
Predicting Cardiac Disease With Deep Learning

Taylor Archibald, Corey Woodfield, Jesse Robinson, and Benjamin Bay
December 2017

CS 478–Machine Learning
Brigham Young University

Abstract

In this project, we build a classifier
to predict whether or not a given per-
son has had coronary heart disease in
his or her lifetime. We do so by us-
ing the formidable NHANES patient
health data set, cleaning this data ex-
tensively for our purposes, and training
a deep neural network on it. This pa-
per discusses our data processing meth-
ods, our investigation of various ma-
chine learning models, our chosen deep
learning process, and our preliminary
results. Our model achieves success
while leaving room for further improve-
ments. We discuss possibilities for fu-
ture expansion of this research, such as
optimizing DNN hyperparameters and
classifying on additional diseases.

1 Introduction

The purpose of this project was to identify in-
dividuals with an elevated risk of coronary dis-
ease. With heart disease being the leading cause
of death in America accounting for over half a mil-
lion deaths annually [MEMBERS et al., 2014], be-
ing able to efficiently determine the potential di-
agnoses of coronary disease could be invaluable in
preventing thousands of deaths.

Though heart disease diagnoses can often be de-
termined by a set of highly specific blood tests,
there is presently no reliable way of diagnosing
heart disease using metrics routinely measured by
medical professionals. Thus, our report covers our
attempts to pick out these features that are both
relevant to heart disease and routinely obtained by
medical professionals, and use these features in a
machine learning algorithm to predict those with
an elevated risk of having heart disease. Our data
comprises features in the National Health and Nu-
trition Examination Survey (NHANES) [Damico,
2013].

We explain the difficulties in transforming the
disjointed, modular NHANES data into a usable
dataset, in addition to troubles encountered iden-
tifying features and implementing a deep neural
network.

1.1 Data Source
The source of our data is the National Health and
Nutrition Examination Survey (NHANES). This
survey is conducted by the National Center for
Health Statistics (NCHS) and was first conducted
in 1971, assessing the health and nutritional status
of citizens of the United States. The NHANES
data consists of three distinct components:

1. Laboratory tests, including a comprehensive
analysis of the individual’s blood and urine
and a disease profile.

2. Comprehensive health survey, including
questions regarding the individual’s demo-
graphic, socioeconomic status, diet, immu-
nization history, physical activity, occupa-
tion, drug and tobacco use, disease history,
and other health-related questions.

3. Results from physical examination, which in-
clude oral, optic, dental, and other physiolog-
ical tests and measurements.

We obtained 14 years of NHANES survey data
from the public NHANES website [Damico, 2013].
The data comprises over 1,000 different component
files, broken up by topic and survey year, which
are hosted in various locations on the website. We
wrote a webscraping script in Python to traverse
the NCHS website and download the files as they
were identified.

1.2 Data Processing
In its native state, the size and dimensionality
of this data made both the selection and com-
pilation of features difficult. To get a sense of
its scope, consider that NHANES carries nearly
10,000 unique features, and over 330,000,000
feature-observations ranging from details of so-
cioeconomic status to dental records. We made
detailed processing scripts were in order to:

• convert the native binary XPT files to CSV,

• create translations for and decode file and
variables names,

• produce a summary containing statistics for
each variable, including the range, mean, me-
dian, and percent missing,

• join all CSV files together using the appro-
priate respondent identifier,



• analyze the data for consistency, identify
continuous variables, handle anomalous val-
ues, handle missing values, and handle dupli-
cated data, among other preprocessing pro-
cedures, and

• combine redundant variables and account
for inconsistent naming conventions between
surveys.

We generated summary files for each individ-
ual data file, and compiled these summaries into a
master summary, which we reviewed and identified
potentially useful features for our analysis.

Data Limitations
At this point, we identified several concerns re-
garding our data. One major concern was how
frequently features were missing that we had oth-
erwise intended to use in our model. For instance,
many laboratory measures, including most of the
bloodwork ones, were only populated about 30%
of the time. Moreover, it was not immediately
obvious from the documentation how these were
sampled.

Another issue was we did not have ideal time
coverage for every variable. Hence, we had to bal-
ance utilizing as many years of data as we could
to maximize the number of observations, while si-
multaneously considering how often variables were
missing. Moreover, a nontrivial amount of work
was put into pairing and adapting variables that
conveyed some the information, but were recorded
differently–for instance, depending on the year the
survey was taken, ages were recorded in months,
years, or both months and years (depending on the
person’s age). All of these discrepancies had to be
rectified for each feature we wanted to use.

