQLDoC9NG//wPPLLNc0L8hwcJYbE7Nv1zprGcUp8m/L1r5Nr7Dxb9ZQNC4NaXBv0EB99V+mbq/qH+Q+Dl4sb/YGDkjuKyfv0A/fOlSQIA/FJzE73W1qD/4lYKEKQW3P0gDWphC/8A/Rv691Yeexj+gnuxpC1vMP4BW/w2EF9E/tvMTESsK1D/h1S7jPQLXP6xGmxNa/Nk/3JY+9QP13D8STnQFqOjfPy0JmxHUaeE/hhTGPDDZ4j9RYmw2l0DkP3mSmTw9nuU/2Yj0dl3w5j8S3ofnPzXoPzad3lU5a+k/XNYrxbCQ6j9nhjeEIKTrPwAu0UMXpOw/ZQdwmTyP7T/SnLPYT2TuP2mEnVorIu8/LCN4acTH7z+rSnd0FirwP95xepFJY/A/EsxGciKP8D9EMMRRVq3wP0JwLyGqvfA/cISulfO/8D9iZq8zF7TwPz3D7m8LmvA/7kWAWtdx8D80IclYkzvwP6RDdujU7u8/M/mjvzNL7z/S1GSX5YzuPwCRErmztO0/Os6jSpHD7D89Hhcpm7rrP5IGpSoZm+o/miQsGYBm6T+7zZWybx7oPwVKu6K0xOY/CHciUUdb5T9PEr32SeTjP8afDEQIYuI/cDswm/PW4D9Ey3NqQoveP87m+taJYds/IKjamVk22D+lI/vpeA/VP8R8B9fK8tE/bBYqAYbMzT941laTqN/HPyBQ7cjIKsI/ZBNodNlyuT+gBdUH/FquPzD88lAma5Y/4D7CLDSKib9Qbb6qYkimv4Q4VppDLbK/9FPAfr49uL9sdyRiA0m9v/Q+5MJiosC/HOSipIwUwr8QGVuETPjCvxjA1WArTMO/ok1xGPEPw79MtzaYn0TCv8RpQU9e7MC/zN5reeMUvr/Q6IkpN0a5v3TMcFoFd7O/8Ph5f01mqb+AdIUe/h6Uv4Afds1i6Is/QBEgVtGYqT9QG13yD9e2P3i4vhnOxsA/jKpNZGdwxj+4/iwb4WDMP+vjIi+PSNE/EoGtHTF91D92QzXROMvXPzJ5WiTNL9s/6kNP7l6o3j9x2sI6VhnhP+dx2eNf5uI/O8hlSna65D9x7mwh5JTmP3QDUU8Sdeg/xCDo+IFa6j/6UKV7x0TsP9ZjRs2CM+4/CbImhywT8D/bqYE5dg7xPzckiChrC/I/ti2dgc8J8z/H0+nFWgn0P/5MCOW1CfU/x2T76HYK9j9qwJnoHwv3P4jgk3AbC/g/6QDy/7sJ+T9sO5ieOgb6P1O2yja3//o/bM+xtzb1+z9OT9zxpuX8PyZI18bcz/0/s7NiG5iy/j+9Rhy6hYz/P0PENgIhLgBAL7PBKi6QAEDsvgpyresAQOhsElrfPwFAXRafEQSMAUAY1J7sXc8BQNvmMQEzCQJANZ3FydA4AkBgKdeRjV0CQESuW5fLdgJAfmFGPfuDAkBqfcNHnYQCQDHSv79FeAJA2ahNcZ1eAkCsRCqrZDcCQDeIk7R0AgJAGxuq7cG/AUD3UZ0eXW8BQDOjIOB0EQFA+BT0FlemAECANTkAcS4AQHsPHrqgVP8/lo7mLkc1/j+sHpi6cgD9PwA5uccAuPs/dsmzAA1e+j9lm9Vn7vT4P+b42XQ1f/c/G7KO9qX/9T/99KgDNHn0P1GkB0X97vI/sFOUaUNk8T+cCS2/x7jvPyYhvsahtew/g9LpsRHG6T/yRzB5GvHmP+oNAyGyPeQ/2ajEBq+y4T+Q0SUCZq3eP5pRG+cwYNo/8kTAZLqJ1j944rxgITXTP4Akrj9/bNA/mPZ3toxxzD/8lY+dRUPJP9j3s9WzWsc/xBzizWjBxj/wCg0g033HPwCi59IUk8k/hA1bBvsAzT+nNzFf9+HQP5ceqIZ46tM/zJ4FdteU1z//3cEpTNrbP69N6ao/WeA/4N5SztIJ4z8aunNdTfnlP43G3ySAIek/aW/KdbR77D9yeqAgXwDwP8Y9um2J1PE/+sJjtXC28z/nABltFKL1Pyj1F+Jok/c/svSDRGKG+T8l2RoHAnf7P7zo805hYf0/Ko4P7LpB/z8xVkbZO4oAQPJjvmcaawFAFoU4BOdBAkAcczpaMQ0DQJQOX3iuywNAIlsFVTp8BEBm5iqD2R0FQAK2Q8G5rwVAVde0ajIxBkBypoN2w6EGQNBfZfcUAQdAYjXew/ROB0A9gaTgVIsHQCjq01hItgdA3Pgl6QDQB0BYe21fy9gHQJMtLVMM0QdAYSHJmjy5B0As1nnL5ZEHQJQDprqeWwdAQHoIGQgXB0C+J8k0ycQGQA8LesiMZQZAeVqWA//5BUB8Mk5HyoIFQKTUcOGVAAVAfslZ8gN0BEAIpdS/sN0DQKtja4sxPgNA6E1jEhSWAkCaOuP03uUBQMr7kdMRLgFAzBaJpyVvAEDegE2lHFP/P8Tb++h1u/0/vb77ZzAY/D9/TBGfIWr6PzRFpKwfsvg/WI7ZywPx9j8oXMBcrSf1P0EEVs0FV/M/GPkaCgKA8T9UidreS0fvPwI6yJALhus/fn5TSZC+5z+ojr75TfPjPyZYBJffJuA/cFIjexC42D8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"Ag9GTJxF0D9G9sw8GsTMPyxOBXL1Sck/yFyXSc0hxj94kR5gn0/DPwjVXPhU1sA/CI49ioxvvT9kNll9c+m5P5AK2PLSGbc/JB/QPRr+tD/sDWC/wpGzP+R1Fk9ozrI/EKMoPeOrsj+As1BpdyCzPzhBx0/9ILQ/eLy6HPagtT8AxKOc25K3P1Cggm5C6Lk/aCRFyAmSvD9oH9RsrIC/P1sHQVQxUsE/2Q3AUbX2wj9eOiEGHqbEP5lfh9TlWMY/OrR5O9oHyD9GawymPqzJP3XIjEfeP8s/Qt1q7CK9zD+mD9HYLx/OP1SWDb7mYc8/WNFCCP5A0D/QvtOtfr7QP0BMyzCsKNE/zM1KwSh/0T8gm4vGCMLRP+Zm8TPH8dE/80X3KEIP0j9ExfHasxvSP/rgkuKlGNI/vt5L0egH0j/Hb45ThuvRP73l1u6xxdE/zfos9LqY0T+NFdB//WbRPxwosR7RMtE/CuNb73z+0D80hw3+IszQPw6ya762ndA/d4h5N+x00D8az0bBLlPQP5A+8GiSOdA/YPdw188o0D+NJFpZOiHQP+hGLVa4ItA/NIE278Ys0D/SnidKcj7QP9LYG7tbVtA/oEl+yLly0D/qT8F/YJHQP+92HZ7Dr9A/yuE4CwbL0D8pZFXa/9/QP567d/NJ69A/XsuHaE/p0D/FWt7IVdbQPzD5Q7aQrtA/IBPW0S9u0D/CBe3obhHQP1nQ2i1JKc8/+CAOVajozT/AGsOWdVrMP9VYTiPGeMo/6BPeSGA+yD98MVAM1abFP9K7UMCjrsI/9G6DAoumvj+IgudHjia3P5TTTLBzua0/kG8VhkArlz8ADhBTtiuQv7QL+RB4O62/omPnF1Lkub+8bePMcOnCv26OjmSVLcm/VAeQyUe2z78W/jY0DT3Tv3huUcJLt9a/rGZbxCtE2r+t2JZukd3dv5hVvOCDvuC/OnrnOuuN4r8WK9yKiFnkv0A9tjLYHea/l1vJzVTX578c5sgngYLpvw2mS4T2G+u/cgP512yg7L/4hKv7ygzuvzqcNQEuXu+/Ud9lkvpI8L+zJQkr5tLwv5DNY0fZS/G/+WzJFAKz8b9ukRp2vwfyv+MkOnijSfK/+A7QGXV48r+raxYAMZTyvxFhgNsInfK/9mgo0GKT8r9QNkF813fyv3ihsuouS/K/W+mWsV0O8r+HOrKOgMLxvzh4FYDXaPG/d1jBl8AC8b/gLpm3spHwv+OsVmk2F/C/O61Z4MEp77+AMmxqmxjuv0dloAgv/uy/r94FYKXd679OAy3VD7rqv8DRcohclum/1OE7EE516L+M1Vvgb1nnv2fVczwURea/IuIbakk65b9g3+rM2Drkv+J1EUBCSOO/aPRMVLxj4r88eQvuMo7hvwl+n6NLyOC/TxwhhWYS4L/ksBWmSNnev/EMeLrVrd2/ujOmbteh3L8clcaTVrTbv5oKzq0S5Nq/rypQtY8v2r8c1GsPJZXZv6Z6820PE9m/nRqN03+n2L9GPxOhp1DYv2SiT9bEDNi/kL/wVS7a17+r2KRGXbfXv4gy87fxote/YOv3K7eb179QMMJEq6DXv73sdqL4sNe/VhfanvjL178hAo+pLvHXv0ZV+4hFINi/GwdpUARZ2L8pGgoySpvYv++U0RYH59i/PoPi4i882b+/LOFyuJrZvwDBmueHAtq/FfjqSHRz2r9cphQNN+3av5jQEoNtb9u/BjhWEo75278+viDX5Ircv94n0QaWIt2/Q5HU/5q/3b/x2vvxwWDevwQM736yBN+/nt8dQ/Kp37/PAKv1cyfgvyXuw1XxeOC/Od3Wj5DI4L8RjqqnbBXhv6QfmdeeXuG/Wb4br0Sj4b/CglphguLhv6aYUhmHG+K/pDrRmZBN4r/Pnusz7XfivykUcvj+meK/5PhyRz6z4r9OEh4cOsPivyTpUdyZyeK/5At8vBzG4r/cvRjWmrjiv6g3yOcCoeK/g5riZVp/4r9wlJ+/ulPiv1BiiTtQHuK/Wzcj/1ff4b+QFk5DHJfhv1QHLL3zReG/oMTz1T3s4L+7s7nQYIrgv/D1yy7HIOC/rmtj9btf378muzzuI3Dev7AzcHmfc92/vP2TagBr3L/eSDL+EVfbv9wIadyVONq/iiMzckEQ2b9ANC7vwN7Xv464iWe0pNa/bc8+P61i1b8ebEapNBnUv+bix4zFyNK/uOEgMdFx0b+JVVXFvRTQvwoS6jTOY82/FDtdB0GTyr+8GNRAaLjHvygb8crD08S/lvZQVMjlwb9ohI0Gsd29v+S+hiSW3re/FAX529TOsb8wgV5P4l2nv+DqpsF9/ZW/AGnqbKPtZz/ASVjE7jOcPxgD63aS0ao/HGVY9CvSsz90Ks6EUEi6P2IGH9wJZcA/yk4i2gGrwz9Kgzt+IPXGPzD3cmkrQso/rrnqipyQzT+14bC5SG/QP655AQTbFNI/WAVIPaS30z+UQQtmAFbVP6CBsdgK7tY/e8udH5R92D+YVsBcJQLaP2ImObb9eNs/5AoPexTf3D/MYsvrGzHeP8obC8OGa98/MMO8G0dF4D+ojcIXH8XgPzAxowY+M+E/gK2w5IqN4T8Bcp7A59HhP/d9+PA5/uE/oygLUnEQ4j+AqBpHkQbiP+/z4wi53uE/joi3rC2X4T8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"gk+Tmd106j964AA0VN7pP+a5RB0kR+k/5pK+/2yw6D/9eILDXhvoP3OULFg9iec/XoACL1375j/1bIVdInPmPyiPbRb/8eU/XhjDmW555T9+usqJ9ArlP2rtCf8VqOQ/l/iRzVVS5D/4wK0dLgvkPwQKu3kL1OM/dG5/T0Wu4z/kwJxaGJvjP/q4rdOem+M/I3umOMmw4z9ZVSWnWdvjPwzOBkfbG+Q/2E9cdZxy5D9CDJ0IrN/kP8BOSYLRYuU/4tx5GYr75T8SVeK7B6nmPx+trn8tauc/uZ9mOZA96D9d6TQceCHpPyoZrTziE+o/fGAG2IMS6z+crEf50BrsPyDQ0e8CKu0/pk1UgB497j+qjuL0/1DvP1YAce0wMfA/IrF/1vW28D/R8BauHDjxP6iiH1v2svE/9jI9x9ol8j/gF48rMI/yP36/bAtx7fI/ujmfcDI/8z9EpRyQKIPzP3yP/8wsuPM/rRflmEHd8z9bjs4PlvHzP2sw3iqJ9PM/co7PoKvl8z8k6S/fwMTzP5ylOlG/kfM/TlVQCtBM8z9DR+E5TPbyP7F7LWG7jvI/bM5wp88W8j/utpCWYY/xP/iSI99r+fA/NgTduwVW8D8co4WUukzvP3EFs+1k1+0/zrj6D6BO7D+KwN5zDbXqPw19EIhNDek/0gmNR/ZZ5z/mQkCIiJ3lP1OFCNln2uM/u3QvINMS4j8Oboy13EjgPyYJbsXS/Nw/Bv2y/lNq2T+K3uNeON3VPzG7fX0RWNI/05XkWRy6zT+6A4If/NvGP8qWcN2yGMA/KNUrcDDlsj9wzmkxNVyXP3hNG5Cj2Ju/liHvQimAs7+K5UY+DcW/v+yrWgWQ4cW/WyT790u8y7+zKmnH4bjQvyjhveRkgNO/tuSkDfwz1r/bC1ZJy9LYv/Tc4VjRW9u/eEuYW93N3b9h8HbyyxPgv+UOibLAM+G/KipoSfxF4r/AdZynoknjv+zmzKjNPeS/jGa3XZch5b+AqFtAG/Tlvxpo4nR/tOa/XDufVvxh57/u4OjF3/vnv6CQYs+Wgei/e78oL7Py6L/AYG7S707pv90FWvI1lum/0k1XWqPI6b9RVDRLiebpv/mpGUly8Om/wOjJ0iHn6b+l7ZKikcvpvx/lgqfznum/ZOGnxa1i6b/sKOEDVRjpv1jv7MOqwei/oq0yh5Rg6L9KEJl9GPfnv8xwQh9Th+e/XY347W8T57+IGit+o53mv4dYQ6YgKOa/6rpYlBC15b94Hurgikblv7h3opGN3uS/GqmSxvR+5L/I+TS2cynkvyvOBHGP3+O/pkMy9Jii47/reZj+pnPjv8jaYkGVU+O//+ocWgBD47/KJ6MWRELjv+rbTNp8UeO/UpMbeIdw4790693mAp/jvynn7SVU3OO/nrfGoqsn5L8vghGfBYDkv9LABXw15OS/c4of8udS5b+kmmbKqsrlvyZPwEr2Sea/EFaTaDHP5r8F/Zvtuljnv9gJFsfu5Oe/9LtRfTBy6L9RnlB77v7ovx5JdZioiem/vHuLiPUQ6r8sNl61iJPqv+J2T40zEOu/mMpx1+qF679DvM1gxfPrv/c2hkL/WOy/KVXQMvq07L8fYHWkOQftv/frJvhkT+2/dH2sp0GN7b/1m74HssDtv8R7rJOx6e2/plROE1AI7r/PaQsWrRzuv46pFBT2Ju6/url5BV0n7r+qB+YBGh7uvzJ4RuBgC+6/6zceMWLv7b+TbRgSRcrtv15jsH8knO2/7OwHVw1l7b/af9Ya/STtvyYesh7f2+y/x4I1Ko2J7L8IaJ9bzy3svxyRcbJcyOu/VszBzdxY679cyw686d7qv6JNSEwTWuq/bLHR/OHJ6b/YRyxS2S3pv1rP2ht+hei/Qq9oA1nQ57+tFoBH/A3nv38V1KgGPua/yxmn8ipg5b/VTEAvMnTkv895JSICeuO/uRdodJ9x4r+NKeSVM1vhv96+V/cQN+C/lwdfhmYL3r/ud1Mki4/bv8l0sQJC/Ni/Ai47XqJT1r85Kh0sJJjTvzwihm2izNC/fKGeja/oy7+8kNpYtCXGvzQ8wD4sWMC/EKkM0xcRtb/gZowyRv+ivwBonx+mEX8/4KgTWRRbqj+g8ueSiiG4P4SznQdgXME/sPoApmBvxj/g5S3zsD/LP6QTIGKAw88/wvs8cq340T8id3CnKuDTP9Jxb+YRlNU/qMluVKMQ1z9KTwLpi1LYP5QL0ij7Vtk/mi5wsqYb2j8+o4zV2Z7aP/RGbh1539o/HlbhLA3d2j8an2xKv5faP7TuwFdfENo/OvX5s11I2T/vWQx6y0HYP2KnDfVP/9Y/2pSNbSCE1T9se2yp9dPTP16iVhf/8tE/mlhGD6LLzz8ohmnKsmLLP9gujvOPtcY/BBoWiwPPwT+goaMyK3S5P4A8UwmlB64/AFj5ltSMkT9wPzaVSV+ZvywUHVQIGLG/IFPFXwvJu7/gK+jswSvDv9xpMkKvWMi/wjUztPhizb8E2YpuhiHRvz9v3TYUedO/jpDreC211b/wJxKRRtPXv11zCP490dm/iEHNuVmt278AWFcbQWbdv7Y1zFj5+t6/ilHso2414L/U5uTrydrgv/qmVLmDbeG/pKPk7rDt4b++Yy/2fVviv/C6FWIut+K/bzZp3RYB478=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"wmX870F51j9OixvQMZ7ZPxBnRFpWqtw/ENyJOcSb3z+KGqHyVjjhPwQxH061k+I/Xlty0zvf4z/gB7mLQBrlP2T85ckxROY/3PAgR5dc5z+P/WqcFGPoPzoblw1pV+k/+rSeam456j9wF198HAnrP5EBVQGFxus/XOo0WdZx7D/Gx2QnVgvtP2vLm+Vkk+0/PYE3ankK7j+xCuGxIHHuP/634nH9x+4/w+5RWsUP7z8QKnpJQUnvP8eTEB5Lde8/RFdobs+U7z+TFYWAyajvPx7TiZdFsu8/ieAai2Cy7z8yIU+bRarvP0E3IzExm+8/DoC0gG6G7z9G1iA1WG3vPweuPIdXUe8/MtCNY+Qz7z/ccYBeghbvP4dpog3B+u4/hbmLGTni7j+13pVhh87uPwSoTwtOwe4/tWr/RCy87j+X0glwu8DuP5M0r+aJ0O4//wLfLRbt7j+u7b3IxRfvP5A7M9LiUe8/TuZsJZOc7z8Hx3J10fjvPw1fZdy0M/A/a6EDOXh08D+s5qff377wPx+iio74EvE/GpzimK1w8T/UKVS2xtfxPywLFLHoR/I/EiCN15PA8j+4Syr2JUHzP+cFfoPayPM/FJ54nM1W9D9JVYuL/en0P90cF1hPgfU/SSiHNpEb9j+xk2ref7f2P1xWXZbKU/c/AILwGBjv9z8+M0L/C4j4P3HyholLHfk/LgwFiIOt+T9AdLfZazf6P/L68v3Mufo/elBbMIQz+z/2VLFeh6P7P44frl7nCPw/nM4sFdRi/D8SMp2GnLD8P02opL2x8fw/GHSXe6Yl/T9FzyL/Lkz9P79fTaYgZf0/Yy8eQHBw/T9EzjhsMG79P+asEnuOXv0/vLv9D9BB/T8Ed4f/Txj9PywczVV64vw/VqVLY8mg/D+8fs8SwVP8P5yFxmXs+/s/+HgczNiZ+z9uAwaMEy77P1bA6CEmufo/uvGLUZM7+j9x1aY31LX5P6IEoVRXKPk/6Y1aa32T+D8kSKKamPf3P/BcIs7rVPc/uxNapKmr9j84TWTt9Pv1P2u7VDzgRfU/6j7hpW+J9D9EnFQQmcbzP6AAld1F/fI/nmoXB1Ut8j/ECAe/nFbxP+BTLAXsePA/Q2QFSh0o7z/tk/8wnE/tP1WnE9/pZ+s/MBtxMqJw6T8azIgebWnnP4OuJ/4CUuU/fl2oiDEq4z+1Rq783/HgPxLN3YglUt0/pPrxYdyf2D/EikD/dM3TP3YhOHKSt80/IJYz5fuXwz8Q/AmNHH6yP0DUrpJ1+4S/CO6MHHQguL+Q0A5D1P3Gv2P68fuqCdG/byf6UIml1r+s9/ppeU/cv5RlrV4eAuG/O0RCOTjg47/Ji2PzR8Dmv9wnIvqBoOm/8kh7eBN/7L/wv2a4J1rvv1IUk5v1F/G/cMe0YEl/8r+3X13vLeLzv2v5Sb/HP/W/AdriVUOX9r+oRN7n1ef3v5y+4Em9MPm/B3HhKkFx+r9qsB80sqj7v3SbfgFr1vy/z4IK6c35/b/wHV0rRhL/v83pG+2iDwDAulSubyKQAMATzYtCYAoBwORbixkdfgHAiYKPExvrAcBXrTtIHVECwFqkKH/nrwLAq12vRj4HA8AI1o/i5VYDwPaCtHqjngPAQvFEWDzeA8D4je7AdhUEwCDpUi8aRATAVl+jL/BpBMAetYr2xIYEwB2aBUtomgTAMjL1066kBMAMcCvTcqUEwCRMz0yVnATAxFdWdv+JBMA2Th3Oo20EwImS83J+RwTAQqsHTZcXBMAoccy4Ad4DwKjpISXemgPABk06w1lOA8DYnllur/gCwJz7AMEnmgLA8p43AxgzAsCHWy4s48MBwFCGxA74TAHAViTtOdHOAMBblCVv80kAwA1fSu/Zff+/jiIU7qZc/r/+zx22hTH9v2EyRca3/fu/2A/5nIPC+r8aP4PHMYH5vxxQXr0JO/i/MN0Hy03x9r+BPTYVOKX1vzbfYNT3V/S/YiMGpK0K878tHtENar7xvz/n8dAqdPC/mmkQsrJZ7r+oY1P7k9Lrv4Ajy6h0VOm/VnSQlqLg5r/SdtprQHjkv7YhBKZCHOK/Fldsmuqa37+MZC4i+Bjbv/CWa0Ous9a//Pu9Tstr0r9I73+YqoPMv2wYTolDbMS/SOXczXsjub9gyUGG3dCjv6BOlX3QYpM/IIIFFEAgsz8w/1OuTHfAP2ibjLQaIsc/UPIAD7aQzT+MpBDynOHRP6jGyafW3NQ/OJ+oNgC61z9Ep3KnBnnaP4j2iIfMGd0/eI9tODCc3z9ysUhsBgDhPz6WJwWhIuI/WiEmn9w14z8YTiv2tTnkP1JsVQA0LuU/Ui4Al24T5j+wQtEDjunmP9zeRHfPsOc/JrvyZIdp6D8auT9oIxTpPxcDiIYqsek/u5/Rnj5B6j+MwEzjGsXqP4YNv2uTPes/rZq1p5Kr6z8FmkSFFhDsP0wgVoEsbOw/FFtQv+3A7D+DUnZKeQ/tP5QwTLzuWO0/mLEcgWme7T/a5q6V+eDtP0wiA0yeIe4/Mu48UT9h7j+whl6IqqDuP+op+XCL4O4/49T9I2gh7z88ep+xn2PvP0CridJjp+8/6rJ09brs7z/dLrmPvhnwPyhk/0CqPfA/YOTj0t9h8D85Y8+ICYbwP1YLUNK+qfA/VqZltITM8D8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"0d3IfhSZ0D8kIwbKZBfNP6SkZHxo28g/DUnhAnl+xD9H/ReLPAHAP0x6RaqRybY/UBCmnIWqqj/gWCvdg0uNP9hROjma1Ji/vsrn7gdBsL+Gf0NgCHS6vyiJcay3Y8K/GHgeVgyax7+okrDJS9nMv/WYOjjZDtG/YHKwx7+x07+Lck6AhVPWv00alVJr8ti/WZ+QCdCM278Fn6S1NyHev54KescoV+C/RFa8U32Z4b98aZRbIdfiv55o27i0D+S/Opme3fFC5b9poGYFqXDmv3qPG1K/mOe/5O1Bsyy76L/7uwk+99fpv5fUfqAu7+q/EBejcukA7L/WZOPePw3tv6aHYZREFO6/iI5xwQMW77+oLz+dPgnwv5NriYbPhPC/kKrfK6L98L+RhPltmHPxv7hfbfuH5vG/Rhh56zhW8r/tsHCoZsLyv3WYoB+/KvO/qJPeDeSO87/i2UK6a+7zv7fON/HiSPS/oK2rPs6d9L+4eRE/rez0v3dCL7T7NPW/gGui0zV29b/gkOk02q/1vxob3UBt4fW/CtZqX3wK9r9Kbx9joSr2v9xhZLiEQfa/E8mzb+FO9r8ZVsDxhlL2vxHg3kBcTPa/VvSRbmE89r8OimiTsSL2v5I4km+E//W/oF5Ehy7T9b8DrVVTIp71v7Xr003vYPW/8ERsXkEc9b8mF0M/4ND0v9ilcN2sf/S/kgnGap8p9L8Ee6T3w8/zv1vhVsM3c/O/DbtffCUV879eAMfuv7byv1n2o20/WfK/CcECBdv98b/Vf7nmxKXxv5DaWVAlUvG/fVedORUE8b9VoExvmbzwv4FFwzeefPC/96vODfNE8L+9DxgXRhbwv3YrzldC4u+/UfG1zM6r77/msNIJo4nvv/FCXV/ce++/sgmXRj+C77/Qf75SOZzvv8E/PVniyO+/FXLFEoAD8L8fAG4ChSrwv9gmKg+YWPC/oqo5N7KM8L8b7etMscXwv2dxcthcAvG/IguYJGxB8b+/q8kUjIHxv7wElqplwfG/0p1FEaT/8b98DWaI+jryv7orLuwrcvK/V7TJjA+k8r9iaMB3l8/yvziIinXV8/K/a+ANfQAQ878MEstXdyPzv7fqQoDFLfO/pyyhJ6Uu87/VORZIACbzvyulugTzE/O/KvYPK8r48r/NpKXnA9Xyv/7GG+RMqfK/OvaqOn528r/O81NFmj3yv8ZI5DLI//G/fkQOO1C+8b/mDk7vlHrxv/LNT1cONvG/dSYSAUTy8L9G/fggxbDwvwOkh+wic/C//K18Huk68L/nCStUlwnwvyMR89wywe+/tD1cyoOC77+MPz6DhFnvvxmXNNFLSO+/kpOvrJdQ77+SJGmAxHPvvzci3KjCsu+/5HreUQgH8L/mwwB42ULwv8dk7K6ZjPC/okVO+8zj8L9cgu21t0fxvz4TccRet/G/GhTMOogx8r8gpB59vrTyv0EAQgFTP/O/KBsPymLP87/qtexO2mL0v079nK589/S//sy8IuiK9b/Eu/qHnhr2v7lztusLpPa/7Q+xdY4k97/ksxM5f5n3v2SpmGc5APi/l7P6dCRW+L/2k7c/u5j4v+B7ld6Uxfi/CJJ87Wza+L+nKUA+K9X4v06bNNrqs/i/5IQ4tgB1+L9IhUgnAhf4vxzVnIPJmPe/xh6IP3v59r9N/zmliDj2vzxgsLuyVfW/VrS3DQ1R9L++W5HO+yrzv+51Xd815PG/CvFUpMF98L9y/ZWg6PHtvyhCpZTaruq/Hg0ybCU257/o1RpPGIzjvxL3KRL2at+/9j8iSwBv17+yFLQK4l7Ov/iaN1Ee4Lq/UDBQ3dWvnj8+cuS6/FnFP0dLKJgbgdM/AVn8Q1Za3D9eyCW/1pXiP0AAJqEf9OY/1VG+4rJB6z+DQQf1aXjvP8hwboEryfE/wmBkYunE8z/5GBTXwqz1P6Q5vq45fvc/fxHTRQA3+T/aR3JZ/9T6Pzq4HWZWVvw/3QhwKF+5/T+5s9VKr/z+P4hetzKMDwBAQzJh49SPAEBmAqQs1/4AQFazIMdWXAFAj3LHqjSoAUAyPylPbuIBQLQCUyUdCwJATq13CnUiAkCSVpyAwygCQEalHG5uHgJAznYfA/MDAkBmYX0b5NkBQNgPkNfpoAFAQi9aY79ZAUCTgsvDMgUBQAHm2lYjpABABiPfXYA3AECM/sNukYD/P6xMluARf/4/8CLVGbZs/T/w2K7FyUv8P5EludStHvs/AksD2Nbn+T/StTCayan4P7xQ5qsYZ/c/xNPwyGAi9j9M6hbJRd70P8a6NDhunfM/cGvjFoBi8j80l45+GjDxP1ZontXSCPA/aZKRDFze7T/9cHzDNcvrP5dHFt3b3Ok/v+BZj7IX6D8K7aXe0H/mP1GoaYnyGOU/jHyJCW3m4z9qSpcUJOviP5UbGHx+KeI/lSmwOl+j4T/BSR2oGFrhP9CQIKVoTuE/ISVopnGA4T/wz5nOt+/hP1y8VtUcm+I/Yxrj8uOA4z9S0m9Hr57kP6oG0o6I8eU/4E4Kr+R15z/RNevFrSfpPyde6BJNAus/aW8XUbkA7T8muLscgh3vP5B046FxqfA/DTkhZGrN8T/kFUrmjvfyP4gFHUa0JPQ/Zp2lGatR9T+b1Y49Snv2P+S0eaV4nvc/mb2s0ze4+D8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"KF4YsWFuqT+weTwNenOWP0Dd7paEEHq/yJMUa2wAor8o4UHhp32wv5BBmoOsFbi/wj0aoMfDv7/chwlnacHDv22u9fZzpse/F/2VQMGNy78eFRnwunPPv6CZs/5BqtG/ziqjXvqV078a6+K92HrVv2R1rsSTVte/4Mg/ss0m2b9SzbJcG+navyBoXxAIm9y/ArcvUxs63r8YmTKX48Pfv07Ss4D+muC/A8FwWgpH4b/FSkbj++Thv8EBFYPMc+K/NoHowYzy4r/mgTNaaWDjv/dJmgyvvOO/GxIvs88G5L+mc0iqZT7kv7bT4t82Y+S/hfVx2Th15L/MOThAknTkv191EKCdYeS/LpoxQeg85L9URj0vNQfkv+Yclt54weO/UCg+Tdps479NM0UbrQrjv4HrgFJwnOK/gOPkoMcj4r+GdEGJdaLhvzNzi6lWGuG/gHDNL1iN4L9Rn5FZ4/rfv46wlO442d6/WH98Spa53b9YlBbbw5/cv5433QFcj9u/+lXPxrqL2r/16g8d8pfZvw/m22S7tti/pVO9N2vq178UYacq6TTXv1mJuuWpl9a/hxpDlaUT1r8GTpD6XKnVv8AFu8zQWNW/+ZgBwogh1b9QZHASmQLVv9t3X9Kk+tS/bFeQ0+cH1b8aHB0sQyjVv2TrymtEWdW/5RQXgDSY1b8p8isRJOLVv0ZzQgv6M9a/ID9SPn+K1r/jdr/SbeLWv3qRe6x9ONe/iO6LvW+J178onF+6HNLXvzzh8EN8D9i/wW+eia4+2L9//QdnBV3YvzYEvnYNaNi/DnUMTI5d2L/TFDrjjzvYv6i5KA5kANi/5Eue0p2q1796L0SuGjnXv1HMzpf9qta/M4x2rrH/1b+E89Gv5DbVvxq8PvWKUNS/lc21vtZM079fEp1eOCzSvwFV4F5e79C/ojK6+14uz78KPSnsjEnMvzIyB1rrMsm/4kkQ1Hntxb9I+53JmnzCv1wZkwQJyL2/7FyCk4dPtr+wE3TovTCtv9Cf61dpr5q/gPQ/DBLEdj8EtxHqVUujP1KvArWr9bE/n3nKIi5Ruj+/P4xQY1bBP403zZ5kfsU/yG87qqyayT+kPKk6O6XNPzM1X2UGzNA/JdKaf5G20j+lKQL+R4/UP6kHwFxAU9Y/AJ59Oqb/1z9pZpSvvJHZP3WP8HnrBts/NE9Jdb1c3D+c9Yvp6pDdP8oQ+gFfod4/jAjFtz2M3z8qIbEd8yfgP57OivB9deA/wulXWzSu4D9Ex3h7sdHgP6JLdiy23+A/hCATaC3Y4D+BQWqLKrvgP0o3ZvvsiOA/n/PT8dxB4D8cY/MyHs3fP4/zjD6E794/Ls7PK7vs3T/wu1dN5cbcP0Jx4gtygNs/DYHTkhsc2j/qC/bl4pzYP+fLyRILBtc/gnW2EBJb1T9f4S2LrJ/TPwKdbVjA19E/gHY/KVwH0D98LpyPYGXMP0OBr78UvMg/LU0N85MbxT+Aku1ttIzBP7D6J266MLw/iDheusuOtT8o6lFrWYquP/CkRjY3yqI/YPCfi377jz+AKvbjtnFrv3DKGUXicJS/ICbWAXhnob/QU5sBTyinv5gD5k8gYau/2IuUmmv6rb/4XteiO9+uv6C0eBli/a2/iIP2VqhFq7+YhHdZIqymv+h3J8NHKKC/AGSzePzUjr8ApQaF1291P8D4rOjz/J0/mPbf/C81rT+w4iyxZaO2P7h9tQHfkb8/TODljAeuxD+qhFKQ7/rJPxAksgqLqM8/N4aSgVvX0j8toaWkKALWP9k/a1ilT9k/cgEMGFy63D/tiXqWOB7gPwAd+mnb5+E/YDKjwde24z8HseJs1YflPwUKcK5lV+c/6p4Jsg8i6T8R5HrSWOTqP2tSC9fNmuw/gbUJtw5C7j+znkwZ1tbvPyjHC70Cq/A/llwirVZe8T/q6RkzCwTyP6LDtynlmvI/B9MvA84h8z8mEhad1pfzPxlN2Oc6/PM/8eFS52NO9D/5ds+f6Y30P/X4ZCaUuvQ/nWaknlzU9D+0w937bNv0P7q5WZUf0PQ/VFSn3fyy9D/kCIkcu4T0Pwom04o6RvQ/I9/4qoL48z8rQrYDv5zzP/AP4rY6NPM/HjA1Y1zA8j9lGSgpoULyPyNCnceXvPE/sNGSHdsv8T+hlYRQDZ7wP7rDs9HRCPA/mSerdZHj7j9VjROnEbXtP1Z1kUs1iew/XFvLMOhi6z9RuNqJ6ETqP8LlkqW8Mek/6NPv/60r6D8ucF7VwjTnP9fF9D+4TuY/eESQfgB75T/Yf4Ywv7rkPyHj75XJDuQ/seY0tqd34z+L2A7xk/XiP+KE3EqBiOI/x4kX4R0w4j+cmwPp2evhPwSm41juuuE/OL3pimSc4T8Xm+/BHY/hPwRvPrbekeE/cDSjtFaj4T/UB2UFK8LhP1Orq5X+7OE/nKAomH0i4j+LvBEmZGHiP8M9PMKIqOI/dEqt+eD24j9esUCZiUvjP9eEzv3KpeM/lr252xsF5D8u6W8QJmnkP0Qd+kLE0eQ/SRxIbwM/5T924xagH7HlP97W5UqBKOY/opuOobal5j9UFF/FbynnP6yUSW90tOc/Orz3xZ5H6D9kqQgo0ePoP2BnUIDriek/dtnmX8M66j8xcAX+GPfqP+jxXs6Nv+s/o3Iub5uU7D8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"aZJA82Zk6T/KRpyfK5TqP1Hkvq8az+s/+haScGQS7T9MDQF0LlvuP1Q0rtuVpu8/3O0LEd548D+QqP/v5hzxP1cF8lkGvvE/NJi+Q+pa8j/YmC7dUfLyPzbr+2cQg/M/5Q1Cuw8M9D92AfDtUYz0P3fD2fD0AvU/4IavpjBv9T9+0RNcW9D1Pzf8ovDnJfY/j/A39mZv9j/U7f9phqz2P6G5lJUR3fY/8LWE1O8A9z+cJNtFJBj3Py6VHnrMIvc/mleXRR8h9z9yjgD+ahP3P80QODwV+vY/rJvhOJjV9j8j4x4Ggab2P9kcITFvbfY/CFhjHRIr9j8HmoRrJ+D1P7CGtm15jfU/JCV6y9wz9T9blU35L9T0P3leTJ9Xb/Q/svpk0T0G9D8ruKPrz5nzPwVXNyf8KvM/CHz3eK+68j9GcRa400nyP7NkzAJO2fE/QIgwCPtp8T/aeIMzrvzwPxW6C1ovkvA/cNAcijgr8D+ZmTyS55DvPxN9zIby1O4/OVK6750j7j8v7GyXyn3tP6bPsQEv5Ow/KAtyqlNX7D8i34xFktfrP8PWToEVZes/IB5nrdj/6j/q0Rm5qKfqPxx7f+0kXOo/y9X8TMEc6j8+i3ajyejpP7ytLxljv+k/NJZOIpKf6T/ie9Q/PYjpPz4kXAkweOk/glQ5OSNu6T9iJrG4vmjpP8AUyymfZuk/AmzGsVpm6T9UaZCah2bpPwXuJ3K9Zek/hiEPjpxi6T+6HdRh0FvpP18HL5ATUOk/VsIofjM+6T+j0M76EiXpP+OJ6HmtA+k/lHWrOBnZ6D84T51uh6ToP5r9TulJZeg/JLiQNNAa6D9h+ct6q8TnP772MQaPYuc///vGZ1H05j+eZzUY7XnmP/hbMqCB8+U/CF0e1VNh5T/Suela0MPkPyxezciKG+Q/pnWyzD5p4z+eZ9oz0a3iP0qT381Q6uE/TjtmWfQf4T9k+n3tHVDgPxHidhCs+N4/KX167p1M3T+W9Mmev5/bP8I9CSkH9tk/Yqx91qxT2D8Udb8uH73WP/tQqun+NtU/UEsqzBHG0z+S7xnzMm/SP46/r2BHN9E/1iasYC4j0D9AIeZzWW/OP9xV6CG+8sw/8ASKQ0bZyz+Ip58yCCvLP2T6pv9T78o/eF0e1Ycsyz94o+H76ufLP3iUTNmKJc0/+LwRByDozj8EfhQ2dpjQP4r7qh3U/9E/1ILOyTap0z8H+YMd2ZLVP6mEH7ceutc/Mp2dDZcb2j/tnNN3ALPcP8gKMDZSe98/7b8D4GI34T8if075csPiP57hIGBSXuQ/ExqQvTUE5j+CIrcSG7HnP07pVi3VYOk/8lInERoP6z+aVpeBkbfsP/9Spg7jVe4/8MGoZMXl7z9+RhB2hrHwPxZhT7bcZPE/J2XqHQIL8j+K6ntFNqLyP8D3AfLhKPM/EAX9DZud8z/g34+CKv/zPxv4BruOTPQ/V6/VKP+E9D9kKSh97af0P3w71fAGtfQ/vyVTxjSs9D+VB/kxmo30P9yV8J+UWfQ/GulqULcQ9D8MKe+nybPzP3CEKUbCQ/M/1AhdI8PB8j8MUeYUFC/yPwCr8SAejfE/qFH9q2Td8D+aAJkVgSHwP07Zr5A2tu4/wS11jMgX7T8P76xnIWvrP61ihOmjs+k/nIHqbaP05z++xHYwWjHmPw6wm6PcbOQ/4cEIRxWq4j/o1X67uevgP31nphiOaN4/B1uzePgL2z9lOG+ZqsXXP7p+ZWQUmdQ/KTy/hxmJ0T+ku3IZITDNP6IK00WRj8c/jgnesA8zwj/EB1FVWji6P3RBl70Rl7A/kM2fHA8Hnj+AEtZqOJpwv7hke/csHaK/tCywRL6RsL98GYUFyJi3vzT/+r0oKr6/IJKwlnYmwr9wmuYmQATFvzig1atCsse/2sUyNU00yr+KxpF5FY7MvyQjVmElw86/C79v+GFr0L+oRM/k82XRv0V1viuRUtK/SEWC2Eoy07+ZuAN79AXUvxNTs3YhztS/Eo2nPx6L1b9iqdT+8zzWv5HD7opj49a/Tua1Yel917/9uGLmvwvYv4KhTHHgi9i/VimCJwz92L844p4xzl3Zv4puJOGErNm/ioZ3zWnn2b9twVsomwzav9AeKFgmGtq/gCX0GxAO2r9Uc2ipZObZv36V3YM/odm/rd8artw82b9WWYXVoLfYvwj2MlwpENi/CwYf8FdF179O7eL3XFbWv1/LcZfHQtW/NDBYsIoK1L9OGYuSC67Sv+5iwRonLtG/Bx947XMYz7/AOVXrSJTLv/eJqH6g1Me/HjUFwlvfw79wAbol2Ha/v2hxjPOU4ba/UAv4TakhrL8YTE9Ad2GUv2CCiC0Rk48/EDu8OgnxqT/co1zW4uG1P0AngZNdlb4/M5Oi0pJ8wz/fGvtBi3nHPwkGo/t9NMs/20DLwn6gzj+E8X47etjQP4Qn6KrmLNI/SW0qatVH0z+SXxPBBSTUPwNfEqG8vNQ/z+PD/tYN1T9SbDHu2RPVP67Q8v0DzNQ/5o3Wblo01D+mJgDAsEvTP3oEKWS0EdI/1rcySOuG0D8kgtZ+clnNP+iPwqy2Csk/GLF4p8QnxD+0CZyKr3C9PzT90+dQi7E/AP01xrzSkj9wnds08/ahv/jT3lAwa7e/ACfa1UQ/w78=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"jIdBMYi5AUAcqug1/o4BQAy7FjinUwFAfmYBomsHAUC31mTuXKoAQAYZS8W1PABA+D5Rg7Z9/z9GT8/xuWL+Py6TiM3nKf0/UG00kQLV+z8g0D+mGWb6P2a/n9CC3/g/pzaVQNRD9z82wx8S3pX1P76HxNif2PM/7jXz5T8P8j99YlkWAj3wP/oUgcR3yuw/ul1g85YW6T9pbbpcFmXlPwvOszCPvOE/Mg5kwthG3D+cya+Ppj/VP/Ow+0lX3sw/XwZ1aPOAvz9sO/OcosyZPwZ7xt/6SLG/GMz/CgTKw79+LeHkjinOv83Gr08C3NO/mb/7MVQ22L/MTF8rkCDcvzy8C8yxmN+/W91tTupO4b+i4lM1FJjivyq9acFuqOO/2MA0ywiB5L/sX7qSXCPlvxDc3+1DkeW/qM/FEOvM5b/GKHNUw9jlvyLX07N2t+W/rhyckNpr5b9BVR//4/jkv2COj9uaYeS/39hc6Q+p479qMYJyU9LivxEZCAhs4OG/ln0sb07W4L8dT3N5s23fv0YLPaefCd2/B3d0DaaF2r+whJXFxObXv7AoT220MdW/8Cq0x+Bq0r8opoRP3CzPv4BouGJrcMm/7s/mjJmnw7+TyvBVFLK7vxijjc7IFbC/TE4xEKAWkr+gyvKBPs+bP8gjbffqTLI/AJH7Srt8vT8+gBXYgz3EP+jfXRMfoMk/cKcqzLrizj9lMholFwHSP9lJNSfPfdQ/8HLRED3m1j83y317PjnZPy6QZTDXdds/dkBQoS2b3T8ZhC8MkqjfP1606oK7zuA/cQsjoru84T+aI1TzKZ7iP2y4tvn3cuM/ym1piCo75D+YCY1B1/bkPzZllUYkpuU/pomb+EZJ5j8ds2nrguDmPzymF1sobOc/Gl5fZ5Hs5z88yyyPIWLoPzCjqrBEzeg/uC2/NGou6T8iteQLB4bpP2g7Rn+Q1Ok/JtMjen0a6j9rYjSqQVjqP1lU/mtPjuo/2NEwyRS96j/6LX9k+uTqP7arSUljBus/d9XcmKwh6z/xYP4RLDfrP6LGuA4yR+s/qNsYNQdS6z/f7ugK71frP2ExScAmWes/+lOwSehV6z8+J8MDaU7rPxCLBfncQus/A4KuunUz6z9IHYJyZyDrP0Fgxv/mCes/4sKduizw6j+2rWqUd9PqPzEPugUMtOo/sNgXGziS6j8u09CbUm7qPxIJwaS+SOo/qvIbqOkh6j84uJlET/rpP40crLJ30uk/FtDmkfiq6T+SjpqydITpP5uku0iaX+k/LWbMhSM96T+pl1uO0x3pP6UjlA10Auk/iWCndNPr6D/49eMUw9roP39XIVwQ0Og/vXv91oPM6D94N7QM3dDoP9UDdKnN3eg/ZButgPPz6D+qa4Pi2BPpP2Ux92bsPek/am0uYn5y6T8Gq27evrHpP9ArIuW5++k/soaHLlRQ6j9MFySwS6/qP3bY6i01GOs/0pSqXX2K6z9Q7lb6aQXsP/HtMUMbiOw/ycHoco8R7T+itIREpqDtP+SMs8QkNO4/v3Sp3rzK7j9MojZ6EGPvPzUmD7C6++8/RFM5TqpJ8D/+SQJlPpTwP2R60r7v3PA/4BR64x0j8T8cBSwyNmbxP8IYG6y1pfE/XsgYpSzh8T8I/0XrQBjyPyMyDdSvSvI/B5/72k548j/jVuJMDqHyP+esJsf3xPI/on8QOi/k8j8cB2Xy8f7yP4qGs8WUFfM/VgFfOIMo8z/MFJMNPDjzP2K7XJ5PRfM/KM33t1tQ8z8O1LO3CVrzPwohNcAIY/M/JzIImgts8z8++5SqxHXzPyCYfBDhgPM/mMabvAWO8z+qpyrVyp3zPy9mQSa5sPM/r/QJJkbH8z8XWTJw0eHzP2OpMcqhAPQ/8Cz+Z+Mj9D8Zo2umpUv0P8vGIcHad/Q/cCh8mFWo9D/DWUGMy9z0P70xyc/SFPU/jodiF+RP9T9a+he3XI31P4zn4SB/zPU/vP/zEHYM9j+vawIrV0z2P6mJoskmi/Y/99WwXtrH9j9jt8hyXQH3PxaLfcaVNvc/oiO/Vmdm9z88U+EduY/3P9ipOPB5sfc/yISS1aTK9z8nFbMSRtr3P4/ddD1/3/c/rabXTYvZ9z//tsa0wsf3P2Ynj0afqfc/ku8ydL1+9z9PzKA74Ub3P7LsuvT1Afc/lW3EfhCw9j+Otuk7b1H2P8NZzgx65vU/0/V5csFv9T+Q4jCq/O30P+rzaFEHYvQ/axtmWd7M8z8+nYh/nC/zP0SvHt51i/I/wNzSe7Ph8T8L0GgjrjPxP05uE2HJgvA/zg4fSNqg7z+TxyvzAjzuPzJRRcDQ2ew/0rfcyfB86z/YyDBk8CfqP6hsIUsy3eg/CTOujOie5z+PA6DrC2/mP22KQKpVT+U/zjZJvjtB5D8dDUib7UXjP0LKh4pRXuI/gCbU8AWL4T+ZEpW9XszgP3Xc+zxsIuA/VOeCn/YZ3z9mwjmtMhfeP+xI9Lw4O90/sddBNEuE3D9k+0LAV/DbPx4aPz/7fNs/vnOG+ZYn2z+APke/XO3aP3WNWzlby9o/mfPXEYy+2j9vGc+h3sPaPyBnpH5G2No/B7wn0b/42j/SEqbdXSLbP6I4VpVLUts/MUw52NaF2z/1/kIMdLrbP6yvTDy97ds/5hPdIXsd3D8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"3iIDO1bt4r/+DNM1Nbrgv7r885z3N92/snhoOWoo2b8LLzMZSUjVv864R7ODmdG/taLpwNc6zL8zyFFLUqnFvyLzQ5v0/L6/LwWnOu1xs7/ULr5vmVihvxCHjttZvXU/Lj9o8VphpT8f6rTYv16zP3X3FHqddLs/CzKAIUOBwT/sWVt0Kw3FP46XoCmFZ8g/kmneAzuayz887bpKga/OPyPihcjM2NA/heeS3lpV0j/ZbnVJXdLTP5ihZXGSVNU/55w0KWrg1j8SarmW93nYPy8qv8LbJNo/3KAKlDvk2z9vJaK6rrrdPzhHvns5qt8/2vlAwiHa4D9OvKL2yuzhP9mphrQqDeM/oICFdQQ75D/Eig0sznXlP8zhmoeyvOY/dP37GJgO6D+zkPSBJGrpP+hZUSvGzeo/H24xQbg37D8FhzwXD6btP4jX5H6+Fu8/v1I6U9FD8D/sMUpCRfvwP+J06xCgsPE/ylTAy8hi8j/8oMUWrRDzP21bBW5DufM/kX93mZBb9D/wIA2rqfb0P0u41sm1ifU/gs29V/IT9j966Zi/sZT2P5izGO9dC/c/g3p24nh39z+tfBm4mtj3P56ebU1zLvg/S3MWesd4+D+KRslTcLf4P9pmPiZZ6vg/Chk6Tn0R+T/Ow/fi5iz5P2jyx1yrPPk/UGA7U+pA+T+4j2qOyjn5P5X7qgR5J/k/bHi+ViYK+T/fEOW6BeL4P5pzms9Lr/g/pNRw/S1y+D9l03GW4Sr4P5AmG0Kc2fc/bcoJj5R+9z+irseBARr3P97dUI8crPY/kINspSI19j9/1WYYVbX1P4RR9Or6LPU/umvtMGOc9D/B2gVD5QP0P+RFOg7jY/M/bViu1cm88j8jabDQEg/yPwj7RalDW/E/jFFJMe+h8D+9JzDpZ8fvP7YPcsV5Qu4/5sgQZ3227D+kosVO7yTrPziHUgxZj+k/QiCMZ0z35z9vksIhYF7mP8OkgBAmxuQ/Dsj7KCkw4z+0F7Xt4p3hPxsKNQy4EOA/3P2ICuAT3T+tC7tuYBXaP987N4vrJ9c/0czhliRN1D8de1ssTobRP7yZ6LGIqM0/bh1uuPhuyD8Yov4wCGDDP605/LAK9rw/XCyixvV8sz/CUoe9FqGkP0D6AkhctHY/vG1x3bblnL8UKLQv90mvv9pQOE5X37e/utlpwMjwv7+fTkBR1PDDvwLjB2IE3ce/8P9mZ8HAy7/QMJXkcJ/Pv+RI3Hj7vdG/sAdJfk2s07/WKDhPdpvVv0Zqsnrci9e/bp2zU3p92b8ghZPO3m/bvyi+m1kpYt2/wcBMwRBT379Tq1uicqDgvwbdwaDPlOG/ns0lEHKF4r+8FtQuDnHjvzb0Fcs/VuS/L0zDYpMz5b9aYDG4kQfmv2iiXxjI0Oa/f76cQ9ON57/jDrooaj3ov4PQNsxl3ui/qeBFaMxv6b9Upo191vDpvwWt7nX3YOq/imM26+G/6r/iY2rHiw3rv+MMhjkwSuu/G+JiBU92679NbKFNrJLrv4VrqopNoOu/T9pfVXSg67+HmIT2lpTrv5wYQRpcfuu/bdLs6I1f678p5SOgFDrrvzOOf+HoD+u/ziwgjAnj6r+HnFuec7Xqv7pk5uMRieq/NFEKQbhf6r/0BmqjFTvqvzmIigqtHOq/kH5xG8wF6r/yBXwGhvfpv8jo6FGs8um/vdq1Hs336b+QUWgQLgfqv+Av9WLPIOq/4xLXlmhE6r+CF/TRbnHqvxH2wJsWp+q/4qLNIVvk6r9ZMhxvASjrv+ELE3alcOu/HluFnr28678HrEWMpwrsv27WSvuvWOy/HB/1Oh2l7L/Y0iZwOe7sv4tAcp5aMu2/1jU9Su1v7b/KE2TIfKXtv2Sr8M640e2/CNprvX3z7b8RmBzB2Anuv19u37cLFO6/KxjjZo8R7r+M3fApFQLuvw9RNLuE5e2/MNe9BP277b/eERrQzYXtv9ktOCd1Q+2/QUR8k5n17L9k5YiDA53sv+jHkyOVOuy/hZMlbETP678sWGdjEFzrv6qkqtn74eq/2nHT1wFi6r9T+L7kEd3pv9rY5KUEVOm/bY26UpjH6L8gOEskaTjov0xinkjtpue/uKFSYHMT578IkV8nHH7mv4D6Ryze5uW/fIxr6oJN5b/WR4U0qrHkv7HlcFPNEuS/MD4xtUFw47/Za6ByQMniv+uDugrqHOK/9HK1W05q4b8sf7DFdLDgv7o0zLLD3N+/IChugkBG3r/O9gkkkZvcvwwkJkgP29q/FJw3Ik0D2b9qYuNaIBPXv1aXeYWrCdW/fCzMr2rm0r+yixOuNKnQv5RpGv+IpMy/INHCfHHEx7/g2Q8MKbTCv6C8vcTp7Lq/EM4OdLodsL8AGDL0iwyUv+BX3TzyZJk/sEVvjqvssT/wXdJOjKu9P1BRx3G9xMQ/eBzx1sG8yj+UZ3RRlVvQP7bXe76cVtM/4nOxWBdM1j83D427rjjZP5dB+PciGdw/lniqPlLq3j9wpWuvn9TgPxqylOmOKeI/uKB5K6hy4z9HSeFluq7kP+ishPCv3OU/8f3qUJP75j85SDMPjgroP4A1Sx7oCOk/0vjf/wn26T8hN06xedHqP+6nZmTcmus/gWAt+vJR7D/xqSxLm/bsP7QlnLfNiO0/Iu7S/ZwI7j8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"eo+qgmz55r/Ycy8bcTbmv80B82aMd+W/vMUgZgK/5L/9w4/J4Q7kv4/lFkD9aOO//5SNuObO4r+FOf5K6UHivwFDkdgIw+G/r4M6Yf5S4b9+UsG1OfLgv6j8S8TioOC/ElRH1tte4L9Q1xQGxSvgv2863WIEB+C/og++aZDf378CKvYVIsrfv6DwdZVxy9+/8DJYRvTg37/KNiCw+QPgv43dLmLQHuC/0Slw3JA/4L/r3hWH0WTgv0uXSq01jeC/futtXnK34L/msthNVeLgv8BvHOvLDOG/4vTiMeQ14b+V515n01zhv/V/0nf0gOG/9yn4ysuh4b+xYpRSAr/hvyyzIN9n2OG/JKa1ROzt4b9JigSEnf/hv0FsL5mhDeK/2iylCTIY4r9FtAnikh/ivx7V/9MOJOK/fhX8e+4l4r9bi27KcyXiv2GpCXbSIuK/9FWMqSke4r+7dHLegRfivwgSbWnFDuK/Liaowr8D4r8Y4JB1HPbhvxBNzS5k5eG/NTR/nP/Q4b/AplqVObjhvxYtSxBBmuG/kg+7Jy924b9TruDDC0vhv6yLfl/UF+G/BJGpO4Pb4L/G6EzYFZXgvzOXLheXQ+C/dRz68UjM37/+aTex7ffev/Zbpq3UCN6/DPQ9Ogb+3L8GnRWK59bbv3gDIhxDk9q/hqJQiU8z2b9wSdRHtLfXv5Dp0OGLIda/8hzNN11y1L8y0N4HH6zSv7gRDAYs0dC/rBbf6HfIzb/BbNlusNDJvylfKPCiwcW/xQ8pGlmiwb8yjm+QY/S6v3Qxp1N1obK/ONRfvV22pL+QHC3looWBv/xvR5p7PJc/pOIwUOMrqz/YRvoYMRa1P15TlkIaQ7w/dRnfTXuIwT+/pS3UkLrEP2GdX58Ys8c/zlr8vfBtyj8qVPNrnOfMP8YkCZIzHc8/jTwxlDWG0D9q4IQiwVnRP3gdwACgCNI/oG5+lHOS0j/StLL6F/fSP1ugp52cNtM/uhXWyUBR0z9r7/jGcUfTP993bsfDGdM/qs0UF/bI0j/uoTmS7VXSP3O5JXa5wdE/inkTLpMN0T/IUkuJ5DrQP7tgF5qSls4/K6u6hS2BzD+BGUEDvznKP49lCZLzxMc/ybHPlQkoxT9Lt+kb3GjCP36RY3XRG78/dnD3MKY8uT/8s8lxyEOzP9hS/D4nhKo/8OmMIHUmnT+AsCset9h2PxA0YcIO+JC/gmVJ019Io788OnHMJF+tv9KnsnSESrO/KkBwPmVft79Jid8089i6v5Rah4ygor2/y/6iMAGpv79zJgNmBW3Av8W265PDksC/7Ri2v68+wL96FJCQ/dW+vyBImxR9Jry/kLloFQJpuL+gUwCX15qzv87S5Ro3eau/GnHPzjpJm78ADGMYOMpxP7A94r4EC6Q/ZsURCVfasz/E+FALKYq+P/o/PiOfAMU/QHeyVrQUyz9uBirWmLrQP303yhGQCtQ/NIstRHRz1z+oIiEYS+7aP6oEEsQFdN4/XlOHe9H+4D/gp+7wJsLiP7JWVy28gOQ/NCh7E3w35j+NL+0IkOPnP6wqLZ5qguk/iBbodc8R6z9YTotx3I/sP6gKBFwN++0/FDEC9D5S7z+yDMLuV0rwP31pIqL+4PA/BdfDixFt8T/qFYREue7xP0eyBWNFZvI/NHzbVSnU8j/2W7is9TjzP257FEpTlfM/Ed/98/vp8z+Gw7pRtTf0P1RRjpJJf/Q/9qiQQYHB9D9WvcPHHP/0P0FuQszOOPU/MhnGXjdv9T/bDN+o3qL1P4CTA7Iw1PU/MZrbPnsD9j+ya+oV6jD2P/EheVKHXPY/XMfISDmG9j+wwwTKw632P2BtTtzI0vY/QxqNPsv09j+23WwSMRP3Pw4+oT1HLfc/ACMAO0VC9z+5rbh9UlH3PzoRrjKKWfc/5m2ryQFa9z9ONyfNzFH3PxLbPCkDQPc/KLKjgsYj9z+q8MhyRvz2P2tZ4aTGyPY/MLmMAaKI9j+FPcNRTzv2PxEnLLZk4PU/CNKmepp39T8r3xqVzQD1P8rsz1UBfPQ/2JxwiWDp8z87dX7uPUnzP3t4spcTnPI/TtrOW4Pi8T+kReEFVB3xP1DqFoZwTfA/RArnj8nn7j9YJpuytSPtP6eqIdQwUes/NcEpuvRy6T/0mA2r4IvnP/BgCuPznuU/Uj3QcEKv4z/ODD7y7L/hPwRDT6wuqN8/fkvxHMTd2z/+pG1RuSbYP7rBF+gDidQ/EKkDglsK0T/IkczKVGDLP5wJHKMF/8Q/iNZn9Tr0vT+IHUUSHLSyPzD6p7BfmaA/gFmWsoZRc7+waPSyxYyjv1CNCVOGXrG/vBbvfQz3t784v13gvIu9v3Cw47FADcG/aJHpCr/Rwr8A7xDYcBTEv+SOat9z18S/MlCWHdUdxb+31Vcji+vEv970gjtjRcS/UhnlEfIww7++bVggf7TBvxS8LB/yrb+/MIMmNro/u7+i8TKXWS62vziP3GmuirC/PDcYtqnMpL+QtnVugpyOvxBpw0ED14g/P1mXgsOjpD/LlHsqCr6xP3gKZsrHS7k/pIVdVL1zwD/N82KHyD7EPx24zlpN/cc/S/oIq7alyz8HozOpnC7PPxozI4dqR9E/7QDOAMLe0j9Q9BAjEVnUP/exCWhMstU/zN9HbqTm1j8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"UFDrIjhj1j9qcluefg7XPztcBnB/xtc/dqkrjbSH2D8NR31zc07ZPxCef+n3Fto/pjT312/d2j+2j+YDDJ7bPz6edkwFVdw/mGPEdKr+3D9J/rCXbJfdP5yHyPTfG94/mt0Qzc+I3j+cq0zkOdvePw//J7RXEN8/bi+Viakl3z8hPjOQ7BjfP0ZSSmkl6N4/xsBKfKCR3j+yz4kl6xPeP/y0WsLabd0/spsAKIKe3D9xOeFfN6XbPwSEmd+Igdo/jCuWTD8z2T9Fk/b6V7rXP7D2RkACF9Y/mpZFXJpJ1D+wT9fgqlLSPzTiPbPlMtA/cRNlhkrWyz+DeLDU0/jGP7RcEPOxz8E/Z6TlCwi7uD909KGKo5SqP0Dckn3bOnU/fJXcKJlDpr+2Y5U1Yg64v1zLVjjMtMK/37hviBaVyb/1kljIgVHQv487KCeQ7NO/wv8sU7yY17/ii+T91VLbv22T4KFpF9+/WNhkM2Nx4b/uCWBDfljjv5bXm3/tPuW/Bm2QQnwi57+LNkHN1wDpvz7SM/iU1+q/EbJo6zKk7L8eZqEfHmTuv1jZFHBbCvC/E/75mKvZ8L+sye9TrZ7xv6rX1pkRWPK/7xPwZ5IE878lbiKI9qLzv8g+nYsVMvS/itKM/92w9L8wEk8rWR71v6ywovKvefW//XIEmS/C9b/YtwdETvf1v2Q0TyeuGPa/i67EbiEm9r8usd5irB/2v8zPdJ+HBfa/3vb5dyHY9b9CtvGCHZj1v3yUfidURvW/AVcB69Dj9L/yFPe6z3H0vy71eFm58fO/nv0lAx5l87/8SVnnsM3yvxEsfbdBLfK/yuGtKLWF8b8kxaEK/tjwv021IyUVKfC/CpMcwePv7r8hNmG+Ao/tv+zPL9Q+M+y/M7kxOx3g6r/lIwwi4pjpv/KzOPmEYOi/9uTQtqU5579U3grcgibmv/b9Is/yKOW/OdbJWV9C5L+Xp6UDw3Pjv29EW5upveK/T7nwwjIg4r91yoyIFZvhv8qvFJ6pLeG/NZw4Fu7W4L865UonlZXgv1LzWXkQaOC/XGiKx5xM4L9Pd1vdUUHgvyTvx44uROC/y2ts/ShT4L/Xs/kDO2zgv9BtgGFvjeC/rKIYz+204L/uS92fBuHgv57LMwg6EOG/PEb76D9B4b9GEXSNDnPhv+yQ1MPbpOG/6yqX9R3W4b+q8z+BjQbiv9SGzgIgNuK/KlqqgANl4r/xSCpxmZPiv52ZjIlswuK/EtlX6Cry4r/a2T26mSPjv30aYIGMV+O/jBh+q9mO47+bpFXnT8rjv/5t58OsCuS/POBWm5JQ5L966qfOgJzkvxczX3XL7uS/mE43M5ZH5b/tBPVb0KblvwCa+eMwDOa/PmlPITd35r9w8sGpKefmv/SqnEIbW+e/ExNtI+7R57+cZa6SWUrov8vwUWTxwui/oMMyDDA66b+apHXgfa7pv/A+VeE9Huq/izgDAteH6r/6GgUTwOnqvwQDr7GLQuu/HN7pEfKQ67+pXEBr29Prv5LLz8ZqCuy/vPhXUAU07L+HawAzWFDsv8H72NJhX+y/zUrfT3Jh7L9I0NwELlfsv760xoGPQey/6CDfd+Qh7L8Qvp/oyfnrv+LqY50ny+u/chs65iaY678+LLUfK2Prv7NXT2jFLuu/xhdCLKr96r8jh8GbotLqv1MtVbJ+sOq/0k6uqwWa6r9FWy5v6pHqv2bVHxK2muq/Bpuirb+26r+LfPHZGejqv3nDjKiHMOu/JIAV226R67/60JByzwvsv3w9+MQ5oOy/X1PIT8dO7b9WoYSIFxfuv7OSJOhL+O6/SMHbgAnx77+ilestvX/wv9VrA2upEPG/aNQ7A+yp8b/oPyby9Enyv73t83cH7/K/nrUNbECX879b4zZUnUD0v0UomakF6fS/TLBfOFKO9b9+LtWUVi72v3xJNsTqxva/lcbhY/NV978iATFRa9n3v9jxqvlrT/i/5ZuPQjW2+L9bQSyYNQz5vwJucsAPUPm/JAdUc6GA+b8FVM9GBp35v2hHQyWdpPm/huxUVQmX+b/dGggoNHT5vyB3BaVMPPm/Cg5EbMbv+L/Yw7eCVo/4v+cZHxbxG/i/VZOP38OW979kOEO8MAH3vwOuInPIXPa/5i0qhEGr9b9uaoPLc+70v/lK5mZOKPS/r7cPQ9Ba87+0AEGxAIjyv6CssOzmsfG/nO+pkYLa8L/eEGtjxAPwvyzaDrEOX+6/FtxSvBW/7L/YjXEP2irrv9F9i1RMpem/8GlemQox6L88YbJUWdDmv35RQ2UhheW/bnfkjexQ5L/XURI45jTjv6TLr2PcMeK/1oEjokNI4b+SUir4Onjgv4WveXMlg9+/vilU0KRH3r+aQr7Khjzdv4kFDb3tX9y/qA3unqGv27/G+9ZqJCnbvxJsMEfDydq/lXYUn6yO2r9+azibAXXavy2ALF7oedq/3hnBjpya2r90bvK9gdTavxR05ngqJdu/ndskLWqK27+GmkzJWgLcvyalocNni9y/32rcF04k3b+waMyzIMzdv3I0Se5Ngt6/ori6J5ZG37/wQYBbhwzgv7pLr0AMfeC/0rLRoi314L8fGvE3XnXhv5S1l2kq/uG/p9fPjDGQ4r+QR+zBIyzjv0NJfOe30uO/tYOrFKeE5L8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"X5j0pKqj579VP+8ufP/nv/iIjLycUOi/OPn6xfSV6L8WRR4Eps7ov9AWp+sM+ui/5ktPVcQX6b+NGY83qCfpv4Idq4jWKem/+GwLi7Ae6b+vk1LI1wbpv0zT1+Er4+i/FT3TA8i06L+5pFyF/Xzov3HSLVROPei/4nAiXmf3579OMWiiGK3nv19+bilOYOe/Uvb30QcT57+s5ih7UcfmvxDx/YM6f+a/thVaI8085r8DghgaBwLmv7rerHnR0OW/WjH+APqq5b8TZGX/KpLlv49oI+flh+W/hnSc+H2N5b/kx8bSEaTlv2z2zDyIzOW/jDVbfo0H5r8P1ygKjVXmv7Afdoqytua/Q6DIqeUq57+V8IcryrHnv9wYNdi+Sui/sV4GAd306L+DvfAn+K7pv/HjqpOfd+q/2ZzPXB5N678xXBzCfS3svxSMLkuGFu2/Eg9Yl8AF7r+Pxeblevjuv1iCKcDI6++/2UFa4ERu8L+qW+PEtePwv652vnp3VPG/Ki5Rabe+8b+pPZugkiDyv+SuhA8ZePK/IZV/plLD8r+y66OeQgDzv25dgU3tLPO/WKtx0lxH87+cDacOp03zv4iEotPzPfO/zhzqC4MW8781aJoCs9Xyv6DwmvEHevK/njM67zEC8r90sJ1rE23xv+CV6jnIufC/kG/7TFbP77+MYSeIteztv7FZa4x/y+u/xQ2eox5s6b8GXJWTn8/mv4DA6Xmy9+O/BHmTea/m4L/OnZPIKT/bv/5SDHMITNS/vHe2ifX4yb+gvevisGi1v/h+4C4KgaQ/esMxb2RtxT/qgvqW6gzTPwJSpSV5hds/+1D14DsJ4j+Okaqby1LmP+SfnWYmmOo/nEz8Q//R7j/jrx7njHzxP316XAowg/M/TtIKPH159T/Wijb2Mlz3PwHPaI9DKPk/Dp80C+Da+j+SFbYbf3H8P1ei3k3l6f0/aa6SSStC/z84vkoCYTwAQD5vDFw7xgBA0M0Bqzk+AUBoDIw0IKQBQJY663nh9wFA9BumuJw5AkDanDCWnGkCQAgJjaBTiAJARpvkCVqWAkBvNrQhaZQCQIofMDNYgwJAT4L7GBdkAkCCeXx7qjcCQFCX4ssm/wFAdy00gKu7AUDUVsNZXm4BQNEHbuRmGAFAdlBhMeq6AECExLmpBlcAQAKpiJah2/8/FxjFzJ4A/z/9+JFt8h7+P5BcgEtlOP0/m/9Lc5dO/D90q8Kz/mL7P8WDmXDkdvo/7mjKyGWL+T/h5Bu8c6H4P/7bF+PVufc/CksTOivV9j+8ZZdZ7vP1P7xe0dd4FvU/uA6J7wc99D+ujEYvwGfzP9uW3FqzlvI/iouhoOTJ8T+A0ooSTgHxPz6/My/lPPA/YWFKhD757j/HA5W464DtP4NWkpvUEOw/Er03XxOp6j+cBiuE20npP1YW/wKB8+c/FKtcLXmm5j/9vrucXGPlP6OBcA3mKuQ/xODRI/H94j8qSc8deN3hP68iMFeOyuA/VjGrNrqM3z9rCdLaNaTdP9eUlPoM3ts/TZ1OcL082j9ubMNWtcLYP3FOVlNCctc/OZ3FEIBN1j9wjsAZS1bVP3OCaiEujtQ/EJYwX1b20z8HAxzpgo/TP5t5PBT7WdM/CZaKDIdV0z8vG5oaYYHTP//wq/E63NM/HpNmkDBk1D/yaxR/zhbVPzN+0RYR8dU/iCBRW2rv1j8d8X+Bxg3YPx4ySVaZR9k/46AKYuiX2j/c5kCaU/nbP5EuNzAsZt0/YjFUy37Y3j8oKHK1FCXgP+2SpRt12uA/mv+cDjuJ4T8Z7KpTRC7iPzd1Rmh8xuI/eqmgfOZO4z/mwoHNpMTjP4cxh4gCJeQ/4mcOhnpt5D8+JjHtvpvkP2Jxncu/reQ/pQ/qu6+h5D9IEK8dCXbkPzH+zi2QKeQ/DVxmGVe74z9kv1OuvirjP6gS4ld2d+I/GYscZHyh4T8I8j3cHKngPwfUT/jcHd8/hhiRNqGn3D+XFD+cz/HZP/JakmQz/9Y/NoxVAhHT0z9s4VEeGnHQP/hbCrXRusk/dM0hveM4wj84LJQF3cu0P+Cd/wkxYJI/0Mf6sCkpqL9gP5okOCS9vziuZEw2QMe/CoKRFZYE0L9YXONns3DUv2wirSmg3ti/pOlsu4ZI3b8KCqOCTNTgv+msz0eM/OK/ClwH3y8a5b8OKsLmcSrnv74iLcGhKum/mHeA1SMY678SY0iRd/Dsv7qg8Kc5se6/GjCAwhMs8L9PbtORkfHwvwKKu6QbqPG/M6zlb8xO8r/SpOG+1uTyvw5Fws2GafO/olZpP0Pc87+01W2GkDz0vyi5h6kRivS/5l13i4nE9L9xxeih3ev0v+K0BJUWAPW/C8fCQ2EB9b/ymkB8EPD0vzqAbX2dzPS/0TymAKiX9L9U7rS891H0v2Anxpp6/PO/tOHZvUSY87/0PofzjybzvwEPUqW5qPK/t8lrcEEg8r+hYg4Uxo7xvwr5K6UD9vC/IdRP985X8L+KrPTjJWzvv9fiNVSYJe6/v+74qQfg7L/glzTOl5/rvyonv6VyaOq/cLTg0L0+6b+6MsQOkCbovxaX7CvmI+e/Jxa1+pc65r/TLs9GTm7lv9m2Gjt2wuS/OzaQLjo65L8/FXludtjjvzzNBUSwn+O/vlQDWRCS478=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"gIWOwsn+jD8AkiLuiqFsPwDMqKBEKVm/APyMWpZEUL8AkBcit410PwBfj/jVvJA/AD48fC7KoD8A6eVZnbWrP5Ahb1b/fbQ/EMX+F8A5vD8YQLb6aXvCP0jrxCvxTcc/0Ifys86GzD8QUdsfxQvRP6gizyt7+NM/dJ/YmqQB1z/WPLALKx/aPzCEFXjQSN0/mjwSliE74D+0+wvvm8/hP2JQkty6XeM/kj8mBHjh5D95uIYf61bmP2S7duNUuuc/2u83rygI6T9qUAltEz3qPzK1K9kHVus/NZbyxEFQ7D+mmAhzUintP1U8Gwwj3+0/+ZJ3fPtv7j/bMWA0iNruPwFxwGnaHe8/QtBU5m057z/a2yMdKC3vP0sUTnxX+e4/STjOK7Se7j8ipa/8WR7uP4/noFnIee0/aFgj9Niy7D+5R5Wvu8vrP4DUODTvxuo/M54yDjan6T+r1Y8GkG/oP7i2lWEtI+c/3xu8+WPF5T+VkQtFplnkP2P8I45y4+I/UKQdp0pm4T+8d2whTsvfPzCTsPTOydw/+0vVx5nO2T9/d3bz0t/WP7qWlUosA9Q/MOcmydg90T/UZtHx6CjNP5hc8kvuFcg/ccrJU1RJwz+OTLVPbJC9P3iSSE1dLLU/SPcpqEHVqj+wHJdjCTGZPwDygg7vWUi/gIS10MtEmL8QPFq66Lmmv5io2m5PHrC/MOQglAVitL8gOPZJ+ja4v4A2+pnjrbu/yPpr1/PYvr+sG8TMx+XAv9CIjFzwTMK/IBA6dTqsw7+0jKag8g3Fv1zoAZg3fMa/BKvjnMcAyL/M/KxZ3aTJvwCjaMP3cMu/bHT2tLZszb/Idgxgvp7Pv3hZwdtHBtG/HEcFVjZd0r+QXSDIpNXTvxig7q5bcNW/rO4yWnAt17/2EnvpPgzZvzKYmeJrC9u/TmkhROgo3b98XhjN9mHfv46AccOa2eC/1CzhnlIM4r8cfNXj20bjvxDCI5KwhuS/ZMIfWxHJ5b9T9pEEDwvnv2FAihmUSei/Q1kbtm2B6b/ayngTVa/qvxYiZhL4z+u/1K7afAXg7L9VUYyHMtztv8Se+h1Iwe6/RgchNyiM77/W0TIE6xzwvzBl50rAY/C/9VXUwkKZ8L/abFNmPbzwv2sinqOYy/C/YkWW/13G8L8gnxnxuKvwv05JM075evC/ffR6yJMz8L+ygbFvRqrvvwuUAanRvu6/luzr7Zik7b/ETKuRt1vsvyc0hK6U5Oq/G/fYa+A/6b8LcuVgkW7nv3EuNyvjceW/EiUXrFBL479Tcl1Fkvzgv65sC/MwD92/5KQwlhHd17/N2U+8a2fSv+R9y7x5Zsm/umvdpi0Xu78wCAL1YZOEv0JJlPVZqrY/8m+EXc9DyD+/j1u2UbvSP5Z3Xaa7cNk/INkH5v8d4D+07ePde4vjP7beLFDC/eY/ArGwsstx6j83Yj5FnuTtPyYUhXenqfA/lb+Sq4Nd8j9Eo6puhAz0P1mzrbdWtfU/bIX+FbZW9z8GytK3be/4P3B+GZ5Yfvo/RBgTiGMC/D//I4u5jHr9P7xg0ZTk5f4/I2K5WschAEB2lvC8YMkAQKhFqkJjaQFAxrvsdn0BAkBNKBeZZ5ECQPx/cXfjGANAZteqm7yXA0CNUm35xw0EQK2vJf/jegRADldWb/jeBEAQUu3t9TkFQLkZkT3WiwVAjqCye5vUBUBcKIp5UBQGQD7dj1gHSwZA6Lc6k9p4BkCX/1p9650GQAQtvhViugZAtGHZiWzOBkBsXfSoPtoGQCC8OOsQ3gZAKLhGEyDaBkDGqA+NrM4GQCL58vX4uwZAS8amx0miBkD7Ody85IEGQHLdRT0PWwZA5C7eCw4uBkB1pWFeJPsFQGypnPmSwgVAOqYvQJeEBUDJii4ua0EFQMex8C5E+QRA6IWF3VKsBECwbOXcwloEQI33qHe6BARAVHYwqVqqA0D0CHMxv0sDQItZgMX+6AJA5ZNI/CuCAkBG3ClJVRcCQGAXRcWFqAFAnxHZd8Y1AUAxIonuHr8AQKBq52GWRABATC/3SmmM/z+kIrEAB4j+P/fH3AggfP0/IPZjRdZo/D8/2BRxVk77P0oQtI/ZLPo/wqjBOacE+T8XIdV9Ftb3P64USxWQofY/6gGYyY1n9T9emNtjnCj0P3Eeevla5fI/5vljGnqe8T/oELetu1TwP9MeyUnkEe4/oMte3fp36z+WNe7QlN3oP5wrM4+dROY/HoBx3BCv4z+hacpM8R7hP6Lp11qJLN0/otuZKBYu2D90GrnZdUbTP7jzlUvd8sw/RN7kfS+Vwz/gWeIRMfW0PwCRDD6jk4o/gEvMKbRlq79IU5+oKBG+v3zKseM54Ma/wOPZ+Sxdzr+Q70Joib7Sv/aCowA2H9a/CINMpkhQ2b+fuxt22FHcv1Z0FZNfJN+/mm/geFvk4L9VqftnBSDiv9wIxYXpReO/laBWFuFW5L8wwXol3VPlv8jbvobfPea/Ihej4PAV57+OCzI2Gd3nv5wy+uxYlOi/ezy+6Z486b9jf0Whv9bpv4ggiO5vY+q/8X6P8Dzj6r9nNd6AhFbrv7uGK+Nxveu/BJ44pPgX7L82OLWa0WXsvw9Axf14puy/6gSoEzDZ7L/Q1bqd+/zsv+w8ORuoEO2/BYJfyc4S7b8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"IKdk66W2o7/Q+JwKI9a0vxBiLWaYKb+/iJTiGEdrxL+MflVLM+/Iv6xtx96AIc2/9KPfh6SB0L9Q1IEt4krSv0JNa/sa7dO/utkI5Pdo1b9k4uJ3JL/Wvyi6E0dR8Ne/Xn9kHjX92L+UYL0ljubZv4SkxO0srdq/SYfCjvNR27+6l+534NXbv2ylKJIUOty/YhEl4dt/3L86Ch6Cr6jcv7Uq2VlBtty/E7OJxHmq3L/IDrO5fofcvwZf9ZO0T9y/eIme0rcF3L89HIs2Yazbv0s3UhK3Rtu/QjJ1LurX2r+/DzRDSWPav6flosUy7Nm/5rJi/Ah22b/vkdo4HwTZv0Q5wXSrmdi/2fRJs6852L96Q1/I7ubXv1Iqh5bWo9e/wEpP2nFy17++B7LTWVTXvxkePeuoSte/Xl9byvNV179fASZsQHbXv3/cNoACq9e/ffmQ7R7z178C60bd6kzYvxO/6aE4tti/5BZeuFws2b9M4FS0Q6zZv1CcdUN7Mtq/VPbvgkq72r+0FhYhykLbvwkQ2xP2xNu/cpgsV8s93L+Hw9xCXKncv2E/bmbuA92/dyyRZApK3b9M2YHUmnjdv9gAT1X4jN2/u8IGOvyE3b8rvlXsD1/dv7AXP3k2Gt2/RymiaxG23L83ZZI05TLcv9ItThWTkdu/gWNSlZnT2r90FkH1BfvZv80ofdhoCtm/uOhERcQE2L/ajf90eu3WvzIFy+s1yNW/liNdKNOY1L9XRwtARWPTvxAEVSCCK9K/B3dOwGD10L9OnjLdC4nPv7LiHBaTOM2/vCa3Zz//yr8Wv1AYEuLIv5qaMw7v5Ma/FdHMg5YKxb/YhiezeFTDvwCFhni1wsG/ODUXqghUwL9w3jd8nQu+v2DuIyoVqLu/8GscmuFyub/kNMqV/l63v3j90FAmXbW/GBNOyCZcs7/M0NNHI0mxv1DDghHdH66/sFGnjeQ2qb+QqLcFHayjvwA9t7FLqJq/oNlWvgMRiL9Ane7baWVzPxBCR4a+Spg/qAOaHBRJpz8Q1FUMi/uxPwhiGdjJJLk/lP/FpkiVwD9IIVDK/QnFP2TGfI5b8sk/CAlgbF9Ozz+VNuR1C47SP5ho7/3Gq9U/Es7l2WP92D84WWxr3n7cP8IN38qWFeA/Irw1fSj+4T9Whf+DqvXjP9KLdvEy+OU/chI+73EB6D98nTdUuwzqP6Xyo2oUFew/Kt8EJ0MV7j/CKiFP7gPwPxbgwKqr8/A/wtJG+g3X8T+ErqBkTKvyP3Zc+/qpbfM/OWfIMH8b9D9nwueIQ7L0P3b6iTmWL/U/yW4koEeR9T/lhObcYNX1PxK/5vIr+vU/TjztXTr+9T8R/UNAauD1P3A/vpftn/U/OiZ4/ks89T+o2WibZrX0Px8Q9dh5C/Q/wvPlgB0/8z/gJwdcRFHyPybsBHM6Q/E/FB9cy6EW8D8EdQuH3ZrtP2lz527E0+o/08YCygbd5z8ersRhNLzkP0DKIO9Kd+E/cC9pvE0p3D9sy/F+4zXVPzd3xno2RMw/ZIZlKBXwuz/A6tOY1BVnvxzQlwgvOb2/SitGVLmszL8Sxe7rszjVv9C1qtIm6Nu/+rOD5BMs4b9HW3hWdz7kv/2FCAXLJee/WEwwCx3d6b82B2tXB2Dsvw+coaW9qu6/xiAKgwpd8L/cPfTHxUXxv/jDS++mDvK/OypvXxy38r949qwX7j7zv3LV3RY8pvO/c8aG8Xzt87/6g9IoexX0v1JHrvlPH/S/51eQZWAM9L8WjLM6Vd7zv5DGK6sVl/O/jt6ggr84879WatAtnsXyv8qBaGQiQPK/LAVBYdmq8b+vRINQYgjxv7zjpHFlW/C/VfeSxBRN779ACP4u29jtv/5tsg8xX+y/GKOpVu/k6r9I2tkZpW7pv/CxkXOKAOi/EDAAJXCe5r+9kEKetkvlv2b+EpdDC+S/hAzW+nrf4r/Le7a9OsrhvywUFQDYzOC/T5fe/j7Q379dODANrTjev3gZ4fOC0ty/pfIOnlKc279Vm94dx5PavxhiLKm9tdm/nuI3WFf+2L8fIPi6F2nYv7gPGn/+8Ne/ciKsvqSQ17+wU4lAXELXv3g8YGdJANe/HoqvSYXE1r+C+dWDNInWvzSOgiylSNa/ZUy5vGb91b8dgToIXKLVv4D2Jd3TMtW/FLuV/JOq1L9kH8sK5wXUv46WI1SnQdO///MAJEJb0r93CWbGulDRvz7OcmqsINC/Xg+HAomUzb8CWNd4dJrKv873xHCXU8e/czXS0l3Bw78SanRqIsy/v/7A1ytvibe/wGp+7fSDrb8glxuCuPiVv3ChHQbI4pA/1irA85mxrD9WVqNr0de4P2ISxlmd1cE/IP2rDTpkxz8YoHQoexLNPw4MQZOdbdE/NgUI+Lpc1D/Ar+cdK1TXPwEk3NWaUdo/nDX8iNNS3T9iDgZi2SrgP1IaC9AXrOE/VZCJ+ygs4z9Ip+xnGKrkPzio1+T0JOY/EdynadCb5z+mH76Bug3pPw6drom+eeo/9NnNGuLe6z96TkInITztP25OPuBskO4/LC/I/qra7z9UiU2P2YzwPx3AkGgpJvE/g23Ts6S48T9v/RQep0PyP/Yts76HxvI//CkGbJtA8z8Wu1yhNrHzP/ZmI8mvF/Q/tUc96WBz9D8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"+sduoEtcAcBCy+B6+CkBwI3PL7UP7QDALF4hxuClAMAOpP860FQAwFPKbDWt9P+/Zi3FB/8t/7/xXmxjz1b+v1R3vMx3cP2/KudKHm18/L9KFnSdO3z7v6L+Uw6Dcfq/QrljpvFd+b8jsrMYP0P4v2TnPGQoI/e/xUtYa2j/9b+bs3xzttn0v1F5+mW+s/O/tytm9hyP8r/2mu31W23xv29nj/XsT/C/TMxn2Uxw7r/CCmc6gU7sv4MKM6akPOq/RPy9+5486L+wkLX6DlDmvzjU4apIeOS/9jwFB1a24r8W6jRe9grhvy80rmZE7d6/v7dMRhzz27/2RnxrXyfZvxCxJs6Fida/kR2MX54Y1L+YDZaDY9PRv76E/zSIcM+/xPtNxuyKy7++oo8gDvLHv3S2iVnbocS/RedljiaWwb+WIrkxrZW9v4htQtLvd7i/JAUxh6zLs7/UpCK3bBSvv1SJGrZNW6e/OPe2YRFioL8I2wlisUGUv7D8ubNvR4K/gJwXwJaiQz+w8iXI8weCP7go3sQ3EJA/sEMqfra9lT9wo2UgHgWaP1gOcwe73Jw/+FBOHvg4nj/Qgy3XCQ2eP1D0/hS4S5w/AHcyotPnmD+QMRnSlNWTP0DUPULKFIo/wK040Ov4cT/AprDWDFF3v4B6wyUY75G/QMZN5cbQn79wdQCq17mnvwADMu2hM7C/mB4OX/L0tL+oeB5FjRy6v5T535g1pb+/kKpfPWzEwr/020bcWeDFv0gVCXmzIsm/8trcKJOHzL/f8Fa0dQXQv4rL4qdP1NG/Emk7KUqu07+D5JvEYZHVv0xqkpuoe9e/QHcQpUlr2b88fzHEk17bv4xJEpb7U92/VcI3lh9K37+RabIG5J/gvxVtnGb0meG/BLAK6s6S4r8NIYnSEorjv/ieBiFvf+S/4g2BDZ9y5b8TqznFZGPmv9aNGWiGUee/3dxfIsk86L/YVyuS7CTpv9BJ2ZymCeq/lpmoHZ/q6r+Almzva8frv11dwbmPn+y/tqrruXRy7b9WQydpbj/uv2obvoK3Be+/r+WSRHHE778vwJqSUz3wv6x8YbWnk/C/zqqqpKbk8L8KMd29uy/xv7WJXXpMdPG/Clwlybux8b8KyaPDbOfxvyKO3JLEFPK/9bfhly058r93GUZhGVTyvyi+j84DZfK/c+wjHHVr8r8J5F2+A2fyv1BjLdRVV/K/lfb9RSM88r9zsPNGNhXyv9zBTTFs4vG/j6iXcLaj8b9hR7yiGVnxv1ewYTGuAvG/XOtdnZ+g8L8vDKziKzPwv16ZGldEde+/nYecXsVu7r+bCXN5uVPtvzzQvqQaJey/FMYOa/7j6r/5lwcMkZHpv4w782EUL+i//KvMsNy95r82D0NAUD/lvwB74/nitOO/NJwofBYg4r+xRnzdd4Lgv4JkrWc8u92/uDU0nFFm2r8/416YeQnXv6/LUeIKqNO/hVT0uWNF0L842rkKysnJvzN2FbXiE8O/uoXPdp3fuL/wfLFc+5Cnv8BqJkw/B3E/IDqZSZI8qz/oX04ZcNS5P/7FS29i08I/lFZ+ZNCEyD+yJSRU/fjNP4UT6VRfldE//KbFz6QK1D8H8YGlIVrWPzxd6eDigdg/CEIwTDWA2j/tDYjKqVPcP4CW6igX+90/PPfkEJx13z9y57COUGHgP0AJHcDr8OA/CDaGF5xp4T8qhbOxgMvhPz13zSHaFuI/1HVDogdM4j+RxQ+2g2viPzZwdXPhdeI/mrLCO8lr4j80eqG28k3iP1W2tMshHeI/UL4KKSHa4T/odCAdvYXhP9/D/R2+IOE/pXVvLOar4D+CHaGJ6CfgPwBytwbPKt8/+/3t+t/p3T8YtU7V6o3cP57PtV6gF9s/vAZ5bHKH2T9NNw1flt3XP/bbEYMDGtY/SFoS+HE81D8uV6aNYETSPxO+V1QaMdA/NhjCe3wDzD9tz8w2kmrHP8PVOYdAlcI/Tu5M/IgCuz98wTDhx1iwP5h0N3iepJQ/YFgGnUA/mr9if4H+uNSyv7nujCP4pr+/i9VfgUWDxr9JG3s23HjNv0FErFg2WdK/R2xOwIkW1r+esfVKZPLZv6Yk+8wi6t2/zIuB2ED94L+6xlZkzA/jv96tTnRuKuW/GPqejJFK57+WdpHxVG3pv4KvoqeRj+u/rS4NR+Kt7b8WFpFLrcTvv6JpmdIV6PC/V6IXcjzm8b+w9cxoztryv/YHeMfMw/O/Pg2QCT2f9L/Hd3DbL2v1vxxrSyPIJfa/TcGNoEHN9r9WnA3X91/3vyIgwIZr3Pe/tNsM4EhB+L9TeuVTa434v6B0w6Piv/i/MeSPKfXX+L9v/RmRItX4v7SQUiolt/i/JmnKkfJ9+L/RJGyKuin4v8LUVY3muve/nE/U6xYy979McPJUIJD2v74uOgkI1vW/Ruif0f8E9b/Ie/XCYB70v6oaLO6mI/O/Jha4mmsW8r8InEI+X/jwv1RqTjiJlu+/1ShDNNYh7b8ASyh7UJbqv6t95Yam9+e/bPgZRn9J5b+SfaUKcY/ivx1kXVnxmd+/8MpYUuIK2r8pbVqkGXjUv8qAbwZCz82/k8aLKjS+wr8wpHgc1R2vv8A0iXbWW5g/9A1GLwZkuz/qKVjIgiTIP0ZF8zUgLtE/Vt/s1rYp1j8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"8mrenEFf8j/8FdlKN9LxPzrbZwayPfE/f1SVF5mh8D8XpKnLtPvvP8jzZp7VpO4/uF2WUpc+7T/DwprKFcnrPzhOfvqLROo/le8HRFmx6D+uy47JBBDnP4X+QhE/YeU/jCFccOal4z80pfKOBd/hP5qIPW3VDeA/M/ju3Xln3D/ldTYJm6TYP1RyFSyC1tQ/Nk959+sA0T+b2HmCqk/KPxCwciXknsI/XHZFGGvwtT9wgl/gdySbP9hpyigSTKC/MJQtvPfKtr8wIXT55YnCv1IdivGJd8m/7QCkkvwS0L/tgHhdl0bTv8khrBfQUta//AAvziU02b91OEmkZufbv8+fysOxad6/OBhY9T1c4L9I38g9yWjhv59zczyNWeK/aIqn48Yt47836cGm3eTjvw/yOORffuS/8NzwJgH65L8GZtB+llflv2tGA3gUl+W/X4JhB4u45b+NhbULIrzlvy4slH4XouW/TmGwXLtq5b91xR8hbhblvxZZEcGdpeS/oEImu8UY5L9iD88kbXDjv/CpafYkreK/3QJHzYrP4b87jGNwR9jgv55eLjcgkN+/Tl8vn08/3b8cxzhrwb/av6hvo7g9E9i/tBW2jK471b9EkygvKjvSv3RsGVjgJ86/FAYVMuGQx79kDdx7lLbAv6BHo4U6PbO/8HonBx14kr8gVhNyNsekP9BsHsAUurk/OPmDh42rxD+sPEaf25XMPzj0cXgYStI/YSpgvURP1j+y9lHIV1baP1YCCTIlW94/gzZMubss4T+iljx8iibjPwDcDKXnGOU/PvZWxMIB5z9Bv5fUF9/oP4DQ0a70ruo/rnyc23tv7D9IrToz6R7uPwII7j+Wu+8/Au9qr/6h8D+Qz5AfXlvxPzJfJORLCfI/V/MXFD+r8j9VQxMixUDzP2ayBbSAyfM/ZwQmfCxF9D9la+YumrP0PzgRADezFPU/ZZh8BXlo9T8Cp8azA6/1P/BWEeyC6PU/hd/uLjwV9j/owVz+ijX2Px/lV5ffSfY/Fersb71S9j+f7d1pu1D2P1LNwoGARPY/ZP1MaMQu9j9VtX/STBD2P/5tRzzs6fU/ewF7FYC89T+/QSxn74j1P8KL3ckoUPU/qjbsviAT9T8mIoVQz9L0P4BgwrwukPQ/LJuNOjlM9D8ZPap55wf0PyTbwBIuxPM/5LzPXvyB8z8Q3PgGOkLzP2iw4S3GBfM/EZ0V2XTN8j/vuynEDZryPyI+yFFLbPI/T7au1NhE8j8W+Kq8USTyPx6fzKFAC/I/w30mQR768T/Wu5jrUfHxP46TKsgv8fE/8ZB64/n58T93m0Qo4AvyP891Z7v/JvI/ck+hIGVL8j8Y80wBC3nyP24hUgDdr/I/+ttPZrfv8j+f13obaDjzP3QfvCyxifM/7vm5Q0jj8z9qrLDm2UT0P+zE/vkIrvQ/JMCcJHEe9T/4zdOMp5X1P+xlzf07E/Y/yLfkMbqW9j+VnxU+qh/3P3zHifiRrfc/RA/g/fQ/+D+Sq4CYVdb4P67O7t80cPk/552L4hIN+j+gSWP9bqz6Px9AzA3HTfs/t8XRPJjw+z9wptmBXpT8PwTebs+SOP0//2drq63c/T+UFgfiI4D+P/hh3bxnIv8/PJeGM+jC/z+5rp6FiDAAQPTwVPYkfgBA1vxVcPvJAEASZmMnvBMBQOJsAmcVWwFASx1R8LOfAUA2phDtQuEBQCzlZ7tsHwJAnPNVy9pZAkAqrO4rNpACQAR+qYkowgJAoKSS8lvvAkD0hsMtfBcDQP+cfic3OgNAcGJ2dj1XA0DwUW41Q24DQJHBpOUAfwNAYnfGyjOJA0Bus52znowDQFggdcIKiQNABgTIzkd+A0DLxg/4LGwDQI7ZdPOYUgNAwbv3xHIxA0DyvueAqQgDQJgd8qA02AJA9iGpeRSgAkAYJVqKUWACQEJCihz9GAJA1GimLTDKAUA+vq4sDHQBQBxaz/K5FgFAUDp51GmyAEDtLmnqUkcAQAA0gLNlq/8/drmAB5u7/j+Mi6FX2L/9P0oVnI27uPw/K/0useum+z9Kp5i6GYv6Pw9FE6r+Zfk/ryrQ1Vs4+D9eXRrx+gL3PwQLxSqsxvU/8XpaukeE9D9+DexgrDzzP8oLKCjA8PE/3jnF626h8D96xOZ3V5/uPzhIYq7e+Os/i/UYB3BR6T+4jQ32EqvmP7RSItLXB+Q/cjeh89Rp4T9sMx3KTKbdPxByTpnVi9g/vM6QTn+I0z+YxpJ8+kDNP3iJncbmr8M/wAxs7r3LtD+AolyykauGP8BxgFX956y/eH5GPFMCv78895kqFGTHv9jbgoiX3M6/qBElS4/y0r/Q+Ts1YDzWv3y2O9KgSdm/KP+FYJIY3L8Aj+kR2Kfevy+CtEc+e+C/2dxt7/eB4b+103kHBWjiv6wGv2ODLeO/nPselMPS478+u0QuRFjkv9c2S6+xvuS/Wyg3zOAG5b9G5wiFzTHlv9+XdCmXQOW/mRbZE3o05b8Rq8fLzg7lv3NQmMUE0eS/tWWvwZ585L/q4URlMBPkvzWHgHpZluO/+Ro838UH47+YFuqbKGniv0ZkSk88vOG/6q+ic8AC4b96GTZydz7gvx6iO/9S4t6/fgUeRj053b8XNopGR4Xbv1alEiMLytm/k9bVuScL2L8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"/K5vopXIAkArIdUYuA0DQN3weQrORgNAH8tQCJdzA0CfKZVs9pMDQOi3nLnypwNAGp7CCLWvA0C3jfimh6sDQEvi3j3UmwNAh7ISQiGBA0AkGc4CEFwDQK0RuV1YLQNAAFzu1cb1AkDtrcqtN7YCQJSn/n2TbwJA0gqn18siAkCeOXVc1tABQDbtaGSpegFAiO8EQjghAUB9Q09Bb8UAQAAYnbMwaABAli34O1EKAEBma6DNK1n/Pw5jTWVin/4/0vyZRYLo/T86h9KEnTX9P5uF4P+Wh/w/IExREyXf+z/kpzUAzzz7Pwql1a/uoPo/sP5gKbML+j+6868SIn35P4yLM0Uc9fg/eny9LWFz+D/odtOYk/f3P0wv2kk+gfc/donVcNoP9z+ict0Y1KL2P1Yg6Q2QOfY/uA4/TXLT9T/pP1Nf4m/1P7wxYQ1QDvU/1o8X+Dmu9D/8d8uOL0/0Pys/oUXW8PM/QRwFt+uS8z9yZiJNSDXzP0hoOO/g1/I/Xj20X8h68j88arw0Lh7yPzpwBMVfwvE/8JT6w8Zn8T91dXJr5g7xP4l0pVdbuPA/qIZ3QNdk8D+aLHmxHhXwPw2W23EKlO8/nPiqzdQI7z8rnl2CaoruPzn5kEijGu