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Abstract
The DFT algorithm is a widely used algorithm used heavy in digital signal processing applications that

enables conversion of a time-based signal to a frequency-based signal. The algorithm has O(n2) complexity
resulting in long computation times for large data sets. Introducing parallel concepts to this sequential

algorithms, like dividing the input samples over multiple processes, and utilizing GPU hardware with CUDA,
can greatly increase the performance. Results show that a performance increase of 5x to 10x can be seen on

small to large datasets using both MPI and CUDA solutions.
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1 Introduction

This report discusses the design, implementation, and evaluation of a parallel Discrete Fourier Trans-
form (DFT) algorithm using CUDA and MPI. In signal processing, DFTs are used to represent signals
as a series of sinusoidal waveforms at different frequencies and amplitudes. This is useful when wanting
to identify specific audio components in speed recognition, measuring the correlation of two signals,
and much more.

(a) Time domain (b) Frequency domain
Figure 1: Left: A compound signal made up of 1, 5, 20, 100, and 200 Hz sine waves in the time domain. Right: Frequency
domain representation showing high amplitude peaks for the 1, 5, 20, 100, and 200 Hz waveforms.

An example application of the DFT algorithm is shown above in Figure 1. The complex, compound
signal on the left shown in the time domain is represented in the frequency domain on the right.

The 1 dimensional Discrete Fourier Transform algorithm is show in Figure 2. The algorithm
accepts a complex vector in the time domain and produces a complex vector of the same length in
the frequency domain. The output sample Xk is equal to the sum of all inputs multiplied by the
exponential function −i2πkn/N , where i is the square root of -1; 2π is 360 degrees; k and n are
integer indexes to time and frequency domains, respectively; and N is the number of samples in the
signal.

Figure 2: The Discrete Fourier Transform definition (Wikipedia, 2018).

Using Euler’s formula, we can rewrite the exponential function eix to cosx + isinx which makes
it easier to implement in code. This transformation is displayed in figure 2 (lower).

Each output sample must be calculated by acting upon all other samples in the input vector. This
means the algorithm has a computation complexity of O(n2). A faster implementation of the DFT,
called Fast Fourier Transform (FFT), achieves similar results in only O(n log(n)) time. It achieves
this by recursively dividing the input sample by 2 into separate bins. The output of these bins can
be reused, reducing the need to re-iterate over the input vector.

A disadvantage with FFT is that it requires the input vector length to be of a power of 2 (Walker,
1996). If one wants to use FFT with a non-power-of-two length input, the input will need to need
to be padded with 0’s up to the next power of 2, or stripped down to the nearest. Padding with 0’s
has a negative impact on the output of the FFT function due to the FFT working on 0Hz samples
that will propagate through to other previous samples, offsetting their correct frequency output. If
stripping down the input vector, information will be lost from the stripped samples.

Because of these disadvantages, a DFT function may be required instead, if output accuracy is
favoured over speed. In this report, I will be designing, implementing, and evaluating, a parallel DFT
algorithm using CUDA and MPI.
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2 Implementation

This section discusses the design considerations and implementation of the parallel DFT algorithm in
CUDA and MPI.

Both programs are run on a quad-core 4-thread Intel i5-4670k CPU at 4.3GHz with an NVIDIA
GTX 970 GPU with 4GB memory, 1664 CUDA cores, 1050Mhz base clock, and featuring CUDA
Compute Capability 5.2, which supports 1024 threads per block and 48KB maximum shared memory
per block.

The software solution is split into 2 Visual Studio projects: soft354 cuda and soft354 mpi, for
CUDA and MPI respectively. Only the CUDA and MPI libraries, and the windows.h header (for time
measurement, see later.) are required to build the two solutions. The CUDA solution is required to
be built for the x64 architecture and the MPI solution is required to be built for the x86 architecture.
The differences in the architectures will have a negligible effect on the performance of the programs.

Figure 3: Code snipped of a Sequential DFT algorithm (Arndt, 2002).

Both of the parallel MPI and CUDA solutions I propose are inspired by the sequential DFT
algorithm proposed by Arndt (Arndt, 2002) but with parallel concepts applied to it.

2.1 CUDA

Figure 4: CUDA implementation control flow dia-
gram showing memory

The CUDA implementation utilises a host device, typically
a CPU, to retrieve the input samples from a file and store
the resulting output. After reading the samples from a
.csv file, the host allocates 2 global memory buffers on the
device for the samples and output, and copies the input
samples to the device. Figure 4 displays the CUDA DFT
algorithm’s control flow.

