{ "cells": [ { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "# Dynamic Models\n" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "\n", "### Preliminaries\n", "\n", "- Goal \n", " - Introduction to dynamic (=temporal) Latent Variable Models, including the Hidden Markov Model and Kalman filter. \n", "- Materials\n", " - Mandatory\n", " - These lecture notes\n", " - Optional \n", " - Bishop pp.605-615 on Hidden Markov Models\n", " - Bishop pp.635-641 on Kalman filters\n", " - Faragher (2012), [Understanding the Basis of the Kalman Filter](https://github.com/bertdv/BMLIP/blob/master/lessons/notebooks/files/Faragher-2012-Understanding-the-Basis-of-the-Kalman-Filter.pdf)\n", " - Minka (1999), [From Hidden Markov Models to Linear Dynamical Systems](https://github.com/bertdv/BMLIP/blob/master/lessons/notebooks/files/Minka-1999-from-HMM-to-LDS.pdf)\n", " " ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### Example Problem\n", "\n", "- We consider a one-dimensional cart position tracking problem, see [Faragher 2012](https://github.com/bertdv/BMLIP/blob/master/lessons/notebooks/files/Faragher-2012-Understanding-the-Basis-of-the-Kalman-Filter.pdf). \n", "\n", "- The hidden states are the position $z_t$ and velocity $\\dot z_t$. We can apply an external acceleration/breaking force $u_t$. (Noisy) observations are represented by $x_t$. \n", "\n", "- The equations of motions are given by\n", "\n", "$$\\begin{align*}\n", "\\begin{bmatrix} z_t \\\\ \\dot{z_t}\\end{bmatrix} &= \\begin{bmatrix} 1 & \\Delta t \\\\ 0 & 1\\end{bmatrix} \\begin{bmatrix} z_{t-1} \\\\ \\dot z_{t-1}\\end{bmatrix} + \\begin{bmatrix} (\\Delta t)^2/2 \\\\ \\Delta t\\end{bmatrix} u_t + \\mathcal{N}(0,\\Sigma_z) \\\\\n", "x_t &= \\begin{bmatrix} z_t \\\\ \\dot{z_t}\\end{bmatrix} + \\mathcal{N}(0,\\Sigma_x) \n", "\\end{align*}$$\n", "\n", "- Task: Infer the position $z_t$ after 10 time steps. (Solution later in this lesson).\n", "\n", "
\n" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### Dynamical Models\n", "\n", "- In this lesson, we consider models where the sequence order of observations matters. \n", "\n", "- Consider the _ordered_ observation sequence $x^T \\triangleq \\left(x_1,x_2,\\ldots,x_T\\right)$.\n", " - (For brevity, in this lesson we use the notation $x_t^T$ to denote $(x_t,x_{t+1},\\ldots,x_T)$ and drop the subscript if $t=1$, so $x^T = x_1^T = \\left(x_1,x_2,\\ldots,x_T\\right)$)." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "- We wish to develop a generative model\n", " $$ p( x^T )$$\n", "that 'explains' the time series $x^T$. " ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "- We cannot use the IID assumption $p( x^T ) = \\prod_t p(x_t )$. In general, we _can_ use the **chain rule** (a.k.a. **the general product rule**)\n", "\n", "$$\\begin{align*}\n", "p(x^T) &= p(x_T|x^{T-1}) \\,p(x^{T-1}) \\\\\n", " &= p(x_T|x^{T-1}) \\,p(x_{T-1}|x^{T-2}) \\cdots p(x_2|x_1)\\,p(x_1) \\\\\n", " &= p(x_1)\\prod_{t=2}^T p(x_t\\,|\\,x^{t-1})\n", "\\end{align*}$$" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "- Generally, we will want to limit the depth of dependencies on previous observations. For example, a $K$th-order linear **Auto-Regressive** (AR) model that is given by\n", "$$\\begin{align*}\n", " p(x_t\\,|\\,x^{t-1}) = \\mathcal{N}\\left(x_t \\,\\middle|\\, \\sum_{k=1}^K a_k x_{t-k}\\,,\\sigma^2\\,\\right) \n", "\\end{align*}$$\n", "limits the dependencies to the past $K$ samples." ] }, { "attachments": {}, "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### State-space Models\n", "\n", "- A limitation of AR models is that they need a lot of parameters in order to create a flexible model. E.g., if $x_t \\in \\mathbb{R}^M$ is an $M$-dimensional time series, then the $K$-th order AR model for $x_t$ will have $KM^2$ parameters. " ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "- Similar to our work on Gaussian Mixture models, we can create a flexible dynamic system by introducing _latent_ (unobserved) variables $z^T \\triangleq \\left(z_1,z_2,\\dots,z_T\\right)$ (one $z_t$ for each observation $x_t$). In dynamic systems, $z_t$ are called _state variables_." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "- A **state space model** is a particular latent variable dynamical model defined by\n", "$$\\begin{align*}\n", " p(x^T,z^T) &= \\underbrace{p(z_1)}_{\\text{initial state}} \\prod_{t=2}^T \\underbrace{p(z_t\\,|\\,z_{t-1})}_{\\text{state transitions}}\\,\\prod_{t=1}^T \\underbrace{p(x_t\\,|\\,z_t)}_{\\text{observations}}\n", "\\end{align*}$$\n", " - The condition $p(z_t\\,|\\,z^{t-1}) = p(z_t\\,|\\,z_{t-1})$ is called a $1$st-order Markov condition.\n", "\n", "" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "- The Forney-style factor graph for a state-space model:\n", "\n", "
" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### Hidden Markov Models and Linear Dynamical Systems\n", "\n", "- A **Hidden Markov Model** (HMM) is a specific state-space model with discrete-valued state variables $z_t$." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "- Typically, $z_t$ is a $K$-dimensional one-hot coded latent 'class indicator' with transition probabilities $a_{jk} \\triangleq p(z_{tk}=1\\,|\\,z_{t-1,j}=1)$, or equivalently,\n", " $$p(z_t|z_{t-1}) = \\prod_{k=1}^K \\prod_{j=1}^K a_{jk}^{z_{t-1,j}\\cdot z_{tk}}$$\n", "which is usually accompanied by an initial state distribution $p(z_{1k}=1) = \\pi_k$." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ " \n", "- The classical HMM has also discrete-valued observations but in pratice any (probabilistic) observation model $p(x_t|z_t)$ may be coupled to the hidden Markov chain. \n", "\n", "" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "- Another well-known state-space model with continuous-valued state variables $z_t$ is the **(Linear) Gaussian Dynamical System** (LGDS), which is defined as\n", "\n", "$$\\begin{align*}\n", "p(z_t\\,|\\,z_{t-1}) &= \\mathcal{N}\\left(\\, A z_{t-1}\\,,\\,\\Sigma_z\\,\\right) \\\\ \n", "p(x_t\\,|\\,z_t) &= \\mathcal{N}\\left(\\, C z_t\\,,\\,\\Sigma_x\\,\\right) \\\\\n", "p(z_1) &= \\mathcal{N}\\left(\\, \\mu_1\\,,\\,\\Sigma_1\\,\\right)\n", "\\end{align*}$$\n", "" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "- Note that the joint distribution over all states and observations $\\{(x_1,z_1),\\ldots,(x_t,z_t)\\}$ is a (large-dimensional) Gaussian distribution. This means that, in principle, every inference problem on the LGDS model also leads to a Gaussian distribution." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "- HMM's and LGDS's (and variants thereof) are at the basis of a wide range of complex information processing systems, such as speech and language recognition, robotics and automatic car navigation, and even processing of DNA sequences. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Common Signal Processing Tasks as Message Passing-based Inference\n", "\n", "- As we have seen, inference tasks in linear Gaussian state space models can be analytically solved.\n", "\n", "- However, these derivations quickly become cumbersome and prone to errors.\n", "\n", "- Alternatively, we could specify the generative model in a (Forney-style) factor graph and use automated message passing to infer the posterior over the hidden variables. Here follows some examples.\n", "\n", "- **Filtering**, a.k.a. state estimation: estimation of a state (at time step $t$), based on past and current (at $t$) observations. \n", "\n", "\n", "- **Smoothing**: estimation of a state based on both past and future observations. Needs backward messages from the future. \n", "\n", "\n", "\n", "- **Prediction**: estimation of future state or observation based only on observations of the past.\n", "\n", "\n" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### Kalman Filtering\n", "\n", "- Technically, a [**Kalman filter**](https://en.wikipedia.org/wiki/Kalman_filter) is the solution to the recursive estimation (inference) of the hidden state $z_t$ based on past observations in an LGDS, i.e., Kalman filtering solves the problem $p(z_t\\,|\\,x^t)$ based on the previous estimate $p(z_{t-1}\\,|\\,x^{t-1})$ and a new observation $x_t$ (in the context of the given model specification of course). \n", " " ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ " \n", "- Let's infer the Kalman filter for a scalar linear Gaussian dynamical system:\n", "$$\\begin{aligned}\n", " p(z_t\\,|\\,z_{t-1}) &= \\mathcal{N}(z_t\\,|\\,a z_{t-1},\\sigma_z^2) \\qquad &&\\text{(state transition)} \\\\\n", " p(x_t\\,|\\,z_t) &= \\mathcal{N}(x_t\\,|\\,c z_t,\\sigma_x^2) \\qquad &&\\text{(observation)} \n", "\\end{aligned}$$" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ " \n", "- Kalman filtering comprises inferring $p(z_t\\,|\\,x^t)$ from a given prior estimate $p(z_{t-1}\\,|\\,x^{t-1})$ (available after the previous time step) and a new observation $x_t$. Let us assume that \n", "$$\\begin{align*} \n", "p(z_{t-1}\\,|\\,x^{t-1}) = \\mathcal{N}(z_{t-1} \\,|\\, \\mu_{t-1}, \\sigma_{t-1}^2) \\qquad \\text{(prior)}\n", "\\end{align*}$$ " ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "- Note that everything is Gaussian, so it is _in principle_ possible to execute inference problems analytically and the result will be a Gaussian posterior:\n", " - (In the following derivation we make use of the renormalization equality $\\mathcal{N}(x\\,|\\,cz,\\sigma^2) = \\frac{1}{c}\\mathcal{N}\\left(z \\,\\big|\\,\\frac{x}{c},\\left(\\frac{\\sigma}{c}\\right)^2\\right)$).