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Abstract

This report describes a software and electronic development project to design, implement, and verify,

a new embedded processor and architecture targeting small FPGA devices, and a high-level code

compiler for generating executable code for the processor.

This report outlines the design decisions of the new embedded processor’s instruction set architec-

ture, register sets, and compiler. In addition, a new high-level programming language is introduced

that can be compiled into executable code for the embedded processor. Implementation details of the

embedded processor and compiler is described, including pipelining, memory-management, code-

generation, and optimisations.

A combination of PRINCE2 and Agile methodologies are employed, allowing for incremental de-

velopment of both core and compiler, yet with risk, quality, and development stages identified. De-

scriptions of the project management processes and drawings are provided throughout the report.

A project post-mortem is performed to reflect on the achievements of the project with respect to

the initial project objectives and to discuss further improvements to the project management, de-

sign, implementation, and verification, of the project. It was found that the combination of Agile and

PRINCE2 methodologies aided the development of the project. The core was fully implemented on

Spartan-6 FPGA hardware, with a performance of 10 MIPS and 0.2 IPC at 40MHz, but was found

to utilise too many slice resources. The compiler was able to produce optimised machine code but

failed to identify some types of common optimisations, resulting in larger program sizes.

The processor specification, compiler usage guides, and other project management documents are

provided in the appendices.
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Preface

This report discusses the design, implementation, and verification, of an FPGA-based embedded

processor (PRCO304 processor) and compiler.

Figure 1: Xilinx Spartan-II FPGA layout [1].

A field-programmable gate array (FPGA) is a reprogrammable logic device that enables digital

electronic designs to be realised and executed on-chip. FPGAs utilise configurable logic blocks (CLB)

that can be configured to emulate primitive gates. Connecting these primitive gates with others allows

the engineer to realise complex logic such as combinational gates, multiplexers, and lookup-tables.

Modern FPGA devices also include components such as block-RAMs, DLLs, and DSP blocks.

An embedded processor will be designed using the Verilog hardware description language (HDL).

A HDL can be thought of as a front-end to a software compiler. Other HDL front-ends exist such as

VHDL. The HDL is synthesised into an retargetable intermediate form consisting of nets - a form

describing the gates, flip-flops, and their interconnections. After this synthesis takes place, the inter-

mediate net list form is transformed into implementation specific forms. As this processor is designed

for FPGA implementation, processes such as ”place and route” are utilised to map the net list to phys-

ical resources on the FPGA. Different processes are performed for different implementations, such

as for ASICs and CPLDs.
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1.2.1 Soft-core Embedded Processors . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.2 Compilers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3 Project Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3.1 Core Deliverables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3.2 Extended Deliverables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4 Legal and Ethical Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4.1 Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4.2 Fit for Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4.3 Third-party Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4.4 Generated Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.1 Introduction

Modern computing and electronics equipment, like function generators, oscilloscopes, and spec-

trum analysers, use FPGAs to implement their compute intensive logic. These FPGAs are often

accompanied by a small, low-cost, microprocessor to supervise and provide interfaces to external

peripherals.

The aim of this project is to implement this side-microprocessor into the FPGA to save on BOM

costs, PCB space, and power costs, which contribute to higher development and product costs.

While savings can be made by the lack of side microprocessor, the product may need a larger FPGA

to accommodate the embedded microprocessor. The project will produce a small, soft-core, CPU

design and compiler. Although there is no direct client in this project, I believe this project will produce

an attractive product for FPGA-based product designers wishing to employ an embedded processor

solution as well as improve my knowledge and experience in this field.

This report details the design considerations, implementation, and verification, of a new embed-

ded processor architecture and a high-level code-compiler targeting it.
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1.2 Background

Embedded processors are becoming more and more present in many products, ranging from toys

to outdoor sensory recording systems to test and measurement tools. Embedded processors are

specifically designed for remote and constrained environments, where power consumption, operating

temperature, and form factor are extremely constricted.

FPGAs are powerful devices. They allow virtually any digital electronics design to be programmed

post-manufacturing to the device. This makes FPGAs safer and cheaper to implement complex

digital logic and are great alternatives to ASICs, which cannot be reprogrammed and have steep

initial development costs. FPGAs are being utilised in an increasing number of new areas, such as

machine vision for image processing and machine learning for faster learning [2].

1.2.1 Soft-core Embedded Processors

There exists many commercial and open-source embedded processors, each providing different

features and specialities such as digital signal processing, analogue components, instruction set

architectures, and interfaces.

Research has been performed to identify existing embedded processor features and character-

istics. This research has been used to identify requirements and desired functionality of this new

processor architecture. This research can be found in appendix 7.3.1 Existing Embedded Processor

and Compiler Research.

From this research, it was clear that the new processor was to be a lightweight design with RISC

architecture. PicoBlaze, with it’s on-chip scratch memory and low resource footprint, is a primary

inspiration for this new processor.

1.2.2 Compilers

Compilers are used to transform high-level code into a lower form. This is particularly useful for

large applications where abstracting low-level details can result in faster development and better

optimisation. Most modern open-source compilers today have retargetable front-end, optimisation,

and back-end components that allow new architectures and grammars to be implemented while still

utilising existing compiler features.

Research into existing compilers has been performed. This research is required to identify a

suitable compiler that would allow easy creation of a back-end for the new processor architecture.

After comparing compilers such as LLVM and 8CC, it was decided to build a new compiler from

scratch rather than implement a back-end for an existing compiler. This was to satisfy a chief re-

quirement of the project: to improve my learning and experience in processor architecture, low-level

programming, and compilers.
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1.3 Project Overview

This primary aim of this project is to improve my knowledge and experience in embedded proces-

sors, SoC design, computer architecture, and compilers. To do this, I will design an efficient and

cost-saving alternative for board and hardware product designers utilising side-microprocessors by

designing, implementing, and demonstrating, a small, portable, FPGA processor core design to be

used in-place of the side-microprocessor.

The processor core will implement it’s own pipeline and instruction set architecture and so a

compiler and assembler will also be provided so that software code can easily be executed on the

processor. The new processor core and compiler tool chain will be named PRCO304.

1.3.1 Core Deliverables

These core (C) deliverables are the base requirement for the project to be released in a functional

and worthwhile state.

C1. To improve my knowledge and experience of FPGA development, processor architecture, com-

pilers, and embedded systems engineering.

C2. To build a working and operational soft-core processor core capable of performing simple tasks.

C3. Implementation of the soft-core processor design on real hardware (FPGA).

C4. To provide a high-level context-free code compiler to run user-code on the processor.

1.3.2 Extended Deliverables

These extended (E) deliverables may not be achievable in the time frame specific in section 2.3 as

they may require extra time to design and implement, require more experience or skill, or require

resources currently unattainable.

E1. To provide a technical processor reference guide and specification for the embedded core.

E2. To provide embedded products a convenient solution to in-field updating.

E3. To provide product designers with an affordable alternative to a side-microprocessor in their

FPGA-based products.

E4. To provide easy interfacing between the FPGA design and the embedded core.

E5. GCC/LLVM/8CC compiler backend for C programming.

E6. Wishbone interface for easier modularity and inter-module communication.

E7. Multi-core design with Wishbone (2).

E8. Configurable build options (register/bus widths, optimisations/pipelining, user/privileged mode

to support modern operating systems).

E9. Memory management modules to provide protected and virtual memory lookup tables.
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1.4 Legal and Ethical Considerations

This project adheres with the University of Plymouth’s Ethics Policy [3].

1.4.1 Privacy

The PRCO304 processor will be able to read and write to all data passing through it and control all

connected peripherals (such as UARTs, SDRAMs, and SD Cards). The processor does not track or

store usage behaviour, instructions and their frequency, memory contents, or timing statistics, or any

other usage metric.

1.4.2 Fit for Purpose

The PRCO304 processor is not designed to run general purpose operating systems, such as Linux

or embedded RTOS systems. All memory devices attached to the FPGA are fully accessible to

the processor core and instructions/programs running through it, meaning that operating systems or

secure applications storing private and sensitive information is not protected by modern processor

features such as privilege modes and virtual memory sections. The processor lacks common com-

ponents required to run modern operating systems, such as a memory management unit (MMU) and

privilege modes, and so should not be run on the processor.

The PRCO304 processor is not designed to run in high-reliability or safety-critical environments

that require established safety standards, such as the UK Defence Standard 00-56 [4] and IEC 61508

[5].

The PRCO304 processor is not designed for implementation in silicon and makes no guarantees

of reliability or performance in this format. The PRCO304 processor, by design, should be used as a

replacement for a simple micro-controller accompanying a main processing module.

1.4.3 Third-party Libraries

This project uses only 1 external library for the processor core’s universal asynchronous receiver-

transmitter (UART) module that does not depend on any other libraries. This allows me to guarantee

that: the project rights are secure; and application behaviour is well-defined and predictable (no

exploits introduced/injected from external libraries). The UART module does feature a large first-in-

first-out (FIFO) buffer for temporary storage of in- and out- going messages. This FIFO is internal

to the FPGA design and so is protected from external viewing/modification by probing the board in

which the core is running on.

The compiler sub-project does not use any external library dependencies, does not record teleme-

try or usage statistics, and does not require an internet connection to run.

1.4.4 Generated Code

The PRCO304 compiler will not insert telemetry or any other kind of usage tracking into the generated

code. The code generated by the compiler is not guaranteed to:
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• Produce code for secure environments. The compiler will not randomise, obfuscate, or

split-up and spread, output code. Output machine code will be in a predictable format (global

variables in low-memory, instruction memory in middle-memory, and stack memory in high-

memory) making the binary easily subject to reverse-engineering and modification.

• Produce constant time executable code for expressions. For example, the compiler out-

put for an if statement may implicitly vary depending on it’s condition expression, which may

have been optimised out, constant-folded, or without-optimisation. This also applies for user

code aiming to create reliable and accurate time delay loops; although the processor does not

perform optimisations such as instruction caching or branch prediction, access to memory and

ALU operations may vary in time, resulting in unreliable instruction times.
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Chapter 2

Project Management

2.1 Method of Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Resources and Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Source Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.2 Document Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1 Method of Approach

Development of the core and compiler will be done in separate stages of the project (see section

2.3). The two deliverables will be split into 2 sub-projects. Both sub-projects will employ the Agile

development process, using Agile’s sprints to split up tasks into sub-tasks and Agile’s scrums to

discuss progress, features, and changes. This technique allows revisiting of tasks to tweak and

iterate over their implementation which will be key when for incrementally adding features to both

sub-projects, for example, adding to the core’s ALU module to add conditional branching, or adding

new instructions to the core’s decoder module if required.

This project will be split into 4 main stages: First is the requirements and information gathering

as well as finalising core and compiler features (such as registers and instructions). The second

stage consists of the design, implementation, and verification of the embedded processor core. The

third stage consists of the implementation of the compiler and verification for it. The final stage is

dedicated to reviewing the project and the final report. These stages are further described in section

2.3.

This project combines the benefits of Agile and PRINCE2 methodologies. In particular, we align

highlight reports with the projects stages and work on each stage in sprints. The contents and review

of each sprint can be found in the highlight reports.

In addition, a Kanban board is used to track current sprint challenges, such as bugs and feature

implementation statuses. Figure 7.2 shows the project’s Kanban board with tasks for open bugs and

features.
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2.2 Resources and Dependencies

For the first half of the development cycle, the core can be developed and verified using the Verilog

simulator and test suite, Verilator, and VHDL and Verilog simulator, iSim.

The second half of development will require deploying and debugging on real hardware. This will

require an FPGA development kit. To better emulate customer products, the development kit should

feature common components such as LEDs, GPIO, USB interface, flash-based storage and memory,

and optionally an analogue audio output port. The low-middle range of FPGA devices the project

is targeting is the popular and affordable yet feature rich Spartan-6 and Artix-7 FPGAs. From my

placement, I have gained experience in Xilinx FPGAs and so will be targeting them for this project to

reduce risk and development time.

The following FPGA development kits are suitable for this project:

1. MiniSpartan6+ - Scarab Hardware - $79 (already owned) [6]. The MiniSpartan6+ features a

Spartan-6 XC6SLX9 FPGA, 8 LEDs, 2 digital and analogue headers, FT2232 FTDI USB to

JTAG, 64Mb SPI flash memory, 32MB SDRAM, an audio output jack, and a MicroSD socket.

Figure 2.1: Scarab Hardware MiniSpartan6+ board layout.

2. Arty Artix-7 FPGA Development Board - Digilent - $100 [7]. The Arty development board fea-

tures a larger Artix-35T FPGA with over 20x the number of logic cells and block memory com-

pared to the LX9 in the MiniSpartan6+. The board components include 256MB DDR3 RAM,

16MBx4 SPI flash memory, USB-JTAG, 8 LEDs (4 of which are RGB), 4 switches, 4 buttons,

and multiple Pmod connectors.

The greater number of IO options and larger FPGA make the Arty board better suited to emu-

lating real customer products.
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Figure 2.2: Digilent Arty Artix-7 board.

Although the Arty Artix-7 FPGA development board was identified as the most beneficial devel-

opment board for this project, it was decided to use the MiniSpartan-6+ development board due to

my existing familiarity with the Spartan-6 FPGA family and tools. If the Artix-7 FPGA was used, ad-

ditional time and resources would need to be allocated to learning and getting the Vivado software

suite set up.

The project will require a computer or laptop to develop the core and compiler on and continuous

integration systems to perform testing on the incremental builds. For the project demo, an oscillo-

scope (already owned) or digital logic analyser may be required to demonstrate some of the core’s

features.

2.2.1 Source Control

Version control will be utilised to improve work-flow, reference and review code changes, and protect

the project from data loss and corruption. GitHub, a Git hosting provider, will be utilised to host all

project files, including documentation and design files.

The repository can be found here: https://github.com/bendl/prco304

Figure 2.3: Chart showing the frequency of commits over the life cycle of the project.
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2.2.2 Document Control

All documents will be authored in LaTeX and markdown. This allows all documents to follow a custom

style guide, share resources, and display complex visualisations (such as syntax highlighting), and

has great support for version control and collaboration.

All documentation is stored in the prco304 GitHub repository (URL above) in the doc/ directory

alongside the source directories (prco_compiler/ and prco_core/). By including documentation

with sources, a pattern employed by large open-source projects such as GCC, Linux, and CPython,

allows future projects utilising the resources in this project to easily navigate, understand, and con-

tribute back to the project.

2.3 Stages

The project is organised into 4 distinct stages: 1. Research, requirement gathering, and initial design;

2. Processor core implementation; 3. Compiler implementation; and 4. Project conclusion.

Figure 2.4: The project’s gantt time chart showing project stages, times, and deadlines. The vertical blue bar shows the current time of
the project.

Stage 1.0: Project Initiation Document

A PRINCE2 Project Initiation Document (PID) is provided in Project Initiation Document. This docu-

mentation is used to initial propose the project to managing personnel by listing project requirements,

objectives, risks, and quality plans.
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Stage 1.1: Research and Requirement Gathering

This stage is used to research existing embedded processors and compilers. This information is

used to aid creating SMART (Specific, Measurable, Achievable, Relevant, Timely) project objectives

and deliverables.