4//svHFle77T9jqGHJVW7tP1eFaEVkNe0/SqhVDDES7T+EgeJwTwbtP5mCuEsyE+0/DOKRayY67T9aYhHdTXztPyRjAUWc2u0/Ypl03tBV7j9+dflweO7uP2W9YE7lpO8/4r22K5k88D+Qpuehn7XwP9Z0b6FXPfE/bpiggHXT8T98WkR4j3fyP6UlSKAeKfM/9mV1XH7n8z+SRJx57rH0P9j4AQOTh/U/mz3JyXVn9j+JwILah1D3P9bKRmmiQfg/3onPPIk5+T/ZwS6n7Db6P5ShcMlqOPs/eIE5QZM8/D8v0yxi6EH9P9ZcjRTjRv4/4kpiK/VJ/z/Cor0XxiQAQI3ysrEKogBA/LmGFQAcAUC0GLrn4JEBQPjL3QDsAgJApzsAX2ZuAkCjs9Z1nNMCQMiJgebjMQNAApvNQZyIA0C/ylakMNcDQOh+dQ4ZHQRAyOaBW9pZBEAMXQ/FB40EQOdU60hDtgRAzwExtT3VBEDiDO8Gt+kEQATvX0h+8wRAegL4kHHyBEB4J8ptfeYEQIfesbGczwRAKh9GcNetBECujEP7QoEEQHAdgWMASgRAWgNkfjwIBEDyOIOGLrwDQEQCi6MXZgNACgQwRUIGA0BSobRuAZ0CQJXXAGWwKgJAfKjNr7GvAUAgoytDbywBQNBpEVtaoQBAbvWzk+oOAECcqcpoPev+P76CqYr4q/0/hBoHfh5h/D+I91YX1gv7PxV3PhFTrfk/kcYJ5tdG+D9KBAEetNn2P1QDOiNFZ/U/LF8fDPXw8z8pge/SOnjyP9wvgXOX/vA/26w/lisL7z+v0CUokB3sP5q74UKLN+k/RV2VK09c5j/DhUUgDY/jPwLvacLs0uA/qsvbbAlW3D94voItpjTXP/xZMYFnR9I/PGk7smEnyz/snpht9zzCP+iw7UYzsbM/gIrOEsURkD+Awzrmnv2kv1BnuOO0zbe/WPANURHwwb8I3DkNgVjHvxCgui0rH8y/VEeil1Mi0L/AZ2cKl+XRv7yTo19IW9O/KDAmHB+G1L9YBZ5wlmnVvxTbUgfqCda/gDTekQRs1r+gdae4epXWv0AVIdpwjNa/eCYP05RX1r80JEz7Av7Vv3zBTn8zh9W/tsfO0un61L9cbILsF2HUvxb3i+XNwdO/9Gk/3SAl0782KMn2F5PSv0bLG4OWE9K/yuasAkeu0b8Yond2iGrRv77ttiJfT9G/LjghvWFj0b+YAlViqazRv5LKogzHMNK/Gi28+LP00r9QcaAjyvzTvyycgKS5TNW/6BLK0X/n1r/naRT6Y8/Yv3dy4/HvBdu/FI0+Y+2L3b/0FY3+sjDgv10NvdrQwuG/4iYdA5N7478GqrUU3lnlv9L/fTw6XOe/FpVhctSA6b/ijH+PhMXrvx57YnrQJ+6/lj4DXnhS8L9opr7H65zxv1QobKOb8fK/F/oz3cRO9L8iSKx0jLL1v4wSpewCG/e/Hf5VoCmG+L+M9E4K+PH5v+FacbNfXPu/SqxjX1HD/L8uf9EmwyT+vx7nXsW0fv+/Qjr5LppnAMASxQDUMQoBwLQ1CGM+pgHAFdZt5uo6AsAS2a9McscCwAwPWHEhSwPAlVrHXVjFA8BpwVoEizUEwI1gyLZCmwTAgvK2Vx72BMDuIva00kUFwLwRLSAqigXAshlnngTDBcBiiZN/VvAFwDMW8bcnEgbAPy24zZIoBsD9WpfewjMGwHIx5mnyMwbAYNFvMmkpBsCMn15MehQGwAJW71eC9QXA2sXfIuXMBcB0HkLfC5sFwJyImg9jYAXA2Nkj/FgdBcAkq2+UW9IEwB99p1zXfwTA5JbqAjYmBMCbtJFs3cUDwCegRAEvXwPABVdBV4fyAsDIpFoiPoACwGjj9ximCALABEKumA2MAcCKmyenvwoBwIAGjnIEhQDAneWHyUX2/78tVv0Yw9r+v7c9ezkRuP2/rs88ysWO/L8tyGJLf1/7vzR+v+/nKvq/gIMWVLjx+L/8jPV8ubT3v/pk+2rHdPa/JEiYdNIy9b8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"cITd4NMawL9kLzFjARrFv8ws3TYNV8q/kF18pWPQz7/8i2Os7cHSv9lfV8Vmt9W/NQExQQHH2L/8SI/G5O7bvz0qoBT4LN+/FxujXXM/4b+nsfCzEfHiv3o35YzzqeS/stLi351o5r818N5VeyvovxHe+m3h8Om/En8j6xK367+qIIWAQHztv3LatI2NPu+/hKEqZAl+8L9wMkWRcVnxvzrBU1mHMPK/WtOs1lMC87/PDCtd483zvy4eOstIkvS/gDZZTp5O9b9QcWzRCQL2v80AANS9q/a/8F8wK/1K97+abn8GHN/3vziyATaDZ/i/8CNDXLDj+L/WAuHxOFP5v1lUbhfLtfm/U0B47C0L+r8Hau0OQlP6v8NNZlgCjvq/8DBcvoK7+r88eldB8Nv6vzyx8oSO7/q/9NOVyrf2+r+UuA3T2fH6v/7kuoZz4fq/g8pklBPG+r8gdEwVVKD6vwgve6HYcPq/1KqQUko4+r/W7yN5Vff5v5oCb4Olrvm/0LPDgOJe+b9tI3NLrQj5v0Q+0eWdrPi/u8uedj9L+L8WJE9MD+X3v1aRrk96eve/FIUwbtsL978Ao2ziepn2v4Gyi52NI/a/uKwoZTSq9b9VQZmDfS31v2i1LdpkrfS/2l0F3NQp9L8iL3yoqKLzv3i2B7GuF/O/s6fOt6qI8r+sG4hoWPXxv+K2wuxuXfG/NDqvxKPA8L8timKBrh7wvxLwfpCW7u6/ttzBfH6U7b8XohKftS7sv1pLPkf6vOq/8od3Py0/6b9e++YNV7Xnv/1hpLSrH+a/I1wKro1+5L9hd5wbkNLiv8bGDCV6HOG/YIAQ8Yq63r9A1WOjOizbv80vjN++kNe/4bllYy7r0797amKh+D7Qv+ApoNe0H8m/ho7EdrLDwb9A0OuIyuS0vzDazzZHpZm/MFYYhP9inz+0JfKay861P1hZf7QJs8E/hvEYzPNFyD9sVWRf9ZbOPyAGZuOLTtI/O3rnn+An1T8YRIrzY9PXP+24TJhBTdo/gAPPPPaR3D/kla33VJ7ePyC4M7zGN+A/ELHT+pwB4T95WEPbrqvhP5ycxv82NeI/LhFfG6qd4j/fGRv+t+TiP0YYXmpLCuM/WOAZfYkO4z+sbhkm0vHiP5QlCua8tOI/cKKishZY4j8o/uWW4NzhP1HaB5FJROE/xw8Rc62P4D8c9eGUHYHfP8T2Juwksd0/DRKBLPay2z9CB+0+RIrZP5AsWBvqOtc/7PHwWNrI1D8k/TluFjjSPxDpb/9GGc8/6Iz3F/+UyT8MCxCoLevDP1jbywvsRrw/uOjltWOKsD/gqBHzSbuSP4CD6/kC+py/SKf6iy8xs7/g3gOCth2/vwR/utvEfMW/KEmB14tdy788ZtmDcZbQv3LsyWB6c9O/wv0jhjFE1r8+m5ZSHAfZv7Rd/+Dyutu/yEtmx5he3r/pLnRTi3jgv4onDLjKuOG/8EjZHqvv4r9Zl+301Rzkv6JeePb6P+W/ilrQd8tY5r9J5i+d+mbnv120wB43aui/XydKOy5i6b/XMowYhU7qv5yOvZ/dLuu/ut43xNAC7L9Oc2A99Mnsv0OUUhbXg+2/lpGP6QUw7r8i751sDM7uv9uzBc52Xe+/YEIy3tTd77/+2b1VXyfwv7k9pmXqV/C/f48sUWOA8L9dcOyuqaDwvxpTWdGmuPC/nLAx+U7I8L9V6y9Lo8/wv+M56nOyzvC/UW3ik5jF8L+/BV8ygbTwvxQWLSamm/C/pVE25VB78L8EUPkP2VPwv0PVzKOkJfC/xsRKyU3i778k/hEYvm3vv8qbJPut7u6/Li6ppkVm7r9ciU66u9Xtv4wtzWRTPu2/jhy3l1qh7L8STbxGIwDsv2hgXWEDXOu/UKK0hU626r8agKeIVhDqv5KTGVFma+m/mDVtyb/I6L/k078Qmynov8Cf0bAij+e/juOY3XT65r+wcI2ln2zmv7oSVSWi5uW/osY+iWtp5b96BYVW2fXkvzytZ0u6jOS/MhwLJ8su5L+u543SuNzjv5TRzccfl+O/HuatPYxe47+C4gBAejPjv8iEfcRVFuO/HvziNnoH47/gW3kQMwfjv6Bmk3K5FeO/KIJscTYz478UZbuxwF/jv47P34Bbm+O/eLUutvfl47+YXOQmcT/kv0Y/uByPp+S/kCrO/wEe5b9E0fbGZaLlvwZH0V09NOa//Nm+bPXS5r+qX5ME5H3nv5XVjDxFNOi/nO7bOkD16L+w/grT5L/pv8uPveUrk+q/TgOIPfpt67+SZangIE/sv969L0ReNe2/kTviUWAf7r8ukx74xgvvv5Il/nUl+e+/dPoBUQJz8L+ny9MYc+jwvyg6CM0iXPG/0ogIk07N8b8Qwzq7Mjvyv5ALMaINpfK/bksobh8K87/0q2B5rGnzv1Zfrtb9wvO/dE5lEWMV9L8QaoIhMmD0v9A/r0TKovS/igRbV5Lc9L+4wOJM/Az1v7UWpkWEM/W/HPmnPbFP9b8odh+mFmH1vxl+U4JTZ/W/JGhXoxRi9b/SZqFRE1H1vyN0iHQWNPW/Hjd83PIK9b+QWsTOi9X0v4kLmo3Sk/S/UTNWfMdF9L+7b1ZReuvzv11s3qwJhfO/MSVldaQS878AY1l2iZTyv+61hZ0IC/K/Iqk0oIJ28b8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"RB9Bvryy+T+U6D4tJQH5P3KruKRKQPg/LMskED5w9z8UQJ13EZH2PwQCmNPYovU/mk6JDq6l9D+uixf/sJnzP87zF54Kf/I/oFPIJe9V8T8+mNn0oB7wP3HZOYfjsu0/cEjQTIwN6z9BkducLk7oP/AmbLjodeU/wunFEAmG4j9ULIMFIQDfPw5xZXBoy9g/XGHgwrpx0j9A1BhHqO7HP/DH+bxZg7U/QHcaqnTLlL+g2ymh5RfAv5gAvhJMrs2/MJSN3Eyo1b9kcGygJHncv/IgkuyaoeG/zFOvTfH/5L8CTCnYOVTov2aA7BEUm+u/9twbpyLR7r9gGKHYiPnwvxNGgOnPfvK/1eZ4N9L287+kMlbKC2D1v2a59x4Mufa/IqZ1bnkA+L8qhc1eEzX5vwLgZcm1Vfq/tnoas1ph+7+QI1RIHVf8v4TCdvI5Nv2/YMJRIhH+/b//Za9FJ67+vxCQ4V8mRv+/Zhf+fd3F/7+JR855oBYAwH803GU1PgDAp+EM0cxZAMDB8/+kl2kAwHgJUmnYbQDArn3rAeJmAMA6k5HcFlUAwDybvznoOADAavJNw9QSAMBIORtizsb/v7KdPEFqVv+//HOv/7nV/r+Opz42Ckb+v2VuPNyxqP2/kPNwbBD//L9CeFseiEr8vw0nQlh7jPu/oJBKdEfG+r+O9S+bQfn5v/aUL76xJvm/Fw7NJM9P+L/f/FHDvHX3v10ZWaeFmfa/oQcl1hi89b+Edb1ESN70v3GD6hnEAPS/PYfotRsk879+mg2OuUjyv4ocpmXkbvG/oReOxL6W8L9bUH5QjoDvvziucLe01u2/2EsqQ2kv7L/ucO886onqv3EF10pA5ei/o6DKyUlA578od1G3v5nlv/ylnbRC8OO/gfMKXmNC4r/8C2Smro7gv2x356hwp92/BDbIl0wg2r8S2jL7d4XWv/xE/HXL1NK/nOCGwgYZzr8AGXgSo1bGv/B+rCLNwby/8MCTHszdqL/gZ4gCniaRPziotYJzY7U/UIZhtKdrwz80LgDipE3MP4IzO5WvqNI/wAOxGJQ31z+Ynw7SBs/bPzgwmw76NOA/5qAHyF2B4j/0hy2Jn8nkP8pIcWR7Cuc/uPq34H5A6T8omkNWF2jrP8P9J8+Yfe0/1zVJckp97z+hDuPmuLHwP0gAkUgulvE/jKEimTVq8j/9OwjKDSzzP8IsjXkI2vM/pJpqeo9y9D/0xeXQJvT0PxUQ1PpyXfU/EJefqDmt9T95pUI/ZeL1PzGVsZgH/PU/YuVEK1v59T8g+HyVxNn1P4zd9snTnPU/nn3SR0RC9T/QF7tb/sn0P/yrwZMVNPQ/SP906smA8z9g3IowhrDyP8T39XLfw/E/NiY0yJS78D9n67QnGDHvP6okwlSlt+w/IJ/XPTQN6j8KsKHYbTTnPzwnlkk8MOQ/ecimT8cD4T9mRGvL2GTbP746Xc56f9Q/CAsScdu9yj8sMeK73Cu4PwAVnAgtRpe/wsdFptMtwr8qeCFPQ9TQv9QTKNoCpNi/3CTjTto+4L+05drSeCzkv+cKQLSzFui/uilxN3j567/r0LqczdDvv4wJrMtuzPG/qTLzt/2m879P4iG7VHb1v5oRYzTPOPe/+3k5i+Xs+L8TUfjtLpH6vw3sh8hjJPy/LBdnDV6l/b9+HNIAGxP/vyZOBo1dNgDAzP03J8HYAMAw+CfQa3ABwIIurDgi/QHAW8bgebl+AsBpREKIFvUCwHpAORotYAPAdgKk1/6/A8C0o1asmRQEwMp2vRoXXgTAMuKfpJqcBMBjBeA8UNAEwKnp85Nr+QTACItc9iUYBcCYnV6gvSwFwLYN3D50NwXAdODC/I04BcD9o8l+UDAFwBDkSAsCHwXA6LunnegEBcBuY+bYSeIEwJQ6C9NptwTAv9gwuYuEBMD4FFMf8UkEwEpptTTaBwTAzhWb44W+A8COhsJLMm4DwJcQ2socFwPAmBmo+YK5AsAaJ4+rolUCwECMV/G66wHAvAUHiwx8AcAwKuFP2gYBwNY2myNqjADAPoMecgUNAMAi1hMt8hH/v+ftq/MsAf6/uHx5Hmfo/L+yWX6pVcj7v3I+ZEm3ofq/+Ia6ClR1+b/NSnvo/EP4v2ZByqCLDve/JIyx2ODV9b9ECIbu45r0v3WqrDOBXvO/zGE/ragh8r+lffR/TOXwv8YlS6y8VO+/iGJUHp7j7L+oh+HCFnnqv9/nXt/1Fui/haZm4/u+5b8vvMqh13Ljv1Je8OgiNOG/GDNEZ70I3r8QMQMz4cnZv9BfqytFrtW/Y7Vtxzu40b/ixnjhq9PLv5zUa5rGicS/9Apus7Eru7+s5iNSpemrv6Cc2LLfLne/2D7CtyaupD+4KFyLU2e1Pxzs9nv1vL8/VJ1k2gysxD/ADrjS5hzJPwhXRgr+Mc0/T0juN1x20D9QFg/7bSfSPzv2ffJJrdM/sYwzqzAJ1T8jVyo3kDzWPxUMobv8SNc/Ho4csTEw2D+InK4tD/TYPyu1gcCYltk/krxI+/IZ2j+PVXxhYIDaP3kXiSxDzNo/9B5R8hgA2z9zb+3meR7bP+vKZeQRKts/9ef0vaQl2z90e7oIBBTbP1270jAN+No/U4sTzqTU2j/UeS8pr6zaPxhLMaYLg9o/Rko3fopa2j8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"zqnOle7k5j9VyMAkUivoP4S5Ji6JXuk/QvzbHLJ96j+tVD1VC4jrPwIVxI7mfOw/jg8Zyalb7T/UbSdLwyPuP5LyC8Ki1O4/Ggs597Vt7z9r8zrdW+7vP5naFR/yKvA/2H63+8JR8D+ptiWWLmvwP5D+mW+zdvA/w3tqGMBz8D+jMYE1s2HwPx6OKY/bP/A/NlI2mXoN8D/4wzeqjJPvP+tdIkPa5+4/uB/w1zEW7j/s4bT/6RztPycNsK5j+us/Kg5SARmt6j9PkEHOpDPpP/sTkHzTjOc/T+HzZ6u35T91b4nhfLPjP6Tii5vof+E/aKJQzN053j+wv7n/7BXZP3lr33GoldM/Y+Dq+U13yz8IEDxywC2+P6Cva5VwmJA/MIpKCWgSt78Imdat/7DJv6dAPVbHKtS/QaIm8Cqz279sg7SBRrThv0DvXDGGoOW/OGW3fg6Z6b/XVBRaTZjtv/CL5As6zPC/Rv/XJMPJ8r9J3/6Os8H0v9n92hz1sPa/1PI0mXGU+L/DCdTEGmn6vxYXPfLxK/y/2GwhVQ/a/b84YSCdqXD/v4OnMAKOdgDAgP3vmnYmAcCxQhcp6sYBwG7FjhbfVgLAyiRo9GjVAsDyLNbzuUEDwNOsdNokmwPA0aJOxx3hA8CCvGRMOxMEwBD3WxA3MQTA8kMcfu06BMD2kaUuXjAEwJAbImarEQTAD9J8bRnfA8D2oDi1DZkDwPuTINcNQAPAaqLQJ77UAsCWd9MZ4FcCwM4uXFZRygHACqM/qwgtAcBa7sgFFYEAwPGNvK82j/+/+rNoiaYD/r8ibdtNDGL8vzVKokIXrfq/iiwWy47n+L+ftDY2TRT3vwPaut45NvW/M2m7CERQ87/C1tCIXWXxv4V0QjTp8O6/vIYOP94Y678vpv8xSkjnv3ItUTC1hOO/puH1vPCm37+dCoi+YnPYv6hSV2J5eNG/LziuFKl+xb/mwxh00kGxvwSjCtrRxZw/0ocoQTlAvj9PG459oOjJP9UREEih89E/XFnxnEqJ1j+XMcrgZ7HaP4igDrzgaN4/4nu/m7XW4D+40JdCwj7iPzcEn580bOM/hOtFQQdf5D/RfptxihflPzA3GVphluU/9Fn9nHfc5T99UOC3/urlPzY0v5Fjw+U/GffPKUpn5T/q2CphhNjkP5Ca7p0MGeQ/1Mtmdv4q4z+i9OojkRDiP2OrP3oQzOA/KS2Y37O/3j+6BpL8q5zbP2Hn703tM9g/jooLV2eK1D8atiIAEaXQP1oS/DPIEck/6ItLor91wD8QEtTLTgCuP0idFIr7Uoy/mDd4Ss+ftr+OBdnV3RXFv3kPZxHBDM+/EcmqcwqV1L9KUrE+mrHZv5LZzh6k1t6/o8xbTU//4b/RS6ai8JHkv3hUJ3VTIOe/ah/fZ4On6b9wuSVVgCTsv1pl1tc8lO6/aODpI9F58L+oMV0Fy5/xv5gf+3V9uvK/i7Cetl3I87/2+nlp5sf0v7Bgmpuct/W/kVd6gBKW9r/2Ounj7GH3vxx5Yo3nGfi/XUlIdti8+L9qDyoXtkn5v+RayFiav/m/emkkB8cd+r88NC8gqmP6v0blWljgkPq/NwaTyjel+r9uSxGPsqD6v+BOAJOGg/q/mGPT+iBO+r9EI5QOIgH6v5bpyoBenfm/c8rT19wj+b+olxGs0pX4v9GhTzqf9Pe/syCn08lB979yNR8l+n72v1CSKi70rfW/FtbLppDQ9L9WgtEnuOjzv8b0HSRb+PK/Lh/GEWsB8r9zqRwK1QXxv8CJavV5B/C/3MIPFlMQ7r8kAXGDNhPsv3iuB27XGuq/Kfg8sSsq6L8ejkNf4kPmv/5ceR5eauS/Z+UGkrCf4r/6jlHimuXgv+sRMXIZe96/pOHcz05R279mB6Nzg0/Yv+TqopjbdtW/TVAZh/7H0r8ijlAGKUPQv+RbinZ50Mu/MvL/Lqhtx78gNqYyrlzDv5z+AgsyOL+/aN2fMrdUuL+ihjpa6Quyv0yH90EVtqi/WOiOJZD/nL+Aj7YWuMeFvwCln0app3M/eEllZAtpkj88DnnKaZWdPxAnSvC3M6M/Uidc6kZqpj/ZTIAr6WeoP3zdbxpPJak/omjkgsWaqD8Eqxs2zsCmP6hkkZWakKM/iMfZZqYJnj94sj8xAzSSP4BBvJah9Gw/YGIYl7dji79gZfPLi9igv5ignAFUJay/ZFB8+y9YtL/gH9hb+jK7v8zVVdtTS8G/IsJ+kiY6xb9omHamPl3Jv6mhcpu2qs2/tKgYMcUL0b8mhtSe3EvTvwNGs2w4j9W/Zg/PJxjP179rE0zYggTavws8GiVfKNy/5O3/tpQz3r9i6TSwlA/gv4Mdge8w8uC/CvubU2++4b82OV5zXnHiv9t5au9YCOO/VkXLixKB47+wOX9Dotnjv2d3sCuNEOS/sGk18swk5L+vjWHU1RXkvwZ0lbOW4+O/WVTnSHyO479t1FDTbBfjvy10PKTDf+K/EZ4YSUnJ4b+HsM3MK/bgv+V8sPrwCOC/EY3NhNYI3r8G1FThUtfbvwW8XZ/Rg9m/5p2fHQkV179Pd/teyJHUv1qrBt/XANK/NuicALHRzr8YixXvSqDJvzKHo1hxecS/jIZ0ITXQvr8UCFnAOOy0v5BzdF38r6a/QN7NVhsOgb8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"4mgXiFuo0T/47VELZETQP7yHQuhhFs0/wJ0CV4j+yD+84kiaMkjEPwAxsoeL+L0/ADPigRBLsj9gL+bEF4SWP0ASYDfppJ+/yLnJ7GA0tr8MmqrgQ4/Cv37UnvbJQcq/SjszgG8P0b/eIJ0tfQnVv0lzxMcdBdm/vKUprVT43L/lmc7jnGzgvw5IDccNT+K/9k8aM9Ae5L+z4YPZc9flvyJi+qfRdOe/CH0Pchvz6L9W+Hpl507qvzKFjuk6heu/tYBB/pKT7L/NEoFg7Hftv2QOBGnIMO6/91wwujG97r8bkXgmuxzvv+k24ceCT++/l7/YiCtW778LtJFt3THvv/hXy4o95O6/0sGvkmZv7r+1lzhf4tXtv1DEZmidGu2/zMF4991A7L8+JwbsN0zrv3bXVXeAQOq/+H+fxL8h6b++dCblJfTnv+ZRtN78u+a/6kH60Jh95b+Y4OKKTj3kv1HIIXtj/+K/IzxpPQLI4b9YsPzJLpvgv8jbh8d0+d6/MKrjknDg3L+cCEH96fHav3Ln1jvYM9m/gFpP+n+r178RUt6sZl3Wv/BqTkdCTdW/dCN1QfJ91L90Q9TZdfHTv7hb0bbjqNO/qqt2GWqk07/R9dzeSOPTv0LULp3YY9S/0UsFoYcj1b8lY3wO5h7Wv1FCEGmoUde/3KHy47m22L/Sfg7fREjav4qA3iHI/9u/Z2iWpSXW3b8EB4Nuu8Pfv6u3Pm084OC/0pyZp/zh4b8iNCKrz+Liv0BgVOxY3uO/2kGKGzzQ5L+r0h+cLLTlv6r4Keb9hea/KNYHDLFB579SplcyhePnv7iIB5IEaOi/QC2r+hLM6L9QEAKc+Qzpv4gwqkh0KOm/yHrK9rcc6b+l6uc/f+jov+wYg4kNi+i/C9l/UDUE6L/Gso+1WlTnv6ExGdp0fOa/G7+tXwp+5b9q+GtkMVvkvxwVTUaGFuO/WnSpOiez4b9hzlaSqTTgv3byNysgPt2/ziCZeHnt2b8Wti10yYDWv7AFQoIBAtO/4GUKFvX2zr8U9+PGqO/Hv2wZsGqpA8G/BIXZHRCRtL/AMywO3Zyev9CcVjF2MpI/0OBlOoTErz8U/eNVjDO6P0SSG+RkrsE/NolwVZCexT9IK36NedvIP4B06V0bWMs/ch1CTWEJzT+eb9kDQebNP/QoUtPU580/rNH7IHAJzT/iJYTVo0jLPzyuaoJApcg/igjWNVkhxT9uiH1wNcHAPzxzKht/Frc/mLIvD6cfpj8AfBMsCeaDvwotndLYdrG/jtFsYVvhwL8eolQy0aDJv/pYvsqRdNG/+FZDwkBU1r/LTMNhGGbbv+1/jMItUOC/RUPS9Ib84r+WQy+GArPlvxbcAWaEbui/dOpUgvQp678MsiNxS+DtvyKbYUZORvC/KVJsyRCV8b+LL9BfIdryv6CSrP1PE/S/FJ8fq4w+9b9aTo9o6Vn2v955uKWdY/e/0CHUsAda+L8U4tmgrjv5v8omqwhDB/q/XEBbGp+7+r+6PNZ5xlf7vxbXLcrm2vu/8lAiXlVE/L9IvBQrj5P8v0b3hBY3yPy/7d1qjBTi/L9MiTMLEuH8v5rLjAA7xfy/DDqtt7uO/L9HBfjv3T38vzr3xL0J0/u/Indku8FO+7/44ngqpbH6v0+0xvRs/Pm/FCiRq+sv+b8Y4lymDU34v0QjR2LYVPe/dEScyGlI9r/WAHsF+ij1vwzQI1rY9/O/WbztwW628r+4bXSmPmbxv/Ejn/HhCPC/hv0YNhRA7b8u7U0sAFvqv5RQnSRCZue/oIBMm79l5L9CBPSaf13hvyxZux9Uo9y/LpJaMv+M1r9bM4svqIDQv/zd5sIYDsW//Secwsqjsr/ICaavtQ6RP0JMbP/Ad7o/QCpkOWPrxz+JPyk/ChDRP6C7dn4u5dU/dxcVzsRt2j8ZT4Xf8qLeP2ZoBrE7P+E/Jk62wlz94j/v8Zvja4nkP2nPk+xd4eU/us67Q5ED5z/WnRig0+7nPzqGE4Vmoug/KoV1FAIe6T9gUWGe1WHpPyrFWbuHbuk/fwAI/jNF6T8y/CJyaufoPwY+0hUnV+g/byqT79CW5z+vvSDzL6nmPy6cA1JnkeU/CU9GIetS5D/+1edDefHiPzfUb/0MceE/c55zlqur3z9miUzCWEjcP4axyKQOwdg/JP/uZ+Ee1T/wG8Xe8WrRP25kmUe+XMs/2yh9pFXkwz9AZz7GmPy4P+BHq5Qb76Q/gBNUg1wsjb86gn0nXjuxv9ADOlpmLL6/u4IcM5wuxb+KAs2RUdrKvxA9hBT7BtC/yigVHrtf0r8ZVqCqDnPUv5F0EZZPPda/yN3t3ZO717+WmFEdrevYv46vV34xzNm/4Jei3nRc2r82wMA7jZzav1z5E79Ojdq/LTlNo0gw2r/GmehQvofZvwFJT4Ohlti/tzZnUIpg179FYdKrrunVv6tSl67SNtS/p7CVhkNN0r/L9r4IxDLQvwLaRd/72su/znstXO8Hx78ELPpp9/nBv0BvYyEzfrm/CAmSVJaWrb/ArPUERMCPv7BfD1rzeps//GvfrZGcsT989jEJpiW8P7rQDs2KL8M/rgjm+KQXyD/wJt3pFb/MPyQ1t6hdjdA/FZTthTyQ0j8YDl+RrmPUP4L0ylHZA9Y/emfAxJBt1z8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"SqtOzJ8+2r//4+GXLLjUvx4uY5d8Ac6/lPAUdCI+wr8A07a42NGov+i8tuwAM6g/4Gu6mRx2wj9MSrFvtffOP1pxiE+UwNU/X7QMj9kA3D+77efUDhrhP2XJmaLbKOQ/Pik6G3Qo5z9hdiwfdhTqP/M9B4eD6Ow/cgZirkag7z8jIorIvhvxP+BTkLv+VPI/YDUZTd958z8/FjwjcYj0P64TqHzefvU/A24MWG9b9j+sQ3S3jRz3P65b/ULKwPc/tOdsEeFG+D+DU0Qlva34P6ByubN89Pg/C7wakXUa+T9vsXacNx/5Px8/kJuQAvk/alM+c47E+D9B3HVagGX4P6gINlH55fc/KLK4J89G9z+a/T6tHIn2Pylb6ME9rvU/TqYOU8+39D/6VxsQrKfzP2BW7hTpf/I/+hW1ZNBC8T9EmIBJuuXvP+TRc1JpJe0/+Vsl4D5K6j+ig4ZoBlrnP5DFreaxWuQ/VIhflk1S4T9n4I7Z2Y3cP7G9iOEwfdY/2l5/33t+0D8ENXVffjrFP1AMp7AXkrM/YO9jc4knhL8Y+mudJqm3v6z0ttFn28W/uNR6KOJGz7/TkcCqcgTUv1O4mLy1Cti/qRYIBEux279Ktr4TYfTev/08DoGl6OC/d2/TRz4j4r99qpYjwynjv5oYRJiH/OO/EgKBPGSc5L8ymNYFrwrlv9Qn8EcySeW/+KxfiCJa5b/mnYXaE0Dlv8em1Zrs/eS/6pVL2deW5L/eb6hsOg7kv2qwF+qjZ+O/afch1r+m4r+qBNo4S8/hv9MrgmME5eC/z68BzUDX37+5M95lfs3dv2BV1Ye+s9u/lMHxpKmQ2b/Gb0DBgWrXv16hoKARR9W/WCP9eZwr07+bYCWJ2hzRv/qX0oPRPc6/OhnWTY1qyr+S51iCpcXGv0g/s0aPU8O/ZpR1Q38XwL/oKtEs1Sa6vxAmIqw0kLS/WCYKPbzUrr8Y1qIyCGWlv+AdKtCJj5m/AC7yioq/g79AB+GvSpVxP0DESAYpZZE/gK6tn0RJnT84kztcPB+kP6CqLYjoOak/AP2YRc0Mrj9IEcM3GVixP8DF+BwBnrM/KOOaMbjjtT+gEKD4OTS4P5z7XLa5mbo/oP6FdYgdvT+I8q+R5ce/P/SlDFHxT8E/DOfMBqzVwj/eCSxJbHfEP0SscwLXNsY/ELG6eu8UyD/M5JOwGhLKP3hz+lgqLsw/mm6SRWVozj8MvjBM0F/QPzR8qaodmdE/si5acSPf0j9fPMccxjDUP/QxFP7OjNU/YCLwePrx1j/kEQ/Z/F7YP4qHWGKM0tk/dP1/eGdL2z98pD87XsjcP+w1iCZUSN4/estuW0jK3z+x3Ls2q6bgP2M35dBaaOE/A0YK/94p4j+tSOlg8uriP+trk3ddq+M/fq8YpvRq5D9Y9hHnlynlP0BWlDov5+U/2KZYcKij5j+AW1/R9V7nP9y9aEkKGeg/JmB6QtjR6D9K0ZIrT4npP7GxHZNZP+o/qPbwgNrz6j9CrRigrqbrPypG7CWpV+w/m/p9p5MG7T9yvctyL7PtP2JgvT0zXe4/nWrBME4E7z/G52UKJqjvPxo3h/YsJPA/Ahfat0Fy8D8qtm1CGr7wP3Jf/q9+B/E/k1Zy9zRO8T81Y1eRApLxPy5Wukur0vE/lvkL2fMP8j8yHz2LoEnyP8egnWF2f/I/LhLFrjqx8j+QSnuns97yP/mKJ+WoB/M/OXpA5+Ir8z9hP8/xK0vzPxaNtZNPZfM/FkI84ht68z+hCQEtYYnzP5v1b0HzkvM/ug2/XqmW8z8K/5sVYJTzP8ZJqlf5i/M/zN2JhF198z87aCcTfmjzP9oi4TNVTfM/alnmbegr8z/1FVT7SATzP1fqZGGW1vI/tZJi7P6i8j9hhj8BwWnyPwoGl9ksK/I/YJDev6Tn8T/OUPw4nZ/xPy7d/tCeU/E/ohywHEQE8T9Bbk5DO7LwPyQDkFNDXvA/ZkMbTCwJ8D+ejbk5qmfvPwythp5Svu4/0q2Exz0Y7j9qaE/lZnftP2wTdabS3ew/R1kK0IdN7D8Dm1XliMjrPwqFLdfLUOs/1PyIizTo6j/N87CCi5DqP9OcgQd4S+o/WA2WgXga6j8IWpRW3v7pP+5oFVjF+ek/LlGUMhEM6j/5s7zGaTbqP9gcjHU1eeo/jguqB5vU6j+HCorHfkjrP0QDyquC1Os/GA2xCwl47D/ATQz3NTLtP18Rmu/yAe4/8Mq2RvPl7j94pwxmudzvP3qEA/1NcvA/wXnKoOb98D8SVBHKL5DxP+qSYm8nKPI/LcJ2LcLE8j8gIykk8GTzP7TmJcSeB/Q/vZ44t7yr9D9fyRahPFD1P9o2R8AW9PU/aTx+8kuW9j8AuT5k5jX3P884vcz70fc/NpN77K1p+D8oULLbKvz4P77Wn+KtiPk/Uh2KUn4O+j90XKpW8Iz6PwsMzdViA/s/okz13j9x+z+1kbfH+tX7P+fxc8sPMfw/wodH3gKC/D+ipzmIXsj8P9OMyF2zA/0/zYxYOpcz/T+w6yZVpVf9P8AquZt9b/0/rsQmIMV6/T/2HTOxJnn9P86Q99FTav0/fgvUQAVO/T+8MuYS/SP9Pzd1FBAI7Pw/YK7f+P6l/D8t1LyoyVH8P2LbNgBg7/s/0Gw3Qcx++z8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"peSKHCqi8z+u50GEIkLyP/oMFkbB0fA/5hWeX5+n7j/e0BZnYJbrP89maCKtdeg//T76yn5L5T9Q79V00x3iP3Qy6ro45d0/ONu+XmSf1z96VcskiHXRP3g8atU65cY/qOp+C1KEtj8AUGzRTZRFPxBgHRpXHLW/VDjdn0SYxL84JVtEgPnNvypq08I3UtO/AaYPnbtG17+wX+apdtXav7es2j+O+t2/iADIdJZZ4L88LHCQwH7hv4kENqtfbOK/jnJhP5Ai479JYMkW7qHjvxgnrH+S6+O/bFqIGg4B5L+0IOJOZeTjv2IJMYoImOO/X8p6hM0e478o54Yv5nviv8KjVi/YsuG/zi2VG3LH4L+83KBlgHvfv7dtJWgCNN2/nMFpBTXB2r/YLOvqEyzYv+4wsuKzfdW/4B5x4Ci/0r9fvlrB0vLPv2o4E8dpasq/PhIHpff1xL+aasljDEu/v6D1XAJKELW/gL3jE8Supr/gpTefT8uBv1AmYymWzZg/sBnlaBy4qz94Hkfc1LC0P8TSU5R7pbo/ImYkUUyxvz9ap34CkOfBP/lxK/iufsM/dJ2EDfCexD8uDPg67krFP7pqGK7ThsU/ZYaUCEVYxT8QWu6hPsbEP9cvaRfq2MM/FmRHQXiZwj9zRPt2+BHBPxB52jBBmr4/QBhMmFKsuj9CxB8ZNHG2P1D6YnYvALI/KBaaEBPhqj8wjwmIILKhP6D0M2e8P5E/AKhS7bGqNb8YB/0Aww6Rv+yDh18DT6C/iA3asNNfp78AKuvDu5qtv5oTN1X6cbG/mMQyJYiRs7+EkL2WfyG1v7Dp1VX7GLa/0CxhM6Rwtr+Qe5zsnSK2v3gv7fRXKrW/TtFvLIWEs782BMGj8C6xv3gOfryrUKy/oDrTv5DgpL9AGkKAWhyYvwBRTOKwtW2/oOpmastpkz/Advm8pJ6mP/pDs6p3brI/FGUoLPc0uj9c2DWTsk/BPwLxRsvi1MU/lfZY5cKnyj9LusTQrsXPP/LuZnDLldI/PoqsGfxq1T+ZJ7dcY2DYP2TbVe+vc9s/McmKizyi3j/mY3PmhfTgPzrrjN1eouI/sbAEU8dY5D+iQqA1qxXmP/I+4+vB1uc/zmaObpCZ6T9Oxk1Ia1vrP6o0ZoJ6Ge0/3ZRIFLzQ7j94DMsNBz/wPytlHikZD/E/stydHuzW8T81NVdV05TyP7DhoXciR/M/os4PTTPs8z/vaEZqa4L0PzALxoJBCPU/dkk/hUN89T/yU5xEHN31P3qRRUeYKfY/mAeyKqtg9j8z51y5c4H2P6gR6Y8/i/Y//U+1O4599j96wEn6E1j2P2of+1O6GvY/JmLXH6HF9T9MEGAMHln1P8rl0FS71fQ/vz5JkjU89D8e3ZAneY3zP6JzYJ6eyvI/JgVLd+X08T9aBCv7sA3xP+SuVz6BFvA/uoPMN94h7j9stMi8Sv3rP3FRot62wuk/D1PAS5915z9+kV1ygxnlPzC3mu7aseI/fBV61gtC4D+IILIGxZrbP6AaDGwSrtY/hGRHbgfE0T/0g3uXncTJPyoEhatlHMA/GMIgZ8Zkqj9IBKkXVeCVv7BNXIJatre/2spOReO8xL9KYLZ4oVrNv6detM1P19K/7DTIpuPZ1r8+F6CU07Lav85R5LM0YN6/4VeJiS/w4L+00+Vz9Jjiv6QjhPnPKeS/7qLJJUGi5b8Eq7PT3AHnv1C7GkRMSOi/Z+FlS0p16b/uvQwjo4jqv7wHM9Yzguu/1u5fmulh7L8FfEmHwiftvw4S67zO0+2/GoQ47C9m7r8WVLMXHN/uv6QoIFTdPu+/CBLkwdOF77+YA32VdbTvv+jw1+9Py++/bEZWTAjL77+HS3YAW7Tvv26BZdwaiO+/iln4VjFH77/IqBrAm/Luv9H6NAJri+6/G1e9ub4S7r/e+iFNxontvxrY9u658ey/EdxEC9pL7L9CN0L3apnrv0PvMuGx2+q/wJKqIvET6r9G900bZUPpv8hwfBVAa+i/ETBCBqqM578t9y2Ou6jmv8oPcB19wOW/zJCq4+XU5L8sSGr92ebjv7Vh2tYp9+K/CTuT85IG4r/1GQaMwRXhvwiW4FhOJeC/1tOLAodr3r+5JHC5OY/cvwOHnaGSttq/0DEFTF7i2L/YTKh5WRPXv6biWfI5StW//AHC1ayH07+ibRQgZMzRv/y0j6ATGdC/Z3NREfDczL+NtNQMsprJv/CBetcUbca/9SdF4+BVw7/KOlWQ81bAv+YIAsyb5Lq/3nxwIwJUtb92Mu7fZwCwv1QPQltS3KW/3HXqCamGmL+w175PcPN5v8xWpFj/p4Q/Svr5tkncmT+GdfJn5wakP+l3rtLwbao/Oic+kgAPsD9He2xwfomyPyToFAMbpbQ/fCbMnydhtj/+/V7jxr23PxRsiB3Tu7g/7vuNzP9cuT9QYYnytaO5P7xmQCMjk7k/7FgWzhwvuT+0j9TmEXy4P9Sv45frfrc/TBzaO/48tj8oH3hA37u0PzC3QJlGAbM/fA0gpesSsT9gL3V/0OytP1hpCQwXYqk/uDST7n+PpD9AGJ0KrPueP8AFrCdeaZQ/QCT0vQrpgj8AZn1MyJhdvwCJZzQc9Yq/4Om3S2Frmb/wGTy//tWiv2AzZByWH6m/QC6iqBSVr78=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"bLUqa2Pa6z8bE7mE/jPsPxp2L1SAc+w/q/yMN1iY7D/yeOj1IqLsP2qHcUWrkOw/M9OAKO9j7D/hyOTeIRzsP07CNfiques/6UXpkio96z/iwoEcdKfqP0U/xeSP+ek/IDCR5LU06T86+98wSlroP0M2cjjYa+c/5fNSiw1r5j/twCqLslnlP4C6VSekOeQ/AslgUcwM4z9nxnK2G9XhP8hf4JWBlOA/Yn8GZcmZ3j9iRigZPgDcP2BbXi7nX9k/4Ifguhu81j/Dg3kP8xfUPwxQgm1DdtE/ZF8XBTOzzT+QOPRdbYjIP7h5MOgbcMM/IK8UPiPbvD8AtVPIFAezP2CgHovf0KI/AICEeL7QBD/IEfqazU+iv5CbD7hPFbK/UAIlh4LEur+e5TmPaZrBv1rKbOX3ssW/0ohI19mryb9N2TOFAoXNvx48krYqn9C/ztSqjc9r0r8uFWN6QCjUvxzHcwQx1NW/HAxzmjZv17+Mp71wwPjYv8nI6y8YcNq/7hq/tlzU279aQPSRgyTdv+iG/35ZX96/zj/E94OD3793cLzgv0fgv3Evl07VwOC/gYNfDiAs4b+wBVlPsojhv0KeRAST1eG/xUiqtsER4r8Q5jQuOjziv/jtvlz2U+K//NI9q/RX4r9ZgbZeOEfiv5yktN3QIOK/J8jC4Nvj4b959wa5io/hvw02YMslI+G/4rYtDBKe4L88eF7Nqf/fv3NrH4MwkN6/2vc61l7t3L+cNOUnNRfbvw52WtsWDtm/giM5d83S1r88n7mMkmbUv8iz8qgTy9G/gG2bROUEzr/ZX8BxmB7Iv98LjPlr6cG/IPIBEf/Ytr9o9KyQZb+iv3QFgeevHJI/VkC/XB3Isj/vgrCIBKfAP2PMj1I8Acg/q5vyqNlmzz86InrGwmXTPyyXy/E/Edc/uhURj2Cv2j/0P8ZCkDneP4u9WzOc1OA/M4lV/eh74j+nMw4/fQ/kP5jYY5hAjOU/NpzL9j3v5j+ckiUOrDXoP3exSXzzXOk/ePkD4Ldi6j+8zR1i30TrP/IbuXiWAew/mZbax1aX7D//043o6gTtP16QkKtzSe0/mlQFe2dk7T/m/wC7l1XtP26dcHsuHe0//jI/37C77D/c8KI1+zHsP0JaldpBges/7a656wyr6j/W2ZcpNLHpP0KB1DLbleg/do+Tfmxb5z+j7XY6kgTmP8IvGWsxlOQ/gEyjhmEN4z+qlcksZHPhPyBAN2s9k98/8Csush4n3D/P4pxwi6nYPyEqYgyuIdU/HhFBkbCW0T8CZIJcQB/MPyoZ5K/AJsU/LPzbuD2ivD/g2rWN8auuP2BpQEHdAYQ/CO34J3uSo7+I62ou9XK1vxxBtlDnNcC/+LV/FKtSxb+UM6mI+wnKv+hOlgeMV86/vDBHB1Ec0b/usry5E9bSv5yNieZSWdS/0GiH3SWn1b/OetBcdcHWv/wa4vLzqte/KOlLtRNn2L9wsBsJAPrYv/5sZwqHaNm/nObcPgy42b+m5MFEde7ZvxLZq4gOEtq/qEhAEHYp2r/snFO9fzvavxgtgUIXT9q/8GDFDiVr2r/IhhdEcpbav3jtasWG19q/Nufmy48027/8KcCERLPbvyqmXbbHWNy/0Ea73JMp3b+6Xet+YSnev99Kr8IXW9+/yaS7VF1g4L+9iv07ri3hv6Ev/5qMFeK/OBVM4ocX47+Gjn25sDLkv76euUGbZeW/7Kx7sGGu5r84QQPuqwrovw1odCm1d+m/VumQPVfy6r80dclXE3fsv1j0mtUgAu6/cF23BXmP778g5DoIdI3wv435p8YMUPG//dtmEFUN8r/DXYIEHMPyv81GNQQ5b/O/0653SpQP9L/WnDIvLqL0vz7A1XEmJfW/K2R9zsOW9b9nx/Z3efX1v7sDIuzsP/a/DL1mmvt09r/E1NMdvpP2v9onNsGLm/a/vJJZc/2L9r/si0H37mT2v65tTVV/Jva/5C7FkxHR9b9SGHnWSmX1vypjMQQR5PS/iRpUiYhO9L+htEnLEKbzv2+11HZA7PK/dGhy5OAi8r+70RcV6kvxv4gWxaZ8afC/QMbSTbn77r92M9dU1hbtv+YTIuJDKeu/+oSb0BU46b+BHKjZd0jnv42/KJqeX+W/4Mnx/7yC47+fklF497bhv6KIW4lWAeC/QGUh1XnN3L+5h0xouNfZv6j0h6lQKte/cpJm65nN1L/BdAI6TcnSv3QcIqlpJNG/ddYB/UvKz7/m/pnwxSHOv8SNpWIsWM2/oJhI+X10zb/3rsdUuHvOvzAwmnBcONC/sPo9cBmq0b+CmOr4T5LTv6gV4sQZ79W/Ji9VI3C92L896bwgJ/nbv2KI2ffznN+/GI0h/jnR4b+ohENzGgHkv/ycAKvfWea/EicZu9XW6L8jMF8Q2HLrv+q5TIxdKO6/NpPv1sF48L9cCzuND+Txvwe7sVnkUvO/9N7SR/jB9L8o9zii9i32v48UqCmIk/e/T94eiFzv+L9okp7VMz76v6DbjLvofPu/MtVrD3qo/L/cgD2PFL79v5DJL9Abu/6/fulhEjOd/7+6qPSwIjEAwM5XOn9GhADA8AOoP0zHAMAOWMibqPkAwMaUkqP/GgHAaqRM0SUrAcC4c0MlISoBwBLoJ08pGAHAI/pk6qb1AMA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"dPG3QYba2z9+cv91u2zdPx6sVRgTL98/IH4fTeaO4D96dCR0X5rhP7nb29Wvt+I/toBeHmnk4z9Ajfau9h3lP7BsIX6hYeY/AhhD0pis5z9vhteo9PvoP3BBoFS9TOo/2z9as/Gb6z8HSLnLjebsP8Bmk5yOKe4/eEhr8/xh7z88sV6Wd0bwP+y+NYzJ0/A/pUDi2JhX8T/zw7XImtDxP7z4FVGYPfI/PtiJu3Cd8j+R2rOOG+/yP9Oq6A2rMfM/wnm2SE5k8z/XkEboUYbzP6BIeYoil/M/wV2ri02W8z8AFjoxgYPzP6yTB7WNXvM/HB31o2Un8z9H5p6HHN7yP2faXj3ogvI/uGPXRB8W8j9s/v4TN5jxPydPMqrECfE/MjdSfXlr8D88a3O7RHzvPx1H9TJLBe4/bGyJLwJ07D86cnjujcrqP3fZKBA6C+k/0BBCFXA45z88+3V0tVTlP1NdYrCkYuM/xKkJHudk4T+wWrP+YLzeP6FX/0Rwoto/Q7NV4WWB1j944zRonF7SP0grp2Sjfsw/MNB6SD9RxD9wHW5iqX24P6jgD+3RQqE/4IaQDQWDm7+g2FNbk/i1v+jyllSkS8K/VkKb1M9Xyb84e3uegw3Qv5MRbkU0SNO/RAOzbAVa1r9Nbt3EfkHZv74ZRfSr/du/LiPNfR2O3r9yyhZbdHngvzzgjLBWluG/oh4NL0ae4r813oOLFJLjv5gDoaTPcuS/doSoX8JB5b+MBUq0agDmv/gd06V4sOa/Su/79sVT57/u+6GNT+znv6rP2jUufOi/rn5EtY0F6b9cjij4oorpvybae+ijDeq/zNZ7Nr2Q6r8iCoz8Bhbrv0bGKhF8n+u/GD8Go+8u7L/ET/8+A8bsv+LKMvUdZu2/2ZEewWMQ7r+U4LUercXuvwtQTdmChu+/1AUTnoop8L/a8s+OnZXwv+o26RU3B/G/bYzKGeR98b92nSyOA/nxv7qZydTFd/K/c4suBTD58r+IpK6JHXzzv4II/4JE//O/ttdQlTmB9L/ODvyqdAD1v0GQZtVWe/W/ZqbNVTDw9b+jJM8qRl32v7GUyRjawPa/hETZyS8Z97+Wmv72lWT3v6xy441rofe/ro8b1CbO978Zng6FXOn3vwS4EHLF8fe/Y/RT/EPm979oj0Qn6sX3vzIXS0P8j/e/nHrr5/ZD9783gLJQkOH2v5d9Wny7aPa/k9NYB6nZ9b+K0d+3xzT1v5bgcU3FevS/FNR8CYys87/SARA2Qcvyvz0KGdxC2PG/2USGxCPV8L/itR2DT4fvv2qtF418S+2/2De6i/v66r9GEvHiOprov4wStd7cLea/Mot0Bay647/IAJOIjEXhvzAfONTYpt2/jDxVRG7S2L8Ohb6CjBfUv0gmg/lJ/86/5j9dJJknxr+MDoZegnK7v1D4Y7ZhEae/AEGV1emFij9cL57LOP+wPzCPNX+Da70/ENKL2fNAxD+iyiqkORnJP8AzsEaPOM0//iDcnntN0D8a5WszQJ/RP5J8NoCgkdI/nB0xKK0l0z8YAzpDcV3TP7nvWhHoO9M/THvXqvDE0j/GIJDFPf3RP1BYbEo/6tA/4nXfHx4kzz9+dc8IrPbLP3Z5Y3NpWsg/xDirAU5exD+5TxiZyxHAP4y+o/k/Cbc/iPczPi8aqz/gQGaX9XKOP5AxSnAEUpi/wEVQtGv8r7+8At/D+dK5v+LqXC5uvMG/3MmWAwxsxr/kASsNne3Kv/i19ma9N8+/Lvv2US+h0b+GUgJ+cYPTv1JfKNsOQNW/khWQIyvV1r8sdWDrnUHYv2L5jmfxhNm/puL9Olqf2r9sGIlQpZHbv07dNLc3Xdy/4JnsCfQD3b++TAVWMYjdv6qAiFap7N2/yIjoL2U03r/MA9LIrGLev8IlcMr0et6/KOMJ4cuA3r9uGAkHzHfev4yTCqmGY96/1jT6mnhH3r8wByIw+ybev5FQa/c0Bd6/nGUIfxHl3b/BdO3+N8ndv88A8Zn/s92/Qm3Dq2un3b/avaZ1JqXdv8sS8Bl6rt2/yr0G8VPE3b9pYBXTPefdv/UW7bVhF96/wdkn6IlU3r8+9Gm1IZ7ev+cN+E47896//G84DJBS378joJsCh7rfv3W/DXCdFOC/qvPqYj1O4L90AKYp6ojgvzJDCOBLw+C/VhCNg+/74L/8Bb9jSTHhv1TMQCq5YeG/RPMc9IyL4b8itw/DBa3hvzhZ2jdbxOG/5of7YbzP4b9I8KjwWM3hvwrW+ehgu+G/iIt+jAqY4b8r6kthl2Hhv6BPSSJWFuG/ZaIDNqm04L/GrVPlCjvgv67JUJwgUN+/GSvbH+D03b8Zr4CVBWLcv132asSYldq/htizT/WN2L9gJndS10nWvzrONtdfyNO/kBgG/BsJ0b+IVIQAChjMvzL2JjUQo8W/06jIYhVqvb9o82eVjkKtvwCuMkDz0nA/aitwLWiYsT83kYDe5XrBP0xaujORjMo/7rDWUiv90T9128LYUt7WP37ZX8Oj5ds/4JdarF6H4D+l3ww6gSrjP7gYGSTS2eU/YaH4xdeS6D8tOYBmC1PrPzy0e1PeF+4/H1s1OmFv8D8oTNgoltLxP8qxz+FMNPM/SuYeekuT9D89ZxG0YO71P63oNL9lRPc/GLEn/D+U+D8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"kShwYyzX0b+2WyYsF9DQv16ExpLMds+//gL3QGE4zb/1C5RzY+rKvzNi3S6akci/la27IhIyxr/71Cz8Ic/Dv1Xh0wJza8G/bP95URESvr+eVS6oolK5v+QIROJimrS/KEHaCoDUr7+IdDB/sISmvwAi//i/iJq/QE3mfD9HgL8gt4fO41WEPwBxALNwaJw/8KP1WBtNpz9QDxLFWTGwPzCumZiLu7Q/EHb19e5FuT+Eirdt3dC9P3YZackrLsE/U/m/E/Bzwz/xnzzAQrnFP1vQCYlu/cc/GLnfzYI/yj9SMGraVH7MP6+7K0SMuM4/SMV+BVF20D+G1Ns1c4zRP5sX6zTGndI/z2Wwylap0z/EqNgrLa7UP6JbrI5Pq9U/BLpefMSf1j+ySWTomIrXP/RTHc7oatg/VLUX7ts/2T//ce3xrwjaPzhrYnq8xNo/yEiEw3Vz2z9wkLrnbhTcP3O1N3Rip9w/eAV5tDAs3T+w1XXL5KLdPzJhIb23C94/I169MA9n3j+yuxORgrXePxagp1PY994/gPMj/wcv3z+GzjDMNVzfP8vH61GygN8/OJRqGPqd3z9wxD2irbXfP4rr+c+Nyd8/2peBS3fb3z+tpO9bXe3fP2zHfBefAOA/VzAiIZAM4D+exVqxhBvgP6Li3uJ5LuA/s8G4AGVG4D+7TZldLWTgP1hUh5mqiOA/HXkcUaC04D9EJVTGuOjgP3C9KPKEJeE/iDoMW3lr4T/5cqJQ67rhPxMhF8IPFOI/BsQwEft24j9hwH4mouPiP+VQZqjXWeM/3l9b/VDZ4z++0DNjpGHkP8/sTnVO8uQ/Snjdr7KK5T+IuP4ZHSrmP/D5GePIz+Y/2JmI/eB65z9KCZCMhCroP8ono9XJ3eg//FLYCsOT6T9ecxtQf0vqP1zmnrMQBOs/AIzemIu86z+lK9b8DHTsP97HgmK6Ke0/3pIUJcTc7T/DFyYfaYzuPy8CC4b0N+8/+kcpFsPe7z+CkJ1HIEDwP6lW4bv1jfA/jCIcKqnY8D/CfKUxCyDxP3fkyZn1Y/E/kybA9kqk8T//S2eo9uDxP79tPbfsGfI/JJ7R+SlP8j+osDx5s4DyP0joCR2WrvI/+8m3VObY8j/PAkOLwP/yP3Nq2dJGI/M/NONHyKFD8z8qIGbY/2DzPzWMa8qTe/M/CLS9FJST8z+AuQ/ROqnzP9zhI5DDvPM/iZ9+pWrO8z/SfV2nbN7zP8QkcAQE7fM/G/r8JGn68z83ZeEc0Ab0P2abCoZnEvQ/Qfgf71cd9D9pKiajwif0P6ehGRzAMfQ/v8qgYl879D/uPpzOpUT0P6Wx1cONTfQ/kEAhdAZW9D+Qcy+A9F30P0AShXQxZfQ//ZBDuItr9D+pswE2yHD0PyqrHuShdPQ/z/6Zccx29D/4xBz983b0P+BqXka/dPQ/UUuJ3tBv9D9I+NDKyWf0P9MLWxhKXPQ/MRaAH/RM9D8Lo2NybTn0P07EJRJhIfQ/tnDYj4IE9D/QrC0OjuLzP5uOyeRLu/M/54UJBpGO8z/Xk11IQVzzPzT+vR9RJPM/pO3wnMbm8j9z9p8tuqPyP7+JxWFXW/I/Pim06t4N8j8tIYanpbvxP45s174VZfE/Gwq5o60K8T/hhN88Aa3wP89Qvru3TPA/1J2UahjV7z8EouLjlw7vP75gvi2qR+4/pFRkCyuC7T/IGmLhEMDsP4rPzyVoA+w/fHSnslFO6z8AztqY+KLqP5ZynbKPA+o/AnDCy0ly6T/8a8YUU/HoP/kx5DfJgug/HNGZmrMo6D+HYuQy/OTnP/JG2e5luec/wzsBz4Sn5z9A1KSStbDnP9BU0kEV1uc/rn55pHkY6D8zgMRCaXjoP+QhSo4V9ug/5EoI2FSR6T+yUSBAnUnqPxrCeygBHus/OSKHUi4N7D9nM/mGbBXtP0BQwtGeNO4/mx5KBEdo7z8xegdOxVbwP5j5HG+cAPE/5+TYkeqv8T9J287Kz2LyPxyjFh9RF/M/fLgwIl/L8z/E4KBz3Xz0P/sb9MmqKfU/K5LiUqnP9T9b+fW0xmz2P6zxBMQF//Y/WEfSqoWE9z8Wes59ivv3Pxi95miFYvg/KjbLiRq4+D9ZGPSIJ/v4P7EUdzfIKvk/Yb5CYFtG+T/F50rvg035P0Fnop4rQPk/QOH7QYIe+T/UwLTA/Oj4P9CkA8hRoPg/kuZ0CndF+D9mnXT7mtn3PxzcQB8fXvc//hGNXpHU9j8hxE+5oj72P17NgA8hnvU/vEkimez09D/SDaoS8ET0P7hsa/UWkPM/kaIIlEXY8j8B53HBUB/yP7k9iVX2ZvE/uM5ev9Ww8D8R+1VV1vzvP/p9/UwTou4/wsWPla9T7T8nAu/xmhPsPzgEufth4+o/04aIJTHE6T+WKx0l0rboP3m5Wpuyu+c/fgb+u+fS5j9YY2CONfzlP29nYKkXN+U/ekcxhMqC5D/QNPcOVt7jPz6pUwWYSOM/DhBnF0/A4j/kxyf6JkTiPwCuzBvC0uE/vPAQv8Nq4T/yFYqx2QrhP9Z1bvjEseA/vfS5l2Be4D8kqsMnpg/gP6xr0u9qid8/OvSPIKv53j+isu7O6m7ePw59g2ld6N0/PD/eb4dl3T9A/A7ZOebcP67+d8CLatw/VDVI9s/y2z8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"xvrA2BW44j8oPzh7CKnjP+bzr2a2T+Q/OLxAfTus5D9aUxh5Vr/kP7Bsj+JciuQ//C5tUzQP5D86hgr2SFDjP1BpSzCAUOI/TZeeuS4T4T9brtYBFDjfPw0Y8dMz3ts/3hDPmloh2D8k95R1lgrUP8pD1nuSRs8/BgvozifqxT/Gj1RH7ia4PwD794UjYo0/cKXnOIB0sb9VMgrLS4rDv2fBPabyhs6/oHsP383O1L9MFBOUG17av+pcCQCs6N+/KnD9rxGz4r+WEYGeQ2flv/JQvloiDei/zhnithqh6r9gVcEY0h/tv8f0CvYmhu+/JrU6/pjo8L9eoxUJJP/xv2pkBm98BfO/cClsxIj687//WodKTd30v8i/mf7srPW/X6K4zaho9r+fU+yb4A/3v/SlOt4Sove/0MrAwNse+L8RV/9L9oX4v71hqGM71/i/r+tOiqIS+b+My0Y6QDj5vyJ99mxGSPm/CpNlKARD+b/Y6EXz4yj5v7Bri+Jr+vi/eaCbFDy4+L8BLCIJDmP4v8y/XuOy+/e/TYFGYxGD978mU4FiJvr2v7JPoVYAYva/7jkqcb+79b8UF8Ihkgj1vz2VTdS0SfS/4rRIPG2A87/YlEgXCq7yv+q4DVHg0/G/1Pd4Tkjz8L8ojdTFmw3wv0ft+DloSO6/mJ87v85w7L+ObU5RDZfqvy+/5lO4vei/shnhNVLn5r9grz8wSBblvy2QRQjvTOO/QGkXB4GN4b8ie31hNLTfv66nFN5tady/yhUgQGQ+2b/MYKyuhjbWv9RKdwL7VNO/HBfsWZ2c0L9UnqPZ9x/Mv1QHOcytYse/IDuIf0MFw79oapk++hW+v3gq8cME7ba/OBvrsrOTsL/w/vTksxmmv6Bdll/9Z5m/gPm/vaTbg78AwwjeZvdhP4CL668JToY/4IOlTFfYkD9Ad7uQoGWTP+BgRqe85pI/ACObqgbxjj8ASYnRLXmCPwAIjz5yZjY/AL7qGhMKhr9g/+1kR6+Yv9AVzT48OKS/kN5n/M8Hrb/g7oys4lOzv1gLYpPLe7i/oBqSloHqvb/0DaFGCMfBvwhBbiDrqcS/0jYrN1CUx7/ynkLPZnzKv6jGMlk6WM2/SGF4fOEO0L8pybudf2HRv9xWDpoGn9K/ex6m8J7C07/N4Bxsl8fUvy7XuBZyqdW/vlw1fPJj1r/qviPZKfPWv+5kUlCCU9e/hmBxBMyB17/PH5dDTHvXv8lSpg7DPde/l0ZFtXnH1r88KYyFSxfWv3l1ygysLNW/Zt2WX7IH1L9uZmxIGanSv8K9pgJHEtG/rvtXN5yKzr8dlWrQ3InKv4dUKF8kKca/BDdiiZhwwb+skjBfQ9O4v0bZPV1te6y/0I+fuTLAib9yaHvLlUigP9K/xN7fu7M/iH4Vb8xxvz8wNd9s7JPFP1yw5hVrX8s/lESnJL+F0D9HqrAsDkTTP+jQv7Kl4tU/9siUfKtZ2D+nXg/3fqHaPzgMRMnTstw/63hKes6G3j9IOcI/iwvgP1yPpxb6ruA/BgFF9DEr4T+csUqoFH7hP+rdO+LvpeE//o+W24Wh4T9+SnjDEHDhP9pzEjpIEeE/IrNP/2CF4D8vRjqZG5rfPyBNDt750t0/dShYy6W42z++j8D+SE/ZPx54RRTam9Y/CpSquwyk0z9ob2eiNW7QPyrVIy9lAso/PBcyvJHIwj8IT8vjPHy2P+CXK/lilJs/UPqZwh0qor8wgSwARFO5v9Ccj0us28S/qEXmDCgSzb/JSWWCs5/Sv+4Lotlaq9a/hjjKJ0Sm2r8qaAGiTIvev3L+uN3/KuG/NFtbyE8B47+YvZYtFMfkv2JyKfwme+a/ofjLS7wc6L94Um5dXKvpv93tCyvdJuu/PqbIDFqP7L96NYIzKuXtvxfJ3jHWKO+/tWejuIQt8L9fiGGFRL7wvylx7X8SR/G/RDxAbFbI8b8nj1GvcULyv869NjC5tfK/5kTfr3Ai87+vBmszxojzv1hARNvN6PO/2U4HQn9C9L/gFSBys5X0v0qXwjsj4vS/Dji34mcn9b8MA37/+mT1v2SXmF84mvW/loSrbmHG9b9ItkqMn+j1v2zgSM0IAPa/z6x8LaQL9r/rn13ebwr2vyi7KxBm+/W/MNe6J4Pd9b+DcIdczK/1v3Jeh7NVcfW/j1LmE0ch9b8JEXcQ5L70v5xo2XOPSfS/L1v8iNHA87+S7chVWyTzv8uiox4MdPK//P98efKv8b9GICmoT9jwv2bO+g8z2++/iAUhRvPg7b/X6FiuncPrv6B4nMNVhem/HxplLaIo578y/5TRaLDkv1J7b6XlH+K/uhlpgEv13r/bCvTC+YjZv+F3pbP3AtS/RNeapprXzL+2173Nn5jBv6g8thRubKm/VNjv8Vk6oz8Qs9CFI6S/P8X/U2QLnco/5EaKB8iO0j9Cf45MFqHXP2liO6YLfdw/NjwBk1mN4D+GofyES7niP0Wr5RnrvuQ/lvq4fRub5j9+ds71GUvoP/VhUUCIzOk/Tit9QG8d6z+iwLalRzzsP5UHvLn8J+0/FFj3xPDf7T9AMDKY/mPuP447Rhp9tO4/10m59TvS7j8UQU91hr7uP9DMiHkfe+4/a8dNqT8K7j8B/64rjm7tP3lJPj0fq+w/R/jStmjD6z8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"Ke+I7uT3478WsuuyOGHlvxtTCM1Gvea/NrStG8cK6L+NamqqmEjpv+fukF3Ddeq/RLGDnXqR679OAcu6G5vsv8DLrysuku2/oi+iJ2J27r9cc1ibkEfvvybD9kTcAvC/KW4krH5Y8L9Uo0Ef06Twv6Rnu90M6PC/lX0A324i8b8sYC2ESlTxv95LvlP9ffG/5hSZy/Gf8b/GFqwznLrxv+CtION6zvG/R/UwjhTc8b9mSnaa9uPxv4WVr5O05vG/G+/lYObk8b9/yxrLJt/xv0lSRPUR1vG/ppTUMETK8b+4xaIQWLzxv7/eJUnkrPG/r5bxdHqc8b8dSxYEpYvxv5KkMWvlevG/lM8HL7Jq8b/HGJVOdVvxv3PUlXGKTfG/ukBFRD1B8b8itFPwyDbxvymWPYJVLvG/0+UREfkn8b8p+F/CtSPxv5g6Eyh6IfG/U45Q4iEh8b8WiNtediLxv4W4GnUvJfG/qruCH/Yo8b+5uQIMZS3xv6a1paEMMvG/ww92kHU28b8WYMHYIjrxv6idYnGWPPG/kVlhClU98b8+9b9/6Dvxvz4hSN/lN/G/XfbhLu4w8b9nSeo4tSbxvwVxljUCGfG/WUQfGLQH8b/g4pkexPLwvxSzCLdG2vC/4aeODW6+8L8ejCe+iZ/wvx68Gn4HfvC/KEglxHFa8L9lEwSQbjXwvzleFJm8D/C/JnE3umHU77+GP4wNZYvvv/GC6oVsRu+/vuzmo3MH778VJi7gfdDuv4AOXAuJo+6/Gfj6CYSC7r9DME4mQm/uv8BDabpua+6/6309Z4N47r9t/3CqvJfuvyTyrl8Qyu6/CC2pOSYQ77/UD/MnUGrvv3WaZ2GH2O+/APw8jjIt8L+CrNW5knfwvyx9wfHSyvC/YjqDQDQm8b/PFNiSy4jxv5r7iaaG8fG/GMz+0y1f8r+iF8tka9DyvzfhZzjPQ/O/+P7Q6tW38794Hple7yr0v+dAbC+Fm/S/3CQhKgMI9b9JneUK3G71v90OGjeSzvW/dINjUr4l9r+LdFmDFHP2v1BE6Btrtfa/L5kI5b7r9r/mi65EOBX3v+raZPQtMfe/4K/lWyg/97/UuJfV4j73v9p6sCdNMPe/jwG/kYoT97+dFVzm8ej2vwk0eWcLsfa/w53UpI1s9r/oupI0Wxz2v1cldK99wfW/z2jopiJd9b/dJLyBlPD0v8IodHk3ffS/+HOcvYEE9L8z3+sj94fzv+PyWvchCfO/VBX3tI2J8r/lxcp0wAryv5QzK1M1jvG/PU2GbFcV8b8CYnMTe6Hwv/zfP2LaM/C/0NpAMR+b778PPI1RJN/uvyzByXBkNe6/hC5MyS2f7b/YhuKIdR3tvzweAHzWsOy/te32Q49Z7L/GMdjngBfsv9+4ZWEw6uu/kD1ICMrQ67/6y5rRIsrrvz7eUMe/1Ou/kFDULdvu679wMU8QbBbsv1W/F4svSey/VoIU+q+E7L/IHGxBUcbsv3z/Z61ZC+2/VFw+vf5Q7b8HPlkQbpTtv7x02y7b0u2/hMRtnYcJ7r9sW4Ii0DXuvy5Rr4M1Ve6/hETJgWVl7r8mrOYcRGTuv4RSzEDzT+6/WZPFndcm7r8rJVHPnuftv/iMlNpCke2/Ki8KOQsj7b/4flztj5zsv3Kl/fS4/eu/GZG1fbpG678IbfkyFHjqv4Jp9+mMkum/5OUH6CyX6L8KB6riOYfnv/QRjrctZOa/YCJdYbIv5b/Z8zkbmOvjv7kyiqPPmeK/HLRmCGE84b9vbuDsx6rfvzJ0ydfyzdy/ZMb3nobm2b8R12e2uvjWv6D2Nt2vCNS/1gDnWGIa0b/VsfZEQGPMv/YTP00GpMa/oHsM3cj9wL+UjZLxau22v+ovXNmrUai/oPJrhgJ+e79iXbeuJLmgPxfSUSPUDLI/FldOflpSuz8o9VFB3xPCP3QS8S1QRMY/8a2ziNI4yj8QsCTZKfDNP50KTTu+tNA/mkHfBSdS0j/IQw2ENNDTP3kO6C7pLtU/NoaVOV1u1j+W+sRduo7XPw36Q9swkNg/Fy0rEvVy2T/txlXuODfaP4n+QGAo3do/nCwEb+Zk2z8IfNyLjc7bP0RsudgpGtw/12TUi8NH3D/rYrrFWFfcP2Qa40boSNw/p0v5VHQc3D9L/k8HCNLbP7xwySDGads/S7Q5Qejj2j+Q/ciS0EDaP4yKinAPgdk/xRiZxm+l2D8NczjA/q7XP3ZdrmsXn9Y/FnKFx2Z31T9xvCCW+znUPzYOWJ1A6dI/PLwMgAmI0T+KIxMlkBnQP1S0oNTtQs0/7NPWgIdHyj9qBMV2t0nHP7ZVnnj7UsQ/asiaMmttwT988BgvSUe9PzCIpq5iAbg/HNSKGLofsz9YkA1agnKtP7idX8DCyaU/AIesRtfknj+Qfx709TCVPwCHCp/Tl40/IOw93p0JiD8AeIUjukiKP1B3zVuda5I/MAU/WiUTnD8oqRmO1iSlPzimveq6ma4/JJqeyks6tT8UsHYo8128P4TUQuPyW8I/evb+qYQixz90iTBRgX/MP4i4WbYQN9E/AQyqCwN01D98r0MDpfLXPwEaRFJGrts/rhRs6YWh3z8lCjDZMOPhP+4McCYhC+Q/l5EzlQhF5j9Wok2/JI3oP92FYW+H3+o/1JoHQSA47T8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"J7iVwDq32z/XiRp7VazfP7yKjPb/9uE/VxtN50U65D+u5BNKyZvmP1DoR3X/Fuk/ljn+yBKn6z94rp3Z7EbuP6MRZyKiePA/wKn5T1TQ8T8MvHM/xyfzP9OCzLgwfPQ/oj+iQsfK9T+gJ1lgyhD3P0x/i5yJS/g/CK0mKmt4+T9xHsK68pT6P0lGaSnInvs/vq04Eb6T/D+Ml0+b1nH9P3EcIqlIN/4/EBASgIXi/j+fvCGpO3L/Pxa1F+1a5f8/hBDkOosdAECh6/uHczkAQB5lpzpGRgBAyK1x8wZEAEBm01u/3DIAQB3ib8QREwBAyIG9ACXK/z/XVUYf2VL/PwCSfvuZwf4/LpJeNf0X/j80+1Pi0Ff9PxlzSO8Tg/w/8QiBpPOb+z9iD7YExKT6Pzrr5Sb6n/k/hFzgjyWQ+D/MH/dq6Xf3Pyt7Wzr0WfY/U0nJe/k49T/LEscCqRf0P7K4r2Wo+PI/U0K0CIre8T89nts7xsvwPxzRxvRmhe8/LHsI6f+K7T9K0tf+UazrP5sdvEPu7Ok/Gf6EnuxP6D9me+Ur5NfmP/z3jGPghuU/DALXRV1e5D9331bePV/jP2QaPpzMieI/s8hBm7jd4T94giYLF1rhP5omdBdl/eA/b/paao/F4D8/mX7396/gPyuX4huAueA/ZRplMJTe4D83gjJ6ORvhP5GgN68ca+E/LBRdxqLJ4T+Hg1OG+jHiP6mdVWcun+I/UDD3PDsM4z90D1iGHnTjP2qjs/Ps0eM/IJBl6OUg5D+MupYehFzkP7mCSUGPgOQ/fH7TFyyJ5D/+Lrhx6nLkP9wCY1nROuQ/TfB6umre4z8Eps54x1vjP37QH2eJseI/WPoyIOPe4T/epPc0mePgP8qkd1EDgN8/QkfviPvp3D9GPbuk5wfaP3y2582N3dY/Pg8yQ5lv0z+ecUW2+4bPP6CnWtDCvsc/CK6fFvgnvz/QEdMZAFSsP8AT4QTO8oq/2OjM2TxStb9sxaVFNcnDv2iFpiPr/8y/f/wkaPse079cQQ4JSrrXv3oqXm7SSty/YI5sRPdk4L9UFxsjupjiv98Q+lThveS/ZPgAcuPR5r9+fK3WhNLovzrJWzPWveq/RGgH7DWS7L8AsXqJTE7uv1YQI4MK8e+/pGkfT9G88L/BzWARw3PxvwzvZoYtHfK/3D8aRvy48r8N4pyTLkfzv2rtx5DUx/O/iuHLFAs79L+okZLd96D0v8zFJszH+fS/4Bj/w6pF9b8UnMoa0oT1v/w0NnVut/W/8dQNP6/d9b+Fbc3NwPf1v7rASGXNBfa/4lIB6/wH9r8SqgAedv71v5wi9MFf6fW/Pq+jvuLI9b+K7eByK531vxP96/5sZvW/KZVLxuIk9b/YVGcg09j0v/581Z2SgvS/EIGSAIUi9L+oXXI/ILnzv8ZuGRLuRvO/lGMabY3M8r9x0yyQs0ryv0hQl/4swvG/LLP9+dwz8b/5+VvovaDwvwISdyrgCfC/GB2lYdHg7r/BZFKEHqvtv7J/LtI5dey/6CprftBB67+aIZ8ypxPqv31S01+R7ei/qClCjmvS578O9G/ME8Xmv8ScR2hhyOW/p1fByRzf5L8YDOSv+Avkv+z/XG2IUeO/SKGgFDmy4r9tUeDPSTDiv9AHOUTEzeG/oDZf+HWM4b+mx74w6m3hvxzGON5hc+G/EJXVZNGd4b+MLkql2u3hvwkwW0LIY+K/NoFfyov/4r9jfqTCusDjv0ejA7ONpuS/X6RRB+Cv5b80q74fL9vmv/pDYCueJui/EMtEWfeP6b+GVCmVrxTrv07JiA3ssey/U5xWnohk7r9ZewJbjhTwvyR4gU0D/vC/qzxix7js8b/goVlLsd7yv+WrncXg0fO/OLuNjTLE9L8jBaBIkLP1vzLScSznnfa/p/MR2S6B9787Ad6fcFv4v6Sljv7MKvm/AWV194Ht+b8ZT6fU8KH6v0I3cMKkRvu/kiRQ4VXa+78LCU387lv8v4x7VViQyvy/a9xK4pIl/b+D8uP2iGz9v9WWj89An/2/vpjHmcK9/b8GKqXpUMj9v+GVrpRlv/2/bMyZN6+j/b+W2gSTDXb9v7nuO9uLN/2/T5eu4lzp/L+uqcKz04z8vwuzDtReI/y/CouQU4Cu+7/mJ81Yxy/7v+fshD/KqPq/Vhi4yx4b+r/Yass7VIj5vyCa9T/u8fi/J0Ejil1Z+L8fF8sv/b/3v3GeaAcNJ/e/1nvICbCP9r+AtY7d5/r1v8lynwCVafW/XmGoqnTc9L9nbwzKIVT0v+YbVpkV0fO/KOn1t6hT87+5foPJFdzyv5xYGBt8avK/YzT5keL+8b+zAoGOO5nxv4Q5vNNoOfG/3uLp7j3f8L9zbE/thorwv9QX5V4JO/C/0DpeOxPh77+DqxJDnFXvv2gDAKFD0+6/aauWl61Z7r84Aqc9kujtv/ZJ0n3Af+2/hqR7dx8f7b+Q+xsyscbsvzI/eiiRduy/MZZHLfUu7L/51klWKfDrvzALuJuPuuu//wpKoZuO679kJ3lkzWzrvzliTUyuVeu/ZG3gQctJ67/0vg6lr0nrv8VHrvvfVeu/jmE+ptRu678iIChI9ZTrv2lI6o6TyOu/9I2TuegJ7L+e+qbCDlnsv1BDaEUBtuy/Fiq2a5og7b8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"5t16fUzvyL80hzmqa6XJvx4r/DymTcq/+ies1ljqyr/Y3xgUgH3Lv0QqJxSxCMy/xMPM1w2NzL8e+aEXSwvNv6YSbMOyg82/YJJVZSv2zb8Qu2GzPmLOvyAGYlcux86/Yp6F2P8jz78QpaiLkHfPv1CP7OSkwM+/psh+zwL+z7/GqtOrPxfQv/ZwtzOLKNC/8iIh/nsy0L/gMyGjzTTQvySOqAhmL9C/xL7qtVgi0L8kSQps7Q3Qv9D9NAs+5c+/DHkDhD6iz7+AIvcLoVTPvwQmOSWP/s6/MFWi6YKizr88+tfrQUPOv9hxVIrN482/kPZleUeHzb8Ycbx47DDNv1DVsJT148y/+NTToYqjzL8QZm8sqHLMvyiHY4gSVMy/nOKuFUBKzL80Ke2FTVfMv0Dk2cLvfMy/ZOSv1Gm8zL+K2IVPihbNvyrwOdqli82/jtGerZgbzr9QVm/+0MXOv2TDQ11Oic+/bv9+HFsy0L/im7ihLKvQv/fNpm0mLtG/MetLUjy60b9o2wKvUk7Svz6oGrFL6dK/s3kT9A2K07/0iyJ4jy/Uv6nlnm/b2NS/E1VezxmF1b+gtjpBlTPWv3cyY3y949a/RGZmMimV179NarVPlkfYv3LWSxnn+ti/mAeyriCv2b/I/EapX2TavyZFObHWGtu/cU5T+sDS27/7vHS8W4zcv3Xq1/XXR92/hqN5YE8F3r9oARABu8Tev3atSF7lhd+/cw3uazAk4L/BwtG2vYXgv3J3sWkd5+C/Vj3MRqhH4b8zzgfaiqbhv3BgvifFAuK/XKtmqihb4r/tEohDWq7iv2/fO6XS+uK/nRHHJ+I+479gLkfItHjjv/4RFtlXpuO/dt0AG77F47+Mm3QpydTjv1qtxAlP0eO/8ggD/yK547/8nfCLHorjvyJ7jyMpQuO/JRFAeUHf4r+Q0nN/hl/ivyjHM68/weG/IeNYkuMC4b8PvWToISPgv0qthpvPQd6/ZmkjAdD2278Y8yQoPWTZv81Yfwqsida/T1eQOlZn0799KjKPPPzPvwZGMxwdn8i/Tr1kY8W7wL9MDuxs+q+wvwB+6u6xo3A/FM/y6E6msz9fxHQAgYjDP011UG5hms0/lnnxH3H+0z9cwjv1kVHZP5Gm+wOsv94/BBwwU7og4j80cpUrpOfkPxvb4XeesOc/QuN2SZh36j9JXyFebzjtPya0wNv37u8/KEqBIIJL8T+UkvL5OJbyP1Se1OCX1fM/MEetoaQH9T8qC0GQdir2P7/aMjQ8PPc/FCtJzz47+D9E7h5Q5iX5P85GHva8+vk/rhW2kHK4+j8g+WPc3l37P7iqawcE6vs/RBea9xBc/D+p1+RDYbP8PzQANFR/7/w/VOBATyMQ/T8CpZ5DMxX9P8gi8+3B/vw/UM8HrgzN/D/YAaMpeoD8P/jKS8aWGfw/oxIHzxGZ+z+03fOquv/6P27C2lh8Tvo/Go2/QVmG+T/Q4sv/Z6j4P3S6iMPOtfc/fD3x0r6v9j+WMGFUcZf1P7S5ZeYibvQ/Kjqb0RA18z9tdYV3de3xP+aZaxqGmPA/ON+YZ+Bu7j93zMM9spbrP7AB3UW3qug/tETmNRCt5T9845JRyp/iP5+VB3u9Cd8/rS/SKmu82D+tSoAfVFvSP/hxL94x1Mc/TNurqzmxtT/goDLFa6eRv9xJ+xNsmr6/3rCfL+ZozL84Tgu0NMDUv6b7cb71Rdu/XYkqRdHg4L9aT2AJexfkv4EIv6m7ROe/lyyXjz1m6r+39yx7kXntv+N8XKoXPvC/o+jMZb218b9VjXNbYyLzv7+E2c2tgvS/kk9pHj7V9b97+rfOtxj3vyQMjIXDS/i/RYV1iRRt+b8s38IUbXv6v7dDZwujdfu/qdd+WqRa/L8Ixs04fSn9v2oqvZZa4f2/LyD5SI+B/r+9w5GClwn/v1X1GDQbef+/wiBg5fDP/78MASaGDwcAwOWy3pTuGQDAdOWej8kgAMDnbp527BsAwCbB63y6CwDAghPmQFnh/78KbZxFoZb/v1hN9qaMOP+/BrfbwnzI/r8L0Anp7Uf+vyUlGNtzuP2/Bkmv9rIb/b+EbrKTW3P8vyPyLyQkwfu/jK9TE8MG+7+zt2C/6UX6vyb6bqs/gPm/r2wcPF23+L+3hF5rx+z3v85OuWXsIfe/yW+MiB9Y9r8mfTy4l5D1v9OHGvBrzPS/aySsK5MM9L9myfZL4lHzv/4HiHkMnfK/wZduZKPu8b9E99leF0fxvzbM4vu4pvC/KPbPdboN8L/SAp+FY/juv4rQLkE15O2/AExI2LHe7L98La5Adufrv56guXL7/eq/zLOnmJkh6r/NKg7+j1Hpv3lcrtkIjei/rgI+NyDT579HyIl46SLnv/qobFVye+a/Z40Dw8nb5b/rPKJmBUPlv5Q7cnJDsOS/XzKZnK8i5L9YnKWriJnjv+pNPCcgFOO/Eb98V+CR4r91H5w+TRLiv+avfLoFleG/cYTbSMcZ4b8PzroabKDgv7wh8KntKOC/Wtt/N8dm3790nYylBYDevxQcWLg5nt2/7HLTnTvC3L9EgWvIE+3bv95Jpn71H9u/qkcwETlc2r/gDXApUqPZv4QZiOTK9ti/ZI3dXjVY2L8IJ5B1K8nXv2zYr+85S9e/IGxeMN/f1r8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"o739ReAi5L/m5EKE1WTmv7ZsXBC7tOi/pxF8BS8P6785IuQ4vXDtv3k9hbHl1e+/HtsT5ZId8b9YyVgyf07yv5s+efL+e/O/xMaMF2Kk9L/2kFAiBsb1vxFPoo1Y3/a/dwKHItvu978IyfBRJfP4vywPT5bo6vm/2gb/fPLU+r975xTpLrD7v5Jpyx2re/y/2extH5c2/b/g8WtzSOD9v3k+huA6eP6/GhR+dxL+/r8qupwMnXH/v/Mxc2/R0v+/x2jUsegQAMCwRh5kdC8AwCwM51JGRQDATZ2jja1SAMCPDS9YDFgAwE6KxyjXVQDAhTpltpNMAMCeEkCj1jwAwKzoSONBJwDA513UqYIMAMA0a9yMnNr/v+OPbKbAlP+/fHVnie5I/7/aFk89o/j+v/Q/i+dVpf6/D00kb3FQ/r8WlOHPTvv9v7ZZDD4vp/2/FtD3ejZV/b9J+POAZgb9vxsoaAyau/y/cfTGSYJ1/L904CiPozT8v87HRhFT+fu/ofoVfLbD+786+Auww5P7v0LzQSBCafu/3jid1MxD+7+kCXki1SL7v8IpLf6mBfu/FFY5rm3r+r8GKU9wOdP6v4u/qo0FvPq/FmWSFr+k+r9c5A/OS4z6vxa8QlCRcfq/5Lg+I3xT+r9anKJfBzH6vzmsqcBCCfq/QYPUUlnb+b/aTDi9lqb5v9duG9dsavm/Kbp7eHcm+b+uule6f9r4vxSjFQx+hvi/VciuFJwq+L9A8lWxM8f3v1xd5UzPXPe/GD9pBCfs9r8Z6vE/Hnb2v7hdype/+/W/4efQSTh+9b+q2+rc0v70v+MOvrzwfvS/6oPdaAQA9L9yBnkiioPzv9feqyQBC/O/wn73S+SX8r8M6dxaoyvyv3+LJI2cx/G/J+80kBVt8b/EOExWNh3xv+L5g/cC2fC/+PbzJ1ih8L8W31TQ5nbwv2T1Nj0xWvC/vCfuWohL8L9oVMlUDEvwv3b7BVWqWPC/8b0B8B108L/1CKXA8pzwv6K1ra2G0vC/rL2FrQsU8b+ylnyFjWDxv2hZ5u3ztvG/0nDZ6AcW8r9gZdRaeXzyv1gGdBXj6PK/iohxRtFZ87+mBNAlxs3zv7+tlro/Q/S/yuUBrLy49L9XhM9xwSz1v11D/x/dnfW/Mq5v860K9r+OzM+f43H2vw8xDxlF0va/L0cW+bEq97+PXYylJXr3v6X1zM24v/e/XruQ8qP6979DVMdsPyr4vxJM9lcETvi/u19Nfo1l+L/wT9RvlnD4vxm9IV37bvi/00wUbrhg+L9kIGGN6EX4v24HJafDHvi/oZhTTZ7r97+tekeQ5qz3vyzeE/giY/e/p05t2PAO97+WYPx9ALH2v2YkpP4USva/kJH6XwDb9b+VkZQpoWT1v8G6quXg5/S/Uh4JSLBl9L/gscUXBd/zv6gG/LLXVPO/T78z3R/I8r+k87Gd0jnyv0aABkbfqvG/CkFKUC0c8b9SE/SQmY7wv1RaZ9z0AvC/CsS5RwH07r+09r9V3ejtv7eySay85ey/VZODcLjr679nkIwqwvvqv/xqtBihFuq/knZSzfM86b/DInC2Lm/ovyjm+lOeree/bDCBFWj45r8AOxGajE/mv1PGhqrpsuW/bXTQ1UAi5b9jibPbNZ3kv15YxLdXI+S/p3r+PCK0479MrQ4WAk/jv8q/Bm1b8+K/vkTEdoug4r+GYfLH71XivwgIFgbmEuK/Mg9p0tHW4b/Q+j77IKHhvwGLyjJKceG/oxJ0GdFG4b8EQRq5RyHhvz71QLBMAOG/AE6DdI7j4L8RvJNiyMrgv2pDV9fBteC/1V7LyEyk4L/LZj2CRJbgv2olGeaJi+C/HMC6kgGE4L+ssgjPkH/gv2Y2/ZYbfuC/lHvkRYB/4L8k/3Etl4Pgv7oOC/gtiuC/p0pl1waT4L/nw2Nn1p3gv65zVlpCquC/E4aTqeC34L88O5E7OMbgv36Ef5u91OC/iGdjmNji4L+NxWMw4e/gv9SPpsoi++C/HXLUSt0D4b8E4P9ySQnhv8i/fcyYCuG/tYVWr/oG4b+jV2Hvnf3gvw69wzq17eC/Fjf1onnW4L/s+r5mLrfgvyXvhEIkj+C/qM5ABrtd4L+UUZB9ZyLgv28BVk1oud+/kgkIVYUY37+CKPXVpGHevy+EPSt6lN2/eokWE/aw3L/WMmkESLfbv5GujzXhp9q/KhonLHKD2b/EXXMk60rYv2Gs511+/9a/DlTXxZqi1b+QWOqZ6jXUv4UO5hhTu9K/3GL9A+o00b+3AimX7knPvxdcRq/cG8y/4+xmVsjkyL/OPpK/HKrFv26j3kVwccK/NE8lqe+Avr+Azl2+7zm4v7gvGGVbGbK/OD8yRRdVqL8gtjZRC+KZv0Bp9VwK3XC/0D6LKEwukD9I95CuApWhP1AhbVNdTao/dHa5uOgYsT+YVaNJLpu0P4xGPazWqLc/ANZQNK8+uj96qSkCH1u8P/zVgSo8/r0/tiQTkNopvz88GyTiquG/P3YARjygFcA/3D20rAUHwD9Yo6FTbpO/P/DZZUOcxr4/unmplaC0vT+wbMsIPGy8PxJFkz3L/bo/TLjqfyB7uT84GvzQU/e3P8yyu7KnhrY/rAP0pCs+tT9UaI91oTO0PxLhsQwifbM/qkSr9uowsz8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"phMBFH4bxr87/h+6IGLHv3IRANsq4Mi/lkOy/AWRyr9wIMueH2/Mv+KtQbcidM6/HqZKroJM0L8iKlFfE2vRvyyUXcO3kdK/hVbo6ji807/L0zNMRObUvyYUXFl8C9a/I9qK54cn178TPefAITbYv540bFckM9m/7Gsn3Zwa2r/APvzL1ejav2RpIF9fmtu/ap3yTCIs3L+E9E44YJvcv5YuZujE5dy/JGxLy2cJ3b8kb9gs1ATdv5wM9OMN19y/3MHhQJd/3L/h1EuZbP7bvzX7+wsOVNu/oi1ON3iB2r9azxbdJojZvwZIgqkRati/ONldpacp179okae/ycnVvyJkwUDGTdS/7ipr8VS50r97Vtk5hhDRv7p3S1uIr86/HhD2G4Uny7+0eYep7pLHvyYThsMc/MO/lumvGLptwL/0GLE3V+W5v9zS3ajvK7O/YD+aOLiKqb/wlzg5DR6bv4CVgzAef3S/YETptq0jjT8w0GmkaaafP8hqDEz+6KY/9GFhC9ZmrD/kVRVwLBawP8p/IzFDDrE/0tYgqhkPsT8snI9XNQ6wP0gmZx7eBqw/0F/7HPrRpT/4qWcY7u6aPwCE/qBXs3c/MJb2DARZk784gUHu4Gaov+wngRg3lLS/CCLgKIrtvb9obBM+vBjEvwrrD4ubp8m/LHY/CaCZz7++HrPZ2vHSv4tPPHzGPNa/tauca92m2b/99SSF5yjdv6KS19ieXeC/YAVqo+8q4r8xc9BwQfjjv646szpYweW/zEAhq+yB579/NgP2uDXpv99uwuCE2Oq/LnuUjjNm7L9fE2Pc0NrtvxJu9ZGdMu+/sivSvA018L8k5UXwDL/wv+FMOkTfNfG/WhgTFkmY8b9+L1g7QuXxvw1HbcD6G/K/htDml9078r+7pzpukUTyvwrbFLz5NfK/ZSkm/jYQ8r88H/0CpdPxv1gnRyvZgPG/ylK4CaAY8b9G9hF8+Jvwv2+0uOkQDPC/mBSs9oDU7r82f9zgA3Dtv1BiBEPc7eu/vk3TYGlR6r86YtlKKp7ovxYr5S+y1+a/HC/VCpkB5b+Gyf4jbx/jv2yxYE6wNOG/yuNx+HCJ3r/9bsCXcKXav9DiClZaw9a/20A4mK7o0r9QCvyb2DTOvxwiqSH/uca/pI3taw7Rvr9Ij0fQ6Y2wv8AiOco+qoW/iLzf7dRgpT+YiNQd5Zy3P4b9wVLwBcI/AD0wCnH9xz8A3lRodrTNPx6QmFiWldE/QEUYCR0x1D+SF+NPTq3WPyzHAqW+Ctk/JCMRTwhK2z+8SXbGs2vdP8A4I30lcN8/SlBTtMmr4D+AXNlu9pDhPyPmS8tqZ+I/XEdo3cwu4z/cSPGak+bjPwbxSgYGjuQ/Lh6wpDgk5T/ATsKGE6jlP2XEi7NRGOY/Ew3FZohz5j8VfJ/5LLjmP05yC/2b5OY/dVHZ4yP35j/lKCVWDe7mPyUGzyinx+Y/iIEryE+C5j9UJQ43hBzmP/z6B7jmlOU/SrYwGU3q5D8Gp4GdyRvkP4rP/Dy0KOM/gupsLLMQ4j99X3ltwtPgP17uwONt5N4/8EHkVIfZ2z8g9gzV9IjYP2d5WEyX9dQ/tvpsuAsj0T+oYxgsMyvKPyq1Kb1ppME/aDlog4F5sT8ARtFUAO1vv6zYiIYPCLS/UgGM0qDCw79cF/2caK3Nv0ta2uz/2tO/CxXasfvm2L+2pgYKf/Pdv67YhsvGfOG/2N8g8jX547/zUs1C3Wvmv0ox0zjC0ei/4n22ySso67/3W6llpWztv/eD4W8Ine+/ZJWw+L7b8L8GcLW2P93xv9Gt0Spt0vK/cG49q9W687/vmrVoLpb0v043uhJQZPW/MHtvJjUl9r9T+Tid9Nj2v6wQwBW/f/e/1xImlNkZ+L+oK/cnmaf4v3XVdZZdKfm/jtdPMo2f+b+8HEUVkAr6v9Kqe1jLavq/2JYNEp7A+r+HYFDaXAz7v62JiOhPTvu/yb4VObCG+78n57mQprX7v1dgyAVK2/u/4iiUeqD3+78cOFgTnwr8v2kqihsrFPy/uswqUxwU/L/mU9FoPwr8v5fHSElY9vu/+5+iXibY+79BrX8PZ6/7vz6OPyDae/u/34vdJ0Y9+7+4WmS7evP6vxG9xI1Vnvq/EKocisU9+r9a+p3RzdH5v3DFJ02IWvm/otJMhyjY+L+qqM18/Er4vx7ba4Bvs/e/CTsaZAgS979Hffl/a2f2v7aZs/xYtPW/8tWEyav59L9nb1ZjWDj0vxQWBbBocfO/RzYOgPul8r9VJbc/P9fxv9zaYQtwBvG/xoB9rtE08L8aT4syW8fuv7nxCGKbKO2/IKsxS++P679acjwR0//pv390BQmqeui/MhVOt7cC57+KlR20F5rlv+Z6w9m3QuS/3BpMIVL+4r8/vykAZs7hvwomBD82tOC/7lpbNIlh378P8sDZnYndv9N/PuGe4du/FE8PEvVp2r8o5PO5fiLZv6gHAeCVCti/7JvaFg8h17/g9kr7RWTWv6JSQccd0tW/Wuhdyw1o1b8WknxUKyPVv7zC2CQxANW/7tZzWIv71L8oJyHoZRHVv2DcMfKzPdW/ZuKT8T181b8yNl2qr8jVv4QJ6hegHta/IDD9TqB51r/AMk9LR9XWvwBLBso6Lde/nlcHlTt9178=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"uxS6RCZx6L+QFMvMCHPpv3iHeWAYb+q//o5hqAhk67+HQQO5iFDsv4xOl65LM+2/tjr9nQ8L7r/NjXBcodbuv7b9burhlO+/GlErHGUi8L89ICLLuHLwv2Wuk5IEu/C/c1X12/L68L/Plj0tPTLxv9P8aNWsYPG/aiIfORuG8b9NyRNTb6Lxv7bLBdWdtfG/feZ6sae/8b8Ucfndl8Dxv76inPOBuPG/9puTzn+n8b+NNJk6sY3xv4DJokc5a/G/tFaXfT1A8b9CXc9C5Azxv8hMDmlU0fC/3WgsJLWN8L8CGE7bLELwv06bT0PF3e+/KLwUh/wn77+N6zh0VGPuv1sy7M0nkO2/mymvl92u7L8Yit+q6r/rvxVglyDYw+q/Vn7zFEe76b/naQbN9abov+xOWSrDh+e/yTq/C7Ze5r8dP3aq/Czlvzkwb5/x8+O/OUr94h+14r/wjNVfQHLhv25uUdk7LeC/C+v+iFHQ3b8lf114kkrbvxrgMQUNzti/iN3/Iddf1r8O0uUhQAXUvypAWSO8w9G/BrxCVq9Bz79+CEQyQkTLv4regVk0mse/LQ3onTlOxL8mgCsYk2rBv/MHNArM8b2/BoTHEyAEur9erSQkBRy3vzIibidOR7W/pEfT1maRtL82SRlMOQO1v1C75v7/ora/PMiPdRl0ub/U1qkwHne9v+osOTnZVMG/zm8p61mDxL/6poUzH0PIv24q4Ijrjsy/oNp+pCWw0L/YF4nt11fTv1oPddlKOta/1syEXs5S2b+k0g/8XJzcvxQeyyfXCOC/ICSm26PW4b96ZyyzyrTjv/os8SN/oOW/CZ3XDvqW57972zxjhJXpvwgipcB+meu/S4YAomqg7b+Kl36B76fvv+eu11jw1vC/OyuTxyHY8b8SjYU5qdbyv8FHWne/0fO/MnomyrnI9L8yfPxqCrv1vxUauEJAqPa/YvAnZgaQ97+Cwl/vIXL4v8U0UYZyTvm/Idmywe4k+r+1G6vTovX6vyrJ0ZStwPu/Gh5xQj+G/L9Qc0xElUb9vxmTYqr3Af6/WNpe/ra4/r8ifgy9KGv/v41RbPbRDADALyFbtD9iAMCakVrdBrYAwPebB65NCAHAs1FCKjZZAcDB5n1K3KgBwAVjdQZW9wHADF27aLFEAsBQZppk9JACwL1vpjkc3ALAOpf72RwmA8A0r2rS4G4DwIoD4xlJtgPA9MJQby38A8ALzQaMXEAEwKQBC3KcggTAbzAvkqvCBMAxdGPiQAAFwI3OiOMNOwXAtzbLmb5yBcATvkaG+6YFwOa23dpq1wXAeEZBmLEDBsBLV5b/dCsGwE0QY0hcTgbAgL4+0xFsBsDnd2S0RIQGwLfYr5uplgbAFPo7vvyiBsDrr1l5AqkGwO59KoOIqAbAlwKEr2ahBsBLPBL3f5MGwJ9MItvCfgbAJnS13yljBsBZkLecu0AGwCbFyEWLFwbAeYnOFrjnBcAFRUBvbbEFwOQo2HridAXA5XMmcVkyBcCHU7hKH+oEwJbXu6WKnATA5hoRVftJBMCE+l1y2fIDwJyvc+mTlwPAm6fCWqA4A8DaRxlledYCwCYnA/qdcQLACGa7+I8KAsBYlsXb06EBwLODO+TuNwHA43dXFWfNAMBNGI2HwWIAwEnGhYED8f+/y5uwBFIe/78mEtTva07+v0rTm4BFgv2/41xEW8u6/L8W6qiG3/j7v6E+u81YPfu/BR1f6gGJ+r+wD2s1mNz5v+nHAObKOPm/42aBQDqe+L8qA2ssdg34v4pxiff+hve/BG8H1EIL97+OyXXfnZr2vxeYSxxaNfa/HbAuqK3b9b/Xw0Jmu431v2zLPhqRS/W/usYOcCgV9b/BqmlrZer0v/GAN+kWy/S/HM5gKva29L9p9j24pq30vwbBbPO2rvS/MF3cmJ+59L/dqSSjxc30v+ocsjZ56vS/wSHLZPgO9b/QwEo0bzr1vwhyDFP5a/W/6TD2Q6Si9b8x7DX+cN31vyCjOtlVG/a/istDVkJb9r+W0Kp3IJz2v4D7/Z7Y3Pa/8+e3pVQc9783sn+ugln3v45YDqBZk/e/xvpwrNvI978HjHidGvn3v2WgwGw7I/i/UzCr8HhG+L++8EcRKGL4v3Sel2a6dfi/fnjGDsGA+L/jYp5W74L4vxiXUGkcfPi/CEIl8kRs+L+LQ6a0jFP4v4zARgA+Mvi/pqohz8kI+L/Q5D6yx9f3v6oHQ7bzn/e/4RlwfCxi97+B3PlecB/3v246u1za2Pa/dgfECp6P9r8Qjbo/A0X2v1DzuYFh+vW/xCpZbRqx9b+5Ka2jlGr1v1aED6w1KPW/CFzfzlzr9L+MUQ0NXbX0v6+Glm13h/S/JNzq6NVi9L8dS1nrhUj0v7ZdYKB0OfS/JDoQn2k29L8ga5JRBED0vwv1TUK4VvS/Mo5xPct69L9YTNbfU6z0v5g+fVk46/S/M/F1EC439b8OmBQQu4/1v19xohY29PW/4Qie/8lj9r8rNz8ddt32vwVP0ggTYPe/SW2TdFXq97+fFH300Xr4v5AUlh4BEPm/IOyi8ESo+b9Jd2cM7EH6v0WjZLQ32/q/COySVWBy+78Fqv8umgX8v3V9jYAak/y/fAiVaBwZ/b8NpZan5JX9v0QKUEvGB/6/TiHCLSht/r8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"gYkUKdZk9b/sfopJUhX1v9WrNL3iufS/FJ1pRDZU9L8iwYt1B+bzv06rAs0VcfO/Yjonwx338r+sKnPn03nyvy/+Axze+vG/yQ0R8s178b/JideCHP7wv7imepUlg/C/EdBjbyUM8L96gDodaTTvvyYwwxKPXO6/8MWcFVuS7b+UUMsyIdfsv9IMmDrpK+y/YG8XvnSR678Y6DIXQQjrv5u++P+KkOq/9yW+nFUq6r9cIxURb9Xpv8zda193kem/melSLudd6b++xlq5FTrpv/K/odQ/Jem/hoT2qo0e6b/Qfhu1GCXpv8Yt05/wN+m/AXJF4h9W6b/Ulo1/r37pvxRctUmqsOm/98OI3h7r6b+Y4BQ3IS3qv3wB39/Ldeq/Q2GM4j/E6r/rifVTpRfrv2F+oFgpb+u/vsbhKv7J67//gFyKWSfsv1D6mDlzhuy/eEmnM4Xm7L8e7hDcx0btv3bN+Jxzpu2/PA726b4E7r95a5j23mDuv5ZzWRwHuu6/JGHutmoP779o0SuaPGDvv0K5+E60q++/us0SjQvx77/KFxfxwRfwv0zbDxE1M/C/YFPmhYtK8L+L+qZQel3wv2lr5+HAa/C/QakL0yl18L9ylrTRjXnwv/gMQArUePC/UKf1VPRy8L/MMPEi92fwv/a9MDP4V/C/fk3KIyVD8L+yL3kVvynwv1R/LFQZDPC/SGC4FjPV779j0JhVbYvvv48nqjvuO++/AM8p3d/n7r8abj6/gpDuvzXHe1gsN+6/TtWz1D7d7b/XAH20JYTtv57KEvJMLe2/1odNhB3a7L+l84FT9Ivsv+yoRrkdROy/OajuH80D7L9gNqgQGMzrv8JYBJjwneu/xA419h5667/UYr5yPWHrv9TS4Em1U+u/GOiHXLlR67/ZtHNoRlvrv69ZktIgcOu/W/gvd9OP679j6OKns7nrv4hc/eLe7Ou/eV2+7kAo7L/vLmoBmGrsvx0DBHx4suy//wK//FP+7L+1ZTLyf0ztv4VD7v8+m+2/E2tgDsbo7b/+8S/XSTPuv//vBEcDee6/GPbH6zy47r90/itdWu/uvx6+rN3hHO+/Dc+n6oQ/77+W7SbCKVbvv0F9p7rwX++/wTUYHDxc77/CuILxs0rvv+A+YO1LK++/riFne0T+7r9DzPxwKsTuv7LY7IvZfe6//wUNknUs7r8MsDajatHtv19weXFibu2/eEVp7EAF7b9arHq0GJjsvwLld4IhKey/YD0F+qq6679kQD+6E0/rv0I91uS36Oq/P/LUYOaJ6r+ewCJL0TTqv4DTe0KC6+m/RMuef8uv6b92267LPIPpv1isqIAYZ+m/SqGD/Uhc6b/sS19GWmPpvyvUDjNzfOm/Sssiv1Cn6b9dPpexRuPpv6uYhOM9L+q/YuXH2riJ6r93UsZQ2fDqv4GE0jVlYuu/1ufjR9Tb6783opWVWFrsv+DpTWTs2uy/ATVHZGFa7b+0fKYLb9Xtv8zi8yrESO6/2u+mWRax7r+NNywJMwvvv+4aQqUPVO+/0tWVEtiI779cGoQ4/6bvv1goPoBJrO+/LuKYPtmW77895m8+OGXvvzp/vXZfFu+/bVIcUbup7r8427/iLx/uv9SrSvMYd+2/b6CHkEmy7L8cDnTVB9Lrv3HuoAcI2Oq/twpMtWPG6b/xfTlYk5/ovz7rDfhhZue/Ic/UiOEd5r9c3pyPX8nkv55NGoJWbOO/tx2jZ2AK4r85skLtKKfgv6oP3q6/jN6/iwESclPX27+8E64zKTXZv7u1fTETrda/FsUid4RF1L8ObeslegTSvzlBsMDS3s+/RPqAOVIWzL9ESHYK1LfIv15mMEhKysW/dvYzOi5Tw7+Wj9SnaVbBv8ZeRY2qrL+/VEiBUGqnvb/ulqSygJu8v66J+hhChLy/8I/+xA1avb/s0jwLfhK/v9O8MsFD0MC/cRouH1p6wr+3E+/3tX7Ev5TsPiSV08a/SktPMWluyb8xe2+V/kPMv7q2Uw6jSM+/pPTwBSs40b+/I51MdNfSv2MV1cQYfNS/WXPrrRgg1r/2J1vbnL3Xv1iu3AUJT9m/vOZHJQ7P2r9UzPVYuDjcv25845J9h92/bpoaI0i33r/MLYK3f8Tfv56N8mYJVuC/EMM5gbu14L+YNVooWADhvzG4G9omNeG/dIma3LNT4b8ku6GEz1vhvxDN06SKTeG/xpMAmDIp4b+jv+dKTu/gv1KOrSaZoOC/umsDpP094L89E1vLIpHfv0nFUYIhg96/01KCSK5U3b/q+pMFuQjcvzjFJbxfotq/sL5AOekk2b+01CXIt5PXv5bkW3VF8tW/CgRC2R9E1L8WyM2A3ozSv2T4FcMg0NC/fFhxkhAjzr9dZCzaa6nKv5Z819OIOse/XbKECIndw7+2BTzmd5nAv0KfmZhz6rq/mASA+wzvtL/Q+lWSfJuuv1wGqF3/JaS/6LvRZpsqlb+AnhoWV/hvvyBPTQroG4Y/UDKTjpLXlz+Yg3x2/h6hPxDiS5MvE6U/WCQlE+K9pz/wC9o8zhepP5Dz8S8tHak/dDCRKMrNpz9YEC2iZi2lP3C9EsDgQ6E/oDdjbi46mD+wyHJjuSSHP4BSKt2UOWq/0DM7eu8hlL8A3Z7RyGKjv9ABjQtUea2/mOTHPs0YtL8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"XCJwaQoW/L8mJb0CRNb7vzqNmZn9ivu/mhc4NNAz+7/eWSgwWdD6v5pAYhw9YPq/Tm2eaSbj+b8g6vsPyFj5vytnWKndwPi/TxXIDy4b+L8SVSvlimf3v8Rxtt/Tpfa/IfBaRvbV9b84dzUz8Pf0vy81EtXPC/S/TEA3HbYR878mSvLm1gnyv9lCdld59PC/kGm3I/Oj779IstepjUXtvwTNy5nKzuq/aggtddlA6L8aLTCwDp3lv7DBgUrj5OK/N5ErKvAZ4L+Ly5L92Xvav654ZdZVpdS/tHA4N0Zozb8gDm7yZVjBv5CKHrSfjKS/sBnVwtK8rD+kpT/6X5bDP3RtFjICBdA/2r8oQ/FA1j+8t0996HrcP9DwU4x1V+E/DvlmMots5D9wv9r503rnP77eFi6AgOo/vG1RptN77T+piWLikjXwPzojV+dwpvE/PGd9l8MP8z/6T8US1HD0P7w50rz0yPU/+OjlioAX9z9NlmgA2lv4P6JuA6hqlfk/WNMrLqLD+j+6smoh9uX7Pzx/bhjg+/w/WGDClt4E/j/QYDs8cwD/P0ru5g8k7v8/TwwTF71mAEBCPvlDAc8AQACdMHKnLwFA8rcan3qIAUDOvMcqSdkBQPH7ZeDkIQJATIaChSNiAkB4BnUy4JkCQN967aP7yAJAA9WZUF3vAkCcnsPq8wwDQGH1vLu2IQNA5ND0E6YtA0CRaWsozDADQHlvtrg9KwNArt2kpBodA0Cm9CwFjgYDQEThl+PO5wJASjML4B/BAkAhI5JHz5ICQBxZYtc2XQJAa5dIBbsgAkCB6Ml4yt0BQMBW0mDdlAFASc8WS3RGAUAtpRAMF/MAQNx3gAxUmwBAFfeD4L0/AEBdj9+f1sH/P5CqSzDq/v4/orVGGeo3/j8Wj064CG79P5Mwt4t1ovw/l63IvFrW+z8LqcoI2gr7P4bLajAMQfo/jm2FJ/55+T9tztzpr7b4P4gfK8wT+Pc/z6mgcww/9z/upn2HbIz2P/hRVQf24PU/2RRsmFk99T849fI7NaL0P9STLKEVEPQ/yg4MpXOH8z/vHABgtgjzP87FAD0wlPI/kY0IISAq8j8IimPcsMrxP4OnzeT3dfE/clrE5/Ur8T8Ca3erlezwP1bG4/aqt/A/GgzsI/SM8D8UxkmUF2zwP89qerekVPA/EUg1YBRG8D8XIbSVxz/wPyxShUwJQfA/dTPoBw9J8D9BWsxO+FbwP95wsZvSafA/0lwYdJiA8D/KykRCNZrwP9Jph1eGtfA/PSoQO17R8D/oMTyQh+zwP7KwX6THBfE/8PhXfeEb8T+Y4WO+mi3xP4YkEYa9OfE/uOU+lBw/8T9uZx5MlzzxP21KipccMfE/xqlAYq4b8T9nBaYOZfvwPxw+lltyz/A/fhs9EiSX8D+R4Cy45lHwP34W7JSP/u8/DHmQDO497z9OQ8ANkWHuP9bOnEBsae0/YKw2hL5V7D9E80g3EyfrP4jrau5C3uk/hauDqnF86D/Fh0rMDAPnP7Tmw8nJc+U/kqxQwKHQ4z/32K41zBviP+f/lDW9V+A/uBycCjkO3T+aUoGOg1nZPwYRTmVVl9U/GNASgu7N0T906rPweAfMP2g/79aXfsQ/QGRz/uscuj/A3WXy8xCnPwAQdOvcMIW/UOWkx3FVsL9AQf5/D229v0iILP7U6sS/9P/nLre8yr/60bTdDBHQvygpGGvwiNK/xn0U0//B1L/8eJiMybjWv8x79Tl4ati/0J0x29zU2b8eQvw6cvbav2BOagFiztu/ACsS44dc3L9w5ErYbqHcvzYnGX9Lnty/sLw+UP5U3L9w2l4OCMjbv4ZCvdCC+tq/yiiiWhTw2b8oxdIu6KzYvwYXuKacNde/+PzLYDeP1b+Ci6fPFL/Tv6KG28LXytG//PG1xLBwz7/sF5AvJhvLvw4y8v4ooca/HL353dMOwr+0rMhYN+C6v4TMMuFaobG/KGWjkiLvoL8AnCYB/vdgP/zrp58gkaI/EGXz1HW4sT9vFAmr1sa5P7oLCiiUssA/zNkPqoZDxD+8rnjeTpHHP8IT1RYvmMo/7qeCjMBVzT9Q33518cjPP9qRWmAG+dA/y3DFt1np0T/ErXwr77bSPzSK/37oY9M/u1B0EALz0z+sLyZ4i2fUP5b72C1WxdQ/wu95jqYQ1T9298pgIk7VP75Vpk+7gtU/TJRbLZaz1T/04QVL9eXVP4QKmL4dH9Y/RpCRrTpk1j/G670QSbrWP40VGyT2Jdc/ZBWtO4qr1z/6GGT+zk7YP2Ky+NP6Etk/IQKvI5r62T+ZMLkrggfbP366SCO/Otw/cvoqqY2U3T/2Gi9UURTfPxlutkpMXOA/deWVrYs/4T+tfekHWjLiPzM/esHHMuM/yzoUsIo+5D8FsvQYB1PlP685oxtabeY/zzpuZmeK5z9egCkv5qboPwsXWopwv+k/dP4ZO5DQ6j+xwXQ20NbrPx4mdojMzuw/t1N4yj217T/Yl7dYCYfuP9GftkFOQe8/UifgZ3Dh7z81zVxokDLwPxHFn3Y0ZfA/xl7IqtaH8D9qdZo/2pnwP1rATBjUmvA/bOR+ZYqK8D+1MKI99WjwP433GUY6NvA/dfPsvFnl7z+WgTIFkj3vPyyAH0pgdu4/plLqH0qR7T8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"dC8i/Fzq2z9gNc0ag27fP5brSBopdeE/gsln1a8s4z8Lekezf9vkP24gSBIsf+Y/tK96MTwV6D93R9SPNJvpPyz1KQ+oDus/gyf0IkJt7D/Vgzos1LTtP4leK/Bj4+4/MpIAbTf37z9U+CGPcHfwP0RmAcCl5PA/EpeaQ+BC8T+UGE1F+pHxP+gU4a0D0vE/T5oTM0YD8j84vgj7RCbyPwzjNfu7O/I/6OS3zp5E8j9uk/OkFULyP3q47V15NfI/3iE/Jk4g8j8t8T1hPgTyP2rtRLYS4/E/gxOh06u+8T8QhZ33+JjxP9+M9pvwc/E/nAygIodR8T8CEdOIpjPxP5jp43wlHPE/26Jtpr8M8T+rrMNADQfxPwRP/J18DPE/uUPIekse8T+OSdkkgj3xP07kil3uavE/wU03rCCn8T8YWvf8afLxP7Bny6HaTPI/zvon5UK28j+xPgCgMy7zP6YP25UBtPM/U5oUQ8hG9D8K+Yc0buX0P75bgUyrjvU/GPfaSQ1B9j/uKdeA//r2PxWr297Quvc/przJC7x++D83kJf27UT5P/j/lsSNC/o/35+a4cPQ+j9m21WbwJL7P3eQfNPCT/w/cCqNIB4G/T+YA22hP7T9P3JGt9GyWP4/TDN5JiXy/j8gefTxaH//P8OT92F4//8/YxTQW7o4AEBFoqNyVGoAQCX3mOZDlABACorBh1W2AEAsiYr+aNAAQDvttjVv4gBAmoCD/mjsAEDWXdhQZe4AQIP4vm1/6ABAHcSZON3aAEBYMgQGrcUAQNJpJVUjqQBA79zVqHmFAEDJvmpn7FoAQJE4Byu5KQBAikDEljvk/z/EycPmrWj/PzfCB3g+4f4/SLTy611O/j9SNDpVd7D9P1CeryzwB/0/crNxBSlV/D99/JL5fpj7PzDLrGFM0vo/Dt6ivOsC+j/Iy/GUuSr5P4AxVzEXSvg/5s+f4Wxh9z9urhW2LXH2Pw951lDZefU/Up20zf579D+GmfXeP3jzP36JkBFSb/I/nL+qcAFi8T+jbXHKMFHwP50l0Ym3e+4/U7AVmS1S7D8930rxHCjqP8s1ZF0OAOg/QwkOArfc5T9WOVGt9cDjPyMmwvjLr+E/mCWxEbFY3z+wGQk/o3PbPzb6Nw33ttc/ZMicNz8p1D/CNgWxB9HQP0gNsw6Bacs/uHj6q1S1xT9wX3bWf5HAP9gTyAWOErg/oMQ6ISBOsD9gYHjK8dCjPyDTYRAfyJM/gFQPWNOJdz8A/uRp3zRevwCAXMBoTWu/AIDdqikcVj9AkTjsPweJP8DZD7Rh8p0/EBH+LP7Kqj/w+W+q+tG0PzDTQ3XBtL0/TDJXsHz+wz9sEBYiLcvJP0QTtkVQGtA/mvxgpLyW0z/YCRa3dVPXPwJSNZ5sSNs/kJdeVQFt3z+Xfw96C9zhP0JtNN0TEOQ/B66tTLJN5j/1XPpe5I/oP8pKyCqb0eo/AW+NT8kN7T/UQp7Fbj/vP+KgmDDUsPA/uM66Nd238T9RAu0Kj7LyP8BgB6XGnvM/j8jdo4Z69D/jlCE7/EP1P9kHYlmE+fU/uhc/ya6Z9j8oGi7EQiP3P7WP+09Alfc/Rs6XDOTu9z9oJ7e/py/4P9haItBDV/g/pNC86K9l+D8oN2LJIVv4P8XAlf8NOPg/PVkkwyT99z9+7sKEUav3P4NcMF63Q/c/hHD3za7H9j907Px6wTj2P6Ujbr2mmPU/2r5vij7p9D+glfA4jSz0P2t8bGS1ZPM/RBh1JfOT8j+EW5AMlbzxPxAOBw334PA/ppeSH3sD8D8gdPIoBk3uP8twS53TmOw/P7semPnu6j+auRFm6lPpP1Pyayfky+c/Av8adONa5j8EhdGxlwTlP7yvVpZZzOM/75feLyK14j+U6lTAf8HhP/WmXgCR8+A/uTICawFN4D/1KulGAp7fP//3+AaO9N4/AU1zox2e3j//8ly1NpreP9jyeSpy594/bZCy4YmD3z/S/+JxsDXgPzMNA8+NzeA/dFloghSH4T8YjKtOsF/iPzMwzhqKVOM/7OVbyZVi5D8kd1p4nIblPwI2sQdLveY/IqvtAj4D6D/Iovv9DFXpP+DHomNXr+o/tzmN9ssO7D803Ll4NnDtP1zK9W6E0O4/onUym2YW8D8tmVHGLMHwP/boAL5RZ/E/dN0Xx64H8j/BYGNeOKHyP7Hce/L/MvM/DToLxDC88z+I5bpvEjz0PzqoAasEsvQ/iW7xQH4d9T9gKmI+C371P4MnTOtK0/U/E99Yd+0c9j/R4wlNsVr2Pzz1+GthjPY/bPP33dOx9j+Y7HZs58r2P0Gsb8uC1/Y/JB8EfpPX9j/UlbIWDcv2P8Ow4wXpsfY/dsYt6iaM9j+uJVlozFn2P3DmkWHmGvY/C40jconP9T/8MZYm03f1P9Z1ktjqE/U/RCd9uAOk9D/kUDcRXSj0P3HPGWFEofM/i3RTjxUP8z/0Gd8ZPHLyP+cP0KA0y/E/7rCpmIsa8T/w0sXf3mDwP174ORC6Pe8/UGDpF4mq7T/NwCJ5xwnsP1d1XysuXeo/yU1m74+m6D8te2/A1efmPxwL+JT7IuU/TJSUGAta4z/IYChaGI/hP19WDBl4iN8/5nz5WB/32z8g2CKMS27YP2G9mtQR8tQ/oc+zK2aG0T8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"g0cEMujx5T/YAH8U0HLjP/QmLzia8eA/SmJPMvDe3D+kAf5cMtvXP8Ysuwtb2tI/h29ugqG9yz8yvwK/C9bBP4743LUBBrA/WN9QCbJki78HEz5J0qC2vxj8iCuzxcS/noKUFEAQzr9igK7L9pTTv3ze6QMrBti/rU4OrXBY3L/khEeVMETgv3EZdpRCSeK/2Pz2fqw55L8+D/Q2qhPmv0GIpaB61ee/0mqzEmR96b+QbAJjuQnrv8tO3T/eeOy/oFuyy1DJ7b9W6JshqPnuv8L1ymtPBPC/6nHE1op68L/y+fWnC9/wv2pdgg5uMfG/bXUcumZx8b876t2Nw57xvwKsMX9sufG/ccAwW2PB8b8fu8pNxLbxv2OxPxXFmfG/rjLvL7Nq8b95ItkX9Cnxv1rW054C2PC/Cj8edW118L8yTPbr1ALwv5Ap0YXSAe+/tAefGNDg7b9jWqIjNKTsv75fYCWiTeu/cs00Rcze6b/i3VEWbFnov/2qkmpDv+a/eLG/1BUS5b+AeJ0kplPjvybb8Q20heG/fP/7WvZT37+/m8sEXoTbv3+cO971n9e/ThBougWq078oQY2zekvPv6JN7A15LMe/lNZxfC36vb8I3afPDg2rv4DS08ves4c/7OvgDZBxsz+OW5rH3O/BPxFhm7QaG8o/QTJT650a0T8YObyQihzVP9Rg0TnJENk/O6k1n9f03D9KBqR7HmPgP+HVVydDQeI/iJT1NaMT5D8tCQTSCdnlP+LqiJhCkOc/Mt42WRs46T9ct8GDYc/qP6a7qHbiVOw/ShGAzGzH7T8obsSSzyXvPx1PkEttN/A/z8GG/6/Q8D9EYzTDG17xP9j7w5Me3/E/6LbmqypT8j/2G3JiuLnyP5kzMSxHEvM/GGwC5V9c8z9cs2wcl5fzP7qkSbqPw/M/DrBso/3f8z/XYCKNp+zzPwZN30Vr6fM/MPYVbz/W8z9qEdkvNrPzPyJDRu+AgPM/kqN6BHE+8z+pdUZheu3yPzo2QUc1jvI/7IzJyl4h8j8mdAJK2afxP4aQRoisIvE/cff+agST8D8FgLkDXvTvP8LZHy42s+4/Cn57yaZl7T91gTU++Q7sP8Frueqesuo/9nX8XChU6T+8MPJoOPfnPxc8G016n+Y/viy+BZJQ5T8mSU1VEQ7kPxQyIE5o2+I/IJH0GNq74T+7rXTgbbLgP0XgwqnHg98/Lt5GblLZ3T8wMW2HnWncPygZbnb8N9s/vWAGbuxG2j+iOldKApjZP3izPczpK9k/YC1jiF0C2T+WBpEdKhrZP1grr98ycdk/UX/vsnkE2j/2zg2zL9DaP29P+ba9z9s/jiK8Lt/93D8SImMAtlTePzKTqprgzd8/4Ve3dE2x4D+PbISX6oXhP5Ofr1wpYeI/Nv5kiGU/4z+NQp02AR3kP1obvdV19uQ/3GSktV/I5T8c5GYijo/mP1z44UYMSec/jKLYfC7y5z+isSLzm4joP75r7T5UCuk/2G+T+rd16T8j+LebjMnpP+z7/S0ABeo/x2oJ5qcn6j9WD+UFgzHqP0n5rtT0Iuo/Xgmej8P86T8MR349EMDpPyTHtRRSbuk/MmnV6ksJ6T/0VO6CBJPoPz0O4Xe7Deg/agbFA9975z806vLt/d/mP9+ptRrAPOY//kZEhNaU5T/K3Cfx8erkP1XYON+2QeQ/ZighIrKb4z8HeWj1T/viP5xLn4nQYuI/vEX+NULU4T+6xQm/d1HhP1fS+3YE3OA/CCuARzV14D+pcT7IDh7gP1wh/2qUrt8/FkqdSKhC3z+O5M0QnvjeP/B25vIi0N4/jFP8AVfI3j/CQwjhzt/eP7+hw1mlFN8/TTEEWH5k3z/TgT2blczfP9wL+JTmJOA/JmZbQV1s4D8EQNdI2LrgPxhYbIhsDuE/vQg4/Rpl4T8qmo6g3bzhPw3O43KqE+I/9UB07nxn4j/qmzHMWbbiP7syTnVY/uI/9UuwGaU94z8iagNWhnLjPziecMdjm+M/p2FOXMe24z/SuEucYcPjP4TC99wLwOM/es91vMur4z8Ry2hi04XjP3txlZqDTeM/bCaVKGsC4z86/r3dR6TiP/tF9cUGM+I/lJWHrMGu4T89HhmCvxfhP1xbUWtybuA/GsVSHOlm3z8g737oDc/dP/56EN4cF9w/tJDK4SFB2j96c7EMZE/YPySULMJbRNY/GXkuULEi1D8qK6LjMO3RP2Rn78qFTc8/ghWoWcqkyj9gaRDYQ+bFP4rK1d8RGME/wDanM5mAuD8wS9C/4pOtP0Bbl5TSX5Q/gO618sknkr9AwVurpSGsvyAbGck7cre/uPOowilSwL/ACovw9M7Ev/xfVrU2K8m/Z6i4RQVjzb/JHuw9ZLnQv2krAPSjq9K/SpQbUMuG1L8Wh8z1jknWvyNUsvDE8te/alBDsmWB2b+oOwaFh/Tav2WYg3ZXS9y/io/W9RaF3b/20P7jFKHev80fdoyrnt+/Ep5iRJ0+4L+i9GAAEp7gv6CMaNNi7eC/YD6/xz0s4b++ul08TFrhv4Wbq6Azd+G/wgbRv5SC4b9QWmpnDHzhv1iFVP8yY+G/XwgTlZ434b/cLGMz4/jgvxGGty+WpuC/Sb4gVU9A4L/QoiqLV4vfvwKnVYqgbN6/QF2QJdsj3b8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"nL3gvRAy1D8eegeFu/LTP2SiJszjvNM/nNwOJ8SP0z8uXbFXXGrTP2KUe+1uS9M/Ry7mbowx0z/GGYflGRvTP/Zyh4ZWBtM/RraolmXx0j+tneABW9rSPzov1bZBv9I/QJU0uiee0j8m6jDyK3XSP13Rjf6GQtI/R2CV55IE0j+pVq+u27nRP254KWohYdE/Gvo/IGb50D+9geS78YHQP+7Lthew9M8/fGkQeQPFzj+CO01kUHXNPzCt0fK8Bsw/zEdx0Bh7yj/0ZbgI4dTIP0Y94LQ3F8c/VBdsSNtFxT/YZuv6HGXDP8RdiLbRecE/qJWgBYcSvz/AyMpxRTK7P2Bjnt/bXrc/sLMM1bmksz/w73BQoxCwPxAqvvn6Xqk/wM3psT4coz+Q+gpyuuSaP0Dw5gTA85A/4JSZAAUpgT8AcZmvczdfP4DVXrAsMma/gC8jjibNdb8Axsonish3vwBKC2FflnC/AEDFvpFIBT+AvCEh4sh6P0Dsh3S5v48/IDfR5mOdmz+4F+v5zPekP0CRuHkya60/cOrMMUiTsz8weddjohK5P3QGq31AML8/7M5yed7zwj8p6Mf63JnGP4GZHkv5hso/AAyiIay3zj/XpkjABJTRP1TnTFfo6dM/OPZevDVb1j9kxl2OfeXYP90WjcQuhts/tS20fJg63j+sedWE9n/gP+ENtvmi6eE/JNmyr9FY4z/ZWOxj+MvkP6eRYyeEQeY/A1mQGdm35z9VDeoGVi3pP85bUPNToOo/sboRNCoP7D9MLtZjL3jtP3lKmOe82e4/KwrDSRgZ8D9WJlvD+L/wP74qaKi4YPE/vnGkaZn68T8/1trJ5IzyP5KnuiPxFvM/WpcfRyGY8z+fJ83l5w/0P8yoeuvHffQ/k/fv81bh9D9yZbDxPjr1PxfwGCI+iPU/gN6c+CjL9T85tLDl6gL2P85ElkyFL/Y/6yBfzhBR9j+U0FJtu2f2P23JBYvJc/Y/MrJMKJN19j/GL+IJg232P8Qqri4VXPY/2EnbFdRB9j9ijzhRVx/2PwLzCjJA9fU/fT9RijfE9T/0zzF464z1P9vgcNULUPU/qswsKEgO9T/GPbJFTMj0P0i4qm2+fvQ/Q5tAFD0y9D9KRufXW+PzP/8OIJ+ikvM/uZS0wYpA8z/S6qn8fu3yPzmpc7PZmfI/JQUmMeRF8j//ugfm1vHxPw/dM9HYnfE/ZNPM7v9J8T8eBNguU/bwP8JtvPHIovA/LsKfjUtP8D9bubDQb/fvP0CyCx/ET+8/eqsQ6imn7j++6Q5CLf3tP/mRIf9SUe0/hxvypR2j7D9GNvePFPLrP+tHzyvFPes/AQCGi8yF6j9CFrPz18npP5ZjuZWqCek/hwqG6CFF6D8JuV39N3znPzOqZgkHr+Y/B1vuAcrd5T9magOh3gjlP8SzTOjGMOQ/ruzbKyZW4z+YO29BwnniPx6PFd5/nOE/Lj5C/2C/4D/NrBofAcffP1h/V9oeFN4/z+QyWJxo3D98mvkwEcfaP31SKLUhMtk/NRZkTW+s1z+6n5XbjzjWP1hIA9kB2dQ/h73jBRyQ0z9O3+EDBmDSP0KMRdCtStE/HJdpUrlR0D8chVwlBu3OP1BdfOYbdM0/ss7MXwc6zD/SZl1qVT/LP57od2HVg8o/jHpHxYgGyj+o8S/DqMXJP/Ontbm4vsk/s81813nuyT84rsXGBVHKP0wQ3DvT4co/2USG3tabyz+1Z+tRg3nMP+YY4MbvdM0/DOXkLemHzj+FyCgRCqzPP9WxWA5qbdA/voW3huYG0T/QAq4nTJ/RPwhmZiCDM9I/4nnpipzA0j8Q9nEI2UPTP6wY0s+xutM/II0tbOQi1D/oxiBCeXrUP2PfZ1fHv9Q/MZd6fXvx1D/4e8Gpmg7VP1KqFDmCFtU/6JQN0ekI1T9+oa+e4uXUPwIVLMLQrdQ/ZwqHyWxh1D/2/A4cvQHUP//HBtIMkNM/HhlVPekN0z9uCizNGX3SP0vCoTWX39E/VRQkYIM30T9t7j51IYfQP3M/c/Gcoc8/zfk9puotzj+Hj1HgGLjMP9vxrpsNRcs/7p0OuKPZyT+6rKlFlnrIP1AKh4d0LMc/Vp7zDZXzxT/aUa9CCtTEPzpGqDWU0cM/1N0Krpvvwj9UkmkFJjHCPxK2UK7RmME/ZEi3FMcowT+mpKSBvuLAP+LTwonxx8A/3UakdCDZwD9a7vZDhhbBP2y3EUrjf8E/D161BHMUwj+ErJal7tLCPy9NP/WSucM/lyJE5R/GxD8YVzQs2vXFP2h+oYyTRcc/mQ7Gyq2xyD8uG0AwHjbKPzANbfJ2zss/AoEg6ut1zT/g1xVVXCfPP/e1InqrbtA/Orqu9hNJ0T+ZY2C17B/SP6/kJdQj8NI/mj6YjpG20z9oXbje/W/UPwOjpAgoGdU/fG4HAsqu1T+8xJMGoS3WP5ABVyJyktY/7rnPKhHa1j97QSSkawHXP/RoGEKLBdc/5S2AYqHj1j9AS9VmEJnWP4vgzp1yI9Y/wixQBKSA1T9LHuxUzK7UPwgVZZ5orNM/X28hMVV40j/8codv1hHRP7zvWoI98c4/zoDkkblZyz+bll1we17HP6cGksfsAcM/4II7lBSPvD+KuxiS42eyP3h4YU0AZ54/SFoV1etsjr8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"+2NygvGC2r9YuCWgWpbav55TYc6j39q/LrzNPSJf278LssGpZhTcv+sIejI8/ty/YwT+mKAa3r8IBpemzWbfv/SMaM2Zb+C/aCo/PcQ/4b+rn/DkaCHivxX9gJy4EeO/V8xdTp0N5L/xCv6xwRHlv5TwQsWeGua/affLBYck57/t6m+LsSvov4s1uk1LLOm/XbkpxH4i6r8j4CCWhQrrvyDwnvWz4Ou/hPAUaYKh7L+LDV3km0ntv4/SdXrm1e2/fT/03opD7r+0w/t7/o/uv8uEjL8Gue6/2runD7+87r/Y3sknm5nuvwNkPNRnTu6/DbQC1kra7b8sLY81wjztv43lNF6edey/IZ2NWAKF679IFkT6WGvqv0zVvetSKem/62vU7d2/579AZFKCHTDmvz6M2wNke+S/2jpIGyqj4r+25q2/Bqngv0xjiMhSHd2/QDcklaar2L9MuTU0mwDUv6AfwPSiP86/OO24iNcZxL9AoqMlCy6zv4AjmGErG4Q/gFK8dKXSuD/AgoMg99jHPyA1oAPxxNE/+O5UXba61z+MzFjMgsrdP1JUcdOH+OE/RMslfYoV5T9yw1FPnzroP1Y+bugTZus/i/3BiSiW7j9a9P+qheTwP85u4LRqfvI/FBK0LsMX9D+eyz6/gK/1P0kGziyGRPc/sH/ub6XV+D8LwWWaoGH6P5QPFyIp5/s/8LPn5+Bk/T+Z1iwjW9n+P+QLFliPIQBANb+uDFTQAEDqWSgpNngBQJ68j0JuGAJA7dZ0EjWwAkCIIOB8xT4DQLNFX8xewwNAMOSch0c9BECiVmaxz6sEQKk7yuhTDgVAFbK0fD9kBUA+s4BID60FQKgJpC9U6AVAbHyjc7UVBkAJEKeb8jQGQIiuYlzlRQZAnZ9dBoNIBkDuDsxc3TwGQKFNAPAjIwZAMOkcf6P7BUDQ7pg2xsYFQIJa//gShQVA/OtpzCs3BUDfldx7zN0EQEjutmXIeQRAh4W4bAcMBEAChEmVg5UDQHwjzSVFFwNAmHJoJl+SAkCwIV+06wcCQJA2IGAHeQFAiLnQqM3mAEBQvV+bVFIAQBzElPlQef8/EKk5GpFN/j9WxjXWRSP9P+hHXMgj/Ps/qjH4sLDZ+j/SJZNjQL35Pw+V3x3wp/g/mIKGL6Sa9z/Ep6TCB5b2P4AZvAOLmvU/Vf9Z0mWo9D/cVqqOmb/zP123nzT03/I/yMxg0BUJ8j+2HKocdTrxP1Mwev5lc/A/iTBFUEFm7z9zasgWkPHtP88qhBPlhuw/3w0dpmAk6z/9UX2jJsjpPwJbRtZscOg/Y3noEogb5z+ELPDY9sflP3amEcNudOQ/XEQvSuAf4z+DzNcdgcnhP4M/w2zOcOA/v5z40yAr3j8UNbFMsm/bPzdxCW8DsNg/rPviulDt1T9PGkcWUCnTP0Rh6VcjZtA/2ANUn5BMyz+84vfd/djFPzSsuKZ1d8A/CPVKYh5ctj/AlzJwkQuoPwCv5oevfX8/IDDmxJkJn7+oIh43nB6xv1Dn9KCjE7q/iNTqgOZMwb8keTXmf1XFv9is57lyIcm/xgMHdIOvzL9cX69oZv/Pv6+lQxPbiNG/rfV9V/3z0r8PZeuzRULUv5zE6dxCddW/oYucetmO1r/agG6xNZHXvzIxeGu9fti/VDHfRf9Z2b+6IEyjpSXav25td5ll5Nq/cfobN++Y27+qhgz54kXcv+SxL5HB7dy/krezEOWS3b/GtnaHdzfevySJDnZs3d6/STANgHyG378wgD7JEhrgv3AEHpzTc+C/X79VLgbR4L9KPtI5EzLhvzZ6FnZMl+G/bHgJVvAA4r+rLrtILG/iv4sShOkg4uK/4CFdKulZ47/svVA9mdbjv81xk31IWOS/OWWasRDf5L+VArHWEmvlv1FF51h5/OW//pKCyXmT5r+RN+bhVDDnv96g1WZZ0+e/jc7S9N986L9pNp1zTC3pv/oCJZMK5em/8Pm8A4yk6r+3+3+sRGzrv6+dcLGmPOy/tUcBWiAW7b9sq5ucFPntv3f/U43a5e6/w6SIcbbc77+jOdBJ627wvx4hKd2n9PC/smhel4x/8b+GdvMahQ/yv7QNpQ1rpPK/W7826wU+87+iGX4wCdzzv5ojkTwVfvS/ihz5b7Uj9b8ZWesFYsz1vyaKChx/d/a/tK6Htl0k979o2kgCPdL3v689NnNLgPi/5Iw3X6ct+b+O5r4FYtn5v0yc3FiAgvq/HjX3F/0n+78AS3P+y8j7v6Eo9qnaY/y/2FwBIBT4/L/Gj4uTY4T9vw7jlD+2B/6/LMPexP6A/r9DU/xEOO/+v95O5gJoUf+/yOE3T6Km/798g1yIC+7/v96oTbRtEwDATnN7ETAoAMD4sZUTADUAwAIlyZOeOQDAZZ8T3No1AMA79EunkykAwG641+W3FADA6rIhWo7u/7+AzdsppaL/v/5uHgD5Rf+/1O8FE/HY/r/z7LRCGFz+vx7XFjMa0P2/X/+eLMQ1/b+aJSRPAY78v8TpFZHa2fu/ANevmnIa+7/WmOd6BFH6v66PdCPffvm/hsJ7bWOl+L/wIeCw/8X3vwRQfiUr4va/4IHdx2P79b/U+RePKBP1v88r6632KvS/JeXuMERE87+/nfVcfWDyv13KjsD/gPG/ixFvxBan8L8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"cNi7li02tz9AJqul8G6fP8D4CJg60J6/IMGL+wl2t7+AcqUYcrLDv3BWyuGAvMu/5I/JQxnq0b9EhN1aqfnVv5xFZa8+Cdq/1uqIt5IU3r8YMwu1aAvhv1RB0+NTBeO/+XRuWiP15L9Mk479v9fmvy0MAsroqei/RQ5Wgjxo6r+I04/PRw/sv/rKCNSNm+2/nyYU2JUJ77/dxiU6/Crwv0qXdVG1vvC/VKReI2U+8b/0qAh1lajxv3gjk3fv+/G/2Wa3eUE38r9EYzDXg1nyvyJsp5bcYfK/XKOMTqJP8r/BwLB7XyLyv0sFX1vU2fG/88k+Hfh18b8OQ7Qa+fbwvxU02Yw8XfC/3zBbPrxS77/4hQFjW7jtv1UASlRa7eu/RLwwHxz06b9UIMb1Ws/nv2G7nZciguW/6WdE6sQP479+W9Uk1nvgvwwXcCc+lNu/87BguSv91b/sORL4qjrQv6A+659IqsS/NGlyn51Usb8Ama9888qbP6Cej6vvXr8/eqkI69vmyz/N6Kq2TAfUP1ipXGsKC9o/NIV1io723z+2wAng/eDiP97NWSbgsuU/8BMYDUtt6D8rEOtLyAzrP30f5c4Nju0/yjTj5ADu7z/Uvi+R3BTxP15J0AlAH/I/suyn7ekU8z8i6p4Ts/TzP6eyc0CPvfQ/nhLJCI1u9T8GS5gv1gb2P0jbaoyvhfY/MqFDvnnq9j/4kfjWsDT3P5hD/9vsY/c/8py1/+F39z8PgLlbYXD3PwhlRO9XTfc/XLYpys8O9z/8eyJ18LT2P6bo5QL+P/Y/4YmAXVqw9T+YRiHpgwb1P3ulXJIWQ/Q/GTl/B8tm8z9TifLvdXLyPwYFdScIZ/E/P1wwl41F8D9WkUb+Vx7uP5JxSg5Fius/BnjxZo/R6D/u/gteEfflPzR8oU3P/eI/deapPebR3z/uza4pkHfZP84gghFx89I/HBXWZyOZyD/Y7Iwqiii2P2DoM/Z6yJS/BNigrQVgwL/USojxrDHOvyj5UoGG/9W/QkmTFZzc3L9pxCt+WNThv2cid9M8LuW/cTE9vGV46L8i1/4gVa/rvwpGHxymz+6/HCO2vQnr8L+D5bFpvV/yv5mgtSdvxPO/Hg3eo7UX9b+aU00IPVj2v0Rz8o7JhPe/yGI5DTec+L+HhXDBe535v0Rz7fmmh/q/KG11FeNZ+78SG3PhdBP8v9mmSUG8s/y/jvEe3jI6/b8e8wjebab9vxQB0Fgb+P2/sP8C+wIv/r+EXuN3BUv+v0H18iobTP6/TOn+/VMy/r/JSyFe1v39vzSnqc7erv2/ykG8AsBF/b8m6mEu4cL8v+bfmI++Jvy/IMXdC+px+79MwlzhCaX6v/3lWh3awPm/njewsyzG+L+UxErX6bX3v6SNDeARkfa/EHlvfbxY9b9Oz/v3Gg70vySoMnt4svK/OgshBDtH8b8h+ADLyJvvvxqm+DQkkOy/QJeHu/pu6b8OanT69zvmv3RuKu/7+uK/VqAHWzdg379wPUxlN7/Yv3DitRHYG9K/tKvwr4f+xr+YFn25hsuzv5iSy1q2+5c/husdOLM7vz/ki36vDeLLP2pZARh13NM/fhk/p9KH2T9OYalOBureP7u1CFYt/eE/dybVZE9Y5D+tBEyonoLmP/qaBVmteOg/7YWvuXY36j96aY5Ka7zrP4glw517Be0/6vHxnCIR7j8cfyrwat7uP4uS4Rr4bO8/eU0rJgi97z+dPqZ2ds/vP7XFwLe7pe8/oKsXJ+pB7z9m+gJvq6buP1mTuUw11+0/3Th/eUXX7D+ekQ2xEqvrP/DVVTtCV+o/MeZrWtjg6D/yHi3DJ03nP372q8LBoeU//v8z5GTk4z+jdHJh5xriPxovSVsnS+A/LY7Vw+v13D/1anXeCmDZP8zpDm2v39U/w7EzAlZ/0j+6BoxNrZHOP2zEVSaPisg/Lns21L35wj+c8EEbfNu7P4yoxHEC5rI/8Nk6uC9Ppj9QhM+Bx8CSPwAQqTxtOF2/0Cgl/gsEkb9AMO6I78iavzg6SaK7LJ+/cISVGVpLnr8o/OtogFGYv9ywJETH9oq/QBJs5cfKXj9wazJHtY+VP3rvAgP8haY/tBGWRKb9sT8yYb2ObHe5P7zUBG5LycA/6KtRF1QYxT+XVbAKeZnJPytu+iSCPc4/qtO+fsx60T+OQWROxdnTP1UHfYb4NNY/Mvx+aTmG2D8A1wX+8cfaP6Za+MY69dw/WUFHruIJ3z9E56VUQIHgP/0LVwE7buE/Fs/BbPhK4j867erR9xbjPz48PD4Z0uM/G0/DgJx85D9DMss6GBflPyrwfRFyouU/BQPvpdUf5j/oKHveppDmP1i7rXp49uY/Y0/oKv1S5z/KI0+7+qfnPyoNyws99+c/OHuLkodC6D/dfH7jiIvoP5nL9UHP0+g/KVX7Cbwc6T+B1f01emfpP/CFq1X2tOk/Cy57t9YF6j8EShFCeFrqPyiCRjnosuo/zEphoOUO6z/vduT/323rP2ja9TH7zus/MDSqOhMx7D/ANy8ewpLsPxiT5UNn8uw/OzmNeTBO7T8CM6/3I6TtP/rwVhkr8u0/eFW5Jx427j8BVmm+zm3uP3MzXuoUl+4/U0gOutmv7j8lvS7+I7buP53u/CQfqO4/CsjWKSmE7j8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"dDARDTi+xL+8SaFhG0qyv9CojMuL7JM/++nE1/pCvD/Wi1/z+77JP3Sn4nlop9I/rplAfh9l2D9k3aZThBXeP0Q4zHfe2uE/Mm8QR5mh5D9l5G55x13nP8kubaZhDuo/RceCNH+y7D9EsV4dV0nvP+iRlXkf6fA/BujgVlMm8j9a+by/DFzzPxeFpVccivQ/fmmO1Fyw9T/oUm6lsc72P7wp9Y0E5fc/PlF1OUTz+D8HKTYvY/n5P7ulL7dT9/o/Uh0YqQjt+z+2JlU6cdr8P1PwyFZ5v/0/EAa6kgac/j+4ewFg92//P7jl7raQHQBAExyT4ah+AEB9dEa8JdsAQFKEomTjMgFAVjAgGrmFAUCCmuhpedMBQIFUvi7yGwJAYIYkEO1eAkD51Y7YMJwCQNinrsKB0wJARuHwbqIEA0BmEixhVS8DQBdnXc9dUwNA1lbQm4BwA0CwjmVrhoYDQBYsGP07lQNAM1Unv3OcA0Bdng7mBpwDQJOacDTWkwNA/hU15sqDA0Bwc9ek12sDQC4UncP4SwNA5LUtizQkA0BUXyybm/QCQEkHXqJIvQJAZBpL819+AkA2HOulDzgCQPlKZImO6gFAVmqfRRuWAUCLlNDM+zoBQKSfXo182QBAXL2VxO5xAEB6iEVIqAQAQKu4560DJP8/JcAIhq00/j/SS6Y0Bzz9P1RB6/jKOvw/jLFuqbMx+z+S/+T1eiH6P1IY0hXZCvk/DBf9joTu9z/Zd/4CM832P7rn2kCYp/U/IIsWzGd+9D+sDqhVVlLzP7kjrR4aJPI/3kbcR2z08D8iczg9F4jvP9TIkzV4J+0/LiEQ+JPI6j9a4hMHFG3oP7dlg6u0FuY/gBupV0nH4z+AQMztuYDhP3B/7uUKit4/KDZLcH4s2j8Ki/GQHe3VP+TQoGdX0NE/wHHI/G+1yz/oC8LhtiHEP4BMW1iS3bk/wEkbUZSXqD8AzECiJO9Xv0CKXuGwJqi/sDp4Dxq+tr+Eik1uCSjAv9heP2VJXcS/rPXLcDL4x784uXMdAfPKv7xdmAbnSM2/AHHaGiv2zr9gdryyMfjPv6LfTY/NJtC/wK0N8E32z79s9f3LgPPOv2ROdBTCR82/mDfcLPn2yr+ktD2xZQbIvzb4py6UfMS/5LhxVFlhwL+A34TPbnu3v1C7LRBPb6q/oG2CXAZugL9o5jAPCNSjP0QlYLLElbY/qiAlwxntwT8umxFWb83IPwwsOV023c8/QHFZz7uG0z9bLzznhSfXPwnE1j5kydo/wiabAc9k3j+Yl9kQLfngPxlO7H5mteI/JvzNKJVj5D/KwmHJYgDmP8VVnh6miOc/Naefomr56D+o1/Mh90/qPxT70x3Ries/YCQsn8Ok7D+u+Hw+4Z7tP8hGbXaIdu4/FAOgZGYq7z+FXaPreLnvP7z028qGEfA/r7qh9WEz8D/Ofv18RkLwP6Y7jzJUPvA/dBx37dEn8D+OmpOYV/7vP6GfdiDjie8/+LMBbajz7j9wYYZvSD3uP/ONSHyaaO0/NNPT2qp37D8uLuITsGzrP7lAO/AFSuo/4F5HECcS6T98ZctSo8fnP7TuB5QabeY/7HkagTMF5T82s9i8lZLjP46dQ2PiF+I/VQM3yauX4D/x8u924SjeP5s/V8ctIds/Y1WQI8cc2D+yEhEP8R/VP09AxQmhLtI/bHO1nuSYzj+s7lqpU/nIP3z0x3pShMM//FGSBtF9vD8spt8ip1qyP7g3P99ZTKE/AKfICutDY79wV80HXcSiv6CvpF5Lr7G/1IARXRaAub+0iSbaMWrAv8DZhDiT1sO/sKpfly4Gx79OUUEqevrJv2c3sQZStcy/sLmkpfU4z79aSCTX+MPQv91gQnKN0tG/brFMOsHJ0r+qJ2/8M6vTvzXBJ92ceNS/xo9VLcIz1b/ZW8aXd97Vv7bD9LSeeta//jGZ3B4K17/O1PdE547Xv5KaYQvsCti/OLERRCSA2L/ES7QsivDYv8agX+EXXtm/8q9ezMTK2b9Zj6//iDjavyiQAVNVqdq/KMcBRhMf279Anxexopvbv7d1gbPVINy/T7Uj0muw3L8uX3tmEEzdv9Nno7dQ9d2/ccoR2Zut3r8wjQ9HOHbfvzGmRv8fKOC/rWD6yEye4L/Qmc45+B3hvzKiDrpWp+G/IgsGAXo64r8P2N6pStfiv06RpDOJfeO/VHijZccs5L/IdNrAaeTkv+6/cKijo+W/94T+dnhp5r80X0p0uTTnv3sz4/4HBOi/Rjc4L9fV6L9+TOurbqjpvwR7OTjteeq/oG9NlU9I678m5jOEcxHsv/R7gsAi0+y/ngh2exaL7b8S8alZAjfuv71QmfCe1O6/lDzhbLBh778p1OWQFNzvv1z6uNflIPC/lSCdPoJI8L9hrerfEmTwv94+4Q3tcvC/VV/vKox08L8qFwbYlmjwvzrBrHniTvC/JCexg3Yn8L86E/utHuXvv2Jpwp8/Ye+/ND20zKPE7r8Lo0FVDRHuv0FjRG2rSO2/DpRUdBNu7L+cFWf0PYTrvwIa2X57juq/wAxniWyQ6b+U0pmn9I3ov5daYEgti+e/fDGEPliM5r8wJT9mzpXlv2i0CDPwq+S/hoAGlxXT478nSINBeg/jvzTlKwoxZeK/uFTh/g7Y4b8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"jOjJmgAH9T9EipJghXn0P0gnuAtd3/M/6ljMPp448z+wwLkohYXyP3AMnKZ1xvE/ugnkIfr78D8tBDZQxCbwP5pAgIlVj+4/ktS4MFG/7D+vD2R5s9/qPxPMcuzw8ug/cs5ZnbL75j+FAj+vzvzkP64AW+A8+eI/SK+YDg/04D8JUG1pyeDdP73VcovD4tk/TGP870H01T/UOrX/VRvSPwr+w9ewu8w/ozqoyKaCxT/WZRecwiu9P3jXM3dD+68/oGDRNMxejD+IWelivjWgv9z3W9Yc6rK/OMlo1dvXvL+OAEU6Ru7Cv4B2iLuS+ca/Qq24joOMyr+WsHpX/abNv4O6EpEBJdC/vjtFANM70b8RlpeOehnSv/Sv2zbtv9K/oTwCDoAx07/hd8Qy3HDTv+tBLrvqgNO/UR1VQMdk07/odC8WrR/Tv3ABezTrtNK/j9SKc9An0r84jTi7oXvRv+opfIeJs9C/PlG5whylz78KKYy0DLfNv6ZhGqwjosu/ogC1aSFryb8yCQC5PxbHv3w+sqArp8S/6KW/EP4gwr/gCunsfwy/v4jyJ8fQsbm/MANnOdU0tL9QPAO60S6tv1hJT7QFtaG/oNDaCBDyh79gA/5+Du+HPzBPzZknNqI/OO/9YOG1rj/8deWaYL+1P9jx8ZGASrw/rGt/CTt/wT9q1uKOrO7EP3oUvzKEdMg/yEo3OIkRzD9lBClnTsbPP4MPe5aRydE/QGIcrAW80z8WtKrBWbrVP3GRi3c5xNc/0cq7eR3Z2T+LQt2qT/jbP0wMr0jnIN4/PpxKrOUo4D/e1gui2EThP1S5hsmSY+I/APQ330OE4z83EL20CabkP8W8iC7xx+U/yYOfnPno5j+KnxfMFgjoP7GhFaE0JOk/cAJ8VDs86j+ke1YTEE/rPw3cRLubW+w/4Bxd/Mtg7T9Mqdmwl13uPxRszIgCUe8/rbqtUxAd8D9MmV17DIzwP3Aj90sV9fA/vhtoStZX8T87o4WaCbTxPwbuvex5CfI/32bsYgFY8j8SHekkjZ/yPyrSDrYb4PI/lpYYM8AZ8z+8T89poEzzP4+mWnr2ePM/M7Om/w+f8z9y+VDyTb/zP8p4NtEj2vM/AvUn5Rbw8z+EAX3EvAH0PwBH75y5D/Q/acpV/r4a9D9eFYCIiCP0P+bF3czaKvQ/BsY7wX8x9D+r+plSRDj0PxBido/1P/Q/HJC7BF1J9D/ZRl6bPlX0P7bOWFdUZPQ/gZKd8Et39D9oeJxNxI70P19o7ppJq/Q/qHOYNFTN9D/v+7eRRfX0PyguKzRmI/U/N6KLFuVX9T+fKwRn1pL1P1o1lZ4x1PU/9Hdxq9Mb9j9LHA/6fGn2P4BsqKnTvPY/iEhpHWQV9z//iOmoonL3P3qUeQLu0/c/fNVKq5A4+D/G+GWSxJ/4P/YFYEe1CPk/KcA9RYNy+T/uDr0cR9z5P+TdDY8URfo/kta9FP6r+j9SlNvYFxD7P96UpGN6cPs/rlY6qEbM+z+gNllapyL8PyLEDk7Ucvw/OK/wEBS8/D/+lShWvv38P8KMyNU8N/0/z/D3lAxo/T8eBnlwv4/9P2aRKKv7rf0/nkHjLHzC/T8RMSzDEM39P0u0ltudzf0/b9jrohrE/T+auWrZkLD9P3adteEbk/0/q9CMcOZr/T/aL5fkKTv9P/dff1wsAf0/by9IkD6+/D/LFjMIu3L8P0jD++EDH/w/wNkh9oDD+z8HLeMZn2D7P26V4sXN9vo/iL7RKn6G+j+q1EMtIhD6P9vroQorlPk/kO9mdwgT+T+k3XU/KI34PxgX7PD0Avg/qN0p3tZ09z/EEwDwMeP2P+62R3tnTvY/EmFFrdS29T97wh/g0xz1P1411p27gPQ/Th4u7N/i8z9K4z1fkkPzPywQfp4ho/I/QkyGMNsB8j+3l5qPCmDxP1ZMY376vfA/UK8jgPQb8D8T8Xadg/TuP/2dPpJWsu0/473Km/Nx7D8SfY7Z7DPrP9TRj6fU+Ok/Rs6m4D3B6D+KeXBavI3nPyClVpnkXuY/PN1KfUs15T/kz4FYhhHkPxT9Aukp9OI/JPK5V8vd4T8asDxY/c7gP7pw3rGmkN8/ktz517aU3T+kLrA2RavbP5BD5ede1dk/XI4nqwkU2D9WvHn7OGjWP+hSAnPP0tQ/mDldr5tU0z8qv75PT+7RP+o7vCB+oNA/DFOsWzHXzj8kszAqxp/MP5gRDtnpmso/jHq8QlzIyD885teZZCfHPzwHZk7FtsU/RME+BrJ0xD8sky4+wF7DP+iU0NzfccI/hC1ViVOqwT+EsewqoAPBP/SVy5mdeMA/oG1uIF0DwD+Yz4FNeDq/P3i26ObCfb4/SCUaF5jAvT8I9YLSt/G8P3jVtUXI/rs/kLfdjZTUuj+AgiCMIF+5P+BTvlMBirc/yHmWVZ1AtT8oTMzGZ26yP0AuTEab/q0/QJlvUuS/pT8AZhcfbviXPwDOlWYyQVI/4Lmyx/Q4mb/wsa5j1airv1D+QyO9U7a/jANeLZbTv79of4QHFyzFv/RlI1gy8cq/ffIS4t2b0L+wPXJLN/7Tv3YLr4wMnde/2LGTicd0278KWIqm2IDfv4AzEIfc3eG/IuyUdXoP5L+qVXMpnFHmv+5v5HgwoOi/tejSO8n26r8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"1Tz55Z9axL/sJTx33IHBv9ise9K6vry/OIkDCcHqtb9IBuG9fxytv+C6pCJmxZq/QLaMw9Ykej+Qhhy7h8OkP9iiCk8jgbM/PKhQ+svzvD+SyT2AYFbDPyAQ7fJ2T8g/tpm2ncNezT/ZSRuhEj/RP/UJ5Nn009M/lefJhXZr1j8E7/kNWwPZP+zPGH/Imds/866/1lAt3j/0m8fIe17gP5ajyuoZpOE/K+0LCnfn4j/A8Vm/wCjkP7jibsFWaOU/R/sBRMem5j925UIjx+TnP0rDtXkqI+k/lrZgINpi6j/kv/BMyaTrP/sP3Qzs6ew/I+hU5yoz7j/UhWojVoHvP9AOoH+PavA/ijppvoQX8T90/FHFscfxP2hKD9Mee/I/KSHqp7Ax8z/mn8s1J+vzP/DonBgap/Q/nevxo/hk9T+rE24ZCST2P969eqZo4/Y/PllLFw+i9z8qmsd1z174P4O7YkhcGPk/VZMrTEzN+T8kro0QHnz6PzslZow/I/s/M4GJ5xHB+z8HcP2z8VP8P2gZQ7Y82vw/prNKlFhS/T8m5IBDurr9PwhJiNXrEf4/zz/RzpJW/j9JH5Ojdof+Py4NWNuEo/4/uSnY5dap/j/i40DwtJn+P5PA3i+acv4/9I8rGDY0/j/6G7Zobt79PyKLOKxgcf0/Hmco3l/t/D81x5IC9VL8Pxw4XjHdovs/Tpot2gXe+j+gaiOHigX6P98FvlOwGvk/w33e5OEe+D/+52U2qhP3P/h95lKv+vU/H11isq3V9D+e+SxscabzP8bc2lvSbvI/qIydBq0w8T+GpRePvdvvP/uhIqB/UO0/BBqUeD7D6j+AETVQfjfoP68ikIWgsOU/IkJes90x4z9T62YJQr7gP/L1L4VOsdw/WCsfNWcH2D8RZisnr4PTPwC3B+wtVc4/BXzlNEsAxj+4GCs+3B+8P8BObKcAKqo/AHk0K8VKcb/ADu5wiKasv1xzmYA1nrq/oiRDyhH3wr+mM+NPZh7IvwzOtJF4wsy/NMRKFI1w0L87QFOhQzzSv0L9Qomyw9O/gsGPiFYG1b9+6FRO3QPWv3jS5h8gvNa/3VRHdikv178EGSLeNF3Xvz0Mchy3Rte/on62MmDs1r+YFDb/IU/Wv4Rq1tA7cNW/htNz1jpR1L8u/mDwCPTSv5KpbqfsWtG/vFxKLikRz79mkFM8NQDLv9jsUZ4Sisa/6Cddobm2wb8sX4PXDB65v3ClXOnscqy/wE4Bs0Snhr9Q0ex7m/GhP/B74eNgF7U/jLxLeZa2wD9sd5Zuwe/GPxwEC8xkKc0/NimC3LWq0T8kyCsyzLLUP26gdNPapdc/8FHP5td82j/oqwE/6zDdPzCaPhF7u98/rD9iHyML4T+fuSApvR3iP+R0HUDhEuM/Jv11aS/o4z/BwQZjmpvkP529raNtK+U/T2zNAlSW5T9OwU3TXNvlPwnjm8P++eU/80ApJRry5T93cl3898PlPyiudyVLcOU/5ELm+yn45D/S7RBiDV3kP69t0e7IoOM/r2lSPoTF4j9khcDos83hPwOFiZcNvOA/IBC7ggEn3z+cTG4gVK7cP/wo37GOFNo/EMbbZ1tg1z+If9W8d5jUP5R2Q2qbw9E/JD4GwMvQzT/UAVl4hRrIP5Cw3qGtcMI/qBBoMKu9uT9Acgbd2r6tP8BU1zxSaJE/QLSxQDwEl7/A//i6EMauvwhRG2Blf7i/Zh+xtx2GwL+Q0ScRHIHEv768dQBTLsi/uk4vzK+My7+WbJ2AUpzOv/EbBHJEr9C/VK7PDNXq0b/e0M/OhQLTvxIFx/Zm+NO/hKd2EOXO1L/SP2JIr4jVv0xO9h2oKNa/pCkZvc2x1r+84v6KIifXv2jWhPWci9e/pWYFjw3i17+U1yOVDC3Yv/YlSkrpbti/SNyoD5Sp2L8LXiCrkt7Yvx2GJvLyDtm/q9VnbT472b+bb/6UcmPZvxHBuC4Ah9m/ewM+JMak2b/Zc4BKELvZv8upKzykx9m/Lrd5SsDH2b/AY1rALLjZv0HEKnRGldm/6+2jiw5b2b+tm4iIPQXZv+u/kiFaj9i/g+JR4sj0179R1Cv/6jDXv5HU3kYtP9a/9nr2Dygb1b9/sNS2r8DTv4yDMZzwK9K/rHyRgIJZ0L8MJ0NI84zMvxxDh4/+4Me/MAlmrbSrwr8g/1DqAda5v5BO60P4eKq/ADRwo6rfXD+AvqcpdmquPxj12yr7AL8/0K3mtQLmxz+uuIufL2LQP+hT1QywCdU/hzx+v8bk2T/f8lUVIO7eP5U1el3yD+I/Dm6creS55D/cL4vekXHnP2jwkap+M+o/KiuxVhf87D8dAX8EuMfvP1VQe7NbSfE/KqKP47ms8j+Ls1WPLQz0P50Kabr6ZfU/fi3SXna49j+pXe/KCgL4Py7d1GM6Qfk/CryziqN0+j+t05DpAJv7P4Cx+nots/w/1t4MWCO8/T+QQ6TI/bT+P4LF6oX3nP8/ZBWvA7Y5AECIc9456psAQNhFIafj9ABAI/JV9XpEAUD5pvEblYoBQO7UnlAixwFAmlplmRz6AUBw+UuPhiMCQDPNZfxpQwJAcANFmdZZAkAqUVP14GYCQAqrV3ChagJAoR6uUzNlAkAO4Bzms1YCQM7BJSxCPwJApE2Auf4eAkA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"15InEMxmxD9gSKWS4u63P5jEawn2VJo/iAKuEQdQpr+kfggFdjC9v1BBctNTtce/pxi/6Rtv0L/sw4xYygLVv3f30w3zjtm/CTsV18sM3r9Qdiamxzrhv5DoN9xBYeO/eInp04V25b8wuqKeVnfnv5Vjo1eOYOm/DjxvPSMv6794e5TqKuDsv+YcQbzgcO6/UmZiW6je77/KsHEgiZPwv/QNQJfvI/G/B4l3f4Gf8b9g0QoZVQXyvzY7+L6dVPK/IJKbOK2M8r95YcvT9azyvzj+tf8KtfK/fjZjhqKk8r9GPAiclXvyv1YWagThOfK/oPRS96Xf8b+tpHNHKW3xv7aOf7PU4vC/7kkakzRB8L+gMvaJ7hHvv1bjhz3Yde2/yt667gKw678CuyywhMLpv2bPHQSnr+e/hE0cneN55b/kECOg2yPjv0BicTNQsOC/PG23uT5E3L9q2ODJbPjWv8hAJaQfg9G/UFR0CaPUx78AnrNw18+4vwCfNaluenm/cJNnW2LotT8gYM6nBc3GPyKO6MYAWtE/jhNFQX5P1z+g/vcLLULdP4QHzeHEluE/+rq/U6+G5D+3z74J4m7nP7k72sGPTeo/c2GoVw8h7T80VMQp2ufvP9tcwApEUPE/+w+PcOak8j8i6lXsOfHzP7khbZitNPU/z7Hxxbdu9j9kHtT80573P+U4UcWBxPg/pSZCHUHf+T/CB6vkku76P1q9guT18fs/nVfX/efo/D90LZTE49L9PykUd8hhr/4/XNYjxNh9/z9tmWtq3x4AQFBP4N9EdwBAQqKeGtnHAEB0TOk3WhABQBdWxsKJUAFAesV+oy2IAUAxS26xEbcBQKKRgQMJ3QFACEU0IO/5AUCOTtaMqQ0CQE9StgwpGAJAOGnkiWoZAkAQJYM3eBECQKWVNH9qAAJA5v92U2jmAUDYCR/jp8MBQGih+mlumAFA3ZS5phBlAUCYgnap8SkBQAXn3fmC5wBA76Hqj0OeAEBui1eqvk4AQMs2XeYU8/8/2kJJrY0+/z92zcV3N4H+P7LMk4duvP0/RmXp9Jfx/D/+VFuAHSL8P+xzeDZqT/s/IuMJBOZ6+j849r/78aX5P3DYSMvk0fg/9h1iIwcA+D+icsMbkDH3P4S6/ZGiZ/Y/aHIUgEqj9T8s0eUTe+X0P7p/2ksML/Q/7Ak5ILqA8z9MRGl4I9vyP1MgeT7KPvI/TpBfbRKs8T9bSjH4QyPxP7wZ432KpPA/y5sbMfcv8D+TJpTEBIvvP0/bbBgayu4/QoGCM8cc7j/OOYnlfYLtPyq6N9OQ+uw/XDedcjOE7D9vownlgh7sP8ifkGOIyOs/8rwuDzyB6z+aj76HikfrP5hGbEJVGus/rD/+FXj46j/Rc9CFx+DqP3h9ymYV0uo/GbCzeS/L6j9GyCi138rqP+rGFqbtz+o/3NdTdxvZ6j8ldgfGKOXqP6EF8x7N8uo/b80Op7sA6z86GZ7foA3rP7aJEVEhGOs/y9qjU9we6z8SEsQyaSDrP9yxuxBdG+s/mhcEKkkO6z+fFyHjv/fqP6jIH9VX1uo/ZPwzu6+o6j/ou8sWdG3qP6LudWxlI+o/AiVvWVzJ6T/VmgSBUV7pPzD62SVl4eg/FCx9d+FR6D8OuPR0Rq/nPxMkgZNL+eY/O4W8guYv5j8TrCC4TVPlP4fuOx7+Y+Q/9mKD57pi4z9AWRd6jlDiP4f+zgvJLuE/76gKpf793z/ie7SvCIbdP7glXPLJ+do/mLzLlr9d2D8GIt1BurbVP3noeODKCdM/4p5mmCVc0D+47YukJ2bLP4bssD+nJ8Y/JLA0lwcHwT8E3T0dBhy4P2B3q4fKFq0/QBGwPniylT+AzL9zGI+JvyAY9vRBiKa/MGqXpbHAsr9QnIxEE6G5v2inmPXG4b+/GKK06TTBwr9QnBT84kLFvxAspcfeeMe/rOXft6dnyb+wHETqHxXLv6CwIV6KiMy/uOpfMVHKzb9Q/Od86+POvxBJOzem38+/6g0Ldjlk0L+8iU/C19TQv3oG9st4R9G/kpPESePB0b8x4urBv0nSv2Vxl6l65NK/LfdediyX07/WLZuMfWbUv9kBuuKTVtW/7csRWv9q1r9Gj3Zdp6bXv2VwAYrDC9m/WoCjP8yb2r/cC2UnfVfcvxvq03/PPt6/9pY0KH8o4L89I6XdRkbhvzCId5aod+K/MiuViD27478w06g6VQ/lvxqH4br9cea/y3bpEg3h578y2+GFK1rpv5LRnHbc2uq/i8aImYpg7L/QMGfCj+jtvyHX+E9BcO+/PNBGnnt68L/AVRvdCjrxv0IzMpSK9fG/lhX0HMSr8r+HEokekVvzvxf7SmfeA/S/aMPIYa2j9L9sI3hlFjr1vzxicYhIxvW/tOqqHYtH9r+2OvJDPr32vwlp2CfaJve/XjcJF++D97+Ur5PXJNT3v3OcWCo6F/i/aauxPwRN+L+csta5bHX4v+/DSbxykPi/SMBSTSie+L9iFVBrsp74vzp3nUtIkvi/3FSPxTF5+L98IXnfx1P4v56550FzIvi/DHAueavl978en+kC9533vw49ZdDpS/e/HOSItCTw9r/+dt1iVYv2v+agC+EzHva/UCU1h4Kp9b9/iF5EDS71v8FKPTOmrPS/NM1rbSYm9L8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"PNR4Lzrmzb9sglnzStjLvyDV7ztGqMm//CXdbXldx7986vR8VP/Ev8S/op9FlcK/GJX6vpMmwL/Y31nLYXS7vyDo9JtSrba/SHEN5eoDsr/AlnKWrAWrv+Bt5e6aZqK/gICGVKhzlL8Abpb96Fl0v8DECfMMc4I/IEmaP1Bylj8gruNOgEihP3CFUpWOzKY/8DPicDPKqz94oevslySwP5zjv5nkKbI/jDFEeUL7sz8MY15S3p+1PxhvLMmOH7c/yI0lA7uCuD+QZHMEANK5P3xoUtgeFrs/hCrVaJ9XvD8oBYRmv569P3D12VUv874/2M+OLfEtwD86XoPYe+/APwrEJwrDwME/AEKlwsWjwj9GCvKA45nDP2aYKgzbo8Q/jr0wxb7BxT+wgxnT9/LGPyCXVCJCNsg/XjYZ96+JyT8yied6surKP5hV+iMhVsw/VuSAdUTIzT98Gh3m4zzPPwlS/mesV9A/EAwxCUsN0T+uBXQoorzRPz++MvfmYtI/9Y5IODv90j/a88TSs4jTP9aytWppAtQ/Ao+f5nln1D+xkuSAF7XUP8oRnCSO6NQ/abeLyk7/1D/b9XMu8vbUP8KzGCtFzdQ/rJesjUeA1D/OvvvMNw7UPzrA1AuRddM/+Dwr3Q210j8K6Cg7sMvRP26brk64uNA/rFegB1b3zj9QVsSMoSjMP6Bt2W1ZBck/lL6/BwOOxT8izE25mMPBPyxVZdzwTrs/9CdYN892sj9g2hyxDAaiPwA/K+CneHC/WCYtSexGp78MX7zQ18q2v26cqpGoO8G/zLjg8RZRx7/oGjgZNKLNv/NV98isFdK/8yTjxmR01b8FAtllVOvYv4pEn6uHeNy/P03yGQAN4L/2o+yW3Obhv9RmInjTyOO/knsGGd2x5b9MhZ4Y7qDnvz3w8s/4lOm/S2EL3O2M679ZTCQEuYftv9UCre5FhO+/O/SEp73A8L8Ie+WuHr/xvxzEmRG3vPK/fHph9vW4879qU6cESbP0v2TGYn0cq/W/AG8EBtuf9r9NuUFg7pD3v7YyWGO+ffi/cvj8krFl+b/p/v3nLUj6vxh2l52XJPu/xqssQlL6+7+DmBtrwMj8v5dHGmdDj/2/Cmi1iDxN/r9FhVnvCwL/vwf6EqsRrf+/6T92CdcmAMAeAnB8oHEAwNm+MsmVtgDAXcunIWj1AMC2mZuyyS0BwIeYimhuXwHAY3YQ2AuKAcBNGIWzWq0BwLFrjMUWyQHAGeTMcADdAcAccEQ63egBwHqd7gJ57AHAHdE3MafnAcCIJL36Q9oBwCx2Zmk1xAHAfRld6WylAcBmuH+i6H0BwCy3hq20TQHAwjt6QOwUAcCUEFQwu9MAwLo3DT5eigDABD4IISU5AMBiYrUB5MD/v9YzTwx1Af+/7g/M/g81/r8/oP5p7lz9v6hmUtpvevy/mNb4zBeP+7+2TgDZjJz6vx2jAiaUpPm/DxJWyw6p+L9tmvZB9av3v/oSWwtSr/a/bHzMYTy19b8gP8qT0r/0v76b/PQy0fO/eJVtq3Tr8r8+1YkCohDyv/4pLJuvQvG/Bkui+XWD8L85aEB+VanvvwdTQtqxb+6/Q2csa7Zc7b8IHAYmrHLsvxDFHNNis+u/mL0/YSsg67+CDPXUzLnqvwq/e8qBgOq/QJ0uHvJz6r+IjhurM5Pqv1Lv4WrJ3Oq/AGeoIadO67+hqoivNubrv2hQCF9eoOy/sa6egYt57b+uczD/vG3uvzYXuZqReO+/qR0V3qpK8L9mrNbOid/wvyIXLF1TePG/MyeAamYS8r+WeHfQG6vyv8Akjn7RP/O/GpPi0vLN87/s6Xd+A1P0v+I11KmmzPS/nsA4nKk49b8U25lHCpX1vzBG1ij/3/W/BMINeP0X9r9ZfMK1vjv2v58WJkZESva/bZQaF9tC9r/K2Y4GHSX2v9LP+b/x8PW/KqMQTI2m9b/tptV2b0b1v415VXNf0fS/HCwE3WdI9L8rYieW0azzv6aAOYEdAPO/AIiN8fxD8r8t4ha6Snrxv5ZuhssBpfC/7H/FP2uM77+bCRHVD8Dtvw5lunpB6eu/2B6/XEoM6r8sKpKnXS3ov0UBdlGGUOa/ZElBiZh55L/h+gYZI6ziv4rLxQJk6+C/Toqs/nh03r94x7ftUjbbv6z2SbF2INi/7ARNzyM21b9mvpT+tXnSv5DzhV9C2c+/XEwXsuUey788mnDxu8PGv5AlCECDxcK/AN2nYttAvr9oBQl4kJ63v8iaXpMyl7G/EDunAEQ3qL/AIdEczGucv0BNQOKiFYS/AGjJPNMHfD/gfc/qLwuXP4ARugAbMaM/4IsA9hasqj9wKIyvAw+xP5ibFAVf1rQ/4GJXbN69uD/4kkg4wdW8P8zkVL5IlsA/vCKoMGrnwj9C5bdNc2PFPy7/JFpoDsg/ECaTUxXryj8sXG6V/frNP3hsK7kvn9A/g8fS4hda0j+VjYlJEC3UP19akrlTFtY/T1y5J4kT2D/7r3zxxyHaP2CrsRipPdw/Lt/zrU1j3j/uZDwxOEfgPxUXxVU7XeE/ercYmj5x4j/60VUEtYDjPyr8i6AAieQ/5jzbHHqH5T8W+AwnennmPz48HyxjXOc/JvyHUqgt6D/Eo9fC1+roPx39oY6hkek/UCE3Vt8f6j8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"nHip3eBjvb+2IfEDr0rCvzdceLzVbcW/nC3JnbgbyL8+aTvlwlXKv1854ipyHsy/pHNyYDx5zb/BYC2mf2rOvznXqjNj986//MnrhLklz78u4o246PvOv4gxYDDCgM6/nVb452a7zb+mxK7MJLPMv2P/lSJQb8u/ylp5bzH3yb9wlG6Q1FHIv5A+Q67/hca/BnJ27gyaxL8u9xFF3JPCv1hDiPPAeMC/hH5BDNqavL8KIMQw5iu4vxTu5iVwq7O/oA5B8uE9rr/YA6qGGRWlv3CF6CfYxJe/wJ4hDPVKdb8gLdze2lGKP0AMn3a3rp8/vB1P+NogqT8CobnFzTmxP15Zl3hv6bU/9yxhZwihuj+RLlBHOGK/PzLbekEkF8I/3ty6UAODxD8pQ5djw/TGP5yFnUwBbMk/4HYZW9fnyz+e4ZFizGbOP2tqSaZkc9A/hmufNYqy0T9eBtRKI+/SP2XOBesoJ9Q/yl+NhEFY1T9n+fZgxn/WPwKrf2PLmtc/ao/bNyem2D/B7sjrgJ7ZP15Pp89XgNo/OAXryBlI2z84O+tHL/LbP69qZ80Le9w/CHuXPUTf3D+f0hjxnxvdP22OSDorLd0/+RQRX0sR3T81zIE30cXcP0j68MwLSdw/Rgt4adaZ2z/j5XfYqLfaP+h51bOiotk/omUuuZZb2D/cTvZjD+TWP3EKBBRYPtU/LO0JUnZt0z/8wp6DL3XRP+ysn/D1s84/VB2vM/pByj9K5KEB85/FP7KX0LB72sA/eHIWK0v+tz94NBLBH3GsP7CnzOsiBpI/IADpSDchlL8cw7e8g4ysv1SRWWHeGbe/GJ2GVXBlv785wnVAP4bDvxiP6j4h+sa/wkG9Tw8Cyr+MPcDJB5PMv3PVT+qCo86/aE5AWdIV0L8g2Le8rZLQv4rjHQM8xtC/onQEAGqv0L+Mgq+kJE7Qv0g3MKO7Rs+/2azfHRdizb8bq8cKOvTKvwRyYTHcBMi/eJUaAnidxL/ge5oLGMnAvypQWh1fKLm/YVEkONAYsL/UrfbqYQOav5ioaYWcBYw/xiyR7t+Xqz/sCoEoWEC4P4i9wiSpXsE/RWGz706Rxj+yQcFkYqjLPyxSphBiStA/OhQH/RCk0j9SqhiEk9rUP/sbcPDN59Y/vLHmm0rG2D86d/KyQXHaP7STjueo5Ns/mAeNgDod3T+2XM6pexjeP8eU7X271N4/ao/1RhlR3z+I/bOGfI3fP9Cji+SQit8/cNNkKcJJ3z+6BESYL83eP0V28kakF94/s9sl54gs3T/0FqUo2A/cP1gseDkPxto/bweuEiBU2T+dY1qVYr/XP8xiAox/DdY/baDbU2hE1D/apnYqP2rSP70wquFLhdA/4u4pfNA3zT8Iv4JA5GjJP9BYexx3qsU/L88ZDPEIwj+UuCA/0SC9P+LbBugCmbY/aIB7faCQsD/AIuR3FDmmPyCqtAJaQJk/AHs4F7XngT8AOT29KtBwv3CeQPgOAIy/eGlTcmNBlL9gynMKW9KWvzhUXeW0lpW/cHWjPwl8kL/A7D4ZDuh9v4A1tuvbtXU/zKj+VAIulj/Yw82PbVilP+4LpywvtbA/ZJy2IY6btz8qAqE48FG/P27Qjmk/5MM/ZTQkr4R2yD+kKvFGllXNP6oS+hoZO9E/7pNf7xDm0z9qgEGEJaXWP5Cg1J5pcdk/fm2z0JZD3D+sbqarIhTfPyhPvWOm7eA/YO5sxpZI4j+YpikA55bjP5YfPl+a1OQ/lpoo2L795T8YE0Skdg7nPwkKhGIBA+g/pg5cWsjX6D/AERPEZ4npP6T1aLC5FOo/fBejM9926j86vgsOTK3qPyJWU47Oteo/8qdZIZmO6j+entGZSjbqP50GwJv1q+k/UMzNDifv6D91rnff6v/nP8/rX0zQ3uY/ba8aBO6M5T9lxwyE4QvkP1pxRFnOXeI/wiIXuF6F4D+MKKEreQvdP7sQBkgcxdg/SXhM0Nk/1D8gbGaodwnPPwBl8zARO8U/fUpRVbtStj/AxO9XLUl9P561IwPY1rK/cmHWOnPAw7+kSoGVPP3Nv+6wLd0bBdS/UWXEVhTo2L/fATb0O5zdv8G3A2dfC+G/+F1T+LMm478YG/wAYxvlv4nwXWkn5ea/Yh182UCA6L8mMGKXf+npv4jfZapUHuu/eYsdQNoc7L8X6cOg3OPsv8i54+Decu2/v+Ou8x7K7b9aD+HXlOrtvzRrtwfy1e2/5MLpn5eO7b/zFPypkhftv5jflbKNdOy/7gdfc8ap67++QXe0+rvqv44TeBFYsOm/QKRliGmM6L8u+UUNAFbnv3KBKy0dE+a/Toietd3J5L8EOGBDYIDjvwp6HdmuPOK/8kue6akE4b9EN/fC3rvfv87avLiQm92/Hkss4iqy279ODDETegjavzTFA+Y5pti/AI46C/qR17+OF6fzCdHWv43GIyVtZ9a/BnIz3MxX1r+ZdXvydaPWvyEd2SdeSte/qv3WoiZL2L88iQqGKKPZvwVHWl6ITtu/UvdqI0tI3b9+x/94aorfv+osrjT8BuG/xIYPj5tl4r+NOTqT3tzjvzr+y75LaOW/VEiCLTUD579LBsFHyqjovwqcqYgpVOq/zAKpqG8A7L/KLisfyKjtvzYZVmJ7SO+/9zzI/n1t8L8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"Nv6vGLSX7D9gazJTYCrtP8SbY3d60O0/RmSuf/6I7j9SmwWakFLvP+wIYIS/FfA/VKb1z+SI8D+4lyZgkwHxP+eeSNeHfvE/15fUDWP+8T+0ZpaSsX/yPyWg+OfvAPM/s2e69pCA8z9hYduNBP3zP5974jq9dPQ/XDhhRjXm9D+2T3tq9k/1P24GHGCdsPU/7/v8nN8G9j9b0yerj1H2P9cCMaigj/Y/4A+loCrA9j+L1tN4a+L2P6+/CPDJ9fY/tEYp69b59j9SOWcuTe72P3es8ugR0/Y/gADmkDOo9j94RY1y6W32P+lV/rCPJPY/3whzaqfM9T+ODMpD0mb1P319tljP8/Q/krbH+nd09D+f3EquvOnzP2jCiFmfVPM/grhCEDG28j+5gtvYjA/yP6AlUdzTYfE/UjXKaymu8D953bwLXevvP4p61h7/cu4/jDWpO1z17D9o1EJ2gHTrPzJ5vL1X8uk/7LZ+/adw6D/6DOkLD/HmPwDu8tr6dOU/ZoqB0aj94z/ElMMLIoziP8a755k5IeE/eicW/hh73z8ZkixK/sLcP0S/PfV/Gto/0X1+e5CB1z87rvqZvPfUP6jzSUovfNI/QiD9D7wN0D8a63qCxlXLP+57WO26o8Y/PJ2WAk8Bwj9gPOlvLNS6P4wngYunsrE/cJdwvn8ooT+AfnhoVyNiv4gjPqPmjqO/smUO0J0Ys7/2o6AYB468v4kPfhdCGMO/HOJWPgsEyL86N7AH6Q3Nv1XM7txmHNG/+yE3yobD07+uaW8GI33Wv+YdcjqnSdm/MSNEHRsp3L/LJH1uGBvfv/KCLyxnD+G/BMaBtnyZ4r+0Vh2n9Srkv/0YixfEwuW/eZfdWKdf57/YTlrrKwDpv4aSGeqxouq/0JQz7m9F7L8h4mf9d+btv6Kzq/a9g++/OnrE742N8L8fLtVlLVXxv3WuIrGbF/K/ZHVrlLXT8r/3aRxLWYjzv38GHHZqNPS/xZ32tdXW9L/Mgs9QlG71vxxDCYGv+vW/VMasD0R69r/VVv1bhez2v5QlQDm/UPe/qYy/MVqm978CKWeM2+z3v5eoeqDoI/i/0/+b4kZL+L/R0g+R3WL4v2pzRSS2avi/CAwEnvpi+L84LttY90v4v0xj6i4YJvi/KalzDOjx979HMoIcDrD3vzrGNXNMYfe/E7lW9XwG979pP6FNjqD2v+hZun2AMPa/dTUQWGK39b9V3jW0TDb1v1e+E5ZfrvS/BQ8ipr0g9L858MnViI7zv2xsj3Xe+PK/LSbNaNNg8r/bVkkBccfxv3SH32GxLfG/PMPwvnyU8L+2XcQkTfnvv7pK8wDWze6/X1SWwtun7b9D4aCwb4jsv1pv93JtcOu/7EGWe3hg6r/lNPEX+ljpv+WeSZclWui/vyf3gvdj57/Xxh4KOXbmv4q/p7qCkOW/7JVjb0Gy5L+VwcDRutrjv6LyfkkTCeO/YodIdVM84r9yx1mSb3Phv1xDxiJOreC/QsYW+pzR378HXxs8pEnev6qKszmEwNy/jNpJli40279OQcK9wKLZv8SDn0OVCti/gl6yFExq1r8TLbFL2cDUv042vduJDdO/4aYBpRFQ0b+wf5v2GRHPvzA7kAUPb8u/vvKc4Py7x7+SE7UAwvrDv9S8oGwXL8C/WJSF/x67uL9+tgOrAxexv6xy5nAE/KK/gLGIS0/Yf78QnC6ABnCVP0Cid214/qg/NLjL/Ttcsz+4vCLKu+K5PwYROT41AcA/8ryi7pXVwj+Q0KcJt2bFP2SQcY41rcc/0t37STiiyT+0WHE1nD/LP9yVqa0GgMw/aEVqfQxfzT90PNmwT9nNP9BMPkOI7M0/ID27WqSXzT/oP9gzz9rMP6R41NV2t8s/jM+aX1Qwyj9EZTfHZ0nIP+hLgADtB8Y/QGy+P1Zywz8IUXG+MJDAP8BLklIy1Lo/SFjp+C0TtD/QzEjYHeSpP8D5SbipG5Y/AIFdZ4q4gL8wFuok1J+jv2AdtpMai7G/6MZ8HfEvub/wy35V8VLAvygxtFdc6sO/GFA7/n1Sx7+a9GXFEYDKv7Ycd1JwaM2/4v9bLNIA0L/+RZXtRyHRv3tMe6J4EdK/fyeFFcLN0r+igTh5AFPTv4L16GuXntO/Wo5gIXCu07/cGm73/IDTvxQEKcY0FdO/e/IM8o5q0r+SHHFRA4HRv1hCXJL5WNC/opjtsZvmzb8u9ls4eaLKv1Kp67nA6Ma/oMVnn029wr+AHZzXFEm8v3xAbhfARrK/YB/Goiv5nb8w94YvlhOQPyrxePTWNrA/brAcvBULvT8i+ovWYDrFP3z6G5NVM8w/p/guC9m00T9tsqgQUGvVP6rQfhObOdk/ruo1Vjgc3T8vB6v2zYfgPw5yUxIZiOI/+DZ8FyyN5D9xE1ZvMpXmP3QJAk5Qnug/B3faAKWm6j8W9WpySqzsP4bXs5lVre4/yli/guxT8D/rgVut8UzxP0EFMtDCQPI/UjTIlmgu8z/MFy9U7xT0PwZ5FnRn8/Q/vSQD/efI9T8VL67dkJT2P+jYqaCMVfc/+GzqjRML+D/UTZxbbbT4PzPnLOTzUPk/i/RCQBXg+T/HX/CaVWH6P6O2x69R1Po/DG9JsL84+z925n00cI77P9AZzSlQ1fs/LIsxsWcN/D8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"21e6fCPG4T9wi1v4EN3gP+eaVJJC9N8/InpON8g+3j+vBakRn53cPwlHwIh3FNs/sytHWsWm2T+uoUBVtlfYP6UvnmArKtc/uBHZxbYg1j+4zZyxmj3VP37fYufAgtQ/gMJDGcHx0z9UM2BX2YvTPy7pDljvUdM/+GPVL5FE0z8alrKu82PTP7jhZcv1r9M/DrheDiAo1D+KZqe5pcvUPw8wSKVpmdU/vB2ZUvuP1j/brR+GoK3XP/eQ/7BU8Ng/BVqkdMxV2j9fLN/cf9vbP0Qf+RWnft0/vVrdk0k83z+0ISFrnojgP4BKWL4YfeE/2NAXctt54j9m3z/FI33jP9puMogmheQ/pWC5dReQ5T/wGGNNKpzmP8e2yhibp+c/thkFqLCw6D9XOG0VwrXpP6BSD/45teo/oL29aJyt6z+y0OOriJ3sPx9lyZa9g+0/ACiEnRxf7j+UahaLqy7vP3BQ02SW8e8/tGzSLZhT8D98M8DQeafwP968eXZA9PA/ZniGXNA58T+guX1xH3jxP/z4qAA0r/E/ZE7wvyTf8T9MqunMFQjyP0gsUGI3KvI/fWBFhMNF8j+CWiID/FryP/2v2O8oavI/rKsQ2JRz8j9eXPWujHfyP8k3BVlcdvI/2VJu/U1w8j/zqtW3p2XyP7A6hj6rVvI/4UtwApRD8j80AgDUlyzyPyv6hhXlEfI/RXOjj6Tz8T+kREKm+NHxP6kLjgD/rPE/AZZ03dCE8T+loGbehFnxP1IRTpwwK/E/MYgphen58D85BXdsx8XwP1WBiPDljvA/qspAXmVV8D9ckQRobRnwPyBQF5ZZtu8/nPB1Ebg17z/rHn6PeLHuPw41mC0yKu4/Gx4+XI6g7T83apVESRXtP8xDuPAuiew/QvUy+Rn96z8Rxle27nHrP/BOFvqX6Oo/n+PG6gJi6j82lPHYGN/pPz/WFKa6YOk/Frutf7zn6D9Gm5Fr3XToPwjXB8rECOg/dyw5cvyj5z9tBy2F60bnP74IilXS8eY/y+HJI8mk5j+YNF0Ju1/mP6PvmVNlIuY/NzCH4lfs5T/gkWzo87zlPwm1udFsk+U/JdLyDctu5T+VBzvd703lP64oxcaWL+U/whCbGVsS5T+YSMNpvfTkPyJlt5on1eQ/bVCUP/Ox5D9UeK5pb4nkP6ropfrmWeQ/y1KQm6ch5D95zMd3BN/jP6xzXUpfkOM/aQz2fyw04z+mvofd9sjiPwq5EyVmTeI/78y+rUHA4T873CiwcyDhPx8HsBQMbeA/zBQGnYZK3z8GAGOo95DdP2NAVLKDrNs/59GoKZyc2T9G4jF5BmHXP39FkjPe+dQ/wSjG7ZJn0j+El2t3ylXPPz/Pu4zIick/xslDRc9twz+Wi3uVPQq6P7B+KV/gTak/QC8LQztddL+YS2x0XmWvv6okhSF6lb6/AvQHt6vxxr+qD1lUXMjOv2xS2wZfZNO/1ERMFD92178uVqqeiJbbvyZsWpbdwd+/jD8tNmX64b/J90Du5BXkvwKFX2mlMea/i7NjotdL6L+VeQQBqmLqvwgPNFBHdOy/U8H25Np+7r8iiYjDR0Dwv4KEvTzJO/G/WJddQgox8r9a4JWUJR/zv00JSmo5BfS/Dk4SR2ji9L+W9YOa2bX1v4AVAN26fva/elsk5EE8978E3emcq+33v4D5FvM/kvi/0hvkllEp+b/EjKNWQLL5v+rf7fV5LPq/Tvfwi3yX+r/SVPf/1/L6vzLpkQkvPvu/s6CkzTl5+78QN3JFx6P7v+jhynG+vfu/uu2twx/H+7+9YUcXB8D7v8i+UsKrqPu/HHTeXWKB+7+Huk6xnEr7vyhkXL/pBPu/cLwxq/aw+r+kwY2QjE/6v5rIf/eQ4fm/MMmD6wNo+b/BNxKZ/eP4v9d1arusVvi/V8I+31PB978EO4V7RSX3vx+sOf/gg/a/WXklOI/e9b+cdiE1vTb1v9Zd9HvYjfS/tLl5tkrl87/QFl3lcz7zvyOVNSynmvK/RCxXNiX78b+EMc7RF2Hxv4tIpEaOzfC/z2W4KXlB8L//n30aTXvvv7H0xA6Ahe6/u8XshY6i7b98N6VlKdPsvzthb9usF+y/idxlph5w67/Mgi2EL9zqv+jpBqY6W+q/E0Jf9krs6b+h6qERHo7pvxKZufcoP+m/QKyOGZ/96L8jFszYeMfov+KOfdh7mui/ifxf1kN06L8m/nlaSVLov78sITPtMei/ulu8DoAQ6L8q7vAZTevnv+gAYbugv+e/LTu6LNOK57/4zb4fT0rnv+0UFeOa++a/fcbP3F2c5r9WwxakaCrmvwCeNg64o+W/G2qs0n0G5b+SjhIoIlHkv0yqkTBIguO/Ui6CRdCY4r9aYPRx3ZPhv804DE7ScuC/QG/MR6tq3r+7YXqTo7bbv4N64G/pydi/VR7o9mCl1b+dHbT4cErSv9zghcIHds2/znkrMgPzxb+ou+1gJyO8v6itV7GRYae/kCWOMlSIlT907Bdi1AS3PxLbld+9ksQ/EhS+pVfYzT81Tp66gaTTP0VnlAULbdg/o1a9XEJA3T8iBsH2QAzhP1Arw7QHeOM/0MOW05fg5T9nK1BeF0PoPzKTLmq7nOo/TN1t5Mvq7D9BnAScrirvP83BPw/2rPA/AiodHxu78T8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"xFSuwjFXvD89Ktui83jHP8AwBQXWNtA/HNQ93F591D+0Q+8xEonYPwkoi8GCU9w/Z90ReO7W3z9+I8NsJIfhPwqoqpup+uI/16/hPVBE5D96M2iX0GLlP5ybO3dSVeY/Oaih1W0b5z9KmjEDKbXnP0T66/T3Iug/nH9JGrVl6D8wjqDanH7oPxFZmalGb+g/kuzSzJs56D9plSkw0N/nP+8JCXhWZOc/3Xj1t9fJ5j/e5aSzJhPmPxo3lRE3Q+U/suw2TBFd5D/uEa/OyGPjP1G4lX1wWuI/1ozj3hFE4T/qQIJHpCPgP4nopoQH+N0/lyznatGf2z+swTm7x0PZP71Txm2n6NY/P1SyVcmS1D+1/kE9FUbSPz2OfLP7BdA/epttBe2qyz8xfc9YBm7HPwwqEg5IWcM/FKXxGZXfvj+MmTyaa2e3P7ixKGe3TLA/soF1NdIgoz/oQYnCHZCJP+iaks/lgoa/DpoeiJHzoL8qNtrEr5yrv3LXtX/40rK/wGytNTaNt7/D6bRcEgO8v/z9SpZjHcC/FIuaLU0dwr9fMfq5UwTEv+ap3S1c1cW/SA5RnwKTx7/8Ip6OjD/Jv+mJaHTU3Mq/Hir2CjdszL8W3Tb5hO7NvxGNGyz7Y8+/pJ1IaBpm0L86NrwfFxPRvyQL4A4huNG/+VqAlhVU0r/2kQmIh+XSvygdVqnEatO/Wi6Lttvh07+6KzUJq0jUvzYPHtjknNS/O2jwWiPc1L9YI+a37wPVvwAFCFraEdW/in6lFYED1b9cGoLMpNbUv1yYnkI6idS/VdXxL3YZ1L8+rxkQ34XTv6u48MhZzdK/d/RnRjTv0b96xBU5NevQvw/7ZYU0g8+/uvdPWlLmzL/N5HDaVALKv1r+JujU2sa/8mgaV3J0w78gLpGZjKm/v8AMvH6eBLi/km3isLkIsL+QA020lRefvwD9urENVmY/zM5Jue2doj+ik4SGVfyxPxJz+PTtp7o/Co3oTYGfwT9SLj0XoNfFP74CgGiL88k/ximj3QrrzT+24qL9SNvQPylWjlW2p9I/CAJheexX1D/grhVpkenVP2m4/sjaWtc/LIxeMpeq2D/BDWPMMNjZPxKD16Wt49o/NfN82K/N2z/POXzhbJfcP+yyUu6kQt0/sgm+/JvR3T+Wt6zoBEfeP29vP5n1pd4/iJ5sQNTx3j/vvB1bQi7fP34CaaEGX98/6k18mfuH3z8Qonld9qzfP1hTq7Wv0d8/I9lnrLT53z8y8rfcJhTgP1ZyePs2MOA/EZIlG1JS4D9BU8EXhXvgP5R2f4adrOA/SsohMiTm4D+lV2uTWSjhPxXdG1o1c+E/UJ12dWXG4T+XyvmtTSHiPwYqZ6cMg+I/6HrJ8n3q4j/JCTuqP1bjPxOs6a25xOM/8r+rjSI05D/yZY+ni6LkP1IIszDmDeU/A9njEg905T9p/3iZ2NLlP8ePCMcTKOY/ne5W9ptx5j+j/6nGXq3mP1y/fFtp2eY/A86HBO3z5j9VmBCmS/vmP1fb7SYe7uY/Ykiw0jnL5j8aXc/PuZHmP5h4Ocf/QOY/vjLnP7vY5T8EzSjk51jlP8hfq+3SweQ/QsdU8BcU5D8e5Bo2oFDjP6AxcUaheOI/wh2Hl5eN4T+Rpn2OQ5HgP0FsYgREC98/Bs0B9M/Z3D9et3N