Each thread is assigned a unique sample from the input
vector. The thread then performs the DFT calculation us-
ing it’s index, the samples value, and all other input sample
points.

As the input samples are 1D dimensional, kernels are
launched with a 1D grids and blocks to intuitively map
threads to samples. The kernel assigns each output sample
to a unique thread, identified by idx. Each output sample
must be calculated by iterating over the entire input sample
vector.

As the input sample size can contain many samples, the
kernel will require many accesses to global memory. A tech-
nique, utilising the device’s shared memory, is described in
section 2.1.1 to reduce the number of global memory ac-
cesses.

Each thread writes it’s result back into the global out-
put buffer, which is then copied back from the device to
the host.
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2.1.1 Dynamic Shared Memory

As each operation on each sample requires values from all other samples, global memory accesses will
be largest performance bottleneck. To reduce the amount of global memory accesses, I had the first
thread of each block copy the complete global memory copy of the samples to a local shared memory
buffer, which the DFT kernel would access instead of the global memory. Figure 5 shows the code
segment that performs this process.

On Compute Capability 2.0 devices, the maximum shared memory size per block is 48KB, meaning
that if the kernel was launched with 1 block, it could access all 48KB of memory. If two blocks were
used, each block would have 24KB of memory available without delay.

(a) CUDA kernel invocation showing amount of
dynamic shared memory to allocate.

(b) First thread of each block copying all samples to the
block’s shared memory.

Figure 5

To be able to fit the entire sample set in shared memory, I had to keep the maximum shared
memory per block at it’s highest by using as few blocks as possible. I used the maximum of 1024
threads per block for the GPU to reduce the number of required blocks.

Using any number of 8-byte samples below 2048, which would use up to 2 blocks of 1024 threads
and 24KB of shared memory, allows all samples for each block to fit into their shared memory.

Figure 6: Average kernel execution time using
shared vs. global memory.

If using more than 2048 8-byte samples, resulting in us-
ing 3 or more blocks, results in the shared memory per
block overflowing. The kernel handles this by pausing
blocks that do not have enough shared memory ready, and
running blocks that do have all their shared memory ready.

Even though we are accessing faster memory, it’s size
limitations causes resource availability delays when using
larger data sets, which results in higher latency and lower
performance. Figure 6 shows the kernel execution time
when using shared memory against global memory. We can
see the global execution time is faster than shared memory.
This is likely because the time taken for each block to copy
the data set from global to shared memory (while other
threads wait idle for the shared memory) is greater than
the time of just accessing global memory.

2.2 MPI

The MPI implementation is similar to the CUDA kernel. However, instead of each output sample
being assigned to a unique thread, nodes are assigned a contiguous subset of the samples for which
they perform the DFT function on, producing multiple outputs per node.
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Figure 7: Control flow diagram of the parallel MPI DFT algorithm.

The size of the subset of samples each node receives is calculated by dividing the total number of
samples by the number of nodes. This distributes an equal number of samples to each node which
allows each node to perform it’s calculations and communications in similar time to the other nodes.
This reduces the time spent by nodes being idle as they wait for other nodes to complete. The more
MPI nodes used, the fewer samples allocated per node which reduces the number of DFT calculations
required. Section 3.2 discusses the optimum node count and how to find it.

(a) Contiguous sample subset assignment per MPI
node code snippet. Located: main.c line 281.

(b) Subset bounds checking for each MPI
node. Located: main.c line 212.

Figure 8

Unlike the FFT algorithm, which only works for sample sizes equal to a power of 2, DFT works
for any sample size. This means that the algorithm used to distribute the samples to each node will
result in the last node to have an equal or less amount of samples than the other nodes. To account
for this, the MPI DFT algorithm limits it’s iterations to the number of samples.

The MPI solution exploits the MPI Gather feature of gathering from nodes in the order of their
rank. This saves time re-ordering incoming output samples to match the input sample order.

3 Evaluation

3.1 Measuring Performance

Performance metrics have been captured using Windows’ ‘QueryPerformanceCounter ‘ and the ‘NSight
Performance Analysis‘ tools. Helper macros, ‘TIME START ‘ and ‘TIME STOP ‘ are used to record
timed code sections.

Key performance metrics that have been analysed are: Memory allocation time, MPI broadcast
and Gather time, MPI DFT calculation time, CUDA kernel execution time, CUDA memory operations
time, CUDA kernel occupancy, and number of blocked CUDA warps.