Stage 1.2: Core & Compiler high level design

This stage covers the high level design of the processor core. A specification is written up to de-

scribe components of the processor core, such as register sets, instructions, pipe-lining, and control

systems.

The compiler high-level design specifically covers program flow, internal structures for represent-

ing the input code, and software paradigms that will be employed.

As seen in Figure 2.4, this task is allocated over 1 month of time. This is because Agile method-

ologies will be employed. Frequent reviews will held at the end of each highlight report. These

reviews may suggest that new instructions or timing changes are required, and so the high-level de-

sign will be continuously updated.

Stages 2.0 and 3.0 are described in more detail in their own chapters (Chapter 3, Chapter 4).

Stage 2.0: Core Register-set Implementation.

Once the core high level design in complete, implementation of the register set is started. This is a

key component of the core as it is connected to multiple other components, such as the decoder and

ALU.

Stage 2.1: Core: Decoder Implementation.

The decoder is used to identify operands within machine code instructions. The decoder is a simple

and fast component; The current instruction is it’s input, and it outputs the instructions operands, such

as register selectors and immediate values. It is connected to the RAM and register components, to

fetch instructions and get register contents respectively.

Stage 2.2: Core: ALU, RAM Implementation.

This stage is used for implementation of the Arithmetic Logic Unit (ALU) and Random-access Mem-

ory (RAM). The ALU is used for performing arithmetic, logical, and address functions on data coming

from the register set. The ALU result is then either piped back to the register set or sent to the RAM

module for mass storage.

Stage 2.3: Core: GPIO, Communication.

This stage implements external user interfaces that allow the processor core to read and write data

and messages to other devices outside the core. Specifically, implementation for a UART transmitter

and a debugging instruction-stepper button are performed.
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Stage 2.4: Core: Verification.

This stage is used to meet quality requirements stated in the Project Initiation Document. To meet

these quality requirements, multiple forms of verification and testing is performed, such as manual

simulation of the core design and automatic unit tests. This stage is continuously performed through-

out the development of the processor.

Stage 3.0: Compiler:. Parser impl.

This stage starts the implementation of the compiler’s front-end. The compiler must be able to read

an input file character by character and to create an internal representation of this data.

Stage 3.1: Compiler: Code-generation.

This stage implements the compilers output code-generator. Given an Abstract Syntax Tree (AST),

the compiler will decide on and run code-generation routines to emit machine-code instructions for

use by the processor core.

Stage 3.2: Compiler: Assembler.

The assembler takes an initial list of machine code instructions and calculations missing information

that could not be calculated before, such as addresses and offsets. After the assembler has ran, the

output machine code should be in an executable state.

Stage 3.3: Compiler verification

Like Stage 2.4, this stage is present throughout the development life-cycle of the compiler. Automatic

unit tests and continuous integration tests are performed on the compiler for every code change to

verify correct operation of the compiler. This achieves the projects quality requirements.

Stage 4.0: Report.

The final stage is dedicated to the post-project tasks. This involves reviewing original project objec-

tives and deliverables, ensuring all risks have been resolved, and writing of the final report.
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3.8 Core Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
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3.9 PRCO304 Processor Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.9.1 Project Deliverables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.9.2 Extended Deliverables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1 Introduction

The PRCO304 Processor Design is the first of two deliverable sub-projects required for this project.

The processor is designed to be a small, instantiated, Verilog module that can be easily inserted into

existing FPGA-based Verilog projects.
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3.2 Project Management

Using research gathered from existing embedded processor designs (see section 7.3.1), and consid-

eration of constraints such as time and resources (see section 2.3), the following core and extended

deliverables have been decided:

3.2.1 Core Deliverables

The following Core Processor Deliverables (CPD) are deliverables that must be implemented for the

processor to be deemed functional. These goals were designed with SMART methodologies in mind.

CPD1. Support a wide range of executable programs.

CPD2. Provide a 16-bit instruction set capable of supporting simple programs (recursion, memory

reading, strings (arrays), function calling).

CPD3. Support simple arithmetic and bitwise operations (ADD, SUB, OR, XOR, etc.).

CPD4. Operate on 16-bit data sizes (16-bit register and instruction sizes).

CPD5. Fully synthesize-able on FPGA hardware.

CPD6. Implement a simple pipeline architecture.

3.2.2 Extended Deliverables

The following Extended Processor Deliverables (EPD) are deliverables that must be implemented for

the processor to be deemed functional.

EPD1. Provide hardware-based multiplication, division, modulus, instructions.

EPD2. Provide SIMD style instructions for faster vector manipulation.

EPD3. Provide in/out GPIO and UART modules for external communication.

EPD4. Provide an interrupt system allowing asynchronous events to be handled.

EPD5. Implement a super-scalar pipeline architecture (execute more than 1 instruction per clock).
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3.2.3 Applicable Stages

The design, implementation, and verification of the new processor consist of the project stages 1.2

to 2.4. Initially described above in section 2.3, below details additional technical considerations,

challenges, and changes that occurred during these stages.

Stage 1.2: Processor specification, architecture, ISA

As discussed in section 7.3.1, existing embedded processors have been researched and com-

pared in order to determine a suitable and realistic specification for the processor design. A

comparison table is also available in appendix 7.4.

Stage 2.0: Core dev. Register set implementation

This stage covers the implementation of the register set in Verilog, as per the specification.

After this stage, the processor will be able to read and write 16-bit values in the dual port

register set.

Stage 2.1: Core dev. Decoder implementation

The instruction decoder is a core part of all processors; they deconstruct incoming instructions

and identify operands within the instruction, such as immediate values, opcodes, and register

selects. The decoder went through an iterative development utilising Agile sprints. This allowed

new instructions to be iteratively added to the module to support new features.

Stage 2.2: Core dev. ALU, RAM implementation

Like the decoder, the ALU was required to implement changing instruction definitions, such as

status register bits and comparison operands. Initially, the status register was included in the

register set as a dedicated register, but it was later changed to a local register accessible only

to the ALU. This was because the register set

Stage 2.3: Core dev. GPIO, Comms implementation

UART and GPIO interfaces are implemented in the processor. These can be accessed by using

the READ and WRITE instructions.

Stage 2.4: Core verification

To ensure quality requirements (7.2.1) are achieved, multiple verification and testing strategies

were employed, such as simulation, unit testing, and emulation. These are described in further

detail in section 3.7.
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3.3 High Level Design

The PRCO304 processor is a modularised processor with independent components for the ALU,

Registers, RAM, and it’s peripherals. Figure 3.1 below shows how the processor core can be inte-

grated onto the MiniSpartan-6+ development kit and connected to peripherals.

Figure 3.1: PRCO304 processor block diagram showing component interconnections within the processor, FPGA, and development
board.

3.4 Registers

PRCO304 has a total of 8 addressable, read and write, registers. These registers are identified by

letters A through H.

3.4.1 General Purpose Registers

Registers A through E are designed for general purpose use and are safe to store user values over

the run-time of the processor.

Instructions that require a destination register, such as CMP, can reference any register (even

special registers if that is your requirement). For the CMP instruction as an example, the processor
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Table 3.1: General purpose registers.

Registers Bits Description

A through E 15:0 5 General purpose registers

will put the result of the comparison instruction in the destination register, overwriting any value

present in that register.

3.4.2 Special Registers

Registers F through H are special registers within the processor. The processor cannot guarantee

that a value written or read in these registers will persist over the run-time of the processor. Erro-

neously writing to these registers may severely affect program and processor behaviour.

Even though all registers can be used at the will of the programmer, it is recommended to isolate

a few registers to provide special features, such as RAM stack management, interrupts, and IO

multiplexing.

Table 3.2: Special registers.

Registers Bits Description

F 15:0 Status Register

G 15:0 Base Pointer

H 15:0 Stack Pointer

Status Register

The Status Register is a dedicated register used by the ALU to provide additional information on

results of instructions. Using the Status Register is essential for programs wanting to perform condi-

tional branching or operate on dynamic data.

Table 3.3: Status Register breakdown.

Bit Name Description

0 SR Z Set if the result of a CMP instruction is 0.

1 SR S Set if the result of a CMP instruction is signed (greatest bit is 1) (signed).

2 SR O Set if the result’s 17’bit of a CMP instruction’s is set (overflowed).

These bits are chosen as they can be combined to represent different types of comparison, such

as equal to, greater than, and less than or equal to.
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Base Pointer

The PRCO304 processor assumes that the compiler will employ a stack management scheme similar

to that of x86 machines. By doing so, the compiler assumes the last 2 registers are dedicated to stack

management. The Base Pointer register is used in a similar way to the x86 Base Pointer register.

Compilers and code generators should utilise this register for storing the address of the current

stack frame. By utilising the register this way, features such as local and passed variables become

available as they are addressable by offsetting the Base Pointer by a constant value.

Stack Pointer

The Stack Pointer is similar to the x86 Stack Pointer in that it stores the address of the top of the

stack. This register is used primarily for PUSH and POP operations (see section 4.3.8 PUSH and

POP for example usage).

3.5 Instruction Set Architecture

The chief project objective, P1., is to improve my knowledge of FPGA development, processor ar-

chitecture, and embedded systems. To do this, it was decided with the project supervisor to design

and implement a new instruction set architecture (ISA) aimed specifically for this embedded proces-

sor. In addition to improving my knowledge and experience, it would avoid legal and ethical issues

introduced if emulating an existing architecture, such as MIPS, ARM’s Thumb2, or x86.

The use of Agile development was beneficial in the design of the ISA. As the processor was de-

veloped and programs were ran on the processor, the need for new instructions and requirements

were observed. For example, it was observed that code generation for boolean comparisons (e.g.

a < b) could be reduced by introducing a new instruction, SETC, therefore increasing program speed,

reducing file size, and improving debugging. This is described further in section SETC 3.5.4.

The PRCO304 processor implements it’s own fixed 16-bit little-endian instruction set. A 5-bit op-

code is present in each instruction, identifying the type of instruction. This allows for 25 (32) unique

instructions. However, this can be extended if unused bits in instructions are utilised.

3.5.1 Instruction Types

It was decided to support the following 3 types of instructions. This allows for a wide range of

instruction operands, such as more registers selectors or larger immediate values.

Table 3.4: The 3 instruction format types used by the PRCO304 processor.

Type Bits

Type 1 15-11 10-8 7-5 4-0

Type 2 15-11 10-8 7-0

Type 3 15-11 10-0
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3.5.2 Instructions

Table 3.5: All PRCO304 processor instructions and their semantics. Detailed descriptions of each instruction is provided in PRCO304
Processor Instruction Set Architecture.

Type 1 15-11 10-8 7-5 4-0 Semantics

Type 2 15-11 10-8 7-0 Semantics

Type 3 15-11 7-0 Semantics

NOP 00000 X X X PC <= PC + 1

LW 00001 Rd Ra Simm5 Rd <= RAM[Ra + Simm5]

SW 00010 Rd Ra Simm5 RAM[Ra + Simm5] <= Rd

MOV 00011 Rd Ra X Rd <= Ra

MOVI 00100 Rd Simm8 Rd <= Simm8

ADD 01000 Rd Ra X Rd <= Rd + Ra

ADDI 01001 Rd Simm8 Rd <= Rd + Simm8

SUB 01010 Rd Ra X Rd <= Rd - Ra

SUBI 01011 Rd Simm8 Rd <= Rd - Simm8

JMP 01100 Rd Imm8 See Conditional Branching.

CMP 01101 Rd Ra X Set SR flags

HALT 10010 X Stop the processor.

WRITE 10011 Rd Imm8 PORT[Imm8] <= Rd

READ 10100 Rd Imm8 Rd <= PORT[Imm8]

SETC 10101 Rd Imm8
Set Rd to 1 if Imm8 is set in Status Reg-

ister from last CMP instruction, else 0.

3.5.3 Conditional Branching

Table 3.6 below details each conditional branch parameter and how it is evaluated in the Status

Register.
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Table 3.6: Conditional jump instructions showing how the Status Register is utilised.

15-11 10-8 7-0 Semantics Status Register

JMP 01100 Rd 0000 0000 Unconditional Jump Any

JE 01100 Rd 0000 0001 Jump Equal SR Z=1

JNE 01100 Rd 0000 0010 Jump Not Equal SR Z=0

JG 01100 Rd 0000 0011 Jump Greater Than SR Z=0 and SR S = SR O

JGE 01100 Rd 0000 0100 Jump Greater Than or Equal SR S = SR O

JL 01100 Rd 0000 0101 Jump Less Than SR S<>SR O

JLE 01100 Rd 0000 0110 Jump Less Than or Equal SR Z=1 or SR S<>SR O

JS 01100 Rd 0000 0111 Jump Signed SR S=1

JNS 01100 Rd 0000 1000 Jump Not Signed SR S=0

3.5.4 Design Considerations

As stated in section 3.5 above, the use of agile methodologies allowed for constant review of the

functionality of the processor. After these reviews, design changes were proposed, tested, and

integrated into the processor.

The PRCO304 processor’s ISA has been through multiple iterations; from opcode length changes,

operand bit position changes, and immediate value sizes. The following sections describe some of

the design considerations and changes of the PRCO304 processor.

Opcode Bits

Initially, the opcode length was 4-bits allowing a total of 16 unique opcodes. This was later changed

to 5-bits to add more opcodes at the cost of addressing fewer registers and having smaller immediate

values. This change was enabled by using the agile methodology.

Multiplication and Division

Due to time constraints, multiplication or division instructions are not implemented within the PRCO304

processor. The equivalent functionality and more can still be achieved using the currently available in-

structions. The test file prco_compiler/test/tests/mul_1.prco and prco_compiler/test/tests/div_1.prco

contain example unsigned integer multiply and divide functions.
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SETC Instruction

The SETC instruction was added to reduce the number of instruction required to perform boolean logic

operations on registers. Without the SETC instruction, to evaluate the expression 1 < 5, the compiler

would need to emit multiple JMP instructions to set the result to 0 or 1 and JMP over the other result.

In my testing, the compiler would require between 5-8 instruction for each boolean expression.

The SETC instruction is inspired by the x86 instruction: SETcc Set Byte on Condition [8].

With the introduction of the SETC instruction late in development, the number of instructions could

be reduced to around two instruction. (one for the initial comparison, and one for setting 1 or 0 with

SETC). This greatly improved program execution time and size.

3.6 Pipeline Architecture

The PRCO304 processor employs a feed-forward pipeline strategy. This pipeline supports:

• Time-varying processes: Multi-clock cycle decoding; Memory access; ALU operations.

• Module re-ordering: Instruction dependencies; Module skipping; Output redirection.

As the pipeline is feed-forward, no information is sent back to previous modules to tell them of

their status. This means that if a module is stalled (due to mutli-cycle processes or future modules

are stalled), and the previous module is ready, the previous module will signal the next module that

information is ready and it should take it, but the current module is unable to as it is busy. The pipeline

resolves this issue by it’s cyclic nature. This means that only 1 module at any time is processing data.

Of-course, the downside to this approach is that instruction parallelism is reduced.

Figure 3.2: The feed-forward pipeline interconnect diagram used by the PRCO304 processor.

The pipeline structure is described in figure 3.2 (above). The general order of the modules is

shown from left to right, but this can change due to the pipelines re-ordering functionality.

The Decoder module will decode instruction words from memory and will output appropriate sig-

nals containing the requirements of the instruction, such as requiring register write access, any ALU

operation, and whether the instructions requires access to internal/external memory.

To improve instruction performance, the decoder can also choose what modules are required and

when they are called. For example, for the (move immediate) instruction the Decoder will assign
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the following modules in the following order: ALU and Register write, resulting in a total of 5 stages

(including PC, Fetch, and Decode). The last module in this pipeline, the Register write, will raise the

q pipe end signal indicating that the pipeline has finished and to start fetching the next instruction.

For the NOP instruction, the decoder identifies that the instruction requires no dependencies and

will hence raise the q pc inc signal resulting in only 3 pipeline stages.

For instructions that require RAM access, a typical pipeline order might look like: PC, Fetch,

Decoder, Register Read, ALU, RAM, resulting in 6 stages being used.

Figure 3.3: PRCO304 processor instruction cycle time diagram.

3.7 Testing and Verification

Multiple forms of verification and validation are performed on the processor to satisfy the quality

requirements (7.2.1) of the project.

• Verilator testbenches are used to automatically verify correct behaviour of the RTL code.

These testbenches use the Verilator framework to compile and simulate Verilog modules.

These tests produce an output report detailing test results and real register values. The Verila-

tor test benches used in this project are found in prco_core/rtl/test/verilator and can be

run using the script: make_test.sh.

Running test: ALU OR 2

ALU_OP_WRITE/READ 000a

PASS: 10 10

Running test: ALU OR 3

ALU_OP_WRITE/READ 0004

FAIL: Got 4 Expected 7

=============================

14/27 tests passed.

An example test report for the ALU running OR instructions on different operands and immedi-

ate values is shown above.
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• iSim testbenches are used to better visualise signal states and changes over time. These

testbenches require manual verification and so it can take a considerable amount of time to

verify a module.

Figure 3.4: iSim simulation showing high-level signals in the processor core, including: Program Counter (pc); current Op code (q op);
and ALU result (q result).

• Single-step implementation runs are used to verify the correct behaviour of the RTL code on

a real FPGA device.

The PRCO304 processor core features a single-step input line that can be pulsed to signal the

core to execute the next instruction. In these tests, generally the first register Ax is redirected to

the 8 LEDs on the development board, allowing the tester to visually see it’s contents. However,

only the higher-or-lower byte can be viewed at any single time (as registers are 16-bits wide).

UART printing is also used to visualise register contents, however, integer to ASCII conversion

is not implemented so only single digits can be displayed in ASCII.
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3.8 Core Analysis

3.8.1 ISE Implementation Report

In the ISE suite, reports are generated for synthesis, place-and-route, and programming file gener-

ation. These report detail how resources on the physical device are utilised in the HDL design, for

example the number of slices, LUTs, latches, and block RAMs.

The full implementation report for the PRCO304 processor is listed in 7.3.5 ISE XC6SLX9 Im-

plementation Report. An important characteristic is the number of slices the FPGA supports. The

XC6SLX9 Spartan-6 FPGA used in this project has 1,430 slices available. From the implementation

report, it can be seen that the PRCO304 processor uses 844 (59%) of the available slices. Although

the Spartan-6 device used is a small FPGA, the number of slices used is still high, indicating ineffi-

ciencies in my HDL design.

It can be seen that the number of slices used for single-port and dual-port memories is 0. This

is likely the cause of the high slice count. The PRCO304 processor has 256 words of internal

single-port RAM memory and 8 words of duel-port register memory. This means that my design of

these components were not successfully inferred to physical block RAMs on the the FPGA and were

instead implemented by the synthesis tool as LUTs.

A good result is that zero latches are created. Latches are often created when conditional or

combinational statements are not assigned under all conditions, and a state must be ’latched’ to

account for it. These latches can lead to longer routing delays on the implemented design and can

reduce maximum clock speeds which leads to more constricted space and timing constraints.

Overall, the report is acceptable, but future improvements should primarily be aimed at reducing

this resource footprint. This would allow the processor to be deployed on even smaller FPGAs and

also leave more resources for the user’s FPGA logic.

3.8.2 Performance

Instructions Per Cycle (IPC) and Million Instructions Per Second (MIPS) are two measurements used

to measure the performance of a processor. These measurements are used to determine average

processor performance. The downside of these measurements is that they assume each instruction

executes in constant time. This is not the case in the PRCO304 processor and other modern pro-

cessors.

The PRCO304 processor can execute instructions in 3 to 10 clock cycles, depending on the in-

struction. Instructions that require no and few dependencies (ALU, RAM, registers, etc.) such as

NOP, HALT, and PORT, can be executed in as little as 3 clock cycles (20ns per clock at 50MHz) re-

sulting in 0.67 IPC and 16.7 MIPS. Instructions requiring many dependencies and off-chip resources

(RAM) can take up to 10 clock cycles, resulting in an 0.1 IPC and 5 MIPS.

The most used instructions, MOVI, MOV, ADD, ADDI, JMP, and CMP, take around 5 clock cycles

each, resulting in 0.2 IPC and 10 MIPS.

Ben Lancaster 10424877 Page 34



3.9. PRCO304 PROCESSOR REVIEW PRCO304 (Rev. 3.14)

Comparing this against Xilinx’s MicroBlaze embedded processor which features 1.3 DMIPS/MHz

(65 DMIPS/50 MHz) shows the performance benefits of super-scalar processor architectures.

The PRCO304 processor is similar to AMD’s Am386 (1991) processor with 9 MIPS and 0.225

IPC when run at 40 MHz [9].

3.9 PRCO304 Processor Review

3.9.1 Project Deliverables

CPD1. Support a wide range of executable programs.

Achieved. A number of applications have been written for the processor (located in prco_compiler/test/tests/)

ranging from string manipulation, integer division, and console printing. The combination of

these programs can result in a wide range of large and complex applications.

CPD2. Provide a 16-bit instruction set capable of supporting simple programs.

Achieved. A few instructions were added in addition to the original ISA design. The complete

instruction listing can be found in PRCO304 Processor Instruction Set Architecture user guide.

CPD3. Support simple arithmetic and bitwise operations.

Achieved. Although only addition and subtraction have been implemented in hardware, multi-

plication, division, and modulo, can be performed in software using multiple simple instructions.

CPD4. Operate on 16-bit data sizes.

Achieved. All register sizes, memory cell sizes, and ALU outputs are of 16-bit words. Operands

using only 8-bits are bit-extended to 16-bits by the ALU.

CPD5. Fully synthesize-able on FPGA hardware.

Achieved. Section 3.8.1 reviews the implementation on the XC6SLX9 FPGA.

CPD6. Implement a simple pipeline architecture.

Achieved. The pipeline is described and reviewed in section 3.6 Pipeline Architecture.

3.9.2 Extended Deliverables

EPD1. Provide multiplication, division, modulus, instructions.

Not achieved. Due to limited time and the complexity of these operations, these instructions

were not implemented in hardware. They can be implemented fully in software however.

EPD2. Provide SIMD style instructions for faster vector manipulation.

Not achieved. Due to limited time, the ALU is limited to operating on only 2 registers simulta-

neously and no instructions are provided to achieve SIMD style processing.

EPD3. Provide in/out GPIO and UART modules for external communication.

Mostly achieved. UART transmit capabilities are present but reading and writing GPIO ports is

not fully implemented. Instructions exist for it (READ and WRITE) but their implementation is not.
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EPD4. Provide an interrupt system allowing asynchronous events to be handled.

Not achieved. Although theoretically simple in design, limited time resulted in it not be sched-

uled for implementation.

EPD5. Implement a super-scalar pipeline architecture

Not achieved. The current pipeline can execute 1 instruction every 5 clock cycles (0.2 IPC). To

become super-scalar, the pipeline design would need re-factoring so that it does not use global

and shared registers.

Overall, the processor design has been a success. Although not implementing performance

features such as hardware multiplication and division or a faster pipeline, the processor is able to

execute simple programs and be integrated fairly easily into existing FPGA designs.
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4.4 Assembling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4.1 Executable Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4.2 Address Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
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4.6 PRCO304 Compiler Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
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4.6.2 Core Compiler Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.6.3 Extended Compiler Components . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1 Introduction

The PRCO304 compiler is the second of two sub-project deliverables for this project.

The PRCO304 compiler is a command line based software tool used to convert a high-level text

grammar (a programming language) into executable machine for the PRCO304 processor.

The compiler is invoked with parameters for the input code file and optional parameters specifying

optimisation level, target architecture, verbosity, output file name, and include directory paths. The

full command line parameter list can be found in .

Ben Lancaster 10424877 Page 37



4.2. PROJECT MANAGEMENT PRCO304 (Rev. 3.14)

4.2 Project Management

4.2.1 Functional Requirements

This section details the functional requirements (F) and their technical implementation dependencies

of the compiler to allow users to produce complete and functional programs. Figure 7.4 breaks down

each functional requirement to show their technical dependencies.

F1. Text Components. The compiler will be able to parse the programming language’s grammar’s

(see section Text Grammar 4.3.3) terminals into distinct groups, such as text strings, arithmetic

symbols, and other text symbols.

F2. Program flow manipulation. The compiler will support divergent and branching program

structures using unconditional and conditional jump instructions.

F3. User-defined values. The compiler will support the creation of user-defined variables – allow-

ing the user to read and write values at their will.

F4. User-defined value manipulation. The compiler will allow the user to modify user-defined

variables during program execution.

F5. User-defined program flow. The compiler will allow the user to control program divergence

and repetition through the use of control statements (if and for statements).

F6. User-defined functional program. The compiler will allow the combination of the above fea-

tures to produce a complete and functional sequence of instructions ready for execution.

F7. User-defined encapsulated program. The compiler will support encapsulating user-defined

programs into functions to improve program control and support more complex programs.

For example, to support ’F4 User-defined program flow’, the compiler needs to support all pre-

vious functional requirements. In this case, requirements F3 and F1 must be implemented which in

turn have their own dependencies.

4.3 Implementation

The design philosophy for this project is to be forward compatible – such that future projects and

ideas are able to utilise the technology and functions of this project. The compiler is implemented

fully in the ANSI C programming language due to it’s portability and being interoperable with standard

binary interfaces (such as calling conventions). In addition, I have good familiarity and experience in

the language, which reduces risk and time requirements for learning new technologies.

The compiler is self-contained and requires no dependencies other than the standard C library

and CMake to build the project. The project strictly follows the ANSI C89 standard to make the code

more readable and portable.

The project is compiled with -Wall -Wextra to better follow the language standard and reduce

bugs and undefined behaviour.
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4.3.1 Compiler Architecture

The architecture of the compiler is split into 2 projects: a front-end for using the compiler via a

command line interface (cli), and the compiler implementation (libprco). This architecture was

chosen to allow the compiler to be included into other projects as a static or shared library. This

architecture is employed by other compilers such as Clang and LLVM.

4.3.2 Program Operation

The program flow of the PRCO304 compiler is detailed in Compiler Sequence Diagram 7.3.4.

4.3.3 Text Grammar

The input to the compiler is a generic programming language similar that has similar syntax to C.

Complete code examples can be found in prco_compiler/test/tests/.

fnc main() {

int a = 0;

}

The grammar is defined below in Backus-Naur Form:

<word> ::= [a-zA-Z]+[0-9]*

<string> ::= """ <word> """

<number> ::= [0-9]+

<top> ::= <func_def>|<decl>|<extern>

<func_def> ::= <proto><body>

<proto> ::= "fnc" <word> "(" <args> ")"

<body> ::= "{" <primary> "}"

<primary> ::= <decl>|<control>|<assign>

<decl> ::= "int" <word> [ "=" <expr> ]

<control> ::= <if>|<for>|<while>

<if> ::= "if" "(" <expr> ")" <body>

<for> ::= "for" "(" <expr> <expr> <expr> ")" <body>

<expr> ::= <assign>|<binop>|<number>|<string>|"("|")"

<assign> ::= <word> "=" <expr>

<binop> ::= "+"|"-"|"*"|"/" <expr>

Figure 4.1: BNF definition for the input programming language.
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It should be noted that the grammar and compiler do not have any terminals for defining datatypes,

such as ”short” and ”char”. This is because there is only one datatype supported by the compiler,

int, a 16-bit value. This is due to the complexity required to support different sized datatypes, for

example, calculating how many 16-bit words to allocate on the stack for local parameters and ac-

cessing them through offsets is difficult and out of scope. The int keyword is chosen as it accurately

describes the datatype and it’s use: a 16-bit value in which the developer which the developer can

interpret themselves (as an integer, float, pointer, etc.).

4.3.4 Text Parser

The compiler implements it’s own recursive descent parser for the grammar described in 4.3.3. The

parser is able to recognise all context free grammars and therefore would be capable of parsing more

complete programming languages such as C and Python.

The text parser is inspired by Jack Crenshaw’s ”Let’s Build a Compiler” book [10].

While parser generators already exist, such as Bison and Java’s ANTLR, it was decided to imple-

ment the parser by hand using recursive descent principles as a matter of learning rather than ease

of use. Although parsing a more complex grammar would easily be more achievable using a parser

generator, the overhead of generating compliant assembly for that complex grammar would be too

time consuming and is hence out of scope (see extended deliverable E5.).

4.3.5 AST Generation

It was decided to utilise an AST structure to represent target-independent code due to it’s simple

implementation and easy modification. Other immediate representations could have been used,

such as a text-based IR (similar to LLVM) but this would be harder to manipulate and iterate through

and so would require more time to implement.

The recursive descent parser stores all terminals in the grammar as structures in ast.h containing

relocatable information about the parsed text and it’s future implementation. This AST result of the

text parser is the initial immediate representation used by the compiler.

struct ast_func {

struct ast_proto *proto;

struct ast_item *body;

struct ast_item *exit;

struct list_item *locals;

struct ast_func *next;

int num_local_vars;

};

Figure 4.2: An AST structure representing a parsed function. It contains sub-structures pointing to it’s prototype, body, exit statement,
and a list of local variables. (ast.h:63)
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Figure 4.3: UML class diagram showing the AST structures and their connections. The struct ast_item structure is a top level structure
that contains pointers to specific AST items (such as ast_func and ast_lvar). It is a self-referencing structure and can be iterated over
in a linked-list using it’s *next property using the provided macro: list_for_each(). It can be thought as a generic header for each AST
type allowing it to be passed as a void* and still identified through it’s enum ast_type type parameter.

4.3.6 Optimisation

The PRCO304 compiler can optionally perform simple optimisations, such as unreachable code

elimination and constant folding. The optimisations can be controlled by specifying the -On parameter

to the CLI, where n is the level of optimisation.

The techniques used by the optimiser to perform these optimisations are primitive; the optimiser

is not given AST information in SSA (static single assignment) form; and because of this limitation,

only basic optimisations can be identified.

Constant Folding

Constant folding is performed by the optimiser to reduce (fold) expressions that can be identified as

constant. This allows the optimiser to replace AST tree structures containing constant values and

no dependencies with shorter and simpler AST items. This optimisation can drastically improve the

performance of the output code by reducing the number of instructions emitted.