/8ZLaPwx/PujAO9g/AbWpBZTZ1T/99rJd8HHTP0/A6rp0CtE/tOQv9ZdRzT9xKL7rLaXIP8plOzi7GsQ/K99ZZ/J5vz/0zzWkVSy3P8R8+v3lv64/dNu3vHZNoD/AULS7ABB5P5Q/vSzQSpG/1G3ze7Xvor8qUxysAKirv3NoiKXsXrG/hLNMm70StL/3n4bR8eu1v4mR/a906ba/rvR9cqIMt7+E9ohPSFm2v1AumWyN1bS/MYj1gPSJsr/G49ZrcAKvv8yqtvlFkKe/xINzWCS2nb9wiZKcORCEv1gKHeVFQYc/1MB3arx6oT8Gb9vnctGtP5NgP1BnVLU/+SbVvtrpuz/nASyYCEnBP1w2aoXlmsQ/GfveOvXexz91pX+h0AnLP183p+thEM4/kYlwxwJ00D/6xvAkVMPRP5plTWh38dI/YsD/yyb60z+JUz1OldnUPwo9D0d6jNU/kFM59B0Q1j/HpiN2ZGLWP0HT+pLUgdY/tSqKKqJt1j/TMAXMryXWP0Q5FKaTqtU/TAymc5r91D/cxEbDwiDUP3bexjK/FtM/s/ejaevi0T9aygrfS4nQP+rhCFf/HM4/zg9FQG/vyj94JUyEWJXHPwbB6KoVG8Q/rShvwcyNwD+SJtgFqPa5P87tqtkH5LI/JAq8OEoCqD9gHtvOYK+VP4DpKGQKv2e/MLfhKJd6mb94gTmWULKmv6B3mRTfIq+/EO3KxLDssr+sZEvPyVG1vxzLWpOAqba/SKHWkt7etr/Ip3DMdd+1vyCEex6Zm7O/qGLE2KAGsL8AKq/MIC6mv5D7EV9OG5O/4G5Ltx5mhz/YbkPPgQWoPxgXh4mkdrY/dptmiSogwT9WD1URFqrHP63moBmK0c4/2tzHWahG0z+kUZpiU2nXP7pVX+Woyts/vKfMyPAx4D88tULNzpbiP4KSPu39D+U/jt2H0FaZ5z8znh2dhy7qPz54ae4gy+w/vNtDYKJq7z8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"oPyaRCDTjr+wIUnt6mmUv3D1rktn1pe/QFtC3RKMmb9wSZhZwWqZvzDej5q+VJe/cPsPq9guk79gy+4CvsCJv8BdSeDlTHG/ACrx7G4wej9Yrtp6aM6TP7TAE9bTwKE/zB2Gn1bYqj8KS0shxZiyP8D6S3cyZ7g/3rNhKnnXvj/LBkitRvTCP6e+Nl0ezMY/12yRK47xyj8FEf31N2LPP/K1PO2EDdI/7JsQQh+M1D96VAfspCrXP6ZT1e5x5tk/BBRyBn+83D92Z/j2ZqnfP4NUEoKzVOE/UcHdmTLc4j9gckxn/GjkPxhXq+G4+OU/0Nim2vKI5z/c0V1oHRfpP8CHIoKcoOo/iEQSnMwi7D+GZecjDJvtPzLH18DCBu8/mg6H9LYx8D8+St0AVNfwPxshzUMZc/E/QrcYWv8D8j8zVi2RG4nyP3gGY3ajAfM/8OxnU+9s8z9tvk+DfsrzPyQbC+b3GfQ/5Hd+Dixb9D/Q0Lp+FY70PwWL/nDYsvQ/0GcXPcHJ9D/ehLLvQtP0P6xIS83zz/Q/8NemSIrA9D9WWagD2aX0P3i7/CXJgPQ/2CSF41VS9D+GyL2Vhhv0PxYliTdp3fM/hEpf1gyZ8z/sBlvnek/zP06dPeSyAfM/+J2ox6Sw8j/kcRY8LF3yP1pYcEINCPI/KXJJgfCx8T9CutvQYFvxP6YE+EbKBPE/eL9NZXiu8D+hgD/Gl1jwPx3l7sg1A/A/n+d7gIdc7z8R/dl3MbPuP10US4PqCe4/fpFqsA5g7T++mmvy3bTsP0q2dz6FB+w/dqGU5ShX6z9oZ/Va7aLqP0+GYEkD6uk/YyLWZK0r6T8sFueaS2foP77SsHNinOc/0OGJz53K5j/H6uEJ2/HlP0phfCMnEuU/K8XX38Mr5D9YiJGhJj/jP2PMc5n2TOI/2QMduwlW4T+FFSFqYFvgPx0RD3k+vN4/hYI8+xC/3D8BNaye5cHaPzlU0/qDx9g/UZCI4bfS1j8bwNECQubUP4kY5avDBNM/2t0kn6kw0T9ig5r5P9jOPxccYl78ccs/wBsQeHQxyD+Gy9REuRjFP0gpJtDxKMI/aFxQ+I3Evj8sR+5MxIe5PzA5vf7Nl7Q/pOnM5u/drz8u6dnNPAunP+BN444wSZ0/GC7XpEVPij9A8HpJIQNkv+hxuecZ5pG/9EZRjUWioL+CzLPe22yovzBGc5ZWObC/yet1x+JptL9ZIHMF79e4vzwICQzjkr2/wjMgd61Uwb9E2wr9bxTEv2BBbYjXDse/qFR3ODZJyr/WUc4S9MfNv7TaSEc/x9C/U6IioZTP0r80voL2kP3Uv7haBoAvUde/A6/Moc3J2b9j1zGwKWbcvzl275xfJN+/gPD0G/gA4b8I56d34X3iv5JXnToXB+S//TctpoGa5b8WhhifyTXnv6kJYNhh1ui/ZDTJ5Yx56r8ZD+OZZBzsvzAy8oTlu+2/kObGm/VU77/fQYKKN3Lwv6UgLDSVM/G/CxS17APt8b8OddA4/Zzyv9ALI5gIQvO/mRopGcDa87/8k4Hk1GX0vzn7tjUU4vS/lelb62lO9b/Ksk/u5Kn1vyJLtYq58/W/dgGZFEQr9r9unvbFClD2v96mI1S+Yfa/Oa0tlTtg9r94hBsVikv2v2jLW+bcI/a/hAqAt4/p9b+eni2EJp31v+tSLtRKP/W/o/4Xa8fQ9L8fXnEKh1L0vwrLYiePxfO/2wygtfwq87/8qNOJ/4Pyv+Nfoi7W0fG/K+XSJckV8b+Wkyz1JlHwv0OJoep9Cu+/IERKiLtm7b93pdW7krnrv3Q/oM15Beq/AmiKQMxM6L/gWkGWw5HmvxY7iER01uS/sb1BBMgc47/IesmOfGbhvyXOxkVBat+/hiRMcykU3L8/9P5dE83Yv6mCOskIl9W/nvcNzblz0r9EJC9/C8nOv5fK1cYK1ci/kDn0ghkNw7/Q8Y/07uS6v/ZABK8LDLC/cHYZEfZClr/QlvLopDCSP4DWPAgqlKw/GD0Fqnuotz+q1kD9aFPAPx7YaDAvosQ/jsUMZxHAyD8uVSFDX6zMP+yvnMoeM9A/ye7ZyUn20T8a7+xHDZ/TP1FEnRCsLNU/Mo4fhVWe1j9iAkovK/PXP04g8pNFKtk/Ps84i8BC2j85OZ08wDvbP9ruIRqCFNw/0lFqe1/M3D9WKJYk4GLdP/IC35HB190/OaBFUgEr3j8PHXBR51zeP4ARDQUNbt4/VWp/UWZf3j8yk601RDLeP1Zn8FxY6N0/yGtVGLeD3T9EaRyI0gbdP/QzZOp5dNw/oM3XotLP2z+8U6l9TBzbPyB94jWaXdo/5j5YvqKX2T8aGqwxdM7YP8J42DkyBtg/PvbRmgND1z+sjBoQBInWP/QIS9kv3NU/MIf0OVFA1T+AHfPT7rjUPzyLmAk7SdQ/jpRlCQb00z+ctX0KrLvTP16mtBIKotM/fqucZXeo0z/UmaQ4uc/TP2aL4z78F9Q/ng21IdeA1D+gqERTRQnVP/jyic2qr9U/jPztU9dx1j/8PuwRD03XP0UYg3kTPtg/3q5ScCxB2T+Z+VnvN1LaPxMFPGi2bNs/+y2St9qL3D9fqCwVm6rdP5Zy1HbDw94/79QbuQfS3z/wfw8KCWjgP0lLyCBO3OA/YCrixztD4T8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"vAcJoPCG7D+2Fpc7HkbsP+/PPdpE8us/gA2s4EGL6z/+FuXw+xDrP4nMMY1og+o/jvgEvozi6T9XcZQtfS7pPxcr2NNfZ+g/BvyDJm+N5z+0TbMs+6DmP79/UOttouU/zZ5wn0uS5D/xSbm2OHHjPzx24Mf7P+I/phYf+33/4D9gtZ0VpWHfP9AVd15wqtw//G3A+C/c2T/ImlaZFvrWP/W3YIu4B9Q/9piDuQkJ0T/9vAbuugTMP+oQ0KHN8MU//DSjosjAvz8QeO3MdryzP4Bt9tgyrZ8/QDjBE93YjL9Av5perHytv7idU81lZbm/mLKfZIW7wb+kxDz5+2zGv9C+4LSVusq/0uk3Eh6Yzr+YTP/n6fzQv5Y440VJatK/kWZDpPyO07/qakXSTGbUv1ex4RgJ7NS/AFF1HZ0c1b9L3x4ZHfXUv0z6ylNSc9S//PRH38yV07/KN8g45FvSv/Id+ArCxdC/6DAjj8Wozb/sgbVuMhPJvyA/ceYY0MO/0B0CvLjMu79gQAMuzHmtvwD7gUWSkmC/GIojbUKLrT/E9RFSkwi/P/ioaoFlFMg/ZfNXDjeC0D95m6KrZSLVP7LdGa6Z4tk/hcPIMWm63j/KGhEIntDhP1wFYrsvR+Q/yg1oW4685j/uq8npZyzpP0xzLi59kus/6rXop63q7T+vEnwvgBjwP+ZmNI/WMPE/s6dECZM88j9GXUpGDzrzP2bteszJJ/Q/7g4PY2gE9T+YWSzEu871P4Tk4O6/hfY/snCfv58o9z9Qzje4tLb3P6lqt5OHL/g/JJOsX9CS+D/cqBFCdeD4P1BIEdyIGPk/fGEstEk7+T/TBGO1HUn5P4JK0HWQQvk//8dtek8o+T/b094rJvv4P4IMZU/6u/g/BsMOHMZr+D9KaSlblQv4Pxefp7+AnPc/bmnIu6cf9z8s74gHLpb2P9DIFEk2AfY/vZOI495h9T92eTVQPrn0P8WY/PtfCPQ/Th9I5kFQ8z9YcbMw05HyP7EO/YnyzfE/SsCaXm0F8T/sWcLh/zjwPxu2fX2s0u4/TEF1NRgu7T/IIf1mYIXrPw3gvcCI2ek/jV4MQoIr6D+FCc21L3zmP2uOmVBqzOQ/QU55tAcd4z/4V0Y/4G7hP36/JnSihd8/MXLtCIkz3D8hCLxyZenYPxgB5HhMqdU/Py1yq3l10j8DBnguqKDOPxTmJpHUeMg/NsP//+J4wj8EkPLNBk25P1j6iEJcHqw/oOpmiykiij+g1THeNh6cv9TCOwVJyLC/aNoNVy7yub+66we9CD3Bv6NiJynEKsW/MDTFGZK9yL/xy72zWfHLv5/bzDm5ws6/amEPU42X0L9EIXfFaJrRv3l3HNePadK/DKJS5SUF07/Bna/q0m3Tvwo+nLTCpNO/tNm+/aWr07+UrS8vroTTv3egHfyDMtO/DPSSS0K40r/cLLhHZhnSv/bjPvTEWdG//mi8hnx90L9rB7zywhHPv/YPK47fAM2/ZFnBAWzRyr+/tnEBj4zIv7/btAdOO8a/IMCw02/mw7/C6djcWZbBv7/db+Htpb6/4fG0cjRHur8CF5Vc1h22v8AHjWqmNbK/ooQZNMkxrb/U8eAIVqCmv2rTuqLNxKC/vNwb721Tl78gOXYGEVmNv6AC+A7hdH6/wI+17+A+Yb+AQY4MJmpbP8B3iR2TGHA/AMSxqltLcz9ArUwWVLJwP4BQraWFMWE/ABLgN7azUr9AcPAFJcN2v8DVy66opIa/sMO4NUT3kb+ArgjVw4aZv1DMyOcT9KC/kDCSL8eBpb9Q3cxgxmCqv8h/wQMEhq+/xLnwc2tzsr8MT740ljy1vxDYnwuxGbi/MEaIkCoGu78k2yiQmP29v3wD4PfYfcC/dg9EvSH+wb/OAWohjn3DvzHPRM76+cS/5rX/Pj5xxr/BAdUqFuHHv+pgE5InR8m/JGXVTfugyr/sQ1JH+uvLv+wuvV1pJc2/ciK3RXBKzr++Fne2GFjPv+gBj6WqJdC/NhCzrYKQ0L8EORDpAuvQv8hps8yWM9G/dF6+erZo0b+rvmIm54jRv+LhJarDktG/pxP33geF0b/5a4iDll7Rv7WY1kqCHtG/JimJCxjE0L+MWakn507QvyVLHsqOfc+/IoOkbscnzr9BubqMfJ3Mv0v+Avpx4Mq/eDQJvybzyL+IZNfV7djGv0Tl0BzglcS/MyIa6t4uwr80d7ikKlO/vzBos3TFGLq//A85RKa8tL/EtqTqO5yuvzj8CXDxuqO/OB63/0/vkb/A82AX/qRoP2DN45wOTpc/lCAPlJs6pT+c/gem0SGuP6z1D6xZHbM/1HY/+aKytj+QeyyZH8K5PxAGLLzOPrw/yAEh5aodvj+sdLvS/1W/P3iZ9N2X4b8/eItN0By9vz+8LeEzNui+PwgjAlysZb0/yPx8Lps7uz9go3C7Y3O4P3Bbefu9GbU/AKbxbqE+sT/QuJ5wKeqpP6C5z/cnpqA/ALHFJIiJiz+AxperCVp5v0CwvlArkpq/yPcpEVg6p79c9Ex9GmCwv8SB5cFbzbS/XIMfgAnFuL/k6O81vye8v3hqFbk8176/EnfD6HpbwL8+5NGeTtbAv9Y84lZT0MC/eKO+D2k/wL+8api/kza+vxhjJEx1u7q/RPLvfnQFtr8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"KvK1kJZt1D+1lhnLkcnQP0qrSSCD9sk/JDxICaAMwj+4YPt737qzPyC0acmvF4c/kOzmqvK4rL9sJ+iftfC/v/QYQXBC48i/y77xJZjy0L//NMf3KXrVv3qMQ/p3A9q/bd+2DLSJ3r/GfTj6GIThvw8g5FU3veO/KkWEvgzu5b8rRTd3jxTov948/hrWLuq/L7QOPRw77L9Hacjxwzfuv4DlqROrEfC/gTqpd0L+8L+QTc06FeHxv5zoF3+kufK/1Exc3oSH87+h/AIZXUr0v1d2387lAfW/GNJus+et9b/WEzb5OU72v4gwjzrB4va/iu9VjG5r97/gj/qwPOj3v7T7EMovWfi/AJkR/FK++L/wMr7puBf5v5P65tZ4Zfm/8grLlK+n+b9iZFqBfd75v4r1En8HCvq/Ch40M3Yq+r9o5RUq9j/6v/z5E065Svq/3UAPDvVK+r8j6hQr5kD6v1xw2pbPLPq/NsWqifsO+r/sy56Wvef5v/KwoZlxt/m/dI1U5n5++b8WI458Vj35v3ASI5F19Pi/EcwkumSk+L9WiNlEuE34v0DcBmgP8fe/CVXs2BSP97++8aNdfCj3vwdHwdICvva/cOqhB2xQ9r8gzcuugeD1v6WCsDIQb/W/NM4KEOb89L+QL5hg0Ir0v9PJOOiYGfS//tssmgOq87+GQ//rzDzzv0WKH92m0vK/8u9e1TZs8r/6ldf7FAryv9wpfgDJrPG/Y0D1t8pU8b/M996wfwLxv3Sxv5k7tvC/PgBuvD9w8L8UJfhHuzDwv9qa9gqY7++/Q6pl4P6K7790yg8npTPvv9wuE3dq6e6/qRQ1NRWs7r9mdpyyVHvuv3xD59TGVu6/DujngPo97r844qt/cTDuv2iW3HCkLe6/e0tYPQU17r/j746T/0Xuv53rZHb8X+6/8Tde9V6C7r8SVS+lh6zuvx4ynXvR3e6/pBbYTZEV778qbwWcE1Pvv8os15GYle+/Pe5nZ1Pc779XAEw0MhPwv2yjncpsOfC/oNXY2VNg8L+ulf6RVIfwv+wUOuLNrfC/y9zutg/T8L/5e8z3Wfbwv/6Sav/cFvG/NvWCbroz8b/yLAPsBUzxvxDvExbHXvG/moVU8ftq8b9ZgzuTnG/xv1QH9yuda/G/outTJvRd8b+c+9FEnUXxv7bbzlqfIfG/uz7FfBHx8L8AmkEJILPwvyKyj/8SZ/C/aBnNzlEM8L9aHl1A1ETvv6oN8VkmUu6/5m5LnWVA7b/N1XvFvw/sv3wD3fvLwOq/zT9etI5U6b/CAgO7eMznv+dmy7NoKua/nIIicqpw5L8GQqOq7qHiv+xbgsFGweC/VlOcyzWk3b8MvtSjQbDZvxhMMcCbrtW/KDO2XJSn0b9c0ObihUfLv7hb2p3GV8O/IPH8zdsit7/gEviLGhegv4CERsQi05k/EEg0yRo+tD90W/+PKZnAP3D7MHHwmsY/bFQq3wkYzD/k9MHP34LQPyo7X+qSrdI/dBPvCZ6I1D+oiukXfxHWP3DWbeG7Rtc/ZMBUHeIn2D+EKG0Eg7XYP1QV0g4s8dg/MO4xE1vd2D8kJCZxa33YP+CpZvuC1dc/4F+P8HTq1j8cV0L3qcHVP9TihdkBYdQ/+FiJ1q/O0j/YNYnBHBHRP6DA0+aFXc4/aJq0ghtcyj+g8Z13bSrGP4DJ1nJR1ME/IGTmfYHJuj8AVQl0P8uxP+ChdMhifqE/ALTb0pELU78Ai7gd+paivxA1PQSRNrK/oI77UKQIu78gYPi2M+DBv2i79HT0L8a/yImnP0V2yr84UTEIabfOv/hA8/mMfNG/eOJ57C6h07+6g6NZss3Vv5QfvZukBti/9qmOOPNQ2r8c+eM/ybHcv+5JLeJwLt+/INqpmBnm4L9y+PiwHEjiv2ad/cOzv+O/psoaXyBP5b/ufI3gYvjmv8Vq5tYtvei/K1N2JNee6r/eMg+NTZ7svxZWmAoOvO6/pt1nHw588L9yBPIF/qjxv28wGuJW5PK/6rpnN1Yt9L+Ej1y79oL1v0ThvnTy4/a/wmEAg8RO+L8gC43drMH5vyFFQ8u0Ovu/GJnCobS3/L+A8AHiWTb+v8a2eBEutP+/dJ3Vk0+XAMCO8FE8g1EBwOFVUYdZBwLAUqAyWni3AsB4D3HyiGADwCmff/Y7AQTAniBMLk6YBMC3NCjviyQFwGacqq7VpAXAeTacFCMYBsBOOsM6hn0GwEg/yW8u1AbA1sKDt2obB8AUqXJ5q1IHwGTYSp6DeQfAHK3W66mPB8BC/o2j+JQHwIPjhw5uiQfA7g2j5yptB8BYa+EOckAHwG/5MHqmAwfAjCxZc0m3BsBatzIj+FsGwJu2kDhp8gXAaCBgtGl7BcDQXsnA2vcEwAZ4Qq6taATAVPfZzuHOA8CT4al8gCsDwFuaFuKafwLA3/dFZUbMAcDmPHBpmhIBwBxxaJStUwDANhdZciYh/7/v5dS3s5T9v1RazJYRBPy/AkjaHz1x+r8wt4RoIN74vwPf35ePTPe/mjtE1ka+9b/f/8Tb6jT0v41QznwGsvK/kpNZRgs38b8hGl1Co4rvv2q+JxkxvOy/OI9SVAwF6r9hXx4KUmfnv3R4gBrw5OS//mnfc6Z/4r+LzERhCTngv6hBWDAFJdy/YDj4YKQa2L8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"uwuZbiaA6D/K9NX3MYjpP3E3qDm8feo/om9wVKxd6z9+MxbVESXsP60Al7oo0ew/h62nOGRf7T8LwQvqcc3tPzY4lgtDGe4/FBg1OxFB7j+qMemUY0PuPwgVMBwTH+4/ftaEb07T7T/HByeNnF/tPzJLq2Xfw+w/LPLHFFIA7D8oj8ZrjBXrP5WTNrV/BOo/VvfuJXTO6D8OwnffB3XnP9LWrj0p+uU/lDZWgRFg5D9QRnWdQaniP7A6ZbJ32OA/lHXDV1jh3T/qHh8DDerZP3v2f4Ws0dU/c/u8GhSf0T8+s5LdnbLKPyg0OU8CD8I/SCjsiV3Dsj/gK599sR13P4AG5V7MdK+/iI5irvdSwL8+8k8VHZvIvyQXcc52VNC/8KJLyDQ41L8WIy/yJ/PXvzEMg1MdgNu/kAR5y1fa3r8G6U9Fy/7gv54GdvMLc+K/lhy2XFHI4798CUAdQv3kvyl41NDIEOa/lSdD4BIC579Owt2YkNDnvz6stgH0e+i/G4LYECwE6b/f3n13ZGnpv9o2kcMBrOm/A2ktrJ3M6b/Q+biGAszpv+6NBsYqq+m/RmM6DThr6b+cdEYfdA3pv+zWpYZJk+i/gJUYe0D+578i3VD2+k/nv42WiPUwiua/aPLmPq2u5b8ZWsdHSb/kvxtD2KbpveO/xs/HTHus4r+223Fs8Yzhv5CPCuRBYeC/e0v3/8JW3r/2fXFki9rbv2Jw3FK8Udm/iV5WUyjA1r99xO80linUv1MMZiC5kdG/IKfbSVr4zb8CKk0C79jIv0BRzZwGzMO/eJlMB3ewvb90UDci0Ae0v9AQqhaMVKW/AAuIN6k3er/wRv6rNAacP4h/vEXcdK4/cOMr5nD9tj8s/4e/jkG+Pz7baqE+f8I/MbvA+lqWxT+f2gn2umLIPx3hHzlk4co/qg5TwMcPzT9dGszVv+vOPyBQs6HIOdA/4PrK9vfS0D8cLetr+EDRP2pIXXCLg9E/QBDlLKSa0T92AG2gZYbRPz7aULMhR9E/wlk+uFHd0D9QAmxvmUnQP84vvmuBGc8/suGkOltPzT8wynHKyjbLPxZXekQN0sg/TRDlgYojxj/8EI/30y3DP/7vLRIz578/lIebv1rvuD8AuQCD9HmxPzju3h8MGqM/wJ/kkCrtcj8A4/fZ0Giev9C0hwVox7C/4MEwqdlRur/sKOawKxnCv6JcPteuMMe/m7/3nYlrzL/1mz31y+LQv7KjfwNFndO/ijq3HuZi1r+m8Y2aSTHZv+kToAvrBdy/lic8Cibe3r+F9qeHnNvgv0vZq/UhR+K/vkMBkiew47/y4CfWJBXlvzw/H/aIdOa//LD75LvM578b2cjLIRzpv07wbNwdYeq/expT9BWa67/60g1CdcXsv/y8QLiv4e2/SxJKokbt7r/EO/THyebvvzTPtRZuZvC/U/gU0xrP8L/JPkIg0izxv9V0hLMIf/G/A13PJ0DF8b/eqp0wCP/xv8qTIlr/K/K/MPk+KdNL8r/o162yP17yv57pyaIQY/K/4ZbsgSBa8r+YBbpQWUPyvxtGUFazHvK/CUjXQTbs8b/Sss6I+KvxvzJ7wtcfXvG/sYLjKOAC8b8EbPqnfZrwv8AaAUBLJfC/qqCC8ldH77/AMEP/JCzuv0IIIaMF+uy/nS5ZgSGy67/2fjv7w1Xqv7zjlGdY5ui/Duvsk29l579MVjX9uNTlvygxAeAHNuS/uYBhpEyL4r/VRlGoltbgv64SX6IfNN6/SAbGaPGv2r97NwXaSiXXv8CjyKPwmNO//oIgMbsP0L9ZdTIGCx3Jv0lFl1hMNMK/AJpfpHbdtr8ov1JFUlajvwAWghEC5Yg/eJaU6GDSrj/AXZ9dESu7P47gv0IZKsM/IhqfghNsyD/DSsHTJVbNP5G48Lv78dA/jHeAyxoJ0z/8IBecUu/UP3D7QYcPpNY/rrx7RFAn2D919/ysoHnZP1jEfjIVnNo/9LZc40qQ2z82Yp97W1jcPxLAGFjW9tw/lNNzlrRu3T9MENQaTcPdP4z/LIBF+N0/plIPE4YR3j++2N6FJhPeP44MbTRiAd4/3OGfxobg3T/blLjJ4rTdP+4FHxO3gt0/2oaVkixO3T9p3QXVPhvdPw6h+kK17dw/krTXfRPJ3D+j8QA5k7DcP8dZdMUXp9w/hIHPtCSv3D84dXxB3srcP5OLC2T8+9w/xP2D/spD3T8oSbnyJqPdP6JMU5l6Gt4/+oAPYMGp3j9NwkZ8g1DfP/HWjuDsBuA/OIoaPTlw4D9evNJnR+PgP9x3CyoGX+E/DMfJ4zLi4T+jCQBDX2viPwzInfrv+OI/vZsrmiSJ4z/WJx20FxrkP1jbHYvFqeQ/kMlROBA25T9jUbqFw7zlP+PxateZO+Y/haSuzEOw5j8yMnOsaxjnP/vLoQS8cec/6tc2iua55z/WvLUXqe7nP4yNllvVDeg/LhtZ0VUV6D8CGJNMNQPoPxNYhzqk1ec/7g2wm/6K5z/XKTdK0SHnPyCLrhjfmOY/Q3pV7iXv5T/OC8jA4CPlPxa7HhKNNuQ/1OqnHOwm4z/3dTsNA/XhP5hMfDMeoeA/uOX5qp5X3j/xpDd32CvbP/Cc/Ssawdc/4VaLrhQa1D8HZk0A8DnQP/TwEJqJSMg/sO+Cpzt0vz8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"dQE+2JUL9z+zQ3tH4sr4P5rZZhVohvo/1MeUXJ48/D9m4K/a4Ov9P21+nyRykv8/1Wv8eD6XAECIWFVWDF8BQMgEqAimHwJA+BaKOwnYAkAO/N3uL4cDQP18naATLARALpfrB7DFBEDt1edCBlMFQK5J2iog0wVAHd2Y3hNFBkBUkXbEBqgGQL/NOR0x+wZAxjsOTeE9B0DeQfn+fm8HQET41YmNjwdA2IQ9/q6dB0AqGVHMpZkHQEqAXi9XgwdA1mf1H8taB0D1ZkEQLyAHQOK7XjDU0wZA2hXLVjB2BkA8m+K23AcGQGoKFa2UiQVABOcIgzP8BEAPtzM7smAEQGTCxAMluANA3m9HabcDA0C0MrjoqEQCQBp4rWtJfAFA5MnmzfSrAEDTuga4Har/P7Ltne398f0/pnpRwlgy/D+A4tdN8m36P+AqF59+p/g/3jMiNJnh9j/C1EmKvR71P6F+pPhCYfM/rief2lWr8T/3W/3I5/3vP0BfxTHQu+w/jYaagZGT6T8jghtl6ofmP6ytATsrm+M/Nr3KcTTP4D+G0UxQ9ErcP8g+1YEMPtc/HEPIKPl40j9sqEEKhvjLPzyQWU9/j8M/gDwwjIJqtz/gdbS6CZyhP2CB1gh0+JK/5FoLQ1NDsb+IE563osy8v8AjiDMts8O/Etkio/KOyL9ydLINvgDNvxrUe9f+h9C/etLOJi5i0r8yc3i70hLUv+IxCHfZndW/MTGYwi8H17+ntBemulLYv2U2cqBRhNm/biWYSrif2r/BDKlymqjbv4gGqBGJoty/3u57TfSQ3b+YPorHK3fev2LeA1dXWN+/2P3nyrob4L8WuyAlrIvgv9FJTiBQ/eC/t5Bi0Npx4b/GYh/6Y+rhvw95eQziZ+K/Di+oWSjr4r8SdV8R43TjvxhMQjKUBeS/FUcYm5Gd5L9aXxgr/zzlv/GWOWLO4+W/1JGuG7uR5r9Owr65SEbnv/wP1xvCAOi//sfgtTjA6L/fJu6qhIPpv9oqoHFHSeq/0pzYKesP67+OkPyGq9Xrv46XHU6WmOy/9I+sy5NW7b97LfblbA3uv2GD8qTVuu6/JWuXM3Rc7784vXcb7e/vv3sC1W12OfC/XM0BF5px8L8ViPf1UZ/wvyZTuGCkwfC/+0GMM7PX8L997vZAweDwv86lpcU33PC/AZjE0qrJ8L+wfpt33ajwv4lJZsLEefC/dpSpTIo88L+conS2G+Pvv+HlyFjLMu+/L7NWWLxp7r/d5mRv74ntvz6nS4/Lley/MXlJtxKQ67+kJGvV23vqv0yX0A+HXOm/N+iwDLE16L/gHMkVJwvnv+NFxMXW4OW//bpqMsC65L89v0bB5Jzjvzz7DoI4i+K/gf8HB5KJ4b9KjeoSmpvgv/zzUIJ+id+/psNJFE0Q3r+YOs5QQdHcv1cg21M70du/MyjI+kkU278LGuF/n53av65AcMGAb9q/Tx5Z1EOL2r/K2W8DTfHavwymKGgOodu/0XJsMRCZ3L/eAkfl+NbdvzHZeqmYV9+/EHkGmH6L4L/cGv/dPojhv9Yr5Fhsn+K/eaQixiDO478CznNkPxHlv4faWIKAZea/qO/lPn7H57/hl4MVwTPpvzEuA4nMpuq/6ZUdyCsd7L+j2A1ZfJPtv2buzBp3Bu+/ukVTF3858L8V+t7YEOvwv+oAkxOUlvG/NSHSs8o68r/6ijl5l9byv9ycQRD/aPO/yoDuBivx87+Bmlf7Z270v5egV5Mm4PS/+0E7u/pF9b8ZDqdJmp/1v3pDiNPa7PW/cyqRjq8t9r/nF1nZJmL2vw4bqihniva/HNRpn6um9r9s5vPlQLf2vz+RcB2CvPa/1KIW4NS29r+l7zvgpab2v4wdQVJmjPa/cEN2l4ho9r/qBYc4fTv2v5OVY7mwBfa/CMY/MYrH9b899QmlaIH1v4Y+nZyiM/W/cCqZEIXe9L/sTCCCU4L0vzhtErtHH/S/qnasFJO1878G+InzXkXzv92HubHOzvK/MxlUfQBS8r+6XzpoEc/xvzpma0YdRvG/UJFM7EK38L9mqQGjpSLwv7ZKJKLgEO+/ZWBcqq/R7b8TO+1tOojsvyKMyoYeNeu/WgyVcxvZ6b/8bTqOE3Xov4G2vloPCue/7stY4j2Z5b+2pOCx9iPkv4CEJGW4q+K/87Kfaicy4b+sTC9ZF3Lfv3B9d2+chNy/RN/eO+Sf2b8IBoQFI8jWv5DIfkeuAdS/aMoKgexQ0b+oOluSjXTNvzQtpRw0hMi/jN2GdEfZw78YUxo+zfe+v6AN67VG57a/MDxm170dr7/wOJ//rvWhvwCyCEbOrIm/AAE986iIez8gYWnFciaXP7C3aftV9KE/OOicFfySpj8gO85tV3OpPwBPi3SJn6o/cIoaFK8nqj8AV0GQ7SGoP6BgP4hOqqQ/oKTiLXXFnz/AXiX6AeWTPwBqItsUMng/gP0RJzbDgr/g2l1Xq/qZv8B53JB3pqW/wNvrmZJwrr+YqWjyB4+zv7COZyofuLe/kL9NrxmUu79Y0qVE2gO/v7BzN6mU9MC/iAzktocTwr++8VbDNtHCvwKRDggqIcO//kmXJEX4wr+uHzvG60zCvz6+YSY4F8G/DFNNLTiivr/iRA9g/+y5v1Jc72KoCrS/qHadK5z2qb8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"LbI1deKD5L8i7vfURd/jv2AMNh0jJ+O/ysJ4eUhd4r+Zz5bmmYPhvxrOrTELnOC/Ynfpay5R379ccQticVbdv1DYVrPGS9u/fAerOPc02b9gn0ZUohXXv7hGrAIv8dS/IAOG1MTK0r8wSKqHP6XQv2gWaHRQBs2/CFZbvl/NyL9oBUsQV6PEv8AdVSEhi8C/sOA9yN8Nub+Q1GJ8aDCxv8DkPrTC/qK/AKXNdv6uf78AXqrtyHeVP4D5KBbsGqk/UMsODbmWsz9Q7BNvp326P/hsCR5to8A/oOb2Caz7wz8gYpNxOUrHPzDz2bzJkco/UITkhQPVzT+U1lseOIvQPyD591QtLNI/ECA9Rl7O0z80nysVmnLVP1wGDy9zGdc/ZH0Q2jfD2D+qPvf57m/aP8Rs4chOH9w/fs5HZLTQ3T9IV1mHJoPfP9x7ugGnmuA/nywrkLly4T9I/pn3wEjiP5Z8ncyAG+M/MCqjH4/p4z/jkMjSUrHkPxqo8SEGceU/b297trkm5j+d2jE6VNDmP0YkoOKZa+c/2Bjv1Cv25z8uIWLjj23oP5m7H+8yz+g/DpwzZnAY6T9aVmFrlUbpP4Ui1fzqVuk/bFblL7pG6T/S04b8VBPpP64yp8geuug/YBOmVpQ46D8p+3JEVYznP2q9NF4ts+Y/NzDH0R2r5T8fFGXGZ3LkP72FYD+UB+M/lyDVuH9p4T/aHZB2wS7fP//7YMulIds/kstb8rWr1j+SW3aA4s3RP9T75PsSFMk/LIgxSQSMuz+QF33KW5OLP3sBYqZeEba/0kCKaBR0yL8iYqTRsz3Tv/T7y5ugh9q/IPPNdZsH4b84U038heXkv1r1xVd72Oi/cqqHkRPb7L/oumdq0HPwv5RHe2EffPK/fmnxoHCD9L9M6Jz/sob2v56hwz3Tgvi/RST0xsR0+r9uxlmAiln8vzdr/M8/Lv6/5aLazyHw/7904o4IS84AwNZ41dmZmAHA2znCzORVAsA45YY4MgUDwGNpEwGqpQPAJK4D05c2BMABxYSLbLcEwLq9KTi/JwXADKQE3k2HBcDm3Y8Q/dUFwLRVKonXEwbARKiA9wxBBsCe48+t8F0GwH6bHRD3agbAjB1ywrNoBsAUqYtl1lcGwET3Z8wnOQbA9JLXk4YNBsAWjqiY49UFwL7+MnU+kwXASMiU3aFGBcAyaX6UH/EEwHh98nfNkwTAbz7nCcEvBMDIerkJDcYDwPqC8B29VwPA9GvRyNPlAsBEy9QaR3ECwGSus2L++gHAQG1AA9CDAcAu1bj8fgwBwNxvM5G6lQDAtjZlxRsgAMA+lfjfSlj/v72UAwmGdP6/FOCUKpGV/b8JwUrN5rv8v3Z91OPS5/u/zinYFHYZ+7/WazYyxlD6v40X5KeRjfm/POaXu4HP+L9u0I2QHhb4v1YWTq/SYPe/CI5ddu6u9r/qGAKarP/1vwL521E2UvW/FsEaN6il9L9INyX/Ffnzv8aRjdOOS/O/6FfGUiKc8r9zbQ9J4+nxvzzUPArtM/G/wf17AWZ58L+HL7AFBnPvv8jBppkU5+2/AFuzA61N7L/wAbP0r6Xqv3ru5/Mu7ui/jHkquWwm5796NVlP4k3lv0YW4Ic9ZOO/PHqeC2Np4b/xU1ZJ2rrev8RhEV9Ygdq/DYiiUkkn1r8hAwy7Gq7Rv9TGI+o1L8q/Qu9M6+bLwL9o/RjpGt2sv0BMKuReSJQ/CGuOx7vduD9ya+XkfnPGP+koZtbcR9A/CO9RfP1d1T+kiYTdJ3jaPxXfPLI4kt8/eg62ofhT4j8o5AhretrkP/6cLxdsWuc/8/Bf6Y/R6T/ZRiN6qD3sP6l9SIV2nO4/CK1oMeB18D9+DVIsqpTxP2yMpjeFqfI/UWbdXGWz8z8M5wdIR7H0PzrxsBsyovU/unj09DmF9j99zgzDgFn3Pxwe87o4Hvg/OFQv26TS+D9g4gEZHHb5P04/+qQJCPo/NLuQ3u6H+j+9y3MxZPX6P6jYi84aUPs/v/tzQd2X+z/GE5k6kMz7P63IF80y7vs/4/0N7t78+z9olGBvyfj7Py1Wo+5B4vs/7VF5v7G5+z8iIF2Nmn/7P4CYNQWXNPs/8FstU1bZ+j+u/yg9nW76P6LpvjVC9fk/doukkStu+T/VrJmWTNr4P7rEm/OiOvg/dt8kOTSQ9z8JpDonCdz2P6OQfFssH/Y/fiEIC6Za9T8rXDQUeY/0P5A6v7OfvvM/6FtqTgnp8j8JqxQhlg/yP97F7XsWM/E/VT97WkdU8D/49ilToefuP1q8YJKHJO0/rHaPmTVg6z/kUxGqbJvpP+6NpI2+1uc/NdY7QIoS5j+owkQO/07kP7hEyFkejOI/nPYjPb7J4D/0G7jbGQ/eP+JJg5Esito/esY3r5ED1z+KDo2p9HnTP+hNTFC9188/fBZY8YevyD+sTZqzH3jBP5BZmpnRXLQ/QIfmBYh7lj9woK67552ivzwY5olNcbi/LtXO2uvlw7+QbGK2k7DLv4YM4qehzNG/+Ef2r/PP1b/kz5C61uHZv+RbFYd4Ad6/R3gPcs0W4b9POuadSjLjv9qa8tAnUuW/+Aqs6iN1578zzoOvzJnpv5YQiT59vuu/xyUA6GXh7b/OkxryRwDwv7g6TIjwDPG/fbZfMJIV8r8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"8AAwIhvlq7/k5GcnRZS7v7aLjjZcPsS/gPECmzpSyr91GgP5SQHQv3ttunVeptK/uJ5TpEkX1b9f3iuZM1PXv6s2qVmEWdm/HIaJpdsp279G21fVDcTcv79d51QlKN6/fUdALltW37/qPi2jiifgv6N/xAVzieC/vEG29kLR4L++xURKa//gvyBTiO1sFOG/vkuwd9sQ4b/ULw/uWPXgvxKHVmGXwuC/3YWXAVd54L8wC0ksZRrgv/HH5eM3Td+//WUelMI93r9fo08JSwjdvzhyyV3Ertu/hvGaDTQz2r/bsVtSrZfYv38iXltP3ta/a7Z18kEJ1b8oY+4atBrTvznSRxzWFNG/stX8qbPzzb8eCinZ3JfJvwQX63h9GsW/IImvIdh/wL+AoI2oP5i3v5ijOWHDDay/IJIjPV5Okb8A10U5VOeVP4C5bJuAs64/7LfFstxEuT9SwHlA/JnBP65kZZAQkMY/sEF2B0mByz/xFfUxKzXQP1A97TYApNI/e3C+eI0L1T8M6vkiR2rXP99JNaKmvtk/dC9ANSoH3D9z0hiUWULePwLxnGthN+A/qbg/8H5F4T9+dukW1kriP66WUP69RuM/YQZhjZY45D/aj1FcyB/lP3e84ZHI++U/KK1RHRnM5j/M8pu3SpDnP9+uEe/+R+g/ham1Z+ny6D+4kXlU0ZDpP95NkQuRIeo/6MEh5xal6j/9nz8TZRvrP1ip/GePhOs//gheRLvg6z+wu1DyGjDsPzPDtSvtcuw/6Ue0eHep7D+h+2i6A9TsPzCh37/a8uw/A/iFNj8G7T/bq0IKbA7tP+ITyk2KC+0/TVoeeLH97D802OL+4eTsP9tuTfMAwew/GwiRU9aR7D+qSgc4ClfsP9y96mslEOw/gtz79Y+86z/L9P/sk1vrPzl0Qqxe7Oo/kSRycARu6j8XgJn3hd/pPwTOxLHUP+k/Zl8+RNqN6D/0clQ/fsjnP7Yxrfiv7uY/K4QEc2r/5T/C6R4KwPnkPxR6vqLg3OM/7JbimR+o4j+6rAcT/FrhP3SiDPZN6t8/0QTfqgzt3D8QmopCc77ZP7tyE5M5X9Y/ULYDDJLQ0j/snrqUUCjOP4q4g9U/WMY/YIXNXy1svD/QgCyUOx+nP2BySfkFX5e/0JjVHTq7t79yqA6QgwXFv4TBJAxEW86/BoHMxiDr079Dglfv2LbYv5MltHRfjN2/FvlChqcz4b++IAF9rKHjv+ozg6onDua/hwZ6iBh36L8p52Iamtrqvwg5CNzjNu2/rjNRpk+K779ESE/eq+nwvwhGEGFMCPK/zIrXHmgg87+rbReQbjH0v9TTTprcOvW/YgfGgj089r/eBa+sJzX3v1hb9zk7Jfi/zjRrQCAM+b+ixDtyhen5vwbsoCIdvfq/cC4kup2G+7/IA6mBvkX8v9w1daI4+vy/TS9I98Sj/b/K4IsTHUL+v44XGBv71P6/kd/WFBpc/78TwpIVN9f/v/59dWAJIwDAJoLAOjlUAMBy4dPSEH8AwIxpYVp6owDAiF1lx2TBAMD+ao15xdgAwLpYyEWY6QDA8i1l3+DzAMD9U0UUq/cAwBKmK5sL9QDAuORVFiDsAMAAcrAqD90AwOI61QEJyADA2NQi20WtAMBUA/KgBo0AwNsx/zGTZwDAa6+CFTo9AMAFkf4ETw4AwOo3BGVTtv+/MIfXmUhI/7/eu5cZNdP+v8d+3a/OV/6/OPSw78fW/b88zau9zFD9vzKD46Z/xvy/16PebHc4/L8vtBM1Paf7v7A//a1JE/u/kCftxgR9+r9iQT+IxOT5v9hqwUnMSvm/RhbXEE2v+L8MGYhSZRL4v9bJxKcjdPe/6BJc1IXU9r/S94pzfDP2vzQMcSfskPW/JrO70a/s9L+mEei3m0b0vzBy3gKAnvO/ZszrRCr08r9WEPEXakfyv+h3L/4RmPG/ShkSdfrl8L9mmbc3BDHwv0gwi4kz8u6/3Tld6mJ87b+BAVWHmwDsv1BNPIf+fuq/4c8zDsn36L8TOMJ4VWvnvw8dkLQZ2uW/Skgfj6dE5L/Lb3bRqqviv/HlTmXnD+G/GUGSxG3k3r+BymsyDafbvyLhWy2madi/ouOL6E0u1b/MRc1VMPfRv0D/KecMjc2/sGdAmyc9x79ANxhKQgPBvxAUJNrVx7W/oPn8XKSOo78AfHpApiF/P+ANvqpmt6o/aJMsaf9suD/sycBh447BP8RbGqkQs8Y/OI6DqkKfyz/CvKJF8yfQP079fwXPYNI/WEQt16F41D9AOmLo+W3WP0bJAcGEP9g/1J2Pcxfs2T8YVW3QqXLbP0DY+jZh0tw/iH/xbI4K3j88P+AktBrfP9yLBUVCAeA/rgoSFPdg4D8UhglqiqzgP8a/9zst5OA/hC22GTAI4T9qoCGdAxnhP/B/1nk4F+E/k6nyjoED4T9S374Esd7gP/aN4g+6qeA/PshJ6Kxl4D8ih/qZuBPgP7oQdoVIat8/sv8qcZ6W3j84lZ3RWK/dP4iEl0p+t9w/uI9J1Siy2z8UIXYEg6LaP3xUF8+2i9k/7kZRKuhw2D8eejSrJVXXPw7ZfN5gO9Y/6O+UcmEm1T/M5Qp+uRjUPwJprqm+FNM/XI46Cn4c0j/+PBRktTHRP8QofgPLVdA/2Ey8pZQTzz8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"LF4f26Rt9b+Wk6hQKKz2v3QFrf3b8Pe/pK4K8+46+b/CE3CsZon6v7hCC/Mf2/u/YqP+ptAu/b8tHksxCoP+v82eYbI71v+/kqEpKFuTAMBg13uBWTkBwJzufCEr3AHAPb9YZNt6AsDJ6ZoGchQDwJz5Tl72pwPAirohS3M0BMDw6146+rgEwBbCySunNAXAOKE9+qOmBcDWA3KHKw4GwKCh7/eMagbAvu1ECS67BsDE5Uyrjf8GwKplRNJFNwfAoJdMmgxiB8A2hT2ktX8HwGxx0/8xkAfAZoMsFJCTB8DihsdS+4kHwP3cdpK6cwfA5g2w/y5RB8BO8hZT0SIHwOZYk4Yw6QbA6V7kPe6kBsBjKXVSvFYGwD550/5Z/wXAdBELn5CfBcDOXw2WMDgFwFelAYgOygTA+qPZXABWBMBjBJDc2twDwPe9A0NvXwPAjGcl+IjeAsCicqtK7FoCwAoxYNxU1QHA18UGr3ROAcCYet1d88YAwM4dEBxuPwDAkU9UzO5w/78GgEqlL2X+v+yEUdmbXP2/nO+YNR9Y/L9MBdMElVj7vywuSefKXvq/raGkJ4Jr+b9vz2j8cX/4v/gBSZNJm/e/Far00LC/9r99smP7Su31vz1pwm22JPW/ZNGDgo1m9L9SyieaZrPzv1JIuZvTC/O/BCzHBWFw8r8iT9NllOHxv+KltK/qX/G/Hm9dwtXr8L895U9PuoXwv65e4qjsLfC/aixl2FzJ779SBggSV1Tvv+KgvSPu/O6/l6lJ2hLD7r8dwNzVeabuvxce5reYpu6/lL5+pqPC7r+sPz8Uivnuv2akZvP1Se+/AEff5Eyy77+eMw9kWBjwv8/cl9CBYfC/fj4jl3Wz8L+gPLet6wzxvzQSZx6EbPG/NDxF6svQ8b+ETft8QDjyv2naw11VofK/HMA5eXkK878ZhAjnHHLzv42+wkm21vO/Fey608g29L/aCNYs6pD0v7Cot8DH4/S/bGfVrywu9b9it9BoBW/1v+22LullpfW/lHx48YvQ9b9909FH4+/1v1zXhgAIA/a/Em8IGMgJ9r/WkMt1JAT2v6mOzilR8vW/ruX6ybTU9b+1LS4O56v1v6dmb2WuePW/CWRn/vw79b+RcQ4x7fb0v+6SMQi9qvS/7elSuslY9L+e63oGigL0v3hha1CIqfO/vz8FGF1P878guEZ5qPXyv1o8puMLnvK/h+DCbyNK8r8VSwV2gPvxv9/Db8Cis/G/g78g7/Jz8b9rfUm7vT3xvwsUE88tEvG/bzffcUjy8L8wLh/P6N7wv0qTXPW82PC/s4VEjUPg8L8Hg/PIyPXwv83NQYlmGfG/01Dh/QJL8b/tIKBrUIrxv6jgas/P1vG/Z9d+CNAv8r8s2TOLcpTyvza3w/2sA/O/0mEwek18878+1jOP/vzzvz+38+ZLhPS/Mt0NYqgQ9b/wvT3HcqD1v+yrHlb8Mfa/Om5k5I/D9r/wvs5cdlP3v8WKkXD/3/e/9Eyffodn+L82si7mfej4v6BSFjZrYfm/O5zcuPfQ+b/xHjuD8DX6v/hh8VdNj/q/NvhNDDTc+r/WfFEe/Rv7vzSI3nU2Tvu/EIbhO6Vy+7+m+EzRR4n7vyhQ/D5Vkvu/5UrpFz2O+78beXU+pX37v629lp9nYfu/YvCVxY46+79yacG2UAr7v+LD1NwJ0vq/WkJ07TaT+r+HyZdebk/6v/ZAKwFYCPq/FAygjae/+b9ffAJjEnf5vwDqqO1IMPm/fl/TP+7s+L8CSMjSkK74v9g8E4midvi/ktO8hXJG+L9IvUA/Jx/4v6rI//y3Afi/KrWLQ+ru97+uxmcWTef3v8KuQYE36/e/VAili8b6979LTbc73hX4v7k0E6MpPPi/LlPyih1t+L9+BCJd/Kf4vyBS1FrY6/i/8/HenZo3+b/QsuwFCIr5v6U4JH7H4fm/LKzBdWk9+r+U3NBSbpv6v2D4uq9O+vq/d8nDOoJY+78IAk0kh7T7v5jgmCrpDPy/HNrkWEhg/L8Bh3D9Xq38v3iGccsG8/y/XifXIT4w/b+Y71JqK2T9vwAIiyggjv2/YKFQ75ut/b86lZ1OS8L9v1nrttgKzP2/CGefY+TK/b+6NduoDr/9v7HeBN/pqP2/qNkpAP6I/b/EPPUy9l/9v1C76+ubLv2/Bn6YCdT1/L9OGc74lrb8vyKS/Wbucfy/2fdwL+0o/L/6cVntqtz7v7DFX5A+jvu/mjZ+ULg++7+k36VEHe/6v6eExwtioPq/+t9ln2ZT+r9VejI/8gj6v79Wx4Owwfm/q4CQAS5++b8ypdBW1j75v8UmNcPyA/m/p+67wajN+L+UPFG8+pv4v6UYyenGbvi/1b98/slF+L90eePlnyD4v+r9CRTG/ve/WLxjEZ/f97/hY6EsdML3v8CuTGh7pve/g2PUztiK97/KQew/pm73v1iuZdH0UPe/KlS4jNMw978UzKJmUw33v6K1aOOM5fa/6wqnpKO49r96Ijd0y4X2v7BdrS5NTPa/LtK8aIkL9r/3493w/ML1v0VLmNJCcvW/VgDelxcZ9b9EetdIWrf0v/yR2iAOTfS/02OVJ1va878ZK0LUjF/zv66J15sS3fK/2I0+G31T8r9SdCAVfcPxv8rZ1FDfLfG/wA83QYqT8L8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"/MIx5XWf0D8BzuGB4ovQP6VfEVRFodA/DymcvHve0D+Oc0NHzUHRPyFvVJTqyNE/bFFpyQ5x0j/eS5+IAzfTP/ChHBk7F9Q/EzgWNOIN1T++QLF+7hbWP6+GCZ40Ltc/ILHJa3VP2D9rXWwAcXbZP7REE//2nto/S08mmO/E2z+oedeFcOTcPyJ+zh7B+d0/Ek1e/WsB3z9Q+/ypQvjfP0UnTv+1beA/gebNZzTU4D9hwK+8iy7hPzjdooXfe+E/7rRRV4i74T86Ad6/FO3hP2/psxxLEOI/gNu/Eyol4j/kQc1U6SviPzNOHeH1JOI/I4Yy0PUQ4j/mHj5iwfDhP8mVf5pixeE/3EzB8RKQ4T8pDGhRNFLhP2TWIBdPDeE/8+PoqQvD4D9u6npwK3XgP3oLjsODJeA/1HdgE+mr3z+D7MRpxBDfP56z5KBYfd4/mY/56kv13T++dKKLGXzdP41otkoBFd0/IuV/YPPC3D/iTKGyh4jcP5hIp53lZ9w/vEPBAr9i3D/dlvV6PnrcPx8rwlj9rtw/QlJlsAAB3T9+ub70q2/dP4jXha/F+d0/8ySVz3Cd3j9e2MrvM1jfP+4+dbt9E+A/6nG/PxGD4D8py1AnvvjgP359VyoycuE/QkZPteTs4T/a6C7MIGbiP9eXyLQO2+I/HhlqObxI4z8uOsQaK6zjP0yJWFRZAuQ/OnEwPU1I5D9gFlffIXvkP+pL8bsQmOQ/OV7SZH+c5D+ERePmBobkP6Kks85/UuQ/RnFX4QsA5D9Hpy4mG43jP8nYWsJ3+OI/cED+x0ZB4j+xXJkVE2fhPwjAvprLaeA/4stRHpCT3j91gHLFkw/cPz2WIyr3Sdk/bLqqdNtF1j/f2v4XKQfTP64T5rgNJc8/qgAsgJTaxz9F3d6C1TrAPwhXRPjDpbA/gOrLcc9hWD+QvHicWzmwv/aXtnH9hcC/CC+wAkf7yL8GCWWrNrbQv0YpUEGq5NS/i0cohwMB2b+E1khpgQPdv6rXwSRWcuC/2Gl5MbtO4r+U4xQCpxPkv1z7AkcbvuW/uOhOo2xL57/Jct82TLnov9dLderLBeq/Vgz+GmYv67/J4zdY/jTsv3EPjBrjFe2/hE/jM87R7b973uRO32juv3gFD1ub2+6/3glaTeEq77+QJ4LA5lfvvyx9sqQqZO+/FgehAG5R77/im7fdpCHvv4Y7fwLt1u6/5KO7/H9z7r9v/PaipfntvxeNt1Wpa+2/jueKmMzL7L/6zFX3PRzsv18RxLYLX+u/Nq4kGCCW6r9To4ryNMPpv9NUAmnT5+i/kzbI700F6L9+0zhVvRznv7g+oQcFL+a/H8Tfu9E85b98XoK/nkbkv+APhhG7TOO/RrHTXVBP4r/NaiVIak7hvyGYTuoASuC/YjQ92fyD3r9b93pfmmzcv6YAkdi4Tdq/KCJOi10n2L8Umo7VufnVvzMScMxExdO/2h7O+sCK0b+KjzNxjpbOv8bIza6kEMq/psHNU3eHxb9uAmdRf//Av5yoYaXk+7i//p2lHGcRsL+QIK7UAzKdvwAlsCwATXQ/QBJ0QcMnoz98V0nehJGxPyADnVd4Lrk/ZJ17wNItwD8UJYhlRoXDP/VxwQbOlsY/twwDZD1cyT/sfu7MONDLP2EwP81U7s0/YAe5sECzzz/gdVyvb47QP54IxWcuFdE/66nIxCJu0T9ChWoASZrRP7AL8IpQm9E/SZV5u55z0T/BZulgRSbRP/FBkZr6ttA/67F4Sgoq0D8sJi+bkQjPP3SBetv3lc0/KvBhso0HzD81FKJhJmnKP8zlHqLsxsg/2uDvAC4txz+dDUFMLajFP2KQiIvdQ8Q/EYavm78Lwz/kFmijpwrCP/FWrUiNSsE/kf0ZTmvUwD+FGHuYEbDAP2G3+oQM5MA/lDIddoh1wT835/voR2jCP26eoYCNvsM/1w1EuiF5xT/cyUSjUpfHP6b2NtT6Fso/LiQxNJr0zD/TFbC1sBXQP5VeYIGq2tE/YrOGq7LF0z/oXxQOzNLVP2ttlvyS/dc/ZafIzlVB2j86OdIkI5ncP0cdnF7f/94/mv3TVSy44D8n3ooPrPLhP4Xrn7zZLOM/YKforixk5D9R47UnMpblPyo2gBWPwOY/l3KaBwjh5z8iHEjYg/XoPzea/UIN/Ok/BqQDotTy6j8iYtwVMtjrP4sysfmjquw/sQorQc1o7T/lys4rdhHuP880zPqHo+4/LmeP7A0e7z8QOO4SMIDvP6hVBygzye8/ians+3X47z9vcn1BuAbwP5oGOvjYA/A/Pj9be+Hm7z9iGJ/2u6rvP7qbvvsWU+8/a6jsX+Df7j8D4OP/H1HuP35gutn5pu0/4QDpHLHh7D/vsZe3qQHsP4soGTJsB+s/Jkz6cafz6T+fD95CNMfoP/CMRRIYg+c/fULPmYYo5j8ozdyS47jkP++fdvLCNeM/RZotfeqg4T8uQ66tofjfP0MIkQ42lNw/6DuM/zYZ2T+gzY/rmozVP4uyjT2k89E/yAJ3vKmnzD9lZqPgwmXFPwqgDlqaWrw/jBb6g7EorD8AALj/i68wP+wNuJRCMau/svHEYEXQur/Smwfmzr/Dvzv3OOCDyMm/QdeCOBF4z79NGgQRg2LSv2lHp/Js09S/ZQtOCv0K178=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"mPf/PNxZCUBcr9x8kA8JQIqTRzeMughAZkBKR09bCEDQyeviYfIHQIdEW51TgAdAhEgyzLoFB0BJxA5eM4MGQPRvK+Rd+QVA/vlw4N5oBUAwXa4AXtIEQILBnjOFNgRATdQgGwCWA0Da6QgXe/ECQCaYAoqiSQJAV8PeFiKfAUBEhQelo/IAQEXNLlvORABA/YcW44ss/z/6b4LDUs/9PxdwF+Ejc/w/l2Q4JiQZ+z9Kr6HhaML5P+IwOH/1b/g/Wfb+v7ki9z8lv49Ej9v1PyxgRTs4m/Q/Wt+eGF5i8z99g3+njzHyP/4mpMRACfE/YC3n6pPT7z87VuTlzqbtP+u4k290jOs/djL+bpGE6T+s9fd8/47nP6qspo9nq+U/mODZp0jZ4z+SJVr/+BfiP9Yc50CuZuA/kuKqhgSJ3T+8IlLS9GDaP6vrQwgdU9c/oY+NcV9d1D+W48XVnH3RPz16tcmTY80/skJAJ+vvxz8MNPYjuJzCPzRfHpW2zbo/eMC30ICXsD9wVum/GkuaPyCGEVBGGYq/2BtTWEHXqb8wLGgIdma2vwjTpMYFsr+/KIOU85VlxL/yPY7op9bIv+g9pmo3Kc2/3lTNatCs0L/FfIch0rHSv8xsWeM/odS/+gv9UYF41r865TrK0TTYv/O+Ya5O09m/4RPDxgNR278IR8mS+6rcv6DPWR9J3t2/cutw/Bro3r+xOsicxMXfv0dvLcpnOuC/PjJTNIJ54L+QqNjIOp/gvzHeLIPFquC/zo5xPIWb4L9/6RoqDnHgv6C4QPUoK+C/mpFzp6uT378GpZqalJrev9M6jZnpa92/+kibm/MI3L8sGJsJZ3Pav35k63pdrdi/My1t5VG51r/+5f2zGZrUvywEfRHbUtK/+g9mbA3Oz7+Mp9QXmbTKv/74lbElYcW/aOmW1aa3v7+47QgxDVq0v8DB4m4qdaG/QJWb4variD9ALzm55wmuP8hBf0e7Ars/wGpfyhR/wz9ALlGPi3PJP1QZGTIAV88/xm3yOxKR0j+q/riZDmfVP4RumU5PKtg/cumVqfvX2j9yTv1Yj23dP3iDZM/e6N8/WV4l5g0k4T/mETgP7ETiPwu7N/mEVuM/PVNvPoVY5D8nfpEuyUrlP+G/SLBeLeY/j9/gIn8A5z/CQsP7kMTnP5efNV8geug/gVODFd0h6T/YcP3Gk7zpP8JqiHcpS+o/0CAnipPO6j/lzMjO0kfrPz0LmLbpt+s/sB5vJNcf7D/vi45zjIDsP4/HBErn2uw/q+IquKkv7T8MqUgscn/tP+S/c1O1yu0/UlD2ZboR7j/S5JpRklTuP6AFym8Xk+4/TPQ1cujM7j/lTikXagHvP1eTO7TCL+8/Et5ntuBW7z8gz6WAe3XvPzPr8REXiu8/HGfB0wyT7z8svSkGko7vP+wAsSO/eu8/6fNIB5xV7z/VDhGHKh3vPzPB3xhxz+4/QtJHcYdq7j89Out0pOztPwjyOQwpVO0/6MeeZKyf7D/MZ6sJCs7rP7a1FO9p3uo/JTgdDkzQ6T+sICNdkaPoPwPmn0WBWOc/ypc329Hv5T/JzM5BqGrkP7Kr2fSdyuI/GxIQhbwR4T92L/F0/oTeP6aEfb2Wv9o/2SL2INrZ1j/Vcy2nFdvSP5a7kBd5ls0/qNdHlaNlxT9sdmrhIWu6P3DqFuVGY6Q/YAiZ/67slr/0W/ME8zS1v+DGVw/CCsK/n91I0q4byb/QfwKXG7vPv5wnO/Xd69K/VAizfK+w1b/+b5QtkiTYvw5CbknaQNq/7vOYX7b/27+MRLGIRVzdv+ZRm9OkUt6/jAt4NwLg3r8hwKjPngLfv9Q8s1Tbud6/83svODEG3r+cLH8VN+ncv+If0JCUZdu/XpKVDPx+2b9Ks5jTGTrXvys9WPKFnNS/UOcvVK2s0b+RDTehfePMv1oG5hwn58W/3Dr3skTqvL8AxhZWm3yqv2S7pqnhhYg/HwLHJQzdsz/Id+gJIYDCP1ZiKnjvKcs/qk7IZ2js0T/1MvBU/TzWPxAfvm2Pfdo/mugZ4Eyl3j+UzuCW5FXhP7fD4KWIROM/Kjqghdoa5T8WL/aqa9XmP+DJm7wZceg/EA0bDBPr6T9sN9Sn10DrP6A3sAU8cOw/XkSWYmd37T+qsgYz01TuPyJMTnNJB+8/6ltyIeKN7z82gt5z/+fvPyTj4jilCvA/YLrS29YK8D9mbcmpUunvPxwpPT2ckO8/WsGh7CEM7z8D62xWq1zuPyx2UTstg+0/glbALMOA7D+C0ERGr1brP+JY5SFVBuo/yB4KcDaR6D8Ffouz8/jmP4tR40JJP+U/IpPxug1m4z8AOMp+Mm/hP3YVthSIud4/a36m8tBh2j/sMpKgw9vVP/daijgcLNE/6o7uWpuvyD+Ii1+8G5C9P5DsnXZ8saI/GNY1ha1gpr/QtLRXt/O/vyoFPcKNbMq/Ihoyrttx0r/UpfOlOanXv6Bz/e3G1dy/OQXJb2X44L86AnLnvHnjvzEdWad96+W/QYiPWT9K6L8mfioPopLqv0pCPbVWwey/ssXwKCbT7r/btnW7fWLwv3OyJ670SfG/u5g7NZse8r8Y6B1JMN/yv3DrNsiTivO/w64orsgf9L9LPadP+Z30v4ZmFoh4BPW/+r8/9sNS9b8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"vjKSdJlx8b/Scfjk6CHxv/Od3s0GtfC/g2Nk+kss8L9N0nPOxRLvvxygBpCDnO2/SL4IO0T667+4acuo8DDqvyYWCsLWRei/SiF1H5U+5r9mPyU6CCHkv4Afg1M18+G/QLSShWt2379/uN+8Sf7av6VSnY8Wita/jqcQR5cl0r+W21kCS7jLv92bvI0cccO/vhgnYrwTt7/8u8BmLVWgv6gIuhsA3ZY/8q9NcoNzsj94t83A7u+9P+svUh8vC8Q/WtT/7HdqyD/mfPwgEg/MPzCXRu9m9M4/13cKbAOM0D+60F4k0jzRP0215D58jdE/s7Gp+tt/0T9RgW2UuxbRP3VnQTvGVdA/AuwA4O2Czj/SfLWJE77LP5qunV/PaMg/fBMari2QxD9gRph0RELAP7yxadUqHLc/lEgE94ANqj+wD3rq6SeDP7TygBcaT6G/atHKrLX8s7+sjXm9E3i/v2JalhSfe8W/BGi54BEsy7+p62p2UV7Qv6hcT6uEDtO/BK5988Se1b/knATTkAfYvxr5trXPQdq/2vrYYORG3L8iFoTLuRDev/4VfhPOmd+/H8jJlKJu4L8xQI+cduvgv8e1Qp2lQeG/NM3j39Nv4b8bI5xxB3Xhv/XMxJOsUOG/ZGLFCJcC4b8GTcpEA4vgvy4Xxscr1d+/khkI/rJE3r8yqOBCfWfcvznXwcgrQdq/Ep56bxrW178S8CmjUivVv+Pi1KWCRtK/aN3XKtlbzr9sglj8p9DHv6F8LiHn+cC/aPd6kYjNs78Ib9QyWTiVv/xk3oof1KI/SBP3t+g5uD/m52SjIIDDPxdEMWz+zco/3uPoGR770D9mQWl3d3TUP5Up8flby9c/4+xJknb42j8xDpqb3/TdP5LSwacWXeA/1MXSRUOh4T9LZzZNVsTiP+wta7sExOM/4kY6jGCe5D9wh0T811HlPzi/tWw83eU/DSgXmsQ/5j/a7IAKDXnmP9oOlFYZieY/VKt+3FJw5j+WDu2Ehy/mPyjlvg/nx+U/VX0DvP465T91ZlNitYrkP+xh3uFFueM/H5eNJTfJ4j+sA0IaV73hP8bL/ZaymOA/vq9vaRS93j8zWBSdmSTcPw7EnggYb9k/5hMTHeWj1j/McUBWd8rTPwVPiddO6tA/KDDMM8sVzD/a4J7ZLmfGPz6Z/+Un18A/rJeQdyfntj8o7eVuqiapPwC5hk+GXoY/gBKMRs5gmb8oCS5q0Iatv5h0p2iYYra/bkJno8kkvb+ybShZqH3Bv/Js6dHz7MO/rQiZt2Hbxb+YMd3YOkXHv2bAaAEFKMi/BJpWnHOCyL+0WsHjXFTIv8yn4j+unse/SNQtnlpjxr++0s2+SqXEv4SogCZDaMK/8F/h86dhv78gjofXewi5v0gmMXO20LG/QK99iyqOo78AuXW6eSRvv4AZVkrCFaE/4OTQ+0G2sj+wQlKV83m9P1SS5nBZY8Q/CIZDTZZGyj80NlRfhi/QPzKjk82WUtM/+FOB6sCI1j/osfOiXc7ZPwaV6vrZH90/pj7E2t084D8ftUSZUuzhP4ngLiyonOM/lcUHO0tM5T8xliDItvnmPx4OPPZyo+g/drpNTRlI6j+67wXST+brPwpuSrDMfO0/5ecdVFQK7z8bbag+3kbwP4SYd4j0AvE/FWONzue48T+EZCt4O2jyP42+W+97EPM/P7el7j6x8z8uh2bxI0r0PzovcfzU2vQ/0fnHXwZj9T/KiGzQd+L1Py8iCNnzWPY/TqrdNFDG9j/Bje5Ubir3P4jcaiw7hfc/4D83N67W9z9ECbdqyh74P2enZH6cXfg/W/JTgjuT+D86GSISx7/4P7Ju9ttn4/g/xg0yRk3++D+eCXENrhD5PySfFV7GGvk/CWPB1dYc+T/QyhoOJRf5P+riazD5Cfk/qYkpOJ71+D8ouv0oYdr4P7c0e3yQuPg/dAi9BXyQ+D8lKQeVdGL4PyRagUzMLvg/Svzf4Nb19z+gjVyH6Lf3P3JGd6dYdfc/Eqz7DIAu9z8ICOO1uuP2P7z8w+JnlfY/CbT9x+pD9j83sKFwqu/1P9r9tSgTmfU/t/7Yk5VA9T8sCgSBp+b0P6zyRJfCi/Q/YO16WmYw9D8Nrd+/FNXzPxl/aZlTevM/+IfjXqog8z/6AVm4ocjyP1UTrmnBcvI/3jjGAJAf8j/ZLxc5j8/xP94wxAw9g/E/1tLZHg878T9wXxdCc/fwP/CFREnNuPA/GIC7w3R/8D9DQpRLtUvwP5gypFPMHfA/ztmRDNPr7z8D7RPDWqjvP+PmwllUce8/N/PPpchG7z/2+ti4pCjvP4JCODG+Fu8/yDT7atQQ7z9stgO2lRbvPxlansahJ+8/9y+D/45D7z96iTMe8GnvP+Yn6WFXmu8/QKne2FvU7z/a2I1tzwvwP1whyLTnMfA/ylD0TVdc8D9UbIg4CYvwP4T0kQb0vfA/ubjKOhv18D+soLd5jjDxP1r+xntqcPE/Ky/kANi08T/G5eOACf7xP0zdm9w7TPI/vreDB7Kf8j8aujuUs/jyP47T1o6JV/M/+0k+Qny88z+O+Yz5zSf0P803XqC6mfQ/wtYgzHES9T+WmChwFZL1P0bBSQG2GPY/Z8+041Cm9j+zpi7PzDr3P7UI86/51fc/BP3E3I53+D8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"hX4f3Uwh0r/CrB5TztDRv2QJrS2NmtG/QLg2F2aB0b+ErncOC4jRv5woQm4DsdG/qms+ZKP+0b8aEjhQCHPSvzSGVuESENO/GOAvzWXX07+F/DfAYsrUvyf/Isck6tW/5I+iAIE317+r/2P7BLPYv7qhGIz0XNq/1IdS/kc13L98XyI7qjvev6itL+O8N+C/BqWHDuNn4b88UnSBp63iv5W/xOVCCOS/R8WBmMN25b/RJdXdEPjmv5drAc/niui//g+fud0t6r9KVs0nXt/rv5GfOGetne2/gd8Rnudm77+bvEazgZzwv4xd4kPpiPG/trLT8YF38r/N0nVrE2fzv+DSEApWVvS/YsTtJ/ZD9b+wXpGWlC72v5C1B+bJFPe/YKzF+Cf1979KY4LZPc74v59mlt+Znvm/t2lzs8xk+r+8h+34bB/7v9iZh7sazfu/+EQHlIJs/L9BQgI7Yfz8v5Y2UvaGe/2/bOnNktvo/b/aZ+7LX0P+v1vsPPsyiv6/ukCYJ5S8/r9LlBdz5Nn+v/1LOXqq4f6/9AiZ+5LT/r9WX0RNc6/+vw7AqEdJdf6/o8x+wTwl/r/ghUCgnr/9vw6yRPzoRP2/Oy+Lwr21/L9aWqf/5RL8v9tK/mhOXfu/yYF6JgaW+r+uRJAFPL75vwFDEmo61/i/Kh5A2GTi97/IItO0M+H2v2YXYkow1fW/PJ8oRPG/9L/5A7rxFaPzv6b0WptCgPK/VNsrtxxZ8b+Gnk/jRi/wvx6Jy3e5CO6/f0SeD+Kz67+7+Ze/EWPpv8cFoRM0Gee/6eclcBDZ5L+oukLURqXiv5ZXmQ5MgOC/2KkKW87Y3L8QubtMX9fYv67rMtMaANW/IxO3sm5W0b+0n8a8z7rLv8h+YuBmL8W/RPVLFIQevr+kB7rpl7yyvzCks1r6fqC/QL4K1YE6dT+ox6ne6vGjP1hyisi2rbE/4DmyC2twuD8o46n9okC+P5oYP15+j8E/jjZm0I2Gwz/pLmgl0QbFP/TvkA0SEsY/yP5FOpeqxj8+Kr+QF9PGP+59FU3CjsY/XFJUjTThxT/GOQUGhc7EP8iaRZIyW8M/WYeoViyMwT80+6+FnM2+P/AQ8zWz4bk/3PHXLuRgtD9YYVd3drCsPyDOGfqJVZ8/ALEn63nVbD8gNeooV5SZv4hDYO4s/au/+KkXcD/Wtb/wcohWLdy9v6DjeLI0AMO/IIEVCH0Zx79WTJ7JBTLLv/xrPwEHQs+/CLkPZPmg0b9+IJrAPZXTv9clwsVYetW/OlBvcQVN178177AOPgrZv1CmoG4/r9q/SUkA2pA53L/8YILSDKfdv+SDdjrh9d6/rFxqt0sS4L/0kZEuCZngv14JlvvJDuG/f9dem1xz4b/ZnboHvsbhv4gDZ/MWCeK/zRqVzrk64r+ab1xCIVziv2D0clrqbeK/R1LtkdJw4r8u2qqLsmXiv+os1W15TeK/3Sh1Gicp4r/tuN3Pxvnhv+gIPJBpwOG/Ogw/9iB+4b+0Y0in+DPhv+jdmrTw4uC/WT7f+/mL4L9Kv2cX7y/gv2tpR0Ekn9+/Fl8DxA/X3r9wfrs3qgjevwJoBmK4NN2/WktXCbZb3L83ttBW1X3bv9x5aEgCm9q/crPeLt6y2b9oaFk6x8TYvwr3uwjez9e/YBX86wzT1r/qUYIzCs3Vv8a1I5FrvNS/PnBKpaaf07+qnI8WJHXSv1LZRd5FO9G/e9nokPHgz79ACa/VdibNvwT0Gc5kRMq/33/mblY4x7/3FO7VYwDEvxrmdkEpm8C/Dp5axMAPur8zF/PV44yyv/IrRJMJXqW/WHg+RxvIg7+srAX7oEKYPywdgj+1z60/gNJrY8MEuD/DaBBt/K7APzYxvVk/dMU/ljsgzuZLyj+IxwhxCi/PP7oC98QNC9I/IyMa+oN81D+cGLkwpefWP5Cp+3oDSNk/58vQ/hOZ2z+aOfZvPNbdP3VW1vPg+t8/Ccj4LjsB4T+jpcRKR/ThPwLFG8Ry1OI/YjLbyLmf4z/wnFhQO1TkP070IA8/8OQ/ckPQZTxy5T9mV8VY3djlP7QO+zUEI+Y/EslI8MxP5j8kcInlkF7mP8EQv/LoTuY/suRE36wg5j/RV/EW9dPlPwg8tD4ZaeU/rDjzga/g5D9Z5/ZDijvkP8FsU662euM/M7xM/Xif4j/Kz5rxSavhP/zgxQ/Sn+A/6qx3jc793j+MTKguDJXcPwjQeeOfCdo/pe/kTwZg1z9uzKkO8JzUP8GAt/41xdE/a9UCH5e7zT9FWkjtbtfHPwo5ucQN6ME/+ozNC/rutz+ozIIDqD6oP4BXn7NPH10/tJRGTan9pb/k0IV5xSi2vwshs249fMC//tWY8iavxb8Ll94Y+6XKvz+vuD9VWs+/85JqfFXj0b/5+/M3KPPTv+CjtXrK2tW/AuhdruCY179Q/DuylSzZv/aBwmqYldq/cCldniDU2782n0/C7ujcv97Ba15E1d2/dFQ4Q+Sa3r+g3y/6CTzfv4cRTaFhu9+/MJmxtf8N4L//0KJxqDDgv2riKa2KR+C/Mm28GqRU4L+JleqdDFrgvxi5vWLsWeC//082cHNW4L8r3kaT0lHgv7C+Ak8yTuC/Iux786pN4L/9Qqx0PFLgv6C+orjHXeC/DyYxFwhy4L8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"D2kopHmA6L/odwW0Es7pv/qNypNDGuu/ChOKbhdi7L9nrqnYgqLtv4XIdwVv2O6/wJ6QTWAA8L9E+s0HMIzwvzzXzg8hDvG/6g1siriE8b8msmO0i+7xv4qjsRFESvK/TKgspKSW8r8otyo2jtLyv14n2KgF/fK/s7RGoTYV878+OvEXeRrzv/oK1C1VDPO/gR6ziIbq8r9LYirs/rTyv2McQL7pa/K/vPQ5nawP8r9dmyCI6aDxvwfRDet9IPG/khXoXYOP8L/kcEgxmd7vv6EfHlPKgu6/sXNVkRcP7b+Gd5OIYYfrv+k2NsPd7+m/WHee1g5N6L9kr1bGtaPmv6NqW7PD+OS/ebjHG01R47/YJxN9d7Lhv1+QXihqIeC/xM0xv3pG3b+EKqlh03nav8Drv6Ru5te/gKjJe1uV1b/c51BDC4/Tv9JSl+Ux29G/kJflTK6A0L9w6Qsg6ArPv1holy7p3M2/sNLPqiJ/zb8s3O0yHPfNv5wi7mAVSM+/InlHvnm50L8UqO/ZJjvSv7SM+uMzJ9S/OXfd8KJ61r+G0i/sYTHZv2hZbtdVRty/IW84SG6z37+ih4g/3Ljhv4Ov31G7vOO/mN14sRnh5b9wP1AwcCHov08jWn/3eOq//ZLaf7Ti7L++ULsoh1nvvx0gIzMc7PC/JZwFi8Ms8r8ik98mGmzzv4Xh0xqIp/S/buSFSYTc9b93Yp1glwj3vzr7e5BjKfi/RD6zYKc8+b8eRMTJQ0D6vz4Y6rE+Mvu/m5mVYsYQ/L/UvB+nNdr8v5zs9yUUjf2/BKSalRoo/r//gkf7Mar+vzH6Hah2Ev+/PklESjdg/78uDkdx9ZL/v07Xbpxlqv+/4FNxTG6m/7/2lRtDJof/v15yN9HTTP+/mfXUg+r3/r9auaFCCYn+v7Amo2T3AP6/dIosaaJg/b/Vw0kFGqn8v0YlYoaO2/u/LbiqVkv5+r9f6zb9tAP6vzszMiZF/Pi/vLHVQobk97/8tzXOEL72vyjSXseGivW/BqKef5BL9L8GR8iR2QLzv+3E7fQMsvG/Bf6P9tFa8L/IeQjykv3tv/I9GIYXP+u/eKWTj0t96L+RpAyoLrvlv3zDrvmh++K/WP4oDWZB4L+j/xdZMR7bv8I8I79jztW/s/cDNQqY0L88qnXH9v7Gv5CueMUBI7q/wBxNTjp5m78YIEqx84SnP7yMyHHesr0/PHn8E8tzxz+kC7jsQavPP6wWxbCrvdM/2AOvQhNw1z9YSgIzKuvaP69BxPeKLd4/XWB60Qub4D9QMdlV/AHiP+o3tUpNS+M/ZY/Kmtl25D+HbvStnoTlPwVyFKe9dOY/5gVrX3tH5z/7D6c2QP3nPx0a/0qYlug/EhmqvjMU6T/CJklN43bpP0y49Cicv+k//p0fLHPv6T+Xzg/RmwfqP0aWi3VoCeo/d/0wZUT26T9MSvuVtM/pP5IdZp1Rl+k/Vq3UecVO6T/WIQwUyPfoP5ANAsQZlOg/EXJgt34l6D/CeAtFva3nP/IIjiGVLuc/tNXxTL2p5j/Eamm74CDmP/2C/ImVleU/Udl01F4J5T8azwYNpn3kP+wmuem38+M/XZMXBsNs4z9a3nLl1eniP/7fnT/ea+I/Tbk7A6fz4T+w/A3v2YHhP/yw4acAF+E/FF/pm4Sz4D+U2aDCslfgP3wieBa9A+A/0KpeLHtv3z9MYggKdefeP4p0ywxRb94/kMQtGN0G3j9aSp2/1K3dP8VguNjkY90/24dvgbUo3T9cwVHw7PvcPy6tCmk13dw/3MN9P0TM3D++Ke3l1cjcP7KyE0+30tw/+Gk20sLp3D+oa5CP3w3dPxclLq0AP90/fEO/QCN93T86jbYsScjdP86Ci5h1IN4/BAU176aF3j/Cvs9q1PfeP4gKazvidt8/NrTLUVEB4D+KStMBZk3gP15MjdJ4n+A/fMUk1EL34D8Qjx6TaFThP3Pl+8x3tuE/sqMJ0+kc4j8i7JP4H4fiP9iAmedl9OI/4rUKS/Nj4z8enPQK7tTjP8INvkZrRuQ/lg4fonW35D9gkoCaDiflP17eZ3k2lOU/lqnp5u795T8WO1ZtQmPmP+L6iaJKw+Y/cqnZizQd5z8mAkw7SHDnPwL28GHvu+c/lDKM/bj/5z/soNs5YjvoPz8IdbDWbug/oYqaVDma6D+onbb64b3oPzsvARJm2ug/QBx685Tw6D/zO74leQHpP0pouR9YDuk/k/pq+64Y6T+eRg/xLiLpP3CuMX24LOk/FKRQJFQ66T9SyAVgLU3pP2ReKI6GZ+k/wMsH/LOL6T/IxkS4DbzpP+9rcpXm+uk/Z48eKYBK6j829YdhAK3qP9qS8DRiJOs/4B7X9G6y6z/yLlwDrljsP8RuqFZdGO0/bI0YoWXy7T/fhmBCUefuP5E/qupF9+8/VkvEvP2Q8D8NsIyjXDPxP9zWnnoo4vE/6mgvqY6c8j/ZPeHlgWHzP7zVhcG6L/Q/d/9TZrkF9T88NMW6yeH1P/+54ggGwvY/4QH9112k9z+s+oyumYb4P7fQIgJjZvk/biW8KUtB+j9l5GED0xT7P/OavVB03vs/tT0hyaib/D/aqyFh9En9PzRxAI7t5v0/w6SeOkZw/j+Uyz461OP+PwV3Q7OZP/8/sowVsMyB/z8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"POoBrGLL1b+sepV5AFfYvziA2kyusdq/UsYC2anX3L/cAf41scXev5WTS/WHPOC/FDUPtdH34L++LojT8JPhv4h+DIpqEOK/+n2gAQ9t4r/g0+vN86niv8oCcBJwx+K/2Y9CahbG4r/ixogNrabiv5YD+WElauK/ba4w7ZER4r+2/TvOH57hvxbDTpAIEeG/haKyFY5r4L/NupEF213fv9Cq2zawuN2/EkbQoNrp27+HCVn9ZfPZvzrhgMIh19e/z9Kz0puW1b8X5wrmGjPTv+TY/9WcrdC/8INXurkNzL8eFo0Don7Gv5IIqAN4rsC/tInJI7w6tb9cHEA1yiyhv/DHFO+IQpI/bNX65Pw6sj/EZ7EajTTAPwA2hgWAjcc/lJ47mPonzz/xwO8dlIHTPyheer/Pjtc/uXdh2Z+62z9YZxfjxwHgPw5vkYneM+I/Uo8k2GZy5D/wy1eV9rvmP1xrfKvlDuk/Iqo0M01p6z9gv13xCcntP9z+jkDfFfA/3Ai3zGtH8T8wd73LyHfyP60VsNZ+pfM/rOu6HATP9D+K34qcwPL1P6qTuKcRD/c/fhQK4k0i+D8m47AuySr5P47m/x/ZJvo/ndztk9gU+z9DUALxKvP7P6rEjttAwPw/Q+yOjJp6/T/SXuXnyiD+P1aKr7V6sf4/+UbyrWor/z8ppyeUdY3/P/hnQi2S1v8/ihUJrOoCAEAchFZ2OQ0AQChIu9rfCQBAbjDKBDLx/z8u8HOnY7L/P8VYvdcSV/8/6e6FByPf/j87BO6unkr+Px2LmFa4mf0/x+JN1MvM/D8UBi3/X+T7P9CluEUn4fo/My+ihAHE+T/JRrp//Y34P1EMiv5YQPc/NYXWBoLc9T+wsCH9FmT0P3q2ZyTn2PI/6sSKr/A88T+oBS7uwiTvP46LwTQmt+s/Go3i5RM26D+vaUgc4qbkP70Wut8qD+E/BK3hlIfp2j9kZ95lYbvTP+glxMxcQMk/CJVzCH6Rtj+QWMEAe7mSv6RBWz54Db+/ME2IOLwtzL+wMPF+ZxrUv78qNWnXwtm/JF4ecboF37/UKZRzuezhv/hOy4usGuS/RoUO9O0I5r86ladMTbTnv8KKrzhAGum/4EoWFes46r+eMlvAJg/rv7OB1DiJnOu/hvPDnmLh679azzi+vt7rv6BkcDdfluu/pTs2ULYK679LK1m62j7qvxKDV5B9Num/Gedpn9j157/+lmKkoIHmv86U2D/w3uS/PthWlTQT4788IGUYGSThv1+D/tbhLt6/rv3vjETm2b8aME2eH3rVv1SyvnQK9tC/YjJl8YzKyL+0TdvFVkq/v3AF7MEEQaq/oOj4aLEKkz+gZbAB0Dy2P7x0rwCRl8M/qKlxaly/yz+qmFFFLsXRP+DLnDGad9U/lDwwF0rz2D9xxyHGnTXcP2ysI2/yPN8/OEDG6kkE4T84gCLjV0ziP0unw6Qgd+M/GKhfkXyF5D8+1oLylHjlP1eG/LjUUeY/2RaKJN0S5z9dIkUBdr3nP4S1g16CU+g/4TVak/HW6D896RK4sknpPyYbQwSprek/Wm9ZX6AE6j+7krwCQ1DqPzKgI4oSkuo/f16S2V3L6j9Te/wUPf3qP9s6LcqMKOs/1nOCMOtN6z/X8WpUtm3rPzBQlpAMiOs/6EHEZs6c6z8bnjwNoavrPyZA+Jnys+s/XceDJf+06z/k590Y163rP1P3LsRknes/yj+enXaC6z8dzluHw1vrP6RTIYT0J+s/KHa386zl6j8OEOn5kZPqPzo2j8RRMOo/b8ifGaq66T+GAF8HcDHpPxokzmyUk+g/QP+sDing5z+g92I9ZRbnP1EaQUenNeY/+PaPgXk95T8abMcLkC3kP9111ofMBeM/PzBOLzzG4T/FJEEuFW/gP655W4xzAd4/vnhREWD32j/N9pJ5SMHXPyqSlWXIYNQ/qBlmz7TX0D9gwNU8NlDKP4x4ydl0qMI/JFQgjeZ5tT/wDFOvapaUPxQUfQacQqe/kPezMazPvL9aVvlyAy3Hv9rHOTEjDdC/wGKo9suU1L+3UTQaZyrZv7yT9QbTyt2/j1Y4fXE54b8XbEw9r4/jv3fL0ECB5uW/kxlIUkM86L85hoPyS4/qv+ja8Dbw3ey/ysdhf4Mm77+NRLY9rLPwv07tNo5hz/G/AOPz343l8r82GWBpX/Xzv+Jp5cUI/vS/JvrEmMH+9b/6C79gyPb2v/EJm+Bj5fe/MGZGneTJ+L92OHPTpqP5v9DmnaETcvq/2MsHy6I0+7/U4GIv3Or7v5jwRERZlPy/i+wf5cUw/b9xTdrQ4b/9v4GN8imBQf6/UZC4r421/r/A8pjABRz/v+27z6z+dP+/uqvtSKLA/7+pIR69MP//vz7cAFh/GADAjD3GRDorAMBsST91BzgAwCCTEJUtPwDAWl2HRvxAAMD0X82Pyj0AwKaLwlr2NQDA6GNmfuMpAMCTaL4L+xkAwMKh6CGqBgDAGmUsj8Lg/7/IOJnfJa//v72TeQNmef+/yY5C52pA/7/WeDZYGwX/v87+TtdZyP6/8pTXRgSL/r9lCPdT8E3+v1BQZAjrEf6/xgimR7bX/b/WvOViB6D9vzi4ujeFa/2/CPZTU8c6/b8EDpkoVA79vwnihsCf5vy/29Y6xAvE/L8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"ZDCSu9ou0D8SggXeTMbRP5hpOFjKd9M/nqDlGMI+1T92sIWbmRbXP9NPf765+tg/5vaPc4bm2j+uBsgKYtXcP0hjzG+swt4/ImxlpeBU4D8bbCEgAEPhP3sMEvdkKeI/ef09DcQF4z998WxO2dXjP20eMktql+Q/Oc/laExI5T+h5PY1aOblP92BqA6/b+Y/lUT8rnDi5j9G7UdkwzznP0zEPagmfec/zQ1D/T2i5z8B3Vja4qrnP8WQ5qotluc/MlS1hHlj5z9vtDErahLnPyEhgD3vouY/TNmcmkYV5j/S7Ld+/2nlP36aXOX6oeQ/dLsYlWm+4z8t5vA+zMDiP6j+rBvvquE/88Tv0uR+4D89tTouA37eP4xYly2n29s/dBIfnjQc2T9FoxV7fUXWP29x8HCQXdM/JvGpCqRq0D/aKMDmBObKP7Szdb7i+cQ/CIAU53c6vj8MGoupC7iyPwBYL0iKDZ4/QE0iHlBwir/Qz/jZ0VCrv3DMxY3Vebe/GKkEz0hZwL+4ELcakqLEv4Q1I+FPk8i/wJtEwD8nzL/4rCzCdlvPv1rg6NonF9G/BMwy+LVP0r/WudRK0FfTv0K66lJ4MNS/SHpeWjTb1L9IGdMHCVrVvxrKE39jr9W/tKv8AAze1b9wHwVmE+nVv9AOGtK909W/vtQfRG+h1b8Ew9w6mlXVv7DYzA+o89S/jhqkhul+1L+uIPu7gfrTv7KrMbNZadO/Nh5+cQ3O0r8UGJgj5irSv+4H0uvKgdG/fH8FrzzU0L+QlElAUiPQv1yVc0Fy386/aN1cqGhzzb8gnh3DSALMv3DctLshi8q/EKnTx2EMyb80ZnFY9YPHv4zLro5n78W/RCPP2QdMxL8Ytu5ZCpfCv0AJ/um+zcC/EHB0qlLbvb9wyjeOc+m5v4zBxijdwrW/GOaoyQxmsb+Qldi6TKapv9CAtG2ZGKC/APdZ+XGuiL8gklh7OU2AP/CQcIUAJJ0/gGIKHjw5qT/oIhXQZvaxPzTnX9LVRbc/6OuWhA94vD9CXS4BEbzAP3Z/QjWfF8M/5HK6N4FCxT+A39x46y/HP+wNUNeo0sg/Tm2wGlEdyj/E8EJihwLLPyugQHsudcs/YERgQrFoyz+xR+B/O9HKPyEMwR/vo8k/8D3P9ynXxz/86PCVs2LFP+Y9zAXwP8I/2Dwq9BbUvD/QXsEnMryzP7D9f9jMbKI/8KMCPjHXhb9GDeDI/xCwv7Z1DWf+wL6/KU/8rdldx78LwDzm7vbPvw15CKwZkNS/LhCKDSZm2b9h7Pm/Hnbev65eEjHm2+G/bgqL2S+R5L+fo/0VRFbnv+eOg8FNJuq/Mn/iRFj87L8zKoE7ZdPvv6an36I8U/G/Pz6VAFi48r/o4nr+pRb0vwumQgbja/W/EY85nu219r/ELVQVzfL3v6IHr9S3IPm/F7ip8RY++r+w8Nsvi0n7vyDC0wjvQfy/a8cUX1km/b8kBSeBHPb9vzXk/DLHsP6/kbQQESNW/7+Erl6TMeb/vyBlU2uUMADAenLuPLhjAMDYV66vzYwAwDBDCKQxrADAAsOj4lDCAMBk1j/Lpc8AwEb4WFi01ADAXACZQwfSAMA0922bLMgAwB/JcneytwDAuMAMUSShAMDiJqIzCIUAwJglLrTbYwDAGgidZhI+AMAKLNfMExQAwMcY1RtzzP+//tD4151p/7/vstFSHwD/v0gHUnhQkP6/mMsgQGsa/r8Eo+8+jJ79v7kUUyu0HP2/ENRIGMuU/L9sJMynogb8v8dCCvf6cfu/UoMiI4XW+r+1Pdkj6TP6v5Qqlr/Jifm/aBhTWsjX+L+wpF1Vix34vwPomQvBWve/lRtpqyOP9r970Qz+frr1vxMfVdmw3PS/VNxNda71878iKwnPhAXzv8apy1ZbDPK/S0js83MK8b+Voq8tKwDwv2w87jrw2+2/K6ljctWo679kWAuwVGjpv24DtUTlG+e/VoceSSLF5L9BKGnuw2XivygDQtgs/9+/l/0MO+ko27+Yv/FHekzWvx1RubeXbdG/VEClcsYfyb/AYsjWWNu+vyCzwfS+Lae/QJWieEwHnj8w+Dbm12O6P9R866/XgsY/UPMNRJyvzz/gSP4/eFrUP5Rf7xMkyNg/rFD98uwf3T/X9taNpLDgPy2QdLECxuI/bDYkfRzQ5D84UQUXHs/mPwLS6dVMw+g/oBTELACt6j+UDaw9mYzsPwy+G3d5Yu4//bYj13wX8D+AyTNIMfnwP+zG+8pw1vE/rGhQWEGv8j8l5wwCk4PzPx60FQ0+U/Q/at9A5/4d9T+8X8fxc+P1P/3U0qsco/Y//z0xzFhc9z9oBtqeZw74P2ir9E9puPg/sXjdmWFZ+T+4XFTWOPD5P3XTESrBe/o/d+IAUbn6+j9YJkqC0mv7P+Cy6tC1zfs/KFPqCQof/D/eKaSyel78P0XDT7G9ivw/AQrRPpui/D/3ccDC86T8PyteHGrGkPw/PQkPsjdl/D+o5otrliH8P3x5aRRhxfs/91n9O0lQ+z+oEmUzOML6P27YCnlPG/o/+G71I+tb+T86xrIwooT4P00LGv9Elvc/Aj+YNNyR9j+Fxhb9pHj1P8AcYPcNTPQ/3A+dbLIN8z/toPQ8Vb/xPwsgJjzaYvA/hptgKIH07T8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"6uPs506xyr9o9RPUoNPGvx6vXLwH/sK/JNl7TRphvr+o+bRFq9a2vxAc8SN6uq6/wAoiUkzWn78A3lPNXBZkv8CKz7okgJo/AMcPpBSWqz+InpOrW960P6gEAGvC17s/tHhSjVpawT9YrXcgMbnEPxh0J7jYBsg/mEt4fqFByz9owXomxGfOPzZDvPusu9A/elTUTjM30j/uCEhfcKXTP2wTr2FUBdU/el7u9M9V1j+E3lO1zJXXP3pTWpE5xNg/iFJHQgfg2T8Wpo/LK+jaPww5CoCn29s/bJ61MYe53D92k9vW44DdP3VMkInrMN4/YKYHn9nI3j+wkkJdA0jfP1Yv45PTrd8/+rQcJM353z/2wFnMxhXgPyiRMfplIeA/nzKM460f4D8Wn3eHlRDgP/TyUGJE6N8/aklqSsyU3z/mIXKUASffP2i/qj1Cn94/QUbwBv/93T88kxogyUPdP+NPxxRGcdw/RK8gQjeH2z8a1y2Td4baP6tjJGT5b9k/u1TxfMxE2D9qKSOxHQbXP7TvuogztdU/+EXViXlT1D/P1cuxe+LSP997eeDnY9E/BC0X/DGzzz8CD8u6IYvMPwp2og38U8k/YnpNMoESxj8S6sgqysvCP/joHom5Cr8/tKd6IzSKuD/U8FMtkSKyPxhAxWQmwqc/cCWYjqBOlz8AYFQzEa8hP6AGKz1SwZW/CM1WxvMQpb9INFAt7F+uv3i8PYcYV7O/zGWTaUjutr9ER/i4Pua5v5RRA0s5MLy/jMXvuym+vb/AvSSl/4K+vxhqA4vHcr6/HPnP6OuCvb/MAje/bKq7v8Cyp8364bi/pPnuPCsktb9k4KEFi22wv+ChFrmHeaW/sMBoJHtKkL/AYA1Mx2+MP6DCwybiP6g/jDdAoTKctT9wcZCnovm/P1y5esWulsU/hwUfrGeVyz+Q7nTy/vjQP4X717JnUtQ/ap1M4t/S1z9r4az4KXbbP+Y2ntzsN98/XSg7keCJ4T8uGb7VoYLjP187klcUhOU/JIx1BSKM5z99LOc4z5jpP9ebLJw9qOs/DTSsqLG47T+ZrlFxl8jvP52yXE9C6/A/3TuDhpzw8T/sEzeLz/PyP8I+Eaxl9PM/kD9Q7Pzx9D+hlLvlROz1P/F0VX794vY/f5m5OPPV9z8uVal7/cT4P1kaDGP6r/k/YTUx8MuW+j+AtLaoVHn7P6uiOtRzV/w/PNQbXwIx/T9v82razwX+P9gtkWuf1f4/IxmcWSWg/z8a+1ZdgjIAQOatnj7nkQBARqkzof/tAEDr1Nnbf0YBQNK+t6URmwFAZr/HKlXrAUBOZPHS4DYCQNfqlj9CfQJAwv68rP+9AkBdG4bjmPgCQLBPc76ILANAEWrYDkdZA0DKgjyGSn4DQO9xyWgKmwNA222VDQGvA0DqayNhrbkDQB2mokeWugNAnj2qIEuxA0AyYfJ0Z50DQAkLt8uTfgNA89m1LIhUA0DTcim4DR8DQLeKXPn/3QJAiJQqRk6RAkBhUDvx/DgCQNDh5bkl1QFAPEEPvvhlAUBMKnQjvOsAQPajXzbMZgBAcAb2hjav/z9CRBPuYH3+PzH5v0ROOf0/NxViwVrk+z+a+PBUBYD6P/L/T2zsDfk/l+dCD8mP9z9AxXcJbAf2PzbO/164dvQ/nWxim5/f8j+uVyeoG0TxP3/IY3xWTO8/qpYsFJgP7D80mm0z7dXoPwBGqo0wo+U/Efao9SB74j/ul6pYrMLeP0LI4BV0stg/sgQMyf/L0j+bRETGfSrKP2J3jBZ2Tr4/4F+FrtBfoj/cCvC4GOulv4b2GL01E76/gQmPxm0OyL/YcOmDM0LQv0s1mRX6M9S/+5U+3WHb17/3bMFT3zfbv8wvRL2ASd6/n/IWeXKI4L8y+o6nm8fhvxUsEuMR4+K/QdAn4+bb47+2c4e7YrPkv2aaK/n9auW/4dgiaVoE5r8wyfPnPYHmv201h3OK4+a/O34XXTgt5799YO+KTmDnv/Ai/b/dfue/pZPiDveK57/2WbtcqIbnv/CtwYD1c+e/QG+Z39BU579QHUfjGCvnv5Qsw/+R+Oa/eiH56OG+5r8LizIMjH/mv8j75ZPuO+a/Kl2T1UD15b8CNusKjqzlvwP5BKK3YuW//j7qoXEY5b8qa6CfQ87kv/jt6rSHhOS/oGYdIG475L8ktuPl+vLjv5v