Results shown in this report are averaged over multiple measurements to give a better estimate of
real performance and reduce the effect of outliers. Raw measurements, which include repeat attempt
timings, are found in the test/*.csv directory.

As stated previously, all measurements were performed on a machine with a 4-core 4-thread Intel
i5-4670k CPU at 4.3GHz with an NVIDIA GTX 970 GPU with 4GB memory, 1664 CUDA cores,
1050Mhz base clock, and featuring CUDA Compute Capability 5.2, which supports 1024 threads per
block and 48KB maximum shared memory per block.
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3.2 MPI Node Count

When running MPI on a single machine, MPI will spawn multiple nodes (processes) that are subject
the OS’s scheduling strategy. In addition, depending on available CPU resources, like core count,
MPI and the OS will assign CPU resources to each processes.

Figure 9: Time breakdown of MPI program when run with dif-
ferent number of nodes.

Running on a 2 core, 4 thread CPU, with
more MPI nodes than CPU threads, the OS will
need to schedule each node with other running
programs, which will reduce our MPI program’s
performance.

As seen in Figure 9, using fewer MPI nodes
requires each node to work on more samples,
which increases the average DFT calculate time.
The small amount of nodes also means that little
inter-process communication needs to take place
to broadcast and gather the results. The Total
run-time metric starts when the MPI solution
broadcasts the sample vector to each node, and
ends after the gathering and combining of output
samples. Therefore, this measurement includes
all communication times as well as the DFT computation time.

Increasing the number of MPI nodes reduces the average DFT calculation time per node, as each
node has fewer samples to work on, but inter-process communication is greatly increased. The MPI
implementation uses blocking barrier communication messages to share and collect the results. With
many nodes, it takes longer for MPI to synchronise the nodes resulting in longer total run-times.

From this, I predict that the optimum number of MPI nodes per machine for this algorithm is
approximately 2x the total number of CPU threads.

3.3 CUDA Threads Per Block

Increasing the number of threads per block, whilst keeping the grid 1 dimensional, reduces the number
of threads that need to write to shared memory. As discussed in 2.1.1, the first node of each block
copies the sample buffer from global memory to shared memory. This allows warps that would be
waiting for shared memory to be ready, to become active and increase the occupancy of the kernel.

(a) Time breakdown of CUDA program when run with
different number of threads per block.

(b) Blocked Warps per block and Occupancy vs.
Threads per Block.

Figure 10

Figure 10 (a) shows the kernel execution time decreasing as the number of threads per block
increases. Figure 10 (b) shows the number of blocked warps decreasing and occupancy increasing as
the number of threads per block increases.
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3.4 Sequential vs. Parallel Algorithm

This section compares the total algorithm time of the sequential and parallel algorithms. Total algo-
rithm time refers to the time taken from after reading the input samples from file to when the output
vector has been fully populated with frequency domain values. In the code, this time value is recorded
as: time total. In CUDA, this includes the time taken to copy the host input sample vector to the
device and the final output vector from device to host. In MPI, this includes the time taken for all
collective communication calls, like broadcasting the input sample vector to each node, the number
of samples, and gathering all output subsets.

Figure 11: Logarithmic total time comparison of Sequential and
Parallel algorithms against different sized sample sets.

From Figure 11 we can see that the sequen-
tial algorithm’s total time is much greater than
it’s parallel counterparts for all small and large
sample sizes.

As both algorithms, sequential and parallel,
have O(n2) complexity, visualizing performance
differences with large datasets requires a loga-
rithmic axis.

For smaller sample sizes (less than 5000), the
MPI solution outperforms the CUDA solution.
This is likely because the root node only needs to
broadcast the small input sample vector to each
node. As the sample size gets larger, it must
broadcast more samples to each node, and so in-
creasing time taken to do so linearly.

As the sample size gets larger, in CUDA, the shared memory per block decreases. This results
in more kernel warps stalling as their block needs to wait until it’s shared memory is ready for the
samples it needs. This decreases the kernel’s performance.

For larger sample sizes, CUDA outperforms MPI. This is likely because the amount of MPI node’s
used is fixed to 8, resulting in more samples per node, while the CUDA implementation can still
assign each sample to a unique thread. Section 3.2 discusses why 8 MPI nodes are used. If a CPU
with more resources (cores, threads, and cache) was used, the optimum node count would be greater,
resulting in better MPI performance. However, as there are a magnitude more threads available on
GPU’s, the MPI performance will not out perform the CUDA solution for any large sample sizes.