For example, the following expression in Figure 4.4 can be identified as constant and can be

reduced to a single AST node as shown in Figure 4.6. As the optimiser is not passed AST information

in SSA form, the optimiser cannot follow or track variable references and modifications throughout

the life-cycle of the program. Although the parser does a contain a primitive symbol table, the symbol
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table does not map variables to values, and so the code segment in Figure 4.5 cannot be identified

as constant by the optimiser.

int a = 1 + (2 + 3) * 4;

Figure 4.4: Example of an expression suitable for constant folding.

int a = 1;

int b = 2;

int c = a + b;

Figure 4.5: Example of an expression the optimiser cannot identify as constant.

Figure 4.6: AST transformation performed by Constant Folding.

Unreachable Code Elimination

Unreachable code elimination is the removal of code that will never be run on the processor. This

can be in the form of uncalled function, unused variables, and control statements that operate on

constant values.

The PRCO304 compiler can identify some unreachable code segments, such as control state-

ments that operate on constant values, by utilising it’s constant folding optimisation discussed previ-

ously. By first running the constant folding optimisation on the body of functions, the optimiser looks

at the conditions of if statements. If it’s condition has been constant folded to a constant and is true

(i.e. not 0) then the AST tree can be replaced with the items in it’s body, effectively removing the

condition check if it’s always true, or the whole structure if it’s false.
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4.3.7 Code Generation

The compiler Code Generation stage converts the optimised AST into an intermediatary list of

struct prco_op_struct. It does this by iterating over each struct ast_item in the AST and checks

whether the item requires code generation. For example, an struct ast_item with type AST_FUNC

is one which requires code generation. The AST is then passed to the void cg_func_prco(...)

function where the code generation takes please. For this type, the stack frame header is generated

first, before the body of the function. At the end of the function’s body, the stack frame end code

generation routing is run.

This code generation stage is named intermediatary because absolute addresses of JMP instruc-

tions have not been calculated. The calculation of these addresses is performed in the following

Assembling stage. In addition, the location (and offset’s) of functions may need to be rearranged.

Variables

An initial requirement for the PRCO304 compiler was to support three types of variables: global, lo-

cal, and parameter variables. Due to time constraints and unforeseen ”sleeper” bugs only local and

argument variables have been implemented as of compiler version 2.50 (06/04/2018). Global vari-

able allocation has been implemented in the assembler but declaring or referencing global variables

has not been implemented.

Local Variables

Similar to C89, all local variables must be declared at the start of the function before any logic, such

as function calling. This is because the compiler will not rearrange the AST tree to move variable

declarations to the first child of the function AST tree.

When a local variable is declared, stack space is immediately allocated for the variable by sub-

tracting the data type size (1 word) from the Base Pointer variable. Although the code generator

knows how many local variables are in a function, due to time constraints, it will not reduce/fold multi-

ple stack allocations into a single SUBI instruction. The output machine code looks similar to Figure

4.9 below.

1 MOV %Bp, %Sp 1ee0 (STACK FRAME)

2 SUBI %Sp, $1 5f01 (ALLOC a -3)

3 SUBI %Sp, $1 5f01 (ALLOC b -2)

4 SUBI %Sp, $1 5f01 (ALLOC c -1)

5 LW %Ax, -3(%Bp) 08dd (REF a -3)

6 LW %Ax, -2(%Bp) 08de (REF b -2)

7 LW %Ax, -1(%Bp) 08df (REF c -1)

Figure 4.7: Disassembly of the output machine code for the high-
level code (4.8).

1 fnc main() {

2 int a; int b;

3 int c;

4 a; b;

5 c;

6 }

Figure 4.8: Input high-level code showing 3 variable declarations
and references.

Figure 4.9: Example machine code generation for local variables.
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Variables are then accessed using the LW instruction and passing a 5-bit signed immediate con-

stant as seen above.

Argument Variables

The compiler uses a modified implementation of the stdcall calling convention [11]. The difference

is that arguments are pushed left to right instead of right to left. This difference is due to limited time

constraints and was made worse by the use of a singly-linked list for storing arguments, which made

list reversal time consuming. The compiler overcomes this difference by reversing variable offset

addresses of the parameters of the function. The affect of this implementation might cause externally

compiled programs to be incompatible with programs compiled with this PRCO304 compiler. This is

easily solvable by reversing the argument list before pushing.

Figure 4.10 below shows the code generation routine used by the compiler to push function call

arguments to the stack before jumping to the function.

628 args = c->args;

629 list_for_each(args) {

630 cg_expr_template(args->value);

631 cg_push_prco(Ax);

632 }

Figure 4.10: Code generation routine for pushing arguments to the stack before the function call. (arch/template impl.c:628)

String Variables

Strings are an extended deliverable for the PRCO304 compiler but was added to better demonstrate

the capabilities of the compiler and processor. Strings in modern OS executable file formats, such

as ELF [12] and Windows’ PE [13], store explicitly declared strings as null-terminated ASCII (ASCIZ)

strings in the String Table or .text section of the executable file.

The PRCO304 processor places strings and global values at the start of low memory. As the

processor starts executing instructions at address 0x00, the compiler must insert a jump instruction

to the address of the main function.

A limitation in memory addressing and storage within the PRCO304 processor prevents memory

cells being indexed at byte boundaries. Due to limited time, it was decided with the project supervisor

to store each byte character in a 2-byte cell. This keeps the functionality but reduces memory density.
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1 0x00 MOVI $6, Bx 2106 (ENTRY)

2 0x01 JMP Bx, JUC 6100

3 0x02 ASCII b 1 0062

4 0x03 ASCII e 0 0065

5 0x04 ASCII n 0 006e

6 0x05 ASCII 0 0000

7 0x06 ADDI $-1, Sp 4fff (FUNC)

Figure 4.11: Disassembly of the output machine code for the high-
level code. Local variable declaration ’a’ is assigned the value 0x02
which is the address of the first byte of the ASCIZ string.

1 fnc main()

2 {

3 int a = "ben";

4

5 ...

6 }

Figure 4.12: Input high-level code showing a string variable declara-
tion.

Figure 4.13: Example machine code generation for string variables.

Pointers and Value Dereferencing

With the implementation of string variables, the concepts of pointers and dereferencing is implicitly

introduced.

1 void strlen() {

2 char *str = "testing";

3 int length = 0;

4

5 while( *(str + length) ) {

6 length++;

7 }

8

9 printf("%d", length);

10 }

Figure 4.14: C function to calculate the length of a string and print
to console.

1 fnc strlen() {

2 int str = "testing";

3 int length = 0;

4

5 while( @(str + length) ) {

6 length = length + 1;

7 }

8

9 UART1(length + 48);

10 }

Figure 4.15: Equivalent function to print the length of a string to
UART in the PRCO304 programming language.

Figure 4.16: Example machine code generation for value dereferencing.

4.3.8 PUSH and POP

PUSH and POP concepts are a simple yet powerful method in computer architectures to support

complex, nested, and recursive functionality, such as function calling and parameter passing.

Due to limitations of the PRCO304 processor’s instruction set, high-level instructions such as

PUSH and POP cannot be performed in a single instruction as with architectures like x86 and ARM’s

Thumb2. With discussion with the project supervisor, it was decided to replicate the behaviour of

these high level instructions by emitting multiple primitive instructions. Figure 4.19 below details how

the compiler emulates these high-level instructions.
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void cg_push_prco(enum prco_reg rd)

{

asm_push(opcode_add_ri(Sp, -1));

asm_push(opcode_sw(rd, Sp, 0));

}

Figure 4.17: PUSH emulation. The Stack Pointer is subtracted the
amount to store on the stack (1 word), followed by storing the desti-
nation register (rd) at the new Stack Pointer.

void cg_pop_prco(enum prco_reg rd)

{

asm_push(opcode_lw(rd, Sp, 0));

asm_push(opcode_add_ri(Sp, 1));

}

Figure 4.18: POP emulation. The value pointed to by the Stack
Pointer is loaded in the destination register (rd), followed by incre-
menting the Stack Pointer the size of the data type (1 word).

Figure 4.19: PUSH and POP emulation functions used by the PRCO304 compiler (arch/prco impl.c:255). Example of use:
cg_push_prco(Ax) to push register Ax to the stack; cg_pop_prco(Ax) to pop stack into Ax.

4.4 Assembling

The final stage of the compiler is the assembling stage. This stage takes the list of struct prco_op_struct

and outputs a list of machine code instructions. The assembler accomplishes this by calculating off-

sets and addresses of functions, branching instructions, and global variable addresses. It may also

rearrange function locations so that the main function is the first instruction to be emitted.

Assembling code is found in assembler_labels() at arch/template_impl.c:38.

4.4.1 Executable Layout

Figure 4.20: PRCO304 memory layout showing Global, Instruction, and Stack memory sections.

Another role of the assembler in the PRCO304 processor is to output the machine code in a format

that allows the widest range of programs to be run by the processor.

This format is not enforced by the processor core and it’s up to the compiler to lay out the pro-

cessor’s memory contents. The only feature that the processor states is that it will start reading

instructions from address 0x00. The compiler uses this information to structure the output program.
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The first two words of memory (0x00 and 0x01) contain MOVI and JMP instructions to jump the pro-

cessor to the address of the main() function.

4.4.2 Address Limitations

Due to time constraints, the assembler introduces many constraints to the output program that are

not explicitly identified in the high-level code.

The most prominent limitation is that the assembler can only address 256 words of memory.

This is because the assembler only builds up instruction addresses using a single MOVI instruction,

which is limited to an 8-bit immediate. This is easily fixable as the assembler could insert additional

instructions to build up 16-bit addresses to use. For example, to build a 16-bit address, 0xFECA, the

following instructions could be used (move 0xFE into Ax and shift left 8-bits, then OR it with 0xCA to

make 0xFECA):

MOVI $0xFE, %Ax

LSHF %Ax, $8

ORI %Ax, $0xCA

JMP %Ax, JE_UC (unconditional)

This is described in GitHub issue #20.

4.5 Testing and Verification

Verifying the output assembly is a bit more involved as there are multiple layers of tests required.

The output code generation must be tested for:

• (A) Correct instruction and machine code building.

• (B) Correct instruction sequences for different code generation routines.

• (C) Correct and complete flow of the output program and any divergent paths.

Unit Testing

For (A) and (B), a code generation routine refers to the code generation function used to produce

machine code for a specific structure, for example a function or assignment expression. When ma-

chine code instructions are emitted from the code generation routines, they are pushed to a list of

struct prco_op_struct containing information about the emitted instruction. Using this information,

the final output machine code word (e.g. 0x2020) is rebuilt into an equivalent struct prco_op_struct

structure and compared against the original. If they are the same, the encoded machine code word is

considered correct. This check happens every time an instruction is emitted from the code generation

routines.
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Real Hardware Tests

The best approach to verifying output machine code is to run it directly on the PRCO304 processor.

However, this requires rebuilding the FPGA design with the new program code which is time con-

suming and not always practical. In addition, viewing of internal registers and signals is much more

difficult due to the lack of a debugging interface on the processor.

Emulation

During the later stages of the project, it was decided to build a software emulator for the PRCO304

processor. The emulator, found at prco_compiler/emu/emu.c, would utilise structures used in the

compiler’s assembling stage to rebuild instructions and their contents from raw machine code words.

The emulator aims to replicate the structure and design of the embedded processor: on-chip mem-

ory, registers, complex ALU operations such as CMP, JMP, and SETC, and UART.

Due to the late development of the emulator, and it not being a deliverable, and only devel-

oped as an alternate means to test the processor, the emulator is not a full emulation of the pro-

cessor. The emulator implements most features of the processor, including registers, memory,

ALU operations, and most instructions. It is capable of emulating all the test programs (found in

proc_compiler/tests/*.prco).

With the introduction of the emulator, the process of deploying high-level code changed from:

write, compile, deploy, verify, repeat; to write, compile, emulate, verify, repeat, deploy, verify.

By reducing the number of deploys, time taken to successfully write working code was drastically

improved.

Late in the project, the ability of integrating the emulator into unit tests for the compiler was

completed. This allowed for fast and more complete verification of the compiler that could verify

multiple programs on every code change.

Continuous Integration

The PRCO304 compiler employs continuous integration testing to show if a code commit breaks

certain functionality. The continuous integration system service used is Travis CI [14]. Every time a

commit is made to the repository, Travis CI pulls the commit and runs the test/travis-ci.sh script.

This script runs the compiler and emulator on each test/*.prco file and checks the return code.

If the return code does not match the expected functionality, the test fails and the developer can

investigate further by enabling more debug prints with the -D parameter. These tests will generate a

report detailing passed and failed tests with their actual and expected outputs.

This method accomplishes verification requirement (C). By running automatic tests for each code

change, it allows the developer to quickly identify bugs. In addition, running all tests for any code

change allows the developer to identify changes that unknowingly affect other parts of the program.

This continuous integration testing methodology greatly aids the end-user in their goal of bug-free

code compilation.

An example output of the continuous integration test runner is located in section 7.1.4 PRCO304

Compiler Continuous Integration Tests. The continuous integration results can be viewed here:
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https://travis-ci.com/bendl/prco304/.

4.6 PRCO304 Compiler Review

This section reviews the design, implementation, verification, and management of the PRCO304

compiler project.

4.6.1 Functional Requirements

All functional requirements, (F1 - F7), have been achieved.

4.6.2 Core Compiler Components

Table 4.1: Compiler Core Deliverables Review

Deliverable Implemented Version Comment

CFG Text Parser Yes 1.00 Primitive recursive descent parser.

AST Intermediate Rep-

resentation

Yes 1.00

A singly-linked-list of struct ast_item. This

proved to be a good decision as it allowed for

easy manipulation of the AST tree, for exam-

ple to perform optimisations.

Basic arithmetic Opera-

tors

Yes 1.10 Features operator precedence.

IF statements Yes 1.30
if ( <expr> ) { ... }. Similar syntax to

C.

IF ELSE statements Yes 1.30

if ( <expr> ) { ... } else { ... }.

Else must be followed by an opening bracket

character so no else if statements, al-

though you can nest them instead.

FOR statements Yes 1.30 Similar syntax to C’s for loop.

Functions Yes 1.20
Stack frame creation for each function allows

for recursive and nested calling.

Variables Limited 1.50
Only local and argument variables. No global

variables.

Code generation Yes 1.30
Output is presented to the user in both ma-

chine code and assembly-like text.

Assembling Yes 1.40
Basic offset calculation and instruction re-

encoding.
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4.6.3 Extended Compiler Components

Table 4.2: Compiler Extended Deliverables Review

Deliverable Implemented Version Comment

Assembly text parsing No X

Only the CFG text parser for the grammar de-

scribed in section 4.3.3 is present. This would

be a desirable feature for implementing fea-

tures the compiler is not able to.

Optimisation: Constant

Folding

Yes 2.00
Limited to compile time constants. See

prco_compiler/libprco/opt.c:9.

Optimisation:

Unreachable-code

elimination

Yes 2.00
Limited to IF statement constants. See

prco_compiler/libprco/opt.c:33.

String variables Limited 2.10

All strings are placed in low memory, not on

stack. This also means that local arrays are

not possible. Limited to alphanumeric identi-

ties (easily fixable).