7CYsKq+O/Vsk+MVNj479q4W9jZxvjv4YqKUW60uK/fF8mkqGI4r9gd+zqWzziv9gszlYS7eG/Ngf7Od+Z4b9J3YbB0UHhv4yhU9Py4+C/rS48xUt/4L+21WzK6BLgv/040Eq/O9+/usF4qao+3r9KPNQ8Ay3dv957ydlnBdy/buIUIrLG2r+gl1uj+2/Zv9KkEFWnANi/mhTobGd41r+a2GhgQ9fUv6ofcsyaHdO/ZEUknipM0b/8nMuSG8jOv/ySDlJ3zcq//OkJQRasxr84+DA9VWjCv0DsF0uDDry/QB1Uh/8cs79AHWOkPRGkvwCYP7er2Wu/QDEyNkekoD/Ag7g+QnuxP0ADfHIajbo/cGcfL/u7wT944sw2/hXGP+DcZErBTMo/EB0cgpdYzj++JDVZChnRP4gh28AX6dI/XMhxsyaZ1D8EHzZKMSbWP8512Dp8jdc/ehHH46bM2D8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"Yjf3eE/54L/5nnvRONXgvx5Gk+3wyeC/eLole0TW4L9quAmRqPjgv1ZyvY9EL+G/MEN14/t34b8uuZBQdtDhvxhXuvoqNuK/LOnJ9Gum4r/cOnJvbx7jvx05O5Jam+O/enDOq00a5L9c4VTsbJjkvzTo0RPpEuW/3k95kAuH5b/1DGHsOvLlv+TEHXMFUua/yJbFsCik5r+ZBM8Jk+bmvwYYWgJvF+e/fND1AiM1578iPfnKVj7nvxRmPa/3Mee/7Ym9nTcP579xVSEYkNXmv9Avh6/ChOa/frLpsNcc5r+yzdK6Hp7lv5B1OP4rCeW/nE2DytRe5L8eJFAyL6DjvzizQ0mMzuK/JYSE+HTr4b/s7vUZpfjgvyX6WlQK8N+/V3oEqkzX3b9zfaKgdqvbv8L4fWQfcdm/k4aibgot178OY9ieDuTUvzjekeYMm9K/ynrLOeBW0L/u0WwlkjjMvyU+rz7D38e/RgwLtRWsw78tBZZ0cEu/v+8kSLlSqLe/E2QnvjZ8sL8dmTQoWaWjvzzXTLnbqY2/+OT0IMxMfT847C+hkxmbP7jmM84XOqY/FSYfN4SxrT+Sx0T/GfyxPyozLLpGjLQ/jCVx6wCRtj/5t6+ofBS4P5rD55tFI7k/46m0tx3MuT+LbH6TwB+6Pwt1c46kMLo/uW8iyrUSuj/CpBacCtu5P1e1suN7n7k/xxCI8V52uT+MIXvgDna5P9Xn2fmCtLk/lNhX5QpHuj+nCvwLuUG7P2Aw5MYft7w/dF4Q8uO3vj9SpiROLqnAP56k+mwnScI/JaYFFE9AxD9+UmyFhpHGPzwXkOMBPsk/H+jGKT5FzD/gXqsm7qTPPyKRLTt+rNE/hgBnfMit0z95c6NhitLVPwRqWqEqFtg/5E/yvUlz2j+otJNH1+PcPx0fnQknYd8/Ieq4fgTy4D8gBfZMcjLiP8GGk13sbeM/0EFbUGug5D90AYzt48XlPxrAB9lV2uY/Vkqnd93Z5z90543jw8DoP7rQBbOPi+k/ebqGfxI36j8aGnbMecDqP8U0rhpYJes/5ZWdGLJj6z9KBtxZB3rrP5GjtAhZZ+s/I/ZC5i8r6z9X/zR3ncXqPw5I3iQ+N+o/6XXqyjWB6T/aZ5kXLaXoPz1OQFZKpec/r7rXkimE5j82Gxfr0UTlP2yH+8yq6uM/6FUZnGx54j/mLsUjFPXgP7A9WYSiw94/ue0KyfCH2z8HSlA94D/YPz8sPctC9NQ/WN+6Yc2t0T/mB87k7+nMP8QFobq+o8Y/9IjVRkyYwD/sfS1ufKu1P8ahuWiRo6U/AN381O9DZz/mDj5KGRChv8ZD6x645LC/hIy8vmVPuL90fGQqQr++vzuajFuLF8K/MNi9YJlOxL9UI598uQXGvzq2TjhxP8e/GA7VbNP/x79txl2UWkzIv8432QG0K8i/97bOu56lx79T8FyGtsLGv3A0y5BAjMW/XgwvS/cLxL/mLSM+00vCv1ftx4vYVcC/aCN9LsFnvL84Q8dK5N63v2qD3L8MI7O/VEGZI8CJrL+wJk2praaiv1BsOodubpG/ABXUCTTnYj+gOd0oyfCVP3S+cmMYmaQ/tFt/95kHrj/Uaa/hlp+zPzKIrTS7H7g/9Efh/+2FvD/ndJI72GrAPzDvaTADisI/19VccKCjxD/DuU3FV7vGPyYldigo1cg/oNUkv0D1yj8efWyQ2R/NP+PcIkIHWc8/GvYfB03S0D/tUmsi+wLSP2YGZh75P9M/RKD4PV+K1D+zY6i85OLVP46x3hHWSdc/DlYf9Q6/2D82m1fP90HaP9tgnaZ/0ds/8Sj1iCJs3T+fD2pN7A/fPzi+nsY+XeA/itrEJ4o04T8ykDCLTQziP6JJ10rY4uI/THrzpVu24z+82dem8oTkP1zjVnCpTOU/pLDBqoQL5j9veRmnir/mPxeard7KZuc/iFTx2mP/5z/SxPMujYfoP2j5Ftua/eg/dorecQZg6T++J7FYcq3pP4K7xd2u5Ok/xIiDLsAE6j/b1ARv3gzqPzjZUtF7/Ok/6ZqZgETT6T9096K0IJHpP4prfqU2Nuk/MhhtOenC6D8oaLdz2TfoP9G1RwDllec/RkxlOCXe5j/BamC57RHmPwI3yarLMuU/klJw2YBC5D/mG1exAkPjP3M2ZwR2NuI/GH12bywf4T/18IpXO//fP1Lom77HtN0/T+XM0mtk2z9FpfcswBPZP9Wo6Ep9yNY/Cmu+mmiI1D8SSrLoRlnSP2On74rIQNA/pesYIfWIzD/uNQLTYdPIPwJ25XPoasU/Of7NYNxYwj+xdiQ6Y0u/P0/aJ3yssbo/sEr/uRLxtj8K3w0ulRO0P+D5jGNpILI//VXhrN8bsT9Zbeg4MwexP9LU7k2H4LE/msg8odmisz9NZifEC0a2PwxOJ4MHv7k/l2h4uM//vT+UjAh573vBP3BewmMfSsQ/JSWzrf5fxz/Hnxq5Q7LKP6L2gtgDNc4/avfImfft0D+3rUjdR83SP0rwpgBAstQ/OlMAe9iW1j/gjLz1TnXYP21vGRxFSNo/jIJvPtsK3D/GREvgxrjdP47uiptnTt8/raHA1mxk4D8Ak0Tb/hLhP7G9s55CsuE/OtVU0vdB4j+0Gmh+R8LiPy5Rp6G7M+M/Gd7yQj2X4z8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"UHRgvt126L9cGxXNx3Lov/RyHJMeRei/wh8DVUjv57/ddmUcG3PnvyzvJhnS0ua/ylTvpgIR5r+D1RhsjTDlv05YcTKQNOS/j51f2FMg47+JCiHFPffhv6AqYBW9vOC/8f/EcXfo3r+14hnqGULcv6VwWhC9jNm/1DHXxVjO1r+aEaQ7ZQzUv4wkCSXMS9G/3EfjXqghzb/ywvztNb7Hv/KbNlEYc8K/PsknYomJur9a/NwXsGywvyjdyy9TTZq/YLd7sboJiD/k3T9rWKOoP5zIkmSBYLU/v6toBosxvj/uWf5NyGTDPx6M0zD4lsc/5V1W5Qyyyz/pGeUWobjPP0Df1BR31tE/5NvKOFfI0z+pfQ6/d7LVP4wZdBr0lNc/cug20HZv2T/y7vlJK0HbP7SlbQa9CN0/ZWyji1fE3j/N/sAv1jjgP/juxWz/BuE/g0DopRfL4T8YKSOvaYPiP23Fao0jLuM/N3tVAmPJ4z90VmeHRVPkP/0tBFfzyeQ/pUciHbAr5T9mM1xY53blP2/0wog7quU/yRUUjpHE5T8h+DoaHcXlP4BVHVtpq+U/wsBLJWF35T9Usb9KVCnlPxRabcb6weQ/PfbfbXVC5D8IriNATKzjP4XD5NpoAeM/9yzunhFE4j8XLXGm3XbhPzRnb/OtnOA/89otujZx3z9nPKhR1pvdPxZFyYb+v9s/+uL6DInk2T/J/Y4TRBDYP6LU7CfSSdY/1rvODYiX1D/1cVxZS//SP7lSSqd5htE/F5ETMMox0D8ec+5DcArOP0AXC6XjB8w/uE2P4I9gyj+yL8ySTBfJP4JCa2gbLcg/M/k2+Suhxz8OfSx64nDHP96kGDfyl8c/lXW5onkQyD9Mm74gINPIP1rr+v1M18k/4nPPkFoTyz8NEqCfw3zMP5vN/4NsCM4/DVJCJtmqzz8YWEzvNazQPzevjI/VgtE/PIaKZLlT0j+HMRNlnRnTP5gh3jOfz9M/YAS1wVpx1D9ecNVB/frUP1XXDLxXadU/keFyO+q51T/q0evi7erVP05wbQdb+9U/F3aDnejq1T8z4+LWDLrVPygksUjvadU/lv6W8Wb81D+bAc/X5nPUPx9zFuVu09M/LPdchHge0z/tqpX24VjSP5aQz3vXhtE/Bkkk8Lus0D96XnnaH57PP+ibfP605M0/tm07eyM2zD+OgZPoBpvKP2KWRu+BG8k//pi8hxu/xz/cJK8tlIzGP5VgEVfSicU/wfsltcW7xD/vJfoXVSbEP95omGBSzMM/CShGj3Wvwz9Y0OQoW9DDP+xoWC6ELsQ/CxpXqmTIxD/+iXeZbpvFP/hN9uAkpMY//BLBLyvexz9u1d9haETJP8R+dRIZ0co/TOVTwep9zD+GBzp7IUTOP26RkyVVDtA/cUq+GiEA0T9aR7bkxfPRP09q2ViY5dI/XrNpyPrR0z+MZIu0bLXUPx+5C1aTjNU/8sR3YkNU1j+fXjP3iwnXP0gQoTG+qdc/QQwoNW8y2D8hdt7zg6HYPzvAeF4x9dg/2ir63fwr2T9oExsMxUTZP+TYdJy7Ptk/ow3qDWkZ2T9WMfy5qdTYP0pgYeascNg/kKmpiPHt1z9MzgP/QE3XPya2nMOtj9Y/lkNg8Yq21T/guTgsaMPUPyI2avIIuNM/1KrbAGGW0j+o4zU5hmDRP1sX2LiuGNA/SPb2e0SCzT8cRBh2ZrjKP0R22kpo2Mc/DcZ0Z9zmxD8UFNPtLejBPwkbJuwWwb0/wrIbu6untz+UXgo/IYuxP03sq38246Y/3HtdcxqBlT8AaA9gTJhkv5jprjYKapq/svEiIkH+qL+IO6Tq8lGyvwhpNsdzE7i/6ixeMi3Fvb/CcotC1bTBvyU5N20ngsS/ouIalZxMx7/1QNfBhBbKvy+4Tjha4sy/L8+pEaOyz78P4hrX50TRvygbSpQNtdK/ZqchwbMq1L/Y3S5OkabVvyEKb7EPKde/NU5Hzjyy2L9Pq5gSwUHav/2XtPPL1tu/fmWqNxNw3b/TSv81yAvfvyA1ZH7KU+C/NGapq0wg4b9aC4uOuunhv1rY71YiruK/ZGw/sllr47+yxhW2AB/kvwybSpiNxuS/ruYZElJf5b+W2lAqieblvwxp/JphWea/vSdqkgm15r9qBXh7vfbmv0XYk0zTG+e/wCYs8Mch578r0EgqTQbnvwYXaQlUx+a/LNTGMxlj5r9Ij0c0LtjlvxOJQNuBJeW/4H9PtWdK5L9CeKMtnEbjv6PVAvhJGuK/RD4PnAjG4L8q3FcXuZXevzxHVnBtVNu/rDjeQdrL179gFoU8bADUvzV+pk6A7s+/9px6FyNsx7+Xl6K9hwy9vwxMTP01KaW/WJiUvpjmoD8XaiXV7+27Pygs3KrB3sc/QO81mADx0D9FN0wS5vjVP1jPHCq+/9o/NxPbiG/+3z9j39OXF3fiP0xRP0dH5OQ/4+ml7MZD5z8gcYJX1JLpP33fRYHuzus/eTQH6dr17T+36YPi0gLwP1eZYEZS/vA/GVVQabrs8T8aOWuXfc3yPzL4kTswoPM/jrSBdodk9D8YoiKxVhr1P3xCZo+OwfU/T3dC1Tha9j+4+29Ld+T2P1YEgFqAYPc/wiBU55zO9z9eGGtxJS/4P+Me9h1/gvg/Q50UqhrJ+D8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"kksB4Ezs9z9cP7nZ6g33PzS2YVriKPY/3Hv/g+s+9T+CtW7BmlH0PzJvGL1eYvM/5ftMlXdy8j+8fSTK84LxPz/+bcislPA/ckxzcYhQ7z8lMo2jRnztPx7p3eX1rOs/2ZBIw4ni6T+6Mk7RjBzoPzddVoEqWuY/dQURiDaa5D9E67e4OtviP3OXB0+EG+E/es3oUWSy3j8ACLwFjyTbP0jjO0x1idc/5CRNEBDd0z8C1jivhhvQPwz1Hc2hgsg/5GPxQrGWwD/kTZEWYNywPwCY9QYgoSU/uB1aS6RLsb9mwUWI/JPBv1DXegLEw8q/iI+OsvcY0r+SM72mrOzWv6ZBFSZ02du/yFJjCGht4L9tcBsFq/Xiv9BgjCtiguW/aMgEkwcQ6L+gxU4/v5rqv4+Ok1hjHu2/PTztTpSW779oC/u0ZP/wv56A8pwxKfK/GRJg615G878m28fyoVT0v5hiRX3AUfW/XMpCTZo79r+w0xZDMhD3v9Bta3S1zfe/ZmZ1vYNy+L9PTMEpNv34v6HdO5akbPm/WDEccuq/+b/6z4jHafb5v0hZTzzOD/q/BZhQIA0M+r8iy/VwZuv5v362fRNirvm/bbWNqM1V+b8uAq3EuOL4v9SOJFNwVvi/ObVhtniy978MKhmmhvj2v4RFzOx4Kva/88GZ7U9K9b/KgRFJJlr0v6N48+knXPO/RAVcSopS8r82sUumhD/xv/pXzjRHJfC/HlClteoL7r/W5AC3Osfrv27nixlngOm/mvz3Uhg7578CRwpzr/rkv1XTYg8+wuK/3E32BIGU4L/Wl9myu+fcv3yhmZTBxNi/1hZ/73jD1L/KIEsTmubQv6RJpZVnYMq/DGhFb21Dw78wuQZw+u+4v5i4GXEI+6e/AK+QiCBGVD/QKwKfGvynP2aHWqUJDbc/9iH/3m7BwD8uXnxZrrLFP6sKxiSKXco/YEuAMJDFzj8Qct2FQXfRP58tK7AgbtM/jTZTGl1J1T8Vdd+87wrXP3ARceHNtNg/JnG9Z+ZI2j8ZextnIcnbPxYwcQ9dN90/vvoc7XCV3j8YhgW4LOXfP3j8nUctlOA/DOJT5GAw4T+SLZzyEsjhP545eegkXOI/28ooW3bt4j+1EoS+5nzjP97lri1TC+Q/kPvus5WZ5D8obCw5gijlP9AmCbHluOU/KMwIUYFL5j/g7rSPB+HmP7j2RccYeuc/ik+qxD4X6D8+0SoP6LjoP/jGL7JjX+k/TWKLwdwK6j99OoW0VrvqP8mJU12qcOs/mfFBgIEq7D9OrAKdVejsPz1fw9Rtqe0/pCKkjN9s7j8QVccsjTHvP2WTXXAo9u8/CitoJZpc8D9VyfEKhbzwP8ddSZLtGfE/np7Rvtxz8T8Cj33aTcnxP2Y1g0czGfI/T+Yh13hi8j+NH4bICaTyP/DWif/T3PI/u9WzAc0L8z8/GyC99i/zP4QU7xljSPM/3FBATzpU8z9NDNLevFLzP2ehCPZIQ/M/ZqLtZl0l8z/PNe/onPjyP0pB7HbQvPI/Or9hvulx8j8uTDXUAxjyP0MqAsNkr/E/dIVa1nw48T8GC6em5rPwP52oF1NlIvA/Wn+O9MQJ7z9cdSbv17jtP5jMTalgVOw/D1m22fXe6j+6hPOqXlvpP9Er0HyJzOc/C/Bj14E15j+RMV6aZJnkP8iI1x5U++I/9oIs+21e4T9Q1cUufYvfPzJ7MNlsaNw/03PEnDpZ2T/+2xU8FWPWP+jVCSm1itM/9vT4zE3U0D8ycI5F84bMPyjWhz9utsc/ICkZo7I7wz/A4DUHEjS+P1x4iQWtprY/yH7m/YGgrz+wucjcOl6jP4DZB1ME/JA/QKKEd37aYL/ImlFebK2Sv7AOXqQ/c6C/dBEJhth8pr/4iJANEpCrv5xuI77uy6+/oiNTe4mosb/16ToprCCzv/d5grx2X7S/qvpnCux1tb84kptBrHS2v4rV/66aa7e/QGtQzK9puL+k/IUhm3y5v4Ru+6GwsLq/NDmKwpsQvL+0/N9LRaW9vyRc1wO4db+/EE0tI4HDwL9mWN7/F+7Bv5wJrzYkO8O/MCAEIyOqxL++6hJamTnGv5xv8ewX58e/NqAZeEivyb9wpmFK/43LvxiW3CVMfs2/QHyFHo16z78EaRnBQ77Qv/yjpMa+vtG/pG8Q1iS70r9eY8Ofu6/Tv+BuLdqumNS/ykkD0Bty1b/OMjVzIzjWv2yL/Ibz5ta/PmVE6NR6179+dwguOvDXv6ub43/KQ9i/jhYCG25y2L9jmo8EWHnYv84mJucSVti/Qi1huYcG2L8qpl3FCInXv8YMioVS3Na/0mMbsJn/1b8R1clQifLUv4WP345EtdO/uw26Im1I0r8KeDEkHK3Qv1BAFMrJyc2/JAmJBJTjyb+kIJjNf6zFvwhWbHg5KsG/WGgYzlnGuL+wiTenjHmtv0B2trKuG5G/AJtVXHwsmj9gf4ctnqixP8jF8gZZAL0/1AhujG9AxD+El9AzYgzKP9CJovJs288/cOuk/5vS0j9OuYD73LDVP6LhRuyvhNg/hrfUW41K2z8XdQBpPP/dP+xVrM3sT+A/S7hv1e+U4T80W556lM3iPxnGCFP8+OM/k6X6g3oW5T9yoQbqlSXmPwxf9zMHJuc/9sFXvbUX6D8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"8MhWd+Rtrj8wivYoIkaEP4AYjYmY7qO/UggOlipCtr+G+IJLJCnBvy6v1dfEEce/QnsMo5DZzL+suxC+3z/Rv8L4FeoDAtS/do+qy0Oz1r8pW6p/0VPZvwS9dTn249u/1ntfAf9j3r9FTpN/FWrgv6a6FxdOmuG/+luL06PC4r/5sgR78OLjvxfq6nTp+uS/umc36RYK5r9sQW5Fzw/nv79giy4zC+i/2heuCSv76L9ybOnQZt7pvyUoi0Rcs+q/mRGkpUp467+OFZ5QPivsv/7/4wQWyuy/pLepSIlS7b+/TsRvMMLtv+chq4mQFu6/u4WZkiJN7r/wkmoyYWPuv3s0/0LVVu6/2DuaXCEl7r8GotcxD8ztv2DXIG+cSe2/lgrJ1QWc7L8WjU/J1cHrv11Pn0Prueq/Nnw/HYaD6b9D+vhHTh7ovxMAZodZiua/LE/j3TLI5L84IzJ92tjiv/alnBrIveC/kGjtGdXx3L9EaxgdSxnYv9BBs5uV99K/eHDzJFQmy7+Am2XGB82/v0CVKyUJ/qC/QHJMiM/2rj84wrIvI//DP1YpVtIBOdA/OvVPxHuB1j+6e2ToIM/cP0TueLIAjOE/3gXNTBqp5D8HZZkA/bnnPxge5s7kueo/Ry9cVjyk7T+8fDnmUTrwP8Lhwjp/k/E/YzfbhLzb8j/2yGBuShH0PyCYwNqVMvU/Xu2BBzw+9j/I7IZ5CzP3P2MTpQoGEPg/Y4O8DWLU+D9W8577iX/5PyV6ltsbEfo/KR7Kj+mI+j9UauIJ9+b6P8W1god3K/s/HzXm5M1W+z8yS1a3h2n7P/DcboJcZPs/IHN9pylI+z8VH9iG7xX7P6haL4jOzvo/HJh7ugN0+j98dFOn4wb6PyZ99PPYiPk/5CN9vF77+D9YRboq/V/4P2Y+tzdGuPc/9IHrVtAF9z92chXVM0r2P+yVYCgGh/U/nojpN9a99D+BGiQDKfDzP4w+/S91H/M/mXW5ECFN8j/wJ4UlfnrxP11KdVjHqPA/3/IgoTuy7z8cMndLEBnuP8e/hubdh+w/TWoFUTwA6z92QfP7hIPpP7DzYiPVEug/WMC2Dg+v5j8vPh8m21jlP9vH1aysEOQ/QEdXpcXW4j8rT0BNPKvhP09TZAACjuA/tzU02c/93j/Fw+NMUvvcPzIAt6DiE9s/L6qP0MZG2T/xT1UQR5PXP6xnVMq4+NU/xKeohY921D86JkfbaAzTP0wg7goVutE/kCVXYqF/0D/y7i/lvrrOP0+TkxDKp8w/ki7XIiTIyj/r3v9LEx7JPzv7x+ZdrMc/+YZTbD92xj/97fyoTn/FPxq2gZ1ny8Q/3BvuKYhexD+N2x5YtDzEP1grjrjZacQ/vL66xJrpxD/UG0VnMb/FP1V2HP9J7cY/Nz9gaNp1yD+DABILAlrKP/z6fu7qmcw/zgDaP6Q0zz895DYiDRTRP8jXa616uNI/cAHjgkqF1D+fsgMWhXfWP/AFoSmHi9g/MJ5J5Ai92j8OD6FOJQfdP0AAHBpfZN8/8ZAVbFjn4D+OmqoMzx/iPxECdaEfWOM/0/VaT6+M5D/eFYFhxLnlP0ixREmU2+Y/FSIAA1Du5z9PaD59MO7oP55TrfSF1+k/mObx98Om6j/bs2coj1jrP6vYd7vK6es/2p1GfqRX7D8xzJEfn5/sP8ksgwqev+w/BpAv/e217D9qLunYS4HsPyxynp/sIOw/xYb2OICU6z+0RCdONdzqP4ii+OO5+Ok/Fdifqznr6D8gMUA1XLXnPzT2M+s/WeY/2vPiOXPZ5D8seo4j6zjjP8S6pEb7euE/BcKuWZJG3z8vC/Opf2vbPx1JRLv/bNc/iGSohKdT0z8G12qldlDOP9MlqXoj58U/eGEe5M35uj/Q5us2wYukP/CfV5ktsZi/pF8CtDA9tr8w1dgrr+fCv4TZRYTrY8q/qF01Q5rD0L9TYxQxfyPUv6KMXJMvTde/h0Xn0BI92r+dihybc/Dcvz9l7/9+Zd+/1s3nNqDN4L9qU5gtz8jhvzna7dekpOK/TnpJO9lh4794iyimeAHkv7k4dGjbhOS/WMf0kJft5L+SQNkbdj3lvxxc+V9jduW/0PLw32Oa5b/DUAefhKvlv849d8/Oq+W/fsv7Ljyd5b/CK3cqqoHlv9pFSFHQWuW/bxRIYDcq5b9zdZhwMfHkv3FcxtXVsOS/xiPJKf1p5L/v+hbBPh3kv3CcfnDyyuO/DD0qDTJz47/26NYF3RXjv4g8qw2fsuK/CnB6/vZI4r/CimyjPdjhv5QXj7+xX+G/3IRlBYDe4L9Fu3nkzVPgv81p4yWMfd+/QC+4g0E93r8Vg9oRX+Xcvzq4jfjLdNu/yi77WMbq2b9q3rIE8EbYv5LcwfVbida/GE/KOJay1L9vQy5zrMPSv5QnZ74svtC/7hiJbklIzb8TtmV5O/DIvwJdT1osesS/tkfry8XZv7+A31TyqZ+2v0xOJAksrKq/hDP7e2Q3kL9ISxjsBZ+UP6wIzl6zcqw/uhcUbNcVtz/8cQAXzKy/Px64C6Vk98M/3qtd5uXmxz9Mzlv1vJ7LP/dgpLvCGc8/9s9be/Yp0T+l8JsaN6XSP2Np0lnl/dM/8wAe4+8z1T+BQnU69UfWPyS+0FJDO9c/+Ln8us8P2D8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"CAo5Pd/h7T+2E7BuQlTsPxTAHE1xruo/TK4EtYTy6D/CSP24vyLnP1wzIaCOQeU/7A38aIVR4z+jxPCtWVXhP1YDbaLMn94/st/HJkaI2j+BUyFcSmrWP7Xk/Rk3TNI/ZJYCdC1pzD+5ZEt5LVTEP6jLYiAgzrg/gBceTku+oj/4y2WcLCOWvxyfflbuzbO/IN/wDEqqwL9sbw49rwDHvzwM7bW03My/pHSZGpwY0b9NFbvXyHjTv9Z0BdLPiNW/1OcbPPRC178KputM3aHYv5va4Q2joNm/zoHDAuA62r8SMDwqvWzav1hT1uoCM9q/mv0MqyWL2b9Y/k2+VXPYv5A5SYqK6ta/9HbN9o7w1L+wpx8jCYbSvxgxwbsMWc+/mOZrGvvMyL/MgsgKrW7Bv8i7bg6jjbK/AJikcuH8Z7+Q7wbeEnOyP7hNLySCd8M/gCF3pB9Kzj9eb+2RANDUPzrqGdcns9o/eGMcjj1i4D+IeWJTs3zjP+jrszN0o+Y/WM4GB9fQ6T/yGydIGv/sP8kNBCk7FPA/Kl9oK5aj8T9BSI/tzSrzPyUCPjMop/Q/RIVqOAsW9j8GoCyGBXX3P1IiglTWwfg/jbVp/XP6+T/GJYnoEx37P1Yb7EkvKPw/Zjr1KYga/T/Kf9y1LPP9P5/zE4V5sf4/GO5xNBpV/z/uBdGgCd7/PyWlH9lHJgBAhJcLG59QAEAKE4Mwdm4AQCuX6CFZgABAb2IdtPCGAEA8Bl2p/oIAQMyaY/tZdQBALGB0BOpeAECrG321okAAQNxC4vh+GwBAHiZjwfjg/z99L5ItLoH/PwDXFpGJGf8/iK8x8eGr/j9EOJ9H8jn+PyD37a5Txf0//BufnnZP/T+g5lQLoNn8PzC3i4/lZPw/OlCqLCvy+z9NVvc8I4L7P2QJIrtNFfs/BK/vCPyr+j9fGN5xUUb6PwfCPEhI5Pk/AuMUcbWF+T+/pS2fTir5P/D/eUav0fg/4ncJUl97+D+5HbVD2Sb4Py1SzBKR0/c/GReCgfmA9z+VdtOWiy73Px/oFETL2/Y/PFBu4EyI9j/2645ruTP2P5aI4vLS3fU/DyKErnWG9T9Uzl7ZnC31P4qcU0Jh0/Q/lf1z9/p39D8GA2b1vxv0P7uuVUAjv/M/VPu8VrJi8z/Shn2JEgfzP56kNBD9rPI/xuwwlTtV8j+MS7WOowDyP9x5ZSMRsPE/gsnuIGNk8T/3EPk8dR7xP9GWpPAb3/A/SBxDRx+n8D8idUaRNnfwP587BfsEUPA/oPVcnxQy8D/du5sw1B3wPx0V0VCUE/A/vdE1jIUT8D8esSiUth3wP3n434ATMvA/+D4OB2ZQ8D9ukSgpVXjwPzF/M6RmqfA/8D9HFgDj8D8vgPIpaSTxP8zt/xjObPE/ZnUrUEG78T/o4nnQwA7yP4abog83ZvI/suAjz3/A8j/x66m2axzzPzXji6fDePM/UwWMEE3U8z+U1PCYzC30P745M9sKhPQ/fHbsPNfV9D+PG2BcCyL1PwpFpuuNZ/U/WjsogFWl9T9FKx5pa9r1P/fUsR/tBfY/vGqxOA8n9j/eFgduHj32P1dIbmeAR/Y/EDVlkLVF9j+x0z01WTf2P+1n7gsiHPY/NizEU+Lz9T9k8z+Ch771PyTitY0ZfPU/EaGnY7ss9T/GAOewqND0PzICRY41aPQ/yGZRW83z8z9x1L0p8XPzP2AyUJI26fI/QHWYo0VU8j8OHkVQ2LXxP+ASNYa3DvE/Kc8lZbpf8D/hSHTKh1PvP/yFC1OD2+0/ykA+JVNZ7D8bF7f58M7qP5CZehtfPuk/TnosnKep5z8BOtCr1RLmP3Q4P071e+Q/tSN7Vgvn4j/+y3JsFlbhP476sh4Rlt8/NCV5BYiP3D+sI9jFMZzZPxA9enmBv9Y/gKK3ILj80z9AW6kY2lbRP/zKJ9pgoc0/kGsUDnXZyD+wycaNXVrEP1gkOgzhJ8A/KNFF0D2KuD/ApUHxDWmxPwAoJeoV36U/4Gak7W5+lD8AwCZ/YYkZvwDQlDSgDpK/gO5YbPe1oL8Q6DF8WCGnv4Aptoo2Vay/2IrcGS0wsL8sCKMLOKqxvxg03JL5orK/KJE8yQQms7+opACqIUCzv2jOj59C/7K/6K4xPFlysr881z85Mqmxv9TIWsZotLC/WIPMnUlKr79o3pQoCRqtv1Als/vW+6q/GHqK27ATqb+AylazdIWnv4h+Jl6CdKa/WE2uIF8Dpr9oLoKOWlOmv3gS6twwhKe/IEbEucmzqb/4QUoUrv2sv6g2CW9yvbC/gM8gPMegs7+w8lXkUTK3v2h8OxTSebu/9ENV7Jk+wL8jTfHINyDDvzLRdY+8Ysa/gl3mxRQGyr8l+6GlGgnOv+A1ecHKNNG/VW/BZRyS07+0u1zMUhrWv5q721S3yti/yZte6Reg2780uqZbxpbev0poJONS1eC/kBNZTplr4r9qVdkgyAvkv+zmHktKs+W/PpNVOG1f57+AHFm8Zg3pv/DW3CVfuuq/MS1XtHlj7L9Sm4gs3gXuv4raHkbCnu+/j3I3s7iV8L8eLTRYrFTxv71bmaYGC/K/cDS+2Kq38r/20c02mVnzv7K4SWvx7/O/YHqoO/Z59L8QfY8sEPf0v4g23wbPZvW/a7pgiOvI9b8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"EyeTu+718783Numx8vryv+AStEph8vG/diapooDd8L9U8obIaXvvv7ujfqr/KO2/2lgrrPbG6r+LMWKRqljov6r5qbWX4eW/K6pJe1Bl478BcbGodOfgv167ipBP19y/LvG0QxPr17/YBgYxVhHTv/ygYVsfosy/OIgE8/hhw7942T9hRN60v0CFX7SiXY2/oCMG2oF5qT8AlPMxwkW8P4zVKhbSbcU/PKZ9fVM2zD+4CvBRODrRP+7U1SeXENQ/JuhP8Eab1j+sFyfWxNfYP0zoFYgLxNo/rCmi/o5e3D9c+CDWP6bdP66S9LV/mt4/xibgNCY73z+AOwE2fYjfPzaVEMw3g98/XHRiPXgs3z+2WClRx4XePwWy3YARkd0/TRe4caxQ3D/zh3SYTcfaP1Lfyi0K+Ng/jT8dpl3m1j8Nz9+YGpbUP0hoqYJ4C9I/Ilg90QyWzj8S6+FFYbPIP5BPt0twecI/EF/1adzmtz8Q4YepubSkPyAa4I9bzoy/+KXP4K/bsb/0Z/ziMijAv0B0PWoWbse/xM7JLUmxzr8mH981qPHSv432QWLDeta/xL8Pvpzs2b8vDCLZ4z/dv0RzvA6uNuC/WpDPXPq24b8F494KaR3jv6Edul6yZuS/oM/boLuP5b+Nv9sEoJXmvzpXjTe6dee/unP1vKkt6L/Bh8zlXbvov8pZnF0YHem/eHCRQXhR6b/egRKZe1fpv9aATmyELum/HHnjq17W6L/gEyFqPk/ovxC6YBPEmee/rmbGEPy25r/GDgbBW6jlv4XkozfCb+S/qpFvEnEP4795Ttz1CorhvwaAIxEaxd+/Fz+iRI043L9efG7gp3XYv3CiE0ImhNS/nuztoTls0L9CGsIG5mzIvxxPayWtrr+/EFudi4GnrL/g3/3GapKIP9jOBb3EXrQ/4pOOqZa2wj92+/AH3gzLP3GBRb9pkNE/3hwrnt5w1T+B7piv3h/ZPxLnrQj5ldw/dZ3rHlDM3z+dp6+4U17hP5QPcWO6sOI/2kJe9vLa4z8HPvv6+NrkP3n5PiEsr+U/hBSYllRW5j/isZIYos/mP2FGoTCqGuc/1fLAJWc35z+S6h1SMibnP6yghca/5+Y/0nsBfxZ95j9yET5ei+flP6r5d2qzKOU/879Wn19C5D/4aSB2jzbjP9Cm511nB+I/ppflPCe34D+MmNQdO5DeP1qlVLk9eds/Ap3mMvgt2D8I+mpA77LUPyaXu4R9DNE/1E7M0I19yj+YzjeKS5vCP7AmwyOg8rQ/IMVTjXvwkD8wRmes3sKpv+jjgAn3W76/6B3s9l0VyL+JEKkjlZHQv23c358gKtW/DjlsCwXT2b8gC4LiLIvevyiD7uHVqOG/Nk8U4tgS5L9cE8+CO4Pmv0Y7ywuZ+ei/PtTe0YF1678OQatBc/btv75AtrToPfC/mfsR3G6C8b8wPA5iWcjyv7IkVJweD/S/wxbG5htW9b+X0i2qk5z2v3pBma2s4fe/SGTxunAk+b9MfmSczWP6v8gbH5KVnvu/TezOqYDT/L+G3jz/LgH+v16hpdcrJv+/NEdN+3cgAMDpVFx386cAwP2nuBC5KAHAlFzUJfehAcCSGZpM3BICwEgts8CZegLAM2qSgWbYAsAzyxL6gSsDwCIyXbU2cwPAjGuSpN2uA8BvsTD8390DwA2nM9u6/wPAxq3JxAAUBMAg29h6XBoEwHXEjIWSEgTAtDpnWYP8A8ByRg5oLNgDwDXVjCWppQPAqHUmFTRlA8AQZjGBJhcDwHgUoFH5uwLA1EKRfENUAsCofmo6uuABwOZ6D+MuYgHAhNg39o3ZAMBqpqe63EcAwKiQj5FtXP+/ujumc5cb/r9tsw00uM/8v/Ryo8Bqe/u/9VqU8F4h+r8wJxyQUcT4v4bvjdgDZ/e/boAVfDQM9r95wBMll7b0v9DIOTbNaPO/o5Qw6F0l8r+4X9+Qru7wvx022b31je+/gPI+BJ9g7b8Kg4ALBVnrv5PPd/pdeum/wPwLbl7H57/8pzOzMULmv7qpi7x07OS/lRGHDi/H479kK8AG0tLiv1jc2to2D+K/nVlAQKF74b9sLEySvxbhvzAiIPaz3uC/UJ5XxhfR4L9SLJ8pBuvgvxMwq+8mKeG/wA/oTriH4b/CJCPtnwLiv0PTtBV3leK/TCFDl5o7478r0nBiPPDjv9JUTzZ0ruS/BvvLpFFx5b++ZFD77DPmv0G9ikR58ea/wVMFHFWl579weXZ4HEvovwovHmu13ui/3FFV8GFc6b/AQv2Ly8Dpv2bgTm0OCeq/UbN4JcUy6r/kV44PEDzqv8ekqJaaI+q/vHUShaHo6b8i18Ne9Irpv3JGIx30Cum/txWyX5Np6L+kj/o4Uajnv3TighMyyea/mnyp5rnO5b9ysthg37vkv98+Gr8ClOO/lz7K599a4r+QqIBnfxThvxLSMHBPit+/eGL045ni3L981mxyATvav+/Q0uO8nNe/2bTVff0Q1b/QdpQJxKDSv0njy1bFVNC/CHYQ8ZNqzL9k8nxXH5TIv+rFLqhmNMW/RvCbCiNYwr/4bCb/cgrAvzBj9ylfqby/aI10Gqh8ur8g8geD25m5v5CQkoMeCLq/lPfZ76DKu79onVIqouC+v5B8ArfKosG/WMFPD6R4xL8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"nI227DFX7D8s0fSVlVTrP+rtVZmGWOo/fOa77Qli6T/0noYbMXDoP2ZNGrIdguc/+MpQTQGX5j+i5SfrH67lP0AqliXMxuQ/lD0ZKmjg4z98Il9kZfriP/p9giJAFOI/kEMSyIAt4T8O2VgFuEXgP9bz3Bn5uN4/Ilu3mNbi3D/JT6AiRgjbP8h6mZyIKNk/9Ak3kOBC1z+bFTLQjFbVPzeG3obMYtM/IdS1cNtm0T+z6KN558POP+sW0ZKjpso/lHbDyml0xj9AzImPzSvCPzBrLPPolrs/7gZ/QVyksj9kwDEE2/uiPwCCWdLxCEE/UM3wdVngor8Al1HpIDmzv1B8PPlROL2/dPsUjje2w79A40w6oenIvxAtUlrJNM6/Tdzc0MjK0b+3fme6rITUv+4YcRF9Rte/lvWKZmQO2r9UGo0LT9rcvx6gl3Xyp9+/pNbmAmY64b/wRRkrGJ/ivzpfDA6nAOS/wmoq3pxd5b91zSxcfLTmv8/YHG3EA+i/ToGycvdJ6b9lZeuZoIXqvwa+eRBZteu/XDrqXM7X7L8P1qXWxevtv3ANUB8i8O6/ZnkXBejj77/QQVy8H2PwvxQ2Vq88y/C/ZmjgZgcq8b9UXOBHUX/xv8vFgWwBy/G/sjcu8xIN8r8rvGtllUXyvyRWEU6rdPK/H65CFIia8r8+a1rGbrfyv1da+ymwy/K/M33TFKjX8r8ql7BhutvyvwLviVNS2PK/4iCV1t3N8r+O78AizLzyv3BN/0CLpfK/YowipIWI8r8KMQ36H2byv9aUrSW3PvK/TCtkB6AS8r9sH1A5JOLxv/Jiq5WCrfG/vApVb+508b/CVcU1jzjxvyT7PK+A+PC/V0L9gtO08L8OgPw4jm3wv5HAkHCtIvC/z7Pw/Uyo778Ubui0zgPvv0i0/aazV+6//oAD98ej7b8UXv641Ofsv6upd/CkI+y/0YzXdgVX67+6N0K7y4HqvyLFyvLVo+m/vo3ocxC96L8aH/YPdc3nvwfqaQIP1ea/rzVkFfzT5b+2vB9WbMrkvyxPpW2kuOO/k1+Hc/2e4r+3De81433hv/aQpJXWVeC/nemm7NRO3r/4iBC7h+bbvzSjbr8xdNm/4C+Ni1v51r9Q/CQNr3fUv5F6LIjs8NG/RmgV/9nNzr9b36u6O7fJvyzmh8X/ocS/9jiiuokkv7+7egrNjhi1v1SaHP90Uaa/wILk3pbddb/oyNRQTH6gPyh7JOM6pbE/EE3Tu07Luj9q9osXINTBP+IphTl8GcY/XuGPWTMxyj+87uaOyxbOP1wT4EHw4tA/bp8/CBKd0j8ZuwBPuTfUP07/z1XpsNU/Xw9sMcMG1z/vt80NhjfYPyDYEXKcQdk/0QXMnJ0j2j88vPWVUtzaPxI5p83Bats//1tSMi/O2z8vglYFKQbcP6A5LLGEEtw/WCcG/m7z2z/EycUgZqnbP6odNgpGNds/8BHRL0aY2j/I1jPL+9PZP12k6Thf6tg/KmckMcfd1z+oW/9M6bDWP8TlT6fUZtU/nvj9L/MC1D80FYvQ/IjSP3lt7Pn2/NA/JRG+TkvGzj+JnYibEIDLP5HlPD6TMMg/UrDoQ2nhxD8sCVIUVZzBP8Io+2k01rw/Wsmhbd+utj8Wjb5irNWwP3QUwpfwuaY/wOf7G95YmT/AY6EOQRt9PyA2yrxzDYG/YLuuqMLalb/oCmNh7EOgv5B8BuxbNKS/WFLkAbWwpr+wN93ivK+nvxjf13BrLae/4GUxkfcqpb8o4ROkKK+hv6CJYfBPjJm/QFN+C6gGir8Al2JcqHRgP0CpFMsNcZM/APCyDwRxoz8YvnN4QAuuPwTVF4DbrrQ/kKQnE7eduj8WMG9PJF3AP5ZNStrEdcM/RpKbzt+Lxj9WIoKOa5LJP2bpSORkfMw/gEy1WQY9zz9B4yZT/uPQP1lp7ZnLCNI/HvZgZYAH0z/yqK+4M9vTP1JqgRGZf9Q/+NVtiA/x1D+S6dZntyzVPwL2oUWAMNU/nG4CDzH71D+5KnIVdIzUP85I2cDZ5NM/LzERd9kF0z9sx7Hpz/HRP4cibpn3q9A/GDhDuLlwzj/IPBVAqzfLPxKsoIbWt8c/Ho5SLJb9wz+qEddQWBbAP0zweDLtILg/uK3i//brrz9wtCrgrCufPwBpxAn0KVC/+Ge+1iAaoL/A1gVnAPauvyhwhM/za7a/fOL92rbCvL/eFGJv1THBv2VV0UeqmsO/LtYOEUmQxb8X0/SPhgjHv9zBPbi6+se/FDpOLuJfyL95ndfTuTLIv+3GemTTb8e/uiYFGaYVxr8Ii+TLjCTEv3HW3sfbnsG/io4T5ZERvb/o3lsq3dC1vyAeQCXVFqu/sO2SGANSkb/wPJQTgvWWPxQYEjy4kLA/1Ch16GYJvD8TUHBmcgTEP6l8fLBdN8o/lbVI6jhG0D/mbthJC3nTP6v3J2stq9Y/MDYVt5jT2T8zJkg+V+ncP7kAb/Cf498/Db4cI/1c4T/4OILmK7LiP8HWs3ua7eM/mnXsSNoL5T+0ekuH3gnmPyFmpbwF5eY/CHTDhSib5z8jVJzEoCroP9VMGytSkug/kvz44rDR6D+3/DeMxejoP+ANhLov2Og/61vAYiSh6D/I2enObUXoPyLdPK9lx+c/RcYGNe4p5z8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"kLEAMWtm1L9Qvf243LHWvzzsx/v56Ni/f7fPpwsM27841fhKSBvdv0ehiIq+Ft+/ZdHpTSZ/4L+6ZZxzy2jhv4eaprcBSOK/evVUeloc47/qA3wEROXjv3lXOGsNouS//1ebEORR5b9FCsSv2/Plv/+MS1nwhua/gsdC2QwK57/lqVLGEnznvzuf+XPh2+e/SFOwKV4o6L8aKl9ffWDov+x25m9Mg+i/RiB9HvmP6L9kXU6q24Xov9g07E1+ZOi/TurKD6Ur6L+D+qIbU9vnv0lnlXrSc+e/oEwBJLT15r8h6kBI1mHmv867PmdiueW/6iH/Cc395L+GyeW60zDkv0wXK6h4VOO/Mf0dQftq4r/QEwKj03bhv48dDQKneuC/mGWejX3y3r9hbZWZ++rcvxNZ8Jep5Nq/PDxPo2rl2L8mDKcQC/PWvyaMM2wmE9W/oE0hoBJL07+s+irNxJ/RvwZOxWi9FdC//JTiiOxhzb/2QLqKoenKvwIvGbsOyMi/DiBZWksBx7+CIYWKAJjFv2zACm1kjcS/fC0yOjjhw79KvyA12ZHDv4JjwVBKnMO/O9zqtEv8w78G1hrcfKzEvxUEWAl7psW/4U4ALwjjxr9+NReyOlrIv7UmnvemA8q/TFH1m5TWy7/kaKauJcrNv1ge64WQ1c+//HAG/SD40L/gvBTyCwnSv3ChacW6GdO/EJAlS7sm1L/nLTVfAS3Vv5QCQR71Kda/Kiek13kb178a8FVl9f/Xv9Qk+5JO1ti/ABeRevGd2b/COv2QxVbav+AD7V0pAdu/Z9XJP+ad27/96T38JC7cvyaBNm1gs9y/RPg2oFEv3b8FOXtK46Pdv+QI8B0bE96/bMjGWQh/3r9bKRlEtenev0bfztERVd+/jvIKfeXC379IJBiJXxrgv0Q3SuH0VeC/o+EPb6+U4L9K4awi4dbgv2poygusHOG/vA6IjgFm4b8geimUobLhv46gA6AbAuK/pbI0PtFT4r87kB9x96biv1hCMKad+uK/3p1S1a9N478u8kaK/57jv8KwKdNG7eO/y39j7TI35L9MMLoMaHvkvzd1UtmKuOS/KNJhz0bt5L9vVWQkVRjlv8mm4Y6DOOW//QjbFbpM5b8YwKTL/1Plv5nFMTKATeW/FK//14045b/if+/xphTlv2FkwtNz4eS/wSYodsqe5L9ZH8IYrUzkv5Wh7mZJ6+O/199O5fV647/bIWiXLvzivyUk5O+Sb+K/k3hguN/V4b+a5LxD7C/hv1cPcZijfuC/iE//IgCG379C8b07C/zdv2Zkl1V4Ydy/MPRRSVe42r/BeOSjrQLZv6WvdRFsQte/8uoVgmd51b8DrR38VanTv/itszDE09G/7WBKDjH0z78wCycxFzvMv7weYwtVfsi/YqwgXbC/xL/GrAKToQDBv3Lu3+unhLq/pO5FcW8Ls78Y08FtIy6nv9D2ON8Eo5C/4Hf7PyL0iT8oQrXijTulP34nGbwN9LE/rkYCOitAuT86AT5AXEDAP5D47efz2cM/Copa78Brxz8EIpKvZfTKP55bHZ1Bcs4/4pMx2bLx0D/MV6Xvz6LSP4FeITs4S9Q/nJ6MFYzp1T/v1gGrTXzXP/6U4ZrlAdk/KG/sCKl42j/p+noR397bPy+5tbzLMt0/zq3/LbBy3j+ysVYO2pzfP7/bwI7TV+A/ovhEpsbU4D+pc+vrkUThP0gVKaKTpuE/v3z2IEH64T/MBDg/KD/iP5BKIMvxdOI/1UK6AGOb4j+QEeDbXrLiP9JGdxbmueI/o3tMxhay4j9Rm07/K5viPxia9Pp8deI//Axk43lB4j+Gax0Hq//hPzsPIaessOE/IxkXgS1V4T+piE8i6+3gP/24bPSte+A/qtKfgYv+3z92kZiKDfPeP7YY9saJ1t0//KzDRqSq3D9AxOlZ8nDbP5D3cBP4Kto/QDXIRyHa2D+bFg0gvn/XP6BUxwb8HNY/jmlYtuey1D/YUPg4ZkLTPzpvOqg4zNE/c2Tpo/hQ0D84cDIpNqLNP/gBYjblmco/qiDS32SJxz9qcApb6XDEP3qYo/pzUME/SfhVsNhPvD9cYAQoUe61P/Ai2t/T964/QAYl1cjwoT9gEk/NXh2DP5jm7SzjB5G/2DAy1pjvpb8gmXb9gLyxv7ZhOEkZjri/oP5jWM1pv79ZN6gz/iXDv5D3EgcNmMa/Sex4elAIyr9vKAkehnPNvyqBIvL1atC/fqPb5KIV0r/VBy9RcLfTvw4FliPNTdW/s26aPvjV1r8U0ylZCE3Yv1t0Ypzwr9m/YCx8NpH72r8RE2omuyzcv9wqiptAQN2/DtnJK/0y3r9UgOs45QHfv86YB2cRqt+/E2OCA2MU4L/Wolw2wz3gv8rdm3kMUOC/+VtcSUlK4L/lx/cisSvgvz/Ngb9S59+/qJMg7pJD37+0SFGOvWvev7aJrezRX92/Hz9LNkIg3L9g25Ew5K3av1ej6GD5Cdm/ksmcByY21793WacjbTTVv6C1PCkoB9O/hCioMwKx0L8o5D8V0mnMvyWvQ3gWLMe/6mTxsY+vwb8csqywl/a3v76ZdsVPWqi/APDfi++jMb94wKNP+ZmoPxZ28cHT37g/BkOsOhfMwj/CZnyD3DPJPxbah+dLoM8/I3rP4mUF0z8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"MEwlPYsCvj+gMfA89aq4P6DT1CHu3LI/UCEozkM4qT8gy+/esrOXPwCO/PX/unK/sMLmSRdQob+wrflKtIGwv/goa5GTsbi//EuRi+SXwL8Eu2L42/nEv9ygS0wCesm/Whh+30YTzr/Uj++YHWDRv4rean2IvdO/FGpsqc8e1r9/H5CNr4DYvz+z3tW/39q/3PoOhGw43b/hQ0zTAYffv5pMIBPX4+C/SNQHn0L74b/IEHEwxQfjv9J0BxpaB+S/0Uhjsfv35L+ws0JWptflv2xPlFxdpOa/uhPlaDFc579H9RhdRP3nvx/iugXPhei/MubIKib06L8WcXikwkbpv2oRkKNDfOm/qNNkaHeT6b8r/YySXovpv4RNPkEzY+m/a2nHXGwa6b/56LFEwrDov2eemhw0Jui/DJCHlAh757+uI0hT06/mvzhu8OBzxeW/0oFIKhm95L/3rVYoQJjjvwLCBbKxWOK/G3X7XoQA4b/8VIntKCTfv3gSsSAKINy/YEcImG/62L/6gtB2kbnVv9WdbKUMZNK/rrSARasBzr/IVUZuUS7Hv+7EJ0/oXMC/qvMwzik5s79QsB1skuSXv8gNWWdin5s/UGnRe+FLsz+gvM8cwRW/P+YXOJetFMU/lEj/Af41yj+GqPJfSuLOP+TG2aQFh9E/uELTxmtX0z9ISDJRvt3UPw3DaI8QFtY/VDQQyCv91j8BOiNylJDXP+YNrdSVztc/lCBSm0O21z/CWMjEeUfXP36BacjcgtY/jPNqT9Vp1T+aaMadiv7TP2JFA6HZQ9I/pAL9MEg90D/YLpNt+d3LP/zvVxFZu8Y/6GwW4RkdwT+Ap4B+Ch22P3Dbb0WDbqI/4HXxMsN3kb/4n332d4iyv5RUDxPOlsC/+Np0jy8ZyL/QZWil173Pv8hv5Xquu9O/xJfe6USc178C8EQAQHrbv+K9HVtqT9+/+Kj3p+aK4b9nGNSn32PjvxQk2FD1L+W/vmw2bafs5r8Q3lv5pZfov57XYYvPLuq/OUt+3DOw679KFxFAExrtvz6BYCXdau6/17Go7S+h77+2ShZJ7F3wv+yvzg7n3PC/1+A2phlN8b+KqsynKK7xv5RLUPPL//G/KLOONs1B8r8dPVEjB3Tyv9aXXitklvK/4uigZd6o8r82V9Nbfqvyv9n7G91ZnvK/LkA7LJWB8r+kwJOnYFXyv6ruf/f5GfK/yMG3DavP8b+Ax/2rynbxvzqnJbu7D/G/YKSf9+2a8L89vV633Rjwv9zEBTsoFO+/2ACIJ0/e7b/2Sy5hd5Hsv/58fo8CL+u/OjySJW+46b9oBbN0Vi/ov6pfom9ulea/YgwL6ojs5L9F/upzlDbjv83l+dCadeG/Ryog9IVX379I3mGim7bbvz7AxswqDdi/VRihKhtg1L8k8RIngbTQv3r19xMwH8q/Rkp97n7twr9yGTnEzr23vwQPrn4l+qO/0FWqOf+Fij+M8DR+KRWwP45Lb+nPObw/aCmy20/Uwz+pzRjPBibJP67EvomeB84/pDxHeZE30T/GYG/nlinTP3y8iKSE1dQ/3yVDmGY31j9/yd8BukvXP2CDtYyAD9g/xavV0EeA2D/UqyizN5zYPzRpO8kbYtg/oNDFFm/R1z993DWjYOrWP46jXPzbrdU/udl5vokd1D9sc8Ah1TvSPx9F+77rC9A/kos73Gsjyz/ibvl3taPFP/DLaNfFRr8/5O2vjvZcsj8wID4WMpKSP/jC/qAvi6O/kM8SeojCuL9Uuno4vRjEv5Bjn00I+Mu/vIQBzaz20b+34uReMvPVv20NtihH6Nm/EIncmYfM3b/Aa3Q8Ssvgv7RIILmRnuK/qVkf+4xb5L/pyZrrzv3lv+PRjZIXgee/NrDHclzh6L/6SlyX0xrqv8jKQPP7Keu/hIFNDKYL7L8ALSqS+7zsv0SRibOGO+2/BsNOjjiF7b+Tua3La5jtv8RP49Prc+2/JPfLh/MW7b+Q1nSHMoHsv2QV88XJsuu/aPFaIU2s6r/G+oy4v27pv4ZvTIyP++e/ix4cZ5NU5r+4NZNcAnzkv40IhvFtdOK/IyTnwbpA4L+6Co6SLcjbvyACPgrkw9a/JmthQ+Z70b/kJkaju+/Hv5xNyhr0/ri/QO2USSnqdr/oIXZWWbC2P0BxWFNVnsc/Txe9TTwF0j8UdIlPB0bYP06WT3Njid4/sHqvrqhj4j8ylLEjAnzlP2Jmafb1ieg/Runw3tmJ6z9SnsE5JnjuP1eLO2i6qPA/TnHBnkAJ8j9zknoGFVzzP9UX0TO2n/Q/k/G4J7LS9T/bQBnWpfP2P+Csc8I7Afg/s634UCv6+D+uSwpmON35P8zc9ckzqfo/navtovpc+z9AWzDndvf7P9hYiUuhd/w/4vL06IHc/D+NMreXMiX9PwzHCEHhUP0/YhSNl9Je/T+mvgZQZU79P8yUn7cVH/0/RGY46YDQ/D9QhmlHaGL8PxDY04u11Ps/tux6FX4n+z+dfWaGBVv6Pwaoat7Ab/k/Us2OdFlm+D8+W7ZNrD/3P4Sr9jHN/PU/XP8wLgaf9D84r/Ew1ifzPxJvqfPwmPE/BI9P4XXo7z9eMDZwjnfsP4gPAEOo4+g/TPT+m4kx5T+EAoEDO2bhPzeytQv0Dds/9YqRT1ky0z8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"uPxoHQ7vpj/grpFrZA2ZPwDrGGo/tmA/IEWLwrCXlr/gqYYojUSov1gsdALk0LK/gIHIBXuSub/8/vBMuSPAv6QIvD8saMO/9JvSwSyHxr9Ujxva0XHJvzyAmoX2Gcy/GOYZe1hyzr+yzrulZTfQvzUToYQxAtG/2MAtSb6U0b/cgYZ59+rRv+xWqBt/AdK/CmZMgrrV0b/z0vI1zmXRv/M0lDebsNC//hxu+21rz79YO1T+wurMv/Ba19Tx4Mm/iWPxh9ZQxr/DwkS/Sj7Cv+yuOtkPXLu/6CF+GPFKsb8YPlLlB1WZv2BvLCFW4JU/VP+NHIsPsj8JOzceMmO/Pw580yp4ssY/C/EbglQDzj8gNpGLmc7SP+YKxtWYvNY/GVVxbE7I2j8JzSoKdO7eP5+r8xDsleE/dIrZEa6+4z+GKgWh9+/lP/4A6ixDKOg/S3YImQtm6j/O/LitxqfsPzLP/dLi6+4/k66r9F+Y8D8BhosSVrrxP6utv7Dw2vI/mUEhWUD58z9nPag+SBT1P2LLTnf8KvY/Vk8nzUM89z8sVz3m9Ub4PzekXOrdSfk/8oSHmLpD+j+nCDt8QTP7PwyNzB0hF/w/5F9Y2gPu/D8ZQgcJlLb9P8pXZut/b/4/KeTNSX4X/z9I07+xUa3/P0qxSGDnFwBAM4Ek5u9OAEBgJ1WnRHsAQIaR9113nABA//N9TSuyAEBSLjFoFrwAQGKahNADugBAftQjUtSrAEDxm7ybf5EAQOqYLkoVawBAMMk2Xrw4AECSl02/Z/X/P2wSqB2kYv8/MVizLAi6/j9YXJmYmPz9P8H9iziCK/0/dGQjthdI/D9SVdA9zFP7P+gfgtkvUPo/PBcuC+s++T/w1fEHuiH4P9FR+Idn+vY/wLs0dMfK9T95xuLMspT0P4YCbVwBWvM/Nq+m8oUc8j9c4vR6Cd7wPynHDzCMQO8/H/ZJ08fJ7D9vRpAh6VrqP5D307Xi9uc/JRtpbm2g5T906DYNBlrjPxb89UvoJeE/xpzCvhwM3j/waPs3WPjZP4IhCa5eE9Y/Mg4BdoRf0j9M2oPeI73NP+TiCg+ZI8c/AOZB9/fzwD9UbSuOvV22P+AgkFw5UKc/wK0ytqpQfD9Quh7klTudv3i1MQqUMK+/gOOSarIct7+07OQ5buK9v6KIfakq+MG/yIsNIcKmxL/cZGGWmgDHv0yB5Bw8Ccm/jNfii/7Dyr/mMysK9jPMvxYlpejcW82/Kn8ZZ/o9zr+E85mZF9zOv4oLTbVzN8+/IiwGd75Qz7/ErghnDSjPvwz1DSTnvM6//rUURkIOzr+Gc6bilhrNv3iGitzo38u/Qu4det9byr9c22bu2ovIv3L6QvwMbca/DJlxmZ/8w7/WyJdjyzfBv2xEW6TxN7y/7Fy3INdNtb9QEjXjT1urvyCz5yXxU5W/gK5HL47pjT/oVCR2rBCrPzRZJ7UNCrg/DmuyagafwT8kBr9C+47HP0jpPDSp0M0/rGqn6F0v0j+SpTBfZ5nVPyq5mEu5Itk/NEqyRBzH3D9UvsTI8UDgP3kYC1P7JuI/8m6VqfES5D/eX2+J9AHmP4Qu1IAH8ec/Jyu1BBrd6T9mjkjKEsPrP7ujIwTZn+0/r90AXWFw7z/Spoew2pjwP/BhuvV/cPE/D8s0Qss98j8ANL0Sgf/yP9J5X6SDtPM/yy3JpNdb9D+2Vc26pfT0P0LQzIg+fvU/u8XSIhz49T/WPlkO42H2P0et/Rxju/Y/aKzcnJcE9z+iAOIopj33P+iMx7rdZvc/Zlq8SbSA9z+BHQYmxYv3P4U736zMiPc/N63nyqV49z9zgGa5RVz3P6leP6+4NPc/bwupFhwD9z+iVrklm8j2P09pxnBqhvY/3FFlrcI99j8//TDB3O/1P7Ru/1ntnfU/B9/eASFJ9T9hmjYAmPL0P1SaJ3pjm/Q/wvUmNoJE9D/uLkQb3e7zP/NaUNhGm/M/MFrz13dK8z9p/sFNDv3yPwP4lUKNs/I/NZCIGltu8j9JdmJiwi3yPwS8pqLx8fE/bzixMPy68T9XlIpR2ojxP0l4FoprW/E/pzj0SHcy8T/elkSPrg3xP1Q2qFWu7PA/iqVfOQDP8D9C+Bl2HrTwPzUaFVd0m/A/FaT+IGGE8D8XlR0eO27wPzPrhlBQWPA/FAtuPepB8D8iCpnHTyrwP7Dwk+bHEPA/8CEKMDbp7z/C1r/xLarvP8rHcVkfY+8/+IgYGMUS7z9jF2XO8LfuP0SjvWyOUe4/+wkqBane7T/MGS2Zbl7tP9xHDtYy0Ow/ig9l4nMz7D+spLYg2ofrP6pYD5E9zeo/Ms1YvaUD6j/Rv6XQSyvpP8cjVR6aROg/fJbyVC1Q5z9vTPNT0k7mP/bPRNeFQeU/WIBLi3Ep5D8erDl76QfjP0Cn/Itn3uE/byC2m4iu4D+J78UcDPTeP4tJRlxghdw/gj4EmtIU2j+EJFaAOqbXP/smnc54PdU/B3uO1GTe0j+zEXH0v4zQP27IVd5OmMw/IDyBygZAyD+MkDCw8xbEP9RvYkzDIsA/DCk+dtDQuD/YDCr+FNixP+hesh3Bw6Y/4EsT8zTLlT8AyK7BiRIrP3Dc3WZTNZO/ALPkI6U+or8YLuA76depvyzQJ4DiOLC/OPwQ/asNs78=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"nBS5+0zd6T/uVB5LVIbpPxZDa+uJSek/5FF96r0l6T/9+iDJZBnpPyQREUqcIuk/JPL17TQ/6T/CoONMumzpP05hLdJ9qOk/K/bF9qLv6T9mrDETLD/qP2AkeA4ElOo/ElZnMRLr6j9yVAaYQkHrP7JQVceVk+s//IxBZzHf6z+Q9ztDaCHsP3pDr/nMV+w/zrsUKjmA7D8tdrfq2pjsP4jL+aY9oOw/SwhBcFGV7D9aSmWwcnfsP9bxbnBsRuw/L2ihcHwC7D+pU13UUazrP74lUrgNRes/WAGIfDvO6j/gfi5vzUnqP5rmdQwUuuk/ePUPIbMh6T8gIHt5lYPoP+AbL1nh4uc/SXhUaOhC5z8OwHkRF6fmP29PKgXmEuY/AlC2wceJ5T+eMnDVFw/lP5DASYsKpuQ/XEUFtpxR5D8FuyrsghTkP08rkB0c8eM/WKYX2Wbp4z+5MGCY8f7jP4mouNnVMuQ/Ux2S3K6F5D9E2to0lPfkP0LkhewXiOU/JqRBs0Y25j+92d5XpwDnP3r5saFA5ec/VQAg3p7h6D9LYzS32/LpP1m+miKpFes/Idv6altG7D/64IBM+IDtP04tkAtDwe4/yfcc1WYB8D/sxMi9g6DwP8pHdi2nO/E/B/cQ13/Q8T9KgoSqw1zyP0uB10w53vI/Ko7ni75S8z/SiekeUbjzP7l2WvYUDfQ/As4YolpP9D/xKFlSpX30PwFIP36wlvQ/sAWhanKZ9D+8eAzGIYX0P0SCeBg2WfQ/+mQ5n2oV9D/UrNtovrnzPxVfOyR0RvM/o2DryxC88j8YIAPCWRvyP2x3EEJRZfE/wae8tjKb8D9ma5qb3nzvP5DwfzhNoe0/wB07iUSn6z9fh+KknpLpP5rJDp1uZ+c/jLU+ZvMp5T9euyPXh97iP4S6p/aVieA/vVvbSA9f3D8ImogZcqnXP47GY3rX+tI/keBm7+e2zD+4n5nGKqbDPzY2aNZBpLU/wCWC4t1Ckj+oDjRiIKunv/TpNRZ5eLu/0iooTkwixb+iox1SrRTMv/NwsilDRtG/eud1hC5C1L/AQY51EvzWv/hykjOOctm/wuEfw+Wk27+ejB8T8pLdv/7R9pQTPd+/Oc4MLhNS4L8EcKLjueTgv6Y2mkpOV+G/7X56xciq4b9igHtoPeDhvwZ1v4HZ+OG/jUK/SNb14b/giC19eNjhv3bb3fkFouG/pqMKr8JT4b9kf34T7e7gv/U2Voa4dOC/dDmJuZjM37/8588ihInevwobPM9HIt2/FI9bp9mY278aoJNuEe/Zv97Y7XOtJti/Njrp/1BB1r96iTwIi0DUv7i08cjYJdK/6GqvCFflz7/YFR2o0VDLv6D/KvbnkMa/qDA68Feowb/Q4NxX3DO5vwBkrirWoa2/wCr3oHq2kL/AqP0Et8CaP8DvNzVqwrE/cLZFYOYCvT9Y9XuPoDXEP4B945V4+sk/wJfkg6bMzz9IO9NlYNTSP4xptjaoxdU/Qp/RE2u42D9AGyTe4arbP7ajScdDm94/s/Y63eLD4D8837NFTTfiP1PDEO/5puM/Lxsu3QES5T+ibSeSfXfmPx8vzIWF1uc/0w9KBjIu6T+TBJAem33qPxOC3BXXw+s/GIZac/3/7D+65Xj/IjHuP7qbDsteVu8/XPwMxWI38D9CaC/FtrzwP4TlPoK3OvE//BcPbvKw8T9Eg+7C9h7yP1CRv7BXhPI/xT2WaKzg8j/QAU8EkjPzPw0iZM+sfPM/LxcgJ6q78z/igYnhQfDzP6gCY4k4GvQ/YEpctGE59D/osGA/oE30PyfZ90LqVvQ/htI3NElV9D/3LUCt3Ej0PwoMH1/bMfQ/gLTNEpQQ9D8CQDCAb+XzPw50RDXwsPM/4ym2R7Nz8z/hOQ4fcC7zPwpFo3z44fI/OgAAbDeP8j/Kj0NiMDfyP/83oCb92vE/qFBi0Mx78T/lDm3S4BrxP3Bf68qKufA/m9xlKSlZ8D+0OSRjSfbvP7KIqnnYQe8/SGaJA+OX7j8KqV5ySvvtPyLObVDnbu0/Tn+G+n317D/oz4Reu5HsP/DeHZMnRuw/htyUxSEV7D/ULDEF1gDsP1PshCY3C+w/lm5OW/Y17D92GIB2fYLsP/ziQsvn8ew/1z291/yE7T/QxPinLDzuPxbjdHmKF+8/xYy47WQL8D/Jbbs9n5zwP5IJ6AnsPvE/pxsLrpLx8T+5y7iNqrPyP3D5ikYbhPM/UIeuCKBh9D+dSQhpyUr1P86HzLYAPvY/Bgo2aYs59z9r2+q/jzv4P/anQpgZQvk/NPXOux9L+j+kVZn0iFT7P13DLHkyXPw/Jhn5y/Vf/T+p9216r13+P4CfHs9EU/8/V4ycC1UfAEC9atiO9I4AQN9ThQaT9wBAzGgp1FJYAUDm/A5vaLABQFBOfAgd/wFACHJd4s9DAkCmJLrR930CQHwuUEIkrQJAaDkzg/3QAkBWx6hbRekCQNw3NwvW9QJAAsfyIKL2AkCsHxcAs+sCQPCQYown1QJAVvCpCTKzAkDimJ5RFoYCQMz/bk4nTgJAGGxnBsQLAkBqKIORVb8BQIROz9tLaQFAvEyf1hoKAUD2eSc0OKIAQHKhP4oYMgBA0utlLlp0/z+SGuhywnX+P7ReMQkzaf0/rl5UVmNP/D8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"GbNNwyfk7D9o4N+pBxHtP+THIn6yLe0/ZLsVvos87T/OgGuGLkDtP65kXk1mO+0/+PhVBSYx7T8IYKc0gCTtPy0GfNGbGO0/HmdLyKwQ7T+PuTn65A/tP9txaHZsGe0/3azrkVIw7T8s2Cc4hVftP96ULojDke0/5cTAMpLh7T9iZ325MknuP5jKefaXyu4//rv9+V1n7z/q3tx8YBDwPyo6lvTLe/A/sXRu5yb28D8aGn6fb3/xP+S4QlFrF/I/guIg8qa98j8Sh9M6dnHzP4k+OFj2MfQ/qJvamA/+9D+eP9d0eNT1PzZMVVW5s/Y/bC0hfjGa9z+GakwmHIb4P0BKSZKVdfk/JJjqwqFm+j+R0iRRM1f7P8DyL0gyRfw/PNbQ3YEu/T9wJWB1CRH+P1qE2Bi66v4//VSS0pW5/z+qMbDV2j0AQCplqTKolwBAXpMnfF/pAEDKEwVTQTIBQK4y6zKkcQFA1Nt1DvamAUBY12g6vtEBQHob6tad8QFA7i1LwVAGAkCpr/5prQ8CQFEJ2pKkDQJAIPik10AAAkDHNLiTpecBQNxO7FMNxAFAH+CGW8iVAUBeXjKBOl0BQMb+7RHZGgFAJPuktCjPAEDEd2JXunoAQDjmtMwoHgBA5mKDySx0/z+JDnBzU57+P79H9gEXvP0/OB/JUMfO/D+F/dpdrtf7P6NfqAgL2Po/JGxyRQ3R+T+iB5/k0sP4PwV+0bxisfc/Df6LyKua9j+CMzlLgoD1P0WJSZWdY/Q/Bu/egphE8z/sFxm97yPyP+Q+lj8DAvE/pnvQ+S2+7z/j9DlBqHbtPyZ0VH2XLes/EsYk9fLi6D/EGQT5jJbmPxpy8J8aSOQ/6uPVqDz34T9kWY+VDUffPzjeS6UVmdo/HDbdq8Lj1T9t4DG0ZibRP9oZSzQPwcg/xl9ubNNHvj9sU+YkrdalP/h708UdIqG/h/0aYTIpvL+KiZ0VaOvHv5zKVila5NC/8wdlBofT1b+CcORK6b/av+Osl/qQpd+/man1j/s/4r8LNy5mAKXkvxckF1wE/+a/ws8Rs/dK6b+zsQ2slYXrvyjrQT5uq+2/5oT6FPG4779xTLiJPtXwv9EzDe81vvG/GdJvZ5GV8r9K8A08kFnzv7udIq6HCPS/7KkE0+mg9L+M0We9TSH1vz1xtTN3iPW/EHZo1V3V9b84G9AIMwf2v+vyi1RoHfa/NuEJZbMX9r90DuidEvb1v3m8zYzPuPW/x5Y3R4Bg9b8MBEESCO70v+jWKfeVYvS/jAIvo6K/878NNLl+7QbzvyiUdRJ3OvK/1j76WXxc8b8kdwgQb2/wv7IfCLnb6+6/UzRulHnl7L/OVBppdtHqv2bBfpaztei/IUM5SSOY5r/05Mkws37kv8bGCVg3b+K/kVPyIFhv4L+eMVW++gjdv7YRpiV9Z9m/zB1HAaID1r+wFNwQ8eXSvxJtzwL4FdC/RGtGUmg0y79ILLjI++/GvwCfwVoDZ8O//PpGwGGfwL9I4rQVIDm9v2BOQckbv7q/sGlhVfPNub/w6+zEQF66v+QXEfA1ZLy/SC/7X+bPv7+4T43Wx0bCvyxnctkCQ8W/6Fwu+YrPyL+U/NGx893Mv9RXRTZhr9C/PBGyRs0g07+B4JPKwbrVv9o/SMqOdNi/fXvU42tF278Lw83VlyTevxoDUY+2hOC/dkCs/b714b93p5oEVGHjv1Jo3TuVw+S/hRSD2tsY5r+60w3BwV3nv2aN2Gsoj+i/CFc+2D+q6b/YwDjwiKzqv1Hfm2fZk+u/XtVxb11e7L+4smn/mArtv+J7B+hnl+2/ap8yjfsD7r+K9VBA20/uv0Tg4m7deu6/9ISqjiiF7r/rt/2bKm/uv5/7dMqXOe6/9ZudyGDl7b8B7NyVsHPtv9YKvdHi5ey/W2t0m3497L/IgpkiL3zrvyZFpda6o+q/5BHLif216b9odu1e4LTovwsTiLVRoue/qjVTez+A5r/TI9sqjVDlvxGZpOAQFeS/K5XtJ4rP4r+KLfqynYHhv2tlkXXPLOC/DGGPv/+k3b/gdX4Szefav0LjbA8gJNi/zC7j2blb1b/MV/cbAJDSv6woIWD8g8+/KJjqtMrkyb/Ia7WDLkPEv9AvmpCAPr2/QGtoajHxsb+A2LqXmXKav4AEBw/gBpM/sHtwxQgtsD9w9HKV2qi7P/ApVt9qnMM/wM/8HERwyT+ohCS5nlHPP9Y+3ufqoNI/XPubR/Cg1T+evTjQG6nYP3aLaTpeuds/xK+FLlHR3j/JP3WeFfjgP5FNqSReiuI/yDz9z7Me5D8fxl94DrTlP3vU9BEuSec/f86ReZvc6D/svLzeqGzqP2bn+EN39+s/8mszNvt67T8uIB3CAfXuP3CP1NGbMfA/IIFqH5nh8D+uady2O4nxPzDR74BDJ/I/vrhK43K68j/L1FX9kkHzPywsdRh5u/M/iNWJOQwn9D9qgQ2OSYP0PyyTOGdJz/Q/C6h4SEMK9T9i5bFYkjP1P1AU7Xi5SvU/Nl0dq2RP9T+n4jJ6bUH1P2YHi4LcIPU/nKKCsent9D80cruv/qj0PweFcE+2UvQ/+IlZ9tvr8z8wpm87a3XzPygBecCN8PI/AqxtWppe8j/ZAOLlEMHxP+4LeVCZGfE/NuWszf5p8D8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"mIp1/KZ0nz8I3qPD7yanPzBNIh+zQ6w/KPeaw/kZrz8w3ltGTbmvP5DbH1ecNq4/2GPPcRmsqj9Y+GV+rDilP7BijOtk/5s/oAVoKl2hhD9gattJqYuEv1jcNZS3tKC/ON+FKXJdrb90PkFI93W1v/zDjATblry/lghm//b7wb9o14FL1L/FvwE+TqVfism/aTP8PzFPzb/+3PVQGoHQv2LnPzzmS9K/VvLIkG4C1L+YvWbFeJ/VvypNPiMfHte/tv5eJN152L8wNQ5JlK7Zv5hWFoqTuNq/IuOESJqU27/hnQW82j/cv75i/KgBuNy/tpmDQDL73L/PDWHhDAjdv4MWDdes3dy/rPLq4Kp73L8IwER2HuLbv0by3eyZEdu/iaSe6S4L2r8aCgigaNDYv917H25PY9e/asJKamTG1b8TaHten/zTvx1+vPtoCdK/YtWsRDzhz783lFEWBG3Lv+4gmz97v8a/mrzuw6riwb8OyOdPfsK5v1g2UvflGa+/MKoQC5jwlL+g7K7Y916UP4B6mJMerK4/GKvItehluT9EOpBJOZfBP6XwlpOQS8Y/NTdpBA3Eyj8BwFn+NPXOP+pc4OQaatE/33GnloMr0z9GxxmoSLrUPwxlFdZpEtY/u9fJhYIw1z8uivAV2RHYPygRIcFutNg/PquUMwYX2T/UbR8yKznZP9xS4bE6G9k/+OQby1++2D/GBS6zkyTYP9lWOqWWUNc/MOEPdOZF1j82/vn4sgjVP15Z7b/MndM/UAZ+4Y8K0j+uD6tg01TQP4gBjL+XBc0/QsYYCu01yT/wJjXy8EfFP2RMVpsSScE/KKqaeUSNuj8y5ZNuSpuyP8ifWetfqqU/oBxQkfiTij+gvYtgrbiOv9yPlh/PJ6W/2p0lnc7SsL9wavInP4W2v1zVJkF/n7u/EfJRkWcMwL/1uCpbuPXBv4LVBl5VisO/2vZ98GDKxL/n7f5na7fFvyJMXH5jVMa/I1hHQXilxr/hjjke/a/GvxcsCnNBesa/oP6N32gLxr/4PKPjQmvFv2XVJvMZosS/dbmn54S4w78NU7GrN7fCv8istsDSpsG/+HKS4biPwL8AzX/Ov/O+v96AxaxT2by/3mhyc3/dur+AQNeL3gu5v9bWcxgibre/jCUY4+ILtr904WJffOq0vwxRq6bsDLS/eqBnU99zs78IhH6Jjx2zv6ha4tPqBbO/DMZ7SZoms78b7jvRInezvxoOYBEZ7bO/96wD70Z8tL8CeKFi9Ba1v+CX4BgerrW/qq97W8Yxtr9gpkMOOZG2vzTIg29ou7a/SAcT6jOftr/0egHGuyu2vwB2zVm7ULW/pAgWB9L+s7/OHKZV0yeyv7Suv3AOfq+/jEgEqv1yqb+IFwnCdRyiv3C/rUCa2ZK/AKQtWDibVD/gIdddDzmYPzAOxMYG+ag/0JPk8vaZsz+KRyoGxGC7P0XhO5c05ME/oDT1qe9ixj9m2/oa1yXLP6ePSoyCEtA/yjHVNMKr0j8aXZJBtVnVPz+WVSD6Ftg/0a5sJdbd2j+130UyRajdPzDnUhgHOOA/tEB4FmuX4T93cZXiG+/iP9vb8RvoO+Q/Qex3J7B65T8fY92haKjmPwzWhL4pwuc/roVlWjXF6D84sgBjAK/pP7JFWuw5feo/gYymSdIt6z8FiZqwAL/rP1eXHrxIL+w/JpXsL3597D/uwDAwx6jsP0jLz1SesOw/nc7aV9aU7D9OJywUlVXsP+GWvUBX8+s/eybjQ+tu6z/8zlA0csnqP2ym/sxYBOo/oGMfVVUh6T8OC6GVYiLoP2ZoIGW7Cec/x8eTYtTZ5T9XO/ZgVJXkP9peiF8QP+M/R5k9CwPa4T/uG+7iRmngP2Rtcasb4N0/yWm4tzPj2j9MKRb5auLXP1Fphlpa5NQ/VFCRLozv0T/CY/I/2RTOP0YfpTx8dsg/tUYETQoQwz+K2i1o+tm7P7qzXRo6MLI/qI/V7p9toj9AhKDFA/1vP3gIwuXakJm/0CN+GuXOqb/FMKEI732yv/JnjVArHre/CHoxHybBur+kVOyMZGK9v7x2/Wv0/76/mn25dHSav79YtD15DjW/vyLTYV5l1b2/9N9Ohm2Du78zSEwGb0m4vzhQDKG1M7S/Sjyaff+grr9IqzZSe1+jv3Cw5hXVFou/iI1MQc4bjD9qd072Rt+lPzgsTFdBzbI/Job4woAHuz9fockFscTBP3sYXXb8HsY/XtRrklKIyj/Zt3ZrrvbOP4sRwDk4sNE/lHeAqzre0z/6P/cTGgHWP716xGvlFNg/qLlSjAkW2j+h0cGhWgHcP9x0OzMV1N0/S+y1buSL3z+FRDlzcZPgP44FzfLOUeE/6ydqgYcA4j9AkTP4T5/iP0fG2DISLuM/McQ4Zums4z+clGDTIRzkP7TULY4yfOQ/emccdbzN5D9FlruagxHlP+8jp0ZsSOU/TiagUnVz5T/iIw5Ws5PlP43FzwVLquU/SG8LEm245T9RgcLETr/lP9CkkBImwOU/e1UYCCO85T93Zll+arTlPxE9WJ8RquU/4Jz7Axie5T8YiywdYpHlP8TnRi24hOU/TNZxv7145T9+jypA8m3lP3LfkOirZOU/BDR2yBdd5T+Vgg8qN1flP6khQZHfUuU/n+ODG7xP5T8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"NYRGHmr26D+KiHjzPQTpP9ZgPtF7Fek/LwZQDM0o6T/IY3/a8zzpP+YWI9/NUOk/f6NF21dj6T/ZdZd9rHPpP3xxOccHgek/SGeZv8WK6T/6PyQ3ZJDpP5XBvrB/kek/LyFit9SN6T+k/ayzPIXpPyZuUO2sd+k/CbnykTRl6T+mzwPl+U3pP5CoU0I5Muk/PHEZLUAS6T/Ve74abu7oPznnu64vx+g/DO6OLP2c6D89BiJBWHDoPxi04lvKQeg/XNYyuOER6D9JYzGnMOHnP0EIclpLsOc/KeVS88V/5z8q9OykM1DnPzhYHpslIuc/NE+gpSj25j9qiXu2xczmP2YuYq5+puY/fDnATM6D5j8bCja+J2XmPzm9tCLzSuY/3mctrI415j+cRReZSyXmP6rOg1ptGuY/RNpcHSkV5j+H5i1lohXmP8KHmO3rG+Y/HE2YUgQo5j9K56Z91jnmP15wVdE2UeY/sqF5VuNt5j9fkmmvg4/mP74c/J+mteY/RLQeJMTf5j/8lyosOw3nP223m1xVPec/Z3gOEEVv5z+AhqNsKaLnPyMRpvQO1ec/MBMAkfIG6D/LvCdbxDboPyj6nLdrY+g/j4hfjsuL6D/gR8t6xK7oP6kl6BI8y+g/0t6n4SHg6D8sa3nzcezoPymGLwE97+g/to7hLazn6D8T+3/AB9XoP4IImzK6tug/KtWFEVeM6D9xOjxhnVXoPw7T7Kx9Eug/ESNyBBvD5z8yh53Wz2fnP3U6q3AtAec/iBiwlP6P5j/cfrQARxXmP+ArsE1BkuU/DmrWiF8I5T/M91tCRHnkP8yYSnvC5uM/VBVSTdZS4z/1VgIdn7/iPwngTF5aL+I/U+Q3dFmk4T91KRG3/CDhPyImFsOnp+A/9oH1+bg64D+DUW5uBLnfPyVXaYB5Ht8/RnJGzwKq3j+gx2kle1/eP8jNnX9bQt4/CBl/O6JV3j82q/QZypveP1Nb/I27Ft8/JVhjU7/H3z9flaqyu1fgP5o91ljr5uA/Tpp1IQ+R4T9RxmGha1XiP/Sn5V3tMuM/gcbhpiYo5D+ItQ09VTPlP9cOH5dkUuY/tRNqpPSC5z/0IadKXsLoP6w8wB29Deo/pqs3IvRh6z/MH1oIubvsPwg3idOcF+4/nxvK4xNy7z+g5Dq+wGPwP/6Vzy8gCvE/tAQqK1eq8T9YmwSZmULyP9c9Wo0l0fI/PA/yZEhU8z9SOVzgYcrzP0p0YW/oMfQ/aNvJ72yJ9D/vzo1tnc/0P1m1CelHA/U/r1bSUl0j9T8+BXYk8y71P+MblD1FJfU/VYtvMLcF9T+sQckQ1c/0Pw9xltpTg/Q/mrU/zhIg9D/QV5RPGqbzP7vD2KubFfM/9V93g/Fu8j9AcfPenbLxP74UZOJJ4fA/vAUCtof37z+oTSWr/AXuP7xgYhYb8Os/kGau10246T9rZpN5O2HnP1QrWJ/B7eQ/SNxum/Fg4j9Ewq+TFHzfPyyU5xPjENo/sGEI7WCH1D9MS38LqM3NP4R8W3pdbcI/hPYpN+zzqz+cSlMWLtGhv741Bl+Crr+/iJ5ib9Ucy79ATJFKGxvTv4+9D+93iti/KcT//4TV3b90/e32ynrhv7SfCGQs8uO/6JOoNfVN5r/uYQNzbovovxYfggcmqOq/0ESspfGh7L8mmiSf9Xbuv4tZFQjVEvC/3lnlJW7W8L96SE472oXxv3Lw4YzaIPK/x2IbBV+n8r9/tIAGhRnzvzsG3Y2Xd/O/sU4IGg7C8795T+bpifnzvx7PXqDUHvS/b/m9btwy9L8/jlAwsjb0v4wparmDK/S/6jdPi5kS9L9mZI5cUO3zv13osg8WvfO/yMXVkmOD87/cyJuEuEHzv1wd8HCV+fK/eYIuPnes8r+iethk0Vvyvyi9jdIKCfK/0bKQpne18b+HbcV7VmLxv73xb8TLEPG/M07tM9/B8L/GOjnjeHbwvypYtedeL/C/cPxuA2na7796aapE72Dvv/g5uRoE8+6/+3nt1xGR7r9Jn0cdOjvuv5q17RtZ8e2/lj+HXgmz7b/NQYUpp3/tvxM/9RZWVu2/GW8D/Qc27b/3c7rwgB3tv1qjLhJgC+2/CzfJbSf+7L84qtRgQPTsv6jHIPQG7Oy/nGvy787j7L/mL9oL7Nnsv6NF8gK5zOy/avtGHJ+67L/da+QUG6LsvwxpMYbDgey//ZLKwE5Y7L/LluGDliTsv5dC4Uaa5eu/cRNIZIWa678bOmedrELrv7QBmUmR3eq/xTFqjOJq6r/MOE24eerpv/tlp/FZXOm/Rv5nAK7A6L9sCRN8wxfov7mpzFcIYue/LS221gSg5r9hV7YcWNLlv2a/ErSw+eS/v0nsoskW5L9ek00yYirjvyxPNEA5NeK/064gUwk44b8SoRnlgTPgv95pILaIUN6/vMfw9b0t3L8cK0wnl//Zv70EXZnZxte/xGOZnxiE1b9/wBNLtzfTv/vmZ+Po4dC/xMKlh2gFzb9qfWnh9jPIv7KK4Sz7TsO/cMVnxZurvL+kLDerSY+yv1CG8rHNjqC/ICLliDdsgT/4GU6/RaGpP2ikDI6Zorc/wuJX5rVRwT/CRFA6JunGPwLfRSC5lsw/EKTfcYAs0T+SJrxq/BbUP+RWXW5/Cdc/lMEjB2gC2j8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"/sXWwT9K+z/WeFAZumv6PzDhzU8Vg/k/loMzQNiR+D/zdi6WdZn3P+pDnx1Hm/Y/1stEmouY9T8PnVazZZL0P7N+mV/YifM/11ty+Mh/8j89r3c5/XTxP3YBxgAcavA/6prYIWG/7j9q5tlpVKzsP25aKArAm+o/Xwo8SiiO6D9ykQQz64PmP4noJORLfeQ/9LhWYHd64j9gT+u6jnvgP3WxpORbAd0/w9jl5OgT2T8mgsoQGi/VP/CznQdpU9E/shVfzP4Cyz+QZEA2hnTDPwT80QZ2+7c/+Km87AqGoj/g4H6JB+WUv1SjUcsocbO/SEHP2amtwL+qqdqGpXbHv3qd88jSDc6/Zz+WY4420r+K5P+WEkfVv/u4t2AzNdi/bpg1lK/92r/qz/51Up3dvx5eJWCJCOC/zGaAhQ8r4b+QVAyo+zTiv/Sr9Ho/JeO/qZ2R/Qf7479IxmX1xrXkvzDsNlQ4VeW/mB+Y72rZ5b98m5Biw0Lmv+Z5nUr+kea/tgJlXzLI5r/rIMOSzubmv4D6pOGW7+a/kS3n6p/k5r9C4VyzRsjmvyKzfPEmnea/+RzEZxJm5r9kslt1Aybmv/xQloQO4OW/hegpfFWX5b/2RiBE907lv8QZ4vcACuW/JxUFT17L5L/2Vrd5yZXkv1Lg2Zq+a+S//PxFOmxP5L+6n2iSqULkv8ic3LrqRuS/4HTJHThd5L/qN91LKIbkv59C0xXdweS/xoZkov8P5b/Af8+ywm/lv2+9blfl3+W/3K+aBbhe5r9S4G28JOrmvy57tDm5f+e/RBJE4rEc6L8AWp1xB77ovyAZllp+YOm/cwHMP7YA6r8DsQNWOZvqv7ACW4yPLOu/s/qjj06x679UoltAKSbsv/sEplAAiOy/BCUJPPPT7L/YcjAyagftvyC+9AolIO2/cG4j1UMc7b9XxmBBUPrsv0avXRlCuey/VKBbJYVY7L/zINSP+dfrvwsM6IDzN+u/zAI7tTd56r+T4AAZ+Jzpv9UpRYzKpOi/q+YgnKOS57+OsMnQyGjmv2kREJ3IKeW/uGK8qWvY47+EeKzGqHfiv8+JnDCYCuG/9gDbo8ko37+6ewlbfjDcv7D0wPajMtm/IPr6+2Y11r9L6zX1uD7Tv/4WxpU5VNC/9r7gFVD2yr8wzVI6mnDFv+qN+hbuH8C/FDUye7EXtr+w8lYWK+uov2B5yRAwIYu/8Ay8OutQlD9AQKAK/NqpP8QVDXSuI7Q/OA8AqvW0uj/AnbzhuFDAP+AKbeWH9cI//nji1LNKxT9oGiXOx1LHP3SYGlX3EMk/msB6/AeJyj/0C+poOL/LPyWu5+YzuMw/ZizEjvN4zT8076A7swbOP6S5Rt7iZs4/EEHwMQmfzj/IhhZKybTOPyr2xZ7Frc4/QI/xdqSPzj86vKuI+F/OP3K9zytGJM4/8rpfDPPhzT88SW9JQp7NP4z6ladNXs0/1gxPBwMnzT8juDjxFf3MP2iti6L/5Mw/NMh6rvbizD/Sznc34/rMP0hdI+daMM0/WeNMQZeGzT/y2hEVbQDOPz6SRgJAoM4/GLEiKfxnzz+JcUCphizQP6DMutAputA/X2mQgA9d0T9IumTQExXSPya75BvB4dI/UwH41lPC0z/+AbN6s7XUPxqxEkV3utU/I5tXnOPO1j8u3Prj7/DXP27fVhJGHtk/NpFx0EpU2j/sagkvIZDbP2DNu+izztw/a/ikP74M3j9MuexP0UbfP+ekY1GyPOA/BGwDiG7Q4D/OzVZ5zFzhPxQhDPD/3+E/sMgpskVY4j+KXsKV6sPiP+RBMXRSIeM/nuMNBfxu4z+WX+aeiKvjP6zKy1LA1eM/NJ0VKJfs4z8xRt1TMO/jP9RbhwLh3OM/dOr6WjW14z+xXLfr7nfjP3gTVbwHJeM/SuDjabG84j/+3MUuVD/iP5bihKiNreE/LeZvtC4I4T9E+2LtNVDgP3nnOIWhDd8/0o4pM6Ja3T/q8b6RXIrbP6lVJ8r2n9k/4sOr6sue1z8A8ROfXYrVP4S1wwNJZtM/3KJv2T420T/XGSwa9PvNP+tJETxqgsk/KnpxAEUHxT/chRrcx5HAP1wr56AlUrg/eAJTeCJQrz/wpWPZhsqcP8CMZ9Z4FnC/uO8SIM3Pob+ggxYMT3Wwv1CXK1LFnre/qHlx3RRavr9m6WjD3U7CvyjeI9tzMMW/vny7ScLNx79JmBQHGCPKv5dAWbssLcy/73+zIxPpzb8ysyqcSlTPv2/OV3BhNtC/nFlrs2+Y0L+qMsorvc/Qv6il/Qz829C/QHYihyG90L/YIQmbb3PQvzsKXUTm/s+/RryWBRnEzr+OWkxn4jjNv/+pElhYYMu/0H3/T0U+yb9vtr6VItfGv90ExmEXMMS/gBpDyPdOwb+I+NZ/ZXS8vygz+auj8bW/8IuT82VJrr84BHY+DTugv4BpZ+ACmG2/kLxgYiZymT8QgEYP8FmrPzgk+6My87Q/hDWSTx4evD9YfmJ5lo7BP8oPaBRM8MQ/phB7m9osyD/AD4Exlz3LPzpliD6hHM4/rvusBoFi0D/nbcXYYJnRP6weBmt/sdI/3xgnLv+p0z/4+MNPmYLUP7DjioGfO9U/PD7RDvzV1T++OdMpLVPWP2/Q9JQ6tdY/3VZGsK3+1j8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"WxSwu1x27T/nj0oH9HHtPy3rTSAcZO0/bXVCMFBL7T9o71r1OSbtP1D0TX+58+w/SEZuCemy7D81aBoFH2PsP1qKFRDzA+w/Wu/p1z+V6z9X/+tkHxfrP3E4IMTtieo/HQS6M0Xu6T+WakJK+0TpPymymRUbj+g/gNGnhuPN5z+OUPmGvQLnP30rac04L+Y/ZRY1aARV5T/bin9E5nXkPwzKggC3k+M/Iarwj1ew4j8Gao+Lrs3hP9OfkPuc7eA/BFbbQ/0R4D/qiqW9MHneP4eBvM5J3tw/avNsT39W2z8ImKMY0uTZP0bs9DgCjNg/28tnQYhO1z8QVBjxkC7WPzN8X6v6LdU/pBXyi09O1D9Inu3fxpDTP1iNuBJB9tI/jgaANEZ/0j8c8Lu6CCzSPwIaX6Jh/NE/NicjttXv0T8Ri//1lAXSP9gtlup4PNI/UjPvNw2T0j8eUiL7iwfTP4AiYUvkl9M/9L1UfL1B1D+qDTW/eQLVP/8KLjQ+19U/wMMAAva81j/d1eeXWrDXP2+76V/8rdg/ZsHpBUiy2T8kRuJ8lLnaP1fE9bMrwNs/9pOcOVbC3D8SDK1naLzdP9iUKvrOqt4//BD+JSCK3z/L1uRMkivgP2SQwEp2h+A/EHmcKG3X4D+Ux3owWRrhP1qq4QhUT+E/cTvRX7d14T/0XB6dH43hP0SsObBzleE/kmGIFOiO4T+ozs2sAnrhP2U6oaybV+E/ar9Apd8o4T/851CdTO/gP7bnzV+yrOA/Dn25gyxj4D89BKMpHRXgP0EiyPxOit8/MtMPykrs3j9YK1JLPFbePw4w+uF3zt0/0E4k8Hxb3T9W0QS93QPdP8+32mEhztw/cHuFMqnA3D8wOZoKk+HcPzwxywOdNt0/gz8i6AjF3T8gssqahJHeP3Eo4LgOoN8/YuUdf/F54D8yViVdtEfhP1rWv9sQOuI/iRQUQ1FR4z+6tHQ+RY3kP9XGje8/7eU/WgQxphtw5z8C9yFAOxTpP/B5jrCQ1+o/FoZbn6S37D/tfN/PobHuPz5KeVwvYfA/sAPVnjVz8T/fSItJD43yP4bzmefTrPM/Am293I3Q9D9XNhWAQvb1PwZUMfz5G/c/1DTsu8Y/+D/aZCJfzF/5P07G2VhGevo/ni70to2N+z/246xzHZj8P4LP9/6WmP0/6o0NbcWN/j8EJwzCnnb/Pzq4mrAiKQBAVFbx4wOQAEACfOkEsO8AQHAdAc74RwFARqTDhcOYAUBaPvRBB+IBQGgjUEPLIwJAAEVQoyReAkAA+mHANJECQBSvKCQmvQJAcKnViyviAkBT5XpcfAADQOqb/HNUGANAQAFbAfEpA0CUsyusjzUDQPIBr6ltOwNABnnSUsY7A0COiNmg0jYDQIU9ek7JLANAT9MLPN4dA0CCg1dqQwoDQCR1WHgo8gJAXPXWg7zVAkCL5m3GLbUCQHLwQHGrkAJAiNumMmZoAkBEXXFGkTwCQOoKaoVjDQJAn+rw6hfbAUAqwfIR76UBQChAu7YubgFA6iDcHyM0AUDfgKisHvgAQOpgaCd6ugBAedaqf5R7AEDYjWH90TsAQGJBE1A49/8/smad6cB2/z9pOYQ+H/f+P7XW3ZM3ef4/mBoaJPD9/T/h+99RLYb9P5vN63jOEv0/Liosfquk/D942txpkTz8Px1g+34/2/s/iA76wWSB+z/zm8t1nC/7P9R3r7xs5vo/gI+77EOm+j/n1B5+dm/6P0BJSg4+Qvo/iRk5Sbge+j9XOkqr5QT6P8unWDKq9Pk/ChIByczt+T83GXg3+O/5P2q60Uu8+vk/3f/N4Y4N+j/2LOyvzif6P2POECPESPo/+fVGeKVv+j/Q3cdhmJv6P5aVGru1y/o/aQgfvQz/+j+b9mjvpjT7P6v+B5aKa/s/aB03Pb+i+z9I/xJeUdn7P1nYSk9UDvw/osm4YudA/D/yobe9N3D8P+F4Ut6Dm/w/CKJjBRzC/D/X1BDOZuP8P9hyZjng/vw/N0pGKhwU/T//io7QxSL9P8gstD2gKv0/8Dkx1IQr/T9Arh4GYyX9P5/3IeQ9GP0/0AeGqyoE/T8gEqzHTOn8P9IkJrrUx/w/v4+/Kvuf/D97OhSE/nH8P3a4dG0ePvw/CDWVrJkE/D8/c7KcqMX7P4XVgx57gfs/tqyPNjU4+z/WUVIb7On6PzNYX3+jlvo/Phv4ZUw++j9yLBt3w+D5P31meATQffk/Tsd0ZCQV+T8W4L3oXqb4PzQVWxwKMfg//tGgC6C09z9qW7ogjDD3P1XhmhUupPY/jIeCG98O9j91+Hrz82/1PxZVOqzDxvQ/slt0wqoS9D9U2D2DEFPzP7JcMdBsh/I/v4xHpEuv8T/Mg6NFUsrwP+sm90KIsO8/TgyfXwuy7T8gdWSqP5nrPySHzGaGZuk/NGzOPJEa5z+E433YZ7bkP56aJPFlO+I/XNdD9HRW3z9wT4ItzA/aP+yJxoVnp9Q/1H/MJt9Ezj+Y6WivBg3DP1BolZqVza4/wHEZ383Znb+4hq3UCGO+v6whn+fSocq/Wtfmzyj/0r+sPpsimZzYv7IfyXByIt6/RtRBlAzF4b/A+F44nmbkv5CFtWzy8ua/1Ko/2URn6b9pnzrfDcHrvw+geSYM/u2/MPvlKCMO8L8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