4 Further Improvements

4.1 Sub-sample partitioning

The current algorithmic approach to both MPI and CUDA solutions is to assign output samples to
threads and nodes. The downside of this method is that each output sample must act upon all other
input samples and is thus sub-quadratic in terms of computational complexity.

A method to improve this is to assign a ’master’ thread/node to each output sample, then assign
a unique thread for each input sample. The input sample threads would calculate their real and
imaginary parts, which when required by a master thread, would reduce using a custom sum reduction
method and then multiply by the input sample.

This solution would require twice as many threads/nodes as samples but would reduce the compu-
tation time by having each thread work out a partial solution. The master thread will not be required
to calculate real and imaginary parts for all samples; it will just multiply the result from other threads
by it’s input sample value. The solution will still be of O(n2) complexity however it’s execution time,
for each sample, will be reduced linearly.
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4.2 CUDA - Increase Thread-block dimensions

The current CUDA implementation uses a 1 dimension grid and block layout. Currently, my algorithm
is limited to 1024*1024 threads (if assigning 1 thread per sample). As seen in section 2.1.1, fewer
blocks results in higher occupancy, so using 2 or 3 dimension thread blocks will increase our thread
and sample limit without increasing the block count.

This can be done by using a multi-dimensional thread ID lookup code snipped instead of a 1-
dimensional thread/block lookup code snipped.

4.3 CUDA cuDoubleComplex

My implementation uses 2 double variables, sum real and sum imag, to represent the real and imag-
inary parts of complex numbers.

Using CUDA’s built in cudoubleComplex type will likely increase performance on a per-instruction
basis. CUDA provides built in intrinsic functions for double and complex numbers, like cuCmul, that
map directly to device instructions.

5 Conclusion

From the results in section 3.4, it is clear that both parallel CUDA and MPI algorithms exceed
the performance of the sequential algorithm for small and large input data sizes. For 20,000 input
samples, the sequential implementation takes nearly 24 seconds, while MPI takes 2 seconds and CUDA
1 second, making them more than 10x faster. Even though the sequential implementation requires no
memory allocation, it’s limited by only being able to operate on a single sample at a time. The CPU
and compiler may be optimising the sequential implementation by using SIMD instructions, branch
prediction, and other implicit optimisations, but it simply cannot outperform the benefits introduced
when using parallel concepts.

The CUDA solution scales better for larger input sample sizes. It’s ability to assign a unique
thread to each sample makes the algorithm much more efficient in terms of samples per thread. The
current implementation is limited to 1024x1024x1 threads/samples, however a slight modification,
explained in section 4.2, can increase this limit perhaps to use all available CUDA threads. The use
of shared memory in this algorithm was shown to have a negative effect on performance. This is likely
an ineffective solution of reducing global memory accesses. The latency introduced by making the 1st
thread of each block copy the complete input sample vector to shared memory is not efficient and the
results shown in figure 6 show that accessing global memory in the first place was faster than copying
the input vector to each block.

Of course, the disadvantage with the CUDA solution is requiring external specific NVIDIA GPU’s,
which may be size/space (e.g. server racks) constraint and financial constraint.

As theorized in section 3.2, the optimum node count for this algorithm being approximately 2x
the number of present CPU cores for small and large data sets. Using a larger CPU with more cores
and threads will allow for using more nodes efficiently, reducing the total time. However, the greatest
limitation with the MPI solution is the problem of broadcasting the input sample and gathering back
the output samples. This becomes a larger problem as the node count increases, even with a more
powerful CPU. If using a larger CPU and being able to use more nodes, the problem of communicating
between and synchronising the nodes is still a large time demanding problem.

Applying the improvements listed in section 4 will benefit the parallel implementations. It will
not reduce the complexity of the algorithm from O(n2) to something closer to the speed of the FFT
algorithm, but for large data sets the total time of the algorithm may reduce by multiple seconds.

For one deciding which parallel implementation to use, one must consider their space and financial
constraints. The CUDA solution requires an external dedicated GPU which may not be available in
server and virtualised environments (AWS, 2018) and the GPU resources required may require a
larger GPU and peripheral investment. In addition, if one’s CPU has a low core/thread count, an
MPI solution may be bottlenecked by the core/thread count and so off-loading to a GPU may provide
a large performance increase.
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