Dereferencing Yes 2.10
Uses low precedence @ symbol. Unsafe

like C’s * dereferencing functionality. See

prco_compiler/test/tests/control_for_3.prco.

Pointer arithmetic Yes 2.10
Inferred by dereferencing implementation.

E.g. @(a+1) returns contents of memory ad-

dress at value a+1.

Assembler memory lay-

out

Yes 2.10

First instructions (low memory) jump into mid-

dle memory where main function is located.

Low memory consists of global values (like

strings and global variables). High memory

is reserved for stack management.

Overall, the compiler project was a great success. The iterative Agile development approach allowed

revisiting of existing features to tweak and improve them. This resulted in a complex yet easily usable

and functional compiler.

Due to additional time being available, the inclusion of simple optimisations allowed the compiler

to produce more optimised code. Due to RISCs dependency on software, rather than CISC which

depends more on complex hardware, producing faster and smaller output machine code greatly

improves the performance of the PRCO304 processor.

If additional time was available, it should be spent on introducing data structures and arrays. This

would extend the range of programs created by the compiler even further.
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5.1 Project Objectives

C1. To improve my knowledge and experience of FPGA development, processor architecture,

compilers, and embedded systems engineering.

This primary objective has been accomplished. The combination of the initial research into

existing embedded processors and compilers and applying that knowledge to design a new

architecture and it’s implementation on FPGA devices.

Debugging on live FPGA devices is challenging and so sufficient verification must be performed

prior to deployment. This has gained me a lot of experience in troubleshooting FPGA designs

in simulation and when implemented on the device.

The compiler development has taught me how to transform target-independent code, firstly to

multiple immediate representations, and then finally to target-dependant implementations.

C2. To build a working and operational soft-core processor core capable of performing simple

tasks.

The first half of this project was to design, implement, and verify an embedded processor. The

processor was designed in Verilog, a hardware description language. Modularised components

were written, such as the decoder, register set, and ALU, and connected with control signals to

implement a simple data pipeline.

Once the processor was able to support a program counter, instructions could be fetched, ex-

ecuted, data written, and control execution of the processor. With the addition of comparison

and branching instructions, CMP and JMP, dynamic execution and program flow was intro-

duced. This allows the processor, without knowledge of high-level concepts such as if and for

loop statements, to perform complex logic sequences by executing primitive instructions.

With the aid of the compiler, tasks such as multiplication, division, string manipulation, and

variables, complex tasks are more easily accomplished. In addition, the inclusion of a UART
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interface allows the processor to send data externally. The UART output can be connected to

other devices as a UART input to share data, for example printing text to an RS232 shell.

C3. Implementation of the soft-core processor design on real hardware (FPGA).

A large risk of the project, R1 to implement the Verilog processor on an FPGA device, specifi-

cally the MiniSpartan-6+ XC6SLX9 development board (1), had appeared throughout develop-

ment of the processor. As stated in the Project Initiation Document, issues like this occur when

synthesised HDL code does not meet the physical constraints of the device (in our case, an

FPGA). This results in different behaviour between simulation and hardware which is a critical

problem.

This issue was reduced by enabling warnings during ISE’s synthesis and place-and-route tools

of the HDL code to the FPGA device. When these warnings were present, the respective code

was redesigned in order to meet the device’s constraints.

As discussed in section ISE Implementation Report, the PRCO304 processor has been suc-

cessfully implemented on the MiniSpartan6+ development board. Although successful, the

implementation did take up more FPGA slice resources, likely caused by poorly designed reg-

ister and RAM components that did not infer to physical FPGA block RAMs. This would result

in smaller FPGA logic space available to the developer.

C4. To provide a high-level context-free code compiler to run user-code on the processor.

A C-like grammar compiler was designed, implemented, and verified. The compiler accepted a

context-free grammar similar to C’s grammar. The grammar featured terminal symbols for vari-

ables and arithmetic operators, and non-terminal symbols for complex patterns like for loops

and function definitions.

The compiler would represent this input grammar in an abstract syntax tree structure. This

structure allowed for easy rearrangement and modification for optimisations to be performed.

Simple optimisations like constant-folding and dead-code elimination were implemented.

The compiler successfully output machine code in a format accepted by the PRCO304 proces-

sor. Example programs were provided showing implementation of simple tasks, such as string

length finding, variables, and UART transmitting.
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5.2 Project Post-mortem

Research and Requirements Elicitation

Due to the high complexity of the project and availability of existing processor designs, I was able

to easily find thoroughly documented processor designs and specifications. These are normally in

the form of developer-facing technical manuals which detail the operation and characteristics of the

processor. By reading multiple processor specifications, I quickly built up an understanding of existing

processor designs and how they are technically presented to developers to integrate into their own

projects. The application of this knowledge can be seen throughout this project: the PRCO304

processor high-level design; and the ISA.

Development Process

The combination of PRINCE2 with Agile was a success. The alignment of Agile’s sprints and

PRINCE2’s highlight reports and stages made developing the project easier. A Kanban board was

created to track stages, requirements, and bugs, and to organise and present them clearly. In addi-

tion, milestones were created allowing tasks to be better scoped.

Technology Review

Using LaTex for all documentation aided the project greatly. LaTex, being a text-based document ed-

itor, worked great when combined with version control, such as Git. This allowed for easier tracking,

reviewing, and merging of document changes throughout the project. Although requiring an initial

learning curve, however once passed, documents could be edited quickly and professionally with

skill.

Verilog was chosen for the processor code development. Other HDL languages were available,

such as VHDL, but my experience with those is negative; little documentation and varying quality

resources for learning. Verilog, is also closer to C than VHDL, which makes learning and writing

the language easier to transition too. Although Verilog will implicitly transform code, such as register

length conversions, I did not find this to be an issue and the processor core worked as designed.

C was used for the compiler and emulator. Higher level languages could have been used for

the same result, such as Python, but these would have abstracted away important concepts used

by compilers, such as AST transformations, and optimisations. In addition, I am most proficient in C

than other sequential programming languages. OOP concepts were avoided as they would introduce

too much complexity and negatively affect the projects forward-compatible design. Overall, C was a

good choice for the compiler and emulator.

Personal Contribution Review

I am pleased with the outcomes of this project and my contributions to it. I wanted to improve my

knowledge and experience with FPGAs, computer architecture, and low-level programming, and

so a project requiring these skills was developed. Easier technologies could have been used (for
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example, Python for the compiler), but this would have abstracted important processes, such as AST

transformations and instruction encoding, away from me resulting in less experience gained.

Throughout this project, I have learnt and improved upon my Verilog and C programming skills

as well as learning new debugging techniques, such as HDL simulation and emulation.

Changes

The project has utilised agile development to review and introduce unseen features as needed. For

example, the need for a new instruction SETC was identified and was introduced in the project, as

well new ISA types for special instructions.

As seen in the highlight reports, there was originally planned to provide a processor documenta-

tion guide. Due to time constraints however, this document has been split up merged into the Report

and Appendix. It originally featured content about the ISA and pipeline.

Future Improvements

This was my first attempt at a compiler capable of generating and assembling machine code and an

embedded FPGA-based processor. Although much as been learned, the design and implementation

shows that a number of improvements can be made. Firstly, the design of the processor’s pipeline

was not parallel, meaning that only 1 instruction could be fetched, executed, and written to, at any

time. This was because the processors components (decoder, registers, RAMs), used global wires

connecting them, instead of a wires connecting them from module to module. This would enable a

scalar pipeline to be implemented.

The compiler was only able to transform high-level code into machine code. Even though the

compiler would display assembly like code representing the machine code, users could not write or

compile it; it was merely there to help debug the generated code by making it easier to read the

machine code. Enabling parsing of assembly like code would enable specific routines to be created

which would enable more complex applications to be created, such as operating system kernels and

reliably timed routines.

It was found that the implemented processor was difficult to debug and troubleshoot. This is

an important problem in FPGA-based products. A common solution employed in processors and

FPGA-based products is to employ a debugging interface in the design, such as JTAG or other

scoped-buses. This would be too timely to fit into this projects timeline, but will be crucial if complex

features are to be added to the processor.
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5.3 Conclusion

This project aimed at producing two complex technical systems: an embedded processor and a com-

piler. Both systems were developed and the output is an extremely valuable educational resource.

The technologies created from this project spawning from the compiler include:

• an easily extendible recursive-descent text parser;

• an AST optimiser for constant-folding and unreachable code elimination;

• a machine code generator and assembler;

• and an emulator (not originally planned, but was a key tool required later in the project).

And from the embedded processor project:

• a 16-bit instruction set and it’s implementation;

• and a feed-forward pipeline architecture.

A wide-range of test programs were written that implement common programming features such

as for and while loops, functions, and variables. These features are combined to perform general

and complex programs such as string length finding, UART printing, and variable modification. From

the range of these test programs, it clearly shows the potential of the processor and compiler and it’s

ability to perform a wide range of programs.

I believe these technologies and their implementation details should be shared as an open, edu-

cational resource for future projects and people interested in low-level code generation and embed-

ded processor architecture.
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7.1 Appendix A. User Guides

7.1.1 PRCO304 Core Reference Guide

Instantiating the core in your FPGA design

The PRCO304 processor has only been verified on a 50MHz i_clk. The PRCO304 processor core

can be instantiated in an FPGA design with the following code snippet:

// Instantiate a processor core

prco_core inst_core (

.i_clk(),

.i_en(),

.i_reset(),

// Operating mode (HIGH=single-step)

.i_mode(),

// Single-step pulse

.i_step(),

// UART comms

.i_rx(),

.q_tx(),

.q_tx_byte(),

// Debug outputs

.q_debug_instr_clk(),

.q_debug()

);

You are able to connect wires q_tx_byte, q_debug, and i_step to control and interact with the

processor.
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7.1.2 PRCO304 Compiler Reference Guide

Building the Compiler

To build the compiler (cli front-end and libprco back-end), run the following commands:

cd prco304

mkdir build && cd build

cmake ..

cmake --build .

If you wish to build the compiler’s own standard library run the following command as root/administrator

to install the sources and header files:

cmake --build . --target install

Command Line Interface (CLI) Arguments

Name

cli - compile a program into executable machine code for the PRCO304 processor.

Synopsis

cli [OPTION]... -i{FILE}

Description

-d Dump output machine code to a file

-D{bits} Select debug printing level. Example of use: -D0xFF to enable all debug bits.

-i{file} Pass the input file to the compiler. Example of use: -i code.prco.

-O{0-1} Enable optimisation levels. 0 = no optimisations, >0 = constant folding and unreach-

able code elimination.

-m{arch} Pass the target architecture to the compiler. Deprecated.
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7.1.3 PRCO304 Emulator Reference Guide

The emulator is a tool developed to improve debugging and verification of programs output by the

compiler. Although highly reliable, users should continue to verify the program on an implemented

solution.

Name

emu - Disassemble and emulate PRCO304 processor programs.

Synopsis

emu [OPTION]... -i{FILE}

Description

-i Input machine code file. 1 instruction word per line. CRLF/LF accepted.

-D{bits} Select debug printing level. Example of use: -D0xFF to enable all debug bits.

Example Output

Disassembly of Input:

Instruction, MC, Tag, Comment

----------------------------------------

ADDI $-1, Sp 4fff 0 (null)

SW Bp, +0(Sp) 16e0 0 (null)

MOV Bp, Sp 1ee0 0 (null)

SUBI $+1, Sp 5f01 0 (null)

MOVI $62, Ax 2062 0 (null)

SW Ax, -1(Bp) 10df 0 (null)

LW Ax, -1(Bp) 08df 0 (null)

WRITE Ax, UART1 9800 0 (null)

MOVI $65, Ax 2065 0 (null)

SW Ax, -1(Bp) 10df 0 (null)

LW Ax, -1(Bp) 08df 0 (null)

WRITE Ax, UART1 9800 0 (null)

MOVI $6e, Ax 206e 0 (null)

SW Ax, -1(Bp) 10df 0 (null)

LW Ax, -1(Bp) 08df 0 (null)

WRITE Ax, UART1 9800 0 (null)

MOVI $20, Ax 2020 0 (null)

SW Ax, -1(Bp) 10df 0 (null)

LW Ax, -1(Bp) 08df 0 (null)

WRITE Ax, UART1 9800 0 (null)

MOV Sp, Bp 1fc0 0 (null)

LW Bp, +0(Sp) 0ee0 0 (null)

ADDI $+1, Sp 4f01 0 (null)

HALT 9000 0 (null)

Initial Memory layout:

00 01 02 03 04 05 06 07 08

=====================================================================

4fff 16e0 1ee0 5f01 2062 10df 8df 9800 2065 10df 8df 9800 206e 10df 8df

9800 2020 10df 8df 9800 1fc0 ee0 4f01 9000 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
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00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Executed Instructions:

PC, Instruction, MC, Tag, Comment, Registers

---------------------------------------------------------------------

00 00 00 00 00 00 00 ff

0x00 ADDI $-1, Sp 4fff 0 (null)

00 00 00 00 00 00 00 fe

0x01 SW Bp, +0(Sp) 16e0 0 (null)

SW $00, mem[fe]

0x02 MOV Bp, Sp 1ee0 0 (null)

00 00 00 00 00 00 fe fe

0x03 SUBI $+1, Sp 5f01 0 (null)

00 00 00 00 00 00 fe fd

0x04 MOVI $62, Ax 2062 0 (null)

62 00 00 00 00 00 fe fd

0x05 SW Ax, -1(Bp) 10df 0 (null)

SW $62, mem[00]

0x06 LW Ax, -1(Bp) 08df 0 (null)

LW mem[00], $62

62 00 00 00 00 00 fe fd

0x07 WRITE Ax, UART1 9800 0 (null)

PORT 0

UART <- 'b' 0x62

0x08 MOVI $65, Ax 2065 0 (null)

65 00 00 00 00 00 fe fd

0x09 SW Ax, -1(Bp) 10df 0 (null)

SW $65, mem[00]

0x0a LW Ax, -1(Bp) 08df 0 (null)

LW mem[00], $65

65 00 00 00 00 00 fe fd

0x0b WRITE Ax, UART1 9800 0 (null)

PORT 0

UART <- 'e' 0x65

0x0c MOVI $6e, Ax 206e 0 (null)

6e 00 00 00 00 00 fe fd

0x0d SW Ax, -1(Bp) 10df 0 (null)

SW $6e, mem[00]

0x0e LW Ax, -1(Bp) 08df 0 (null)

LW mem[00], $6e
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6e 00 00 00 00 00 fe fd

0x0f WRITE Ax, UART1 9800 0 (null)

PORT 0

UART <- 'n' 0x6e

0x10 MOVI $20, Ax 2020 0 (null)

20 00 00 00 00 00 fe fd

0x11 SW Ax, -1(Bp) 10df 0 (null)

SW $20, mem[00]

0x12 LW Ax, -1(Bp) 08df 0 (null)

LW mem[00], $20

20 00 00 00 00 00 fe fd

0x13 WRITE Ax, UART1 9800 0 (null)

PORT 0

UART <- ' ' 0x20

0x14 MOV Sp, Bp 1fc0 0 (null)

20 00 00 00 00 00 fe fe

0x15 LW Bp, +0(Sp) 0ee0 0 (null)

LW mem[fe], $00

20 00 00 00 00 00 00 fe

0x16 ADDI $+1, Sp 4f01 0 (null)

20 00 00 00 00 00 00 ff

0x17 HALT 9000 0 (null)

End memory contents:

00 01 02 03 04 05 06 07 08

=======================================================================================

4fff 16e0 1ee0 5f01 2062 10df 8df 9800 2065

10df 8df 9800 206e 10df 8df 9800 2020 10df

8df 9800 1fc0 ee0 4f01 9000 00 00 00

00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00
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00 00 00 00 00 00 00 00 00

00 20 00

Final Registers:

20 00 00 00 00 00 00 ff

UART tx buf:

ben

The output of the emulator starts with the disassembly of the processors input. As the instructions are reconstructed from the 16-
bit instruction words, we lose additional information displayed by the compiler when this program was originally compiled, such as inline
comments explaining the code-generation routine used (last column) and any assembler tags (second-last column) used by the assembler
(see libprco/arch/prco isa.h:72).