"Wp+vuqqk+z/PM+t2CWb7P2pN3++nHvs/k3DdwuzN+j+dTDm9QnP6PxIRQTwbDvo/0C3d2O6d+T/H+kRuPyL5P2wx3nyXmvg/dqvC9YsG+D8A4a9fvmX3PxyxkFfat/Y/pPSfspn89T+bu5EdwzP1P8zp7qArXfQ/zuN1Brd48z+xttPqWIbyP672CvsUhvE/4PaAuwB48D8r/Pshh7juP7qhGCIvZuw/eKw/3Jb56T9iI1dvhXPnPykOm93u1OQ/qlGmWvQe4j/AFXiYzqXeP3SLKEKV5Ng/trPjoqf90j9IMvnhq+nJP1imao9nObs/QF2nSkragT+YbCUH+BK3vwmSSpbjTci/7wcKwgeS0r9qGSd46//Yv3wBIzg5at+/bACsLybl4r+e2Y7Bowzmv5OD8jwTKOm/uGqetOEz7L+E9gWleCzvv2UJtEUhB/G/Lioq49lq8r8KjBctqr/zv5d2dbfjA/W/uGDgSeo19r8HJ0l8N1T3v4R9oiBfXfi/hL/WehJQ+b+ShOqEIyv6v54aS9yH7fq/eLNYkFuW+78uApAi4iT8v9Q6Bq+ImPy/o561/Obw/L/o2n0wvy39v0Cc447+Tv2/fXn3QLxU/b8DTczAOD/9vxg2sE/cDv2/V91Y6jTE/L8sysdm9F/8v7y7kQ7u4vu/XBgTrRNO+781sbqdcqL6v/g9Qlcx4fm/PrI+5IsL+b+tXd6O0CL4v4mGHJFdKPe/LuabrZ0d9r9ixyOTBAT1v4BUSbQM3fO/fONbZjWq8r+UYhMP/2zxv3cYwbjpJvC/7D5fHOey7b9Bp8HbKwzrv3rP5xCLXOi/4tGy19+m5b/+na8/9+3iv8GqJomNNOC//n1Mqpv62r+WVxdTpZXVv+3gdZJHP9C/8qbz3t74xb+Gd9AUoUe3v0CG3xqhi4i/cG+AFp6esD+vWHQ9d9vBPzafBtwgE8s/6nAw5/X20T+Kbrkb2THWP1y69uRFNto/Gmai62UA3j/TWkxZQsbgP/y3S8qIa+I/6IerpFHu4z/+Za1k/UzlP4l2WQYGhuY/J6hjs/+X5z+kWFVznYHoPx/OjFSyQek/9BWj5TbX6T+04m3hSkHqPw8GX7c4f+o/8oazLXiQ6j/HrPLcsXTqP3Qv3Zq/K+o//To75a+16T/yCbaqxRLpP5KBJzl6Q+g/Bvqgp3tI5z/Eut4LrSLmP1Y4zZkl0+Q/QC53JC1b4z9LxWQwPLzhP+F/Y3Lq798//NHAYEog3D/xG6bFeg3YP4MWl3qgu9M/toACjjFezj9LAn505NjEP3gV0P2T4bU/4EOtRZ7xdT8M8eij68GzvwJmYFC/tsS/UQHYjr/Hz7/Pgalq8ITVvzDhWyOJOdu/1CpfV1R+4L/WfOJ0rGTjv1dGjGpZTea/wk+wzu816b8qxTF8Dxzsv8I+LrJh/e6/yVNmZ83r8L/MYdoLPlTyvyj/4RzptvO//UPjobsS9b/vq4cgqWb2v3GYyyqssfe/OoTM1MXy+L/SdPj7/yj6v6oQdMJrU/u/do+DGyNx/L/QWJE4SYH9v5ghNksLg/6/aICi8aB1/7/UJZ+QJiwAwOFnf2UvlQDADqUWT5n1AMBPIAXjGE0BwABHJEpqmwHAA+RgLlHgAcBfQ7/6mBsCwAGzhW8VTQLAp+aDn6J0AsB8AkgHJZICwAQaJWiKpQLAxcVUEMmuAsC+M4Z84K0CwNlssyvZogLAXqIcQMWNAsB60yq1v24CwEALFPzsRQLAMlLO7XoTAsA8qKKnoNcBwNZTx+eekgHAYYpwxb9EAcBzoPboVu4AwBcvJHnBjwDAeQ8MXGYpAMB7QvrDa3f/v+iw7E1Ujv6/n83vlY2Y/b9IrFIpMZf8v4KsGa5ri/u/bEqAant2+r8oHynNr1n5v1OZO2BoNvi/zOW4zhMO97/RJQt8LuL1vyeYvo4/tPS/BcjR49iF878nQ0ulkljyv/tl0dcJLvG/eYdmGt0H8L+kaVVzUs/tv1xMbXMMnuu/W1MuUwZ/6b+MPBxJRnXnv2IPpwSyg+W/TDE9SQat479giZPh0fPhv31ymP9sWuC/pOCiSeTF3b91k9dwcB7bvwpeHfWZwdi/o7WDXN6x1r+DcLTOGPHUv4fwxGt3gNO/3/SsYXtg0r8wZzQh9JDRvxR26fL/ENG/Srhn8Q/f0L/+QrRl7PjQv5WTaP25W9G/Ww3V9QUE0r8pwfaDzu3Sv2EESQqSFNS/+F2DiVpz1b/AebWV0QTXv8Ap5nRJw9i/HpQbF9mo2r/a9zqiY6/cv2BS/OGu0N6/QgX5ojyD4L9SrRQHQaXhv2wc4NxQy+K/xF/CKmry47/+nqjEphflv0SVO00/OOa/wjPq5pRR5793FhaAM2Hov6/dHCrXZOm/M6+i5G9a6r9OcKVAIkDrvxiHveNMFOy/ntT/NoXV7L+iFFTlmoLtvwz2+W6VGu6/ni1HJ7Wc7r/4550EcAjvv7TiBhFxXe+//AzKM5Wb77/EkFv86cLvv1Ee7t+p0++/kt95mTnO77/18oz0JrPvv5BaAUkkg++/PGPQlgc/77/mHoYaxefuv36dwQ1wfu6/c2nGqTYE7r9pNilIYHrtv0FXTMZK4uy/orJMGWg97L9aG4j7PY3rvzU5PV9h0+q/ygPM/3UR6r8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"nGVDjCcW5b+GrCpVB1blv4hdnNlIluW/FoU6mbfT5b+uIAUVIwvmv2w6bgtxOea/B08fSqVb5r+zK8cY8W7mvzb08sW8cOa/OiMtbbNe5r8P0CoCyzbmvyZcnLpM9+W/KPAhPtye5b8zR17Ueizlv28wcG2Nn+S/jiNnuNz3479QZt8llTXjv/C2DXdHWeK/LpCNZ+Vj4b+a9JNevFbgv4TB/W3gZt6/A7c8Zej3278tz953CWXZv2wy27Q1s9a/i8+QIMrn07+6EIsWeQjRv2a+MyBhNsy/BE+cKw9Mxr/EmqLPTF7Av2i1T7rC8rS/aBz4sWylor8gio++H2GAP6jhzCHfJqo/cN8mTBmutz8mKa9tT+TAP6ShFyObqMU/RH27EgMcyj8QOG9OnjfOP+njW/LL+tA/5uPg95io0j/1yJVSYyPUP62/mqHmadU/LsttHWN71j+YH5ygoFfXP0U/6A7g/tc/oP6CNtVx2D/zSfGyobHYPzZlCWPCv9g/MNPIOwue2D+4NXQEmk7YP17OWGfJ09c/IhvUriow1z8mx/o1d2bWP69IDtaHedU/7NA7TU5s1D+wVCSiykHTP+qgLDAG/dE/lrPmWg6h0D8UAtC422HOP7jjyzpVX8s/ksiIK4RAyD9CNF7GTwvFPyXJ+1KFxcE/4ubnBLnpvD9Q3vUg1T22P6QIhMG2JK8/EDGu8hXkoT+ed2N/KDuDP4TWSv5SDZC/cD9C3EOIpL+cTob9SlGwv2BkcvhuIba/ViKYdHiru7+mPYIaX3PAv2oRnyaA5cK/LcVVeDooxb+U3ozh7jfHv6UQAtxHEcm/BHolqEGxyr82K6s0NhXMvwVf/3bbOs2/XGgFhE8gzr+yk7UHJcTOv+r3bVFeJc+/NgSJ3nlDz7/5qZ8Qch7Pv7pKeqHGts6/JSkNq3cNzr+IBSc/DSTNv1zwh1iR/Mu/E047ipOZyr84GKzSIf7Iv0kVIVDKLce/TTe2248sxb+EF+0B6/7Cv7PfvXm4qcC/wO6toXhkvL++tPEOIjy3v/qzYioz5rG/6AjcnwfeqL9IzQ5PLY2bv2CTl5EmAXW/eOraHoz1kD+eeKJpg2+jP7iqruN5I64/2Ky5wyM+tD+ak94EFTC5P/6ltRMC270/vCtSw3AZwT/cs/pvJRbDP6ZTJRFD3sQ//5kL0NZsxj9modLBYr3HP/ZEZRrqy8g/iJZxQPeUyT/uzLmtrRXKPzzqVJnCS8o/fhvS6o01yj93lXiDDNLJP/vY2t3aIMk/QDNXy0EiyD/f33M1KtfGP9TP8hcgQcU/1G5P5kxiwz+SAnAocT3BPwh0mVvBq70/PB2OA+heuD8MFAsVCp2yP5Z+7ayN36g/2DGUpjOGlz/A7SkKaidwvzjRG9DVYKC/bAqPyeE3r79ojA4sIji3vxjo8LLL976/voNgb7Jmw788pcckllXHv4LH8yalQcu/wai+XOkjz78UUNs3uHrRv2ZB/oenV9O/8tRczFgl1b86TQr+bODWv4w433KVhdi/edme8JQR2r9LEmTeRoHbv8yunqac0dy/1kG8v6T/3b9erD3Fiwjfv9O4cEue6d+//0mUQSZQ4L9q+ES/F5Xgvww5E5qEwuC/o/0zD2XX4L+C1JHAydLgv4xM+j3fs+C/MES1Fe554L9GyjNwXiTgv7fLPfNzZd+/2ATUKFtJ3r9JoFozGfTcv5eyXuOkZdu/rXM8LUqe2b9AqAMRq57Xv6MlX+fFZ9W/+l7FP/n60r8P8LciAVrQv0Jv8873Dcu/tPr51dYIxb8QLmA5u1S9v5hOf4A+5K+/ACbgbYCEf7+QmzFd4hGpP+TpvDp0gLs/sHapvfRtxT9waH9a90PNP35/kSoKnNI/+SZujd2f1j/8BbnhBKjaPyj9PK/wrt4/kkvJvoBX4T9Q8+JdSVHjP18vcjEDQuU/LOakAOom5z8zu7/GSf3oPxxj7vqEwuo/PqWETRt07D+ASUgyrw/uP5JmXMkKk+8/ADmicRJ+8D+IhihZkyTxP92bNmg3vPE/iCwV90lE8j/oKXK9NLzyP7nx0DCAI/M/BvcHgNR58z/1wU1f+r7zP7Cr7Qnb8vM/e6s73X8V9D8EgqtfEif0P2sik9TaJ/Q/zMkA00AY9D+g21ejyPjzPz0lH/wSyvM/iDGQadqM8z8QaFwU80HzP5r6vTpH6vI/dleeodaG8j+3MUI3sxjyP7z5y+L/oPE/ChNDsO0g8T+IUw/iuJnwPwolVr2mDPA/DQ+zbAX27j+S1vlCN8ztP6qEJXmCnuw/bG2jFX9v6z8F3MI5vEHqP8rSWtq2F+k/q5BW79Pz5z+ODK3UWtjmP0D9fo9vx+U/cM2OLAzD5D8UidUQ/MzjP/jl4XzV5uI/+JmulvYR4j/aWmt8gE/hP/R8J0BToOA/SeN3Jg0F4D8WvBvEDfzeP6LdnQCmFt4/JsFXMoJZ3T8m4BRus8PcP9FHAR3JU9w/SGQfI9cH3D/RAlgDeN3bP05UiAre0ds/dml5zNrh2z9wPWsn7AncP4JRpJVPRtw/cInMRgqT3D+2Dlqk/uvcP7ZmxkH7TN0/bBpqBMax3T9w+z9sNRbeP6cpjgM2dt4/KG9CTt7N3j9o72OTdxnfP63aCKCNVd8/mjXRR/R+3z8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"VCuWFyKC/b92IZH76Ur+v6wmoIKu9v6/KPFuIyuE/78aPBo/WvL/v7+arkE9IADAGC4yuAg3AMCwgTY2dz0AwNSjbQCWMwDATZ/dHpgZAMC5ooBAq9//v6SpGRSXbf+/CttmczLe/r+i+poP/jL+v5ACyQa4bf2/099J4lOQ/L+HIOrv9Zz7v0wJqy/qlfq/FI38Tp19+b+OMHl7k1b4vxsQenVfI/e/RrwrrJrm9b87vyed26L0vz5phPSrWvO/tEnYY4MQ8r9m9BjdvMbwvygN+gsi/+6/XF8ZhR167L+o3S1hLgLqv2SAuNyumue/om92UItG5b90iR0UPgjjv+eaB1nL4eC/ROPBiXyp3b+pBU7SWsTZv2g2eTB3Fda/201/mjed0r/+1vgGYLbOv6k0rDZknMi/nExFRbXowr9vlCXipSy7v6ztUWg/PrG/rKWQyYrgn7+g4NjUDKhmP2pJ60lmtaE/AjpXmt2JsD84iRJ76tS3P5I26yg7zr4//CW93RbEwj9+WHN2YQrGPzY0fGi2Qsk/pRPcQmd1zD8dlsMsRKrPPyUXN1RDdNE/DpUSs1wb0z+oU2hhVc3UP7xK/WyrjNY/s5lNjG9b2D8kYqmQPDvaPyr5P3A1Ldw/Tpt5Zf0x3j9A+jR82yTgP9yd/pEAOuE/KkUAmvlX4j+gA1kuD37jP9aHXHxGq+Q/0pxzGWLe5T8AiGqm4hXnPz7jriQKUOg/Hf+ZpduK6T+AFOVGI8TqP3h0OXJ3+es/FgEylD4o7T9egH8EuE3uP6n8SDv/Zu8/S8Rg4Ys48D/gczp8erTwP635ZmvBJfE/nOV9UtmK8T8QIpAwQuLxP448ImiJKvI/ClBXf09i8j/URzcRTojyP784PvRcm/I/UyFwRnia8j/w2wFSxITyP/Pxa26TWfI/GdEv02gY8j/+Czox/MDxP7SdtIc8U/E/QeD3tFDP8D/clarkmTXwPyJ3uMdjDe8/tgG309SG7T9JbzZmmNnrPxjfvmUlCOo/JhmQ91IV6D+MqnM1TwTmP8BpzQ6V2OM/5JB5ZOGV4T8DAeiJTIDeP/xNnroCt9k/p8jXNFbY1D/ikLiCstnPP8rGt+BC+sU/eEHr38tGuD9gEtUmQi6TP0BCB5aguay/bNBHPrKJwL+A5JNqa53Jvz9FrAzwLdG/PcT/ozZc1b8YmQMLzFPZv9gy9cGRD92/8FZFjoZF4L/GqJhaNuHhv6Dl0FtGWeO/f6pHTXqs5L+xue3P7NnlvwLRubgL4ea/bRgCo5jB578xYePPo3vov8rSkSqMD+m/0hO5j/d96b93tBs50sfpv6dEPuhI7um/8IfGosXy6b/SMgFG6dbpvyl7Kb2InOm/6g68XKZF6b/kzGaBbNTov4smU1EqS+i/fSJFSkys57+iTTNIVvrmvzYftJXfN+a/yr4xM4tn5b+zWkMWAozkv3v0MJ3tp+O/AhNwRu+94r/KJ+p+nNDhv72Ce6V24uC/VG7J18rr379vliEgXhrev81xetToVNy/hC+I+1Of2r/WLGO1I/3Yv7YprlBucde/GACvstb+1b/pswsnf6fUvzWvkhcIbdO/JNpQsIhQ0r+MZm/OjVLRv56Yr0sZc9C/HGe7qkFjz7+4G0P3JRrOv4Q5Q7+4B82/8IIe/tknzL8M+g4WgXXLv3AFsInT6sq/OCynczyByr94hu91hzHKvyT+bZH388m/IPmXlWrAyb/seUe2fY7Jv0RsLM2iVcm/qIGUWEkNyb/gXsk3AK3Iv9QzEmiSLMi/1FMWWSmEx78EGPVtZqzGv2Db5l+HnsW/JNYf8HZUxL80MNHB5sjCv0yPLNtk98C/eDqMeti4vb+oCBd/3Oq4v/AzwqW3gbO/kIdAitv4qr/AJTChAnCbvwB840bDGlc/0Cqnf2VPoD/QLG4GuX6wP/wghv9/WLk/3p1wxCFVwT8Yudma0jPGP7S9YFNjQcs/iu+E/B470D9q4qMgH+XSP5gs9FFjmtU/rfT6H29W2D/Ym0bjpRTbP9yUhodY0N0/zLqzSmhC4D9d4bDHsJbhP6jOWFG74uI/1nSsEE0k5D/toeUERFnlP9mRdFCbf+Y/OwEaRXCV5z+mWZuLB5noP113jU3SiOk/RGAmY29j6j9OL7SlsCfrP+9yD5Kb1Os/F7IEhmtp7D81pofAkuXsP8E1w9y4SO0/eGFvIryS7T/YE+pqrsPtP6J6c1rV2+0/9VFpDqXb7T9EFaGRwMPtPwwPhZTylO0/v/TGUSxQ7T+Rf/mRgPbsP3qGMk4fiew/wmssLlIJ7D9BubmNdXjrP5//WHH41+o/RdoaY1Mp6j+YJWDzCG7pPw0ShOGep+g/cfY9OJzX5z+BtWwfhf/mP0T89PHZIOY/UjiPVRM95T+stTUEoVXkP3PtZK/na+M/dscxO0CB4j82Gf/89pbhP7pdODpLruA/WEQlc9qQ3z83eqst/czdP8r2ZAYoE9w/2Pz3ymBl2j/Bk9F4ksXYPzBt2fCGNdc/5mxhUeS21T/yfPwHM0vUP4umpXPS89I/ZJcOVfyx0T+s1y/BwIbQP9Q6NYMD5s4/LoqGheDuzD+cOx6wFCnLPwzKkTQrlck/Qp9d4zUzyD9mBYKCygLHP/jcmqH3AsY/TKpBQ0EyxT8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"ZFDa4H+j1b9QqveSYQXWv6ByS1YiXta/EhaO7Zuv1r+o0gfTpfvWv9ao/aYORNe/hkEq+o2K179xrzOkvtDXv9s7/b4QGNi/1ZMWIsBh2L/fkeO+yq7Yv0KyPSTp/9i/78dqw4ZV2b/4yN7xtK/Zv6DgjGwvDtq/dGC9lE9w2r9cDQ1OCtXav1bFNRX1Otu/0HWprj+g27/bzHOfuALcv2nwZfDQX9y/R7LQTKG03L+mbnxr8/3cv4Enc89ION2/DX+Ru+Rf3b/iJgJ223DdvzIuVuQaZ92/AbtuTH4+3b9Udk1K1fLcv8pJREj/f9y/pVn4qe7h27+CMT8GxRTbv8/tkH3ZFNq/DvTZts7e2L9iY8jQo2/Xv1IYJwK7xNW/VKNY9vDb07/GGfEVo7PRv2TwI755lc6/SGDPgYNByb9WRZ+0p2vDv4imRPnuKrq/GD4tOl0Hqb+gPFeHtK+AP3wkXxbdlrE/jMATr5X4wD9GsBkZOorJP/TQFTRxO9E/z0C/1/PZ1T+NhNC/wJraP1GAhlxyd98/HBioLJc04j9wMjX7WrTkP5GRTyY5N+c/p6T3nUa56T8q0iZDgDbsPxFs6KvUqu4/Yg9hfBiJ8D/P0y6TRLTxPyBj5A3y1PI/OP5HXTPp8z9tcuwJL+/0Px7Xfawk5fU/NVGSqXLJ9j8k4CFZmpr3P89wgzFEV/g/cYS4TkT++D8NHvhEnY75PxzM9SmDB/o/p9jyEF5o+j+WgwJTy7D6P6+Ljnme4Po/HH6ft+H3+j++xRHM1Pb6P0p1y7Ls3fo/yAgNA9Gt+j+f474fWWf6P0zRVaWJC/o/ddy314+b+T/OGRIBvhj5Pzxxr4+FhPg/XeFvk3Lg9z9GQZ2UJi73P3yZ25VRb/Y/xttv0q2l9T9YotLp+NL0P6LcU/fu+PM/kHByCkQZ8z/onEPnoDXyP7RwXA6dT/E/0hYghLpo8D96/Ni5xgTvP2zQMyrKO+0/y4Li/9946z9+viAPKL7pP27rxIiBDeg/HMY+kYlo5j++RgiFmtDkP0o+Bb3QRuM/6s8z6ArM4T+A/7hQ7mDgP7Hi0HLXC94/Fh2s64p22z/oHFaxJgLZP7qu0GKTrtY/FvgfDYF71D9kmFpnamjSP3elgDqpdNA/n7MbovY+zT9WNrJ/G9DJPwjy5PkHm8Y/QEEPGfedwz879meeKNfAP+K9mrjFibw/IGXx193Ktz8E93KDS26zP3xxV1dy4a4/WmEnp6Kdpz++ZQZVQgqhP7xubtIsQJY/JIALT3Zdhz8Qnu10q3liPxAtGGDTxHe/SNajm4dOir8s1Ip/O2qTvyA7lYrt05i/PNNv1u2Anb8QREX7Mcigv1yTgawxkqK/sOwIU6gwpL+0Ot+M77alv/KvQBM5Oae/BDyIo2jMqL8I2OxbuYWqvzjdOVJjeqy/zBimgza/rr9Y9xNhG7Swv+6qcmIdRLK/UCBE/ywYtL8EOWwo1Te2v4DAlh1bqbi/lJlpwohxu7983/oHj5O+v80OTpVqCMG/AFqtlWr0wr/XiHqphgzFv3WVWAtwTse/7BBgjtG2yb/iYtIVSUHMv1glQ0Fz6M6/I/h+nvvS0L/oDDEFTDnSvwZY6cUjo9O/BC3acSMM1b+X7T7soG/Wv4BiQli4yNe/MxSm414S2b8LTxPDeEfav9fawVHpYtu/cjqVBa5f3L/Qzn2j7TjdvxZyzrIQ6t2/yFh3atVu3r+tV+vPYcPev/FoeO1W5N6/FBsyjt/O3r80sLoGvoDev9tLgKRa+N2/cYxxjss03b/oSBEd3DXcv6m4MWQQ/Nq/jq0/26iI2b/3T1pUn93Xv36MQ3Wj/dW/y3Px+hXs07+gS9e9/KzRvwgvoQjtic6/tjtGxWNyyb9MOEkrsR7Ev9Q4oEP3Nb2/CCHvhTrosb8gUdG+dbuZv6AgDz7CapQ/qBzFs6yYsD+E4oBLV++7P16MaaulgcM/9NGyQ/HcyD+cgE4FwPzNP68BNyF9atE/cvgV3jCt0z8FGPmCW8HVP/CQ5j5xotc/FiY1O4NM2T9aVP8lUrzaP7YuCOdU79s/M+ndBMPj3D+PiiNmmZjdP1vSfyGbDd4/huWhWVZD3j+EdVwpHDveP4Z0hOP+9t0/aP5kcsh53T+acwDP7sbcP7RXydKJ4ts/N4MhkkDR2j/ScSb8OZjZPzjREf0HPdg/7CRdTZXF1j+UwhGICzjVP75hKxHAmtM/Waly2Bn00T9ZHpZPe0rQP4xu28tSSM0/uG3alGsOyj+ETnc60PLGP3QZVnpOAMQ/fEbbT9NAwT84qjKthHq9P8CQm5Wo+rg/AA3Z6xMPtT+QrWJGBsKxP2AwEPIUNq4/UPxVpI09qj/Q5er7BZ6nPxAQvNlVVaY/EHDSEcJbpj+gEnVIOqSnP7Cl5N2qHKo/QDKMV1iurT94EZM/OR+xP+jWHyY917M/kJm1hXnutj/ILoDUBFO6P3jVgP4M8r0/GPSPGCbcwD/i+AZWJsnCPwIhJg9gtsQ/TjMInniaxj9mYgRrdmzIP0Q7OCv4I8o/dUbAJlS5yz9KiIlasSXNPyIfeh4sY84/1Cjmn+Nszz+QZIodhx/QP7iO9v2Ga9A/J0YNH7GZ0D+qXt+n3qnQP9zd2tx5nNA/0vnLaXly0D8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AGFYTQp6AcBM3cYfp+YBwHIBSkW6TgLAqX7TrQ6yAsBWrq+OcBADwHh13P+saQPADsr5xZC9A8DKoYB06AsEwFsc3kyAVATAsJLi/SOXBMBUHeopn9MEwGzOw+C9CQXABQx8E005BcAHHe87HGIFwGA7mXv9gwXAqIpGF8eeBcAKH105VbIFwEwdjaqKvgXAOK9TOVLDBcB2F9IxoMAFwNAKaUBztgXAUGM609WkBcBa+jpB3osFwDxpnY6wawXAQMuIEn5EBcCgYvSUhRYFwFyrKuYT4gTAFASnE4OnBMConDohOmcEwKBqeq6rIQTAGMoqtVXXA8DARNvsv4gDwPDRegx6NgPAN1bFhRrhAsCcDdXsPIkCwGn2mP9/LwLAdLojyIPUAcB8UmnC53gBwAzqxGFJHQHA1wIhrkHCAMBXsoVCZGgAwLukbWU9EADA01dKA6F0/7++0cfcLs7+v2C8D4gBLv6/ibf7sN6U/b8MFrsFcwP9v/x3TltQevy/NBi8KO75+78CbbSIqIL7v4ZTq/C/FPu/Bh7RBVqw+r9Wh+4JgVX6vw8VWqolBPq/fJlpIR+8+b8iNuhMLH35v9Dw4kL0Rvm/njF7qwgZ+b9oJtIu5fL4v44pWwfy0/i/ItDzyoS7+L9Txs/E4Kj4v/oc5085m/i/zmLjR7KR+L9+ydeYYYv4v44Jm+9Ph/i/irLpV3qE+L+KEYPR04H4vwfg/rVFfvi/fPVIbLJ4+L/WuEo09m/4v2BTLOLoYvi/a1KiKWBQ+L+vAW67MTf4v5S8Zmg1Fvi/e9ZnJkfs97+fgdBxSrj3vyjRawYtefe/SpAAl+gt97/j001JiNX2v4kuodsob/a/xHGncf759b/rTDt8VnX1v2wux7Ga4PS/OhoCe1Q79L9cdVrPMIXzv6PJgYAAvvK/dd5BTb3l8b/khnPAifzwv9iEAOe0AvC/Hrz8iHPx7b93Xasyg77rv5LjMB1Gbum/QIfejsYC57+qFwTDZ37kv6bgiD/l4+G/xISyIJts3r9oN5fz/PHYv8hnCsc9X9O/uKl8XVV4y78oMEkeECLAv4CvEC+5M6O/YKOK9cXUqT9Y/jIRApLBP6iY/H74dsw/GNQ5RbuI0z8QyMsXf6fYP0y7XWSxjt0/HoYzrL4a4T9Coqhds0njP6r569oxUOU//K2Gw3kq5z9WZovmGNXoP9jDZAv3TOo/YtgCWV2P6z9sV8vH/5nsP6zbk2oDa+0//ECeZAMB7j+OTZ8QFlvuP7pWcwvPeO4/eBTq7kFa7j/0QZ9kAQDuPxTukUQba+0/RoiZhBqd7D/kK2Af/pfrP/51jyQ2Xuo/bhEgkJvy6D8oF9fdZ1jnPyCY0a8sk+U/UHeJXMmm4z8Sf62CX5fhP9hjoRKQ0t4/4IxXag5C2j9EPOlXf4bVP5xEK3lOqdA/KNksSeFnxz8w5jsaOL+6P0AtUim5Ypo/4BjZqIf/qr/I9x2opbPAv3g5gTRcfsq/pGpL/DAI0r/sIM/Yla3Wv4i0de6yKNu/DIbsOYdz378sj+1tYsThv4szsYPtseO/DpnzDn6A5b8uSp64jy7nv8LS2hwDu+i/Z5duPxsl6r9+leb+fGzrv0VKZ7Askey/RA8UM4mT7b+KauK9SHTuv2z6ydRvNO+/8Kkbvk/V779AVrNlPSzwvxWwb7TfX/C/0EBwFpCG8L+B4E7RZKHwvxvFALSFsfC/xdjO7Ce48L80WNFPibbwvxgSRFrtrfC/WYbJ05ef8L/nzSQJy4zwvyIeEZnDdvC/ZdXStLRe8L/pv3zrxkXwvx8mqQIVLfC/wOxPGKoV8L+BZw51gADwv2DIeVf+3O+/P+SYvvXA779B2UggZ67vvxxhtL2ppu+/znPjQeyq779K1dadNLzvv3ocaNZf2++/eEBPnpEE8L/O3m/WBiPwv9xVRtlDSfC/AhFWpWp38L+4ezhji63wv4hpwvuk6/C/NyiDvaUx8b83ij2La3/xvzumWRvF1PG/skPWTXEx8r/cJMhcIZXyv6lR1l54//K/NulrXAxw87861NgFZ+bzv/y+G7wGYvS/gOXQHl/i9L9/XUx722b1v4YzQ+vd7vW/60FHn8N59r91UTS94wb3v0yNkpWSlfe/MlhOdyMl+L86XY5v6bT4v3jx5vg6RPm/mp0RmnHS+b/ta2zA7V76v066TuUW6fq/04NrG15w+79um3NoPvT7v7pIsmM+dPy/j4hOPPHv/L/qklrS9Wb9v05dvTb42P2/hMvgl69F/r8F4UsJ4Kz+v8UN2pZWDv+/xPyHBOpp/7+qpCntd7//v91FxMFxBwDA3S5YeAksAMD6xM/wdk0AwDY6Dt2sawDATdPNypyGAMDH09E2NZ4AwLKb5axgsgDAtsAShwXDAMBvewF0BNAAwLE/AWE42QDAAlh7WHbeAMAQ2qUYjd8AwEz1Lx9F3ADAPua5fWHUAMBGgSPrn8cAwJkhOAy6tQDAgsNlHGaeAMA3/J/7V4EAwGlX1OlCXgDAkG0WT9o0AMAD6qbI0wQAwBKqVtDQm/+/8Mk17asf/79oFkuFwZT+v9h/jPep+v2/9JMbFg9R/b/boBDbr5f8v/KS5Ldhzvu/jYHyLBL1+r+Se4+tyAv6v+MOtA+nEvm/7uZaG+sJ+L8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"LhjpPqAh9b/g3W30jW71v77ZbghsuvW/VEmpV6gE9r+yxHxtq0z2v7KU4x7Xkfa/PEH7c4jT9r+4EdsvFxH3vwbbndDVSfe/5rIAcBF9978iTe4jEqr3v9zC0Ygb0Pe/6oTifmzu97+OCVNIQAT4v7T/t6DOEPi/Lgv8Lk0T+L9E4fKa7wr4v/L0Mwfq9ve/yu9Zw3HW978Squ/6vqj3vyJ67wkPbfe/4qc2cKYi978KWfWt0sj2v3rQi9jsXva/u+W0qlzk9b8XnOwTmlj1v08/8z0wu/S/YiWDgsAL9L+ncputA0rzv/K+6XrNdfK/ZlAHLQ6P8b9fjQkM1JXwv52alxubFO+/nTLNE5bZ7L8KbTpgfHvqvzeImC94++e/Di8Z+fla5b9GOORJuJviv3I0PpVZf9+/hHBEsCqS2b+EAGbS23TTv4TNxgC/Wcq/qFh23FIAu78A95JUGWFqvyCi4dTzubk/vHA95nxFyj9wk9lS2uDTP+DHVJ56odo/FEv2FZSu4D9Uo5o8LwbkP/P9n+/LU+c/xezt8rCT6j+KjQUGNsLtP5ym6ablbfA/4CSFx4Hu8T8hUOmGTGHzP+QLEDe7xPQ/EhGkcF4X9j+KuJkm5Vf3Pzijgwwfhfg/jU7HBf+d+T8sEZmDnaH6P18GBa44j/s/IHu/mjZm/D8p1+sEJSb9P5mR2Uy5zv0/xVQMI9Bf/j975EtYbNn+P17kksm1O/8/SJSZYPaG/z/8juiYmLv/P3uYLRkl2v8/ppVlCT7j/z/6LRwKntf/P05Yt5ASuP8/poe7s3mF/z88eVcOvkD/PwC5KqvS6v4/ltU62K+E/j+AKp3eTw/+P3ijRAari/0/cG7XfrX6/D/Y1QJ4XF38PxqJZtuCtPs/DF430AAB+z9FOJ/BoUP6P6WiJbIiffk/sGwBnjKu+D9lva89cdf3P7kbbnBw+fY/pANkwLMU9j/H6TDcsSn1P9rl6NXVOPQ/P1Wcx4BC8z8oqneyCkfyPwDIIsLFRvE/Ok8xEP9B8D8aSEqxAnLuP//KMJYsWOw/kwZqwhI36j9iSlqgUQ/oP938/hGP4eU/0abUP36u4z/EdhlV4HbhP+1X/pkPd94/FHhfo7T62T9I1eh2oHrVP1o3sK3s+NA/kANblbbvyD/IjULYTue/PwC1uTMRC6w/QO4nikfZjb/gkhP+mk+1v3giH5QcVsO/TEi3HZbiy78f0fzvliPSv3DO96HoPta/ftTyujRA2r83vEKMeSTev+pps4pg9OC/fvp6DRjF4r/nvz6vA4Pkv0AUUl/WLOa/xYjkPVnB57/u7k9hbj/pv3JWcOEUpuq/EoSfmGv067+16UovsSntv/Pe6NJKRe6/8q/tSMBG77/Te1Z14Bbwv9h8zSMSffC/yGvitfTV8L+uYfzAmiHxv1jHivAqYPG/n/6SQN6R8b/r6CnE/7bxv9XjIq/rz/G/ML4O3g3d8b8GIuz2397xv9NnSQvp1fG/BszWFbvC8b+/VZop8aXxv/sqszsugPG/eu8ElhtS8b/0rzzVZRzxv5AWytO83/C/TlcmZNGc8L/mtKfoU1Twv4K7WIfzBvC/kAWyc7pq77+r1j2gdMDuvyxcoNhiEO6/cm78Xshb7b87QZm54qPsvwpxHSbn6eu/TsBp4QMv67/cfGFzYnTqv8w5cBEnu+m/8CYjoHME6b+R08HJaFHov7ZxRzQno+e/1ot489D65r+aVUUMilnmv/6n6bh6wOW/2JPrDc8w5b8Ayu9Qtqvkv3vzVBdiMuS/zlRJ3QXG479SPkwy1Gfjv7XEl8/7GOO/lJMFM6Xa4r+Yi5cb7a3iv3xtQaTgk+K/BEdlaniN4r+KFGTkkJviv6qJMEPovuK/pg42FRX44r9cZMtFgUfjv6kdrfhjreO/pgqybbwp5L/uJbDUS7zkvySgI0SSZOW/KOd9Uckh5r/43D+e4fLmv5FDRg2B1ue/GLANKgLL6L8B/6VxdM7pvzkLAcGd3uq/FeSaD/74679tXQum0Rrtv0HLFV0aQe6/2bVay6Jo778WZys/BEfwv9ze1tPh1vC//WVhDBli8b8CRbdE0Obxvy7DofgrY/K/YhKnulPV8r/HINRkeDvzvyNbMfDak/O/X+Kk4dDc87/6HHqxyxT0v+fVQWhdOvS/HJPZlD5M9L8kNDxMUkn0v+xNBE6rMPS/kxZUsY8B9L8qsymje7vzv0T45hAlXvO/20zrMXzp8r/VLbQprl3yv8LJ1Ucku/G/9qPehIQC8b+N4+2RsDTwv17/yHWHpe6/1o9npiG87L+o3N2wPbDqv3AStsZKhei/gjaSZBA/5r+mfumEpOHjv0dyIedgceG/pB6CJq7l3b/IbIvrhNXYv47ubdz5u9O/EDLMvMFFzb9IUbFaHijDvyjNBFcFZbK/gNJqjyABcT8QxmwJPuqzPwgz9rU7A8M/nCAonumhyz/yG/oXAOHRP2Duuv7hqtU/np30pYwo2T+qMWve01TcP6rmUvF4K98/HrNRuJzU4D/qPG4K7OXhP5L7BvgMyeI/ocAwOuh94z8XIREe5wTkP6KEMt/vXuQ/U42XmWGN5D+3xFLvCpLkP6pVJKofb+Q/mx1dHi8n5D/adYkWFb3jPw79ts/tM+M/JlmUZAaP4j8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"QHXVQBJVlj+AOpzcQQ6lPzjSI78fD7A/+IJxfioctj9wToZjBJy8P3hBAFDGvcE/vBCyJ3NTxT/IM3gm6QTJP3y42YPXx8w/NuNal/VI0D+yJT8ldCzSP/xGVqZfCdQ/JplhRNXa1T8EUQ2MJZzXP2Jppu7eSNk/NFyQVtvc2j+y+HuwSlTcPzhcThC9q90/mm9+Qizg3j/mzl9+A+/fPwGxgHITa+A/0df8lfzJ4D/pbSZJrxPhPzTKH6HfR+E/SKzPJYVm4T8/hhWj2G/hPwyUazlUZOE/iAqSzq9E4T/lFY8n3xHhP5OQmpIMzeA/sLcuvJR34D9XE6hfABPgP7LrJx37Qd8/6OC0d7FG3j90E9f66TfdP9KTVzuFGdw/9DdorWzv2j9UHx4fgr3ZP7C3GymLh9g/wCIGJB5R1z+0+Z/ukB3WP6SeQ9rn79Q/3AcwJMHK0z8cbnVuSrDSP0RAAtAxotE/Oixb35Wh0D/U9WULCV7PP6zm1l7clM0/rBzg1Ermyz8saY4uu0/KP/jr7fxazcg/wFjm2Spaxz/0WRbwFfDFP7guQB0FiMQ/mAREgwMawz9oaWGsYJ3BPxx6serfCMA/OJONc8ilvD9ggaLaSeO4P6gSesHDtrQ/KBulbTkNsD9A5rt4RqmlP+B+6GY48ZM/AHsaBbiqeL8QREqVB5qhv2jAulf71LC/fDPdP/epub82zsqWKajBv2zZxOOS5Ma/aaiR1BWJzL9WauDlaEnRv8arO4OaftS/Ao9v9gDh178gjIUosmzbv2orA2QJHd+/+X+2rVt24b/WYFcm7Wrjv4MC2ZENaeW/x4kPZGNt579MxTv4d3Tpv4pOr3THeuu/0mVLENF87b9oqUilKXfvv2iJ/E1Fs/C/csgNf/Cj8b9Q8CZIL4zyv1O0W1TCavO/Dk8VyZc+9L9SL0ty0Ab1v/c4oujCwvW/Ppg8OP5x9r+mUmU6ShT3v7ZBiTGoqfe/ppTg11Ay+L++m7UHsq74vwW16plqH/m/DZ/+n0WF+b/40aWWNOH5v0hHcOpINPq/IA+grqx/+r931gv3msT6v7Kfbr5XBPu/XLgOeyhA+79kwzMTS3n7v89niODvsPu/We4gzDDo+78iZWZMDCD8vxoVfm5eWfy/+iDGidyU/L9iS1Q3EdP8v5y3gLtYFP2/FI6WdeBY/b9PVHl4pKD9v1L9+OVw6/2/QvvpieI4/r86/oxoaYj+v2HyAbBL2f6/fGVOOKkq/7/zH1HFgHv/vy+J2Tm0yv+/3lGwIocLAMAvwI9QpC8AwJnR+JwIUQDACPGj9gdvAMCCEdav9ogAwCJg0p4rngDAnYwFLgOuAMD6JTZ+4bcAwFCsESA1uwDA8HoZvXi3AMA9HDB8NKwAwNi17y0AmQDAjvn5EYR9AMBeflC/eVkAwC4oduWsLADAFAYjXfft/7/luSe/rXD/v8LsA66D4f6/HGEREqRA/r8ESIT0XY79v0fjvwgiy/y/ijo0zoH3+78aSpyDLRT7v1NQdzLxIfq/E5qplrMh+b+CVAN4cRT4v9mk0PA8+/a/N7brIDjX9b875N75k6n0vxxiORuLc/O/x1TFp1828r8Gk5pzV/PwvzzZj3FwV++/Vg9qIYjB7L/HMFZObifqv01HdJuGi+e/sESXtxvw5L83EqxgWVfiv8mHYlSPht+/zvqnr4xr2r8MDn+BFWHVv/DVmFo7atC/tqCGiGATx78+WZYpJAe7v0SODMLvo6C/gADV3pTkoz/kUie5esC7P7oqgo9XisY/M80nNAb2zj/0jp2fK5HTP1RfYcxch9c/oERoZnVd2z+wMGwYbBPfPzvzK/WkVOE/CGMuXYsP4z/5lI7mabrkPwy4s704VeY/fEbT6ODf5z8qI5C4OlrpP1np78wLxOo/TFVWCQEd7D9LpYe0sWTtP049m/Gdmu4/VSkHSy6+7z+C2MdyXGfwP4OmKWrA5fA/lf9f+91Z8T+EjJB0S8PxP24z/tabIfI/crN1e2N08j+GMbYBObvyP5rl8R659fI/OTL30Ygj8z++t0G7WETzP04G9GjnV/M/ksZkeQNe8z++U3ghjlbzP2AyV098QfM/9q+b/Nge8z+SLT/sxO7yP/UT/GN4sfI/JNCH2kJn8j+c9ZIYixDyP5RXmrTNrfE/KufLRJ0/8T8IBRU8oMbwP27FMoKPQ/A/JRUzX2hu7z8mA8HzykTuPzrGMPUMDO0/OGD+RQfG6z8ql3KinXTqP0ZzSTW8Gek//s6MQ1C35z/5I2cgQk/mPxFneMZw4+Q/aSusdat14z8s0W/urAfiP4jF5XcXm+A/uVKzmd5i3j8HXgdFL5jbP0SmPHme2Ng/SFZH+lsm1j8S7MjnQ4PTP1IXJXXg8NA/jJSBlMfgzD84EzU3WAXIP2iAG1iGUMM/MCUu9I6FvT/IvOj49re0P1CAlKrSbag/wAKVToAAkD9AhvqPRnyPv+Dxny+zN6e/mJ3ibiEJs7/QZZHYEDy6vxz9C4i4nMC/OI8tmg0DxL/uGj2jWFPHv2Sz68TAj8q/+MNs9S66zb8QoCkLHGrQv5fcJgmL79G/yXfR88pt0784kjCDCOXUv6LXgqk1Vda/9OcY2QW+179mXgLD8x7Zv8/+sphAd9q/osrrRf7F278=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"hHWiM5MQ4b/qSZQ1Gwnhvz45+wpB9+C/4MSv0IzZ4L8EZZrDja7gv+Y8Ds3fdOC/qjbKaTQr4L8sdp2jsqDfv+i7uCV5xt6/9V19jezF3b+wdGFmlJ3cv7yGGtRfTNu/xpGnxanR2b/THi4EPy3Yv391g5NlX9a/Vxsqkdxo1L8NJ4II3ErSv9LrZXcVB9C/BAOej1w/y7+QJu6ucS7Gv4zPKRtg4cC/KJW5bKO9tr/w6PsQTLimvwBMeBstg1Q/wEodIeN4qD+on7yr6VG4P5yg65l9QMI//JS33wJcyD9wL+zazHLOP855j8UkPtI/waWY7Bs41T+5pkc/YiPYP85kLJJN/No/IYBESoC/3T9Jvri0+jTgP/QvUcSCfOE/xcWVjDe14j8JMREyLd7jP58BN3et9uQ/HslUfTj+5T+zf9FShPTmP8Bq3ZR52ec/avyicTOt6D91J0pX+m/pP74OBJxCIuo/uzOp/KTE6j9n2UJc3FfrP/4ZuKPA3Os/I+/sT0BU7D/6UgWeXL/sPyYEWTsjH+0/E6Rkrat07T9EE3zzD8HtP8/6EHlqBe4/O14jEdJC7j9gnJsyVXruP9qdKsb4rO4/Y8Ld87bb7j/MoMizegfvPzsOqqUgMe8/Yhw5g3ZZ7z8Ak1gBOoHvPzwcjgsaqe8/2kkq67fR7z8AkauFpvvvPwt6Hcm2E/A/SNA1xsQq8D9h65h9N0PwP5+5O29FXfA/76MXLiJ58D+HIQip/5bwP4c7sIYOt/A/WCerGX/Z8D+j3En9gf7wP2KxGB5IJvE/DAn8hQNR8T9NOQit537xP0pLz8MosPE/90NXvPzk8T9abdKPmR3yP54kcdg1WvI/Csy3sAeb8j+i1xFCQ+DyP3wdoFcbKvM/QgxdKb548z83CK0jVczzP9ZeSukDJfQ/TlsMBuWC9D8Ti7XnCeb0P1pLIo54TvU/VA00Hiq89T+UldmACC/2P4brtwbupvY/acBQ9qIj9z+aQbUk3aT3Pxu5ZB4+Kvg/o3sDsFOz+D/019//lT/5P9hwuJlozvk/iY7Bgxpf+j8GI46+5vD6P4MpdYz1gvs/TAxYrl0U/D/cCaktJ6T8PxTxFLhMMf0/25qVBL+6/T9QkxuCZz/+P/nxqZorvv4/u4boKfE1/z93Nll1oKX/P/fQkBkVBgBAwL+irkQ0AECQIY4z5FwAQMx1gT2CfwBA+ZfCkLibAEBYxVl8LbEAQG7hdKSVvwBA7ahaSrXGAEAAlKbtYMYAQDr6IKd+vgBA7DHTFAavAEAUnKsFAZgAQKrCkWqLeQBA+jJG5dJTAEALfQ0aFicAQGTpretH5/8/qy9g4bVz/z9zzBzNTfT+Py+76t4Aav4/ViDlhtXV/T+Jxf954zj9Px924jBRlPw/3EL4207p+z9hbAkOEzn7P/58VBfWhPo/NQA9gM/N+T8BCREgMRX5P7Nwu88jXPg/cTHhHcWj9z+wtDNYI+32PxM3nao7OfY/Pte+HfeI9T8sD+2nKd30P407PdqPNvQ/rjHAvs2V8z/YrYZXbvvyP/wpi1biZ/I/BmlS5YDb8T9g+RJghlbxP8sUqZcU2fA//NNPqDRj8D8iggWoqunvPzIfH6+bG+8/SzJmdrlb7j8Y4ZxhVKntP8z7rQKRA+0/aDrXWGpp7D9P+Lw+tdnrP5bzafEgU+s/nPLj6T3U6j800ycKfFvqP9++ZB4z5+k/54S8MKN16T8AU/jh+QTpPzraUOFXk+g/a6VXv9Me6D/AaKE1gaXnP7azqCR1Jec/ZLnvUc2c5j9MBIjmswnmPznSwYFnauU/gMrnZEK95D/Z0BBXvgDkP6L/ZBJ+M+M/t9QemFBU4j9aX/vhOGLhP1rqswJ0XOA/7iqquveE3j/wkaGIGyjcPxnIEd5Zotk/SkaKo0r01j+Ivyv3Gx/UP15a4LmTJNE/kibZ5B0OzD+xVbSbAJPFP5i0U8Kovb0/HGVTwdnmrz8gndoWO5h9P3hzewzv96i/MrxAZUr3ur8yDeVvm8DEv4we8LuwAMy/cFSAWJqX0b9TM46glR/Vv+52KWyykdi/4MEmX1bn27+yivGM9Rnfv6A2zqKUEeG/MHJlYF9+4r+o9JwladDjv0/k4QnsBOW/l6xrI1oZ5r9RsiPQZQvnvxq80v0G2ee/+3hk54SA6L/ulL19eQDpv200ZWDZV+m/bp8xxPSF6b8Xz9hbfYrpvwtE4t+HZem/VFV/sIsX6b9prD3VY6Hov3b2WHFOBOi/h7Io5udB57/aSIUsKFzmv0mx0fheVeW/REsOmisw5L8Ys/ASeO/iv3ZjAzxuluG/FvkOdHEo4L9gCgCMI1Ldvwa/gAIHONq/AnugEiUK17+WB0JVLdDTvzbBhk3PkdC/dDnYJEKtyr/CHLRHFUzEv4T70Z6iHLy/GNAYkeYCsL9wAsgBaJCRvxCa3NHNopo/aLR9VuwOsT/4HmFBmby6P2akqYRJ0cE/aFSaEl3axT+abJFF+3TJP77CjgIvnsw/euBKBZNUzz/gn+AjJMzQP9FtXIB2tdE/fdEiFMRn0j9xx7/LN+XSP+d0Sm+RMNM/ZYS6JhpN0z9AxioTiz7TPwYlgd77CNM/6A/l6Mmw0j/kT48chTrSP5TuFCnXqtE/JZKxxWsG0T8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"TMxICa2pwr9QH+qQ3FDNv7x+vV7y9tO/V8LyQMI22b9G1QN2mV7ev9rV5EjVsuG/vKm6qeEh5L9EC5eUs3jmv8tIM7X1s+i/PtemjsXQ6r+VD5BUwMzsv3qHgvoFpu6/+pvKK6It8L/oWkKM2vXwv6oEMo6Pq/G/XTAQKuxO8r9cAxN9XeDyv6//QxaRYPO/2MlV5G/Q878d++n1FzH0v6GJTaDVg/S/NciDrRvK9L+qlUGHewX1vy2WisGbN/W/uwDjti5i9b+vrumK6Yb1v0MzBfF6p/W/6iIw94HF9b/0/vBFheL1v6zoqzTs//W/pOK2r/Ue9r97dKHstED2v0Zd97IJZva/iK20SZ6P9r/q7g2E4732vz7I4J0P8fa/TqDS/x4p979xXGyb02X3v17AQSi4pve/MJnN6yPr97+gIiDEPTL4v3SX4lkBe/i/DSz/2EbE+L9FB+ICxwz5v+DpxzUkU/m/xbWUHfCV+b82EEQ4tNP5v0ZaEWf4Cvq/v+0H4Uo6+r9RYaRoRmD6vyGs3OuYe/q/kQeXywmL+r9P5QPqfo36v7YQVDABgvq/y2dbaMBn+r+7VUPIFj76vyyj5C+KBPq/0dzd2866+b8gDTjExWD5v1ZEGiN/9vi/ktVAmzd8+L8LZ6gFV/L3v6Yc+RpuWfe/Q9e2nzOy9r86ZdS+gP31v5zaeoZNPPW/LdIiDKxv9L8+lcwExZjzv2a2603SuPK/lhR9KxrR8b+66fVh6+Lwv+Qvgx8w3++/QRr57+Dw7b+KZfs/gf3rv6zSWc+UB+q/GLpsgoUR6L/b2IS/nB3mvxNo+e39LeS/sspqg6BE4r9s+MyZTmPgvzr4czU/F92/EV70le192b8ry1+DCP3Vvyjol2OGltK/GvMcnu6Xzr9UGigGET3Iv5SpSdITHsK/3GgAldN3uL8QKleOnluqvwCJyzB47YK/ICocOZ3nnz+AX0PCH9uxP8BeV1esSLs/bhOQMeUiwj8Apn5F9WrGP6wPAW9Rfso/lNOOEMJezj9zDAi8+AbRP8KJzji2xtI/oc2MoT9v1D/WlFeRHQHWP7t+pvuufNc/ZjgOAiri2D8pp1v+lDHaPxaqbjHIats/RF7CNmqN3D+tpQXM8ZjdP++ie1CmjN4/Jt66JKJn3z/U48NnaxTgP/f/PvWGZ+A/4uD0y3es4D8bstkGhOLgP5Cct8bkCOE/RWr8V8oe4T9J5k4SXyPhP51vo33JFeE/udTNsC/14D9yBFpvu8DgP+V6aNOad+A/SSh+pAYZ4D/qx0LQhEjfP4pllS1AMd4/A9LVuAfr3D8QOnCAzXTbP/RE2Cyvzdk/YESS7v/01z/oyRvDSOrVP/bNUiFQrdM/KEgnHh0+0T9U+/Ew9jnNPzS57lH8lMc/lNMRWA2PwT940ToEB1W2P9C18vR1qaE/gHLiuOxtlb+wSCm9/DK0v8z9Thrn08G/QC264ErXyb/oMyFnpw7Rv3quGINxT9W/zA+LVCaq2b+oMT72kRrevzggg48UTuG/aC1b6AiV47+LSrE2kN/lv9ANaZvvKui/0G4MUUl06r8YSUHDnrjsv2T+9rTV9O6/SuCTId2S8L/8BlhrAqTxv+CDEBIvrPK/RTOJcLOp87+UjtA83pr0v9z2zyIAfvW/4Ul/+m9R9r9X09SSjhP3vzvha6LKwve/WiJx76Vd+L8n0VuwueL4vyRufui6UPm/aqBHMX+m+b9sNm4xAuP5v3ZbqZloBfq/YEzqYwUN+r/FU7mSXfn5v165X38ryvm/vAyWimF/+b9Mw81bLBn5v+RLDIH1l/i/4mYQz2L897/8R4AhV0f3v+ICcJLxefa/0Z3C6ouV9b/rV/FTt5v0v/CCxXI5jvO/mSfAFwhv8r8YXiG5Q0Dxv3T2TUsyBPC/59tKinB67b/dftoOo9vqvzoMLpcVMei/u9gx3vF/5b8DPPhRZM3iv3UDQyWLHuC/eA0r9M3w2r93gBw8mb/Vv9vL8bytstC/VPmQHWalx78I807Lqp68v8gjepjoxqW/uHqZmZkzlz+4pW3i0Fu1Pwp6cjcm28E/yo4LYHxmyD+HUd6AFErOP9hvlBz2wNE/qjKPSucF1D+0hx2QoPPVP/TbAVa3itc/LzuhIYfM2D8Y3Hn5HLvZP0BOKvUoWdo/CgrrxOep2j97jMAbDrHaP11EWzWycto/omK8xTTz2T9arPgFKzfZPwCMbnBIQ9g/46nGrUkc1z++pEtk4sbVP35Vx8OlR9Q/1FoMR/2i0j+BxmkEFN3QP/DDthOe880/dOP7SID5yT9h9j+zQdLFPxrSZ5+Yg8E/KOr+Kfokuj/WhGJ8SgaxP8jaEYlvyJ4/QBS9Tx0ffb+sJv73GwOnv5JdkyaKWbW/bFC1a65Xv78gNq6/R73Ev+jnemev4Mm/UFIJ8tsVz7/nSW7GVi7SvyEOZ0+F2tS/w9RhNl2P179QSPxqqUzav4AQ6TwQEt2/gExToAjf37/XolabalnhvxolODM9xuK/CiQ4w1415L9YnheuEKblv4iWtYBxF+e/eCHT1oCI6L9zhiN9H/jpvyBmcrQRZeu/hVw7YAXO7L9ww5GGljHuv07hDApSju+/lW7Oql9x8L/0N7uRsRbxv7K2OdxktvG/t5G+wsRP8r8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"kg/cmc5p17+4+WaxfELUvwZozZr5MdG/QjKnIbt4zL/6OBE91MrGv2iJnon7YMG/Uvd7FwKCuL/ERHraGb+tv4heANS+iJe/EOVPlxmFgz8I9tj/nCukP6C+JiJ0DLE/Sqiu/wxWtz8G3nb1V/a8P4jni2Gg+cA/5LhVCmIqwz89ruqXbBLFP+PSRiiYt8Y/2jkwgYUgyD8eWjUHh1TJP3w3q5l0W8o/YI9U9ZQ9yz8m6nzFegPMP9gYvybctcw/AgBBx3BdzT+GY+xJ0wLOPwT/eeVRrs4/ZAMj9dtnzz8bYwvyZxvQP6FEaI30kNA//Igu9owX0T8ORyl5urHRPySYXriKYdI/tJYHkIEo0z/Z0XvPlQfUP4Fzk6Ik/9Q/93OnHvAO1j9Q5nVaHDbXP8NoK2oqc9g/h8IaCgHE2T90sIhz6SXbP9NZLmOaldw/2BkRuT4P3j9wMndDgY7fPzChnjJMh+A/WZxUxSxF4T8TdDIZI/7hP2qlUwBSr+I/g5KwLcZV4z98yqPahO7jP9Srrl6UduQ/GPeUnwrr5D8s5l7LF0nlP7YUqJMTjuU/Vs27XYi35T8cASGDQMPlP3edi9pNr+U/vKMZVRZ65T82FBU2WyLlP6qCvF9Cp+Q/OO9pilkI5D/LYxm3nEXjP25AdUd4X+I/OvVVsslW4T/MRs1a3izgPzYLxxjkxt0/WR8/h1D52j/IeHXTEfbXP7dcV03qwtQ/IUslzz9m0T/SsEm8DM7LPyRdn1ZMmcQ/sxHFGI17uj881nb0Dy6nP5w0TU2q0oq/vwF988s3sr+C39xMfnDAv3wlp2klm8e/vD86MquMzr/h4q8hW5vSv8VnuEr1xdW/Fk4XFhXA2L/4w7vTVITbv+Mob6kSDt6/bJQo8r4s4L+oVNNj0DHhv2WyPdg2FeK/dkKw4GHW4r9mKtXAOXXjv38szK0d8uO/0c4tPuRN5L/s+Qjn1onkv3n9w/Ksp+S/5IQoBoep5L+USnVb5JHkv3DZUZadY+S/gRjIlNgh5L+w3uKH/c/jv47zayesceO/im9jAa0K47/og+JA6J7iv/UC7xJUMuK/1Zbj5OjI4b+EzEHilGbhv+RL48krD+G/bcxATlzG4L9eeMDMoo/gv2QPQZE9buC/zJJSCyFl4L8qa5uY73bgv0hG3VPwpeC/ImXhMwf04L+/A8MfsGLhvxiO5R768uG/JmIVG4Sl4r8pRDpcfHrjvz4bO/KfceS/JP1AUz2K5b9ofuSyN8Pmv6K9o5sKG+i/hECEy9CP6b+Dkrw7Sx/rv7hLaiLpxuy/1WB4+tGD7r+Beezwdinwv2NkATp4GPG/XM9uyjIN8r9efs+s3AXzv9RDTMiiAPS/fxyECK779L8IVVxyKPX1vwErtphC6/a/VSed0zjc97/lg0TkVsb4v1YKeLT9p/m/8GArB6V/+r9HWCBR4Ev7v352ngxhC/y/tt+b2/i8/L//J1O5m1/9vxQgZ5Rg8v2/Cg1azYJ0/r9QS/S8YeX+vzJz6gOBRP+/4O2vpYeR/79M75ckP8z/v/Kd72eS9P+/BdJ1hUUFAMD7L18qKAcAwLCejokSAADAVs90wmTg/785cgxCga//vwIsxPwAbv+/BvuZq3sc/78IhuJPmLv+v8p9FTsLTP6//MZm+pLO/b81Idhf90P9v+SV6b4Grfy/YNBjcJUK/L9OmjjTel37v8ghnTeRpvq/IKBZwLTm+b98WKT1wR75vyZSZ+GVT/i/QoVTHA1697/xe3vpAp/2v3/hcDNSv/W/e0aj7dPb9L+PrzATYPXzvz6ftALNDPO/kbwfJe8i8r8Gtm83mTjxv7uiGpabTvC/pV/h+ojL7r8s4q5uvv3sv5hSe9tnNeu/mJshLg506b8u5aPAMrvnv/x1GcVLDOa/i/BnjsVo5L/SS1+2/tHiv2PKZBJJSeG/VVe7+Mmf37/8xiCHBc7cv075jJh8H9q/bFzuWz+W178x2tUwLjTVvwaonon6+tK/sQZdNh/s0L9e1ZqcxxHOvwi+VomhpMq/eBXqymaSx7+QMHSML9zEv34ttf+KgsK/FC3V636FwL8AKNs2/ci9v4jFqZzRPLu/mMOFEghjub9woz4p9za4v7hPtN/Asre/ENEjp0/Pt78QmrClW4S4v5CAYep3yLm/QMeZ7ASRu79wPflKZ9K9vzwj5CIDQMC/GIIF+i/Gwb+sxCfInHTDv0jgtavXQ8W/FAs0KDksx7/M9gIV8yXJvwwD57AsKcu/4ATHMBcuzb+QRRukFC3Pv/zGoWFhj9C/pux3gxR+0b9M5a+QY1/SvzxhCoBaMNO/wloLDlvu078EPmqmK5fUvzAZCgT/KNW/NKi+n3ii1b8OmTbytwLWv5C+N7tWSda/dCfYeWt21r8WlkE5h4rWv/7O2/Owhta/0IiQjF5s1r+Ubqt4aT3WvwhYqrQC/NW/ID99KaSq1b9AKRvJAEzVvxa+ol3x4tS/YpykBV5y1L9rwA/IMf3Tv6pj6ls5htO/QCjHgxoQ0788PNerNp3Sv26kjnScL9K/RXqZR/PI0b8Q0Wsea2rRvygQNw+xFNG/tiSiQeDH0L+BB6JBfYPQv7hVrLZvRtC/t04GVP8O0L+kovPHr7XPv4KUOi4cTs+/AqYAtFDgzr8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"FePNJI9I4T9oaw5q/ubhPxhlncJDaOI/Glmb4E/M4j+M6bhzQhPjP4D9PM9kPeM/vkkapCdL4z+U0jgsHT3jP4KtKMv2E+M/Q9sKUH7Q4j/sT8FBk3PiP2KqkOsj/uE/IspU4ihx4T+nLoODn83gP4AeEwqHFOA/MPAJGLiN3j9OCs/WJcvcPycDAfkv49o/08tw5pbX2D8XbQIOBqrWP01iL/kJXNQ/Z8zNzxvv0T8GkokGOcnOP5DoANe6e8k/Op+ITkj4wz9BYcgrzYK8P9xEl/I+s7A/SEg7jO4ckj+I5c3gae6fv+7eVNodz7S/UIThZj/2wL8ApEwTGabHv9yPrUjfcs6/0BLy7u2r0r9cgwdu4yfWv+qo1kFqqtm/hDgXtU4w3b87MA+tDFvgvyxvugUGHOK/PFlU9xXZ47+Wh2LFIpDlv3r8WnP8Pue/ZPZNKmPj6L9nmWblCnvqv5G5VLeoA+y/Gp8+RPR67b9C/kintN7uv/FNwtljFvC/X+ceFZWx8L/vhOXZ/z/xv9wy8c7NwPG/A3gL5UMz8r9DFqAIxZbyv6Qer8rU6vK/HJtbaxov878kha/QYGPzv9twAwKYh/O/ygxcxNWb879Jt70zU6DzvweLCHttlfO/IoVehqJ7879QOW5Ej1Pzv6SB2o3rHfO/4CNWz4fb8r/m1g+XSI3yv77d5TYiNPK/El866hTR8b+Y9zt1KGXxv2QoS9Bn8fC/cqHh79x28L/RNd8BGu3vvwyquivq4u6/3L3dhQ3R7b+mI1q6S7nsv0hcatpLneu/4BFwwJJ+6r8bw5DBfl7pv5WlzT5KPui/+C4sZwgf578dlEYQqQHmv68aDFH65uS/HIhtOqvP47+PJ0BvT7zivwWK5/9kreG/8NXzPlej4L/dAK2QCT3fv2ZchVGLPt2/iQtz1ddL279/08QMnWXZv6zZ7eaQjNe/Ye49an3B1b+yU3f9RgXUv0IvlH3vWNK/Tjjz8Zm90L8DQ2GfGmnOv3ZB7L5nfsu/PuD0JDG+yL8p0IysyyvGv4V+GjjAysO/ejOvN8Gewb++7FENNVe/v5zUg0tN6ru/kA1vv3j+uL+uD8KlL5u2v+oNhOKlx7S/quG4aZiKs7+UdbTwNOqyv162eTfw67K/eIwWamWUs79S/OJ1Uee0v05CgBNi57a/tE19SjmWub+ou7I2SfS8v5W2cjNwgMC/gSVjPwzdwr/xJ7rPbI7Fv2DXCJZtksi/An8kwFnmy78MZP+N8IbPv9gl/JA2uNG/FHt2O0jP078qVoIMVgbWv0B8Kd/VWti/siGWTxPK2r8mw6dQNFHdv5xPRsg/7d+/M0M2x5JN4b9Om82z4Kviv1uIBBX0D+S/WiIQmzB45b+uJ0jw/OLmvz7LGUPATui/UFpyuOW56b9kLraV3iLrv3m8gNsjiOy/JX4+UTbo7b+2242IoEHvv6VgWSl7SfC/+K5JUWvt8L9+L7Mo9YvxvzpUlV9yJPK/cmvLBEG28r/dko1lxEDzvxjOZ6xkw/O/nohxsY099L9SRTcvsK70v5fJY5hAFvW/TwdM6rdz9b/cZN81k8b1v5AVET1UDva/hAHMdYFK9r9noh3Jp3r2vyhA1/pZnva/7jKEGzK19r9YOjON0772v3B9QVrruva/EgamsDGp9r/a9kAmbIn2v6LCBa5uW/a//k4d9x0f9r+GJVFqcNT1v/lTP/hve/W/XsM5wzsU9b+GshPwCJ/0v3FEGGokHPS/INi3PfKL878V74QD8O7yv1eEIHWyRfK/aKU9bOaQ8b/IQhxaUNHwvw3jrWPJB/C/plKf9n1q7r8QPQ8XYLXsv74c7MtU8uq/giiYmI8j6b8+05ddVUvnvy+B5av1a+W/6ospK8KH478fmhavCaHhv240UV4adN+/Y9sBE/ep27+U/uUk1OfXvwB8INqYMdS/AfgxyeKK0L/EMGsn8O3JvzXtVoyG8cK/3Tzb4SlLuL9AbkMncTmmv4BW+Ox2Fno/QBBa3eXTqz8a6/llM7m5P6MRmvJ5hsI/YkDGcC/yxz82AvKb8h/NP2J3UZRECNE/iFWsoJhi0z9jEM9mx5/VP9KvhdfKwNc/NqkK6bbG2T88DzYes7LbP26oMmDthd0/eJk5y5NB3z8RNG97ZHPgP8R5XZRRO+E/fOj2mhD54T8wcRQTFq3iP1NWmgbIV+M/Dj8RLoD54z/+vH6wipLkP8kbNYAmI+U/AAijloer5T+cV8Kg2SvmP8k/lxdApOY/mslgtdkU5z9PSibJwX3nP/zw+pAT3+c/2mvod+s46D8MlpfyaIvoP7V7Mkuw1ug/wjY9cewa6T+I84MAT1jpPzwisksRj+k/QKAUTnO/6T+/bbMsvenpP29olqU9Duo/ixnf3kgt6j9gnzYyOEfqP0SSv/hoXOo/3kCVTjpt6j9pf1v5DHrqP7bH8kdBg+o/5sxZpjaJ6j9v3BxUS4zqP3ZCRGHZjOo/YphO2jmL6j+tyJ2HwYfqPxALeb7Cguo/9vnuLo186j9c+SMzb3XqP2yikWa1beo/nLbcoaxl6j9aU2U9o13qP9xRSXDoVeo/oeVnf85O6j8nURipq0jqP6BdsWfZQ+o/XTUOY7ZA6j/EZ1WCpD/qP7oJGoUJQeo/Jdhna05F6j8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"jtRkiDU697/eOhvCvMX3v36ErKDES/i/ZIVRwVfM+L8xFwWfckf5v+6n/oADvfm/89iFhecs+r8gFkQm6Zb6v3gF7uS/+vq/gpxGUw5Y+7/KypLMY677v7PBZkU8/fu/s/eOjwFE/L/liWp0DYL8vwpedMyrtvy/Onr8bR3h/L/+t38HmwD9v/5Q9hhZFP2/eE8+OYsb/b8KhJnoaBX9vxrXEaowAf2/gfjkoSze/L+U6P9ntqv8v8hg0iA7afy/McUnPz4W/L9DQfx9XrL7v9M1rKtWPfu/bEU+FwK3+r/cEpVjXR/6v/+xTuqIdvm/OlxB+Mi8+L+mLS9Jh/L3vyi4eSBSGPe/jsOh1dwu9r/MvJcD/jb1vwcbp4auMfS/TTZfagcg878ywWi/PwPyvzn0Xm2p3PC/jmYQhl9b779M5GLWo+/sv5HqpLNBeeq/UigWB3f757/r5dvxk3nlv8Q8Zf709uK/OBt4CPl24L/xRSkV9fnbvxzXRgaLGNe/crLf9iBQ0r9AVMFf0E3Lv7iVUvKRRcK/cNBvXzQls79Au0ntXfODv2B8/AP4rKo/GLohVMJIvD/YAUDY6yTFP1qtlhq9pss/2ds+kXXS0D+ARh215o3TP95Ms7OCBNY/2g3cJsA12D+s0472vSHaP5XBUVg+yds/Bv84LqYt3T/0KYJ781DeP178FBm5Nd8/Hxh9+xPf3z9bepLDTijgPxYX/TsxR+A/RHmzymhO4D+iBSPBVUDgP27fxdF6H+A/zpZq5uLc3z/Y1oGFxl/fP3umouT7zN4/ysqNZNgp3j+cNs+llnvdP34uKMRCx9w/ULN5G6sR3D+Q35nPTl/bP4gdxjJOtNo/c4+6cFwU2j8/6PiVt4LZP+g312wYAtk/hnF4bLOU2D8en2JqKjzYPz4AT+6S+dc/zKvgdnHN1z/WD4r2vbfXPwxo1Crpt9c/n/KmRufM1z8p5XD+N/XXP+OXHbf1Ltg/8kE0EON32D8C8jK3fc3YP0S2ISYRLdk/wppaK8mT2T8WVwguxP7ZPyq7phUra9o/iCr2Z0XW2j/NBrbehj3bP2kFFPymnts/dgf7lLD32z9UBo3wC0fcPzYy946Ni9w/vpIRp37E3D9ebgjMn/HcP2Y5Y6YtE90/9tjQRd8p3T9I515J4TbdP4gr5s/JO90/KLJ/cZM63T8Q4ac0jDXdPwYGr61BL90/7hCk13Iq3T/OHCok9indP/6Qr4+mMN0/PGa/eUtB3T/sDhU2gl7dP/AxWZqmit0/ei4Psr7H3T/6ROyAZRfeP8EJR6G8et4/ssltCVny3j+pvCU3P37fP64v8lXoDuA/6KzkVOhn4D/bbuUyMMngP0Uz9/eAMeE/JxWKHlGf4T/yApzv0RDiP1PCsrj1g+I/LGrfLnv24j8wHnLH9mXjP2HI1Mndz+M/Mjh18ZQx5D+cNktme4jkP0gwg2L60eQ/H3MjV5EL5T9Dws8B5DLlP8yxKLPGReU/5MHXZEpC5T/utZnQxiblP8VqLXjk8eQ/uhaxbqOi5D/lhu26YTjkP3oy2/vgsuM/Dy5D7UQS4z8faLIyGFfiPyykZKNHguE/tME1JyGV4D8Y6rvdlyLfP9FapZeK8dw/JICXcKqb2j+ZTmB6DybYP+L/0HhEltU/wBucESvy0j8YZSJu7T/QP2SmgBG6C8s/v2sTS8GUxT9h19EvtCfAP2z5p+YxorU/EuQ8vzh0pj+QwU4GDORyPzCLXZqm16C/F0iWvkuAsb+lSTFsY/25v2o/gCjS6cC/4SJOtAZ7xL/gR/zVJa3Hv7bdza5pfMq/zuM0/H3mzL8m0KaBi+rOv3R7oRWbRNC/9BktV07i0L9KGRZMLFDRvzynkEW2kNG/MYs/yR2n0b8jvS9gOZfRvzgIt5Z4ZdG/ACJ4ZtsW0b9E5zt12bDQv8PZgsdaOdC/AJNllTdtz7/g4P9DQV7Ov7hvLbUvU82/fPN6lZFZzL9sj1Mv7n7LvyTLJ6ea0Mq/DLPMt4Fbyr9gQku58yvKv1xMQoh2Tcq/iOP+95DKyr84qHznoKzLv5iEbKau+8y/ECm6j0C+zr9enuyAo3zQv/136bT219G/bLicZcVx07+hFXD5zEnVv7h58uLOXte/CFVwxZau2b9W1aiL+DXcv21HMFXb8N6/qfR7ZB/t4L9CDoddJnbivxsPNyUzEOS/yMjOzp+35b/lPla8d2jnv7JVWR2HHum/jdXXxmjV6r8iIRRilYjsv8XugnZyM+6/UuZac2LR77+aOEZv667wvyylsqguavG/0JL9bVkY8r/vDFGgZ7fyv01MKJB7RfO/juJz/+LA87+xUnM0Hij0vyvMujnlefS/LIR8cyu19L9kFVoOJdn0v6rTNyBI5fS/HLj2o0/Z9L+CgvU/PLX0vzG301RUefS/UKcDnyMm9L9J3IoKeLzzvyBsARdhPfO/kEaQSiuq8r8RC+VuWwTyv1ACyx6rTfG/UpOpdgGI8L8Yjo5V3Grvv/xEBwREsO2/+XlNkM/k678dPfGLOQ3qvyEfkXVRLui/WYsLNOxM5r+Mhj5z1G3kvyAM5gu4leK/JqewWxvJ4L/fFri5jhjevzbyWft5xtq/tEnMVUmj17/y2k6/hrXUv7ZXHtncAtK/FHB1rwIgz78=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"YmXrSjK5/78kY43TiB0AwCVV3p+eTgDATCFOXxZwAMCerF4QW4IAwLLgSkoFhgDAfh2/X9l7AMB4niJvw2QAwIA/TJnTQQDAdN5bVDkUAMAuQAR7fLr/vxqJDON/PP+/wyPP5lSx/r8EPb+p4xv+v+TBSwwWf/2/ft4+88vd/L/0K6Qezzr8v0CeAX7GmPu/EsKG7Sr6+r9mOi0pPmH6v4F1YrkA0Pm/6kEc8yxI+b8IhcdpLsv4v/rzNpAgWvi/jy+cn8r1979/xrzboJ73v8tNVpbEVPe/xMx5EQgY9795I4I78+f2v/xpU9vIw/a/FX9tWo+q9r/5TpWWGJv2v96GY2gLlPa/5SzTFO2T9r80fIwcLZn2v2BIrOAuova/Uo9+lVOt9r8UlHIQBrn2v6UE8czBw/a/jDbe1h3M9r/keFRz09D2vw5k9oPE0Pa/7kACRgHL9r9IUSXky772v1IgUQubq/a/1ofn9hqR9r+TWRFnLW/2v+IrVp3nRfa//zlZyY8V9r813uTwmN71v5YGTtSdofW/+sDGmVtf9b+sf1xZqxj1vwCLpQR7zvS/6cosKcaB9L8dy4JDkDP0vxB0QcLc5PO/abWraaiW87/N/tK840nzvyXy61ht//K/LgJzdQ248r8I4GjRcXTyv7beqaIqNfK/3ed5pKj68b8bwRfgO8Xxv9o2rxsTlfG/AvbDzTxq8b/U+pXyp0Txv8uGX0gmJPG/87gPGW8I8b+5vWw8IfHwv0gv22bI3fC/qrUK5N7N8L9tYJF40sDwvzOnSfkHtvC/hrOyH9+s8L9PQqYdtqTwvwuJ19XsnPC/v6Vqt+iU8L9o0EgqFozwvxHJjEjsgfC/yONxuO118L/oEcqEq2fwv+AQ6R/FVvC/HTLuyulC8L9ArIoX2SvwvwZbcA9jEfC/WnG/3c7m77+iMtBWrqPvv2IIYW9iWe+/3l7QpggI778Unk2i2a/uv1KHufQoUe6/nOTrA2Ls7b8IxZMdB4Ltv7A7ykWwEu2/tLjPjgaf7L86q/kbxSfsvyYMXoC2reu/fsCYorEx679tPsOTmLTqv4FNtEBXN+q/I+4oiN+66b8Q2VK9KEDpv5gI9wsryOi/oH7r/t9T6L/sU3jdO+Tnv6jGVp8teue/PEmZs5kW579IN5plV7rmvzEMccIsZua/JD/nNMwa5r8OUCxizdjlvzDdPOCsoOW/3q9NCMdy5b/s9D3PUk/lv9FNkj1hNuW/Otw+Otkn5b8mCXHIcyPlv2cDqW+7KOW/kuT0Pww35b8vq2sckE3lvwTpCOJBa+W//AObWO2O5b+FNkNxMbflv2aCQvqD4uW/DuoSWTUP5r8rQBI8dTvmv/sXyVxYZea/B65TBuCK5r80vNNrAarmv6Vb/6+rwOa/ZLrRvNLM5r8hf/zmdszmv12L5Zutvea/KM9MV6qe5r8BXy1dx23mv8gkXXuNKea/Qr63BbzQ5b/HupCpT2Llv/+gUI2H3eS/3gp/ButB5L+n/P9xTY/jv90uhM3OxeK/PcNaut/l4b/jO4mePvDgv8SdAzPuy9+/dTVM7byQ3b/Qa1mJHjLbv3WogQzKs9i/68l5qeUZ1r+5b+E3+mjTvyjfSZvipdC/BPrR3mury79IjLJ2bfvFv1ipJVZ2RsC/GBqucGcutb9AH9xxp+Cjv4DP7u5bjnE/QPagZJyzpz9ANK0VMUC2P6B9Va2hHcA/SKM7fQHexD+UgEampFrJP4hgLY8Bjs0/2U55u9S50D/J8wR0JoTSPyGpnO3iJNQ/rZZdNYyb1T8Q3+VCNujWPwo9Sl6EC9g/V8+Do54G2T9agaBNL9vZP1G+IuNSi9o/teUaY5MZ2z8MfSoH1ojbPzL0ZgFS3Ns/UDuneoIX3D/aienaFT7cPxMVOxjlU9w/KJeilONc3D+Wf2jyEl3cP166qZF3WNw/H/EI7QxT3D+DVJeWvFDcPy6Q8vBSVdw/dJ6csnlk3D/85ByVrYHcP75s1786sNw/Y3NwUTXz3D/F/hfcc03dP7SO83CLwd0/qgvmycxR3j+VROYjPQDfP+41asyUzt8/UdO8zx1f4D++Pv0EIOjgP9NrjTStguE/vDOeRfEu4j91NJm95+ziP7HvJyNYvOM/N0e3YdWc5D/5IQ9wuo3lP6gNtlApjuY/4pZ4rwmd5z/udW58B7noP1v22NCS4Ok/ltehAOAR6z+kHKvZ50rsP24lzvBqie0/sC44svLK7j81AWkqawbwP0hBT7oepvA/eh1YZhRD8T+r+bzGutvxP/laSA90bvI/rMgovpn58j+ujSDrf3vzP9q+PSh98vM/ksmknu1c9D8T861zObn0Py7yWWnaBfU/NuyHGGFB9T+9GKYMe2r1P9i0jnj4f/U/cuTtItCA9T/8uY3oJWz1P3xv/2JNQfU/QslN6s7/9D8m39XEaaf0P7BGuj8XOPQ/aM0veQyy8z/gkxevuhXzP46P0ZfPY/I/3klkDDWd8T/An/HDDsPwPyCfY69wre8/Q2KqdIOz7T/QNPkA15vrP2yxbAVDauk/gFuAOO0i5z/shDeKOsrkP3y657nDZOI/eiVSK47u3z89oOmYMg3bP3yOcA8uL9Y/xbTCvCle0T94FFFcREfJP1I/xWiNEcA/0I3WceSyrD8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"zLaSBPES/r9ZbvxD/Cr+v5an6vubNP6/FcGe60Ex/r9SNbH5XyL+v8TNfkxjCf6/LyZU7K3n/b+4sgqJkb79v86D6fhIj/2/+++llvVa/b+ZDGilmCL9vzVMAIYR5/y/wzQhrRmp/L+e4V4qQ2n8v7W2//j2J/y/tgGcJnTl+7+eDKFh0aH7v4bMOYz8XPu//HasJL0W+78yR3XZt876v/gYb8FwhPq/toaUPVA3+r+oqyyfpub5v2jGtmCykfm/pEwa8qM3+b8omvQopdf4vyAqhl7dcPi/oB3dbHcC+L92KkplqIv3vyPvYe+yC/e/A2Fxh+2B9r+K1y8wx+31v2Ng5CzKTvW/6H0lR6Ck9L8eY9AXFe/zvwap1UcYLvO/ojp7k75h8r/x1LSnQYrxvxgwsucAqPC/INjx0/5277+tVdTExYrtv5t8FbDhjOu/fKKRbBd/6b9jBa6KX2Pnv+PPMUfdO+W/1gPF9dcK479H9Dj/r9LgvwyZPFyvK92/9HfU4ZKt2L/6JNI1+y/Uv5Dcm1qPb8+/yJRxZmeTxr+QB6NaEam7v+h5/SAI7qS/wB78mAJ+mT8Uty4m/8u2PzLxwxO7YMM/jjCLkUYayz9yJizS40bRP0nY7qmg29Q/RwWujclJ2D81qs6QO5DbP38j6ds7rt4/beHMabrR4D9CyI+z9zfiP3BJkFoGiuM/jntJBD7I5D/FvZNuGfPlPwbK/bgyC+c/hKz4uTsR6D9C2pbd/AXpPzmgz79O6uk/tm8aBRW/6j+A0QV4O4XrP+bMEYSxPew/gi8p2Wbp7D9O5knaSIntP0Yxbd0/Hu4/Gm67LS2p7j9YpofY6CrvP5ToGMNBpO8/ahl8yf0K8D8nfo4kaEDwPxa8HJC2cvA/fgoTljqi8D/obcfcQM/wPxzMBzYQ+vA/iIvWyuoi8T/KdaIPDkrxP+KdV02yb/E/VoD2ZAuU8T/nDn0iSLfxP/Lm8DKS2fE/8Fo2tg378T80q6nh2BvyPzZTpUoLPPI/LR79SbRb8j+AXx1t3HryP7MRqBaCmfI/Eb17NZq38j9g+oP5DtXyP54pBxW/8fI/OreYHn0N8z+yTBzQDyjzP09yuCsxQfM/lQGeaI5Y8z8AUx7JyW3zP5bLbfB5gPM/KnnckCuQ8z/fKSlkY5zzP3G+YTmfpPM/RYb6mVmo8z8fnV1QCqfzP0g1U60roPM/uBuyczuT8z8Ce/zTv3/zPyD941hJZfM/3KlSuXdD8z9pd5DT+xnzP2Lhu7eb6PI/ioSDmDWv8j9ypVfFwW3yP3zW22hVJPI/EEHmYiTT8T9e7EACgnrxP7KH4PHhGvE/z9DySNi08D+aqyY+GUnwP3agTEXusO8/eKYR7sDH7j+93w0DvtjtP56Q7Pkk5uw/U2Dc5F3y6z+mYm2T7v/qP07YfSt0Eeo/gkKYz5cp6T9SMB9QBkvoP9NrS1xmeOc/41bHtk205j+qHHY2OQHmPwTmpViCYeU/BAtSklfX5D8q4hOFtWTkPyoVnfRdC+Q/OCW459TM4z8eN55dWqrjP2pEb03mpOM/1hv3yyi94z9VW0gkh/PjP89kwnUbSOQ/jJB8cbi65D+268TS6ErlP+YTUSjz9+U/qhJvNd7A5j/050DXc6TnP/8a4DtHoeg/HCrYtLi16T9T/4pE+9/qP4iw+q0ZHuw/hFTNjvtt7T9NYLyAac3uPxxTlScJHfA/gi22ssfY8D9/y3HYs5jxPz6kgjyJW/I/joZS+/0f8z9m4C7Mw+TzPwXgQRiIqPQ/aCL4pPZp9T9XySuIuSf2P3BwecR64PY/Bn1DjeSS9z/G3y02oz34P/3hNXhm3/g/HS+lieJ2+T9zZvb30QL6P1Zvzeb3gfo/qiOpDCLz+j/Bi6QAK1X7P9R1fJ39pvs/1AbqQ5fn+z9i6QOOCxb8P+j/LACHMfw/iPNvPFM5/D8zEelg2Sz8P/ZFPw2mC/w/bP/Yr2zV+z/p9b0gCYr7P1RBEIODKfs/k7f9VBK0+j94FzE4Gyr6P3q8acg0jPk//IJAJyfb+D9m7LlT6xf4P7W8KWSrQ/c/kt8Qob9f9j+E6nCUrW31P+6H+10kb/Q/thLp9/ll8z9k8vQaJlTyP0eLLv+9O/E/qr7oVe8e8D/4Q+849f/tP6wsjZdYwus/EmN0r6+J6T/MYh5koFrnP/KZhJ3DOeU/QC7E+Jgr4z+sbVRSeTThP2VI+gsSsd4/mwSBJ1432z9JPuEnEAPYP1SNy6W6GtU/xNXiszaE0j8l0GwOkUTQP6KJCQ4FwMw/DlnoWsOzyT+03Or9MGnHP/y2zSlI48U/TM7K9B4jxT9OSXEi5ifFPzQHza/x7sU/AOG4e8Vzxz+modNvI7DJP4bL1M8lnMw/dJ+/6yoX0D88sCTH5i3SP1D+rdsrjNQ/l6rDSk8r1z8N+8HrIwTaPxu/ju0XD90/bEXL6yIi4D8UJ37ux83hP/c6WTJahuM/3ocMtrRH5T/yuTJpuA3nPw32jytY1Og/4lGHDqOX6j9FV5XEzlPsPzrBBKtBBe4/HDTJ25io7z9cLDC0WJ3wP699mDxXXPE/Yg5m3v0P8j/Ff85XKbfyPy5JeOTeUPM/HK4EaEvc8z/KBkfiw1j0P8tsPKjExfQ/8X2Osu8i9T8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"3rHKJ66l1r8fD+7gYIXYv8xEIR7RZNq/niFA6nJD3L/Ge7vNvCDev3uerSAj/N+/WXcWhYTq4L84F2sbV9Xhv7iMaKwVvuK/ISiWCy6k47+ouMhS7Ibkv2K15xV1ZeW/6A8jkME+5r9Rrs5DnBHnvxW6H4Of3Oe/TH27Izie6L+RBP/FolTpv9EjSaD0/em/SfzpGx6Y6r/vvLm58SDrv10M2bYuluu/QRfOuIj1678O9JIJtTzsv3RSPzF1aey/9flpcaR57L/zMFKvQ2vsv0icMOKGPOy/ea5IauLr67/qTuArE3jrv6zSQmct4Oq/5V/iJqMj6r+AtwyLTELpv7ZsKVZtPOi/eWsLjrkS578QtdSTVcblv7bP6R7XWOS/JWID/kHM4r/Kbl+UAiPhv+gw/CbRv96/3NMsIzwM278utyJROTLXvz6R20BFOdO/AEjyWJxSzr8oE99LJBXGv1DxbhA1lru/cEPc6aoWpr+Ahr03DFCVP0Bdp/blZbU/kOhoE6aEwj9o8st2Mg/KP6jstq6/odA/akEdvrQJ1D9djMuN8TjXP86wP8aOKdo/VWCR80rW3D+ib2ELlTrfP/CMdbZKqeA/Dq0dZpaN4T/Dpts8+0jiP6bAfVuj2uI/3mDaFhNC4z+kK9CsI3/jPzfU3zADkuM/x/2gsCl74z/A5CDuWDvjPwihoQKT0+I/BuQHZxRF4j9++VBETZHhPyGI++XZueA/ZKy50vqA3z8gtx2AME7dP7rpmS5F39o/nRE4Kk842D/QE0YJd13VP1C7efnwUtI/IAuyVuM5zj/M+H90Q3/HPwxj10QufsA/GCxe3DR9sj8giOuWVIOMP1ibuOp4dqe/SBq47LNXu78mC2FM1JvFv/JPFnNLp82/Q/4qAzTk0r8jOVvD2fzWv5VciCQSG9u/toKSvIg8379dtF+6jK/hv7c5FwlnwOO/uB+95evP5b+YyaWJR93nv7cXVye35+m/hujPZ4Xu67/RHpPLCvHtv8aSI0Wp7u+/hRr7hGbz8L9brByec+zxvysfqyM44vK/bhvxX3LU879uSS024sL0v1iILEBJrfW/eNWEbmuT9r9SG9RUDXX3v2gpo5v2Ufi/2PVcAfEp+b/gh2Y+yfz5v/JYrh5Qyvq/uwiD7VqS+7/ivk0dxFT8v1DMNUtsEf2/QpoZxjrI/b/MHcRxHnn+v3wMroMNJP+/M4sUUgfJ/7/GrKBHCTQAwCBK14ufgADAA2T2BFLKAMAn70QzMBEBwMe2WcZMVQHAVcZkNb2WAcASs0D9mNUBwDKOzQL5EQLAMhGgPfZLAsDuRJImqYMCwCL0FqMouQLAzMErS4jsAsBqFmoj2B0DwFohW4IiTQPAAAmWn2t6A8DoMBYSsKUDwNKKq6XjzgPAUaqyLPH1A8B8vaq7uBoEwJPxtJIPPQTA2wGOu79cBMDqcORqh3kEwJ7VBaEZkwTA4pevCR6pBMB1wR1AMbsEwJtjkwLmyATAz3glYsbRBMCI4JmPVNUEwHaGO6oM0wTAkg/smmbKBMC8OLja17oEwBgCo9rVowTAsriJ5NeEBMD6nMjFWV0EwPZ4cBveLATA9OwZr/DyA8Da8+4DKa8DwCLW2yosYQPA1OkEfa8IA8B/UeebeaUCwEay0RhlNwLAQaxiBmG+AcDLm/q6cjoBwIq2eQG2qwDAv+c0gl0SAMBee9SwZt3+v9iBz0swgv2/2LMJwgQU/L9eUqUl+5P6v54B9w5SA/m/6M/KgWtj9790N8d6ybX1v15eJPUJ/PO/ZIoAMOI38r+iCQ4gGmvwvzTqga8OL+2/ZgJfbRB+6b/h7hGn/8blv2Mt2z2iDeK/sCsxtWer3L9F5FLvwUXVv/QC76b64su/4Lua4CXWur/AXFGwftt5P8AipgUlfL0/HExgrnRWzD+wqL9HR8bUP+0y32TPKts/f+tGTeWp4D/QM26zQ57jP4iA35ZWcOY/yIc9ehse6T//4FPzuKXrP5Pfp2t+Be4/2Vaz+vAd8D9czZBAwCPxPyp8CEKOE/I/Ro9xBtDs8j+U9wcCDa/zP+gTEI/hWfQ/HuaIcv7s9D/OR2yJKmj1P2A/q2dDy/U/dAGGLD8W9j9efZkpLkn2P6ZQQRQ8ZPY/KdTGxbBn9j9eOIXa8lP2P/6NV+GGKfY/6JHYYRHp9T8kUOAYV5P1P1Q5wVg7KfU/+ZKYOsGr9D+o/+u+CRz0P/P6Gt9Qe/M/HzVQ/OzK8j8KpOm8SwzyP30gM47tQPE/EzAsxGNq8D+IroOvlRTvP6dzsn6PRO0/BGBYhQNo6z8G2OlIPYLpP+qhwLh8luc/gSsp9eun5T/W/EuHlrnjP3o1JSlizuE/OHlHIg7S3z+o7X7dERjcP7zlTDlkc9g/BJaqvx3o1D9gehom1XnRPyiUxPk0V8w/yAVTa+b/xT8wP8eef+O/P8D2j/BkX7Q/IDJ8UMTuoj8ASPBO1FFqv+BI5QiI/KS/sIMQ7TmNs79wc9mgbAK8v6BwzIkS8cG/II0yGvmYxb84SwttIvzIvxDStF84Hsy/6OwWdjkDz78WC7n6tNfQvwyl6ladE9K/6BRU6543079Ii8cEDUbUv/DZoEM8QdW/CuOjgoAr1r8U/KAcJwfXv56ucdBz1te/BgfYc52b2L8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"ZPPzjhqB3D8UFUsVX27gP+pM0hDzh+I/6s7XjRqL5D8HxTWt4XXmPyBtsVaSRug/qQqX0rT76T9lXlmXDZTrP6lhgE+cDu0/9bzSL5tq7j9y6CR1e6fvP41hLZxxYvA/gLZWmlXh8D+4ageabVDxP/zk4+3Sr/E/cgkkZbT/8T/U1oVPUkDyP2dyPfD+cfI/am0LnxuV8j+cCXd8F6ryP+e0KBNusfI/vi1uBKWr8j+0rG15S5nyPx07ieX3evI/ahr/40ZR8j840Msg2RzyP+xjdIxS3vE/nZsEsliW8T8wuLEMkkXxPyJ+hu2i7PA/ClnmpS6M8D/8wFSo1CTwPwRGnUhhbu8/HCpPsLKH7j9YvJ/TvpbtPwuECmWcnOw/J2aVpFOa6z/ToEln4ZDqP9eDS3s0gek/l4AN7zBs6D+eFzWfrlLnP00Rr3d8NeY/y0l5o2EV5T/VX70LH/PjPxb9NENyz+I/I3mCkher4T806LwozYbgP75WLyuoxt4/0LxkbeeC3D8ye7ma9kPaP6y2hjSHC9g/+vELGmHb1T9G0lMdYrXTP06IeBF/m9E/CIxPe4gfzz+MUQdXoCjLP1Ts0XOdVsc/AHgWoPGtwz+A+vnwDzPAPwhxkOHD1Lk/sHfT22Wwsz8gXJF8cAKsP6DBHAi4naE/QBU+B7aAkD8AwAvHlIgTv4BvPv5T3Iy/AOMAgA6Bmr8AonIvJiKivxAAlZAd26W/oMzCBkxuqL8w+O7jN+Kpv2CWW99fQaq/6EozO1maqb+IoWpq0P+nv/ArqGmKiKW/QMYfe05Por9AXvAoS+Wcv6gY3aycKZS/EMiaYfZshb8AltydhZlLvwCSQckxG4I/yI/kAbeukj+QczDKhqmbP6RhKKuJz6E/iA6o1sYXpT+MBK8Kxn2nPygbE/qi0qg/UFRxYc3oqD+QaijPv5SnP0BbJ1BpraQ/QNHeT+AMoD/ga5+IRSGTPwDQYQ9/pWE/gIGdIfTfkr9AdZgbnSOmv7ATyWhkiLK/gO6A4zQhu7/4vbpSg2/Cv2wH6mvt4Me/lPV643Pjzb9UmSwtKzrSv/JQ0wC6x9W/Jjds1KyX2b8gW2vyqKbdv5YLpbtc+OC/XN3/hao447+maBdquJHlvxFosjLCAOi/Oa0ejc2C6r+WZy2OsBTtv363I2AZs++/z4UJ1kkt8b/JhpW9yYPyvyJTzbo82/O/K0lx/84x9b9wwl6XqoX2v4S5Lgf91Pe/YiCcTfkd+b++QGQw3F76vwa0IpLvlfu/rHQtNo3B/L9mKY6kIeD9v+klW/Eu8P6/Tn9bzk7w/7+P8mW8mm8AwLTyHRLZ3QDACVo7nVhCAcCLMEnfnpwBwILgiYZA7AHA/sHNWuIwAsAgFePGOGoCwDG8VegHmALAnHCPwCO6AsDM1eU7b9ACwJ0CI0rc2gLAsQig1WrZAsBSy0eKKMwCwKIfn5gvswLA8ka+QKaOAsCSZf61vV4CwGs/LJWxIwLA85VsAcbdAcBoLJMBSI0BwPD0k3KLMgHAjCW5nOrNAMAcimARxV8AwF/IHFL+0P+/Si2KeAHR/r/A+mvcaMD9vyMAnFEPoPy/39IIvNFw+7/hANaJjzP6vw6232Ip6fi/cGduaX+S9790ew2VcTD2v1WxYDHew/S/XDuLFqJN878qWNAal87xvxja7MaUR/C/q/jqJd9y7b/bqK278UnqvxnGjZr7Fee/9nqy+pHY478ZUUBGQZPgvwcccloej9q/FxEKefTt07+E8khq5IvKv5wgBFXhZ7q/AE7OwxwnUz/opGYZoPq6PzT3pAWky8o/LnBMGfkF1D/cfK+8fZzaP5ZogaVkk+A/VutM7ifR4z8Gg5wkRwbnP4NeY42EMeo/ZJ5C0aZR7T8alrk7uzLwP52Fqv7ftfE/UR2JKakx8z/8aKhWf6X0PySR30PMEPY/3DfGsPpy9z9i3RcRd8v4P70XQtSuGfo/fprs0RBd+z8YGf6CDZX8P3gnbH4Xwf0/Mq4HaKPg/j/cRgRzKPP/P5sWikAQfABAdxNKS4T3AECQI2mcsGsBQBbYGE5X2AFAvxAEpTw9AkCIqyngJpoCQOwLC4fe7gJAtEhPdC47A0CKBx/0434DQMxUm9nOuQNAQGO/XcHrA0Dwzls/kBQEQOmFtAMTNARAIwfvySNKBECwsKNbn1YEQHGf0ZtlWQRA9nZAMVlSBEDECRp5YEEEQHkzdmBlJgRAiEXU01UBBEA1Zy5YJNIDQFWMXa7ImANAOQaxTEBVA0AO0u2CjwcDQHJwa8rBrwJA0Yx8IetNAkDfjqL0KOIBQAMJAsiibAFA//rdoovtAEAcq2O+ImUAQBqMePFop/8/Qth+0TZz/j95ox+1gS79P66MPrc62vs/vcIar3J3+j//nkx+Wgf5P5oFn9ZCi/c/hb+i6poE9j9my0W/8XT0PwLIMJPx3fI/nWSGZF9B8T8wIh2bMELvP2T5fk4a/us/ZOAImYC66D9oPzOXf3vlP2LVs6ZEReI/DNknuQU43j/s7INN1AfYPxRCSlY2AtI/8GHdr35eyD/wvr4M7Fq6PwAReJG2AZQ/QGnb1MFsrr94Z8NWshfBv0AhGwhY6cm/LFxDtbAC0b8gKUpJMbHUv2AIWQck/Ne/CIFB/Tjg2r8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"},{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"SipCrDTcvT/c6sOJi8rFP8lE5A124cw/1skUAwwY0j8/8aU2TNnVPzPQGqfvsdk/qsXrv8ue3T9qsAjSA87gP/rAMU2T0uI/IKSHoIHa5D997o038eLmP/YT/Ie46Og/yMMqxXHo6j/c5RkKgt7sP5wO2hMkx+4/LL3ptjxP8D/z21WVSzDxP4jisgbLBPI/pvL+QNLK8j82M6WVioDzP6gLE0Y4JPQ/8GHT8UK09D8wdrFQPC/1P14MjiLnk/U/DCMlRj7h9T/OMCuFdxb2P/3svTUKM/Y/FIyy6q829j/vWfjxZiH2P/HB/vdy8/U/Jdb5HFqt9T/Dh6Nq5U/1P/utWrwa3PQ/2Wm5ZzlT9D981I1atLbzP+S3baorCPM/Oygd72RJ8j9099yPQ3zxPwiG407AovA/KneKvsJ97z+wSJosYqXtP5KXvfBrwOs/WcJSENXS6T/2GGZ6a+DnP1bkzq3G7OU/MnQ5ET374z/N20Xt1w7iP+OphfdJKuA/ID310M+f3D9oUDpYTAPZPxAq9uAigtU/ssMw+KEe0j8URqiTnrTNP1aVBTLRa8c/GIVmD+diwT9A4wxdHDG3PxhQfHzgKKg/wCtlE4WHdj8Y+E9E3Lehv2hACkx5w7K/gJIyffZZvL+uGSDCCdbCvx1rt2JsY8e/ldaxvbHby7+0eyOCoSLQv9LQ3VsaU9K/DNIW3ROC1L/cmOdtDrLWv+P4W3Et5di/SSFoeygd278yLfluQVvdv16MFfU8oN+/aodqay324L8s09o0rB/iv4asaw02TOO/h/MYoiV75L+86cDcl6vlv8Lb+7du3Oa/JOm9uVkM6L8bfAbe2Dnpv267oshDY+q/Jt+809SG678Oa/mDrqLsvz15dDjktO2/FBgXNYW77r+bYW3npLTvv4AhcooxT/C/thVYE3u78L8KDg4ZWR7xv9Tcn+wJd/G/lyMQm+HE8b95WmYfTwfyv0gAa1jePfK/SsXD1jpo8r/trHTbMIbyv6tJkB2wl/K/WTzB1sqc8r++g/5qt5Xyv/Gkiu7OgvK/A0VHh4xk8r/egq0vjDvyvwu1eeGHCPK/c2/4/VXM8b+KYGSE5Yfxv6lv/dM6PPG/IH89Y2zq8L+EmtmEnpPwvyODH4f+OPC/m4Q0zX+3778Pb2ywLPruvwQjyFVlPO6/xs8lBXuA7b+roBz3p8jsv4ATuAEHF+y/NgVcPoxt678ItDC7/s3qvwABWq/yOeq/Bv8CpsSy6b8SiCRhlTnpv3s3gwtHz+i/W2nzBnp06L/+nmVnjinov67PrLuf7ue/UqxMdorD579iUSRa6afnvwHnZfkam+e/7HHNuEKc57/MSc7ETqrnv3ewGXH6w+e/yN7a+tTn57/58cHQRBTovz5uNJyPR+i/EkZd7d5/6L/+b0ItRrvovwKj6XrJ9+i/hqvRJWMz6b8IpqSnCmzpv7rxUhq6n+m/UoUxBnTM6b+oYKWoSvDpv+6EZuNiCeq/tDCTO/wV6r8O9sZzcxTqv8LhV8FJA+q/TylR+CXh6b+mcSS82qzpv06LWJ9pZem/+2YCugUK6b9oKsM9FZrov4gvKT81Fei/s1CdRDl7579d4wLMLMzmvxOleoVTCOa/uPz4kicw5b+nTZEEWUTkv53Ve/fLReO/0bL2UpQ14r/Wg5uJ9RThv4IOD8Wzyt+/+tkZm6VQ3b/fiyfCHb/avy6HYWCyGdi/SmBS3R1k1b/NaRv0N6LSv3zFejfNr8+/ftAMhiQSyr8qs5osNnPEv0hzfe8mtb2/8JDcIRWfsr9Q68j0oMiev6A7s1LSI4g/GFH30z7xqj9gIZrBJZ+3P6irvHL7tsA/VMWMchNuxT+8XNRQ/PDJP5x4dIBsPM4/qILgR9Im0T8Xs5uPOBHTPzEqRS2N3NQ/2kYcqyyI1j+M7GkDpBPYP/gUEuWpftk/P6KKwxLJ2j90uEwjyvLbPwmAJW/J+9w/8IRFSw3k3T/cde6ajqveP2opI/E5Ut8/LFRSuufX3z+LopUjLh7gP19mWJycP+A/GdJjJgJQ4D/f7wDKD0/gP3yPTN9mPOA/WhZI05gX4D+aTtxmU8DfP8L8BokmK98/tq7IH4pu3j9tGVgBW4ndP8lQCSd1etw//hF9tMJA2z94EXEeRNvZPyRUNikcSdg/mNbWTZ+J1j9eqZpUXZzUP0Ixe04sgdI/K2Eqtjg40D9qMoKHE4TLP6QJWXkgP8Y/hs7K4FikwD/qNH/R3W61P6Db34EY9KE/YNm+oOwpkL8Uz5dBb5GxvwAIL0yXi7+/Oh3dLObzxr9+JvUCkUnOv4Q38CQ/3tK/fYpk/s6g1r/OIhARombav3BgmAmcKd6/DMKlG7jx4L/0Fvue2Mbiv3OSQhz0kOS/JBiL2tFM5r9rVH2JSffnv/Dlg9FKjem/dkhF/+gL679y+h0VZHDsv6BSVAgyuO2/siRB3gbh7r/4xpeo3Ojvv6NpNK77ZvC/v/gbM3bH8L/euwkEUhXxv80b82AuUPG/pTzM69R38b9J74CCOozxv+ZSdYh8jfG/wxSa3+B78b/t2Oud0VfxvwkLAGDbIfG/mpC936na8L+NiBJ0A4Pwv5DSn/bFG/C/wxKFPMRL77/uIGMBr0TuvwVKOhViJO2/7BocTgDt678=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"}]]]}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1546\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1547\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"MultiLine\",\"id\":\"p1542\",\"attributes\":{\"xs\":{\"type\":\"field\",\"field\":\"xs\"},\"ys\":{\"type\":\"field\",\"field\":\"ys\"},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b4\"},\"line_width\":{\"type\":\"value\",\"value\":0.5}}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"MultiLine\",\"id\":\"p1543\",\"attributes\":{\"xs\":{\"type\":\"field\",\"field\":\"xs\"},\"ys\":{\"type\":\"field\",\"field\":\"ys\"},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b4\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.1},\"line_width\":{\"type\":\"value\",\"value\":0.5}}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"MultiLine\",\"id\":\"p1544\",\"attributes\":{\"xs\":{\"type\":\"field\",\"field\":\"xs\"},\"ys\":{\"type\":\"field\",\"field\":\"ys\"},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b4\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.2},\"line_width\":{\"type\":\"value\",\"value\":0.5}}}}}],\"toolbar\":{\"type\":\"object\",\"name\":\"Toolbar\",\"id\":\"p1518\",\"attributes\":{\"tools\":[{\"type\":\"object\",\"name\":\"PanTool\",\"id\":\"p1532\"},{\"type\":\"object\",\"name\":\"WheelZoomTool\",\"id\":\"p1533\",\"attributes\":{\"renderers\":\"auto\"}},{\"type\":\"object\",\"name\":\"BoxZoomTool\",\"id\":\"p1534\",\"attributes\":{\"overlay\":{\"type\":\"object\",\"name\":\"BoxAnnotation\",\"id\":\"p1535\",\"attributes\":{\"syncable\":false,\"level\":\"overlay\",\"visible\":false,\"left_units\":\"canvas\",\"right_units\":\"canvas\",\"top_units\":\"canvas\",\"bottom_units\":\"canvas\",\"line_color\":\"black\",\"line_alpha\":1.0,\"line_width\":2,\"line_dash\":[4,4],\"fill_color\":\"lightgrey\",\"fill_alpha\":0.5}}}},{\"type\":\"object\",\"name\":\"SaveTool\",\"id\":\"p1536\"},{\"type\":\"object\",\"name\":\"ResetTool\",\"id\":\"p1537\"},{\"type\":\"object\",\"name\":\"HelpTool\",\"id\":\"p1538\"}]}},\"left\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1527\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1528\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1529\"},\"axis_label\":\"f(x)\",\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1530\"}}}],\"below\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1522\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1523\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1524\"},\"axis_label\":\"x\",\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1525\"}}}],\"center\":[{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1526\",\"attributes\":{\"axis\":{\"id\":\"p1522\"}}},{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1531\",\"attributes\":{\"dimension\":1,\"axis\":{\"id\":\"p1527\"}}}],\"frame_width\":450,\"frame_height\":250}}],\"defs\":[{\"type\":\"model\",\"name\":\"ReactiveHTML1\"},{\"type\":\"model\",\"name\":\"FlexBox1\",\"properties\":[{\"name\":\"align_content\",\"kind\":\"Any\",\"default\":\"flex-start\"},{\"name\":\"align_items\",\"kind\":\"Any\",\"default\":\"flex-start\"},{\"name\":\"flex_direction\",\"kind\":\"Any\",\"default\":\"row\"},{\"name\":\"flex_wrap\",\"kind\":\"Any\",\"default\":\"wrap\"},{\"name\":\"justify_content\",\"kind\":\"Any\",\"default\":\"flex-start\"}]},{\"type\":\"model\",\"name\":\"FloatPanel1\",\"properties\":[{\"name\":\"config\",\"kind\":\"Any\",\"default\":{\"type\":\"map\"}},{\"name\":\"contained\",\"kind\":\"Any\",\"default\":true},{\"name\":\"position\",\"kind\":\"Any\",\"default\":\"right-top\"},{\"name\":\"offsetx\",\"kind\":\"Any\",\"default\":null},{\"name\":\"offsety\",\"kind\":\"Any\",\"default\":null},{\"name\":\"theme\",\"kind\":\"Any\",\"default\":\"primary\"},{\"name\":\"status\",\"kind\":\"Any\",\"default\":\"normalized\"}]},{\"type\":\"model\",\"name\":\"GridStack1\",\"properties\":[{\"name\":\"mode\",\"kind\":\"Any\",\"default\":\"warn\"},{\"name\":\"ncols\",\"kind\":\"Any\",\"default\":null},{\"name\":\"nrows\",\"kind\":\"Any\",\"default\":null},{\"name\":\"allow_resize\",\"kind\":\"Any\",\"default\":true},{\"name\":\"allow_drag\",\"kind\":\"Any\",\"default\":true},{\"name\":\"state\",\"kind\":\"Any\",\"default\":[]}]},{\"type\":\"model\",\"name\":\"drag1\",\"properties\":[{\"name\":\"slider_width\",\"kind\":\"Any\",\"default\":5},{\"name\":\"slider_color\",\"kind\":\"Any\",\"default\":\"black\"},{\"name\":\"value\",\"kind\":\"Any\",\"default\":50}]},{\"type\":\"model\",\"name\":\"click1\",\"properties\":[{\"name\":\"terminal_output\",\"kind\":\"Any\",\"default\":\"\"},{\"name\":\"debug_name\",\"kind\":\"Any\",\"default\":\"\"},{\"name\":\"clears\",\"kind\":\"Any\",\"default\":0}]},{\"type\":\"model\",\"name\":\"toggle_value1\",\"properties\":[{\"name\":\"active_icons\",\"kind\":\"Any\",\"default\":{\"type\":\"map\"}},{\"name\":\"options\",\"kind\":\"Any\",\"default\":{\"type\":\"map\",\"entries\":[[\"favorite\",\"heart\"]]}},{\"name\":\"value\",\"kind\":\"Any\",\"default\":[]},{\"name\":\"_reactions\",\"kind\":\"Any\",\"default\":[]},{\"name\":\"_base_url\",\"kind\":\"Any\",\"default\":\"https://tabler-icons.io/static/tabler-icons/icons/\"}]},{\"type\":\"model\",\"name\":\"copy_to_clipboard1\",\"properties\":[{\"name\":\"value\",\"kind\":\"Any\",\"default\":null},{\"name\":\"fill\",\"kind\":\"Any\",\"default\":\"none\"}]},{\"type\":\"model\",\"name\":\"FastWrapper1\",\"properties\":[{\"name\":\"object\",\"kind\":\"Any\",\"default\":null},{\"name\":\"style\",\"kind\":\"Any\",\"default\":null}]},{\"type\":\"model\",\"name\":\"NotificationAreaBase1\",\"properties\":[{\"name\":\"js_events\",\"kind\":\"Any\",\"default\":{\"type\":\"map\"}},{\"name\":\"position\",\"kind\":\"Any\",\"default\":\"bottom-right\"},{\"name\":\"_clear\",\"kind\":\"Any\",\"default\":0}]},{\"type\":\"model\",\"name\":\"NotificationArea1\",\"properties\":[{\"name\":\"js_events\",\"kind\":\"Any\",\"default\":{\"type\":\"map\"}},{\"name\":\"notifications\",\"kind\":\"Any\",\"default\":[]},{\"name\":\"position\",\"kind\":\"Any\",\"default\":\"bottom-right\"},{\"name\":\"_clear\",\"kind\":\"Any\",\"default\":0},{\"name\":\"types\",\"kind\":\"Any\",\"default\":[{\"type\":\"map\",\"entries\":[[\"type\",\"warning\"],[\"background\",\"#ffc107\"],[\"icon\",{\"type\":\"map\",\"entries\":[[\"className\",\"fas fa-exclamation-triangle\"],[\"tagName\",\"i\"],[\"color\",\"white\"]]}]]},{\"type\":\"map\",\"entries\":[[\"type\",\"info\"],[\"background\",\"#007bff\"],[\"icon\",{\"type\":\"map\",\"entries\":[[\"className\",\"fas fa-info-circle\"],[\"tagName\",\"i\"],[\"color\",\"white\"]]}]]}]}]},{\"type\":\"model\",\"name\":\"Notification\",\"properties\":[{\"name\":\"background\",\"kind\":\"Any\",\"default\":null},{\"name\":\"duration\",\"kind\":\"Any\",\"default\":3000},{\"name\":\"icon\",\"kind\":\"Any\",\"default\":null},{\"name\":\"message\",\"kind\":\"Any\",\"default\":\"\"},{\"name\":\"notification_type\",\"kind\":\"Any\",\"default\":null},{\"name\":\"_destroyed\",\"kind\":\"Any\",\"default\":false}]},{\"type\":\"model\",\"name\":\"TemplateActions1\",\"properties\":[{\"name\":\"open_modal\",\"kind\":\"Any\",\"default\":0},{\"name\":\"close_modal\",\"kind\":\"Any\",\"default\":0}]},{\"type\":\"model\",\"name\":\"BootstrapTemplateActions1\",\"properties\":[{\"name\":\"open_modal\",\"kind\":\"Any\",\"default\":0},{\"name\":\"close_modal\",\"kind\":\"Any\",\"default\":0}]},{\"type\":\"model\",\"name\":\"MaterialTemplateActions1\",\"properties\":[{\"name\":\"open_modal\",\"kind\":\"Any\",\"default\":0},{\"name\":\"close_modal\",\"kind\":\"Any\",\"default\":0}]}]}};\n", " const render_items = [{\"docid\":\"a1be5d6d-68da-4f17-ad94-4876f32ab6cc\",\"roots\":{\"p1510\":\"c4bafb32-b550-4a6c-bb06-98fa1ad9ffac\"},\"root_ids\":[\"p1510\"]}];\n", " root.Bokeh.embed.embed_items_notebook(docs_json, render_items);\n", " }\n", " if (root.Bokeh !== undefined) {\n", " embed_document(root);\n", " } else {\n", " let attempts = 0;\n", " const timer = setInterval(function(root) {\n", " if (root.Bokeh !== undefined) {\n", " clearInterval(timer);\n", " embed_document(root);\n", " } else {\n", " attempts++;\n", " if (attempts > 100) {\n", " clearInterval(timer);\n", " console.log(\"Bokeh: ERROR: Unable to run BokehJS code because BokehJS library is missing\");\n", " }\n", " }\n", " }, 10, root)\n", " }\n", "})(window);" ], "application/vnd.bokehjs_exec.v0+json": "" }, "metadata": { "application/vnd.bokehjs_exec.v0+json": { "id": "p1510" } }, "output_type": "display_data" } ], "source": [ "# Make covariance matrix\n", "K = bebi103.gp.cov_exp_quad(xstar, alpha=1.0, rho=1.0)\n", "\n", "# Sample out of multivariate normal\n", "f = [rg.multivariate_normal(np.zeros_like(xstar), K) for _ in range(100)]\n", "\n", "# Make plot\n", "p = bokeh.plotting.figure(\n", " frame_height=250,\n", " frame_width=450,\n", " x_axis_label=\"x\",\n", " y_axis_label=\"f(x)\",\n", " x_range=[-5, 5],\n", ")\n", "p.multi_line([xstar for _ in range(100)], f, line_width=0.5)\n", "\n", "bokeh.io.show(p)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Composing kernels\n", "\n", "We may take any of the above kernels and compose them by multiplying or adding them together. For example, say we think our function is locally periodic, but may nonetheless vary over time. We might compose a kernel that is the product of a periodic and SE kernel." ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [], "source": [ "def mult_kern(x1, x2, alpha, rho_SE, rho_per, T):\n", " \"\"\"Kernel formed from multiplying periodic and SE kernels \"\"\"\n", " per = bebi103.gp.periodic_kernel(x1, x2, 1.0, rho_per, T)\n", " se = bebi103.gp.se_kernel(x1, x2, alpha, rho_SE)\n", " \n", " return se * per" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can use this kernel to build a covariance matrix and draw a sample." ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "
\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/javascript": [ "(function(root) {\n", " function embed_document(root) {\n", " const docs_json = {\"183aa360-56cc-4952-84a2-58d71f25c40a\":{\"version\":\"3.3.0\",\"title\":\"Bokeh Application\",\"roots\":[{\"type\":\"object\",\"name\":\"Figure\",\"id\":\"p1748\",\"attributes\":{\"x_range\":{\"type\":\"object\",\"name\":\"Range1d\",\"id\":\"p1757\",\"attributes\":{\"start\":-5,\"end\":5}},\"y_range\":{\"type\":\"object\",\"name\":\"DataRange1d\",\"id\":\"p1750\"},\"x_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1758\"},\"y_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1759\"},\"title\":{\"type\":\"object\",\"name\":\"Title\",\"id\":\"p1755\"},\"renderers\":[{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1783\",\"attributes\":{\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1777\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1778\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1779\"},\"data\":{\"type\":\"map\",\"entries\":[[\"x\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"}],[\"y\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"EEjdOsGJ3L/q7TUM1snOv/ifS9qPK5u/tr+1QlvPxj+geIReL/DWPxAAcjcMF+A/mKKdmPpU4z++x3lljRLlPx6DeQYwS+U/WsyKgNMX5D/6O95QYLLhP5/93kpL6Nw/HntUPNKY1T+bYiSKCMPMPyvAUt8xLcA/WEpr+HaXqj9A9LArKU12P2iPjUVfLZC/INGyDnkGlr/YxNgQ4G+bvyJCddVv06i/XPGyFNisub/4qNq1GhnIv7ZKSrb5udO/StHQA56L3L9CyLAXuZTivzb4/qH/D+a/e5AcrMof6L8yblI4AHXov2jGln3WGue/PZGwgVlt5L/wQMu1QPngvyLA0t3Fo9q/hpLB8czX078WS5FkdxrMv5S++uwUncK/GFBRFT0itb/Q8hiqyo+Xv8hkYFQHsqQ/RFlAcxdYvD8mPnsoKpvHP9pOc3FjG9A/k9Yfwx4h0z923+oyyw/UP8JSOXoWeNI//oQJv9H5zD9CbVnAfqHBP3A4jn2776M/iK6ZKohwq78C9F2oomTAvz+n0eA7D8e/wVyAJZdEy78VYNoByyDOv+xIZSyjh9C/WlkUqTq20r+dGQwxXiHWv5qgTXlZEdu/IPOITYLC4L8CPeI5TpTkv+bq6isJqui/z3Z3O2iN7L+JLb8hiLnvv1PzvzCE2/C/qIk3uacb8b8i6hNuqZLwv4CQ7aCgp+6/CA3qPwUW678GKtpyoefmv3h8v0QRneK/wpey8HZR3b+LvraVdLDWv6INCCckiNG/8DLwSJkty79us1osNHrEvxge/eszs7q/uF+TpzQdob+YsI+2aPSuP4gN1CX26sY/vu8tAgVS1D/awFrtk9HdP5Y2TGdpluM/LuZbl1jY5z+ZAaCSQ3jrP2ZO/ZbKcO4/2rldce518D/x+UCoX5nxP1yDs91nyvI/AudAF8sl9D/HRvYxLbH1P2EXSwNrU/c/9m7kwCnU+D9oVgAlhuT5P4pirQKEMPo/GOqYCT91+T/InFXxzpT3P7CN7TyNoPQ/fvmd7sXV8D8eZSBYWRzpPy6YGXOwU+A/bCieFD/Qzz+AvXueC0SJP7hlhtno2si/vhjnAT7y178+wQ+zCCLhvyn4RbVh++W/S+l1mxK/6r/pQDW7iYTvv3zHHOj6G/K/2fRoCYxN9L/WNbVlmSf2v559jhe7c/e/bi3VnsYA+L+QAYhTTa/3vy4Oq0Byeva/u5M/Vih69L+MQyHhY97xv1ism05Oyu2/Cdl5PE6c579E+kDgC53hvxF/uRtQG9i/1orQ30nty7/oq6c96w+yv3z+rP2yDrM/9F13EZbXzD+t1J8OKsbYP8jxBsHj4OE/klp/FNd05z+IUiJtCcfsP6gnqKzhwfA/AKRB2VO+8j/FDN68ZV70P0HxPg9WxPU/8xTUKQwl9z8VSL7VX7f4PynRpdcuovo/mAclVxLv/D8COQlJhIX/P6B6VsxlFwFAoEAWuO1PAkBBjr/JsUIDQBIVCqLSxwNAKqV6x7++A0D4ovfkYxMDQMxWgTtpwgFA+kQsxKq2/z/MrHB0Yv76Pyir2FGwtvU/QQpD2rJC8D/qOrzDivflPwOikd02iNg/ytmBOeE7vT8kaPv4NSu/v1FrFrjaNtW/jnkCCXTI4L9/9x37SrHmvyT4FjsdfOy/wnd+LT4U8b+aHzS7/cnzv1yMKMLSQva/suWZzSVd+L82UzQjPvf5v93vFEVB8/q/WrgGkRA7+78IRIdhfMT6v5cxZmM0lfm/2FIVpffE979QUk4TIXz1v9LXWgtq7fK/zHZsW4lL8L9e8kMSQ3vrv9oN3I/crea/CGYT7wEr4r8T2BjRdqTbv+wt7Fih/dK/1rHNhqR8xL+AzelodeaXv5ChYQmw/7s/uZ/C/OD7zT9AzaQPzHLWP4B67jPnpt0/jKIX8heU4j+SkyGI28zmPxztUYAQues/CLOJPfyw8D+3xfuinMnzP7Z3vPna8fY/dEUVUM/m+T82UQRrFWX8P7ZglBr4Mv4/wETbz90k/z8lVVf5HR7/PyJYPVUKEv4/QglwPhwH/D8H4f8Zhhr5P9SYH1hRgPU/vLcmshd98T/MLEujTrPqP4Ot1gcbqOI/k6IAOYJL1j9Ul/pL1/bAP1QIT1aktbG/CHZqkFgH0b+GuBvV4/3dv5bupwH16uW/qrg8Cmlh7b9BL9TdaqXyv5rOS13Lsfa//gXC8fyk+r/6M5lyeUf+v01vSNsGsQDAOle4n1jhAcCqnNskEKACwGtRGDrl3gLAzVryWG+YAsCJf8aiv9IBwM+xaULLoADAHnjNcINC/r/fBSy2ZfT6vxc0cc6KpPe/wvPdLvmS9L8LmReyw+fxv5weCQpwXu+/EPk8XOW567+kI/6UhKbovwfBABjU1uW/SRlpfuP44r+c2yhOVYDfv9qoGr3c2te/xhhNibBazb8QdlS6UPquvxbZ1fPoucA/wJQmIQGD1T8AhgVYNmLhPyYr0gItkuc/lkNxgw3S7D9enuxzVl3wP9K6Q9T9h/E/bOumqwTj8T9qJjq6RnvxP6LJMdP8ZvA/shNDEeN77T8sK80mhS/pP9R2cLTmH+Q/PjRjds4s3T9oTLspAeHRP3g6Wwpvmbw/EDT+ITLLor+gDQlwEY3Ev5LLs2M5utC/2A2wDcU91r8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"}]]}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1784\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1785\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1780\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":\"#1f77b4\",\"line_width\":2}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1781\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":\"#1f77b4\",\"line_alpha\":0.1,\"line_width\":2}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1782\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":\"#1f77b4\",\"line_alpha\":0.2,\"line_width\":2}}}}],\"toolbar\":{\"type\":\"object\",\"name\":\"Toolbar\",\"id\":\"p1756\",\"attributes\":{\"tools\":[{\"type\":\"object\",\"name\":\"PanTool\",\"id\":\"p1770\"},{\"type\":\"object\",\"name\":\"WheelZoomTool\",\"id\":\"p1771\",\"attributes\":{\"renderers\":\"auto\"}},{\"type\":\"object\",\"name\":\"BoxZoomTool\",\"id\":\"p1772\",\"attributes\":{\"overlay\":{\"type\":\"object\",\"name\":\"BoxAnnotation\",\"id\":\"p1773\",\"attributes\":{\"syncable\":false,\"level\":\"overlay\",\"visible\":false,\"left_units\":\"canvas\",\"right_units\":\"canvas\",\"top_units\":\"canvas\",\"bottom_units\":\"canvas\",\"line_color\":\"black\",\"line_alpha\":1.0,\"line_width\":2,\"line_dash\":[4,4],\"fill_color\":\"lightgrey\",\"fill_alpha\":0.5}}}},{\"type\":\"object\",\"name\":\"SaveTool\",\"id\":\"p1774\"},{\"type\":\"object\",\"name\":\"ResetTool\",\"id\":\"p1775\"},{\"type\":\"object\",\"name\":\"HelpTool\",\"id\":\"p1776\"}]}},\"left\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1765\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1766\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1767\"},\"axis_label\":\"f(x)\",\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1768\"}}}],\"below\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1760\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1761\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1762\"},\"axis_label\":\"x\",\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1763\"}}}],\"center\":[{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1764\",\"attributes\":{\"axis\":{\"id\":\"p1760\"}}},{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1769\",\"attributes\":{\"dimension\":1,\"axis\":{\"id\":\"p1765\"}}}],\"frame_width\":450,\"frame_height\":250}}],\"defs\":[{\"type\":\"model\",\"name\":\"ReactiveHTML1\"},{\"type\":\"model\",\"name\":\"FlexBox1\",\"properties\":[{\"name\":\"align_content\",\"kind\":\"Any\",\"default\":\"flex-start\"},{\"name\":\"align_items\",\"kind\":\"Any\",\"default\":\"flex-start\"},{\"name\":\"flex_direction\",\"kind\":\"Any\",\"default\":\"row\"},{\"name\":\"flex_wrap\",\"kind\":\"Any\",\"default\":\"wrap\"},{\"name\":\"justify_content\",\"kind\":\"Any\",\"default\":\"flex-start\"}]},{\"type\":\"model\",\"name\":\"FloatPanel1\",\"properties\":[{\"name\":\"config\",\"kind\":\"Any\",\"default\":{\"type\":\"map\"}},{\"name\":\"contained\",\"kind\":\"Any\",\"default\":true},{\"name\":\"position\",\"kind\":\"Any\",\"default\":\"right-top\"},{\"name\":\"offsetx\",\"kind\":\"Any\",\"default\":null},{\"name\":\"offsety\",\"kind\":\"Any\",\"default\":null},{\"name\":\"theme\",\"kind\":\"Any\",\"default\":\"primary\"},{\"name\":\"status\",\"kind\":\"Any\",\"default\":\"normalized\"}]},{\"type\":\"model\",\"name\":\"GridStack1\",\"properties\":[{\"name\":\"mode\",\"kind\":\"Any\",\"default\":\"warn\"},{\"name\":\"ncols\",\"kind\":\"Any\",\"default\":null},{\"name\":\"nrows\",\"kind\":\"Any\",\"default\":null},{\"name\":\"allow_resize\",\"kind\":\"Any\",\"default\":true},{\"name\":\"allow_drag\",\"kind\":\"Any\",\"default\":true},{\"name\":\"state\",\"kind\":\"Any\",\"default\":[]}]},{\"type\":\"model\",\"name\":\"drag1\",\"properties\":[{\"name\":\"slider_width\",\"kind\":\"Any\",\"default\":5},{\"name\":\"slider_color\",\"kind\":\"Any\",\"default\":\"black\"},{\"name\":\"value\",\"kind\":\"Any\",\"default\":50}]},{\"type\":\"model\",\"name\":\"click1\",\"properties\":[{\"name\":\"terminal_output\",\"kind\":\"Any\",\"default\":\"\"},{\"name\":\"debug_name\",\"kind\":\"Any\",\"default\":\"\"},{\"name\":\"clears\",\"kind\":\"Any\",\"default\":0}]},{\"type\":\"model\",\"name\":\"toggle_value1\",\"properties\":[{\"name\":\"active_icons\",\"kind\":\"Any\",\"default\":{\"type\":\"map\"}},{\"name\":\"options\",\"kind\":\"Any\",\"default\":{\"type\":\"map\",\"entries\":[[\"favorite\",\"heart\"]]}},{\"name\":\"value\",\"kind\":\"Any\",\"default\":[]},{\"name\":\"_reactions\",\"kind\":\"Any\",\"default\":[]},{\"name\":\"_base_url\",\"kind\":\"Any\",\"default\":\"https://tabler-icons.io/static/tabler-icons/icons/\"}]},{\"type\":\"model\",\"name\":\"copy_to_clipboard1\",\"properties\":[{\"name\":\"value\",\"kind\":\"Any\",\"default\":null},{\"name\":\"fill\",\"kind\":\"Any\",\"default\":\"none\"}]},{\"type\":\"model\",\"name\":\"FastWrapper1\",\"properties\":[{\"name\":\"object\",\"kind\":\"Any\",\"default\":null},{\"name\":\"style\",\"kind\":\"Any\",\"default\":null}]},{\"type\":\"model\",\"name\":\"NotificationAreaBase1\",\"properties\":[{\"name\":\"js_events\",\"kind\":\"Any\",\"default\":{\"type\":\"map\"}},{\"name\":\"position\",\"kind\":\"Any\",\"default\":\"bottom-right\"},{\"name\":\"_clear\",\"kind\":\"Any\",\"default\":0}]},{\"type\":\"model\",\"name\":\"NotificationArea1\",\"properties\":[{\"name\":\"js_events\",\"kind\":\"Any\",\"default\":{\"type\":\"map\"}},{\"name\":\"notifications\",\"kind\":\"Any\",\"default\":[]},{\"name\":\"position\",\"kind\":\"Any\",\"default\":\"bottom-right\"},{\"name\":\"_clear\",\"kind\":\"Any\",\"default\":0},{\"name\":\"types\",\"kind\":\"Any\",\"default\":[{\"type\":\"map\",\"entries\":[[\"type\",\"warning\"],[\"background\",\"#ffc107\"],[\"icon\",{\"type\":\"map\",\"entries\":[[\"className\",\"fas fa-exclamation-triangle\"],[\"tagName\",\"i\"],[\"color\",\"white\"]]}]]},{\"type\":\"map\",\"entries\":[[\"type\",\"info\"],[\"background\",\"#007bff\"],[\"icon\",{\"type\":\"map\",\"entries\":[[\"className\",\"fas fa-info-circle\"],[\"tagName\",\"i\"],[\"color\",\"white\"]]}]]}]}]},{\"type\":\"model\",\"name\":\"Notification\",\"properties\":[{\"name\":\"background\",\"kind\":\"Any\",\"default\":null},{\"name\":\"duration\",\"kind\":\"Any\",\"default\":3000},{\"name\":\"icon\",\"kind\":\"Any\",\"default\":null},{\"name\":\"message\",\"kind\":\"Any\",\"default\":\"\"},{\"name\":\"notification_type\",\"kind\":\"Any\",\"default\":null},{\"name\":\"_destroyed\",\"kind\":\"Any\",\"default\":false}]},{\"type\":\"model\",\"name\":\"TemplateActions1\",\"properties\":[{\"name\":\"open_modal\",\"kind\":\"Any\",\"default\":0},{\"name\":\"close_modal\",\"kind\":\"Any\",\"default\":0}]},{\"type\":\"model\",\"name\":\"BootstrapTemplateActions1\",\"properties\":[{\"name\":\"open_modal\",\"kind\":\"Any\",\"default\":0},{\"name\":\"close_modal\",\"kind\":\"Any\",\"default\":0}]},{\"type\":\"model\",\"name\":\"MaterialTemplateActions1\",\"properties\":[{\"name\":\"open_modal\",\"kind\":\"Any\",\"default\":0},{\"name\":\"close_modal\",\"kind\":\"Any\",\"default\":0}]}]}};\n", " const render_items = [{\"docid\":\"183aa360-56cc-4952-84a2-58d71f25c40a\",\"roots\":{\"p1748\":\"d86f4f50-c272-4d1c-9bd9-d719202a71d7\"},\"root_ids\":[\"p1748\"]}];\n", " root.Bokeh.embed.embed_items_notebook(docs_json, render_items);\n", " }\n", " if (root.Bokeh !== undefined) {\n", " embed_document(root);\n", " } else {\n", " let attempts = 0;\n", " const timer = setInterval(function(root) {\n", " if (root.Bokeh !== undefined) {\n", " clearInterval(timer);\n", " embed_document(root);\n", " } else {\n", " attempts++;\n", " if (attempts > 100) {\n", " clearInterval(timer);\n", " console.log(\"Bokeh: ERROR: Unable to run BokehJS code because BokehJS library is missing\");\n", " }\n", " }\n", " }, 10, root)\n", " }\n", "})(window);" ], "application/vnd.bokehjs_exec.v0+json": "" }, "metadata": { "application/vnd.bokehjs_exec.v0+json": { "id": "p1748" } }, "output_type": "display_data" } ], "source": [ "params = dict(alpha=1, rho_SE=3, rho_per=1, T=2)\n", "K = bebi103.gp.cov_from_kernel(xstar, xstar, mult_kern, **params)\n", "\n", "f = rg.multivariate_normal(np.zeros_like(xstar), K)\n", "\n", "# Make plot\n", "p = bokeh.plotting.figure(\n", " frame_height=250,\n", " frame_width=450,\n", " x_axis_label=\"x\",\n", " y_axis_label=\"f(x)\",\n", " x_range=[-5, 5],\n", ")\n", "p.line(xstar, f, line_width=2)\n", "\n", "bokeh.io.show(p)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Similarly, we can add kernels together. Say we have a periodic function, but it may increase over time. We can get a kernel that captures this behavior by adding a linear and a periodic kernel." ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "
\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/javascript": [ "(function(root) {\n", " function embed_document(root) {\n", " const docs_json = {\"73f1366f-2596-418c-b190-769fcc9e0a2a\":{\"version\":\"3.3.0\",\"title\":\"Bokeh Application\",\"roots\":[{\"type\":\"object\",\"name\":\"Figure\",\"id\":\"p1788\",\"attributes\":{\"x_range\":{\"type\":\"object\",\"name\":\"Range1d\",\"id\":\"p1797\",\"attributes\":{\"start\":-5,\"end\":5}},\"y_range\":{\"type\":\"object\",\"name\":\"DataRange1d\",\"id\":\"p1790\"},\"x_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1798\"},\"y_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1799\"},\"title\":{\"type\":\"object\",\"name\":\"Title\",\"id\":\"p1795\"},\"renderers\":[{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1823\",\"attributes\":{\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1817\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1818\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1819\"},\"data\":{\"type\":\"map\",\"entries\":[[\"x\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFMAVTOYg4NYTwCmYzEHArRPAPuSyYqCEE8BSMJmDgFsTwGd8f6RgMhPAe8hlxUAJE8CQFEzmIOASwKRgMgcBtxLAuawYKOGNEsDO+P5IwWQSwOJE5WmhOxLA95DLioESEsAL3bGrYekRwCApmMxBwBHANHV+7SGXEcBJwWQOAm4RwF4NSy/iRBHAclkxUMIbEcCHpRdxovIQwJvx/ZGCyRDAsD3ksmKgEMDEicrTQncQwNnVsPQiThDA7iGXFQMlEMAE3PpsxvcPwC10x66GpQ/AVgyU8EZTD8CApGAyBwEPwKg8LXTHrg7A0tT5tYdcDsD7bMb3RwoOwCQFkzkIuA3ATZ1fe8hlDcB2NSy9iBMNwKDN+P5IwQzAyGXFQAlvDMDy/ZGCyRwMwBuWXsSJygvARC4rBkp4C8BtxvdHCiYLwJZexInK0wrAv/aQy4qBCsDojl0NSy8KwBInKk8L3QnAOr/2kMuKCcBkV8PSizgJwI3vjxRM5gjAtodcVgyUCMDfHymYzEEIwAi49dmM7wfAMVDCG02dB8Ba6I5dDUsHwISAW5/N+AbArRgo4Y2mBsDWsPQiTlQGwP9IwWQOAgbAKOGNps6vBcBReVrojl0FwHoRJypPCwXApKnzaw+5BMDNQcCtz2YEwPbZjO+PFATAH3JZMVDCA8BICiZzEHADwHGi8rTQHQPAmjq/9pDLAsDD0os4UXkCwOxqWHoRJwLAFgMlvNHUAcA/m/H9kYIBwGgzvj9SMAHAkcuKgRLeAMC6Y1fD0osAwOP7IwWTOQDAGCjhjabO/79sWHoRJyr/v76IE5Wnhf6/ELmsGCjh/b9i6UWcqDz9v7QZ3x8pmPy/Bkp4o6nz+79YehEnKk/7v6qqqqqqqvq//NpDLisG+r9QC92xq2H5v6I7djUsvfi/9GsPuawY+L9GnKg8LXT3v5jMQcCtz/a/6vzaQy4r9r88LXTHrob1v5BdDUsv4vS/4o2mzq899L80vj9SMJnzv4bu2NWw9PK/2B5yWTFQ8r8qTwvdsavxv3x/pGAyB/G/zq895LJi8L9AwK3PZnzvv+gg4NZnM+6/iIES3mjq7L8w4kTlaaHrv9BCd+xqWOq/eKOp82sP6b8gBNz6bMbnv8BkDgJufea/aMVACW805b8IJnMQcOvjv7CGpRdxouK/UOfXHnJZ4b/4RwomcxDgv0BReVrojt2/gBLeaOr82r/Q00J37GrYvxCVp4Xu2NW/YFYMlPBG07+gF3Gi8rTQv+Cxq2HpRcy/gDR1fu0hx78Atz6b8f3Bv0BzEHDrs7m/gPBGU+fXrr8A9tmM74+UvwD22Yzvj5Q/gPBGU+fXrj9AcxBw67O5PwC3Ppvx/cE/YDR1fu0hxz/gsath6UXMP6AXcaLytNA/YFYMlPBG0z8QlaeF7tjVP9DTQnfsatg/gBLeaOr82j9AUXla6I7dP/hHCiZzEOA/UOfXHnJZ4T+whqUXcaLiPwgmcxBw6+M/aMVACW805T/AZA4Cbn3mPyAE3Ppsxuc/eKOp82sP6T/QQnfsaljqPzDiROVpoes/iIES3mjq7D/oIODWZzPuP0DArc9mfO8/0K895LJi8D98f6RgMgfxPyhPC92xq/E/2B5yWTFQ8j+E7tjVsPTyPzS+P1IwmfM/4I2mzq899D+QXQ1LL+L0PzwtdMeuhvU/7PzaQy4r9j+YzEHArc/2P0ScqDwtdPc/9GsPuawY+D+gO3Y1LL34P1AL3bGrYfk//NpDLisG+j+sqqqqqqr6P1h6EScqT/s/CEp4o6nz+z+0Gd8fKZj8P2DpRZyoPP0/ELmsGCjh/T+8iBOVp4X+P2xYehEnKv8/GCjhjabO/z/k+yMFkzkAQLpjV8PSiwBAkMuKgRLeAEBoM74/UjABQD6b8f2RggFAFgMlvNHUAUDsalh6EScCQMTSizhReQJAmjq/9pDLAkBwovK00B0DQEgKJnMQcANAHnJZMVDCA0D22YzvjxQEQMxBwK3PZgRApKnzaw+5BEB6EScqTwsFQFJ5WuiOXQVAKOGNps6vBUD+SMFkDgIGQNaw9CJOVAZArBgo4Y2mBkCEgFufzfgGQFrojl0NSwdAMlDCG02dB0AIuPXZjO8HQOAfKZjMQQhAtIdcVgyUCECM748UTOYIQGRXw9KLOAlAPL/2kMuKCUAQJypPC90JQOiOXQ1LLwpAwPaQy4qBCkCYXsSJytMKQGzG90cKJgtARC4rBkp4C0Acll7EicoLQPD9kYLJHAxAyGXFQAlvDECgzfj+SMEMQHg1LL2IEw1ATJ1fe8hlDUAkBZM5CLgNQPxsxvdHCg5A0NT5tYdcDkCoPC10x64OQICkYDIHAQ9AWAyU8EZTD0AsdMeuhqUPQATc+mzG9w9A7iGXFQMlEEDY1bD0Ik4QQMSJytNCdxBAsD3ksmKgEECc8f2RgskQQIalF3Gi8hBAclkxUMIbEUBeDUsv4kQRQEjBZA4CbhFANHV+7SGXEUAgKZjMQcARQAzdsath6RFA9pDLioESEkDiROVpoTsSQM74/kjBZBJAuKwYKOGNEkCkYDIHAbcSQJAUTOYg4BJAfMhlxUAJE0BmfH+kYDITQFIwmYOAWxNAPuSyYqCEE0AqmMxBwK0TQBRM5iDg1hNAAAAAAAAAFEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"}],[\"y\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"PlJ0w7Qg3L84CPtwYRrfvwBQBe+hEeC/Dn5VoS4B37/scavjyBrcv9y7qga/Tdi/OOwJ2NKs1L8o9UQ59jnSv7Lmm2EzsNG/pL+fry1r07+MHOwxvW7Xv9arc3Bvg92/Nh2UK0+p4r8s0plDPjjnv9zuCkR6KOy/Ai0+tp2N8L+f6PyqZMzyv0bpafVgkPS/csDYmKyk9b9SUXaJd/H1vzSW6Puch/W/79/l/nWf9L8UfVwnhInzv6xwxqp6lvK/hrQQwqEA8r/ekQW4Z9/xv4SEqiFQKPK/AuQLT8+58r8mZ/hGnWnzv5gbRwzrEPS/EnT4leST9L9k0O7/9uP0v0BwSUUI/fS/mEfTGRLe9L/HEx80tX/0v/ENRdbhzPO/Aew0+2Ci8r92AYUHO9fwv+wbO3zRl+y/l98i2GL15b/PzVl5MArcv8qUYLF8P8W/QK5pHzlUuz/kIRe9kq/WP+b8U/sfveE/8XhK0MAc5j9Trmw3dE7oPzwGJL1ghug/jhM3LuNI5z/PxeMYbU3lP+iWIOkNVuM/OjKFTnwE4j8amcP68rfhP/CcGNidfOI/Zq3AkiAR5D9M6/cEcf7lPx0lN9ouuuc/9MbGKLvI6D/TXqhpptXoP39H4MqtvOc/NpiRsxiD5T9aFAjtskjiP9CigcLmddw/JZFqyIUk0z8wrCs2OmTCP6AUlScPHoO/+EooZOOLwr+wKEBD/q7Pv0gOrvXpi9O/CqT+3xAi1L84qlh/Sf/Rv4wrOcyJPcy/VNq5lqyVw79wF4DDrOq4v3gtFJcy97C/kMXj7JxTsL+ApSa9HP21v7h9LsvFrL+/vDlpg9xdxb9QCA6JnmzKv3CfuVQAOc6/HhVjsjIx0L/Cdsh1PGnQv/j/EPj7fM+/lEPRw2UUzL8g1ZRDrNfFv5DzshTcOLe/wNVY2UkHnz+8fRRS/3zJP0uX9x/bl9o/IEZG3b5w5T/+ZjJMhzfuPxqlh9HKbPM/mmVSwPVC9z8si9skpUX6P3Sv+kTJPfw/1JDUhYog/T+SEXldyxD9P5jEL785V/w/I2Y+pV1S+z/+H/Ecp2H6P5C7BN1x0Pk/D8Mr8lrG+T+QcDgwK0H6P9unNSuiGfs/5TU/Ad0Q/D+8iX++3eH8P+6huIX+Uf0/S6Sz1cI7/T/GxatuqJH8P5ptYaahWfs/uBbEvlKl+T+lAaQceYz3P8w5n/+6LPU/IC4TdqWt8j8kGyLbAUTwP8Ixife7Xew/VR+vTSRY6T8fdjQBsc3nP64PbyoSz+c/05P0A/8Y6T+CCnxrbiLrP6Ly0MwaRO0/HAzbp/zp7j/zL3QL5LnvP9owbTK1oe8/RatR6ifM7j+aBkc9tobtP9nCccaUJew/1tozKtru6j8AjHJkig/qP/RwkQkqm+k/0+c9QVOV6T88SHcg4gLqP2Ua5ERg/Oo/q/Y1Jh247D8CH/VLFoTvP0wPsUdi1/E/8DMKrRSz9D+vkULq/Uz4P4boX8ibdvw/fTV3OF9vAEDEOXIurI8CQA9TEAu6aARA9BkWrPXQBUBkg2F/+bAGQJdv1C0ECAdAXg4HEsTrBkDp5dDkf4MGQJRNVKBx/wVALgUyaxuOBUAqaxj8F1IFQJVeW2IWWwVApNIEzOyjBUB6YAIS+hUGQCn3Mq53kAZAIjgTYVjxBkAoDIXYFB0HQKKz9uRbAwdAdrDPBqKfBkAhRc73W/YFQKIKFokfEQVAuQbf3E38A0CRKdfUg8cCQO7rpw3LhwFAr0G96c9YAEAno+ZPIrX+PzQWXnu0Vf0/0n9LVrm4/D/SVZYkRd78P9L8NV+znP0/1ujYPpKq/j/dJzhwPrT/PzQUb+gfOgBAmrQLXUxiAEDMPmgKjFEAQEn9EO/dFABAHiEIWviA/z+gpNBJNdL+P6h7wvI3Pv4/7KSQkdXY/T/qL1Jwq6n9P3dqbnHnsf0/R8GRJD/1/T8kNLtswoL+P8sxJTKEeP8/VzYRQFp/AEDdJMgjWZ0BQEVjJRsjHwNAFP/8J/D8BEDuxQMNtRsHQJ4W14ASUAlALG9yuxFmC0BtbvwpZysNQKszhMOSeQ5AJDVrv4A9D0DeM5RTF3sPQLj1vR0RTA9AIFM80UfaDkDv80y8flYOQNwwa12W7Q1A0m+ud8u+DUDnrAJ2m9UNQPwnjjvyKA5ANkD/XnqfDkB4Cq2ldRcPQOzsLRWYbw9Ajrxd51iOD0BmAjQ62GUPQGj4nsmi8w5AfXYEtn89DkD4vjIlrU0NQI/sZOISMQxAWVf47DT4CkBcegrCarkJQEJevqySkQhA4hajveCgB0A9YjcHoAMHQM7wqeZCyQZA3eTkU57tBkBWQqqaDVgHQF/1nQDb4QdAb+Amha9hCEAx+5qPdbcIQKm8F1rM0whAoAu62uK4CECUd6d/vnUIQMI6wHExHwhA+Ty8QV7JB0BAbAVHdYMHQDhPymAKVgdAYt0OyvtDB0A7b/ANvE0HQOxSErL7dQdAVFpE0LzFB0ALP1aKYU0IQDNdwFNaIQlAB0pCZwxTCkD7WiZveugLQE4OlygJ1g1ADnlXdwH9D0C7rqwIxxcRQFNVIpuZHBJACyCuuJ/0EkDObnWqSo4TQO2kvfVK4hNAv7k5fOL0E0Cepp8W1tQTQOnj6iMtmBNAg+93JFVXE0A=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"}]]}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1824\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1825\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1820\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":\"#1f77b4\",\"line_width\":2}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1821\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":\"#1f77b4\",\"line_alpha\":0.1,\"line_width\":2}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1822\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":\"#1f77b4\",\"line_alpha\":0.2,\"line_width\":2}}}}],\"toolbar\":{\"type\":\"object\",\"name\":\"Toolbar\",\"id\":\"p1796\",\"attributes\":{\"tools\":[{\"type\":\"object\",\"name\":\"PanTool\",\"id\":\"p1810\"},{\"type\":\"object\",\"name\":\"WheelZoomTool\",\"id\":\"p1811\",\"attributes\":{\"renderers\":\"auto\"}},{\"type\":\"object\",\"name\":\"BoxZoomTool\",\"id\":\"p1812\",\"attributes\":{\"overlay\":{\"type\":\"object\",\"name\":\"BoxAnnotation\",\"id\":\"p1813\",\"attributes\":{\"syncable\":false,\"level\":\"overlay\",\"visible\":false,\"left_units\":\"canvas\",\"right_units\":\"canvas\",\"top_units\":\"canvas\",\"bottom_units\":\"canvas\",\"line_color\":\"black\",\"line_alpha\":1.0,\"line_width\":2,\"line_dash\":[4,4],\"fill_color\":\"lightgrey\",\"fill_alpha\":0.5}}}},{\"type\":\"object\",\"name\":\"SaveTool\",\"id\":\"p1814\"},{\"type\":\"object\",\"name\":\"ResetTool\",\"id\":\"p1815\"},{\"type\":\"object\",\"name\":\"HelpTool\",\"id\":\"p1816\"}]}},\"left\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1805\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1806\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1807\"},\"axis_label\":\"f(x)\",\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1808\"}}}],\"below\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1800\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1801\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1802\"},\"axis_label\":\"x\",\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1803\"}}}],\"center\":[{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1804\",\"attributes\":{\"axis\":{\"id\":\"p1800\"}}},{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1809\",\"attributes\":{\"dimension\":1,\"axis\":{\"id\":\"p1805\"}}}],\"frame_width\":450,\"frame_height\":250}}],\"defs\":[{\"type\":\"model\",\"name\":\"ReactiveHTML1\"},{\"type\":\"model\",\"name\":\"FlexBox1\",\"properties\":[{\"name\":\"align_content\",\"kind\":\"Any\",\"default\":\"flex-start\"},{\"name\":\"align_items\",\"kind\":\"Any\",\"default\":\"flex-start\"},{\"name\":\"flex_direction\",\"kind\":\"Any\",\"default\":\"row\"},{\"name\":\"flex_wrap\",\"kind\":\"Any\",\"default\":\"wrap\"},{\"name\":\"justify_content\",\"kind\":\"Any\",\"default\":\"flex-start\"}]},{\"type\":\"model\",\"name\":\"FloatPanel1\",\"properties\":[{\"name\":\"config\",\"kind\":\"Any\",\"default\":{\"type\":\"map\"}},{\"name\":\"contained\",\"kind\":\"Any\",\"default\":true},{\"name\":\"position\",\"kind\":\"Any\",\"default\":\"right-top\"},{\"name\":\"offsetx\",\"kind\":\"Any\",\"default\":null},{\"name\":\"offsety\",\"kind\":\"Any\",\"default\":null},{\"name\":\"theme\",\"kind\":\"Any\",\"default\":\"primary\"},{\"name\":\"status\",\"kind\":\"Any\",\"default\":\"normalized\"}]},{\"type\":\"model\",\"name\":\"GridStack1\",\"properties\":[{\"name\":\"mode\",\"kind\":\"Any\",\"default\":\"warn\"},{\"name\":\"ncols\",\"kind\":\"Any\",\"default\":null},{\"name\":\"nrows\",\"kind\":\"Any\",\"default\":null},{\"name\":\"allow_resize\",\"kind\":\"Any\",\"default\":true},{\"name\":\"allow_drag\",\"kind\":\"Any\",\"default\":true},{\"name\":\"state\",\"kind\":\"Any\",\"default\":[]}]},{\"type\":\"model\",\"name\":\"drag1\",\"properties\":[{\"name\":\"slider_width\",\"kind\":\"Any\",\"default\":5},{\"name\":\"slider_color\",\"kind\":\"Any\",\"default\":\"black\"},{\"name\":\"value\",\"kind\":\"Any\",\"default\":50}]},{\"type\":\"model\",\"name\":\"click1\",\"properties\":[{\"name\":\"terminal_output\",\"kind\":\"Any\",\"default\":\"\"},{\"name\":\"debug_name\",\"kind\":\"Any\",\"default\":\"\"},{\"name\":\"clears\",\"kind\":\"Any\",\"default\":0}]},{\"type\":\"model\",\"name\":\"toggle_value1\",\"properties\":[{\"name\":\"active_icons\",\"kind\":\"Any\",\"default\":{\"type\":\"map\"}},{\"name\":\"options\",\"kind\":\"Any\",\"default\":{\"type\":\"map\",\"entries\":[[\"favorite\",\"heart\"]]}},{\"name\":\"value\",\"kind\":\"Any\",\"default\":[]},{\"name\":\"_reactions\",\"kind\":\"Any\",\"default\":[]},{\"name\":\"_base_url\",\"kind\":\"Any\",\"default\":\"https://tabler-icons.io/static/tabler-icons/icons/\"}]},{\"type\":\"model\",\"name\":\"copy_to_clipboard1\",\"properties\":[{\"name\":\"value\",\"kind\":\"Any\",\"default\":null},{\"name\":\"fill\",\"kind\":\"Any\",\"default\":\"none\"}]},{\"type\":\"model\",\"name\":\"FastWrapper1\",\"properties\":[{\"name\":\"object\",\"kind\":\"Any\",\"default\":null},{\"name\":\"style\",\"kind\":\"Any\",\"default\":null}]},{\"type\":\"model\",\"name\":\"NotificationAreaBase1\",\"properties\":[{\"name\":\"js_events\",\"kind\":\"Any\",\"default\":{\"type\":\"map\"}},{\"name\":\"position\",\"kind\":\"Any\",\"default\":\"bottom-right\"},{\"name\":\"_clear\",\"kind\":\"Any\",\"default\":0}]},{\"type\":\"model\",\"name\":\"NotificationArea1\",\"properties\":[{\"name\":\"js_events\",\"kind\":\"Any\",\"default\":{\"type\":\"map\"}},{\"name\":\"notifications\",\"kind\":\"Any\",\"default\":[]},{\"name\":\"position\",\"kind\":\"Any\",\"default\":\"bottom-right\"},{\"name\":\"_clear\",\"kind\":\"Any\",\"default\":0},{\"name\":\"types\",\"kind\":\"Any\",\"default\":[{\"type\":\"map\",\"entries\":[[\"type\",\"warning\"],[\"background\",\"#ffc107\"],[\"icon\",{\"type\":\"map\",\"entries\":[[\"className\",\"fas fa-exclamation-triangle\"],[\"tagName\",\"i\"],[\"color\",\"white\"]]}]]},{\"type\":\"map\",\"entries\":[[\"type\",\"info\"],[\"background\",\"#007bff\"],[\"icon\",{\"type\":\"map\",\"entries\":[[\"className\",\"fas fa-info-circle\"],[\"tagName\",\"i\"],[\"color\",\"white\"]]}]]}]}]},{\"type\":\"model\",\"name\":\"Notification\",\"properties\":[{\"name\":\"background\",\"kind\":\"Any\",\"default\":null},{\"name\":\"duration\",\"kind\":\"Any\",\"default\":3000},{\"name\":\"icon\",\"kind\":\"Any\",\"default\":null},{\"name\":\"message\",\"kind\":\"Any\",\"default\":\"\"},{\"name\":\"notification_type\",\"kind\":\"Any\",\"default\":null},{\"name\":\"_destroyed\",\"kind\":\"Any\",\"default\":false}]},{\"type\":\"model\",\"name\":\"TemplateActions1\",\"properties\":[{\"name\":\"open_modal\",\"kind\":\"Any\",\"default\":0},{\"name\":\"close_modal\",\"kind\":\"Any\",\"default\":0}]},{\"type\":\"model\",\"name\":\"BootstrapTemplateActions1\",\"properties\":[{\"name\":\"open_modal\",\"kind\":\"Any\",\"default\":0},{\"name\":\"close_modal\",\"kind\":\"Any\",\"default\":0}]},{\"type\":\"model\",\"name\":\"MaterialTemplateActions1\",\"properties\":[{\"name\":\"open_modal\",\"kind\":\"Any\",\"default\":0},{\"name\":\"close_modal\",\"kind\":\"Any\",\"default\":0}]}]}};\n", " const render_items = [{\"docid\":\"73f1366f-2596-418c-b190-769fcc9e0a2a\",\"roots\":{\"p1788\":\"c3cc6393-3949-472e-b0e7-cfa4f1042753\"},\"root_ids\":[\"p1788\"]}];\n", " root.Bokeh.embed.embed_items_notebook(docs_json, render_items);\n", " }\n", " if (root.Bokeh !== undefined) {\n", " embed_document(root);\n", " } else {\n", " let attempts = 0;\n", " const timer = setInterval(function(root) {\n", " if (root.Bokeh !== undefined) {\n", " clearInterval(timer);\n", " embed_document(root);\n", " } else {\n", " attempts++;\n", " if (attempts > 100) {\n", " clearInterval(timer);\n", " console.log(\"Bokeh: ERROR: Unable to run BokehJS code because BokehJS library is missing\");\n", " }\n", " }\n", " }, 10, root)\n", " }\n", "})(window);" ], "application/vnd.bokehjs_exec.v0+json": "" }, "metadata": { "application/vnd.bokehjs_exec.v0+json": { "id": "p1788" } }, "output_type": "display_data" } ], "source": [ "def add_kern(x1, x2, sigma_b, sigma, alpha, rho, T):\n", " \"\"\"Kernel formed from adding linear and SE kernels \"\"\"\n", " per = bebi103.gp.periodic_kernel(x1, x2, alpha, rho, T)\n", " linear = bebi103.gp.linear_kernel(x1, x2, sigma_b, sigma)\n", " \n", " return linear + per\n", "\n", "\n", "params = dict(sigma_b=0, sigma=1, alpha=1, rho=1, T=2)\n", "K = bebi103.gp.cov_from_kernel(xstar, xstar, add_kern, **params)\n", "\n", "f = rg.multivariate_normal(np.zeros_like(xstar), K)\n", "\n", "# Make plot\n", "p = bokeh.plotting.figure(\n", " frame_height=250,\n", " frame_width=450,\n", " x_axis_label=\"x\",\n", " y_axis_label=\"f(x)\",\n", " x_range=[-5, 5],\n", ")\n", "p.line(xstar, f, line_width=2)\n", "\n", "bokeh.io.show(p)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Inference with GPs\n", "\n", "Gaussian processes can be used as priors in many models. For example, imagine we are measuring the number of gene transcripts in cells by RNA FISH. We assume the expression is not bursty and well-described by a Poisson distribution parametrized by rate parameter $\\lambda$. But we do this experiment for various concentrations $\\mathbf{c} = \\{c_1, c_2, \\ldots\\}$ of IPTG, which can affect gene expression levels. We may not know how it affects those levels, so we can model $\\lambda$ using a Gaussian process with a SE kernel. Our statistical model is then\n", "\n", "\\begin{align}\n", "&\\ln \\lambda(\\mathbf{c}) \\mid \\alpha, \\rho \\sim\\text{GP}(0, k_\\mathrm{SE}(c, c'; \\alpha, \\rho)), \\\\[1em]\n", "&n_i \\sim \\text{Pois}(\\lambda(c_i)) \\;\\forall i.\n", "\\end{align}\n", "\n", "Of course, we do need to specify hyperpriors for $\\alpha$ and $\\rho$ to complete the model. Note that the mean function here is not zero, since we cannot center and scale count data the same way we can continuous data.\n", "\n", "In practice, we consider a finite set of points, so we could construct a covariance matrix $\\mathsf{K}(\\mathbf{c}, \\mathbf{c})$ from the kernel. The entries of $\\mathsf{K}$ are \n", "\n", "\\begin{align}\n", "K_{ij} = k_\\mathrm{SE}(c_i, c_j ; \\alpha, \\rho).\n", "\\end{align}\n", "\n", "We then could specify our model as\n", "\n", "\\begin{align}\n", "&\\alpha \\sim \\text{appropriate hyperprior}\\\\[1em]\n", "&\\rho \\sim \\text{appropriate hyperprior}\\\\[1em]\n", "&\\ln \\lambda(\\mathbf{c}) \\mid \\alpha, \\rho \\sim \\text{MultiNormal}(\\mathbf{0}, \\mathsf{K}) \\\\[1em]\n", "&n_i \\sim \\text{Pois}(\\lambda(c_i)) \\;\\forall i.\n", "\\end{align}\n", "\n", "We will discuss inference with this model in a subsequent lesson on GPs in practice. \n", "\n", "Now, we will consider the special case where we have a Normal likelihood with a GP prior. In this case, we can make significant analytical progress that greatly eases the analysis." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Normal likelihoods with Gaussian process priors\n", "\n", "While GPs priors can be used for arbitrary likelihoods, such as the Poisson likelihood we used above, Normal likelihoods are widely encountered and have some special (and *very* convenient) properties. Specifically, we expect our observation $y$ to follow $y = f(\\mathbf{x})$, with some Normally distributed, possibly heteroscedastic error $\\boldsymbol{\\sigma}$, i.e.,\n", "\n", "\\begin{align}\n", "y_i \\sim \\text{Norm}(f(\\mathbf{x}_i), \\sigma_i) \\;\\;\\forall i.\n", "\\end{align}\n", "\n", "I will not prove the very convenient properties of this likelihood here, but will state them:\n", "\n", "1. For a given set of hyperparameters, a GP prior is conjugate to a Normal likelihood. This means that the posterior is known analytically.\n", "2. The nonparametric function $f(\\mathbf{x})$ may be marginalized out. The resulting inference then only involves the hyperparameters of the kernel.\n", "\n", "In our demonstrations, we will use an arbitrary kernel, $k(\\mathbf{x}, \\mathbf{x}';\\theta_k)$, since the results we will show are independent of choice of kernel (provided of course that it is positive definite). The complete model is then (without yet specifying priors for the hyperparameters)\n", "\n", "\\begin{align}\n", "&\\theta_k \\sim \\text{to be defined}, \\\\[1em]\n", "&\\boldsymbol{\\sigma} \\sim \\text{to be defined},\\\\[1em]\n", "&f \\sim \\text{GP}(\\mathbf{0}, k(\\mathbf{x}, \\mathbf{x}';\\theta_k)),\\\\[1em]\n", "&y_i \\sim \\text{Norm}(f(\\mathbf{x}_i), \\sigma_i) \\;\\;\\forall i.\n", "\\end{align}\n", "\n", "Because of the conjugacy, the posterior is also a GP,\n", "\n", "\\begin{align}\n", "f(\\mathbf{x}) \\mid \\mathbf{y}, \\mathbf{X} \\sim \\text{GP}(m(\\mathbf{x}), k(\\mathbf{x}, \\mathbf{x}'; \\theta_k) + \\sigma_\\mathbf{x}^2\\,\\delta_{\\mathbf{x}, \\mathbf{x}'}),\n", "\\end{align}\n", "\n", "with\n", "\n", "\\begin{align}\n", "\\delta_{\\mathbf{x},\\mathbf{x}'} = \\left\\{\\begin{array}{lll}1 && \\mathbf{x} = \\mathbf{x}'\\\\\n", "0 && \\mathbf{x} \\ne \\mathbf{x}',\\end{array}\\right.