Since the NHANES data set are massive and
subject to human error, it was not too surprising
that many data fields contained erroneous values
or were frequently missing. We filled in missing
continuous variable fields with the feature mean,
and created a unique unknown class for missing
categorical variable fields. We deleted all other
rows with erroneous data or missing labels.

Hence, though the data are extremely feature
rich, we were not able to fully evaluate every
potentially relevant variable as we had initially
hoped. We ultimately were able to process some
58 features we thought are routinely recorded by
medical professionals and are potentially relevant
for identifying those at risk of heart disease. Ta-
ble 1 shows these final chosen features for each
patient’s data point.

Another minor setback we discovered early on
was there were no diagnoses made during the
survey–the only indication we had regarding who
suffered from coronary heart disease were self-
reported answers to the question “Ever been told
you have coronary heart disease?” While we feel
this is still a fairly good metric of actual coro-
nary heart disease, potential weaknesses include
that it was self-reported, there is no uniform di-
agnosis standard, and some respondents may have

coronary heart disease, but have never been di-
agnosed. However, others in the literature have
relied on these metrics with good success[Lee and
Giraud-Carrier, 2013].

Balancing Data

To account for the imbalance among label classes
(i.e. there are many more respondents without
heart disease than with it), we employed an over-
sampling technique. One way to think about this
is, we effectively duplicated positive heart disease
observations until we had roughly the same num-
ber of positive and negative samples in our training
dataset. This was necessary to ensure our model
did not arrive at the trivial solution–people rarely
have heart disease, so even a classifier that always
guessed “negative” would achieve a comfortable-
looking 95% accuracy.

Feature Selection – Decision Tree

One of the primary tasks early on was to eval-
uate which features were most important. In a
very early attempt to analyze which features were
most important, our group ran a custom imple-
mentation of ID3 to see what kind of a decision
tree would be built given varying inputs. For han-
dling unknown data, this implementation would
either count the unknown data as its own nominal
class or as the mean continuous value, depending
on whether its feature was nominal or continuous.

This implementation was run on a number of
different groups from the data, including: vary-
ing diastolic and systolic reads of blood pressure;
different levels of protein and metals within the
blood; features that don’t require biological labs
or testing, such as age, gender, and annual family
income; and other measures of the body that could
be performed with common measuring equipment,
including height, weight, and waist circumference.

When the aforementioned ID3 algorithm was
run on the data of these grouped features, the re-
sulting structures of the decision trees (especially
their root features) were recorded and randomly
sampled in order to gather a list of some of the
most critical features for providing information
gain on whether or not a patient had been diag-
nosed with coronary heart disease. This initial list
included the measurements in Table 2.

One relatively surprising feature within this list
was folic acid, especially since this feature was ini-
tially grouped with Direct HDL-cholesterol for its
run through our ID3. This means, despite sources
more commonly urging to test for cholesterol lev-
els in a patient at risk for coronary heart disease
[Torpy et al., 2009], folic acid—which has a com-
parable cost for blood testing analysis [Walgreens
Introduces..., ][Folate..., ]—could provide a greater
information gain on whether that patient is truly
at risk.

The ID3 algorithm was then run on this list of
the most important features, and the structure of
the decision tree produced was again inspected and
analyzed. One of the more noteworthy findings
using this approach was that the root node of the