Next follows the initial memory layout of the processor. This shows where each instruction word is placed in memory. The emulator
limits the displayed memory to the first 255 words of memory.

Following this is the list of executed instructions. Instruction execution starts at PC (program counter) 0x00. On the right side, the

contents of each memory is displayed. For complex instructions such as LW/SW and WRITE additional information is printed to verify correct

ALU operation.
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7.1.4 PRCO304 Compiler Continuous Integration Tests

Continuous integration (CI) testing is used to meet quality requirements of the project. For every code
change, a wide range of test programs are run through the compiler, and the output is emulated to
determine correct runtime of the program. If the output of the emulator matches the expected value
for the test input, the test passes. If not, the test fails and the code change is marked as breaking.

Users can run the test scripts (recommended) using the prco_compiler/test/travis-ci.sh

test script.

-- GCC detected, adding compile flags

-- GCC detected, adding compile flags

-- GCC detected, adding compile flags

-- Configuring done

-- Generating done

-- Build files have been written to: /mnt/e/XilinxVM/prco304/prco_compiler/lbuild

[ 75%] Built target libprco

[ 87%] Built target cli

[100%] Built target emu

/mnt/e/XilinxVM/prco304/prco_compiler/test

Running test ./tests/binary_ops_1.prco... PASSED

Running test ./tests/binary_ops_2.prco... PASSED

Running test ./tests/control_for_1.prco... PASSED

Running test ./tests/control_for_2.prco... PASSED

Running test ./tests/control_for_3.prco... FAILED Expected 1, got 1

Running test ./tests/control_if_1.prco.... FAILED

/travis-ci.sh: line 17: 4301 Segmentation fault (core dumped)

../lbuild/cli/cli -i $1 -d -D0x0002

Running test ./tests/control_if_2.prco... PASSED

Running test ./tests/control_if_2.prco... FAILED Expected 32, got 1

Running test ./tests/control_while_1.prco... PASSED

Running test ./tests/control_while_2.prco... PASSED

Running test ./tests/control_while_3.prco... FAILED Expected 5, got 1

Running test ./tests/control_while_4.prco... PASSED

Running test ./tests/foo.prco... PASSED

Running test ./tests/funcs_1.prco... PASSED

Running test ./tests/funcs_2.prco... PASSED

Running test ./tests/ports_uart_1.prco... PASSED

Running test ./tests/strings_1.prco... PASSED

Running test ./tests/strings_2.prco... PASSED

Running test ./tests/strings_3.prco... FAILED Expected 1, got 1

Running test ./tests/vars_1.prco... PASSED

Running test ./tests/vars_2.prco... PASSED

17/21 passed.

Ben Lancaster 10424877 Page 65



7.1.5 PRCO304 Processor Instruction Set Architecture PRCO304 (Rev. 3.14)

7.1.5 PRCO304 Processor Instruction Set Architecture

NOP

Description The NOP instruction performs no action for 1 instruction cycle.

Assembly NOP

Pseudocode PC <= PC + 1;

Registers altered None

Clock cycles 2 (FETCH, DECODE)

15:11 10:0

00000 X

LW - Load Word

Description Copies a 16-bit word from RAM to a register.

Assembly LW Rd, +4(Ra)

Pseudocode Rd <= RAM[Ra + Simm5]

Registers altered Rd

Clock cycles 6 (FETCH, DECODE, READ, EXECUTE, RAM, WRITE)

15:11 10:8 7:5 4:0

00001 Rd Ra Simm5

SW - Store Word

Description Copies a 16-bit from a register to RAM.

Assembly SW Rd, +4(Ra)

Pseudocode RAM[Ra+Simm5] <= Rd

Registers altered None

Clock cycles 6 (FETCH, DECODE, READ, EXECUTE, RAM, WRITE)

15:11 10:8 7:5 4:0

00001 Rd Ra Simm5
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MOVR

Description Copies a 16-bit register value to another register.

Assembly MOVR %Ra, %Rd

Pseudocode Rd <= Ra

Registers altered Rd

Clock cycles 5 (FETCH, DECODE, READ, EXECUTE, WRITE)

15:11 10:8 7:5 4:0

00011 Rd Ra X

MOVI

Description Copies an 8-bit immediate to a Register

Assembly MOVR %Ra, %Rd

Pseudocode Rd <= Imm8

Registers altered Rd

Clock cycles 5 (FETCH, DECODE, READ, EXECUTE, WRITE)

15:11 10:8 7:0

00100 Rd Imm8

ADD

Description Add the value of register Ra to Rd.

Assembly ADD %Rd, %Ra

Pseudocode Rd <= Rd + Ra

Registers altered Rd

Clock cycles 5 (FETCH, DECODE, READ, EXEC, WRITE)

15:11 10:8 7:5 4:0

01000 Rd Ra X
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ADDI

Description Adds an immediate value to a destination register, Rd.

Assembly ADDI $255, %Rd

Pseudocode Rd <= Rd + Imm8

Registers altered Rd

Clock cycles 5 (FETCH, DECODE, READ, EXEC, WRITE)

15:11 10:8 7:0

01001 Rd Imm8

SUBI

Description Subtracts an immediate value from a destination register, Rd.

Assembly SUBI $255, %Rd

Pseudocode Rd <= Rd - Imm8

Registers altered Rd

Clock cycles 5 (FETCH, DECODE, READ, EXEC, WRITE)

15:11 10:8 7:0

01011 Rd Imm8

CMP

Description Sets status register bits depending on the result of Rd - Ra

Assembly CMP Rd, Ra

Pseudocode Status Register <= CMP(Ra, Rb)

Registers altered Rd

Clock cycles 5 (FETCH, DECODE, READ, EXEC, WRITE)

15:11 10:8 7:5 4:0

01101 Rd Ra X
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SETC

Description Set register Rd to 0 or 1 depending on the Status Register and Immediate
value.

Assembly SETC $0x08, %Rd

Pseudocode Rd <= 1 if Imm8 and Status Register equal, else 0.

Registers altered Rd

Clock cycles 5 (FETCH, DECODE, READ, EXEC, WRITE)

15:11 10:8 7:0

10101 Rd Imm8 (See JMP Imm8)

JMP

Description Jumps the Program Counter (PC) if the condition is met within the Status
Register.

Assembly JMP Rd, Imm8

Pseudocode PC <= Rd if Status Register & Imm8).

Registers altered None

Clock cycles 5 (FETCH, DECODE, READ, EXEC, BRANCH)

15:11 10:8 7:0

01100 Rd Imm8

An 8 bit immediate (7-0) can be set in the JMP instruction to create conditional jumps.

Table 7.1: Conditional jump immediate bits

15-11 10-8 7-0 Semantics Status Register

JMP 01100 Rd 0000 0000 Unconditional Jump Any

JE 01100 Rd 0000 0001 Jump Equal ZF=1

JNE 01100 Rd 0000 0010 Jump Not Equal ZF=0

JG 01100 Rd 0000 0011 Jump Greater Than ZF=0 and SF=OF

JGE 01100 Rd 0000 0100 Jump Greater Than or Equal SF=OF

JL 01100 Rd 0000 0101 Jump Less Than SF<>OF

JLE 01100 Rd 0000 0110 Jump Less Than or Equal ZF=1 or SF<>OF

JS 01100 Rd 0000 0111 Jump Signed SF=1

JNS 01100 Rd 0000 1000 Jump Not Signed SF=0
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7.2 Appendix B. Project Management Artefacts

7.2.1 Project Initiation Document

Introduction

Field-Programmable Gate Array (FPGA) devices are an incredibly powerful and versatile solution
to many electronics applications including digital signal processing and high-speed test and mea-
surement tools. I will use this project opportunity to learn more about FPGA development and CPU
architecture and apply knowledge learnt to create a solution to the need of a side-microprocessor in
many FPGA-based applications.

Modern computing and electronics equipment, like function generators, oscilloscopes, and spec-
trum analysers, use FPGAs to implement their compute intensive logic. These FPGAs are often
accompanied by a small, low-cost, microprocessor to supervise and provide interfaces to external
peripherals.

The aim of this project is to implement this side-microprocessor into the FPGA to save on BOM
costs, PCB space, and power costs, which contribute to higher development and product costs.
While savings can be made by the lack of side microprocessor, the product may need a larger FPGA
to accommodate the embedded microprocessor. The project will produce a small, soft-core, CPU
design and compiler.

Although there is no direct client in this project, I believe this project will produce an attractive
product for FPGA-based product designers wishing to employ an embedded processor solution.

Business Case

I will target my interest in FPGA development and apply my learning of such in tackling the issues
resulting from the use of a side-microprocessor in FPGA based applications.

The requirement of a side-microprocessor to control and provide external interfaces to FPGA-
based applications carries a significant demand in both development and projects costs. Firstly, the
inclusion of a external microprocessor in a project design will require more PCB space and design
considerations, adding to the development time and costs of the project. The external microprocessor
may also require a licensed compiler to compile and load the code onto the microprocessor, adding
to the cost of the project. In addition, the microprocessor’s on-chip memory may not be large enough
to store the compiled code and an external flash memory chip may also be required.

Moving to an integrated microprocessor on the FPGA brings many significant advantages: re-
duction of required PCB space and development time, lower BOM (bill of materials) cost, and better
in-field updating.

Releasing updates to embedded projects is a challenging problem. With the integrated solution,
FPGA bitstreams and the soft-microprocessor code can be bundled together, making it much easier
to update products in the field without sending an engineer to the location or providing complicated
instructions which require specific equipment (e.g. in-circuit debuggers).
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Project Objectives

The outcome of the project will be to design a small, portable, FPGA-based, CPU core that electronic
Product Designers can choose as an alternative to a physical side-microprocessor to embed into their
product.

Core Deliverables

P1. To improve my knowledge and experience of FPGA development, processor architecture, com-
pilers, and embedded systems engineering.

P2. To build a working and operational soft-core processor core capable of performing simple tasks.

P3. Implementation of the soft-core processor design on real hardware (FPGA).

P4. To provide a high-level context-free code compiler to run user-code on the processor.

Extended Deliverables

P1. (Project-sub deliverable) To provide embedded products a convenient solution to in-field updat-
ing.

P2. (Project-sub deliverable) To provide easy interfacing between the FPGA design and the em-
bedded core.

P3. To provide a high-level context-free code compiler to run user-code on the processor.

Initial Scope

Core Deliverables

These deliverables are the base requirement for the project to be released in a functional and worth-
while state.

C1. (Core deliverable) A small, portable, instantiate-able, FPGA-based CPU core.

C2. (Core deliverable) A C-like programming interface. A compiler taking input of a C-like grammar
and outputting executable machine code for the embedded core. The machine code can be
embedded into the FPGA bitstream and loaded onto the FPGA to run. Time estimate: 1 month.

C3. (Core deliverable) A 16-bit RISC instruction set architecture (ISA). The core (C1.) will decode
and execute instructions encoded in this format. The compiler (C2.) will output machine code
in this format. The ISA will support: fixed length instructions; 12-bit immediate values; primitive
arithmetic instructions (ADD, SUB, MUL, etc.); GPIO read and write instructions; RAM stack
operators (PUSH, POP). A custom ISA will be designed and implemented (see subsection
7.2.1).

Extended Deliverables

These deliverables may not be achievable in the time frame specific in subsection 7.2.1. These
deliverables may require extra time to develop, require more experience and skill to develop, or
require resources currently unattainable.

E1. GCC/LLVM/8CC compiler backend for C programming.

E2. Wishbone interface for easier modularity and inter-module communication.

E3. Multi-core design with Wishbone (E2.).

E4. Single-step debugging interface (with JTAG?).

Ben Lancaster 10424877 Page 71



7.2.1 Project Initiation Document PRCO304 (Rev. 3.14)

E5. Configurable build options (register/bus widths, optimisations/pipelining, user/privileged user
mode to support modern operating systems).

E6. Memory management modules to provide protected and virtual memory lookup tables.

Resources and Dependencies

For the first half of the development cycle, the core can be developed and verified using the Verilog
simulator and test suite, Verilator, and VHDL and Verilog simulator, iSim.

The second half of development will require deploying and debugging on real hardware. This will
require an FPGA development kit. To better emulate customer products, the development kit should
feature common components such as LEDs, GPIO, USB interface, flash-based storage and memory,
and optionally an analogue audio output port.

The low-middle range of FPGA devices I am targeting is the popular and affordable yet feature
rich Spartan-6 and Artix-7 FPGAs. From my placement, I have gained experience in Xilinx FPGAs
and so will be targeting them for this project to reduce risk and development time.

The following FPGA development kits are suitable for this project:

1. MiniSpartan6+ - Scarab Hardware - $79 (already owned) [6]. The MiniSpartan6+ features a
Spartan-6 XC6SLX9 FPGA, 8 LEDs, 2 digital and analogue headers, FT2232 FTDI USB to
JTAG, 64Mb SPI flash memory, 32MB SDRAM, an audio output jack, and a MicroSD socket.

2. Arty Artix-7 FPGA Development Board - Digilent - $100 [7]. The Arty development board fea-
tures a larger Artix-35T FPGA with over 20x the number of logic cells and block memory com-
pared to the LX9 in the MiniSpartan6+. The board components include 256MB DDR3 RAM,
16MBx4 SPI flash memory, USB-JTAG, 8 LEDs (4 of which are RGB), 4 switches, 4 buttons,
and multiple Pmod connectors.

The greater number of IO options and larger FPGA make the Arty board better suited to emu-
lating real customer products.

The project will require a computer or laptop to develop the core and compiler on and continuous
integration systems to perform testing on the incremental builds. For the project demo, an oscillo-
scope (already owned) or digital logic analyser may be required to demonstrate some of the core’s
features.

Method of Approach

Development of the core and compiler will be done in separate stages of the project (see subsection
7.2.1). The two deliverables will be split into 2 sub-projects. Both sub-projects will employ the Agile
development process, using Agile’s sprints to split up tasks into sub-tasks and Agile’s scrums to dis-
cuss progress, features, and changes.

Technologies used will be:

1. Verilog - A hardware description language used to code the internal FPGA design.

2. C - A low-level programming language to develop the compiler and assembler.

3. Verilator - A C++ Verilog simulator and unit testing framework for verifying the FPGA design.
Unit tests will be written for each component of the core: register set, decoder, arithmetic logic
unit (ALU), and IO. This will aid the sprint approach by ensuring that requirements implied by
the unit tests do not break over development iterations.