\n", "\\end{align}\n", "\n", "and $\\sigma_\\mathbf{x}^2$ is defined as the variance in the Normal likelihood at point $\\mathbf{x}$. The posterior kernel is given by the prior kernel plus the homoscedastic variance. (In the heteroscedastic case, the respective variance is added to each point $\\mathbf{x}$ where the function $f(\\mathbf{x})$ is evaluated.) We have defined a posterior mean function $m(\\mathbf{x})$, which depends on the measured quantities $\\mathbf{y}$. We will show the analytical expression for $m(\\mathbf{x})$ evaluated at specific points in terms of the covariance matrix derived from the kernel momentarily in the next section. Note that a GP prior is *only* conjugate to a Normal likelihood and not to other likelihoods.\n", "\n", "But wait, there's more! Through some mathematical grunge, we may marginalize away $f$ out of this model (again, this is a special case of a Normal likelihood; we cannot do this in general). Skipping the derivation, the resulting model is\n", "\n", "\\begin{align}\n", "&\\theta_k \\sim \\text{to be defined}, \\\\[1em]\n", "&\\boldsymbol{\\sigma} \\sim \\text{to be defined},\\\\[1em]\n", "&\\mathbf{y} \\sim \\text{MultiNorm}(\\mathbf{0}, \\mathsf{K}_\\mathbf{y}),\n", "\\end{align} \n", "\n", "where we have defined\n", "\n", "\\begin{align}\n", "\\mathsf{K}_\\mathbf{y} \\equiv \\mathsf{K}(\\mathbf{X}, \\mathbf{X}) + \\mathrm{diag}(\\boldsymbol{\\sigma}^2),\n", "\\end{align}\n", "\n", "where $\\mathrm{diag}(\\boldsymbol{\\sigma})$ is a diagonal covariance matrix constructed from the array of $\\sigma$ values." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### The posterior predictive distribution of function values\n", "\n", "If we specify priors for the hyperparameters $\\theta_k$ and for $\\sigma$, we have a fully specified model. Because we can conveniently marginalize out $f$, we only need to focus on $\\theta_k$ and $\\boldsymbol{\\sigma}$ as parameters to infer. In the next lesson, we will learn how to find $\\theta_k$ and $\\sigma$ by finding the MAP and (better) how to draw samples of them using MCMC with Stan. For now, we will focus on understanding the posterior distribution for *particular* values of $\\theta_k$ and $\\boldsymbol{\\sigma}$. \n", "\n", "Going from the posterior samples of the parameters to the posterior predictive distribution is kind of tricky because the values of the function $f$ at unmeasured positions $\\mathbf{X}_*$, which we shall denote for notational convenience as $\\mathbf{f}_* = f(\\mathbf{X}_*)$, depend on the observed values $\\mathbf{y}$ and the positions $\\mathbf{X}$ at which $\\mathbf{y}$ were measured. We wish to compute the posterior predictive distribution of function values, $\\mathbf{f}_* \\mid \\mathbf{X}_*, \\mathbf{X}, \\mathbf{y}$. We can take advantage of some properties of multivariate Normal distributions to do it.\n", "\n", "To start, we can specify a *joint* distribution of the posterior of the observed points, $\\mathbf{y} = f(\\mathbf{X})$ and the desired set of function evaluations, $\\mathbf{f}_* = f(\\mathbf{X}_*)$. That is, the joint distribution $\\mathbf{y}, \\mathbf{f}_* \\mid \\mathbf{X}_*, \\mathbf{X}$. We can do this because we know the posterior is a Gaussian process. The joint distribution is again a multivariate Gaussian,\n", "\n", "\\begin{align}\n", "\\begin{pmatrix}\n", "\\mathbf{y}\\\\\n", "\\mathbf{f}_*\n", "\\end{pmatrix} \\sim\n", "\\text{MultiNorm}\\left( \\mathbf{0},\n", "\\begin{pmatrix}\n", "\\mathsf{K}_\\mathbf{y} & \\mathsf{K}_* \\\\[0.5em]\n", "\\mathsf{K}_*^\\mathsf{T} & \\mathsf{K}_{**}\n", "\\end{pmatrix}\n", "\\right).\n", "\\end{align}\n", "\n", "For further notational simplicity, we have defined\n", "\n", "\\begin{align}\n", "&\\mathsf{K}_* = \\mathsf{K}(\\mathbf{X}, \\mathbf{X}_*) \\\\[1em]\n", "&\\mathsf{K}_{**} = \\mathsf{K}(\\mathbf{X}_*, \\mathbf{X}_*).\n", "\\end{align}\n", "\n", "It is a property of Gaussian matrices (which may be derived with lots of grunge) that we can get the conditional distribution (the posterior predictive distribution) from the joint distribution. Using this result (again, not derived here), we can write the posterior predictive distribution as\n", "\n", "\\begin{align}\n", "\\mathbf{f}_* \\mid \\mathbf{X}_*, \\mathbf{X}, \\mathbf{y} \\sim\n", "\\text{MultiNorm}(\\mathbf{m}_*, \\mathsf{\\Sigma}_*),\n", "\\end{align}\n", "\n", "where\n", "\n", "\\begin{align}\n", "&\\mathbf{m}_* = \\mathsf{K}_*^\\mathsf{T} \\cdot \\mathsf{K}_\\mathbf{y}^{-1} \\cdot \\mathbf{y},\\\\\n", "&\\mathsf{\\Sigma}_* = \\mathsf{K}_{**} - \\mathsf{K}_*^\\mathsf{T} \\cdot \\mathsf{K}_\\mathbf{y}^{-1} \\cdot \\mathsf{K}_*.\n", "\\end{align}\n", "\n", "The vector $\\mathbf{m}_*$ gives the mean value of $\\mathbf{f}_* \\equiv f(\\mathbf{X}_*)$. The diagonal entries of $\\mathsf{\\Sigma}_*$ give the variance, and therefore the uncertainty, in $\\mathbf{y}_*$. Computing $\\mathbf{m}_*$ and $\\mathsf{\\Sigma}_*$ (or at least its diagonal entries) gives us our predictions for a given set of hyperparameters." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Computing the parameters of the posterior predictive distribution\n", "\n", "At the center the calculation of $\\mathbf{m}_*$ is inverting the matrix $\\mathsf{K}_\\mathbf{y}$. More specifically, we need to compute $\\mathsf{K}_\\mathbf{y}^{-1}\\mathbf{y}$, which is the solution $\\boldsymbol{\\xi}$ to\n", "\n", "\\begin{align}\n", "\\mathsf{K}_\\mathbf{y} \\cdot \\boldsymbol{\\xi} = \\mathbf{y}.\n", "\\end{align}\n", "\n", "Because $\\mathsf{K}_\\mathbf{y}$ is symmetric and positive definite by construction, it has a **Cholesky decomposition**, $\\mathsf{L}$, such that\n", "\n", "\\begin{align}\n", "\\mathsf{K}_\\mathbf{y} = \\mathsf{L}\\cdot\\mathsf{L}^\\mathsf{T}.\n", "\\end{align}\n", "\n", "The matrix $\\mathsf{L}$ is lower triangular. Importantly, it can be stably computed in order $n^3$ operations (for an $n\\times n$ $\\mathsf{K}_\\mathbf{y}$). Substituting in $\\mathsf{K}_\\mathbf{y}$'s Cholesky decomposition,\n", "\n", "\\begin{align}\n", "\\mathsf{L}\\cdot\\mathsf{L}^\\mathsf{T} \\cdot \\boldsymbol{\\xi} = \\mathbf{y}.\n", "\\end{align}\n", "\n", "Let $\\mathbf{z} = \\mathsf{L}^\\mathsf{T} \\cdot \\boldsymbol{\\xi}$. Then we can solve for $\\mathbf{z}$ by solving\n", "\n", "\\begin{align}\n", "\\mathsf{L}\\cdot \\mathbf{z} = \\mathbf{y}.\n", "\\end{align}\n", "\n", "This is a triangular system and is easily solved. Given $\\mathbf{z}$, we then solve for $\\boldsymbol{\\xi}$ by solving another triangular system\n", "\n", "\\begin{align}\n", "\\mathsf{L}^\\mathsf{T}\\cdot \\boldsymbol{\\xi} = \\mathbf{z}.\n", "\\end{align}\n", "\n", "Note that $\\mathsf{L}^\\mathsf{T}$ is an upper triangular matrix. Stan has built-in solvers for *lower* triangular matrices, so we can convert this to a lower triangular system by taking the transpose of both sides.\n", "\n", "\\begin{align}\n", "\\left(\\mathsf{L}^\\mathsf{T}\\cdot \\boldsymbol{\\xi}\\right)^\\mathsf{T} = \\boldsymbol{\\xi}^\\mathsf{T} \\mathsf{L} = \\mathbf{z}^\\mathsf{T}.\n", "\\end{align}\n", "\n", "So, we never directly invert the $\\mathsf{K}_\\mathbf{y}$ matrix. Given that we can compute $\\boldsymbol{\\xi}$, we then directly compute $\\mathbf{m}_* = \\mathsf{K}_*^\\mathsf{T}\\cdot \\boldsymbol{\\xi}$.\n", "\n", "Now, to compute the covariance matrix $\\mathsf{\\Sigma}_*$, we also need to compute $\\mathsf{\\Xi} = \\mathsf{K}_\\mathbf{y}^{-1}\\cdot \\mathsf{K}_*$. This is accomplished again by Cholesky decomposition.\n", "\n", "\\begin{align}\n", "& \\text{solve } \\mathsf{L}\\cdot \\mathsf{Z} = \\mathsf{K}_*, \\\\[1em]\n", "& \\text{solve } \\mathsf{\\Xi}^\\mathsf{T} \\cdot \\mathsf{L} = \\mathsf{Z}.\n", "\\end{align}" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Plotting an analytical posterior\n", "\n", "Following the above prescription, we can compute the posterior mean $\\mathbf{m}^*$ and the posterior covariance $\\mathsf{\\Sigma}_*$, from which we can plot our nonparametric function.\n", "\n", "Using the specific example of the rate constant versus temperature data, we can use a GP prior with a SE kernel. Our model, leaving the priors on the homoscedastic error $\\sigma$ and the kernel hyperparameters is\n", "\n", "\\begin{align}\n", "&\\alpha \\sim \\text{to be specified} \\\\[1em]\n", "&\\rho \\sim \\text{to be specified} \\\\[1em]\n", "&\\sigma \\sim \\text{to be specified} \\\\[1em]\n", "&\\mathbf{k}_\\mathrm{scaled} \\sim \\text{GP}(\\mathbf{0}, k_\\mathrm{SE}(\\mathbf{T}_\\mathrm{scaled}, \\mathbf{T}'_\\mathrm{scaled};\\alpha, \\rho) + \\delta_{\\mathbf{T}_\\mathrm{scaled}, \\mathbf{T}'_\\mathrm{scaled}}\\sigma^2).\n", "\\end{align}\n", "\n", "We have already marginalized out $\\mathbf{f}(\\mathbf{x})$. We can then directly go forward to give the posterior *for a particular choice of* $\\alpha$, $\\rho$, *and* $\\sigma$. We will choose $\\alpha = \\rho = \\sigma = 1$ for this illustration. This is a reasonable choice because centering and scaling aims to bring the variation in the data toward unity.\n", "\n", "We typically plot it as the mean function with a shaded region containing 95% of the probability mass. To get this 95% credible region, we directly use the diagonal terms of $\\mathsf{\\Sigma}$.\n", "\n", "To start, we center and scale the temperature and rate constants." ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [], "source": [ "# Center and scale\n", "k_scaled = (k - k.mean()) / k.std()\n", "T_scaled = (T - T.mean()) / T.std()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Next, we need to determine for which values of the temperature we want to evaluate our nonparametric function. This will be the $\\mathbf{x}_*$." ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [], "source": [ "# Sample at 250 points\n", "Nstar = 250\n", "\n", "# Set up xstar\n", "T_range = T_scaled.max() - T_scaled.min()\n", "xstar = np.linspace(\n", " T_scaled.min() - 0.05 * T_range, T_scaled.max() + 0.05 * T_range, Nstar\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now comes the involved part of the calculation. For a given set of hyperparameters and $\\sigma$, we compute the posterior mean function $\\mathbf{m}_*$ and covariance matrix $\\mathsf{\\Sigma}_*$ using the linear algebra manipulations above. This is conveniently included in the `bebi103.gp.posterior_mean_cov()` function. It takes as parameters the (centered and scaled) x- and y- values of the measured data, the data points $\\mathbf{X}_*$ that we want the values of the nonparametric function, $\\sigma$, a kernel (default is the SE kernel) and the hyperparameters of the kernel." ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [], "source": [ "mstar, Sigmastar = bebi103.gp.posterior_mean_cov(\n", " T_scaled, k_scaled, xstar, sigma=1.0, rho=1.0, alpha=1.0\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now that we have $\\mathbf{m}_*$ and $\\mathsf{\\Sigma}_*$, we can compute the upper and lower bounds of the credible interval. Because the posterior is a Gaussian process, we know that we can compute the 95% credible region from the diagonal terms of the covariance matrix $\\mathsf{\\Sigma}_*$." ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [], "source": [ "# Bound of credible interval\n", "high = mstar + 1.96 * np.sqrt(np.diag(Sigmastar))\n", "low = mstar - 1.96 * np.sqrt(np.diag(Sigmastar))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now, we just have to uncenter and unscale everything and we can make a plot!" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "
\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/javascript": [ "(function(root) {\n", " function embed_document(root) {\n", " const docs_json = {\"79023f1d-28cc-44c8-8b5a-c14b106cf7af\":{\"version\":\"3.3.0\",\"title\":\"Bokeh Application\",\"roots\":[{\"type\":\"object\",\"name\":\"Figure\",\"id\":\"p1828\",\"attributes\":{\"x_range\":{\"type\":\"object\",\"name\":\"DataRange1d\",\"id\":\"p1829\"},\"y_range\":{\"type\":\"object\",\"name\":\"DataRange1d\",\"id\":\"p1830\"},\"x_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1837\"},\"y_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1838\"},\"title\":{\"type\":\"object\",\"name\":\"Title\",\"id\":\"p1835\"},\"renderers\":[{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1862\",\"attributes\":{\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1856\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1857\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1858\"},\"data\":{\"type\":\"map\",\"entries\":[[\"x\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"GGFNHU91fEBTvda1IXp8QI4ZYE70fnxAynXp5saDfEAG0nJ/mYh8QEEu/BdsjXxAfIqFsD6SfEC45g5JEZd8QPRCmOHjm3xAL58heragfEBq+6oSiaV8QKZXNKtbqnxA4rO9Qy6vfEAdEEfcALR8QFhs0HTTuHxAlMhZDaa9fEDQJOOleMJ8QAuBbD5Lx3xARt311h3MfECCOX9v8NB8QL6VCAjD1XxA+fGRoJXafEA0Ths5aN98QHCqpNE65HxArAYuag3pfEDnYrcC4O18QCK/QJuy8nxAXhvKM4X3fECZd1PMV/x8QNXT3GQqAX1AEDBm/fwFfUBMjO+Vzwp9QIfoeC6iD31Aw0QCx3QUfUD+oItfRxl9QDr9FPgZHn1AdVmekOwifUCxtScpvyd9QOwRscGRLH1AKG46WmQxfUBjysPyNjZ9QJ8mTYsJO31A2oLWI9w/fUAW31+8rkR9QFE76VSBSX1AjZdy7VNOfUDI8/uFJlN9QARQhR75V31AP6wOt8tcfUB7CJhPnmF9QLZkIehwZn1A8sCqgENrfUAtHTQZFnB9QGl5vbHodH1ApNVGSrt5fUDgMdDijX59QBuOWXtgg31AV+riEzOIfUCSRmysBY19QM6i9UTYkX1ACf9+3aqWfUBFWwh2fZt9QIC3kQ5QoH1AvBMbpyKlfUD3b6Q/9al9QDPMLdjHrn1Abii3cJqzfUCqhEAJbbh9QOXgyaE/vX1AIT1TOhLCfUBcmdzS5MZ9QJj1ZWu3y31A01HvA4rQfUAPrnicXNV9QEoKAjUv2n1AhmaLzQHffUDBwhRm1ON9QP0env6m6H1AOHsnl3ntfUB017AvTPJ9QK8zOsge931A64/DYPH7fUAm7Ez5wwB+QGJI1pGWBX5AnaRfKmkKfkDZAOnCOw9+QBRdclsOFH5AULn78+AYfkCLFYWMsx1+QMZxDiWGIn5AAs6XvVgnfkA+KiFWKyx+QHmGqu79MH5AtOIzh9A1fkDwPr0fozp+QCybRrh1P35AZ/fPUEhEfkCiU1npGkl+QN6v4oHtTX5AGQxsGsBSfkBVaPWykld+QJDEfktlXH5AzCAI5DdhfkAHfZF8CmZ+QEPZGhXdan5AfjWkra9vfkC6kS1GgnR+QPXttt5UeX5AMUpAdyd+fkBspskP+oJ+QKgCU6jMh35A417cQJ+MfkAfu2XZcZF+QFoX73FEln5AlnN4ChebfkDRzwGj6Z9+QA0sizu8pH5ASIgU1I6pfkCE5J1sYa5+QL9AJwU0s35A+5ywnQa4fkA2+Tk22bx+QHJVw86rwX5ArbFMZ37GfkDpDdb/UMt+QCRqX5gj0H5AYMboMPbUfkCbInLJyNl+QNd++2Gb3n5AEtuE+m3jfkBONw6TQOh+QImTlysT7X5Axe8gxOXxfkAATKpcuPZ+QDyoM/WK+35AdwS9jV0Af0CzYEYmMAV/QO68z74CCn9AKhlZV9UOf0BldeLvpxN/QKHRa4h6GH9A3C31IE0df0AYin65HyJ/QFPmB1LyJn9Aj0KR6sQrf0DKnhqDlzB/QAb7oxtqNX9AQVcttDw6f0B9s7ZMDz9/QLgPQOXhQ39A9GvJfbRIf0AvyFIWh01/QGsk3K5ZUn9ApoBlRyxXf0Di3O7f/lt/QB05eHjRYH9AWZUBEaRlf0CU8Yqpdmp/QM9NFEJJb39AC6qd2ht0f0BHBidz7nh/QIJisAvBfX9Avr45pJOCf0D5GsM8Zod/QDR3TNU4jH9AcNPVbQuRf0CrL18G3pV/QOeL6J6wmn9AIuhxN4Off0BeRPvPVaR/QJqghGgoqX9A1fwNAfutf0AQWZeZzbJ/QEy1IDKgt39AhxGqynK8f0DDbTNjRcF/QP7JvPsXxn9AOiZGlOrKf0B1gs8svc9/QLHeWMWP1H9A7DriXWLZf0Aol2v2NN5/QGPz9I4H439An09+J9rnf0DaqwfArOx/QBYIkVh/8X9AUWQa8VH2f0CNwKOJJPt/QMgcLSL3/39Agjxb3WQCgECg6p8pzgSAQL2Y5HU3B4BA20YpwqAJgED59G0OCgyAQBejslpzDoBANFH3ptwQgEBS/zvzRROAQHCtgD+vFYBAjlvFixgYgECrCQrYgRqAQMm3TiTrHIBA52WTcFQfgEAFFNi8vSGAQCLCHAknJIBAQHBhVZAmgEBeHqah+SiAQHzM6u1iK4BAmXovOswtgEC3KHSGNTCAQNXWuNKeMoBA84T9Hgg1gEAQM0JrcTeAQC7hhrfaOYBATI/LA0Q8gEBqPRBQrT6AQIfrVJwWQYBApZmZ6H9DgEDDR9406UWAQOH1IoFSSIBA/qNnzbtKgEAcUqwZJU2AQDoA8WWOT4BAWK41svdRgEB1XHr+YFSAQJMKv0rKVoBAsbgDlzNZgEDPZkjjnFuAQOwUjS8GXoBACsPRe29ggEAocRbI2GKAQEYfWxRCZYBAY82fYKtngECBe+SsFGqAQJ8pKfl9bIBAvddtRedugEDahbKRUHGAQPgz9925c4BAFuI7KiN2gEA0kIB2jHiAQFE+xcL1eoBAb+wJD199gECNmk5byH+AQKpIk6cxgoBAyPbX85qEgEDmpBxABIeAQARTYYxtiYBAIgGm2NaLgEA/r+okQI6AQF1dL3GpkIBAewt0vRKTgEA=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"}],[\"y\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"6b9tiPWbZz9/+z4m94BnP6Cz0XKuZmc/yfTUMx9NZz9l4i0jTTRnP2zvc+47HGc/5EJvNu8EZz9yY5mOau5mP01EoHyx2GY/4szrd8fDZj/J8yXpr69mP2KExSlunGY/w6WbgwWKZj9BOGQweXhmPzMeWVnMZ2Y/94LIFgJYZj+3Mq5vHUlmP7kTUFkhO2Y/NtHdthAuZj9rxhNZ7iFmP1E34f28FmY/NuMRUH8MZj9g/PrmNwNmP0qOK0bp+mU/IVsg3ZXzZT+zN/sGQO1lP8PrPQrq52U/e5uIGJbjZT9kvVtORuBlPwCf3bL83WU/AnmjN7vcZT+jEn64g9xlP4PySftX3WU/SBrDrznfZT+3SFxvKuJlPy69Gb0r5mU/33VvBT/rZT834SKeZfFlP5r5L8ag+GU/lsGxpfEAZj+CFc5NWQpmP4PGpLjYFGY/1PFByXAgZj9LhpNLIi1mPwvpYfTtOmY/aKlLYdRJZj81M8QY1llmP8dtFYrzamY/OjVkDS19Zj+5mrfjgpBmP/vXAjf1pGY/N+ExGoS6Zj+MgDiJL9FmPwzlI2n36GY/No8uiNsBZz8rhNad2xtnP4qw9Ur3Nmc/mGPcGS5TZz/Wym1+f3BnPz9WPtbqjmc/6+yzaG+uZz/r2SdnDM9nPwVZCu3A8Gc/BKsHAIwTaD9EmS6QbDdoP2pQGHhhXGg/KXoRfWmCaD9SfkRPg6loP6/T5Imt0Wg/YUlbs+b6aD8AMnM9LSVpPwhaiIV/UGk/qbO11Nt8aT+qogRgQKppP3PTnEir2Gk/KYn0mxoIaj9TTwFUjDhqPz38aFf+aWo/J/KyeW6caj/2jXl72s9qPxezmwpABGs/HGVuwpw5az+GYO4r7m9rPxKl8b0xp2s/CeVY3WTfaz/czUDdhBhsP5AfM/+OUmw/dolXc4CNbD/IQ6RYVslsP9peDr0NBm0/vsG5naNDbT860yjnFIJtP1bJa3VewW0/lJxPFH0Bbj9ynYx/bUJuP6Sr9GIshG4/6A+hWrbGbj9g+h/zBwpvP3iooakdTm8/nTYl7POSbz82I6UZh9hvP57EIcFpD3A/Gw27s+oycD8a8Bh+xFZwP8NoizL1enA/i6BN3HqfcD+Pm5t/U8RwP5Dfxxl96XA/YhxRofUOcT8n3fcFuzRxPyhK1DDLWnE/agNsBCSBcT+PHMhcw6dxPyJDiw+nznE/VxgI7Mz1cT8oyFe7Mh1yP4HncEDWRHI/2aM+OLVscj+UTrhZzZRyP+BO+VUcvXI/3oRZ2J/lcj8uKYaGVQ5zP+AzmwA7N3M/MlY94U1gcz82krS9i4lzP+F7BybysnM/vC4XpX7ccz+LA7zALgZ0PzIR4/n/L3Q/7YOszO9ZdD/i1Yqw+4N0P+bzYhghrnQ/GFmtcl3YdD/GK5gprgJ1P65lKqMQLXU/khFoQYJXdT+Ip3diAIJ1P1GRyGCIrHU/Yd86kxfXdT8KN0hNqwF2P5wBLt9ALHY/AeQYltVWdj+ZhVG8ZoF2P+Gsapnxq3Y/j7dwcnPWdj9xcxqK6QB3P51c+yBRK3c/6ES3dadVdz8IaDfF6X93P9Lu4EoVqnc/pePMQCfUdz8hmQHgHP53P5yDrWDzJ3g/CIVj+qdReD82qljkN3t4P5VXo1WgpHg/xeJ7hd7NeD+JlX6r7/Z4P8YV7//QH3k/fy39u39IeT/V7Aoa+XB5P04f9FU6mXk/0AxXrUDBeT/Lfd5fCel5P3D5jK+REHo/xDMJ4dY3ej+9oOs71l56P5YgDQuNhXo/9LjWnPirej9kTZJDFtJ6PzVJvFXj93o/vCtWLl0dez9o5zktgUJ7Pz4DbrdMZ3s/q216N72Lez/r7r0d0K97P3woxOCC03s/jg6c/dL2ez+nxy74vRl8PzTelltBPHw/+q53ulpefD8U/1SvB4B8P3mj6txFoXw/gyOE7hLCfD+kP1SYbOJ8P/hEzJdQAn0/5xXzs7whfT/zz7u9rkB9PzL2W5AkX30//QehERx9fT/YakUyk5p9P66ORO6Ht30/EDMuTfjTfT9etHhi4u99P0ZH0k1EC34/awlxOxwmfj/IzWFkaEB+P3uL1Q4nWn4/21VtjlZzfj+9xIRE9Yt+Pxq0eqABpH4/dkL4H3q7fj+u9TVPXdJ+PynuPsmp6H4/wBAyOF7+fj8OEIFVeRN/P4M+Ler5J38/jhICz947fz92R83sJk9/P0GFlDzRYX8/S3vIx9xzfz9KWXWoSIV/P6WTcAkUln8/SuCDJj6mfz80WpVMxrV/P4i6zNmrxH8/7pa1Pe7Sfz/IlV75jOB/P4OJdZ+H7X8/h2Vg1N35fz/lfymnxwKAP7LJsOpNCIA/kfzHoYENgD8lxm7CYhKAP2jZpkvxFoA/eYB2RS0bgD/feOnAFh+AP0oXENitIoA/i7D8rfIlgD8SRr9u5SiAP5B0X0+GK4A/PqTUjdUtgD+Oevxw0y+AP8eNj0iAMYA/ilsUbdwygD/Ig9A/6DOAP1RKuCqkNIA/sWFcoBA1gD9mAtYbLjWAP4ZSsSD9NIA/4CHWOn40gD+G/27+sTOAP0CuzgeZMoA/sv1T+zMxgD+rDkyFgy+AP5wJ01mILYA/kk6zNEMrgD+tJkPZtCiAP3r/QBLeJYA/BDmusb8igD8=\"},\"shape\":[250],\"dtype\":\"float64\",\"order\":\"little\"}]]}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1863\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1864\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1859\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":\"orange\",\"line_width\":2}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1860\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":\"orange\",\"line_alpha\":0.1,\"line_width\":2}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1861\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":\"orange\",\"line_alpha\":0.2,\"line_width\":2}}}},{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1871\",\"attributes\":{\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1865\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1866\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1867\"},\"data\":{\"type\":\"map\",\"entries\":[[\"x\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"GGFNHU91fEBTvda1IXp8QI4ZYE70fnxAynXp5saDfEAG0nJ/mYh8QEEu/BdsjXxAfIqFsD6SfEC45g5JEZd8QPRCmOHjm3xAL58heragfEBq+6oSiaV8QKZXNKtbqnxA4rO9Qy6vfEAdEEfcALR8QFhs0HTTuHxAlMhZDaa9fEDQJOOleMJ8QAuBbD5Lx3xARt311h3MfECCOX9v8NB8QL6VCAjD1XxA+fGRoJXafEA0Ths5aN98QHCqpNE65HxArAYuag3pfEDnYrcC4O18QCK/QJuy8nxAXhvKM4X3fECZd1PMV/x8QNXT3GQqAX1AEDBm/fwFfUBMjO+Vzwp9QIfoeC6iD31Aw0QCx3QUfUD+oItfRxl9QDr9FPgZHn1AdVmekOwifUCxtScpvyd9QOwRscGRLH1AKG46WmQxfUBjysPyNjZ9QJ8mTYsJO31A2oLWI9w/fUAW31+8rkR9QFE76VSBSX1AjZdy7VNOfUDI8/uFJlN9QARQhR75V31AP6wOt8tcfUB7CJhPnmF9QLZkIehwZn1A8sCqgENrfUAtHTQZFnB9QGl5vbHodH1ApNVGSrt5fUDgMdDijX59QBuOWXtgg31AV+riEzOIfUCSRmysBY19QM6i9UTYkX1ACf9+3aqWfUBFWwh2fZt9QIC3kQ5QoH1AvBMbpyKlfUD3b6Q/9al9QDPMLdjHrn1Abii3cJqzfUCqhEAJbbh9QOXgyaE/vX1AIT1TOhLCfUBcmdzS5MZ9QJj1ZWu3y31A01HvA4rQfUAPrnicXNV9QEoKAjUv2n1AhmaLzQHffUDBwhRm1ON9QP0env6m6H1AOHsnl3ntfUB017AvTPJ9QK8zOsge931A64/DYPH7fUAm7Ez5wwB+QGJI1pGWBX5AnaRfKmkKfkDZAOnCOw9+QBRdclsOFH5AULn78+AYfkCLFYWMsx1+QMZxDiWGIn5AAs6XvVgnfkA+KiFWKyx+QHmGqu79MH5AtOIzh9A1fkDwPr0fozp+QCybRrh1P35AZ/fPUEhEfkCiU1npGkl+QN6v4oHtTX5AGQxsGsBSfkBVaPWykld+QJDEfktlXH5AzCAI5DdhfkAHfZF8CmZ+QEPZGhXdan5AfjWkra9vfkC6kS1GgnR+QPXttt5UeX5AMUpAdyd+fkBspskP+oJ+QKgCU6jMh35A417cQJ+MfkAfu2XZcZF+QFoX73FEln5AlnN4ChebfkDRzwGj6Z9+QA0sizu8pH5ASIgU1I6pfkCE5J1sYa5+QL9AJwU0s35A+5ywnQa4fkA2+Tk22bx+QHJVw86rwX5ArbFMZ37GfkDpDdb/UMt+QCRqX5gj0H5AYMboMPbUfkCbInLJyNl+QNd++2Gb3n5AEtuE+m3jfkBONw6TQOh+QImTlysT7X5Axe8gxOXxfkAATKpcuPZ+QDyoM/WK+35AdwS9jV0Af0CzYEYmMAV/QO68z74CCn9AKhlZV9UOf0BldeLvpxN/QKHRa4h6GH9A3C31IE0df0AYin65HyJ/QFPmB1LyJn9Aj0KR6sQrf0DKnhqDlzB/QAb7oxtqNX9AQVcttDw6f0B9s7ZMDz9/QLgPQOXhQ39A9GvJfbRIf0AvyFIWh01/QGsk3K5ZUn9ApoBlRyxXf0Di3O7f/lt/QB05eHjRYH9AWZUBEaRlf0CU8Yqpdmp/QM9NFEJJb39AC6qd2ht0f0BHBidz7nh/QIJisAvBfX9Avr45pJOCf0D5GsM8Zod/QDR3TNU4jH9AcNPVbQuRf0CrL18G3pV/QOeL6J6wmn9AIuhxN4Off0BeRPvPVaR/QJqghGgoqX9A1fwNAfutf0AQWZeZzbJ/QEy1IDKgt39AhxGqynK8f0DDbTNjRcF/QP7JvPsXxn9AOiZGlOrKf0B1gs8svc9/QLHeWMWP1H9A7DriXWLZf0Aol2v2NN5/QGPz9I4H439An09+J9rnf0DaqwfArOx/QBYIkVh/8X9AUWQa8VH2f0CNwKOJJPt/QMgcLSL3/39Agjxb3WQCgECg6p8pzgSAQL2Y5HU3B4BA20YpwqAJgED59G0OCgyAQBejslpzDoBANFH3ptwQgEBS/zvzRROAQHCtgD+vFYBAjlvFixgYgECrCQrYgRqAQMm3TiTrHIBA52WTcFQfgEAFFNi8vSGAQCLCHAknJIBAQHBhVZAmgEBeHqah+SiAQHzM6u1iK4BAmXovOswtgEC3KHSGNTCAQNXWuNKeMoBA84T9Hgg1gEAQM0JrcTeAQC7hhrfaOYBATI/LA0Q8gEBqPRBQrT6AQIfrVJwWQYBApZmZ6H9DgEDDR9406UWAQOH1IoFSSIBA/qNnzbtKgEAcUqwZJU2AQDoA8WWOT4BAWK41svdRgEB1XHr+YFSAQJMKv0rKVoBAsbgDlzNZgEDPZkjjnFuAQOwUjS8GXoBACsPRe29ggEAocRbI2GKAQEYfWxRCZYBAY82fYKtngECBe+SsFGqAQJ8pKfl9bIBAvddtRedugEDahbKRUHGAQPgz9925c4BAFuI7KiN2gEA0kIB2jHiAQFE+xcL1eoBAb+wJD199gECNmk5byH+AQKpIk6cxgoBAyPbX85qEgEDmpBxABIeAQARTYYxtiYBAIgGm2NaLgEA/r+okQI6AQF1dL3GpkIBAewt0vRKTgEB7C3S9EpOAQF1dL3GpkIBAP6/qJECOgEAiAabY1ouAQARTYYxtiYBA5qQcQASHgEDI9tfzmoSAQKpIk6cxgoBAjZpOW8h/gEBv7AkPX32AQFE+xcL1eoBANJCAdox4gEAW4jsqI3aAQPgz9925c4BA2oWykVBxgEC9121F526AQJ8pKfl9bIBAgXvkrBRqgEBjzZ9gq2eAQEYfWxRCZYBAKHEWyNhigEAKw9F7b2CAQOwUjS8GXoBAz2ZI45xbgECxuAOXM1mAQJMKv0rKVoBAdVx6/mBUgEBYrjWy91GAQDoA8WWOT4BAHFKsGSVNgED+o2fNu0qAQOH1IoFSSIBAw0feNOlFgEClmZnof0OAQIfrVJwWQYBAaj0QUK0+gEBMj8sDRDyAQC7hhrfaOYBAEDNCa3E3gEDzhP0eCDWAQNXWuNKeMoBAtyh0hjUwgECZei86zC2AQHzM6u1iK4BAXh6mofkogEBAcGFVkCaAQCLCHAknJIBABRTYvL0hgEDnZZNwVB+AQMm3TiTrHIBAqwkK2IEagECOW8WLGBiAQHCtgD+vFYBAUv8780UTgEA0Ufem3BCAQBejslpzDoBA+fRtDgoMgEDbRinCoAmAQL2Y5HU3B4BAoOqfKc4EgECCPFvdZAKAQMgcLSL3/39AjcCjiST7f0BRZBrxUfZ/QBYIkVh/8X9A2qsHwKzsf0CfT34n2ud/QGPz9I4H439AKJdr9jTef0DsOuJdYtl/QLHeWMWP1H9AdYLPLL3Pf0A6JkaU6sp/QP7JvPsXxn9Aw20zY0XBf0CHEarKcrx/QEy1IDKgt39AEFmXmc2yf0DV/A0B+61/QJqghGgoqX9AXkT7z1Wkf0Ai6HE3g59/QOeL6J6wmn9Aqy9fBt6Vf0Bw09VtC5F/QDR3TNU4jH9A+RrDPGaHf0C+vjmkk4J/QIJisAvBfX9ARwYnc+54f0ALqp3aG3R/QM9NFEJJb39AlPGKqXZqf0BZlQERpGV/QB05eHjRYH9A4tzu3/5bf0CmgGVHLFd/QGsk3K5ZUn9AL8hSFodNf0D0a8l9tEh/QLgPQOXhQ39AfbO2TA8/f0BBVy20PDp/QAb7oxtqNX9Ayp4ag5cwf0CPQpHqxCt/QFPmB1LyJn9AGIp+uR8if0DcLfUgTR1/QKHRa4h6GH9AZXXi76cTf0AqGVlX1Q5/QO68z74CCn9As2BGJjAFf0B3BL2NXQB/QDyoM/WK+35AAEyqXLj2fkDF7yDE5fF+QImTlysT7X5ATjcOk0DofkAS24T6beN+QNd++2Gb3n5AmyJyycjZfkBgxugw9tR+QCRqX5gj0H5A6Q3W/1DLfkCtsUxnfsZ+QHJVw86rwX5ANvk5Ntm8fkD7nLCdBrh+QL9AJwU0s35AhOSdbGGufkBIiBTUjql+QA0sizu8pH5A0c8Bo+mffkCWc3gKF5t+QFoX73FEln5AH7tl2XGRfkDjXtxAn4x+QKgCU6jMh35AbKbJD/qCfkAxSkB3J35+QPXttt5UeX5AupEtRoJ0fkB+NaStr29+QEPZGhXdan5AB32RfApmfkDMIAjkN2F+QJDEfktlXH5AVWj1spJXfkAZDGwawFJ+QN6v4oHtTX5AolNZ6RpJfkBn989QSER+QCybRrh1P35A8D69H6M6fkC04jOH0DV+QHmGqu79MH5APiohVissfkACzpe9WCd+QMZxDiWGIn5AixWFjLMdfkBQufvz4Bh+QBRdclsOFH5A2QDpwjsPfkCdpF8qaQp+QGJI1pGWBX5AJuxM+cMAfkDrj8Ng8ft9QK8zOsge931AdNewL0zyfUA4eyeXee19QP0env6m6H1AwcIUZtTjfUCGZovNAd99QEoKAjUv2n1AD654nFzVfUDTUe8DitB9QJj1ZWu3y31AXJnc0uTGfUAhPVM6EsJ9QOXgyaE/vX1AqoRACW24fUBuKLdwmrN9QDPMLdjHrn1A92+kP/WpfUC8ExunIqV9QIC3kQ5QoH1ARVsIdn2bfUAJ/37dqpZ9QM6i9UTYkX1AkkZsrAWNfUBX6uITM4h9QBuOWXtgg31A4DHQ4o1+fUCk1UZKu3l9QGl5vbHodH1ALR00GRZwfUDywKqAQ2t9QLZkIehwZn1AewiYT55hfUA/rA63y1x9QARQhR75V31AyPP7hSZTfUCNl3LtU059QFE76VSBSX1AFt9fvK5EfUDagtYj3D99QJ8mTYsJO31AY8rD8jY2fUAobjpaZDF9QOwRscGRLH1AsbUnKb8nfUB1WZ6Q7CJ9QDr9FPgZHn1A/qCLX0cZfUDDRALHdBR9QIfoeC6iD31ATIzvlc8KfUAQMGb9/AV9QNXT3GQqAX1AmXdTzFf8fEBeG8ozhfd8QCK/QJuy8nxA52K3AuDtfECsBi5qDel8QHCqpNE65HxANE4bOWjffED58ZGgldp8QL6VCAjD1XxAgjl/b/DQfEBG3fXWHcx8QAuBbD5Lx3xA0CTjpXjCfECUyFkNpr18QFhs0HTTuHxAHRBH3AC0fEDis71DLq98QKZXNKtbqnxAavuqEomlfEAvnyF6tqB8QPRCmOHjm3xAuOYOSRGXfEB8ioWwPpJ8QEEu/BdsjXxABtJyf5mIfEDKdenmxoN8QI4ZYE70fnxAU73WtSF6fEAYYU0dT3V8QA==\"},\"shape\":[500],\"dtype\":\"float64\",\"order\":\"little\"}],[\"y\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"4HAD7ZiKeT+MXxsYImJ5Py4yOyVBOnk/2v3dy/sSeT/ML3C3V+x4P+L1eYVaxng/k5C/wwmheD+mPFjuanx4P5CAvG2DWHg/4cjMlFg1eD9NYNGe7xJ4PxrydK1N8Xc/T+m6xnfQdz/6IvPScrB3P3eOrJpDkXc/hnqoxO5ydz/NcdDTeFV3Pz+rMCXmOHc/UTP57Toddz+PEIg5ewJ3P4zAfueq6HY/ioDlqc3Pdj9r514D57d2P4xibkX6oHY/MC7UjgqLdj/xYQHKGnZ2P7yipqstYnY/Tv1fsUVPdj8HVoAgZT12P068/gSOLHY/tMmHMMIcdj90BrU5Aw52PwoXbHtSAHY/RjlnFLHzdT8vU+jmH+h1PyCMl5if3XU/kRmOkjDUdT+blY0B08t1P6jfY9aGxHU/ui97xku+dT+WrJVMIbl1PyB+s6kGtXU/yf8h5vqxdT/tZbLS/K91P7vbFQoLr3U/vdhc8iOvdT/jLJe+RbB1P+EJknBusnU/1SCx2pu1dT/DxN+hy7l1P+bklj/7vnU/p570AyjFdT+gHOIXT8x1P9l3RH9t1HU/tVg1G4DddT9jJkCsg+d1P4usoNR08nU/hz+AGlD+dT82ji7qEQt2P7h8U5i2GHY/opQXZDondj/Ay0B5mTZ2PwSaQfLPRnY/mJA42tlXdj8w3t4us2l2P3ZnZOJXfHY/1VM43cOPdj/ZJ73/8qN2P7y85yPhuHY/FJnIHorOdj8BYP/B6eR2P2c6GN37+3Y/fEjTPrwTdz80UVa2Jix3PzUISRQ3RXc/uGLcK+ledz9Dj73TOHl3P1089eYhlHc/Y+6zRaCvdz+VNQzWr8t3Pwajm4RM6Hc/DWUjRXIFeD+LexETHSN4P9N4+/FIQXg/GcYL7vFfeD9xYmIcFH94P+0Qapurnng/AOcik7S+eD8kJmM1K994P7FFD74LAHk/LwlKc1IheT/Rdp2l+0J5P/d3HbADZXk/O+OE+GaHeT+epE3vIap5P2CtxA8xzXk/0Uka4JDweT+ib2/xPRR6PxOM4N80OHo/Gk6OUnJcej803aT78oB6P/XiYZizpXo/zsIZ8bDKej9MUTzZ5+96PzRSWS9VFXs/0Psk3fU6ez+9tHzXxmB7PyA5bB7Fhns/pkwzve2sez8IF0zKPdN7P1xCcmey+Xs/KOyqwUggfD98dE0R/kZ8P0gxDZrPbXw/kQcEq7qUfD8A6L2evLt8P84oRdvS4nw/4rMv0voJfT+X/awAMjF9Pyu2lO91WH0/bCZ2M8R/fT/QJqhsGqd9PzKfWUd2zn0/GH2ie9X1fT/uDZXNNR1+P9yqTw2VRH4/cKQOF/Frfj+QXD7TR5N+P2F+jTaXun4/nkT/Qd3hfj8awP0CGAl/P40RbJNFMH8/3Iq4GWRXfz/2re7IcX5/P1YAyeBspX8/1KvCrVPMfz/y5iiJJPN/P9cPluzuDIA/tHJ4CD8ggD91R1DYgTOAP2jNvKK2RoA/YOTvtNxZgD/99LVi82yAPwW0fQb6f4A/5r9fAfCSgD/aFia71KWAP+9jU6KnuIA/AiAqLGjLgD/pgrPUFd6AP5k/xh6w8IA/pAQNlDYDgT+cuAzFqBWBP95nKkkGKIE/79awvk46gT84qtXKgUyBP/YQvhmfXoE/Ot6CXqZwgT/Z9zNTl4KBP0r/2rhxlIE/RRV9VzWmgT/1lBv+4beBP9Cfs4J3yYE/GU88wvXagT8yXKOgXOyBP+4MyAis/YE/Di107OMOgj+L2lJEBCCCP47m5A8NMYI/4IlyVf5Bgj+CKPoh2FKCP8ndG4maY4I/UIgBpUV0gj+SC0OW2YSCP518xoNWlYI/Bu+bmrylgj+JmNQNDLaCP3QDVRZFxoI/Bgui8mfWgj/aYKjmdOaCP7Jffjts9oI/RPYfP04Ggz9afCREGxaDP3xNbqHTJYM/UA7UsXc1gz+GjcPTB0WDP4w93miEVIM/6lGP1e1jgz9JmpuARHODP0JEq9KIgoM/Or7NNbuRgz8MBvgU3KCDPxLAfdvrr4M/4YSF9Oq+gz9U5XjK2c2DP2G2cMa43IM/dEaeT4jrgz9pLrLKSPqDP7x+QZn6CIQ/FhcqGZ4XhD/qAfejMyaEP8u3RY67NIQ/WDUtJzZDhD9k1Ke3o1GEP/faAIIEYIQ/WrNGwVhuhD88vcKooHyEP5Cid2PcioQ/ZhKnEwyZhD8AuV/SL6eEP5w+FK9HtYQ/jwY8r1PDhD/TVf7NU9GEPz506PtH34Q/UkWvHjDthD/kvvwQDPuEPzyLSaLbCIU/3gvDlp4WhT/n2D2nVCSFPyzANIH9MYU/oi7Uxpg/hT8k1xEPJk2FP/JS0OWkWoU/JGMOzBRohT/XZiE4dXWFPxCI+pXFgoU/iBF2RwWQhT8oUrSkM52FP1Zne/xPqoU/Ej6hlFm3hT/jE32qT8SFP6C7X3Mx0YU/WucRHf7dhT/Mt1fOtOqFP+rSeKdU94U/akXMwtwDhj/Sd0c1TBCGP7SEDw+iHIY/skQMXN0ohj9jbHwk/TSGP8cgim0AQYY/6G/fOeZMhj/IJDqKrViGP6Z3/l1VZIY/dyXIs9xvhj9gg/mJQnuGP/IsSN+FhoY/fPVGs6WRhj82zuwGoZyGP9xbGN12p4Y/PP8POyayhj+Z5ZhQsiZzPzFG046KSHM/Sv4yV5Fpcz9QTz9swYlzP4zMu6gVqXM/7DM9AYnHcz/Xq7+FFuVzP7PJPWO5AXQ/iLRH5WwddD+vp5l3LDh0P4sIsafzUXQ/0TBfJr5qdD9h/VjJh4J0P+UfwoxMmXQ/fh+zlAivdD9Y47guuMN0P0qRTNNX13Q/n3pCJ+TpdD9Gwi79Wft0PwBbvla2C3U/gvACZvYadT8KRrCOFyl1P3qOSWcXNnU/LT89uvNBdT/U3u2Gqkx1P4BVpgI6VnU/5kp4maBedT/8KwPv3GV1P+WAIt/ta3U/S1GCftJwdT/KbRgbinR1P66SgTwUd3U/wXlBpHB4dT8gFuVNn3h1P5ZeBm+gd3U/ojYxd3R1dT/wNakPHHJ1P88+EBuYbXU/7AbutOlndT946RgxEmF1P0mNABsTWXU/7BzbNO5PdT9RALZ2pUV1P+Y3aw07OnU/pqV8WbEtdT/LutbtCiB1P2QmfI5KEXU/kkIcL3MBdT86Gpbxh/B0P5/4aSSM3nQ/pYUbQYPLdD+LfYbqcLd0P38ZKOtYonQ/vT5fMz+MdD/thaXXJ3V0P8ghww4XXXQ/FZ7/LxFEdD9gXFGxGip0PzadjSU4D3Q/msmaOm7zcz+Fk6a3wdZzP+BjYXs3uXM/VGtAetSacz/5h8e8nXtzP9kO3F2YW3M/PGQhick6cz9mKmB5NhlzP/ur+Hbk9nI/cQVh1tjTcj9sca/2GLByPwT9MECqi3I/nM0MI5Jmcj8QB/QV1kByPxFK3pR7GnI/xazSH4jzcT9K/bw5AcxxP0INT2fso3E/rbftLU97cT/YRqkSL1JxP9fWQJmRKHE/xkkwQ3z+cD8oXsiO9NNwPxF0UPb/qHA/ZIwx76N9cD9rDSrp5VFwPwLZiU3LJXA/Yobs/LLybz/d9mqsK5lvP/b9AU0LP28/fl+9b1zkbj/oYACSKYluP+9ZUBx9LW4/vnYqYWHRbT8tEuSb4HRtP34ale8EGG0/9P8LZti6bD9kuMruZF1sP/puDF60/2s/FYLTa9Chaz8CfP+ywkNrP+S8arCU5Wo/fpQPwk+Haj+akzQm/ShqP7jin/qlymk/XXLRO1NsaT+i3kPEDQ5pP27js0ver2g/cEJuZs1RaD+C/qOE4/NnP87QxPEolmc/VL7f06U4Zz+0sgkrYttmP+YFytBlfmY/P9CMd7ghZj+g7hqqYcVlPwyWF8toaWU/KlODFNUNZT+oTkSXrbJkP36sszr5V2Q/U9cvvL79Yz96hrOuBKRjPwdIcXrRSmM/C1VzXCvyYj8Tcj9mGJpiP82Zfn2eQmI//CyoW8PrYT+XXrCNjJVhPx6RuXP/P2E/F1fIQCHrYD+fxnn69pZgPynPu3iFQ2A/SH4Oy6LhXz9ATzZ5vj1fP9CYcpZmm14/QKHGX6P6XT96pDC0fFtdP+xTJRT6vVw/jBILoSIiXD+sarQc/YdbP9ZH2eiP71o/Fo2OBuFYWj90sLsV9sNZPwIYjlTUMFk/iAnqnoCfWD8WFdlt/w9YP0b99dZUglc/oDvWi4T2Vj+gXXHZkWxWPxiZhqd/5FU/BBgBeFBeVT8MoltmBtpUP5BxBCejV1Q//CrCBijXUz9YGBvqlVhTPxD5v0zt21I/VOP7QC5hUj9k5SpvWOhRP3hFORVrcVE/qHEtBmX8UD884r6pRIlQP6Rk/PsHGFA/IO0IGllRTz+wE6UBX3ZOPyB1SB4bn00/YFvzBobLTD+A92h6l/tLPwBisV9GL0s/2CfnxohmSj94AFjqU6FJP4CAADCc30g/CMNqK1UhSD8gHvifcWZHPwD/nYPjrkY/gAAeApz6RT+QM8GAi0lFP/BZnqKhm0Q/uItyTc3wQz9oWROv/EhDPwj9gEMdpEI/+I+e2xsCQj9ogpWk5GJBP5i36C9jxkA/wLM6fIIsQD9AZZL9WSo/P0CPPluZAD4/QLH7FJbbPD/ApvFcIrs7PwDwi6wPnzo/sOJw3i6HOT+QhMVJUHM4P3CYrd5DYzc/AMrzQ9lWNj8AQcL13001P/A/UGUnSDQ/gNxlGX9FMz8QaJPPtkUyP0DT9p2eSDE/wD5mFQdOMD8AUqjHgqsuP4Bifu0+vyw/wL76OujWKj+AjGJWJvIoP6B8bDCjECc/YMqgRQsyJT9gFdrdDVYjPwCqgUldfCE/gBdIOF5JHz+AgvzHeJ0bPwAZUryD9Bc/ADsaTgBOFD8Ad6TNd6kQP4D4DOb3DAo/gM2lSk7JAj8ATlzhcg73PgAaYgRJGOE+AOApMN7V174A/h6kZHf0voBDEhFAfQG/AOl5m8C/CL+ALBQ5vgEQv4BTR4hUpBO/wCgmibRHF7/AdNg15usav0C+LVrokB6/wEfFYFgbIb/gYXo2lu4iv0CIWugfwiS/YGF9jOOVJr+gqnM6y2kov2AnsTO9PSq/YESJDpwRLL9AQ2zjRuUtv8DwEnyZuC+/YPEjQrbFML/weP/dyq4xv0AENxV0lzK/kKvuKJp/M7/QOPQxJGc0v4Db9jr4TTW/UMi2WvszNr/gvw/OERk3vzDEwxEf/Te/QJPt+wXgOL/w2gTVqME5v3BnYHDpoTq/YNYkRKmAO78QkZCAyV08v/DolyYrOT2/4EDGHa8SPr9wD1tJNuo+vw==\"},\"shape\":[500],\"dtype\":\"float64\",\"order\":\"little\"}]]}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1872\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1873\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Patch\",\"id\":\"p1868\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":\"orange\",\"line_alpha\":0,\"line_width\":0,\"fill_color\":\"orange\",\"fill_alpha\":0.3,\"hatch_color\":\"orange\",\"hatch_alpha\":0.3}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Patch\",\"id\":\"p1869\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":\"orange\",\"line_alpha\":0.1,\"line_width\":0,\"fill_color\":\"orange\",\"fill_alpha\":0.1,\"hatch_color\":\"orange\",\"hatch_alpha\":0.1}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Patch\",\"id\":\"p1870\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":\"orange\",\"line_alpha\":0.2,\"line_width\":0,\"fill_color\":\"orange\",\"fill_alpha\":0.2,\"hatch_color\":\"orange\",\"hatch_alpha\":0.2}}}},{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1883\",\"attributes\":{\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1874\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1875\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1876\"},\"data\":{\"type\":\"map\",\"entries\":[[\"index\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAEAAAACAAAAAwAAAAQAAAAFAAAABgAAAAcAAAAIAAAACQAAAA==\"},\"shape\":[10],\"dtype\":\"int32\",\"order\":\"little\"}],[\"1000/T (1/K)\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"/vg27rJc/j86Aw6SI5r+PyDmj2/jLv8/ZhNUbNWc/z9mE1Rs1Zz/P1Zznq70TgBARzSNDj+RAEDWSZUxLOoAQOz+pST0IQFAoAjQ2l5wAUA=\"},\"shape\":[10],\"dtype\":\"float64\",\"order\":\"little\"}],[\"ln k (1/s)\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"oKpBtYqeEsAcGcsISvYSwOwePvKkURPAXR21T4YpFMBPOH+7rlgUwLLb/8QfoBXAJHeYwZfqFsDA+xW5w0wYwColYnwf8hjAAbGgH2XDGcA=\"},\"shape\":[10],\"dtype\":\"float64\",\"order\":\"little\"}],[\"T (K)\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"Ks3HDMh3gEDFiyABuFaAQPUJEKjHCIBAUvlsXQeif0BS+WxdB6J/QIDotbO0qH5ACsWq5wcufkBPkdOgXY99QEjCMIUfL31Aud2lfuSrfEA=\"},\"shape\":[10],\"dtype\":\"float64\",\"order\":\"little\"}],[\"k (1/s)\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"4uhEBeZ8gz9Q0X9BM+OBP4q2XFxdXIA/WYQTmXmAej869/QGHk95P726YoXmYXI/jATFgMifaj/BO07l39ZiP6NiuGKxB2A//o+RalsiWj8=\"},\"shape\":[10],\"dtype\":\"float64\",\"order\":\"little\"}]]}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1884\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1885\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Circle\",\"id\":\"p1880\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"T (K)\"},\"y\":{\"type\":\"field\",\"field\":\"k (1/s)\"},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b4\"},\"fill_color\":{\"type\":\"value\",\"value\":\"#1f77b4\"}}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Circle\",\"id\":\"p1881\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"T (K)\"},\"y\":{\"type\":\"field\",\"field\":\"k (1/s)\"},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b4\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.1},\"fill_color\":{\"type\":\"value\",\"value\":\"#1f77b4\"},\"fill_alpha\":{\"type\":\"value\",\"value\":0.1},\"hatch_alpha\":{\"type\":\"value\",\"value\":0.1}}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Circle\",\"id\":\"p1882\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"T (K)\"},\"y\":{\"type\":\"field\",\"field\":\"k (1/s)\"},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b4\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.2},\"fill_color\":{\"type\":\"value\",\"value\":\"#1f77b4\"},\"fill_alpha\":{\"type\":\"value\",\"value\":0.2},\"hatch_alpha\":{\"type\":\"value\",\"value\":0.2}}}}}],\"toolbar\":{\"type\":\"object\",\"name\":\"Toolbar\",\"id\":\"p1836\",\"attributes\":{\"tools\":[{\"type\":\"object\",\"name\":\"PanTool\",\"id\":\"p1849\"},{\"type\":\"object\",\"name\":\"WheelZoomTool\",\"id\":\"p1850\",\"attributes\":{\"renderers\":\"auto\"}},{\"type\":\"object\",\"name\":\"BoxZoomTool\",\"id\":\"p1851\",\"attributes\":{\"overlay\":{\"type\":\"object\",\"name\":\"BoxAnnotation\",\"id\":\"p1852\",\"attributes\":{\"syncable\":false,\"level\":\"overlay\",\"visible\":false,\"left_units\":\"canvas\",\"right_units\":\"canvas\",\"top_units\":\"canvas\",\"bottom_units\":\"canvas\",\"line_color\":\"black\",\"line_alpha\":1.0,\"line_width\":2,\"line_dash\":[4,4],\"fill_color\":\"lightgrey\",\"fill_alpha\":0.5}}}},{\"type\":\"object\",\"name\":\"SaveTool\",\"id\":\"p1853\"},{\"type\":\"object\",\"name\":\"ResetTool\",\"id\":\"p1854\"},{\"type\":\"object\",\"name\":\"HelpTool\",\"id\":\"p1855\"}]}},\"left\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1844\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1845\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1846\"},\"axis_label\":\"k (1/s)\",\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1847\"}}}],\"below\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1839\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1840\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1841\"},\"axis_label\":\"T (K)\",\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1842\"}}}],\"center\":[{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1843\",\"attributes\":{\"axis\":{\"id\":\"p1839\"}}},{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1848\",\"attributes\":{\"dimension\":1,\"axis\":{\"id\":\"p1844\"}}}],\"frame_width\":350,\"frame_height\":250}}],\"defs\":[{\"type\":\"model\",\"name\":\"ReactiveHTML1\"},{\"type\":\"model\",\"name\":\"FlexBox1\",\"properties\":[{\"name\":\"align_content\",\"kind\":\"Any\",\"default\":\"flex-start\"},{\"name\":\"align_items\",\"kind\":\"Any\",\"default\":\"flex-start\"},{\"name\":\"flex_direction\",\"kind\":\"Any\",\"default\":\"row\"},{\"name\":\"flex_wrap\",\"kind\":\"Any\",\"default\":\"wrap\"},{\"name\":\"justify_content\",\"kind\":\"Any\",\"default\":\"flex-start\"}]},{\"type\":\"model\",\"name\":\"FloatPanel1\",\"properties\":[{\"name\":\"config\",\"kind\":\"Any\",\"default\":{\"type\":\"map\"}},{\"name\":\"contained\",\"kind\":\"Any\",\"default\":true},{\"name\":\"position\",\"kind\":\"Any\",\"default\":\"right-top\"},{\"name\":\"offsetx\",\"kind\":\"Any\",\"default\":null},{\"name\":\"offsety\",\"kind\":\"Any\",\"default\":null},{\"name\":\"theme\",\"kind\":\"Any\",\"default\":\"primary\"},{\"name\":\"status\",\"kind\":\"Any\",\"default\":\"normalized\"}]},{\"type\":\"model\",\"name\":\"GridStack1\",\"properties\":[{\"name\":\"mode\",\"kind\":\"Any\",\"default\":\"warn\"},{\"name\":\"ncols\",\"kind\":\"Any\",\"default\":null},{\"name\":\"nrows\",\"kind\":\"Any\",\"default\":null},{\"name\":\"allow_resize\",\"kind\":\"Any\",\"default\":true},{\"name\":\"allow_drag\",\"kind\":\"Any\",\"default\":true},{\"name\":\"state\",\"kind\":\"Any\",\"default\":[]}]},{\"type\":\"model\",\"name\":\"drag1\",\"properties\":[{\"name\":\"slider_width\",\"kind\":\"Any\",\"default\":5},{\"name\":\"slider_color\",\"kind\":\"Any\",\"default\":\"black\"},{\"name\":\"value\",\"kind\":\"Any\",\"default\":50}]},{\"type\":\"model\",\"name\":\"click1\",\"properties\":[{\"name\":\"terminal_output\",\"kind\":\"Any\",\"default\":\"\"},{\"name\":\"debug_name\",\"kind\":\"Any\",\"default\":\"\"},{\"name\":\"clears\",\"kind\":\"Any\",\"default\":0}]},{\"type\":\"model\",\"name\":\"toggle_value1\",\"properties\":[{\"name\":\"active_icons\",\"kind\":\"Any\",\"default\":{\"type\":\"map\"}},{\"name\":\"options\",\"kind\":\"Any\",\"default\":{\"type\":\"map\",\"entries\":[[\"favorite\",\"heart\"]]}},{\"name\":\"value\",\"kind\":\"Any\",\"default\":[]},{\"name\":\"_reactions\",\"kind\":\"Any\",\"default\":[]},{\"name\":\"_base_url\",\"kind\":\"Any\",\"default\":\"https://tabler-icons.io/static/tabler-icons/icons/\"}]},{\"type\":\"model\",\"name\":\"copy_to_clipboard1\",\"properties\":[{\"name\":\"value\",\"kind\":\"Any\",\"default\":null},{\"name\":\"fill\",\"kind\":\"Any\",\"default\":\"none\"}]},{\"type\":\"model\",\"name\":\"FastWrapper1\",\"properties\":[{\"name\":\"object\",\"kind\":\"Any\",\"default\":null},{\"name\":\"style\",\"kind\":\"Any\",\"default\":null}]},{\"type\":\"model\",\"name\":\"NotificationAreaBase1\",\"properties\":[{\"name\":\"js_events\",\"kind\":\"Any\",\"default\":{\"type\":\"map\"}},{\"name\":\"position\",\"kind\":\"Any\",\"default\":\"bottom-right\"},{\"name\":\"_clear\",\"kind\":\"Any\",\"default\":0}]},{\"type\":\"model\",\"name\":\"NotificationArea1\",\"properties\":[{\"name\":\"js_events\",\"kind\":\"Any\",\"default\":{\"type\":\"map\"}},{\"name\":\"notifications\",\"kind\":\"Any\",\"default\":[]},{\"name\":\"position\",\"kind\":\"Any\",\"default\":\"bottom-right\"},{\"name\":\"_clear\",\"kind\":\"Any\",\"default\":0},{\"name\":\"types\",\"kind\":\"Any\",\"default\":[{\"type\":\"map\",\"entries\":[[\"type\",\"warning\"],[\"background\",\"#ffc107\"],[\"icon\",{\"type\":\"map\",\"entries\":[[\"className\",\"fas fa-exclamation-triangle\"],[\"tagName\",\"i\"],[\"color\",\"white\"]]}]]},{\"type\":\"map\",\"entries\":[[\"type\",\"info\"],[\"background\",\"#007bff\"],[\"icon\",{\"type\":\"map\",\"entries\":[[\"className\",\"fas fa-info-circle\"],[\"tagName\",\"i\"],[\"color\",\"white\"]]}]]}]}]},{\"type\":\"model\",\"name\":\"Notification\",\"properties\":[{\"name\":\"background\",\"kind\":\"Any\",\"default\":null},{\"name\":\"duration\",\"kind\":\"Any\",\"default\":3000},{\"name\":\"icon\",\"kind\":\"Any\",\"default\":null},{\"name\":\"message\",\"kind\":\"Any\",\"default\":\"\"},{\"name\":\"notification_type\",\"kind\":\"Any\",\"default\":null},{\"name\":\"_destroyed\",\"kind\":\"Any\",\"default\":false}]},{\"type\":\"model\",\"name\":\"TemplateActions1\",\"properties\":[{\"name\":\"open_modal\",\"kind\":\"Any\",\"default\":0},{\"name\":\"close_modal\",\"kind\":\"Any\",\"default\":0}]},{\"type\":\"model\",\"name\":\"BootstrapTemplateActions1\",\"properties\":[{\"name\":\"open_modal\",\"kind\":\"Any\",\"default\":0},{\"name\":\"close_modal\",\"kind\":\"Any\",\"default\":0}]},{\"type\":\"model\",\"name\":\"MaterialTemplateActions1\",\"properties\":[{\"name\":\"open_modal\",\"kind\":\"Any\",\"default\":0},{\"name\":\"close_modal\",\"kind\":\"Any\",\"default\":0}]}]}};\n", " const render_items = [{\"docid\":\"79023f1d-28cc-44c8-8b5a-c14b106cf7af\",\"roots\":{\"p1828\":\"b6e3fdf1-8c1a-4dfa-ba8c-00439d6c2fa4\"},\"root_ids\":[\"p1828\"]}];\n", " root.Bokeh.embed.embed_items_notebook(docs_json, render_items);\n", " }\n", " if (root.Bokeh !== undefined) {\n", " embed_document(root);\n", " } else {\n", " let attempts = 0;\n", " const timer = setInterval(function(root) {\n", " if (root.Bokeh !== undefined) {\n", " clearInterval(timer);\n", " embed_document(root);\n", " } else {\n", " attempts++;\n", " if (attempts > 100) {\n", " clearInterval(timer);\n", " console.log(\"Bokeh: ERROR: Unable to run BokehJS code because BokehJS library is missing\");\n", " }\n", " }\n", " }, 10, root)\n", " }\n", "})(window);" ], "application/vnd.bokehjs_exec.v0+json": "" }, "metadata": { "application/vnd.bokehjs_exec.v0+json": { "id": "p1828" } }, "output_type": "display_data" } ], "source": [ "# Uncenter/scale\n", "Tstar = T.std() * xstar + T.mean()\n", "kstar = k.std() * mstar + k.mean()\n", "low = k.std() * low + k.mean()\n", "high = k.std() * high + k.mean()\n", "\n", "p = bokeh.plotting.figure(\n", " frame_height=250, frame_width=350, x_axis_label=\"T (K)\", y_axis_label=\"k (1/s)\"\n", ")\n", "p.line(Tstar, kstar, line_width=2, color=\"orange\")\n", "p = bebi103.viz.fill_between(\n", " Tstar,\n", " high,\n", " Tstar,\n", " low,\n", " show_line=False,\n", " patch_kwargs=dict(color=\"orange\", alpha=0.3),\n", " p=p,\n", ")\n", "p.circle(source=df, x=\"T (K)\", y=\"k (1/s)\")\n", "\n", "bokeh.io.show(p)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "It is important to remember that the line in the plot is the most probable function *for the given choice of hyperparameters and* $\\sigma$. The envelope is *not* posterior predictive of data sets. Rather in encompasses the exent of 95% of the nonparametric functions $f(T)$. If you wanted a posterior predictive plot, you would have to sample out of the posterior to generate *data*.\n", "\n", "Nonetheless, this plot is clear enough to show that this fit does not quite hold muster. It tends to dampen out the variation in the data in favor of a flatter curve. Furthermore, the credible region seems unreasonably wide for these data. Maybe this was not the best choice of hyperparameters. In the next lesson, we will learn how to better choose, or more specifically sample, hyperparameters." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Conclusions\n", "\n", "In this lesson, we have introduced Gaussian processes and demonstrated the useful simplifications when a GP prior is used with a Normal likelihood. Even for these convenient models, we are still left to infer the hyperparameters. Inference for GP priors with non-Normal likelihoods adds extra challenges because we do not have the benefit of conjugacy and cannot marginalize away the function values. We will address these practical issues in the next lesson." ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [], "source": [ "bebi103.stan.clean_cmdstan()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Computing environment" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Python implementation: CPython\n", "Python version : 3.11.5\n", "IPython version : 8.15.0\n", "\n", "numpy : 1.26.2\n", "pandas : 2.1.4\n", "cmdstanpy : 1.2.0\n", "arviz : 0.17.0\n", "bokeh : 3.3.0\n", "bebi103 : 0.1.20\n", "jupyterlab: 4.0.10\n", "\n", "cmdstan : 2.34.0\n" ] } ], "source": [ "%load_ext watermark\n", "%watermark -v -p numpy,pandas,cmdstanpy,arviz,bokeh,bebi103,jupyterlab\n", "print(\"cmdstan :\", bebi103.stan.cmdstan_version())" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.5" } }, "nbformat": 4, "nbformat_minor": 4 }