Table 1: Chosen Features

Year
Ever been told you have asthma?
Doctor ever said you were overweight?
Ever told you had a stroke?
Ever told you had emphysema?
Ever told you had chronic bronchitis?
Ever told you had any liver condition?
Ever told you had cancer or malignancy?
Pulse regular or irregular?
Pulse type
Gender
Ever told you had a thyroid problem?
Close relative had heart attack?
Breathing problem require oxygen?
Problem taking deep breath?
Ever been told you have psoriasis?
Ever been told you have celiac disease?
Are you on a gluten free diet?
Doctor told you to lose weight?
Doctor told you to exercise?
Doctor told you to reduce salt?
Doctor told you to reduce fat?
Are you now controlling or losing weight?
Are you now increasing exercise?
Are you now reducing salt in diet?
Are you now reducing fat in diet?
Ever been told you have jaundice?
Systolic Blood pres (mm)
Diastolic Blood pres (mm)
Sagittal Abdominal Diameter (cm)
C reactive protein (mg/dL)
Lead (ug/dL)
Cadmium (ug/L)
Mercury total (ug/L)
Mercury Inorganic (ug/L)
Total cholesterol (mmol/L)
60 sec pulse 30 sec pulse 2
Weight (kg)
Standing Height (cm)
Body Mass Index (kg/m2)
Waist Circumference (cm)
Age at Screening Adjudicated
Age in Months
Annual Family Income
Direct HDL Cholesterol (mg/dL)
Folic acid serum (nmol/L)
Mercury ethyl (ug/L)
Mercury methyl (ug/L)
Blood selenium (ug/L)
Blood manganese (ug/L)
Average Sagittal Abdominal Diameter (cm)
Increased fatigue
High cholesterol
5,10-Methenyl-tethrofolic acid (nmol/L)
5-Formyl-tetrahydrofolic acid (nmol/L)
# hours watch TV or videos past 30 days
# of hours use computer past 30 days
Ever told you had coronary heart disease?

Table 2: Six possible top features as sug-
gested by decision tree learning

Label Type
C-Reactive Protein Continuous
Systolic: Blood pres
(1st rdg) mm Hg

Continuous

Body Mass Index Continuous
Waist Circumference Continuous
Age at Screening Discrete
Folic Acid, serum Continuous

tree was BMI, suggesting that BMI could be one
of the most critical features to assess to determine
one’s risk for coronary heart disease.

Further examination and random sampling of
the tree also showed a trend depending on a par-
ticipant’s BMI (recorded as units of kg/m**2).
For those with a measurement below twenty or
above thirty, the next feature’s class was most
often folic acid. For those with a BMI between
twenty or thirty, however, the next feature’s class
was consistently waist circumference. This find-
ing would mean, if our ID3 implementation was
accurate, that a patient concerned with their risk
of coronary heart disease should first inspect their
own BMI. If this measurement is between twenty
or thirty—which roughly correlates with classifi-
cations of “normal” and “overweight”—then the
next most important feature to check is their waist
circumference. However, if the BMI is higher or
lower than this range—roughly correlating with
classifications of “underweight” or “obese”—then
a folic acid blood test should be their next step.
This is likely because if BMI is between 20 and 30,
waist circumference can be used with the BMI to
help determine the patient’s overall health, how-
ever, if they are already severely under- or over-
weight, the information we would’ve gained from
waist circumference can instead be inferred just
from BMI.

Of course, these findings were rough analyses
based upon random sampling of the decision tree
produced by our ID3 algorithm. These conclusions
could certainly be further refined, as they depend
on which features were inspected and how they
were grouped. Many features had large stretches
of “unknown” records, and thus a feature’s un-
known data—or lack thereof—could have easily
biased its calculated information gain in our de-
cision tree.

Thus, we recognize that these findings are by no
means conclusive, and with initial testing within
our deep neural network, we quickly found that
our accuracy was disappointing with just the six
features found above. We consequently further
processed our data, refining our pool of potential
features to further improve our model.

1.3 Feature Selection – Principal
Component Analysis

To further help determine which features were rel-
evant and necessary for inclusion in the data for



the neural network, we used Principal Component
Analysis (PCA) [Wold et al., 1987]. This effec-
tively compressed our data from 58 features to 21.
We retained enough information in the principal
components to account for 90% of the variance,
and we allowed up to 5 features from the original
feature space to make up each feature in the new
feature space. We eliminated any feature with an
eigenvalue less than 1.0. We examined the features
that resulted from PCA, and though not always
easily interpretable, they were nevertheless infor-
mative. From a brief inspection, there seems to be
a correlation between time spent on the computer
or watching TV and having asthma, and being on
a gluten free diet seems to correlate to having jaun-
dice, and the likelihood of having a stroke.

Figures 1, 2, and 3 show the results of running
our principal components through our DNN. We
explore details of the DNN in section 2.2.

Figure 1: Accuracy over 25 epochs of
DNN training on principal components.

Figure 2: Area under curve over 25
epochs of DNN training on principal
components.

Figure 3: Loss over 25 epochs of DNN
training on principal components.

1.4 Deep Learning

Once we collected our preliminary data, we devel-
oped a deep neural network using the TensorFlow
machine learning library [Abadi et al., 2016]. This
network was designed to classify and predict dis-
ease diagnoses based on the features we had iden-
tified. This was done by taking a vector of pa-
tient data as input, utilizing several hidden fully-
connected layers, and outputting a probability for
the likelihood of having coronary heart disease.