4. iSim - A Verilog and VHDL Simulator. This will be used to visualize the timings of internal
signals within the FPGA components such as the decoder and ALU.
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Initial Project Plan

Project time line breakdown

The project will be split into 4 parts:

1. Project information gathering and requirement generation.

2. Active development sprints.

3. Test and verification.

4. Final report and clean up.

The following table breaks down the 4 parts into sub-tasks and provides their descriptions and
estimated start and end times.

Table 7.2: Initial Project Plan time breakdown
*Expected time.

Shaded stages are time varying periods for bug fixing.

Stage Start Date* End Date* Project Deliverables
1.0. Project Initiation 02 Feb Process Initiation Document

1.1. Research and require-
ment gathering

02 Feb 09 Feb
Existing soft-core processor designs,
constraints, features, implementation.

1.2. Core high level design 10 Feb 17 Feb
Soft-core CPU architecture; Register
definitions; Bus widths; Initial ISA in-
struction table.

2.1. Core development
sprints

18 Feb 10 Mar Iterative soft-core development sprints

2.1.1. Core testing and verifi-
cation

11 Mar 15 Mar
Any tasks required to meet design con-
straints.

2.2. Compiler development
sprints

15 Mar 31 Mar Iterative compiler development sprints

2.2.1. Compiler testing and
verification

10 Apr 14 Apr
Any tasks required for compiler to pro-
duce correct code generation.

3.1. Real hardware deploy-
ment

15 Apr 19 Apr
Deployment of Verilog code to a real
FPGA device.

3.2. Final verification 20 Apr 24 Apr
Verification for FPGA design and com-
piler.

4.1. Complete final report 25 Apr 4 May PRCO304 Final Report.

Control Plan

Management of the project will be done using the PRINCE2 technique.
The project initiation document (this) describes high-level requirements, objectives, and business

cases.
Weekly highlight reports and meetings will be held to ensure task proficiency and to identify any

challenges that need attention.
Project risks and challenges are identified in subsection 7.2.1 along with proposed solutions for

their occurrence.
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Initial Risk Assessment

The following subsection outlines potential projects risks (R) and their suitable management strategy.

R1 Real hardware synthesis.

A challenge involved in the development of FPGA, CPLD, and other programmable logic de-
vices, is the realization of the HDL code on real hardware. This can result in different behaviour
of the real implementation to the simulated design - a major (and expensive) problem. This is-
sue is caused by not meeting physical constraints required by the FPGA. These include timing,
space, and power constraints.

To help reduce this issue, I will utilise the ISE Design Suite’s constraint validator tool. Before
deploying to real hardware, the design must meet the constraints I declare that enable it to run
correctly on real hardware. I can use these constraints to identify how much space, time, and
power, I have left to implement features.

R2 HDL programming.

HDL (Hardware Description Language) is a text based language used to describe hardware
components and their inter-connections. Verilog, a HDL language closer to C than VHDL,
is what my FPGA core will be programmed in. This language is taught very little of in the
Computer Science course and will require external learning resources so I can use it effectively.

My placement, telecommunications signal generator company, Spirent Communications, heav-
ily utilise FPGA devices in their products, in which I gained valuable knowledge on the FPGA
development life cycle and deployment. To improve my knowledge of the tools required (ISE
Design Suite) gained from my placement experience, I shall learn from HDL programming
books such as HDL Programming Fundamentals: VHDL and Verilog [15].

R3 Compiler development time.

A compiler will be required to provide an easy method of running user code on the FPGA core.
The compiler is a lesser deliverable but will take considerable to time implement.

If time is short, the compiler may only convert and assemble an assembly-like language with
simple features (goto statements, stack management i.e. stack frames). If time is available,
a better grammar can be developed with common language features such as if statements,
scope blocks, and variables.

The possibility also exists of using an existing compiler, such as GCC, LLVM, or 8CC, and
creating a custom back-end for the FPGA core’s architecture. My already brief experience with
these compilers with their poor documentation means it may be quicker to build a compiler
from scratch than create a custom back-end. A short period of time will be a given to allow
exploration of compilers as it may allow using more language features (ANSI C) instead of a
small subset. This will allow for a more complex demo of the FPGA core.

R4 Schedule overrun.

This is a complex project will multiple sub-projects (core & compiler). Ensuring the large number
of features will require a tight development schedule which is prone to over-running.

I can identify and account for this by having weekly progress updates that will be scheduled with
the project supervisor outlying feature progress and challenges. If the schedule slips largely
due to an unforeseen problem or unreasonable requirement, this shall be brought up in the
following meeting and a solution will be agreed upon, be it modifying deliverable or allowing
extra time for the feature.

R5 Technology failure.

To overcome the risks of data loss all code and resources will be stored in local and remote Git
repositories. In the event of the FPGA development kit failing, be it a component on the board
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or the FPGA itself, either: (a) a demo of the FPGA core not showing features of the failed
component; or (b) a simulated design that meets constraints imposed by the physical FPGA
will be provided and demonstrated in a simulator.

Quality Plan

The following quality strategies will be employed to achieve a successful project and product.

Table 7.3: Initial Quality Plan.

Quality Check (QC) Strategy

QC1. Requirement reality

Requirements will be checked during the weekly highlight
reports to verify that when requirements begin to be im-
plemented they are realistic and achievable within the time
frame specified in subsection 7.2.1.

QC2. Soft-core design validation

While continuous testing and verification will be performed
on the core (unit test, FPGA constraints reached), a vari-
able period of time (stage 2.1.1) will be allocated after the
development sprints to fix bugs and unexpected behaviour,
and polish the final design.

QC3. Compiler validation

As with QC2, unit tests and continuous integration tests
will be performed for each code change to validate that
changes do not produce bad code generation. A time vary-
ing period (stage 2.2.1) is also allocated to fix and polish
the compiler.

QC4. Real hardware performance

Electronic test equipment, such oscilloscopes and digital
logic analysers, will be used to verify the correct behaviour
of the code on real hardware. Initial risk (R1) states that
there is a risk of the FPGA deployed core will behave differ-
ently to the simulation.

Legal, Social, and Ethical Considerations

Legal considerations need to be taken into account due to already existing commercial soft-processor
designs. Existing soft-processor designs include the ARM family of soft-cores [16] and Xilinx’s Mi-
croBlaze soft-core [17]. Emulating another soft-core processor’s architecture may result in legal
challenges even if I do not distribute the final product. As this is a learning project, instead of emulat-
ing another architecture, I will design my own architecture from the ground up to learn first-hand the
design considerations, implementation, and verification of CPU designs.

The processor core and compiler do not require access to the internet or any third-party service.
All usage of these deliverables is performed in their self-contained executables.

The processor core will have access to any peripherals connected to it, such as RAMs and UART
devices. As the processor does not implement memory protection techniques, the processor will
have unrestricted read/write access to all memory regions connected to it. The processor does not
internally record statistics, such as instruction counts and their frequency. It will also not perform
optimisations such as branch-prediction and speculative-execution.

The compiler is not designed to produce code for safety-critical or high-reliability environments.
The compiler will not obfuscate or randomise output machine code and the output will be in a pre-
dictable format which is trivial to reverse-engineer.

The compiler does not insert any telemetry or statistic tracking in any generated code or the
compiler itself.
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Highlight Report 1

PRCO304: Highlight Report 1

Name: Ben Lancaster

Date: 06/02/2018

Active project stage: Stage 1.1: Research and Requirement Gathering

Review of work undertaken:
This week was assigned to work on stage 1.1: Research and requirement gathering.

Research and requirement gathering:
Research into existing soft-core processor designs has been started to identify their features,
targets, and advantages and disadvantages. Key existing soft-core processors found are:
- Xilinx’ MicroBlaze: a 32-bit Xilinx FPGA embeddable core capable of running operating systems,
like Linux. Exposes a configurable GUI to customise the build of the processor to suit designers
requirements (like number of GPIO, interrupts, timers, etc.).
- ARM Cortex-A9: a 32-bit Xilinx and Altera FPGA core. Features out-of-order execution,
compatible with existing ARM Thumb2 C compilers, and multi-core processing.

I have used this research to aim my soft-core processor’s requirements and architecture.
To document and finalize my processors design and requirements, I have started a processor
specification and reference document. This document outlines the processors features, architec-
ture, compatibility, and instructions.

Additional progress:
- Version control set up for documentation, highlight reports, and code bases.

Risks and Challenges:
Urgent risks:
New risks:
Existing risks:
RC4: Schedule overrun. A gantt time chart has been created to better visualize task durations
and requirements.

Plan of work for the next week:
Work will begin on Stage 1.2: Core high level design.

Finalised specifications and architecture of the soft-core processor will be put into a pro-
cessor specification and reference document.
Architecture, control, pipelines, will be visualised in this document.

Date(s) of supervisory meeting(s) since last Highlight:
This is the 1st highlight report.
30/01/18 - An introductory meeting was held to discuss the project initiation document (PID) and
gain feedback on the project.

Notes from supervisory meeting(s) held since last Highlight:
Ensure risks are carefully explored and project core deliverables are realistic and achievable.
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Highlight Report 2

PRCO304: Highlight Report 2

Name: Ben Lancaster

Date: 15/02/2018

Active project stage: Stage 1.2: Core high level design

Review of work undertaken:
This week was assigned to work on stage 1.2: Core high level design. gathering.

Core high level design:
I have spent this week defining a processor specification and creating a processor specifica-
tion/reference guide booklet (see attached). This booklet will contain both high-level and technical
details regarding the design and implementation of the processor, including: register sets, control
and pipelining strategies, the ISA and each instruction, and the compiler and how to use it.

This booklet will be developed over the life cycle of the project. Although the specification has been
clearly defined, the booklet will be incrementally updated as processor features/requirements are
added to the implementation (such as instructions, modules, and compiler features).

Currently the reference booklet contains: register set definitions, several primitive instruc-
tions, and a brief introduction to instruction cycle timing.

Risks and Challenges:
Urgent risks:
New risks:
Existing risks:
RC4: Schedule overrun. A gantt time chart has been created to better visualize task durations
and requirements.
Resolved risks:
RC4: Schedule overrun. A gantt time chart has been created to better visualize task durations
and requirements. (See attached time management chart indev.)

Plan of work for the next week:
Work will begin on Stage 2.0: Core dev. Register set implementation.

The register set module will be implemented in Verilog for the processor. Unit tests will be
created to verify the timing/behaviour of the module.
The processor specification/reference booklet will be updated to describe how the register set
has been implemented in the processor.

Date(s) of supervisory meeting(s) since last Highlight:
08/02/18 15:00 - 15:40

Notes from supervisory meeting(s) held since last Highlight:
Discussion included comparing existing processor’s (ARM, x86) features (privileged instructions,
interrupts, IO, variable-length ISA) and designs (ISA and pipelining) to this processor.
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Highlight Report 3

PRCO304: Highlight Report 3

Name: Ben Lancaster

Date: 20/02/2018

Active project stage: Stage 2.0: Core Register-set Implementation.

Review of work undertaken:
This week was assigned to work on stage 2.0: Core Register-set Implementation.

Core Register-set Implementation:
Good progress has been made implementing the PRCO processor’s register set in Verilog. The
register set consists of 8 16-bit wide general purpose registers labelled rA through rH in duel-port
read and single-port write.

Implementation progress is approximately 1 week ahead of schedule. Because of this,
work has also been done on the decoder and ALU modules.

Consideration of the control/sequencing pipeline has been considered. The pipeline needs
to work for time-varying functions (such as memory writes). The current plan is to give each
module outputs to signal when it has finished so the following module can safely read in data and
operate on it. A handshake between modules currently seems overkill due to the relatively simple
structure but may be considered later in the project.

Risks and Challenges:
Urgent risks:
New risks:
RC5: Complex memory operations (PUSH, POP) may require multiple instructions. PUSH/POP
might be split into: (1) Inc/dec stack pointer; (2) Read RAM[stack pointer]. The compiler will be
able to resolve this issue.
Existing risks:
Resolved risks:

Plan of work for the next week:
Work will begin on Stage 2.1: Core dev. Decoder implementation.

Some progress has already made but the decoder is not finished.
The processor specification/reference booklet will continued to be updated with implementation
specific details of the processor.

Date(s) of supervisory meeting(s) since last Highlight:
13/02/18 09:40

Notes from supervisory meeting(s) held since last Highlight:
This discussions was over email; it was decided that a physical meeting would not be beneficial as
the current project stage was starting the PRCO Processor Reference Guide booklet. Progress
on the booklet was shared and a brief overview of the Register-set and Decoder implementation.

Ben Lancaster 10424877 Page 78



7.2.1 Project Initiation Document PRCO304 (Rev. 3.14)

Highlight Report 4

PRCO304: Highlight Report 4

Name: Ben Lancaster

Date: 28/02/2018

Active project stage:
Stage 2.1: Core: Register-set Implementation.
Stage 2.2: Core: ALU, RAM Implementation.

Review of work undertaken:
Stage 2.1: Core: Decoder Implementation:
Simple instructions, ADD, ADDI, MOV, MOVI, SUB, SUBI, LW, SW, instructions can now be
decoded. The decoder has been integrated into the pipeline and it can choose and set up
appropriate dependencies for the instruction.

Stage 2.2: Core: ALU, RAM Implementation:
ALU development has started. Some basic operations such as ADD, ADDI, SUB, SUBI, and
pass-through ops such as MOV, MOVI, have been implemented. On-chip ram development will
be starting this week.

Core: Pipeline/control system
A significant development breakthrough for the control/pipeline system has been achieved. I’m
calling it a feed-forward pipeline as the flow of control only moves in the forward direction and
when the previous module has completed.

Compiler: Text parser development starting:
Work into a simple text parser has begun including file opening, reading character by character,
and a parser stack.

Risks and Challenges:
Urgent risks:
New risks:
Existing risks:
RC5: Complex memory operations (PUSH, POP) may require multiple instructions. PUSH/POP
might be split into: (1) Inc/dec stack pointer; (2) Read RAM[stack pointer]. The compiler will be
able to resolve this issue.
Resolved risks:

Plan of work for the next week:
Work will continue for 1 more week on stage 2.1 and 2.2 as per the time plan.
The processor specification/reference booklet will continued to be updated with implementation
specific details of the processor.

Date(s) of supervisory meeting(s) since last Highlight:
21/02/18 13:00 - 13:4

Notes from supervisory meeting(s) held since last Highlight:
Discussion included improving time management gantt chart by showing task dependencies; and
potential final demo ideas (store ASCII string on SDcard/external memory and have processor
loop over and print each character out over RS232.
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Highlight Report 5

PRCO304: Highlight Report 5

Name: Ben Lancaster

Date: 07/03/2018

Active project stage:
(ON-TIME) Stage 2.2: Core: ALU, RAM Implementation.
(EARLY) Stage 3.0: Compiler: Code-generation.

Review of work undertaken:
(ON-TIME) Stage 2.2: Core: ALU, RAM Implementation:
CMP and JMP instructions have been implemented. The CMP instruction is the only 3 register
instruction (Type 3) and required a bit of reworking to implement. The CMP instruction subtracts
Ra from Rb and sets appropriate status bits (SR Z, SR O, SR E, SR 0) into the Rd register. The
JMP instruction also required a bit of reworking as it affects the Program Counter. It is passed
an 8-bit immediate containing jump conditions (JMP EQ, JMP GE, JMP LT, etc.) and compares
against the SR register specific in the CMP instruction.

(EARLY) Stage 3.0: Compiler: Code-generation.
Work has started ahead-of-schedule on code-generation for the compiler. I have begun imple-
menting functions to encode instructions into the ISA’s machine-code format. In addition, the
compiler will also print out human-readable assembly in AT&T format.

Real-hardware Implementation:
I have also begun testing the implementation on the FPGA development board. Doing this early
allows me to fix critical synthesis problems earlier, reducing risk for the project and demonstration.
Figure 7.1 shows the FPGA core running on the FPGA development board.

Risks and Challenges:
Urgent risks:
New risks:
Existing risks:
RC5: Complex memory operations (PUSH, POP) may require multiple instructions. PUSH/POP
might be split into: (1) Inc/dec stack pointer; (2) Read RAM[stack pointer]. The compiler will be
able to resolve this issue.
Resolved risks:

Plan of work for the next week:
Work will begin into the integration of a UART (RS232) communication protocol, allowing us to
better demonstrate functionality of the processor and connect to other peripherals.
Work will also begin on implementing an instruction single step cycle button, allowing better
demonstration of the core. Currently the demonstration only lasts approximately 800ns.
The processor specification/reference booklet will continued to be updated with implementation
specific details of the processor.

Date(s) of supervisory meeting(s) since last Highlight:
01/03/18 (bi-weekly highlight meeting)

Notes from supervisory meeting(s) held since last Highlight:
Biweekly meetings are held instead of weekly.

Ben Lancaster 10424877 Page 80



7.2.1 Project Initiation Document PRCO304 (Rev. 3.14)

Highlight Report 6

PRCO304: Highlight Report 6

Name: Ben Lancaster

Date: 15/03/2018

Active project stage:
(ON-TIME) Stage 2.3: Core: GPIO, Communication .
(EARLY) Stage 3.2: Compiler: Assembler.

Review of work undertaken:
Single-instruction stepping has been implementing allowing an external button to step and
instruction (A key demo requirement!).

(ON-TIME) Stage 2.3: Core: GPIO, Communication Implementation:
A UART module library has been included in the core along with a FIFO buffer. The UART works
well with single-instruction stepping, but free running the buffer immediately fills up and output is
in random order.

(EARLY) Stage 3.2: Compiler: Assembler.
The assembler identifies instructions that require offsets and immediate to be calculated. The
assembler can now modify instructions to fill in missing data.

Risks and Challenges:
Urgent risks:
New risks:
RC6: UART FIFO fills up too quickly, resulting in bad output.
Existing risks:
Resolved risks:
RC5: Complex memory operations (PUSH, POP) may require multiple instructions. Core will not
support PUSH/POP as they are too complex. Compiler will output 2 instructions to emulate a
PUSH/POP.

Plan of work for the next week:
Work will continue on parsing expressions in the compiler (if, for, while, etc.) and their codegen.

The processor specification/reference booklet will continued to be updated with implemen-
tation specific details of the processor.

The final report document content will be started (structure already laid out).

Date(s) of supervisory meeting(s) since last Highlight:
12/03/18 (bi-weekly highlight meeting)

Notes from supervisory meeting(s) held since last Highlight:
RC6: Confirmation that PUSH/POP concepts will be split into 2 instructions due to limited com-
plexity of the processor core.
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Highlight Report 7

PRCO304: Highlight Report 7

Name: Ben Lancaster

Date: 21/03/2018

Active project stage:
(EXTENDED) Stage 2.3: Core: GPIO, Communication .
(ON-TIME) Stage 3.2: Compiler: Assembler.
(ON-TIME) Stage 3.3: Compiler: Verification.

Review of work undertaken:
HALT behaviour has been added.

(ON-TIME) Stage 3.2: Compiler: Assembler.
Compiler can now produce code generation for function x86 style stack frames, where the stack
pointer and base pointer are pushed/popped to the stack when entering/exiting a function. This is
the foundation for code generating passed and local parameters. An example is shown in section
7.2.1.

(ON-TIME) Stage 3.3: Compiler: Verification.
For the first time, the compiler output has been run on the processor. Two simple programs were
run: one to test addition, and the other to test calling functions (without parameters). After fixing
some bugs around the JMP instruction behaviour on the processor, both programs were able to
run successfully.

Risks and Challenges:
Urgent risks:
New risks:
Existing risks:
RC6: UART FIFO fills up too quickly, resulting in bad output.
Resolved risks:
RC5: Complex memory operations (PUSH, POP) may require multiple instructions. Core will not
support PUSH/POP as they are too complex. Compiler will output 2 instructions to emulate a
PUSH/POP.

Plan of work for the next week:
Compiler language control statements such as IF and FOR need to be parsed and codegen’d.
This is a requirement for the demo (iterating over contiguous memory and printing to UART?).

The processor specification/reference booklet will continued to be updated with implemen-
tation specific details of the processor.

The final report document will continued to be updated.

Date(s) of supervisory meeting(s) since last Highlight:
12/03/18 (bi-weekly highlight meeting)

Notes from supervisory meeting(s) held since last Highlight:
RC6: Confirmation that PUSH/POP concepts will be split into 2 instructions due to limited com-
plexity of the processor core.
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Highlight Attachments

Highlight 5

(a) Oscilloscope measurement of the q debug instr clk signal running on the MiniSpartan6+ develop-
ment board.

(b) Xilinx iSim simulation view of the q debug instr clk signal.

Figure 7.1: Initial real-hardware implementation on the MiniSpartan6+ (XC6SLX9-3FTG256) development board showing timing of the
q debug instr clk signal. This signal is a 1 clock pulse indicating the start of an instruction cycle. In this example, instructions: MOVI $10,
%Ra; MOVI $10, %Rb; and CMP %Rc, %Ra, %Rb followed by 6 NOP instructions, are used.

We can see that both implementations have a matching 660ns delay between instruction cycles for the same instructions, indi-
cating that the real-hardware FPGA implementation is working correctly.
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Highlight 7

Compiler input file contents:

1 def foo() {

2 10 + 1;

3 }

4

5 def main() {

6 32;

7 foo();

8 }

Compiler output machine code disassembly (pre-optimisation, post assembling):

1 0x00 ADDI $-1, Sp 4fff Function/sf entry

2 0x01 SW Bp, +0(Sp) 16e0 (null)

3 0x02 MOV Bp, Sp 1ee0 main

4 0x03 MOVI $20, Ax 2020 NUMBER

5 0x04 MOVI $9, Cx 2209 Create return address

6 0x05 ADDI $-1, Sp 4fff (null)

7 0x06 SW Cx, +0(Sp) 12e0 PUSH

8 0x07 MOVI $d, Cx 220d call

9 0x08 JMP Cx 6200 JMP

10 0x09 MOV Sp, Bp 1fc0 Function/sf exit

11 0x0A LW Bp, +0(Sp) 0ee0 POP

12 0x0B ADDI $+1, Sp 4f01 (null)

13 0x0C HALT 9000 MAIN HALT

14 ------------------------------------

15 0x0D ADDI $-1, Sp 4fff Function/sf entry

16 0x0E SW Bp, +0(Sp) 16e0 (null)

17 0x0F MOV Bp, Sp 1ee0 foo

18 0x10 MOVI $a, Ax 200a NUMBER

19 0x11 ADDI $-1, Sp 4fff (null)

20 0x12 SW Ax, +0(Sp) 10e0 PUSH

21 0x13 MOVI $1, Ax 2001 NUMBER

22 0x14 LW Cx, +0(Sp) 0ae0 POP

23 0x15 ADDI $+1, Sp 4f01 (null)

24 0x16 ADD Ax, Cx 4040 BIN ADD

25 0x17 MOV Sp, Bp 1fc0 Function/sf exit

26 0x18 LW Bp, +0(Sp) 0ee0 POP

27 0x19 ADDI $+1, Sp 4f01 (null)

28 0x1A LW Cx, +0(Sp) 0ae0 POP

29 0x1B ADDI $+1, Sp 4f01 (null)

30 0x1C JMP Cx 6200 FUNC RETURN to CALL
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7.2.2 Project Management Kanban Board

Figure 7.2: Project Kanban board showing the status of different tasks of the project, processor core, and compiler. In addition, their requirements are shown (core-deliverable and extended-deliv ), their task
status (open, closed, merged), and who is assigned to each task. This kanban board can viewed at: https://github.com/bendl/prco304/projects/1.
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7.3 Appendix C. Other Documents

7.3.1 Existing Embedded Processor and Compiler Research

There exists many commercial and open-source embedded processors, each providing different
features and specialities such as digital signal processing, analogue components, instruction set
architectures, and interfaces.

Popular embedded processors include:

• Xilinx MicroBlaze [17]. MicroBlaze features a 32-bit big-endian RISC architecture targeting
FPGA devices.

The processor’s instruction set contains over 100 instructions, covering traditional RISC oper-
ations such as arithmetic (ADD), comparison (CMP), floating point operations (FADD), bitwise
(XOR), memory operations (LW, SW). Interestingly, the processor allows full control of the pro-
gram counter, and provides multiple instructions for controlling it.

MicroBlaze features 32 32-bit general purpose registers similar to other RISC architectures
(ARMv8-A) with 32 32-bit general purpose registers). The high register count allows for stor-
ing of more values over the lifetime of programs, increasing performance by reducing timely
memory operations.

The processor can included in FPGA designs using a graphical configuration tool, the MicroB-
laze Configuration Wizard. This allows the designer to customise the features and implementa-
tion of the processor in their design. Designers can choose to integrate: commercial interface
features, such as PCI Express interfaces; additional functionality, such as memory manage-
ment units and floating point units; and performance features, such as instruction caching, and
hardware multipliers/dividers.

Figure 7.3: The MicroBlaze Configuration Wizard, showing options for clock frequency, memory sizes, UART, GPIO, interrupts, and more.
Source: https://embeddedmicro.com/blogs/tutorials/embedded-processors

• ARM Cortex-A9 MPCore [18]. The Cortex-A9 implements ARM’s 32-bit Thumb-2 RISC instruc-
tion set. This architecture supports 15 32-bit registers, half of what MicroBlaze supports.

In addition to FPGA-based implementation, the Cortex-A9 is also designed for silicon based
SoC designs. The processor is implemented in many commercial SoC products such as Broad-
com’s BCM11311, STMicroelectronics’ SPEAr1310, and Apple’s A5 mobile chip.
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• Xilinx PicoBlaze [19]. PicoBlaze is an 8-bit RISC embedded microcontroller, designed by Ken
Chapman [20], originally named KCPSM (”Ken Chapman’s Programmable State Machine”)
[21].

An important characteristic of the PicoBlaze embedded processor is that it only requires a
minimum of 26 FPGA slices, meaning that implementation on a Spartan-6 (XC6SLX9) FPGA
that has 1430 slices, where each consists of 4-LUTs and 8 Flip Flops [22], results in only
1.8% of the resources being used, allowing for more complex logic to be bundled alongside
the processor. This low resource requirement is a key characteristic that designers use when
considering embedded processors and will be considered in the design of the new embedded
processor.

7.3.2 Current Compiler Toolchains

To run functional and complex programs on the processor, a high-level code compiler will be required.
This compiler must be able to take a high-level grammar as input and output an executable that
the new processor can run. Only open-source compilers will be considered due to having better
documentation and source code, which reduces risk in the project. The source code will need to be
open and modifiable as this project requires a backend to be implemented.

• LLVM [23]. LLVM is a set of reusable compiler technologies that allows developers to build
frontends, backends, and optimisers, for different projects. LLVM uses a text-based intermedi-
ate representation (IR). This IR is relocatable, allowing front-ends of multiple input grammars
to be compiled to it, and back-ends to accept it to generate implementation specific code.

LLVM, while a large project and still actively developed and used by many programming lan-
guages, such as Clang, Haskell, and Swift, suffers from poor and outdated documentation.
This will be a large risk factor if chosen for this project as additional time will be required for
learning it.

• 8cc [24]. 8cc is a small, open-source, C compiler built by Rui Ueyama.

The compiler is the simplest of the above mentioned compilers as it was only developed in 40
days [25]. Although not fully implementing a standards compliant language, the compiler is still
functional and has the ability to compile itself (self-hosting) which is a great achievement.

The compiler does not assemble an executable file, but rather outputs x86 64 AT&T syntax
assembly language. This is then assembled by a third-party assembler such as GCC’s as tool.

The project’s source code is ”written to be as concise and easy-to-read as possible” [25] and
this is indeed true looking at the contents. Although little documentation is available, the code
generation functions of importance to this project in gen.c, can be easily modified to emit our
new instruction set architecture machine code.

Utilising this compiler will allow this processor to run more complex and functional programs.
The disadvantage lies in the complexity of the C programming language, in that it requires many
code generation routines for different variations of each program. To even compile a simple
addition function, I will first need to implement many unused code generation routines such as
datatype conversions, variable allocations, and more. In addition, some of these routines may
not be implementable on the new processor and will result in undefined behaviour. This is a
large risk to the project as an unknown amount of time will need to be allocated to create a
backend for the compiler.
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Table 7.4: Comparison of existing embedded processor architectures.

Processor Architecture Bits Registers Branching Other

MicroBlaze RISC 32 32 Branch on
Condition,
Condition

Interrupt Vector

ARMv8 RISC 32 31 Condition Interrupt Vector

PicoBlaze RISC 8 16 Condition
Internal 64-byte scratch memory;
1KB Instruction on-chip storage;
Interrupts; 0.5 IPC

Ben Lancaster 10424877 Page 88



7.3.3 Compiler Functional Requirements PRCO304 (Rev. 3.14)

7.3.3 Compiler Functional Requirements

Figure 7.4: PRCO304 compiler Functional requirements and their technical implementation requirements. This diagram shows the
technical implementation dependencies of each feature required by the compiler.

Starting at F1, we can see that the compiler needs to support strings, numbers, and arithmetic and text symbols, in order to support

more complex features, such as user-defined variables. With F5, to support user-defined program flow, such as if and for loops, we need

the compiler to first support primitive jumping and comparison features. The higher up the functional requirement list, the more technical

implemented features need to be present in order to support the feature. The highest functional requirement, F7, will allow users to

encapsulate programs into multiple functions, but in order to support this, the compiler must first implement program code, such as if(x)

then y else z.

Structuring technical requirements in this format allows for better visualisation of their technical dependencies which leads to better

informed time allocations for each task.
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7.3.4 Compiler Sequence Diagram

Figure 7.5: UML sequence diagram for the PRCO304 compiler. This diagram shows the compiler’s program flow. The CLI is the only
component the user is required to interact with. The user passes the input file to the CLI which in-turn invokes the compiler to parse and
generate output machine code.
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7.3.5 ISE XC6SLX9 Implementation Report

Figure 7.6: ISE implementation report for the PRCO304 processor on the XC6SLX9 FPGA device.
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