Topology

We used 4 fully-connected hidden layers holding
[100, 75, 50, 25] nodes, respectively.

Activation Function

We used the rectified linear unit [Nair and Hinton,
2010] as our activation function. This was done
based primarily on recommendations from top re-
searchers in the deep learning community.

Normalization

For normalization and in order to reduce single
node independence, we used dropout [Srivastava
et al., 2014] between each layer, settling on p =
0.5. This means that for each hidden layer in each
epoch, 50% random-selected nodes were temporar-
ily deactivated during training. This forced our
model’s learning to spread throughout most or all
nodes of each layer.

1.5 Metrics of Success

Among many possible ways of measuring our
model’s success, we chose 3 primary ones: classi-
fication accuracy, receiver operating characteristic
(ROC), and area under curve (AUC).

Classification accuracy refers to the total per-
centage of correct classifications in a given model
evaluation.

While accuracy is a common metric for suc-
cess in machine learning, this problem requires
more advanced success metrics. This is because
our data has about 20 survey participants with-
out cornary heart disease for each afflicted per-
son. Hence, a naive classifier could score 95 %
accuracy and appear proficient by always guessing
“healthy”. ROC and AUC are industry-standard



metrics for measuring precision and recall, which
help solve this problem caused by data sparsity.

ROC plots the true positive rate (TPR) against
the false positive rate (FPR) as given in Figure
5. Given a threshold parameter T and probability
densities f1(x) for positive classes and f0(x) for
negatives, TPR is defined as

TPR(T ) =

∫ ∞
T

f1(x)dx, (1)

and FPR is defined as

FPR(T ) =

∫ ∞
T

f0(x)dx. (2)

AUC refers to the area under the ROC curve,
or the probability that a classifier will rank a ran-
domly chosen positive instance higher than a ran-
domly chosen negative one. It may be formally
represented as

AUC =

∫ ∞
−∞

TPR(T )(−FPR′(T ))dT. (3)

2 Results

Using the aforementioned hyperparameters on our
cleaned data set, we were able to successfully train
a coronary heart disease classifier.

Figure 4 shows accuracy gradually increasing
with training time. Note that the increase here
was not as steady as observed in PCA in Figure 1.

Our ROC curve after 15 epochs of training is
displayed in Figure 5. Its integral covers a healthy,
large area. This area increased with training; AUC
change is shown in Figure 6. During early epochs
it increased quickly, then converged around 0.84.
One way to interpret the ROC curve is, if we want
to identify 95% of heart disease cases, we can do so,
but suffer a 65% false positive rate. This obviously
is not the ideal classifier–however, it is a significant
achievement above randomly always guessing posi-
tive, which would yield a roughly 95% false postive
rate to achieve the same true positive rate.

We also include results for loss in Figure 7,
which while not of the greatest importance, do
help show the effects of normalization on the train-
ing process.

Figure 4: Accuracy over 25 epochs of
DNN training.

Figure 5: ROC curve. Shows true pos-
itive rate with regards to false positive
rate. Note that the integral of this curve
indicates success in true positive classi-
fication, as shown in Figure 6.

Figure 6: Area under curve over 25
epochs of DNN training. After balanc-
ing data, this offers the best indication
of our success for our final classification
model because of its emphasis on posi-
tives.

Figure 7: Loss over 25 epochs of DNN
training.

3 Future Work

This paper represents an initial effort towards solv-
ing a complex problem. In the future, we hope
to complete our processing and analysis of the
NHANES data to ensure we are not leaving any



features on the proverbial table. Similarly, we
would like to expand this analysis to beyond just
heart disease–instead, have it return a vector of
probabilities for any number of possible health
conditions (e.g., asthma, obesity, diabetes, cancer,
stroke, bronchitis). This kind of tool could ensure
doctors make accurate diagnoses for rare diseases
or otherwise difficult-to-diagnose diseases, as the
model finds subtle patterns in the data that hu-
mans might miss. We would also further refine
this model, and explore other potential classifiers
and feature selection techniques in greater depth.

If we were to repeat this project, we would also
recalibrate our approach to the problem. We ini-
tially strived to use as much as the data we had
available to us as was possible. However, review-
ing and processing these data as thoroughly as we
did meant we had less time to work on refining the
model.
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