\n", "\n", "$$\\begin{align*}\n", "\\underbrace{p(z_t\\,|\\,x^t)}_{\\text{posterior}} &= p(z_t\\,|\\,x_t,x^{t-1}) \\\\\n", " &\\propto p(x_t,z_t\\,|\\,x^{t-1}) \\\\\n", " &= p(x_t\\,|\\,z_t) \\,p(z_t\\,|\\,x^{t-1}) \\\\\n", " &= p(x_t\\,|\\,z_t) \\, \\int p(z_t,z_{t-1}\\,|\\,x^{t-1}) \\mathrm{d}z_{t-1} \\\\\n", " &= \\underbrace{p(x_t\\,|\\,z_t)}_{\\text{observation}} \\, \\int \\underbrace{p(z_t\\,|\\,z_{t-1})}_{\\text{state transition}} \\, \\underbrace{p(z_{t-1}\\,|\\,x^{t-1})}_{\\text{prior}} \\mathrm{d}z_{t-1} \\\\\n", " &= \\mathcal{N}(x_t\\,|\\,c z_t,\\sigma_x^2) \\int \\mathcal{N}(z_t\\,|\\,a z_{t-1},\\sigma_z^2) \\, \\mathcal{N}(z_{t-1} \\,|\\, \\mu_{t-1}, \\sigma_{t-1}^2) \\mathrm{d}z_{t-1} \\\\\n", " &= \\frac{1}{c}\\mathcal{N}\\left(z_t\\bigm| \\frac{x_t}{c} ,\\left(\\frac{\\sigma_x}{c}\\right)^2\\right) \\int \\frac{1}{a}\\underbrace{\\mathcal{N}\\left(z_{t-1}\\bigm| \\frac{z_t}{a},\\left(\\frac{\\sigma_z}{a}\\right)^2 \\right) \\, \\mathcal{N}(z_{t-1} \\,|\\, \\mu_{t-1}, \\sigma_{t-1}^2)}_{\\text{use Gaussian multiplication formula SRG-6}} \\mathrm{d}z_{t-1} \\\\\n", " &\\propto \\underbrace{\\mathcal{N}\\left(z_t\\,\\bigm| \\,\\frac{x_t}{c} ,\\left(\\frac{\\sigma_x}{c}\\right)^2\\right) \\cdot \\mathcal{N}\\left(z_t\\, \\bigm|\\,a \\mu_{t-1},\\sigma_z^2 + \\left(a \\sigma_{t-1}\\right)^2 \\right)}_{\\text{use SRG-6 again}} \\\\\n", " &\\propto \\mathcal{N}\\left( z_t \\,|\\, \\mu_t, \\sigma_t^2\\right)\n", "\\end{align*}$$\n", "with\n", "$$\\begin{align*}\n", " \\rho_t^2 &= a^2 \\sigma_{t-1}^2 + \\sigma_z^2 \\quad \\text{(predicted variance)}\\\\\n", " K_t &= \\frac{c \\rho_t^2}{c^2 \\rho_t^2 + \\sigma_x^2} \\quad \\text{(Kalman gain)} \\\\\n", " \\mu_t &= \\underbrace{a \\mu_{t-1}}_{\\text{prior prediction}} + K_t \\cdot \\underbrace{\\left( x_t - c a \\mu_{t-1}\\right)}_{\\text{prediction error}} \\quad \\text{(posterior mean)}\\\\\n", " \\sigma_t^2 &= \\left( 1 - c\\cdot K_t \\right) \\rho_t^2 \\quad \\text{(posterior variance)}\n", "\\end{align*}$$" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "- Kalman filtering consists of computing/updating these last four equations for each new observation ($x_t$). This is a very efficient recursive algorithm to estimate the state $z_t$ from all observations (until $t$).\n", "\n", "- It turns out that it's also possible to get an analytical result for $p(x_t|x^{t-1})$, which is the **model evidence** in a filtering context. See [optional slides](#kalman-proof) for details. " ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### Multi-dimensional Kalman Filtering\n", "\n", "- The Kalman filter equations can also be derived for multidimensional state-space models. In particular, for the model\n", "$$\\begin{align*}\n", "z_t &= A z_{t-1} + \\mathcal{N}(0,\\Gamma) \\\\\n", "x_t &= C z_t + \\mathcal{N}(0,\\Sigma)\n", "\\end{align*}$$\n", "the Kalman filter update equations for the posterior $p(z_t |x^t) = \\mathcal{N}\\left(z_t \\bigm| \\mu_t, V_t \\right)$ are given by (see Bishop, pg.639)\n", "$$\\begin{align*}\n", "P_t &= A V_{t-1} A^T + \\Gamma \\qquad &&\\text{(predicted variance)}\\\\\n", "K_t &= P_t C^T \\cdot \\left(C P_t C^T + \\Sigma \\right)^{-1} \\qquad &&\\text{(Kalman gain)} \\\\\n", "\\mu_t &= A \\mu_{t-1} + K_t\\cdot\\left(x_t - C A \\mu_{t-1} \\right) \\qquad &&\\text{(posterior state mean)}\\\\\n", "V_t &= \\left(I-K_t C \\right) P_{t} \\qquad &&\\text{(posterior state variance)}\n", "\\end{align*}$$\n", "\n" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### Code Example: Kalman Filtering and the Cart Position Tracking Example Revisited\n", "\n", "\n", "- We can now solve the cart tracking problem of the introductory example by implementing the Kalman filter." ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "slideshow": { "slide_type": "slide" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Prediction: MvNormalMeanCovariance(\n", "μ: [40.81475989078067, 3.8792027585569526]\n", "Σ: [1.2958787328575079 0.3921572953097835; 0.3921572953130242 0.3415636711134632]\n", ")\n", "\n", "Measurement: MvNormalMeanCovariance(\n", "μ: [41.26691427784205, 2.6610823772108425]\n", "Σ: [1.0 0.0; 0.0 2.0]\n", ")\n", "\n", "Posterior: MvNormalMeanCovariance(\n", "μ: [40.97269820495181, 3.8000643123843214]\n", "Σ: [0.5516100293973586 0.15018972175285758; 0.15018972175409862 0.24143326063188655]\n", ")\n", "\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABK0AAAG+CAYAAABRQ/dAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3xUVfrH8c+5M2mEFEIKvTfpoCKgUhQLiKJi7/3nrqvr6nbFhmVXd117WStYUde6awOU3juoSJFA6J0EQsrMPb8/ppCQAOmTwPe9r1mSW8557s3s5uaZc55jrLUWERERERERERGRWsSJdAAiIiIiIiIiIiIHU9JKRERERERERERqHSWtRERERERERESk1lHSSkREREREREREah0lrUREREREREREpNZR0kpERERERERERGodJa1ERERERERERKTWUdJKRERERERERERqHW9FT3Rdl40bN5KQkIAxpipjEhERERERERGROsRaS05ODk2aNMFxqmaMVIWTVhs3bqR58+ZVEoSIiIiIiIiIiNR9WVlZNGvWrEraqnDSKiEhAYBZP6+hfkJilQQjIiIiIiIiIiJ1z96cbPp2bB3OF1WFCietQlMC6yckkpCopJWIiIiIiIiIyLGuKktIqRC7iIiIiIiIiIjUOkpaiYiIiIiIiIhIraOklYiIiIiIiIiI1DpKWomIiIiIiIiISK2jpJWIiIiIiIiIiNQ6FV49UERERESOXq6vENfvj3QYIiIiEkGOx4PjjYpY/0paiYiIiEhYwb4c8nbvxBbmRzoUERERqQVMVAyxySlExyfUeN9KWomIiIgIEEhY7d+2iYT69UlIT8UbFYXBRDosERERiQCLxVdYSM6ePeRs2wRQ44krJa1EREREBIC83TtJqF+fRk2bYYySVSIiIse82Dji6yfAhvXs27OzxpNWKsQuIiIiIri+QmxhPglJSUpYiYiISJgxhoSkJNyCfFxfYY32raSViIiIiISLrnujIldsVURERGqn0POB67o12q+SViIiIiISphpWIiIicrDw84G1NdqvklYiIiIiIiIiIlLrKGklIiIiIiIiIiK1jpJWIiIiIiIiIiJS6yhpJSIiIiIiIiIitY6SViIiIiIitVxmZiaxXoebbri+TNurs8+6xnVdTuzdkxHDz6nQ+WPHvEms1wm/rr7i8krFs3rVqmLtdWjbusQxox98gFivQ2ZmZsTjrY3Kcg+rWk2/D1avWkV8TBQvv/hCpfoRqeu8kQ5ARERERKS2yMzMpFO7NsW2RUVFkZ6RwcmnnMof/vgnunXvHqHoqt7kSZM4a8hp3DPqPkbd/0Ckw6kWY8e8ydIlS3jhpX9Xqp1zzxtB9x496NK1a6XaaZCSwj2j7gPguWeerlRbh1NV8daEd995m+nTprJwwQKWLV1KQUEB/37tda659rpSj6+pe1iamnoftG3XjsuuuJKHH3qQy6+8isTExEr1J1JXKWklIiIiInKQNm3bcvkVVwKwb+9eZs+ezQfvv8dnn3zM1+Mn0q9//whHGNC0aVMWL/uRxKSkOtV2TfH7/Twy+iFOHTCQE/v0qVRb544YccgkSnmkpKSEE4RvjR1T6fYOparirQkP3DeKdWvXkpqaSqPGjVm3du1hj6+pe1iamnwf3HX373nnrbE8/+wz/OWeeyvdp0hdpOmBIiIiIiIHadu2HaPuf4BR9z/A3574B99Pmcqf/vJX8vPzuX9U7fnjMSoqio6dOtG4ceM61XZN+frLL8lat44rrroq0qHIYbz48iv8vHoN6zdv5eZb/i/S4dQaXbp2pXuPHrz+2qu4rhvpcEQiQkkrEREREZEy+PVvbgdg/ry5QGBqXazXYfSDDzBr5kyGDz2bjIYNiPUWf8SeOmUKF444j6YZaSTWi6VLpw7cP+pecnNzS/Th9/v5x+N/p3PH9iTFx9G5Y3se/9tjh/yD9XB1p6ZNncolIy+kRZNGJNaLpW2rFlx60UimT5sGBOomnTXkNAAeGf1Qsfo6mZmZR6xp9dbYMQzo34+GSQk0TEpgQP9+pY4YKXqfFi5YwPChZ5OanEh6SjKXjLywXHWb/vfFF8R6HZ78xxO8+Pxz9OtzAimJ9UlNTuTSi0ayYcOGEjEaY7jgwpGlttere9di133w6x+P/71McY17/z1ivQ6vv/Yqk77/nhHDz6FRagpN0lO5+orL2bZtW5mv8XDqWrxldfqQIbRs2bJG+wT40+/vJtbrsHDBghL7Xn3l38R6Hd57950yt1cd93XkRReTtW4d302cWO5zRY4Gmh4oIiIiIlIGxphSt8+aOZPH//YYAwcN5sabbiYrKyu875WXX+KO39xGgwYNGDb8XNJSU5k3bx5/f+xRJk+axLcTvyM6Ojp8/K9vvYUxb7xBq9atufVXvyYvP49nnvoXs2bOLFesL73wPL/77R3ExcVx3vkX0Lx5czZu3MiM6dP45OOPOPmUUxgwcBBr167l7bFjOHXAQAYMHBg+Pzk5md27dx+y/T/c9TuefeZpmjZtynU33IAxhk8+/pibb7iepYsX8/g/nyxxzoL58/nXP//BgIGDuOnmW1i0aBGff/Ypy5YtZcHipcTGxh7xuhYvXgTAm2+8Tta6dYy44EIGDBjIhAnj+ezTT9i8aROTp88AwFrLlMmT6NipE8nJyaW2d8mll+Hz+Ypty8/P57lnniY/P5+TTzmVlStXHDGuJYsCcU0cP54/fn0XQ88Zzg033sTEiRP48INxWGt5+733j9jOkdS1eGu7RYsWERUVRecuXUruWxhIZPXo0bPM7VXHfT2pbz8AJn3/HUPOOKNc54ocDZS0EhEREZHDsxZKGRVU69SrB4dILFWF5599BoDjTzix2PaJE8bz0iuvct31NxTb/tOPP/K7395Bj549+fKb8aSkpIT3PfH3vzHqnr/ywnPPcudddwOBEUlj3niD7j168P2UacTHxwPwxz//lZOO71XmOJctXcrdv7uTxo0b892UabRq1Sq8z1rLpk2bABg4aBAAb48dw4CBA0sUYj9U0mra1Kk8+8zTdDruOCZPm0FSsObVqPsfZMDJ/Xjm6acYccGFnHzKKcXO++rL//HWu+9x8SWXhrfdcN21vPv2W3z+2adccullR7y2xcGkwL59+5i7YBHt2rcHoKCggJP79mH27FnMnDGDfv37s/ynn9i5cydnnj30kO0dXCcoLy+Piy+8gIKCAl565VX69e9fpiTQ4sWLAVi2bCnzFi0J3/O8vDw6d2jHxAnjj9hGWdS1eGu7JYsXcVznzsTExJTYt3DBAmJjY+nYqVOZ26uO+3r8CScAlDtxLXK00PRAERERETm83FxikhJq/asqE2urV69i9IMPMPrBB/jzH37P4AGn8vfHHiU2NpaHHn6k2LE9e/UqkbACePWVl/H5fPzzX08XS1gB3P2HP5KWlsYH4w6Munjn7bEA/PXeUeGEFQQKot92+x1ljv2Vf7+E3+/n/odGF0tYQWC0WJMmTcrcVmneGvsmAPfed384YQWQlJQUXg0tdExRp5w6oFjCCuDa6wJTD+fPnVumvhctWgjAm2PfDiesAKKjo7ns8isA+Pnn5QCsX78egIz09DK1nZubywXnnct3EyfwyutvhGMri6VLFmOM4Z33xhW757GxsbRo0ZL8/Pwyt1VWdS3e2mbNmjXs2rWLnr1KJoQLCwtZtnQpXbp2xePxlLnN6rivCQkJxMbGsmHD+nKfK3I00EgrEREREZGD/LJ6NY+MfggIFCRPz8jg0suv4A9//BNdu3UrduwJJ55YWhPMmTUbgG+/+ZrvJk4osT8qKoqfly8Pf790yRIATj7l1BLHlrbtUOYFE0BDzjizzOeUR2i004CBg0rsC21bEhxxUlSvUpIDzZo1A2D3nt1H7Hf37t2szcykT5+TOHXAgBL7Uxo2BAIJB4CdO3cAkNygwRHb3rdvHxecdy7Tp03l9TFjufSyy494TsjmzZvZsmUL/fqfXOK9AfDLL6tp3aZNmdsri0jH2zQjjR07dpS5z28mfBce2VdbhKb/9exZ8n354w8/kJ+fT/cePcrcXnW+D1JSUtixfXuFzhWp65S0EhEREZHDq1eP/D05kY7iyOrVq7KmzjjzLL748qsyHZuenlHq9p27dgLw98ceLVM7e/bswXEcUlNTS+zLyCi9j9Ls3r0bY0y1rfqXnZ2N4zikpaWV2JeRkYHjOOzZs6fEvsQio7JCPN7AnyN+/5FXRlu0MDDKasiZpSfjstatA6B5s+YAxMXFAbB///7DtpuTk8OI4ecwZ/Ys3nr3PS4cedERYylqcTCu004/vcS+jRs3snXrVk6vwgRibYj3kssuIydnb5n7bNSoUblirAmh91PPXr1L7FuwYD5QvnpW1fk+2L9/P/Wq8P/fROoSJa1ERERE5PCMgSLT1aS4QxVoT0xMBGDbrj0kJCQcsZ2kpCRc12X79u0lEkJbtmwpczzJycnh2lVNmzYt83lllZiYiOu6bNu2jfSDpt5t3boV13XD116VlgSLsDdv0aLU/eO/+Ybo6GhOPjUwKi01NXAPdwWTh6XJzs7mvGFDmT9/Hu+O+4DzRpxf7rhCxeF79S6Z/Fi0IDSap2e52y1NbYn3X08/W+5+a5sliwNT+UobTTXh228B6F6epFU1vQ9c12XPnj2lFosXORaoppWIiIiISDU4sU8fAGbPmlWm47t17w7A9GlTS+wrbduhhKYrThj/7RGPDdXr8fv9ZW6/R/AP7ymTJ5XYN3XKZIByTasqq0XBaYnZpYzimjJ5MnPnzuHyK68MJwg7d+mC4zisWrmq1PZ2797NsDPPYOHCBYz78D8VSgDBgamQPUqZZrYwOAWtPMmPQ6lr8dZ2q1atJCMjg/r16xfbvm7dOr768n8YY8L/myyL6rqvq1auxHVdunQtOeVQ5FigpJWIiIiISDX4v1t/jdfr5a477yArK6vE/t27d4enKAFcedU1ADz68Gj27dsX3r5hw4bwyoVlcfMtt+LxeHjwvlGsXbu22L6iqwcC4QLxGzZsKHP7V119LQCPjH6I7Ozs8Pbs7OxwHbDQMVVpcbAI+wfj3sfn84W3Z2ZmctMN15Gamsp9DzwU3p6cnEy37t1ZMH8e1tpibe3cuZOhZw5h2bKlfPDRxwwbPrzicS1eRGpqKs2bNy+xL/Tz7VHJkVZ1Ld5IO+O0wcR6HSZPmnTIY2JiYtixYwfbtm0Lb9u4cSNXXHIxubm5tGnbtkwjJEOq677OmROojVdaHTeRY4GmB4qIiIiIVIMuXbvy9HPPc8dtv6Z7506cPXQYbdq0ITsnmzW/rGHqlMlcfe21PPfCSwAMHDSIa667jrFvvsnxPbszYsT55Bfk89EHH9DnpL58+b//lqnfrt268Y8n/8Vdd/6W3t27cu6I82nRogVbtmxm2tSpDB02jH88+RQAHTt1okmTJnw47n3q1YujadNmGGO45dZfHbL9UwcM4Ne/+Q0vPPccvXt044ILLsRi+fSTT1iflcVtt99e5X9g5+Xl8fPy5fTt15+VK36mX58TOP30IWzfsYPPPvkY13X5+LMvSkyHPPe8ETz80IPMmzs3PPIN4Jorr2DhggUMHDSYOXNmhxMDIY2bNOGmm285Yly5ubmsXrWKwaeVrGMEgRE2LVq2LLF6ZHnVtXjL6/XXXmXG9OkA/LBsKQBvvPYaUyYHRu6dN2JEuUaWuW6gRprXe+g/d08/fQjLli7l1P59GTpsGNu2bmP8t99w3vkXMG/e3HLVs6rO+zpxwgQ8Hg/Dzql4olKkLlPSSkRERESkmtx408306NGTp5/6F9OnTuG/X3xOUlISzVu04Pbf3snV1xQfkfTiy6/Qvn0HXn/tVV584XmaNmvGHXf+jpEXX1LmpBXAr277DZ27dOXpfz3Jt19/xd69e0lLT6dPn5MYedEl4eM8Hg/vf/gf7vnLn3n37bfJyQkU3L/40ssO2/6TTz1Dj569eOWll3jt1VcA6Ny5C6Puf4Brr7u+zHGW1bKlS/H5fAwYOJAnn3qaP9x9Fy+/9CJxcXGcPXQY9953Px07dSpx3vU33sRjjzzMe+++HU5aua7LjOnTAJg86XsmT/q+xHkjL7q4TEmgpUuW4LpuqSsj7tixg/VZWZx73ojyXm4xdS3eipgxfTpvjx1TbNvMGdOZOSOQyGrZsmWZk1bWWpb/9CMtW7XipL59D3ncqAceJGdvDl989hlvjRlDr97H8/qbY4mJjeWtMW+Wa4prdd3X3NxcvvjsU84Zfi5NmjQp9/kiRwMlrUREREREglq1akWe78gr2UFgZFRZjj3hxBN56513y9Smx+PhD3/6M3/4059L7Cutr8PFO3DQIAYOGnTEPvucdBLjvyuZCDlUnyHXXnd9mRJUh7tPZb3foSLX3Xv0oPfxxzNx0uQjngPQtGlTRl58CePee4/RjzxGfHw8juOwM7vsK98dzkl9+x4y/oYNG5b5vXQ4dS3einj19Td49fU3qqStH3/4gR07dnDfAw8edqRV/fr1eeGlf/PCS/8usa+896G67usH495n79693P7bOyt0vsjRQDWtRERERESkVgvVsyrPlK2QB0c/zN69e3nphecrFcMtN95ArNfh6isur1Q7q1etItbrEOt1WHdQzbGqVFXx1kaHu4fTp00lIyODa6+/oVr6rqn3gc/n4/G/Pcbwc89TPSs5pmmklYiIiIiI1GqLFy4iPj6etu3alfvc1q1b8+obb7Jj+/YK9d2jR0/uGXVf+PsuXbtWqJ2QBikpxdpLTk6uVHsHq+p4a6PD3cNbbv3VYWuyVVRNvw/Wr1/P5VdcyRVXXV2pfkTqOmMPXkqjjLKzs0lKSmLZxh0kJCZWdVwiIiIiUoN8+Xns27SOlq1aExMbG+lwRMJc1yU1OZFu3bozefqMSIdTI0Y/+ACPjH6I5at+oVWrVpEOR0SE/Lw81mauIb5xC7wxpT8n5GRn07VJQ/bs2UNiFeWJNNJKRERERERqraqs6VRXDBg4CKj6UVgiInWNklYiIiIiIiK1SFmL6IuIHO1UiF1ERERERERERGodJa1ERERERERERKTWUdJKRERERERERERqHSWtRERERERERESk1lHSSkREREREREREah0lrUREREREREREpNZR0kpERERERERERGodJa1ERERERERERKTWUdJKRERERERERERqHSWtRERERERERESk1lHSSkREREREREREah0lrUREREREREREpNZR0kpEREREpIZlZmYS63W46YbrIx2KSI1xXZcTe/dkxPBzKnT+2DFvEut1wq+rr7i8wrGsXrWqWFsd2rYucczoBx8g1uuQmZlZ4X6qMmY4ctyrV60iPiaKl198oVL9iNQWSlqJiIiIiASFkkmxXocLzju31GMmT5pErNfhN7++tYajE6laoffy6AcfqJH+xo55k6VLlnDvffdXqp1zzxvBPaPu44KRIyvcRoOUFO4ZdR/3jLqPpKSkSsVTFlURMxw57rbt2nHZFVfy8EMPkp2dXam+RGoDb6QDEBERERGpjb768n9MnTKFUwcMqPK2mzZtyuJlP5JYA38si9QGfr+fR0Y/xKkDBnJinz6VauvcESO45trrKtVGSkoKo+5/AIC3xo6pVFtlURUxQ9nivuvu3/POW2N5/tln+Ms991a6T5FI0kgrEREREZGDtGzVCsdxuPcvf66W9qOioujYqRONGzeulvZFapuvv/ySrHXruOKqqyIdylGvS9eudO/Rg9dfexXXdSMdjkilKGklIiIiInKQDh06csVVVzN79iw+/eTjMp/31tgxDOjfj4ZJCTRMSmBA/36ljoY4VE2rTz7+D0MGD6J54wyS4uNo26oF5w4byueffQrApO+/J9br8Nvbbyu1/59+/JFYr8NFF5x/xFiLTg2bOWMGZ55+GqnJiTRrlM4dv/k1+/fvB+Dbr79m0KmnkJJYnxZNGnHPn/+E3+8vtc2pU6Zw4YjzaJqRRmK9WLp06sD9o+4lNze32HEFBQW88NyzDB96Nm1btSCxXizNG2dw6UUjWbRwYaltH+newIH6QWPHvHnY6y1t26yZMxk+9GwyGjYg1lv8z6SyXlck72nRvhcuWMDwoWeTmpxIekoyl4y8sERdptEPPsBZQ04D4JHRDxWrk3SkGk7/++ILYr0OT/7jCV58/jn69TmBlMT6pCYnculFI9mwYUOJc94aOwZjDBdcWHJ6XK/uXYv1f/DrH4///bDxhIx7/z1ivQ6vv/Yqk77/nhHDz6FRagpN0lO5+orL2bZtW5naKYuBJ/cn1uswb+7cYtt37dpFr+5dSYqPY8rkyRGLe+RFF5O1bh3fTZxY7nNFahMlrURERERESnHfAw8SExPDfffec8iEQlF/uOt33HzD9WzYsJ7rbriB62+8kQ0bN3DzDdfzx7vvOuL5/37pRS6/5GJWr1rJeeefzx13/o7TTh/C+vVZfP7ZZwAMGjyY9h068P6774YTIEW98dqrANxw401lvs65c+Yw9MwhJCUlcdPNt9C8RQv+/dJL/Or/buE/H33IpRePpHnz5tx08y0kJSfzz388wRN//1uJdl55+SXOPH0ws2bOYOg5w7ntN7fTpElT/v7Yoww760wKCgrCx+7cuZPf3/U78vPzOXvoUO747Z0MGDiIr7/6kkGnnlwiEVCWe1MZs2bO5IzTBgFw4003c/Ell1bouiJ5T0MWzJ/P6YMG4PV6uenmW+h9/Al8/tmnDDvrDPLy8sLHDRg4iKuuuRaAUwcMDNdJumfUfSQnJx/2fi1evAiAN994nb/++U907HQcN9/yf7Rs1YrPPv2EKy65uNjx1lqmTJ5Ex06dSm37kksvK9b/PaPu4/d//BOxsbEYYzj5lFMPG0/IkkWBuCaOH89FF4wgMSmJG268ieYtWvDhB+P43R23l6mdshj96GMAPPTAgfpceXl5jDx/BD8vX86bb73NgIEDIxb3SX37ATDp++/Kfa5IbaKaViIiIiJyWNbCQYM6aqV69cCYqmuvRYsW3PqrX/P0U//ijddf46abbznksdOmTuXZZ56m03HHMXnajHCB5FH3P8iAk/vxzNNPMeKCCzn5lFMO2cYbr79GdHQ0cxYsIi0trdi+HTt2hL++4cab+Muf/sh/PvqQq66+Jry9oKCAd995m6ZNm3LW0KFlvs5vv/maDz/+hHPPGwFAYWEh/U86kXHvvcuEb79h/HeTOOHEEwPX88CDdOnYnmefforf//FPeL2BPyd++vFHfvfbO+jRsydffjOelJSUcPtP/P1vjLrnr7zw3LPcedfdADRo0ICVa9bStGnTYrH8+MMPDDi5H/fdew9ffvNtue9NRU2cMJ6XXnmV666/odj28l5XSCTuachXX/6Pt959r1ji7YbrruXdt9/i888+5ZJLLwNg4KBBALw9dgwDBg4M10kqi8XBJMu+ffuYu2AR7dq3BwLvwZP79mH27FnMnDGDfv37A7D8p5/YuXMnZ55d+vvy4LpLeXl5XHzhBRQUFPDSK6+G2zliXIsXA7Bs2VLmLVpCq1atwu117tCOiRPGl/kaj2TAwIGcdfZQvvn6K2bOmMFJffty3dVXMWP6NJ557vlSR5TVZNzHn3ACEEjIitRlGmklIiIiIoeVmwsNk0ytf1VHYu1Pf72HpKQkHh39UInpWEW9NfZNAO697/5iK3olJSVxz6j7ih1zOFFRUURFRZXY3rBhw/DXV197HTExMbzx2mvFjvni88/Yvn07V197HR6P54h9hQwYOCicXAnFcMGFI7HWMmz48HByBSAhIYGh55zDjh07WL9+fXj7q6+8jM/n45//erpYcgXg7j/8kbS0ND4Y9354W0xMTImEFUDnLl0YOGgw06ZOobCwsNi+stybiurZq1eJhBWU/7pCInFPQ045dUCxhBXAtdcFpqHOP2gEW0UtWhSYwvnm2LfDCSuA6OhoLrv8CgB+/nl5eHvoujLS04/Ydm5uLhecdy7fTZzAK6+/EY69LJYuWYwxhnfeGxdO/ADExsbSokVL8vPzy9xWWYx+5FGMMTz0wP3cdecdfPrJx/z13lHccuuvytVOdcSdkJBAbGwsGzasP/LBIrWYRlqJiIiIiBxCSkoKd//hj9x37z08+/RT/Okvfy31uNDIkwEDB5XYF9q2JDia4lBGXnQx9/71LxzfoxsXX3IpAwYOov8pp5SYTpWamsqICy7kg/ffY+WKFbTv0AGAN19/HWMM191wY7musWfPniW2NQoWiO/Ro5R9jQL7Nm7YEP4De86s2UBghNF3EyeUOCcqKoqfly8vtm3xokX88x9PMGP6NLZs3lwiSbV9+/Zwofqy3puKKppEKqoi1wWRu6cAvXr1KrGtWbNmAOzes7vEvvLavXs3azMz6dPnpFJX1kwJJhGL/jx37gyMhktu0OCwbe/bt48LzjuX6dOm8vqYsVx62eVljmvz5s1s2bKFfv1Ppmu3biX2//LLalq3aVPm9sqie48eXHr5Fbz/7jt8/91Ebrz5Zu574MFytVGdcaekpLBj+/YKnStSWyhpJSIiIiKHVa8e7NhjIx3GEdWrVz3t3v7bO3nphed58h9PcNMt/1fqMdnZ2TiOU2LqGkBGRgaO47Bnz57D9nP3H/5ISsOGvPrvl3n6qX/x1L+exOv1cvbQYTzx5L9o3bp1+Ngbb7qZD95/jzdee5VH//4469atY+KE8Zx2+pBiIzXKIiExscS20BS1w+0rlpTYtROAvz/2aJn6nDljBmefcToAQ844k3Yj2xFfvz7GGL74/DOWLF5cbHRJee5NRaSnZ5S6vbzXFRKJexqSWGSkX4gn2L7fX/mV5EKF8oeceWap+7PWrQOgebPm4W1xcXEApdZhC8nJyWHE8HOYM3sWb737HheOvKhccS0OxnXa6aeX2Ldx40a2bt3K6WeUHnNlpKYGknRJSUn86+lny31+dca9f/9+6lXX/zGK1BAlrURERETksIyB+PhIRxE5cXFx3HPf/dx26//x+GOPMmz4uSWOSUxMxHVdtm3bRvpBU6C2bt2K67oklpKsKMoYww033sQNN97Ejh07mD5tKh+8/z4fffgBq1atZP6iJeFpfwMHDaJDx4688/ZbPPjwI4x543Vc1+WGm8pegL0qha5t2649JCQkHPH4vz/2KPn5+Xw3eSr9Tz652L45s2cDxUellfXeOE6g+onP5yvRZ3b2oZOG5hDF0Mp7XVUpkn0fzpJgEfbmLVqUun/8N98QHR3NyaceKJ6emhpI5u4KJuIOlp2dzXnDhjJ//jzeHfcB5404v9xxhYrD9+rdu8S+RQsWAKWPgKuM5555mueeeYaMjAy2bNnCu++8Xeo008Oprrhd12XPnj107tKl3OeK1CaqaSUiIiIicgTXXX8DHTt14qUXXyAra12J/T2Cf1ROmTypxL6pUwLL3nfv0aPM/TVs2JDzRpzP2++9z6DBp7H8p59YvWpVsWNuuPEmtmzZwheff8bYMW+SmpparI5STTqxTx8AZs+aVabjf/llNSkpKSUSVrm5uSxauOCw5x7u3jRIDkw/27hhQ4nzQiOEyqO811WVaqLvUBK0LKtjhiwKToXNLmXk4JTJk5k7dw6XX3llsURb5y5dcByHVStXlThn9+7dDDvzDBYuXMC4D/9ToYQVHJh+26NnyemRC4Pvqe6lTM2sqA/Gvc8f7r6L004fwsy580lISODhhx4stkJjWVRX3KtWrsR1Xbp0LTnlUKQuUdJKREREROQIPB4PDz38CPn5+Tz68OgS+6+6+loAHhn9ENnZ2eHt2dnZPDL6oWLHHMr4b74pMUKosLAwPDolNjjFKiRUkP33v7uTrHXruOrqa4iOji7/xVWB/7v113i9Xu668w6ysrJK7N+9e3expFGLFi3ZtWsXP/7wQ3ib3+/nz3/8Pdu2bStxflnvTc/evTHG8OEH44olD1atXMnzzz5T7ddVlWqi71CB9w2lJPkOZXGwCPsH494v9jPJzMzkphuuIzU1lfseeKjYOcnJyXTr3p0F8+dh7YGpxjt37mTomUNYtmwpH3z0McOGD6/wtSxevIjU1FSaN29eYl/oPvWoopFWEydM4Kbrr6NHz56M++g/NGnShNtuv4P1WVm89MLz5WqruuKeMydQE620umMidYmmB4qIiIiIlMGI8y+gb99+zJpVcgn5UwcM4Ne/+Q0vPPccvXt044ILLsRi+fSTT1iflcVtt99+xD8er7riMurVq0f/k0+hRYsWFPoKmThhAj/9+CMXX3IpLQ6ajtWwYUPOv3Ak4957F4Drb4zM1ECALl278vRzz3PHbb+me+dOnD10GG3atCE7J5s1v6xh6pTJXH3ttTz3wksA/Pq23zBh/LecNvBURl58MbGxsUyZPJmNGzYwYOCgEiPWynpvmjZtykWXXMqH496nX58TOPPMs9i6bRuff/oJZ551Np98/J9qva6qVBN9d+zUiSZNmvDhuPepVy+Opk2bYYzhllt/VWwVzJC8vDx+Xr6cvv36s3LFz/TrcwKnnz6E7Tt28NknH+O6Lh9/9kWpK0Oee94IHn7oQebNnRseRXbNlVewcMECBg4azJw5s8OJlpDGTZpw0823HPE6cnNzWb1qFYNPK1kXCgIjllq0bFliFcaKWLhgAZddPJKmzZrx2X+/DI8o+93dv+flF1/gib//jRtuuvmI04GrO+6JEybg8XgYdk7FE4EitYGSViIiIiIiZfTwY39jyOCBpe578qln6NGzF6+89BKvvfoKAJ07d2HU/Q9w7XXXH7Ht0Y88yrfffMPcuXP433+/ID4+nrZt2/Hciy8dsk7OVVdfw7j33qX/yafQsVOnil9YFbjxppvp0aMnTz/1L6ZPncJ/v/icpKQkmrdowe2/vZOrrzkw0mzY8OG898GHPP63x3jvnXeoV68egwafxriPPi51JFt57s3Lr7xKWloq//nwQ1568QU6dOzI8y+9TOPGTcqdtCrvdVW16u7b4/Hw/of/4Z6//Jl3336bnJwcAC6+9LJSk1bLli7F5/MxYOBAnnzqaf5w9128/NKLxMXFcfbQYdx73/2HfB9ef+NNPPbIw7z37tuc2KcPrusyY/o0ACZP+p7Jk74vcc7Iiy4uU9Jq6ZIluK5b6sqJO3bsYH1WVpVMnV29ejXnn3sOsbGx/PfLr8nIOFDAPykpiTvvupv7R93Lk/94ggceKvk+rqm4c3Nz+eKzTzln+Lk0adKk3OeL1CbGFh2fWQ7Z2dkkJSWxbOOOUlfAEBEREZG6w5efx75N62jZqjUxsbGRDkfK6J9PPM49f/kzr77xJlddfU2kw5Gj3GuvvsJtt/4fb7/3PhddfEm5z7/mqiuZOP5bVvySSXwFVncYO+ZNbrnxBv792utcc+115T7/UDq0Daw+uWL1mmLbRz/4AI+Mfojlq34p96qcIdUVMxw67jffeJ1bb76J8d9N0vRAqTL5eXmszVxDfOMWeGNKf07Iyc6ma5OG7Nmzp0yjDctCNa1EREREROqgvLw8XnrxBVJSUhh50cWRDkeOAaF6Vj0qWND8wdEPs3fv3nLXfTrYLTfeQKzX4eorLq9wG6tXrSLW6xDrdVi3dm2l4imLqogZjhy3z+fj8b89xvBzz1PCSo4Kmh4oIiIiIlKHTJ82jalTJjP+22/JWreOhx99jLiDirSLVIfFCxcFpma2a1eh81u3bs2rb7zJju3bK3R+jx49uWfUfeHvu3TtWqF2ABqkpBRrKzk5ucJtHU5VxgxHjnv9+vVcfsWVXHHV1ZXqR6S20PRAEREREdH0wDokNGUpNTWVK668ikf//jherz6Llurlui6pyYl069adydNnRDqcGlEV0wNFjhaRmh6o324iIiIiInXIqPsfYNT9D0Q6DDnGOI7Dzuy9kQ6jRg0YOAiovlFYInJkSlqJiIiIiIiIHGTgoEEMHDQo0mGIHNNUiF1ERERERERERGodJa1ERERERERERKTWUdJKRERERERERERqHSWtRERERERERESk1lHSSkREREREREREah0lrUREREREREREpNZR0kpERERERERERGodJa1ERERERERERKTWUdJKRERERERERERqHSWtRERERERERESk1lHSSkREREREREREah0lrUREREREREREpNZR0kpERERERGpUZmYmsV6Hm264PtKhVFpp11Ld13e03D/XdTmxd09GDD+nQuePHfMmsV4n/Lr6issrFc/qVauKtdehbesSx4x+8AFivQ6ZmZkRj7e2Kcv9qw6ReB9UtZq+htWrVhEfE8XLL75QqX5qgpJWIiIiIiKlWDB/Pv9384106dSBlMT6JNevx3Ed2nH9tdcwYfz4SIdXLSZPmkSs12H0gw9EOpRj2rHycxg75k2WLlnCvffdX6l2zj1vBPeMuo8LRo6sVDsNUlK4Z9R93DPqPpKSkirV1uFUVbw14d133ua2X/0f/U86kcR6scR6HcaOebPUY2vq/h1KXXsflKamrqFtu3ZcdsWVPPzQg2RnZ1eqr+rmjXQAIiIiIiK1ieu6/PkPv+eZp5/C6/UyaPBpDB9+LlFRUaxZs4avv/wf773zNvc98CB/vXdUpMOVWqhp06YsXvYjidX0B291t18T/H4/j4x+iFMHDOTEPn0q1da5I0ZwzbXXVTqmlJQURt3/AABvjR1T6fYOparirQkP3DeKdWvXkpqaSqPGjVm3du0hj62p+3code19UJqavIa77v4977w1lueffYa/3HNvpfusLkpaiYiIiIgUcf+oe3nm6afo0bMn7477kLZt2xbbv3//fl58/jl27tgRoQiltouKiqJjp051tv2a8PWXX5K1bp0Sv7Xciy+/Qrv27WnZsiVP/P1vjLrnr5EOSapIl65d6d6jB6+/9ip/+stfcZzaORGvdkYlIiIiIhIBq1et4sl/PEHDhg35/H9flUhYAcTFxXHX7//AqAceLLb9rbFjGNC/Hw2TEmiYlMCA/v1K/YS76NSvWTNnMnzo2WQ0bECs1ynT/pCpU6Zw4YjzaJqRRmK9WLp06sD9o+4lNze31GubNnUql4y8kBZNGpFYL5a2rVpw6UUjmT5tGhCo1XPWkNMAeGT0Q8XqoRSt31Oefv1+P/94/O907tiepPg4Ondsz+N/ewzXdQ/zUyip6D2ZOmUKQwYPomFSAo3TGnLNVVeyfv36ct3j6r6WI9WcOtzPoiw/h8O1X5H34cIFCxg+9GxSkxNJT0nmkpEXlrtm0/+++IJYr8OT/3iCF59/jn59TiAlsT6pyYlcetFINmzYUCJOYwwXXFj6NKhe3bsWu/aDX/94/O9limvc++8R63V4/bVXmfT994wYfg6NUlNokp7K1VdczrZt28p1nYdS1+Itq9OHDKFly5Y12ifAn35/N7Feh4ULFpTY9+or/ybW6/Deu++Uub1I3deBJ/cn1uswb+7cYtt37dpFr+5dSYqPY8rkyWVqqzquYeRFF5O1bh3fTZxY7nNrikZaiYiIiMhhWWvJLSw9EVKb1IuqhzGmUm2MHfMmfr+fG2++hYyMjMMeGxMTE/76D3f9jmefeZqmTZty3Q03YIzhk48/5uYbrmfp4sU8/s8nS5w/a+ZMHv/bYwwcNJgbb7qZrKysMu9/5eWXuOM3t9GgQQOGDT+XtNRU5s2bx98fe5TJkybx7cTviI6ODh//0gvP87vf3kFcXBznnX8BzZs3Z+PGjcyYPo1PPv6Ik085hQEDB7F27VreHjuGUwcMZMDAgeHzk5OTK9Tvr2+9hTFvvEGr1q259Ve/Ji8/j2ee+hezZs4s2w/kIHNmz+aJv/+NocPO4de/uZ1FCxfywfvvMWP6NKbPmlPiZ1aV97CqruVIP4tzzzv/iD+HQ6nI+3DB/Pn865//YMDAQdx08y0sWrSIzz/7lGXLlrJg8VJiY2PLdF2LFy8C4M03Xidr3TpGXHAhAwYMZMKE8Xz26Sds3rSJydNnAIH/T5kyeRIdO3U65DVdcull+Hy+Ytvy8/N57pmnyc/P5+RTTmXlyhVHjGvJokBcE8eP549f38XQc4Zzw403MXHiBD78YBzWWt5+7/0yXePh1LV4a7tFixYRFRVF5y5dSu5bGEhk9ejRs8ztReq+jn70Mc48fTAPPXA/n//vSwDy8vIYef4Ifl6+nHfeH8eAgQPJzFwTkWs4qW8/ACZ9/x1DzjijfBdXQ5S0EhEREZHDyi3MpeHjCZEO44h2/DGH+Oj4SrUxc0bgj+pBg08r8znTpk7l2WeeptNxxzF52oxw0dtR9z/IgJP78czTTzHiggs5+ZRTip03ccJ4XnrlVa67/oZS2z3U/p9+/JHf/fYOevTsyZffjCclJSW8LzR954XnnuXOu+4GYNnSpdz9uztp3Lgx302ZRqtWrcLHW2vZtGkTAAMHDQLg7bFjGDBwYLgeSkX7nTxpEmPeeIPuPXrw/ZRpxMcHfjZ//PNfOen4XmW5tSWM//YbXvz3K1x/w43hbY+MfojRDz7Afff+lZdfea3Y8VV1D6vqWsrys2jSpAlw6J/DoVT0ffjVl//jrXff4+JLLg1vu+G6a3n37bf4/LNPueTSy8rU/+LgH9T79u1j7oJFtGvfHoCCggJO7tuH2bNnMXPGDPr178/yn35i586dnHn20EO2d3CNnby8PC6+8AIKCgp46ZVX6de/f5mSQIsXLwZg2bKlzFu0JHzP8/Ly6NyhHRMnVM2iCnUt3tpuyeJFHNe5c7EPB0IWLlhAbGxsuabIRuq+Dhg4kLPOHso3X3/FzBkzOKlvX667+ipmTJ/GM889f8iRhqWpjms4/oQTACr8QUJN0PRAEREREZGgLVs2A9CsWbMyn/PW2DcBuPe++4ut0pSUlMQ9o+4rdkxRPXv1OmTC6nD7X33lZXw+H//819PFki0Ad//hj6SlpfHBuAOftr/y75fw+/3c/9DoYkkSAGNMOElyJOXt9523xwLw13tHhZM8ECgiftvtd5Spz4N16NixxD256/d/CPT9/vsUFBQU21dV97CqrqWqfhalqej78JRTBxRLWAFce11g2uH8g6Y0Hc6iRQsBeHPs2+GEFUB0dDSXXX4FAD//vBwgPJ0zIz29TG3n5uZywXnn8t3ECbzy+hvh+Mpi6ZLFGGN4571xxe55bGwsLVq0JD8/v8xtlVVdi7e2WbNmDbt27aJnr5IJ4cLCQpYtXUqXrl3xeDxlbjOS93X0I49ijOGhB+7nrjvv4NNPPuav947illt/Va52quMaEhISiI2NZcOG9Uc+OEI00kpEREREDqteVD12/DEn0mEcUb2oehHpNzTCZMDAQSX2hbYtCX5CXtQJJ5542HYPtX/OrNkAfPvN13w3cUKJ/VFRUfy8fHn4+1AtlSFnnHnY/o6kvP0uXbIEgJNPObXEsaVtK4t+/fuXmAIaFxdHr97H8+03X7NyxQq6dO0a3ldV97CqrqWqfhalqej7sFcpiYFQ0nb3nt1l6nv37t2szcykT5+TOHXAgBL7Uxo2BAIJB4CdOwOLGCQ3aHDEtvft28cF553L9GlTeX3MWC697PIyxQSwefNmtmzZQr/+J9O1W7cS+3/5ZTWt27Qpc3tlEel4m2aksaMci0R8M+G78CjL2iI0/a9nz5LvzR9/+IH8/Hy69+hR5vYi8T4oqnuPHlx6+RW8/+47fP/dRG68+WbuO6gm4pFU5zWkpKSwY/v2Cp1bE5S0EhEREZHDMsZUetpdXZGR0Yifly9nw4YNdOjYsUznZGdn4zgOaWlppbSXgeM47Nmzp8S+9PTD18w61P6du3YC8PfHHi1TfLt378YYQ+PGjct0/KGUt989e/bgOA6pqakl9h2pXtihpKWVPjInPdjewfe5qu5hVV1LVf0sSlPR92FikVFZIR5v4M9Ev79sBfMXLQyMshpyZunJuKx16wBo3qw5EEg0QmAlzsPJyclhxPBzmDN7Fm+9+x4XjryoTPGELA7Gddrpp5fYt3HjRrZu3crpVZhArA3xXnLZZeTk7C1zn40aNSpXjDUh9H7q2at3iX0LFswHylfPqqbfB6VJTQ0kbpOSkvjX08+W+/zqvIb9+/dTr15kPvQpCyWtRERERESC+vXvz5TJk/j+u4kMPq1sda0SExNxXZdt27aRftB0p61bt+K6LomJiSXOO1LR+EPtD7W1bdceEhKOXGssOTk5XC+padOmRzz+UMrbb1JSEq7rsn379hKJlC1btlQohm3btpa6fWuwvaSDEjBVdQ+r6lqq6mdRmoq+D6vCkmAR9uYtWpS6f/w33xAdHc3JpwZGpaWmBu7hrmDysDTZ2dmcN2wo8+fP491xH3DeiPPLHVeoOHyv3iWTH4sWhEbz9Cx3u6WpLfFWJCFS2yxZHJgGV9poqgnffgtA9/IkrWrwfVCa5555mueeeYaMjAy2bNnCu++8fdip4aWprmtwXZc9e/aUWvC+tlBNKxERERGRoGuuvQ6Px8Prr75yxOXDQ/VDegT/UJgyeVKJY6ZOCSxlXp6pLEdyYp8+AMyeNatMx4emyE0Y/+0Rjw3ViPH7/ZXut1v37gBMnza1xL7StpXFzBkzsNYW27Z//34WLphPXFwc7Tt0KFM7kbqWsv4sDvdzOJSafh8WtSg4NTG7lJFcUyZPZu7cOVx+5ZXhBGHnLl1wHIdVK1eV2t7u3bsZduYZLFy4gHEf/qdCCSA4MB2yRynTzBYGp6CVJ/lxKHUt3tpu1aqVZGRkUL9+/WLb161bx1df/g9jTPh/k2URyfv6wbj3+cPdd3Ha6UOYOXc+CQkJPPzQg+Tl5ZWrneq6hlUrV+K6Ll26lpxyWFsoaSUiIiIiEtS2XTvu+v0f2L59OyOGD2PNmpLLkOfl5fH0v55k9IMPAHDV1dcCgVXssrOzw8dlZ2fzyOiHih1TFf7v1l/j9Xq56847yMrKKrF/9+7d4ek1ADffcisej4cH7xvF2rVrix1bdPVAIFyUfMOGDZXu98qrrgHg0YdHs2/fvvD2DRs28Pyzz5T1cotZ8fPPvPnG68W2PfmPJ9i2bRuXXHYZ0dHRZWonUtdS1p/F4X4Oh1LT78OiFgeLsH8w7n18Pl94e2ZmJjfdcB2pqanc98BD4e3Jycl0696dBfPnlUhC7ty5k6FnDmHZsqV88NHHDBs+vOJxLV5EamoqzZs3L7Ev9PPtUckRNnUt3kg747TBxHodJk+adMhjYmJi2LFjR7EPDjZu3MgVl1xMbm4ubdq2LdMIyZDquK9luY6JEyZw0/XX0aNnT8Z99B+aNGnCbbffwfqsLF564fly9Vdd7405cwL1/UqrRVdbaHqgiIiIiEgRD45+mPy8PJ55+im6d+7EoMGn0aVLF7xRUazNzOS7iRPYsWMHDzw0Ggg87P/6N7/hheeeo3ePblxwwYVYLJ9+8gnrs7K47fbbq/QPgi5du/L0c89zx22/pnvnTpw9dBht2rQhOyebNb+sYeqUyVx97bU898JLAHTt1o1/PPkv7rrzt/Tu3pVzR5xPixYt2LJlM9OmTmXosGH848mnAOjYqRNNmjThw3HvU69eHE2bNsMYwy23/qrc/Q4cNIhrrruOsW++yfE9uzNixPnkF+Tz0Qcf0Oekvnz5v/+W+9qHnHEmv/3NbXz95Zd06NiRRQsXMv7bb2jWvDkPPVy2+lQVuYdVdS1l/Vkc7udw8BTIkJp+H4bk5eXx8/Ll9O3Xn5UrfqZfnxM4/fQhbN+xg88++RjXdfn4sy9KTIc897wRPPzQg8ybOzc88g3gmiuvYOGCBQwcNJg5c2aH/6gOadykCTfdfMsR48rNzWX1qlUMPq1kDSAIjE5p0bJlidUjy6uuxVter7/2KjOmTwfgh2VLAXjjtdeYMjkweu+8ESPKNbLMdQN10rzeQ6ciTj99CMuWLuXU/n0ZOmwY27ZuY/y333De+Rcwb97cctWzqq77eqTrWLhgAZddPJKmzZrx2X+/DCfZfnf373n5xRd44u9/44abbi7TlN3qfG9MnDABj8fDsHMqnmytbkpaiYiIiIgU4TgOj//zSS69/Ar+/fKLTJs6lWlTp+C6Lo0aN+b0M87kmmuvY8gZZ4TPefKpZ+jRsxevvPQSr736CgCdO3dh1P0PlGu5+7K68aab6dGjJ08/9S+mT53Cf7/4nKSkJJq3aMHtv72Tq68pPqLmV7f9hs5duvL0v57k26+/Yu/evaSlp9Onz0mMvOiS8HEej4f3P/wP9/zlz7z79tvk5ARWjbz40stISkoqd78vvvwK7dt34PXXXuXFF56nabNm3HHn7xh58SUVSlqd1Lcvf/rLX3ngvlGM/zZQJ+niSy/j0b/9vdzF3SN1LWX5WRzp53AoNf0+BFi2dCk+n48BAwfy5FNP84e77+Lll14kLi6Os4cO49777qdjp04lzrv+xpt47JGHee/dt8NJK9d1mTF9GgCTJ33P5Enflzhv5EUXlykJtHTJElzXLXV1xB07drA+K4tzzxtR3sstpq7FWxEzpk/n7bFjim2bOWM6M2cEElktW7Ysc9LKWsvyn36kZatWnNS37yGPG/XAg+TszeGLzz7jrTFj6NX7eF5/cywxsbG8NebNck1zrY77eqTrWL16Neefew6xsbH898uvi/1/U1JSEnfedTf3j7qXJ//xRPjDj5q+Bggkw7747FPOGX4uTZo0Kff5NcXYg8djllF2djZJSUks27iDhGoq6CciIiIiNcOXn8e+Teto2ao1MbGxkQ5HpJjJkyZx1pDTuGfUfYy6/4FIhyNFvPbqK9x26//x9nvvc9HFlxz5hCKuuepKJo7/lhW/ZBIfX/4VSseOeZNbbryBf7/2Otdce125zz+cDm1bA7BidfEpwqMffIBHRj/E8lW/0KpVq3K1WZ3x1jal3b8fli3j+J7defrZ5/i/X/26yvqq6fdBdVxHJN7Lb77xOrfefBPjv5tUplGY+Xl5rM1cQ3zjFnhjSn9OyMnOpmuThuzZs6fKFn5QTSsRERERERGpkFA9q/JM2Qp5cPTD7N27t9z1fQ52y403EOt1uPqKyyvVzupVq4j1OsR6HdYdVHOsKlVVvLXNke7f9GlTycjI4NpyrpxXVjX1PqjO66ipa/D5fDz+t8cYfu55tbqeFWh6oIiIiIiIiFTQ4oWLiI+Pp227duU+t3Xr1rz6xpvs2L69Qn336NGTe0bdF/6+S9euFWonpEFKSrH2kpOTK9Xewao63trmSPfvllt/xS23/qrK+63p90F1XEdNX8P69eu5/IorueKqqyvVT03Q9EARERER0fRAqdU0PbB2cl2X1OREunXrzuTpMyIdTo2ozPRAkbosUtMDNdJKRERERERqtYGDBpHncyMdhhzEcRx2Zu+NdBg1asDAQUDVj8ISkdIpaSUiIiJSTgX+Av425a9MXP0/LAcGrR+X1p1HhjxHanx6BKMTEZHqMnDQIAYOGhTpMESOGUpaiYiIiJTDnrzd3Pr5JcxYV3Jp87W7V/PDloW8OfIL2jUsucS7iIiIiJSdklYiIiIiZbRu9xqu/3gEq3b+RFxUPHf0vYeWSYGlpHML9/HPGQ+QlZ3J+e+ewisj/kO/FgMjHLGIiIhI3aWklYiIiEgZLNk8j+s/HsH23K2k1svg0TOeo0ejEzHGhI/p1qg3d311Az9sXcRVHw3lH2e/wgWdr4xg1CIiIiJ1lxPpAERERERqu/2Fudz62aVsz91Ku5ROvHje+/Rs3KdYwgqgQVxDXjxvHINbn43PLeTur29i5fafIhS1iIiISN2mpJWIiIjIEbw45wk25KwjI74xz57zNi2T2xzy2FhvLI+d+SL9mg/C7/q477vfYq095PG1RjABV7SwvIiIiAhw4FnmoA/sqpuSViIiIiKHsW73Gl6c8wQAN594Nw3j0454jmMcfn/Kg0Q5UcxY9z1frfykusOsNMfjBWPYvy830qGIiIhILbM/NxeMCTwv1CDVtBIRERE5jIcn/YECfz69GvdhaPvzy3xe86RWXNnjFt5c+Dyjv/89p7UeSmxUXPUFWkmOx4M3PpFt27dSUJBP/YQEPB5viSmQIiIicmyw1uL3+9ibk8Oe7D1445NwPJ4ajUFJKxEREZFDmLzmW75Z9Rke4+E3ff9KlCeqXOdf3/s3fLniP2zMyeK52X/j96c8WE2RVo16DdMpiIllz+7t7NmzJ9LhiIiISG3g8RCbkkF0/cQa71pJKxEREZFSFPgLeOC73wFwXqfL6Jres9xtxEXV47f97uWeCb/h33P/ySVdr6NFcusqjrTqGGOISUgiun4i1vXj+v1QF+pxiYiISNUzBsfjwTieiI28VtJKREREpBRjFj7PL7tW0CC2ITef+LsKP6wNaTuc//zwFgs2zebhSX/k3+d/WMWRVj1jDMbjrfG6FSIiIiJFqRC7iIiIyEH8rp/X5z8LwLW9fk1qvSMXXz8UYwy/P+UhAL5d9Rnr9qypkhhFREREjnZKWomIiIgcZNKar9mYk0ViTBLndrqk0u21a9iJE5qejMXy9qJ/V0GEIiIiIkc/Ja1EREREDvL24kBi6Yy255EQUzVFR0d2vhKAD5eNodBfWCVtioiIiBzNlLQSERERKWL9nrV8/8tXAJzf+fIqa3dgqzNpGJfGzv3b+HLFx1XWroiIiMjRSkkrERERkSLeW/oaFkuvxifRvuFxVdau1xPFecddCsA7i1+usnZFREREjlZKWomIiIgEFfoLGbf0DQDO7XQxjqnaR6Xzj7scg2H2+qms3vlzlbYtIiIicrRR0kpEREQkaPzqL9i2bzMN4hpyWpuhVd5+44Rm9GsxCIC3Fr1U5e2LiIiIHE2UtBIREREJeidYgP3sdudTL6p+tfQxsvNVAHz84zvk+fKqpQ8RERGRo4GSViIiIiLAml0rmbZ2IgbDiOOqrgD7wfq3GExGfGP25O3ii+UfVFs/IiIiInWdklYiIiIiwIfLxgBwYrNTaNWgbbX143E84VUJ31/yWrX1IyIiIlLXKWklIiIixzxrLV+t+ASAM9oOr/IC7Acb2v5CABZsmsW2fVuqtS8RERGRukpJKxERETnmrdzxE7/sWkGUE8WpLYdUe39NEpvToWEXXOvyzcrPqr0/ERERkbpISSsRERE55n298lMAejfpS4O4hjXS5+A2ZwX7/qRG+hMRERGpa5S0EhERkWPeN6s+BeDkFqdhjKmRPge1HgrArKzJ5ORn10ifIiIiInWJklYiIiJyTFu/Zy3LtizEMQ6DWp9dY/22adCe5kmtKHQLGb/6vzXWr4iIiEhdoaSViIiIHNNCo6y6pvcmvX6jGuvXGBNOkn2jKYIiIiIiJShpJSIiIse0UCH0k1ueVu2rBh5scDBpNSVzAnmFeTXat4iIiEhtp6SViIiIHLO279vK3A3TARjU6swa779zeg9S62WQW7iXyZnf1nj/IiIiIrWZklYiIiJyzBq/+gtc69KhYWdaJLep8f4DdbQCybKvV35c4/2LiIiI1GZKWomIiMgxKzQ1sH+L0/A4nojEEKpr9f0vX+N3/RGJQURERKQ2UtJKREREjkk5+dlMXzcRgMFtzopYHL0bn0RCTBK78nYwM2tyxOIQERERqW2UtBIREZFj0uQ131DgL6B5UivaN+wcsTi8nihObTkEgK+1iqCIiIhImJJWIiIickyalPkNACc1G4DX8UY0lgGtAkmraWsnRDQOERERkdpESSsRERE55lhrmbY2MDWwT7NTIhwNnND0ZAyGNbtWsX7P2kiHIyIiIlIrKGklIiIix5xfdq1gU856oj3RHN+kb6TDITEmiePSugEwJXN8hKMRERERqR2UtBIREZFjztTMwDS8Lum9qB+dGOFoAvo0OxXQFEERERGRECWtRERE5JgTmhrYu0lfjDERjibgpGDSambWZKy1EY5GREREJPKUtBIREZFjSqG/kJlZk4DaUc8qpFuj3sR649i5fzvLtiyMdDgiIiIiEaeklYiIiBxTFm+ey96CHBJjkumS1iPS4YRFe2Lo1bgPoLpWIiIiIqCklYiIiBxjQlMDezXuQ7Q3JsLRFBeua7VuYoQjEREREYk8b6QDqBKl1H2wAIctUVHazkPVjyi9odpRAUNERETKY2qw0HnvWrBq4MFCda3mb5hJXmEesVGxEY5IREREJHKO3pFWxuJz/MGXi99xcY3FNYRfQDhPVZFypyqRKiIiUrfk5GezcONsAPo2GxDhaEpqm9KRhnFp5PvzmL1+SqTDEREREYmoozJpZQBjDV7Xg8d68FgHjxt4Oa7BWIOxBF4AVmOmREREjgWz10/Bb/00TWhBi+Q2kQ6nBGNMuDh8aESYiIiIyLHqqExaWQJJq2ifh+hCD9E+D1E+D16/g8c1eFyDUyRRZbCYUsZNhRNbh3mJiIhI3TE1M5AI6tXkJDyOJ8LRlO7EYNJq+rrvIhyJiIiISGQdFUkra0yJFyaQigqOu8Iag98JDaqygBv8N/C1sTY4AuvAK3RuYORW4OUEX0pYiYiI1D1Tg0XYT2jSP8KRHFqfpoGk1U9bl7Azd3uEoxERERGJnDqftArkjkyJl99AocfF53HxOS6FjovPsfgdiw1nnFzAxeDHCYzPKvEqOnFQkwhFRETqrk0561m9czmOccKjmWqj9PqNaN2gPRbLlMzxkQ5HREREJGLqfNIqxNoDr0B6yeL3FOIaH65x8XsshR7wGwcXD+Bgg/96bKDWVfHzDVjCEwetAReLNWVZmVBERERqmxnrvgegQ8PONKyXGuFoDi802mp6MGYRERGRY1GdT1qFxkTZAxmnAGtxrMVxLbiGQh/k+S37XZc8v0u+z5Lrh/0+Q6Hfi7XeYELKHvgXsNY9kMMq+gp1LiIiInXCnPXTAOjW6HgcU7sfgXo3OQmA+RtnRDgSERERkcjxRjqAyrLWYq3F4xiMMVhr8ft9eL0OuIYooti5t4CFa9ayYU8OWC9ef2Dan+sJTA1s37Qpx7VKJ8qA43Hw+/1A4GvXBeu6GMfBGIMbTIwZE8hYKW8lIiJSN8zdMB2AHhknRDiSI+vR+EQAVu/8mZ2520mp5SPDRERERKpDnUlahcZQFUsS2WCp9cBQK1zXBWuJ8ngCySXjxe8a9uYXMP+nX1ictQlMDF7XAVx8pgBjCjkNQ6vWaURbcH0+PI6DtS6u34fH48HiBJJhrguAx+PBdd1ALEZpKxERkdpu274trN75MwYTHsVUm6XEpdIyuS1rd69mZtZkzuk4MtIhiYiIiNS42j02vgQTTl4VnQpoAFwXj7F4jMVYP8b6sbiBKX6OwefxUhAVwz7jId94KTAOPq8HvwdcfDhYogyB0VbWT5Tj4MHg+vxYvx/HGBzHCXZtQ2sK1uzli4iISIWERlm1atCOlHppEY6mbHo17gPAnPVTIxyJiIiISGTUmZFWRYXW+Qt8YwGLYyyu3x8YBeX3gWMxrsVxAZ8fW1gIrp8o6yHK7+LFR17eHjzuPtytG9m3PoNCjw2OnAokx4zHQ0JSErGx9fD7XRxj8Hi8+IJfY+whIhQREZHaZG6wnlXX9F61vp5VSM/Gffj0p/eYt0F1rUREROTYVHeSVqHK5ybwjTUGYy07d2znf198zqqVKwIHGYP1+/F4AiOuPL5o9hRGsWa/D2/TNsTFJFPPDzlbNpK5ZjHk76Zg3kyWfPwBhdEGa5zg1EJwHA89evfmkksvp2FqKj7XBWM0vkpERKSOmR0crdS90fERjqTsejYK1LX6adtS9hbkUD86IcIRiYiIiNSsOpO0MoCxBp9xcYwF6+A6hrU/L+fDF58je182+d4oHLx4fH7wgM94MNZLtD8f63FoduoICls1Yp/XT87mn/BmzsPv+lkfE88mj4NjwbUx+DwGW5BDTME+8nZuok/fE0hObQgGfMaP9Vg81miKoIiISB2Qk5/NT9uWANC7cd8IR1N2jROakRHfmC37NjF3/XQGtzk70iGJiIiI1Kg6k7SC0Gy8wHRAi8VaQ0FBIXm5ecTFxXPSKacSEx1PlAvW+PEZB1++y9JZU9iXm4NbWAjBVJO1fhzrJ71RBiedfjb1k5LwuGCJweeB9b/8xPyJX+P6/fh8Pg5UsbKBQV82mKxSzkpERKRWm79xJq51aZzQjCaJzSMdTpkZY+jZuA/frPqM2eunKmklIiIix5w6lbQKZK1cwII1WAx+F1w8xCckc9WNv6JBSgYeF1xbAEDOnn08vOonstfuDdSrMgbXBRdDoYWWbTswdMSFxCUm4gH8bhSux7BiaVOWz5+Dn8DqgVgHsBgsjrU41oTzViIiIlJ7zSlSz8rjeCIcTfmEklbzgoXkRURERI4ldStphQu4B+qfWwAH1zhYTwyuN4Zc14PXeDAeB4+1uE4+Lh6Mx4NrAdfF6/GA4+B4Y/DjId918BovhbgYbzQ+41KAQyGGWI8n0D4GY4N5M2sDo7UidBdERESk7ObUwXpWIT2DKwgu2TyffF8+Md6YCEckIiIiUnPqxvI5Qda44IQzRwcqSlkH1wWfdbCeKHyOlwI8FFqDzzhY4+B3LcaA4wSmBlprKfT7cT1e/MaD9Ubjd7wUWHAdD9bxhIuyh2rAB4IIRaNhViIiIrVdni+PxZvnAtC78UkRjqb8WjdoR1JMA/L9eSwKXoeIiIjIsaJOJa1cAiOeAiv4BWtMWYvBxeCCdTEmUPHKeBxwPMEJfcERWvgx1o+xwe8dsBaM48HndzE4OI4TWISQwGzCgGCmKtBhcIvGWYmIiNR2SzbPo8BfQIO4hrRq0D7S4ZSbYxx6NA6sIjg7a3KEoxERERGpWXUqaWWD0/TcYFkrQ6DGlce6OIEqVTjWh4dCjFuIxcWE6lARTG5ZP04o/RVMeIHFMQYP4HHBsRbjhtp0D5yLi4uLPTBPMKL3Q0RERA7vQD2r3kR5oiIcTcX0Ciat5m6YEeFIRERERGpWHatpBdY6BGpbEUhc2VBSKpi8sj5McHSVtZ5A0soemEoYSnQZE0pEWbCBxJTjBkZe4YLHhgquu+GRWaGRVoGyVpoeKCIiUtuF6ll1y+gV4UgqrmejQF2rhZtm41oXx9SpzxxFREREKqxOPfUYG54USJEsFIERT4HElENwpFRwJFbJ1FL4JAi3Fjg+VC7LhNqztsiRIiIiUpf4XT/zN84EoFewoHld1DG1C7HeOHLy9/Dj1sWRDkdERESkxtSppJVTJLFkAWsCqSrXHJgAaHHAejDWKZZoCqShAisBBsdVhfcZG9jrGrAm1J4pkqkKpsOsAesEvi6W/BIREZHa5qdtS9hbkEN8VH06pnaNdDgV5vVE0T0jsPLhrKwpEY5GREREpObUmaSVseCE6k0Ft1nANQa/MfgdB7/x4OINvIwTzmwFJw/iBv+1xV6BBJQ1Bp8TaCucvAoVfseANRgcjDU4rsFoeqCIiEitFhpl1SmtGzHe2AhHUzndGwWSVgs3zYpwJCIiIiI1p07VtAqkiYoXQA/kjky4ZLqLE1xd0AHjBs8IrDhoTXAyoDEHtWIOJKdCo7eKbQ/2bsEEzw1Eo0LsIiIitdWCjYEEz3Fp3TGmbn/Y1C2jNwCLNs2NcCQiIiIiNafOjLSyBvxOaApfMG0UGn1FoGC6gx+DD/BjjT840MoGiq5bN3iMGyiwHppQGMw7BbYF99ng+KuDFwg0FmtcLMHC7CIiIlJrLdw0BziQ8KnLugQLya/PXsvWvZsjHI2IiIhIzagzSasqV9ogKXtgx6E+j9XYKhERkdpv+76trN29Gjg6klaJMUm0Sm4HwLwNMyIcjYiIiEjNOHaTViIiInLUWrhpNgAtk9uSUi81wtFUjW6NAsm3UK0uERERkaOdklYiIiJy1Claz8oxR8fjTrf0QNIqlJATEREROdodHU9xIiIiIkWEklad07tHOJKqExpp9cPWRRT6CyMcjYiIiEj1U9JKRKqVtRZrbYnvi247FhS95mP1HojUFJ/rY/HmeQB0zzg+wtFUndYN2hMfVZ88336WbV0Y6XBEREREqp2SViISMcda0iZ0vcYYjDnUcg8iUlnLty1lvy+X+OgE2qV0inQ4VcYxTngVwQUbVNdKREREjn5KWolItTLG4DimWMIGwHGcYypxE0pUHWuJOpFICE0N7JTalShPdISjqVrdgyshLlBdKxERETkGeCMdgIgc3ay1uK4llJ8ywYLIrusGvz+2EldFpwWGvj+W7oFITViw6UAR9qPtf1/dgkmrRZvmRjgSERERkeqnkVYiUq0CI62cYLLKFEtWHW1/TJbFsXrdIjVpwcbAKKRQgudoEpoeuD47k617N0c4GhEREZHqpaSViNQoJWwoNrpK90Okam3ft5W1u1cDR2fSKjEmiZbJbQGYt2FGhKMRERERqV5KWomI1DAlqkSqz6LNcwBokdSGlHqpEY6mehyoazUrwpGIiIiIVC8lrUREROSoESrCflxadxxzdD7mdMs4HoCFG1WMXURERI5uR+fTnIiIiByT5geTVl0yekQ4kurTrVFgpNUPWxdR6C+McDQiIiIi1UdJKxERETkq+FwfSzbPA6B7cDTS0ah1g/bER9Vnvy+XH7YuinQ4IiIiItVGSSsRERE5KqzY/gO5hfuIj6pPu5ROkQ6n2jjGoUt6T+DAdEgRERGRo5GSViIiInJUWLx5LgAdUrsQ5YmOcDTVq0tGT+DANYuIiIgcjZS0EhERkaPCok2BBE7H1K5H/SqdXdN7AbA4OB1SRERE5GikpJWIiIgcFUKjjjqndYtwJNWvc3qg0HzmrlXsydsd2WBEREREqomSViIiIlLn7SvYy8/bfwCga6Ojtwh7SMN6aTSq3xSLZcGm2ZEOR0RERKRaKGklIiIidd6yLQtxrUtavQwa128a6XBqRNeMwBTBRRuVtBIREZGjk5JWIiIiUuctCk4N7JjWFY/jiXA0NaNLcIqgirGLiIjI0UpJKxEREanzFoeLsB/99axCugSLsS/dsgBrbYSjEREREal6SlqJiIhInRcabdQlvXuEI6k5nVK74jEetuduZX322kiHIyIiIlLllLQSERGROm3bvi2sz16LwdAlvWekw6kxsVFxtE3pCMCCDbMiHI2IiIhI1VPSSkREROq0JZvnAdAiuQ1JsQ0iHE3N6hIsxr5ws4qxi4iIyNFHSSsRERGp0xZumgMEpss55th6tAkVY1+yeX6EIxERERGpesfWk52IiIgcdUL1rDqlHTtF2ENCxdh/3LoYn98X4WhEREREqpaSViIiIlJnWWtZFFw5sOsxVM8qpFVyW+Ki4tnvy+Wn7UsiHY6IiIhIlVLSSkREROqszN2ryM7fTZQnmg6pnSMdTo3zOB46pwVWTFywQXWtRERE5OiipJWIiIjUWaFRVu1TjiPWWy/C0URG12Ax9kWb50Q4EhEREZGqpaSViIiI1FmhelYdU7tgjIlwNJHROVSMfYuKsYuIiMjRRUkrERERqbMWBVcODCVujkVdg8XYf9n5Mzn52RGORkRERKTqKGklIiIidVKBv4Afti4CDiRuapK1FqzFAtYCRV7WBr4M7wxtKLrfVk0cafEZpMc3wrVuOIknIiIicjRQ0kpERETqpOXbllDgLyAxJokWyW0iEIEF68eHIc8F/BbXNVg/uNZQYB1cF2L8hUT7fRhrMNYB6wBVO5WxS3DlxIWbVIxdREREjh7eSAcgIiIiUhGhIuwdUrsS5Ymq8f4NsL+gkNUbd7CvwOLYfCwOjrG41sGNiqZFg3haNIjGWLDBmlsWgws4poqGWgFd0nvx/ZqvWbx5XpW1KSIiIhJpSlqJiIhInRQqwt4ptWtkAjAOOfsLmTJ7Aet37yffGFwMUfjxY/F6Yxl8fAfSUtvjsS5+Y3GCcwOtcYLzB6tGl2BNr6WbVYxdREREjh6aHigiIiJ10qJNgVFFndO7R6R/C/iNl3yiyLXR7DPx5Jp49hFHHrHkE43ricbFgHEwgLEuHlycqipoFXRcencc47Bl3yY2Za+v0rZFREREIkVJKxEREalzsvP3sHrncgC6pveOSAwW8FmDdaLw4+C4Fo8Fj3WJsuBxLU6hizf4tdcFjwuOC46FKpwdSL2oeFo3aA/A/I0zq65hERERkQhS0kpERETqnCWb52OxNKrflLT4jMgFYsA1BoMlxs0jxs0jyp+P1y0gyhbiwcXjWkxw9UAT/E9VF2KHosXYtYKgiIiIHB2UtBIREZE6p2g9K4/jiUgMhuCDlPVjjMUxPgyFGOOC8WNxscbid8A14HdM4GUcXExVlrQCoGt6LwCWqBi7iIiIHCVUiF1ERETqnMXBlQM7pkWoCHtQoPS6i8VS6HiwOHgtYAzWOIEXgZUDLYFXcMhVlescLMa+bOtCXOviGH02KSIiInWbnmZERESkzlkUHGkVmhIXKYG6VBYw+IkJvEw0ro0CogAPxhqMawL1rlwbqHVlbZXWtAJok9KBWG8cuYX7+Hn7D1XbuIiIiEgEKGklIiIidcrmnA1s2bsRx3g4Lq1bZIMJjpiygMUDOBjrYHACySoLjjV4rMFxgwXZrcWp6rmBgNfxhu/H/A0qxi4iIiJ1n5JWIiIiUqeERlm1Tm5HQkxSRGMJT/kzFg8FOBRg8GHwgfEBLq4JvKyxuA74jcGthumBcGDkWajml4iIiEhdpppWIiIiUqeE6ll1SO0S8bpNlkCRdYvFUAAYMH7AYA34HT9+x2Jw8WNxbGClQUvgk8Oqzl0dSFqpGLuIiIjUfRppVWGBiQDhf0JfWrC2Gsb8i4iICAALN80BoHN698gGYglMBbQOFgdjo4BoIAobrmfl4LEOjusEpgjaQB2sahpoRdeMwAqCq3b8RG7BvmrqRURERKRmKGlVQQYCD57FtlT98tUiIiJygN/1s3TLfAC6pPeKbDAmsHqgdd3g84A5sCP4oZYJfh2qb2WovoQVQHp8YxrGpeG3fo22EhERkTpPSatKCD6PFtlgMCbwEhERkaq3eufP7C3IIdYbR7uUjpENxlqM6+J1qjcRVR7GGLpk9ARg4cZZkQ1GREREpJKUtKogC1hTMnFV1ctXi4iIyAGhAuPtG3Ymxhsb0ViMMTiOgwGs60Y0lqLCda22aKSViIiI1G1KWlVYaLWgoluC3ypxJSIiUi0WBYuwd0ztUjtGNptALUvj1IJYgg4UY58f2UBEREREKklJKxEREakzQiOtOqdFuAg7gcVXXBcwwQ+yaonOad0xGDblZLF13+ZIhyMiIiJSYUpaVZYt5dva89wqIiJy1Mjz5fHTtiUAdMvoHeFoCIyyMgZbyx6n6sck0jK5LQALNqiulYiIiNRdtespq44xFF8FyAb/IyIiIlXvh60L8bk+GsQ1pElii0iHA4ANlguoTSOtALpmBFZWXLhpdoQjEREREak4Ja0qqPQlq224OLuIiIhUrcWhelYNuxLliYpwNMWZWvbbv3N6DwAWb1YxdhEREam7lLSqIAtYW3SsVe16WBURETnaLArWs+qY1jXCkRwQGGNVe1YODOkaLMa+bMsCXFv74hMREREpCyWtKq348oG1a3KAiIjI0WPxpsCooc7pkS/CDoHf+U6RCYK1SbuUTkR7YsgpyGb1jp8jHY6IiIhIhShpVQmhqYChx1RjD7xERESk6uzev5PM3asA6JrWM7LBFGUtJvSqZFP79xn27zP4CgMrE1aG1xNFx9TAiLT5m1SMXUREROomb6QDqKusCbxCn6wqUSUiIlJ9QrWZmia2JKVeWoSjOcAag2sMrnFwyphp2pttmDczlgUzYli/JorN6z1sWu9lX07xzxJjYl2at/HRtlMhbToW0r5zAcf3zycuvmz9dM3oydIt81m0cTaXdbu+3NcmIiIiEmlKWlWQsWCUqRIREakRizbNAaBTalc8jifC0QSU5ylg03oPX3yQwMzvY/lxYTSue+RxWfl5Dqt+jGbVj9HhbdExLicNzGPQ0P2ceuZ+khseul5V1/TACoIqxi4iIiJ1lZJWlWAsB4pYqZiViIhItQkVYe9Ui4qwH4l1DT/PbshX/0xj5sTY4AIuAY2bF9Kldx6tOhSS3thHoyY+0hr78XigsBAKCwy5ex2yMqNYuzKKtb9EsXJpDFs3eZn6bT2mflsPj9dy5vm5XPXrbNp3LizRf2gFwRU7fiTPl0esN7bGrl1ERESkKihpJSIiIrWatZbFmwJJqy7BVfFqM+vC9mXtyfq+H9N2JYW3dz0+j5PP2Mfx/faT3sLidQ5XB8sCLi3b+ThlyP7AFgurf45ixoQ4Zk+qR+bKaL76KJ6vPoqnz4D9XPObbPoMyA+30CShOcmxKezO28nSzfM5sdnJ1XbNIiIiItVBSSsRERGp1dZnr2XH/m14HW+4uHhtteeXpqwf35d9mzIAiI0vZPDw/Qy7IIeWHS0e4wIW15R/LRxjoF2nQtp1KuSa32SzfGk0/3kjgZnf12POlDjmTImj/+n7ufvhXTRv7cMYQ5f0nkxf9x0LNs1W0kpERETqHCWtREREpFYLjbJq06Aj8dH1IxJDuCJA0dIARRTsiSfzfwPYvaI1AE5UARnH/8jI63M586RmeK3FNVVbi6tTtwLueXIHm9bv5j9vJvLtJ/WZMTGOuVNiueLWbK6/M5uuGYGkVagmmIiIiEhdUv6P+URERERqUKieVcfULjgVGKFUMTYwH88aLAZrAtP1ArsM1h44ZM2ctix94bJAwspxSe32I52v/YjmAxYSV99f7ZE2bubnN/fu4vmPNtHjpP0UFhrGPJvEJac2JmZ7HwCWqBi7iIiI1EEaaSUiIiK12uJg0qpzevea79warAmkqxwsjg2mrgzs2Gp45M6mzPm+EwBx6dtodsZ0EjO2YQzU9GNW89Y+Hnl5GzO+j+PVxxuwdaOXZ249A/4UmGK5M3c7KfVSazQmERERkcrQSCsRERGptXyuj6WbFwDQJb1XhKM5YOGsGK48vQlzvk/AOH7ST1pAh8v+S3yjncGEVWQYAyeftp8XPt7E6efuhf0psL0DAF/NnxW5wEREREQqQEkrERERqbVWbP+B/b5c4qPq06ZB+0iHg7Xw4Rv1ue3idHZt99CkZT79bxpP45MX4YlyIx1eWFw9y10P7+SPj2/Ds+VEAB741yKmTIxgRk1ERESknJS0EhERkVorNDWwQ2oXojzREY0lP8/w0F0pPHFPA/w+Q7/T9vGX59bSsHlkR1cdzsCz9nPZOYHpiwVpc7juQocxL9fSYEVEREQOoppWIiIixyALYA1gg4vh2fAeCxgTKDZujAEMNrQnuM1iMRistcUTNqFmDBhb+eTIok2BAuIdU7ticA60X2MMWMje5eGP16SyZG4sjmO5/NbdXHTjXnbtM5hAZME7abChzwSD1dpdYwAXgx9jXTAWYwmeVf1OaNmTdzLB22o2Pj/cd7eHFT+5PPiExVtDT4IWG1h1MfDmCr7LiizEaG3469BhtTYTKCIiIjWmziWtHEvwwTDwuGONxW9s4AEQizWBbYEHSINrXCwuBoOxDq4Bi4uDxdjASkAGl8BTuBNs08XFYo0JPDkZF2tcrA08jGKCSwYBpa57LSIiUtsFsgLBV/D3IIEElCGYb8FgQyvlOQ4uLjgmfK5jAkkrG07XFG3cBJNilfs9uWjTHAA6p/YAW5MDxAPPFtZYtm708NvLU1mzIor4BD93PbiVkwbn4/NEUYCDdS1e61LgeLA4+PDg4CfK+sCAzzh4cfG4vgN5G6ix62md0BmvE4UvaieX372K959sx9uvOqxbY/n3OxBXrzp6DSalTOC9ZJzA+8DF4jgOrutirYvnoMSUQ+AxyzURyE+KiIhIrVOnklYWg9cNPAD5jQ3/W+gJPgS5gaSV34DXOhi/g9/x4zp+PK4HrBef42KsD8cFjwXruFjjDz4gOVhcXOPiGnCNCX7twxofLlGBT0+NP/hpsxJWIiJSNxUfXVVkS/gzmcAIotA+Yy2OsWBtcHSVAb+LMU5wlIwNH28B67q4TuV+T+4tyOHn7csA6Nq4J9bxVaq98rAEElZrVkbzu8vS2LLeS4M0H399chOdexTgc8E1HozXxTiFGFOA143Bby3GCdwvj8eDsYFRaj68YDxA4OMyjMUxNXM9XsdDm6QurNi1iHZnTOGxNq25/24PUyYarrrA5Y3/+ElIrPp+bfC94vE44AbeW45jsH4fHuOAY3Dd4HspdA56vBIREZED6kzSyprAp27GLTK63Bo8FrwuRLmGaL8hxgc+Y/AEH8StcXDx4McTeAAPfHCK33gpMLEUmhh8JgpwiPI7wSWtDVGug9dv8LgOjnVwbPATY0PgU2esRq2LiEgdF8xQhUe1FJl+F5z2Z10XB4O1Ll4TGB1jjKEwr4AdO3awY8d28vbvx7puIJkVPt3i91RuJNHS3QuwWFKiG7Lt543sMJsr1V55GCxrVybzr/sHsjfbS8OMvVx35ywccli+OHCT/HjZmVvA3k3r8GXvxeABnND4bgody+aVBaxy9xCFi7EWi4MNfkgWGOldM9LcpqxgEVOW/5erMjrx2z8l8MzjnZk308uIgXu572+LSUisgiSaCfzsAaK8XmLj4khJSSEtNQOvNxpjgwlB6+IGZwwG7kvJNKqIiIhI3UlaAa6x+A0EPqc0GGtwrMHjBkZgeV2DN/i042Cx+PG4wU9+DRjr4rU+PLhYwG88+E3gAdOE2sNirYPjGhzrBJJWroOxTjjhFXiuUsZKRETqMlvkq9A0PnNgPheBUVXeQOYKg4s/L5esdWtZsGABWeuy2LBhA5s2bSJ3316s38V13WBrpkp+V25snQUdwL/Bz4vf/rNSbZVXXnZHVi55Hr8vhtj4laQ2Gc34z7ZhgsknTGDEVCFe9uX58LkuHpOPNQafCxgHx7rs/CmKhV4HBz9AIGmFEyhnUIPXs7vRJugOczK/Z89bgZ5btGrD6hUP8svKRG69qhmdOt9JdPTOyndmAnXPPI6H+vXr07RpUxo1a0Hzlq3o2asnzVq0wOMJPoI6HlwCScJi78PAeDQRERE5xtWZpBUcKI0RrrNB6F+DS6BelT84ZRBcPK6L1/rxun4c68fBh2N9eK0fD/7AWdbi2MCYdZ8TqpMFfmOC9bECnZqDHp2MSlqJiMjRIlgc+0DCAKzf4vUEpnLl7s1mycKFTB7/DQsXzGfX7t3s3buX6KhovF4PXo+n2BSvwHTBypcZz66/C4CY7dEU7t1XydbKbn9uJ9b+/Bx+fyKx9ZbRtMVfsG42+bkQSDsFEiquDXwXbTzEGD+OzQPj4DoOLg7GgFNYSGGBP1jDKjCl0BoPNf0AEbUlBoC8hGzyc3NwXIcoltKq+Z2szXqCvP2t+Wnp07Rvcz1e766Kd2Rt4DnNBJ6ecrZtJ/Pnnym0hqh6caRnZHBCnxMZfNrpdO7ajbh68TiOJ1isPvBMZ02gLqnGXYmIiEidSlqFRjqZYDkpawx+Y/A54PNAvhccLxQai9caYq0HY8EJfkJsg5/6Bh6LXDzWF0hmWYvrWPI9oWH6Lj6Pi88JJMCssbgmUAS+yCMVVhkrERGpywLLA2JMIAETLp5tLVFeD/78PFb8/BMfjXufqZMmkb83G8dxSE9Pp0O7djRo0ICUlBTiYuPwOE6RUVoBpsh/lzs0LE84TwAwoMNAWnRoUalLLattWxrx4Vu/wu+PJy1jPWdd8F9i4k8I/s634WcAY4OJKOPgd8FxDkxzs8YTmPpmTPDYA88NgfqZDgaLx63ZGl1j3R/I9+yn57AuNPa3Cu/bvfsTPvjwEvbua8W2ne9x3bVjiIvNr1hHB+aH4vf72Zeby66dO9m5ezdbtm1n84b1fPrhWiZ8/Q1Dzj6Liy+5jOatWuOJisEF/MEy9RZ9LigiIiJ1KGllOLByoMEEH65NuNaVa0IjpFxcBwqtAScGixdjHHyOh3wThWNi8VAYLKju4oSmCmLAFBJaHdDFjw0mumxw5JY1wXULbWiVJU+kboeIiEjlFVnczwnmmwK/Zy379+by/YRv+PijD1i+bBlex6FFi5a0ad2Glq1akpSYhMfrDY+qKq1tfyWyDtv928jduQ8PHjo27EKsE1vxxspo6+aGfPzu5eTtjye9yRYuuua/1EuIxSW+SDIm8F9OcJrggUpMDhZP0bRW+IMusMEP3ALbQ8OuHOuv9msqqrGvJZksZ1fSDjp7Tgxvb5AGN9z8Ha+9chZbtjbi/Q+v4ze3/5eY2Mon1dKAVoDrK2T3rl1kZmayctVqNm/ZyueffELmmjVcdOnlnDxgEJ6YGBzjBNeHFhEREalDSSsAJ/hwaIIF2YP5pfBKgF7XJcaCx7WBTzkdD7iBY60xFDoevE4U1rX4g6OvHOvDgyXKukT5CnFtYMXAKNePBzfwQGmDhWex4ASTVkZrMYuISN0VGn1MeISVxbGBwut5ubl88enHjH3jDfbs2kHDlAac0LsXrVu3IS6uHh6PhwNzwEy1/DrMLMwEIMPTmBgTS3WPu9mzqz5jX7yEfXvjSWu0jQuv/pz68fngOjgUX9HOYMAGPsgyRcZdu8YWGSMUrAt24KQDV2BD/1R2AmX5NDGtyLTLWW9Xc/D9TEvL4drrJ/D6q2eyNjODl18ayq9u+4qoqKpJrDmOh7S0dFJSUujUqRMrVqxk0eJFLJo3n/VZ69m3dx9nDB0WSFx5PNhQlXYRERE5ptWdpFWRh+ow1+LFIRoHsz+fPes3kpeTDw4UYvF5Y2HXZkxhLtgCHApx/Pl4KcRrXBzjY8+2TSybP5P4uPrEWLAeD4XGsm7lzxTuycFTLzaQGHMcrAuu62I9BJZojtCtEBERqTRLeO06jwksSeJYl317s/nPB+N456232JedTcf2benT50TS09IxTmCEsesGVhAM1GgPTjEspQtPJbJZawtXA9DM2xQP1ftB0f7cGN566WL27EqkQcNdXHTV5yTWzyuWVDIl+g8NUwuOxib4pYHAnS0lYHtg5BXBqk01qYlpCRY22jU4pYTXtNFurrt2Iq+/MYRVK5sw5rXTufnm8TilHVxejjewEqXjITExkR7du9MoI4OZs2aRmZXFyy88h89XyFnDziG2Xjz+cI01EREROZbVnaRVWHAgvglOFDSBZbj37t7NPx55FOuNxrp+XOOnwPER7/rZu30LeGNwTCFxpoAoXyHG46HQeFm+ahU/P/UE0XiIKjTBaYTgsT68efvJaN4ET1RUkUWpHTyOF1xfqBSIiIhI3WMMxnGwbmA0sbV+XF8h34//hnHvvE1u9m6O69iR/v37kZycjDEG1waGOYeKrltrMc4hfhFWMs+xxrcGgGae5pVr6AgKCz28/eqFbNmURnz9fVx4xRckJuWGF2aBQB3MkNAKd0XHUwVGXhlc4wnXsDpwA0xwUZfQCUVWWKzhyk2NaQnATraS6+6lnlO/xDHNm+/gqqsmMWbMaSxZ2oqP/tOXSy6eWem+XWvBCRRYt66Lx3Fo1rQJA049Bc/Mmaz6JZM3X3+VBikpDBg4CMdb9NlLREREjlV1LmllgzUhXAesNSSmNaBl+9ZsWptFTt5eXCcKY12MKcA6hezzeSGuAU69eJx6CYH6VcZLbFpznO3b8OXtJSHKoUGMlyjrUGgcCjwOjusj0XHo0ecEmrZshd+CN/SI6bM4rqMPAEVEpE4LzcAyxoDfsuKnn/jg/ffI3r2D9m3bcnK/k2jYMAW/38VaG0hSmaJT2gw2WHjdHPQpjjVQ0YllBbaA9b4sAJp4W1aqNtbhuK7hg7eGk7m6OdEx+Zx7+X9pkLGnWNwHalIFk1DGKbJ6ceBfCHyI5YQTUgcKr1vA2CKJqyJVsNwafo6IMfVJchuyhx1kspKOplepx7Vqu4ULL5rBh+NOZfLkbjRouJfBpy+tVN/GGKxrcUwggeVxHAwu6WmpDDj5FHw+P7+sXcdbY96gbZs2NGnVJnRi4D1W5P2lxy8REZFjR51KWplgHSnXWPxO4GG4VeeOPPr0P9m1bTvWiaLQejD48VKAsX5cfwI79hYyccmPrC0w5Hnq4ccQ06QzbVJb4fHv55SubRjS5zjiogyFOBR4HaKwxBQUEJtQn6iUBvj8Bg/gWIPHenBwKdRjk4iI1GGudfE6FuNzyd2zm4/ef4/MVatITUmlb9/+JCWnUOjz43ECNaxCiSkTSiRwcBKrFBX4Vbm+cB0uLvGmPimelGrLUnz72SB+XNwRj8fPsEu+plmrrQd2hlcMJjjkKjgyKpg/KTFOKjg/8EC99qJBW0pU/orQ7LfGphV77A7Ws/qQSSuAbj3Wsnt3POO/6c1nn/SlQUoOPXtnVrxja8P3DBMcu2bB4/GSnJJC37592b1nDyuW/cDH77/HjbffQUz9BMKj2syBBCm26N0tVmxMREREjjJ1KmkFhD+pNNbiMS6e6GgatWhNkxatcHHwW4NjwFg/jjVY10PWnjxmbc3F3bAlkPRyDAXeGPDGYEgirmFj0ps1J9pr8ePgOgZclxhrAwXccfA6gU+hIbBstD/w0Sl6QhIRkbrKGIOxYFyXVT/9yOyp04n2RtOzRy8apqbjYnCcIqOpgoXXQ+cetm2Ca+xWYJrgusLA1MCm3mZEG2+11LOaN7MbM74PrKA35LzvaN9hXSl1q+BwxeaLJU6C39iD9pR+UmB/VZSKKq8mpiXL7Xw2uKuP2P+AU39k9676zJ3TgbfePI0GSf+lTZuthz/pcEKzJEOJTuPgBlfVychoROfjOjF3zhxmz5jG6UOH0qlHz0C6zzjBVRcNxpY2aTCcDhMREZGjTM0uW1MJJrg8NMbB4BBlIdq1eFyDJQo/0Vi8eIwHgwdrYnBNFB7HxTXgOh4cvyXWLSDK5uFQgMHFLVprAi8e6xDlN0RZD37jxcWD1zV4bHCZQscNjPLyHHhwFxERqatcv8v+3H189tln7MneQ4sWzenUqROO4wRqXlmLa91grqVmfu9lFv4CQFNP02ppf83K5nzxwZkA9Dl1Lt16LT9mfqU3NoG6VhvJPDBy6RCMgeHD59Kh43p8Pi+v/PtMdu2Kr7JYrLW4rovjOERHR9OtazcaNWpEVlYW06dNJ3fvPiDwsGrd4Huw9Pr2SlmJiIgcpepM0upwTJHXEQ8sR2OHalPr2YiIyNEgMGrZsHrlSubMnoPH46Fjxw5ERUdjg7WHXAPGcQLr4x0hyVFVQkXYm3tbVHnbO7Yl897rI/D7PbTvvJJTTp+Nc1Q8DZVNBs1wcMhlLzvsliMe7/FYLr10Gunpu8nJqcfLL51FQYGnSmMKJa/q169Pp06dAJj03UQ2ZGUFHlRdi1N0emDRc6s0EhEREaltjqHHNBEREQmzgelp1nWZP28B+fv307BBChnp6YFpg8bgWovjOOE6RDVhl38Xu91dGAzNqjhplbc/mrf/fSG5++qR0WQLZ18wEa/32Ep7eE0UaQRGsGXZVWU6JybGx1VXf09cXD7r16fy9tsDqyR/GXqf2WC9NGMMTZs2JSEhgczMTNauWYPr8+EEp7EG6okd+FQxUGrM6tNEERGRo5iSViIiIscgYwjUgHRd1v6ymv25uaSmplC/fgIER1k5HgfXWmxoPEsNJAYyg6Os0j0ZxJrYKmvXdeE/b5/Dti2p1E/Yy7mXfkVcXGGVtV+XNAlOEVxvV5f5nJSUfVx+xRQcx2XB/HaM/7ZHpeMIrUjpFBnqVr9+fdLS0rB+H8t/+AHr84WL2Bd9aC2eMzu2Eo8iIiLHEiWtREREjkU2MEhlx/btbNy4kSivl+TkZKKivIHRL9hwUiEwGqZmZgeG61l5m+EcaWXCcpgyoS8/LW2Px+PnnIu/JqVhTpW1Xdc0Nq0AWG9/Kdd5bdpsYdg58wD44os+LFvavFJxFB1pFZr6FxUVRWpqKgbLip+XQ+g9GDjhiHW4RERE5OiipJWIiMixKDjLatfOnezNycHj9dCgQYNgUevACm3GEE5YmRpaf+SXwsDon6aeZlXW5sqfWjHxf6cCMPCsqbRovanK2q6LQsXYN7OOQregXOeedNIKTjhhJdYaxo4dzI4d9SscR9FkFQTea47jkJiYCBa2b9tK3v5cTLFjHEoO+VMiS0RE5GilpJWIiMgxymDJz9tPYWEBjjHExsYEhlMVzQHUYD6g0BaS5VsHQEtv6yppc+eOJD4Ycy7WGrr0/JHefZcdMysFHkoK6cQRjx8f6yn7FEEIrih47lyaNN1Bbm4sr/z7TAoLK1eY3RT5gTiOQ2xsLNFRXgry88jbn4tjDIF1AIq8GYMjBbV0oIiIyNFNSSsREZFjUXCUi+u6uH4/xjEYxzlQ6LqImkoOrPOtxYePeFOfVCe10u0VFnh577Xz2Z8bR0aTLZw+fDKOowyHMYamJpAUXGtXlPt8r9fliismhwuzfzCuf4XjCCWsDp4mCIFFAnx+X+nnFvk3VI9dREREjj5KWomIiBzDLKFC66Hl2Yr/9W+KvKrbL4WB1eyaeZvjdbyVbu+rTwazaX0GcfX2M/zib4iNLT0BcixqatoCsM5dWaHzk5NzueTSaYBl5szjmDmjQ7nbODhJRZEEVmBO6oHjipx1qNbK3b+IiIjUfpV/IhQREZE6y4QyA8YEVgq0FhvKUNVwHmB1sJ5Vc0/lCnwDLFvYkTnTewFw5ogJNEzbc8RzPD4f9XL3EVVYgNfvw+vzYazF542iICqawugo8qNjKYyOrnR8kdYsONIqi9XhYvvl1b79JgaftoTvv+vBuHGn0KLFNpo221WpuMKjr4zFcYKF14NZU4M5UJS95JmV6ldERERqJyWtREREjkHWgN8A1uL1W7wWMAa/E/jj37GACY6/MlR7Astay5pg0qpFVMtKtbVzRxKfvHc2AL37LaT9cZnhffF7c2i0ZRPp2zaTvm0Lqdu3kpiTTULOHuL355ap/f2xsexJTCY7MZldySlszmjMlvTGbM5ozL76CZWKvaZk0BwPXvazl212I+mmaYXaGTx4KVnr0li1qgmvvXYGf/7Lf4iO9pfp3KKJskAyyoZXrfT6HYwffI6h0AFjLY4NvBdD78kDgwINwberiIiIHGWUtBIRETlGucHyVU4oO4XBGoMJzcwqkiSo7uLlW/xb2Gf34SWKJpVYOdDnc/jgzXPJz4uhUdPNXNL1IzrOWUHLdWtokZVJw107Dnu+awyF3ij8Hg9+jxfXMXh9PqJ8hUQVFmKAuLw84vI202jr5hLnZyckktmyDWtatmVNq7ZszmiCdWpfNQaviaIRzdnAGjLtctKpWNLKceDiS6bz7DPnsHVrMh+MO5mrrp5S7nZCU1BDeShjDcYG3o+uAU945qrFHjSF1YYaEBERkaOOklYiIiIScaF6Vk28TYgxMRVu57tP+7N+bRMSPNl8s/sMur+yrNh+C+xKTmF7SkO2N0hlR0oqu5OS2RufQE79RPbHxWEdD0UG8YRPNNYSk59HYk42iTl7SMzZQ8ruHaRv30bajm002L2TxJxsui9bRPdliwDYVy+e5R0681Onrqxo14n82LgKX1tVa2rasMGuYZ1dSR9Or3A78fH5XHzJdN54fQizZnXiuM7rOf74X6owUhERETlWKWklIiIiEfeLLzA1sJm3ebnrK3kKC2n3w3K2f5/AlDV/BGCs/xq671tGgTeKrKYtWN+4GeubNCOrSQv214sv/9AxA9YY8uLqkRdXj63pjUocEpWfT9NN62m1fg0t1q+j2aYs4nP3cfyiuRy/aC4+x8PKdh1Z2ONEfjyuW8RrYzU1bcBOJMuuqnRbbdtuYcCAZUyZ0o333h1Ay5ZbSU3dWwVRioiIyLFMSSsRERGJuNXBkVYtvGWvZ9V43Xp6T5tFp0VL2JHXkB4sBuDG6Fdo3Hkz77S5kjUt2lIYE01NzB8rjIkhs1VbMlsFVuZzXB8t12XScdVPdFi9goa7d3Lcih85bsWP5EXHsKxLD+Ye34/Mlm2qf/5lKZoGi7HvYAt73WzqO4mVau/0IUtYs6YRWVlpvP76EO6++zM8Hq3qJyIiIhWnpJWIiIhEVI6bzTb/VgBaeFod9lhvQSGdFyzi+GmzaLJuPQB+HC7zvM8OfypNk7NIvXo7X9Y7r7rDPiLX8bKmVTvWtGrH10MgbdsWuv+wiG4/LaFB9m5OWDiHExbOYWOjJsw8aQALexxPYXTFp0aWVz1TnxTS2clWMu1yutKnUu15PJZLLp3Gc8+ew7q16Xzx+Ymcf8GcKopWREREjkVKWomIiEhE/VIYqH+U5qRR36lf6jGx+3I5ftpMTpw0nfh9+wDwezys7tSeez0PMW3JqURFFTDs/G+IqVc7R/dsS8tg4qCzmDjwTFpkZdJ76Xy6Ll9Kk80bGfnZ+wz75jNm9TmZaf0Hsbd+5UY9lVVT04addivr7IpKJ60AGjTYxwUXzuL99wYwcWIPOnbawHHHbaiCSEVERORYpKSViIiIRFSoCHszb3McU3ylvfp7sjnpuyn0nj6b6IICAPYkJ/JDr+4sO74Hi3b25KM3RgJwxuAJNM7YWrPBV4QxrGvRmnUtWvP16cM4ftE8Tlw0hwZ7djF4ygROmTGJOSf0Z8opp7E7OaVaQ2lm2rDUzmKdXVllbXbtuo4TTljJvHntGTtmMH+95yMSEvKqrH0RERE5dihpJSIiIhH1S2GoCHuL8La4vfvoP+F7jp86k6hCHwDbMtJY0P9Elnftgj8mmtzcON758BKsdehy3DJ691wckfgrIy+2HtP7DmDGSafQccVPDJg5iaZbNnLyrCn0nTONOcf3Y+Lgs8lJTKqW/puaNgBsYh2FbgFRTtUUhx92zjzWrktj29Zkxrw5mF/f9hWOc+TzRERERIpS0kpEREQiptAWkuVbB0BLb2ui9+fR97sp9Jk0lZj8wMiqjc2aMO/Uk1jdsQPWG3h0sRY++vw8snMSSWmwk6FnfItjaue0wLKwxmF5xy4s79CZNpmrGTBzEq2z1tBv7nSOXziH6f0GMnnAEPbH1avSfhuQRhz12c9e1rOa1hxXJe1GR/u57LKpvPjCUJYvb853E7sz5IwlVdK2iIiIHDuUtBIREZGIWedbiw8f9U19zpi9htO+nED9nL0AbG2UzqzBJxdLVoUsWNyDxcu6YYzLOWd9Sb24o2T6mTH80rodv7RuR6t1vzBk0jc037SewVMn0HfudCacdjYzThqA6/FUUXeGZqYNK+0S1toVVZa0AsjI2MPQYfP54vOT+OKLE+nYaQPNm++osvZFRETk6KeB2iIiIhIxoXpWA1cXct64T6mfs5ddKQ34auRw3rn1elZ16VwiYbVrdxIf/3c4AP1OmkmrlutqPO6akNmiDa9efSvvXnAlWxumEZe3n3O//ITfPfsYHVb+VGX9NDWtAVjrrqiyNkP69FnJccetw+/38OYbp1FYWDXJNhERETk2aKSViIiIRES9PXvYlTURMmDIinzyYmOYe0pfFvY7EV9MTKnnuK7h/f+MJC8vjsYZmxh48jRMDcddo4zh5w6dWdGuE70Xz+P0qeNJ376VG8e8yI8du/D5ORexK6VhpbpoZtoCkMUqXOuWKIZfGcbA+RfMZt26NLZsacBnn/bhootnVln7IiIicnTTSCsRERGpUcZ16Tbpey4ZPYqFydkANI5rx5jbb2buoFMOmbACmDqzH6vWtCHKW8C5w/5LlNdfU2FHlHUc5vfqwzO33MXM4/vhdxw6//wDdz3zKAOmTsDxV/w+ZNCcKKLJI5fNdm0VRh0QH5/PhRfOAmDSpG4sX964yvsQERGRo5OSViIiIlJjGm5Yz8gn/saAD9/nxwb55MRAvBtN5sAL2Jd0+BXyNm1J58vxZwAw8NTJNErfVhMh1yp5sXF8PWQ4L9xwO5nNWhLtK+Scbz7n9hefoHlWZoXa9BgPTQmsIrja/liF0R7QsdMGTjhhJQBvjR3M/v1R1dKPiIiIHF2UtBIREZFq5/h8nPi/L7j4b4+QsW4tBTGxjD2r0/+zd94BdhNX335GunV7s73r3m1sY9PB9N5D7yWBhLwkEEJ6SPtS6SGFQAKBEEghQEJLgYQOCb2ZYtx72/X2eps08/0h3bLF9q6969015wH57tWVRiNpNDrzmzNnABhnjSUYCG11f8exuf+vZ+M4QSZNWMn++7y1M7I9ZKkrH8nvL/gsj51wOh2RKKOrN3LFb3/OiU8+SiCV7HN6462pAKzWi/s7qxlOOPFtSktbaW4u4IEHDhmw4wiCIAiCsOsgopUgCIIgCANKxbq1nH3T9ez3xD+xtWbtjJn8/cov8tJE7/dJatw20/jPc0eysbqKaKSDk49/EtsyA5vp4YBSvDt3H3712S/z/qy5WMZw2MvPc/XtN/XZ62qcmgbAWpahjR6AzEI47HD2OS+jlObtt6by1luTB+Q4giAIgiDsOohoJQiCIAjCgKC0Zq//PMlZN11PxYb1xPPy+N/pZ/LcBRfTXFbKMrMKgMlqwlbTWbl6As//1/PMOfaopyktaR7wvA8nOvLyefgT53L/GRfRllfAyLrNXPHbn3P8fx7HdpxepVHJeAKEiNFOtRm42RjHj6/j0MMWAvDgAwfT1JQ3YMcSBEEQBGH4I6KVIAiCIAj9Tn5jI6fc+nPm//0xz7tq5m7844qrWLbPfphAgLVsJEaCCGHGUrnFdOLxMH/521kYYzF7tw/Zfc7CnXgWw4sl03bjtsuu5v3dPK+rI/77LFf89ueU123e5r5eXKtJAKwyiwY0n0ce+T5Vo+uJxSL88Q+HY8RpThAEQRCELSCilSAIgiAI/crkBe9w3nU/YuyypaSCIV49+VSeO/8i2krLMtss1isBGM9ogiqwxbQef+JEGppKKSpq5rijnxbDZRvEonk8fMq5PHDaBcTCEcZuXMfVv76ZPd99Y5v7puNarTIDF9cKwLYNZ5/9MoGAw5IlY3nxxVkDejxBEARBEIYvYvsJgiAIgtAvBBIJDr//T5xw151EOjqorxrNv/7v8yyefyAm0FmYWmo80WqyGodSqsf0Plw0kzfe2RswnHjckxTkxQb6FHYZFs2Yza8/fRVrxkwgnExw3sN/4ryH7iMc3/I1TMe1WmOWYgbY/WnkyBaOO+5dAB5/7ACqq7c+c6QgCIIgCB9PRLQSBEEQBGGHqVi3jrNvvI7ZL/8XoxQLDzyIJy67nMbRo7ttq41myTbiWbW25fPXx04DYN+932La5JUDlvddlZaiEn5/wWU8d/BRaKXY8/23ufr2mxi7fk2P21cxngBBYrQNaFyrNPsfsITJkzeRSgW4776jcF0xSwVBEARB6IxYB4IgCIIgbD/GMPe5ZzjrpzdQVlNNR2Ehz15wEW+c+AmcSKTHXdaxiRhxwoQYS1VPSfLQY6fR1l7AiIpajjz0BXr2xRK2hbEsXjzoSO654LM0FRVT3ljPFb/9OYe9+BRKd54l0FYBRu+kuFYAlgVnnvUqkUiSdetG8K8n9h7wYwqCIAiCMLwQ0UoQBEEQhO0iGI9z3N2/5ZCH/4rtOKybPoN/fO5K1s2aA1sY8gewxI9nNYExhHqIZ/X623vz0eLdsG2Hk4//F+FQasDO4ePCurET+M2lV7Fw+mxsrTnx6X/y6ft+Q157W6ftdlZcqzTFxR2ccurrADz99J6sXDlypxxXEARBEIThgYhWgiAIgiD0mdLqTZx10/VMXfAOrm3z1rHH8+yFn6SjpHSb+y7x41lNUmO7xbOqqy/j8SdOBODg+S8zdszG/s/8x5R4JMpDp53P48efTjIQZPqKJXzx1zczZkN2KODOjGuVZu7cNey++yq0tvjDH44mlQrtlOMKgiAIgjD0EdFKEARBEIQ+MfXttzj7xuspq6mmvbCIpy++hA8OPbxbsPWe0EazdAvxrFzX4v6/nUUyGWbcmHUceMCrMiywv1GKd+btw12fvJyGkjJKmxv5/G9/wT5vvQp4ca1sAnTQSo1Zv9Oydcopb1BY2EFdXTEvvnjKTjuuIAiCIAhDGxGtBEEQBEHoFZbrctDDf+W4e+4imExQPWEi/7r882yaNn2rwwFzWU817cQIEWQcnYO0P//fQ1izbjyhUIKTT/gXQVtvIRVhR9k8ooo7P3UFSybPIOg6nP3YXzjjsb8QdmGMH9dqpVm40/ITjSY568yXAfjww/m0th+6044tCIIgCMLQRUQrQRAEQRC2SV5zM6fc+gv2eO4ZABbOP5D/XPIZ2kvL+pTOYr0C6B7Pav3GKv7z3JEAHHXYc4wob+innAtbIh6J8pezLuK5g4/CAPu/9Sqfv+uXTEuMBXZeXKs0U6du4oADPgJgY+1PSKWKd+rxBUEQBEEYeohoJQiCIAjCVqlcuYJzbryeMcuXkQyFeemsc3jjxE+gQ32PPbTQLANgihqfiWeVSgW4/69no7XNtKlL2WuPBf2ZfWErGOXNLvinsz9JLBxh3Ia1fPNv3lDBVWYx2uxcb7fjjnuH4uJaXF3BipXfYCeF1RIEQRAEYYgiopUgCIIgCFtk1iv/44xf/Iz85maaKkbw78/8Hyv23BusvpsQKeNkgrBPV5Mz6//11LHU1I4kP7+NE4/5D7YlSsXOZvnkGdxxyZVUj6jk8BVxiuIQp50NvmfcziIYdDniiEcAh8amQ/jnw4U79fiCIAiCIAwtRLQSBEEQBKEbynU56OGHOOrPf8R2XdbO3I0nPns59WPHbneay80akqQoIJ8xjAJg6fIp/PfVAwE4/uj/UFzU2i/5F/pOU0kZd198OR/NnMcRq711gQ/vxXZSOzUfFRXVlBXfA8Avrh/JutU79fCCIAiCIAwhRLQSBEEQBKEToY4OTrrjdvZ4/lkA3j/kUJ4773wSBQU7lO5CsxTwhgYGrAAdsQgPPHIGAPN2X8BuM5fsWMaFHSYVDPHIyWczxp4NwMLoWi783fXktTXv1HyUFf2F/LzFxDosvvzpAK67Uw8vCIIgCMIQQUQrQRAEQRAylNTUcM5Pb2LCoo9IBYO8eObZvHXs8ZhgcIfTTsezmsoEAB75xydobimmtKSBY454ToySoYJSqHHHAvDyeCjbtIxP//r7jKxeuxOzoJk08edEopp3X7f4zc96NzulIAiCIAi7FmIfCoIgCIIAwLTVqzjnppsoramhvaiYpz716e2OX9WVFtPGWrMR8OJZvfPeXN59fx5KaU467gnyovEdPobQf5SZcop1CSkb/jW7kOLmej51x4+Y/tFbOy0P4fBmPvvFOgB+cb3FBwt22qEFQRAEQRgiiGglCIIgCB93jOGChjo+/be/EonFqB07licuu5zNEyeD6h8Pl0VmOQbDKCqwWsbxyD8+AcAB+73GpIk7z4NH6B0KxRQ9FYDbjp/NunHTCKUSnPXnWznwhcfZWdP6HXVCG4ccrXFSii9cZhGP7ZTDCoIgCIIwRBDRShAEQRA+xijH4aurlvLNmk3YxrBi7lyevPQztJWV9etxFmpvaOBkJvDQI2cTi0epHLWJww76HzLwa2gy2Z0GwOLQSh4+9yrem3cwCsMRT/+NUx/6DXYqOeB5UAq+dZ1DWYVh5TLFtd8T01UQBEEQPk7Im18QBEEQPqao5mb2+fY3OLVmExp4YZ99efGss3AikX49jjEmE8/KWXwyy1ZOIRBIcfLx/yIUdPr1WEL/MUlPRhlFrbWZOruJZ48/n2ePPhutLOa8/yoX/e568tpbBjwfJWXwves1APf91uLFZ0TmFARBEISPCyJaCYIgCMLHEHvdWkYffQQj3nqDuGVxw8gq/rfPPphAoN+PVU0tjTRjmwBvP/pVAA4/+EWqKjf3+7GE/iNKHlVmDABL7EUAvLf34Tx8zpUkQhHGrlvOJb/5IWW1mwY8LwceZjjjXE+4+trnbJoaBvyQgiAIgiAMAUS0EgRBEISPGaF33qLy8IMJfbSQREkJP54yk+cKi/otflVXPvSHBlrr56MThUyeuIL99n1ThgUOA6a4XlyrJdaizLp1E2fyl4u/TnNRGaWNm7nkjh8wftWiLSXRb3z5GsO4CYbaGsW3rrJ3VlgtQRAEQRAGERGtBEEQBOFjRPQfjzPyuCMJ1FSTnDqNd77/Ez4qKh4wwQpgoVkKQGrxyeTltXPS8U8SsERxGA5M9oOxr7CXotGZ9Q0Vldz/yW+wqWoC0XgHF9xzI3Pe+d+A5iUShR//1MW2DU8+bvHIAyJ7CoIgCMKujohWgiAIgvBxwBgKb/sFFRecjRWLEZ9/EDV//gsdY8YO6GEd47DIXeV9WXEsJxzzb0qLBz4OktA/jNXjCJkQHaqD9arzLI+x/EL+ev6XWDp9D2ztcurDd3LoM38b0JkFZ82FT1/piWf/76s2G9YN2KEEQRAEQRgCiGglCIIgCLs6jkPpV75I6TVfRxlD+xlnUXfn3Zjy8gE/9HuxalJWAtpHMG9Uit1mLB3wYwr9h02ACXoSAIvthd1+d4Ih/nnaZ3hjv6MBOOT5x72ZBZ3UgOXpks9pZs/TtLUqvnSZjdbb3kcQBEEQhOGJiFaCIAiCsAujWlsZcc7pFN51B0Ypmq/+Kk3X3gjR6IAf2xh4aEUHAKF1h3HsYS9hKRkWONyY6k4HYJHVXbQCQFn874jTeeq48zMzC154zw1EO1oHJD+BAPzwFpdI1PDGKxa//aUMExQEQRCEXRURrQRBEARhF8XesJ5RxxxG9Kl/oyMRGm+8hbYrr/Ja/TuBF97Yg9qK/wKwX3Ep0WhipxxX6F+m65kArLPW0kLzFrf7cI+DeeTsz5MIRRi3ZimX/OaHlNZVD0iexk2AL3/bBeCWH1ssfH9ADiMIgiAIwiAjopUgCIIg7IIEF7zDqMMPIvThB7jl5dTf9Xtip585oAHXc9lUW8YDr4+GiqUoHWC/koEfiigMDMWmhFG6EqMMH9kfbHXbtZNm8cBFX6WlsJSyhhouveMHjFu9ZEDyddo5hoOP0KRSii980qajfUAOIwiCIAjCICKilSAIgiDsYkSf+CejjjuSwKaNpCZPpe6PD5A84MCddnzHsbjzwU+QmvJvAMbp8eRTsNOOL/Q/093dAFhof7jNbetHjOb+T36d6lHjicbaueCeG5i94OV+z5NS8L3rXSpGGFYtV3z3K2LWCoIgCMKuhrzdBUEQBGEXouDXv6LivDOx2tuJ738AtX96AGfa9J2ah0efOYS1m0ZhzXwcgGl6GgqJOzScmeF6QwSXW0tIkdzm9h0FxTx04ZdZPnUuAdfhtL/ewcHPPdrvMwuWlsGPfqZRyvDwny0efVDKmSAIgiDsSohoJQiCIAi7Aq5L6de+RNk3voLSmvbTzqD+znswI0bs1GwsXD6Bf/9vP4jWY8a9AmRjIgnDlyozmgJTSFIlWWot7tU+TjDE38/4LG/tcyQAhz37CJ/4251YjtOvedt7f8Mln/fEsO9cbbFmZb8mLwiCIAjCICKilSAIgiAMc1RbGyPOO5PCO24HoPkLX6Lp+pshP3+n5qOpJZ/fPnQyxigmHXE3RmlG6JGUm4qdmg+h/1FYTPe9rRZuI65V5x0tXjrqTJ495ly0spi74GUu+P2NRDra+jV/l12lmbuXob1NccXFNsltO4MJgiAIgjAMENFKEARBEIYx9sYNjDruCKJP/gsTDtNw/c20XXX1TpshMI3Wit8+9Ala2/OprKgnb95fAZjiTsUSc2OXIC1aLbIWYujbML/39jqUR8/6HMlQmAmrF3PJHT+gtL6m3/IWCMC1v3ApLDJ8+J7ihu9JmRMEQRCEXQF5owuCIAjCMCX4wXveDIHvLcAtK6fuzt8RO/NssHb+6/3vzx3I4lXjCQWTnH3Sf1geWgjAND+AtzD8maSnEDBBWqxm1qt1fd5/zeTZPHDRV2ktLKG8voZLfvMDxvbjzIKjquB7N2gAfne7xbNPSnwrQRAEQRjuiGglCIIgCMOQyH+eZNQxhxPYuIHUpMnU/eF+kgcd4k2ptpNZuHwC/3jBm53w1CNfJlH1KgkVJ98UMM6M2+n5EQaGIEEm6ykAfGi/t11p1I0Yw/2f/AY1o8aRF2vjwn6eWfDwYwxnXegJV1+93KJmU78lLQiCIAjCICCilSAIgiAMJ4yh4Ne/YsTZp2G1tZHYZz/q/vgAzozBCXbe3JrPXX89CWMUe89ezL5zF/NRwIt5NNmdQoDgoORLGBjSQwQ/sj/c7jTaC4p58MKvdJpZ8JBnH+m3mQWv/pZm6gxDY4PiqkssXLdfkhUEQRAEYRAQ0UoQBEEQhguOQ+lXvpidIfATp1F31z3oUaMGJTtaK+586GRa2goYVVHPaUf+D8vSLLQ80WqqO2NQ8iUMHGnRaqO1nkYatzudzMyC+x4FwKHPP8Ypf70D20ntcB7DYbj+VpdI1PD6yxa33STDBAVBEARhuCKilSAIgiAMA1RzMyPOPIXCu+7AKOXNEHjjT6GgcNDy9PfnD2TxygmEginOO/E58vKSbFIbaLQaCJgAU/XUQcubMDAUUMhoPRaAD+0FO5aYsnjpyDN4+tjzcC2LOe+/xoX33ERBvH2H8zlhMnzj+94wwV9cb/Hqf3c4SUEQBEEQBgERrQRBEARhiGOvWsmoow4l+uzT6GiUxhtv8WYIDA7e0LtFK8bzj+e9OFanHPEy4yprAVhgvw3ARD2ZCHmDlj9h4NjNnQ3Ae/a7/ZLeB3sewqNnfp5EKMK4tcv41uN3MynVscPpnnSG4fhTNForrvykTU11P2RWEARBEISdiohWgiAIgjCECb36MpWHH0Ro8Ue4I0ZSf9fviZ12xqDMEJimuTWfOx862Y9jtYT95i1CKTAY3vVFq93cOShkWNauyGx3dwBWWStp2oEhgrmsnbQbD1z0FZqLyhjZ2shfq99l79baHUpTKfjWjzWTphrqaxVXXGTjOP2SXUEQBEEQdhIiWgmCIAjCECXvgT8z6qRjsevrSM7cjdo/PUBy//mDMkNgGtdV/DYdx6q8gVOP+h+25QXQXqfW0mDVEzRBZriDExheGHhKTClj9DhQJuNZ1x80VFRx/8VfZU15FUXG5fblrzDuib/uUJrRPLjpdpe8fMNbrymu/56YvoIgCIIwnJA3tyAIgiAMNbSm+Effp+KyS1DJJLHDj6LuvvtxJ08ZvDwZb3nk6UNZ5MexOvek58iPxP1Z3wwL7LcAmOJOI0o0u9OAL10y2Wndx5WtXauu12xr2/e8zHE8b6sF9jve/e8681/6e9fPbRDLL+T2o87jmWg5AQx73ngN427+Dmi97dPdAhMmw/eu9/a/+1cW//67eAAKgiAIwnBBRCtBEARBGEKoWIzySy6i+KbrAGj95KU0/OrXmLKy/j0OYBvQgKsMxlKAwTIGBRjlLeltFfDWhzN58r/7A3DaUf9lfOVmbzsMLpoFgXcAL+aR2urgQINS+L8bjNEYskuuwJI+dibfyt+/hxMSyaovZK9Sp+vbw+89McudAwbW2WuoV3XdkjaZu9tzapl7ZTqvA3DsAN8tm8afR0wGYOydP2XqVedCrN0vAAqVs5/qqTx04agTDOd+yhOuvnq5xcpl29hBEARBEIQhQWCwMyAIgiAIgodVU82Ic88g/NabmECQpmu+Q8dFnwTb7v+DGbBQKAuMZeEaDdqgjPGFKEDhiQMGNmwu53ePnADAQXu+z75zlvhxrBRYitVqGc2qibAJM1VPx5OyPFRWnsJ1HFzXJZFIEIt1EE8kcJJOztYQCofIi+YRjUaxbZtAIEAgEPS2MT3JYSYnw9lVQk8YLBQag4V3/4wv+pjMXTC4jksqlcJ1Xf+6Zy+oZdmE7BDjgxNYG1jDu/ZbHO0c7yfvi41KoY1BKYUx3vcespJFKT83ytvXVvy+agbzzjqfWXfdRNnTjxE+72CW3fk4yTHjeri/BrYhXV39Tc2iDxTvv6P4zDk2f3/RpbCoD5dOEARBEISdjohWgiAIgjAECH74PiPOPp3AurXo4hLqb/oZySOOHND4VcZ4Yo/WGtu2UVZXvyaPjniIX/35TBLJEJPGbuSkw1/FsnJ8aDQsCHleVlPd6eSpqJc2nmCVSiVoam6mqamJ1uZmWts76GhvJxaLYTLChsYYg20HMusieVGK8gvILyykML+A8ooyioqKsSy7kySW/lSKzHG3JWB8nNEYLF9UAu+auU6K1tY2WttbaW9rp6O9nZbWFmKxOI7j5FxXCAaDRKNRCqcVwzR4U7/OHrV7UVhURDgSzQhXlndDvDtlVKdb4klUXfHKAcZgDLjaUH3kJwjN2ZtJ3/ks+Us+YPbp+7HsN3+jfa8D+3zegSDccJvLp06zWblM8aXLLO56QA/mnAaCIAiCIGwDEa0EQRAEYZCJPvow5Zd/Gqujg9SEiTT88nac2XN2yrGVpVDKQmuD0d3FBFfD3X87mZr6MooLWzn/xGcIB93s/gYcXN633wVgtp7jJ2BwUimqa2rYsGEjDfX1xONxtHYzXje2HSAcDmP7nmS2bZFyXJxUklTKoaOtnY62Nkz1Jmw7QDQvj5EVFYwdN46KioqMeJVOLyuUCT1fhbRYpX1dyeAkk2yqrmbDunU0t7WRiKdFKm8oXXcPKYXrusRiHTjvOjAF6iK1PPXevxkTGMeEiRMYPXo0ATuAZQc8ITQ9DrCLN1ynlE3OwE6lsHwlSVkWHbvvy6K7nmDqNZeQt2IRMy86hjU/vI26sy/1z8rbpzf3vWIE3Hi7y+UX2DzzhMUvrjd85TvilicIgiAIQxURrQRBEARhsNCa4p/8MBO/KrHfATTc8gt0ZdVOOLgnHljKxrZttDY5XjFkFIXHnjmEBYunEbAdzj/xGcpL2jK7e5+KldZy2lQrURNlijuVeDzGpg0bWbdhAy0tTSQSCUARiUSIRMLkRaOEwxHC4bAnTihvSJjROuNZpl2XWDxOLBYjFouRTCboaG9nVVsrm6o3UVZewYRx4xk5agR2IIgxGqVslIwLzNCTz5n2xajWlmZqNtewYf16WltaSaSSKGVh2zbRaJRIOEw0P59IKIQdDJLWngBSiSSJRIJ4IsGm2g20jGpmw5j1mLehZnMNRYUFTJo8maqqKgoLClGWRTY6WU6uuqhMaYHM1S5aayzLJmB5pmpq1BgW3/F3Jv74i5S99CSTvnM50aUfsPaamyDQN3N2zh7wjR9qrv22zS+vt5mzh8uxJ0m5EQRBEIShiIhWgiAIgjAIqJYWyi/7FHlP/BOAtgsuovmb34G8vJ2UAcAo8vLziUaj1LsObW3tKFQmAPur787iiRfnA3DqUf9l6oSN/igvX3zw2/nv+rMGTnOm01LXzPJlK6ipqcZxHQKBIKWlpRQWFpGfl0coHNpKhiAdC0sFg4QjYYpLijEGkok4rS0ttLS20xHrYOOG9dRu3sz48eOZPHkyhUXFdJZpuooQu7r/Vc/n2zWwejKZpKammuVLl9LU1IgxEAgEKSspJVpQQGF+AcFwKCdQflcU0Yg/M6QxJBIdvM5rtM9opXxVKU3NLdTX11Nf30BZWSlTp05jwoQJhMMR786qzrnKJuvdM61d4rE4ScchGs0jHIniGgOWQkfzWPHjO4n9/meMufcXVN53G9Fli1h+6/24xX2bqODUsw2LP9Q8fL/Flz5j8eizLjNm9ykJQRAEQRB2AiJaCYIgCMJOJrBsKSPOPZPg0sWYUIimb/8/Os67YGACrm8BbyidoryigsKiYlzX0NjYiCdJWaxaX8V9j3rBtQ/e+z0OmPcRWJ43lApYGMcL3u2oJB/Y7wFQvKaEN99/i3hHDJSivGIEJcXFRPPysC0vXZOZN27LEdNVzl8KT8+IRKKEIxFKy1w62tuob2igpaWVVatW0dBQz9Rp0xldVUkgECI3CPzHhZ7CkKeDqysUxhhaW1tYsmQJ1Zs2kUzECYVClJSUUFJSQjgcwQ7YZAW/HoLdd0UpxrdO5E39Bq0FreTPyGNU0yiam5uora2nob6ed1tbqN28mTlzd6ewsBBLecfITc0YjWVZGG0w2tDc3Ixl2YysrCIQDHSO62ZZbLrsq8Qmz2DStV+h+JVnmX3mgSy941ESU3fr0zX76nc1K5cp3n1TcelZNv94yaV8RJ+SEARBEARhgJHQk4IgCIKwE4k89W8qDz+Q4NLFuCNHUXfXvXRccNFOFazAH4qlIK+ggJGVowBoa2snkUjQ0JzHbX86HccJMGPSGk469GUv8LoxWLaFcdyMmPSh9T4x1UE4GabpnWZiHR2EwiHGjhtL1ahKCgrysa3s7IE95ITOAknX79k57RQQCNgUFRczZvQYqipHEQgEaGpq5v33FrBs6TKSyQQGnZlhMBuTKSdm0i6Fd15Zv6rc6+fNFOg6DtUbN/H2W2+ybu1aHMehrLSESZMmUVVVRV5eHoFAbvnryceq5yD9IR1idOsYAJaNWkZefj6VlVVMnTqFsrJStKtZvXolr/zvv6xZswbXcTDG8WNcpWca9AQry7JIplI0NjVhlGLCxAkoy/aGjoIfoN87btORJ7P4N4+QGFlFZM0KZp95IKX/fqRPVy4Q9OJbjRln2LBOcdm5NolEn5IQBEEQBGGAEdFKEARBEHYGxlD4s5sZceYpWM3NJObtSe39D5E88KABnSFwK9lBGzBKMXXadEKRCLV1ddTWxbn1T2fR3FrAyPIGzj/pGUJhMgKDN8JLoSxvprf/8RIAhcuLUElFRcUIJk6cSFlpKYFAIEdu6hLPqNcoz1PI9/5RvukSCocYMWoU48ePp6iwgGQiydKlS1m2dBmpZAqDF7tJG9MlD7s6ncU513FYs3oVC957l8bGRiKRMFWVlYwZO45oXh7KsjKiUN/ICmRTGqcBsLxsGS4utm2TX5DP+PETGD9+PJFIlPr6Bt5+801WLF+O0QbQmVkjMzk3hpYWb5bJUDjM+EmTwbbQGu8ZyXlOlIH4tDksuvsJWuftj93RxtSrzmXsjdeA4/T6LEpK4ed3ueQXGN55Q/GNKyzMrqhtCoIgCMIwRUQrQRAEQRhgVEsLFRefT+n/+zbKGNpPP5O6e/+IO2HiIGYKtC8CzNtzHiUlJbS1J/jdo2ezZmMl+dEYF5/yNPl5MTDGl47S074ptHZY27GGVeGVAJStqmDM2LGMGjWKUCTsSydpjyezBS+r3pDrSWQyYlR66GB+fh5jRo+lomIEWhuWL1/GokWLSOa4zHiizK7qaZVLp0F3KAxr16zmw4UfEmtvJ7+gkAkTJjBi5AjsnODl2b22T9Qb3TqGaCqPRCDByrIVnlBoIBQKUl5RweTJkykqKiIej/P+B++zatUqHCeVne1R+XdWu2zYsIFkMsG0adMZM3YMlh3AWGTiYZnMLIQebukIlvziQarPvgyAqrtvYfqlJxKor+11/idOgRt+pbFsw2MPWtz+04+DuCkIgiAIwwMRrQRBEARhAAl++AGVh80n77GHMYEgTd/4Fk3X3QQFhYOdNYwCF0PFiBEcevjhrGr4Hquq9yJgp7jw5KcYPbIeCwuM5xWTGdJlXGLtHTzZ/AQABTUFTIhMoLS0FDtgZwSmrtGpPC+p7RGP0vvmegRl/wqGg4yoqKC8vBzXdVm5ciXLli0llUp4s94Z4w8T3BXFiM7nlD5Pz8NqDYsWL0I7DgVFhYwbM5pIJNLjfh59vy+gsLCZ0jAVgMXlH6GU5YmieFMORvPyGDd2HGVlpcQ6Oliw4B1WrliJdp1MLCulLBobGlm3bj3BYIi999mH0rJytDG+V1/mBLtnIxBg/Rd/wMrv344biVL82vPMOm0/8j54q9dnsv/Bhq98xxNEb/6hzWMP7oplRRAEQRCGHyJaCYIgCMIAkfeXPzHqiIMILluKU1lJ3V330H7Z5RAYOvOgKEsRDIVZV38x1W0XAZq9p97LlLGrPQ+r9GxvJis2JZNJFi7+iFWVywGYWD+ZiooRKIvMNrn/kuMn1fdhet62Gg1+UPHc9d5fimA4yMgRIygrKwdtWLFiJRvWb0D7w8+M2ZJYZtg+IW2okCsOeuKO1i6bNm3ko48+JB7roKiokLFjxhDOCFZktscXA/tO532mNE4HA5sKN9EUasz+YCmUUhQU5DNmzBjKy8vp6Ijx4Ycfsm79Ooz27k88FmPR4kW0trQwYfw45syZgxUMeEUPT7jaWk4U0HjMqSz+7T+Ij5lAuHo9u513OBUP3dPrMzrnYsN5n/Ly89XPWbz8oghXgiAIgjDYiGglCIIgCP1NPE7pF6+g4rOXYsVixA84kLoHHiF58KGDEr+qR4zBclMoY/j7fwq59Z7pAIwuvheV+BMb1q7A0gkskwJlcPFlCuOycf163k68SSo/RTAZZIaehWV1FqNUzr/+AdkRYSibUvc00msCoQCjRo2kpKwMJ5Vk+bJlNNU3ElC5+eldHgyg1dBZtp1rL/KXhSHe1sbypUvp6OggWlhA1ehcwarrPdGd0ug9ptNSkMqnqm00AIsqFpJ7rQ2eR18kms/oMWMpLCqhvaOdpYsX09bSCCbJ2jWrWLNuLYH8AvY//BjKqqpIC2rKgDLGW7aRq/jkmSz63ZM0HXg0VjLBpO9czoRvX45KxHt1Vl/6tubI4zROSvF/51ssWdiHSyIIgiAIQr8jopUgCIIg9CP2mtWMOuYwCu+5C6MUrZddTv1v78EdM2aws9YJpcC2LF55LcIXv1aBMYrjj6rn8PnvkEylWLxkMbW1tbjaBQxYngjR3NTM4sWLqZm2CYDxTROImBB08oDqyZtqR4fnKbqn3f3vYChIxYhyIpEoba1trFixgo6OWM58etl/t3U0ywydpeuV6xqHKv2746RYsXIlzS2tBIIhqipHEwqHfH8si87n3vX67RhTGzzhc2nZUnRW5vRTt9BGE4lGGV05mrxoHnW1tSxftozVq1fz0eKPcLRh93l7sO/8+SgrkBF4u955lQ7K7s+A2bVo6YIiVtxwDxsu+xpGKUb+9R5mnTGfyMol2zwHy4If3qKZu5ehrUVx8Wk2mzbs8KURBEEQBGE7EdFKEARBEPqJyL+foPLg/Qi/+w66uISGX9xOy9evgWh0sLPWHQPvfxDkM58bSTKlOOTAGN/9ZpxPnP4Jxo4fT21DI2++9TbVm2u9mEMGUqkUS5cspTpRTcu4ZgCmNc9gqMWKikYiVI6qBGDDhg2s37AOrd3MLIKmU2ysLYlsPYglg7p0H8aYXZP+DzZs2sSatWsxRjOiopy8vDzSEcW2b3hm7xnTOpawEyEejLGqZFXOL14AfcsbP0phUQEjRowEpViydBlvvPEmra2t7DZrNp845VTy8wt23CPRsqi+5Essu/mPpIrLyFv6IbNO25/yx/60zV3DYbjlTpfxkww1mxQXnWLTWL9j2REEQRAEYfsQ0UoQBEEQdpRkkpJvf4ORZ52K3dhIcvbu1P7lr8RPPMlz3RiCrFwT5OLLKmlrt5i3e4Iffb+JcASmzZjBhZdcyrhJU6hvauG1V19n2dLlJBIJWpqaWbduLfXT68CCivYRlMbLBvtUeqSwqIjikmJc12HdmrUk4olu+tS2/K3MEFu654xO+lNrazNr16wmmYpTVFxIaVk5lj9zYla0GjhsYzOlMRuQPUtadvPjklkWZeUVFJcUk0wmSSSTTJ82g/MvuJAxY8aCsrKB13eQ1gMO56P7nqZljwOwY+1M/vqlTPzGp7E62re6X3EJ3HqPS8UIw/Ilik+ebtPW2j95EgRBEASh9wxNS1oQBEEQhgmBpUuoPPJgim79OQBtZ59H7R//gjNt+iDnbMtU19hceOlI6htspk1JcsOP6ynIN2CBsWwmz5jGuRdcwLjJk2iPxXn73Xd56803WbxkCe2xdupn1QIwuXEyVh/iRO0cPIHEshVlZeUEAgFaWluprav1ZkE0JuNr1bMvj8l4NQ22SNVVsFI539IyUDrOk0FTX1dPfX0Dth2gvKycYDDg+1j5wcx38Mr2hikN0wDYWLiBllBzt9+Nr0YFgwFGjBhJKBIhEAgxZ+5cJkycQCAYyg776yecilEs++WDbLj0yxjLYsSjf2TWafsTXfz+VvcbPRZ+dZ9LUbHh/XcUnznHIt670FiCIAiCIPQTIloJgiAIwvZgDPn33UPlwfsRWvAuuriYhp/+guYfXweFhYOduy1SW2dx3idHsm59gDGjHX56bQMjKsBoX6SxFMoOMmPOXC697HKOOPpoIuEIq1auYtWqlTRPbSKRnyDshBnfPNFPdWgNDwRvQFw0GqW4uATHcdiwdi2pRBytUxjtYoyLMU520enFzS65vw/2ksmXzsl/dknE4lRv3ICTSlKQl09+QQFZ76a0sJj+HDiRsShZRGVrFUYZ3h/5nr/WgDEoLC8elU9+fgFFhUU4rsPqtWtpa2/P5q6/s2jbVH/mqyz9xQMky0cSXbWEWWcdxIi/3MXW3LqmTPM8rqJ5htf+a3HlJy0cp5/zJgiCIAjCFhk6c24LgiAIwjBBNTZS9sUryH/0bwDE99mPpmtvwJ08ZZBztnUaGizO+9RIlq8MMnKEwy3X1zNmtJvVM3y0ZaGMYcKkKVSOGMm0qVN56C9/ob6uls171ACeR01ER3L8kYaKcJX1S7IDFkWFBTQ3N1FXX8+iRR9SWFCcI990ju+k/P1VxptpaPXt6R7XemcSi3VQs7kW27IoKy3NEYd2/n2ZVTeb6sJNLClfzN6b9iXqRkGlfdfwRCIFdsCiuKSYltZWVqxYwZrVa5g5pwQv8P/A5K1trwNZdO/TTPzRVRS/+RIT/98VFL3yDKt/9Gvc0vKez2cu3HKn5urPWDzzhMWXLoNf/k5j2wOTR0EQBEEQsohoJQiCIAh9IPzK/yj/zKcIrFuLCQRovfxKWj93BUQig521rdLUrLjg0pEsWRqivMzlZzfWM3Wy5zJi8EZkefKTN5wM28Z1DXkFBcyaNYeK8grWRFbSXt6GrW1m1M/0hnrtaMDsAcIYg1KKvLx88qJ5NDc3snLFCk+oUunBdVb6bNN7AV7Qee9KDCXRSqG3ECzeYLAArR3y8iLk5+V537ttmfs5cFS2jaYkVkpTtJGFI95nn+r9u2fap7i4mM21tTQ2NPLRwoVMmDKNSH6B5/w0QFl1SstZfsufGHX/bxhz182U/fsRCt5+hdXX30XzYcf3uM8+Bxiuv1XzzSst/vE3C8uCn98lwpUgCIIgDDQiWgmCIAhCb0gmKb7peopuug6lNc648TT+5AaSB8wfssHW07S0Ki769Eg+/ChEaYknWM2Y5uT4JJHxfgGVEQyU8oSdusZ6mltbqN3b87Ka1DiJPCcvvSNDx8sKMkPgfM+eYChIXl6U1rYWwpEwY8aPIxyOAgrjx07qNDrMkPG0MkNJkDOQvs6ZXBlPYHOdFCtWrMBNOJQUlRAMhwY1yphCMat2Dq+M/y8LRyxkj5q9CZieTE5DwPcMa21tY9GiRRx02BFE8goGvkhZFjUXXUnr3gcx6UdfJLJuJdMv+wSbz/ss6665CZ1f0G2XQ48yXPdLzbevtnj8IQul4Ge/FeFKEARBEAYSEa0EQRAEYRsE319A+eWfIfSBF7i546RP0PS9H2DKKwY5Z9umscniok+P4L0PwhQXudxyQz2zd0tlB/VlAgj5HkYKvLFZCmM0jtHU1dWxMbCBlrHNKKOYWT8LIGdGuiEqXPmEwhEsO0BeYTHHHX8SEyZOxDWAskGRifqUPQNvXz2URCvAMun85Axs1IbN1Zv4/d1302I0oSHi8TeheSILku/QEWpncflHzKmb22UL7xpblqIgLw+FoXrTRtrbWzPeYzujTHXstgcf3fsfxtx+LaMeuZeRD9xF0cvPsuqnv6dtrwO7bX/EcYaf/ELznS9ZPPaghbLgljtEuBIEQRCEgUJEK0EQBEHYEskkRT+9keKbrkM5Dm5JCc1f/xaxM89mOLRS6+otzr9kJIsWhygpdrn52nrmzkl12saoXOEKlPGFKH/MoDGa2vo61s1YDcCYprGUJEox/n9DD5P5UMqbOy8SiQCKptY24kmHcLQA1x8mqLtpI9lA5UYNIQ8601lUU+DNHGigvqmRjlQSOxjADocyItxgYmGxW91s3h79Bh+MfI9ZdXOwfDG0K4GATTAUpKO9jdqazUyaPBW1E58vE46y/is/ofmQY5l43VeIrFvJzPOPYNNnv8bGL34fEwp12v6o4w3mZ5rvfsXi0b9YuI7ncRUM7rQsC4IgCMLHhiFkjQmCIAjC0CH4/gIqD5tPyXU/QjkOsSOOovbhvxM757xhIVhV19icfeEoFi0OUVbm8vMb69lzj9QWtu4SktzgWwiGeDzO4pqPaJpcD8Bu9bMyYpUadGlky3hDGw0aTSgUIhgMkEik2FxXTyLlYpRC4wlTGgutLLRSaH9IJFgorVDaGhILKLTCX7z4VlopjIJNmzeTSCQIRcKEgp7AMhTkxKkNUwk5IVrDrawsWZH9wXT+MxgMEA1HMK7L2jWr0K670/MK0LrvoSz843PUH3M6SmtG33kTs844gOii97pte/SJhh/forFtw9//avG5Cy3i8UHItCAIgiDs4gyaaGXwgqQaP5BEOp6EMf5C56Xbit4sPspf4c0H1NnANl0tpz4smT9z16XXm5yUh4LlKAiCIPSOZJLia39E5aHzCX3wPm5JCQ3X3kjD7Xfijp8w2LnrFevW25x14UiWrQgyosLhlzfXsXsXDytlIOCCpb3YTZ5Yo1AGLAxojbEgnozzeuQlsKC0oYyK2AjSg+nS0tXg+/V0J/fVqyyLaChEUCdprKshpZOe+INBobFwUbiA9sKzG++6oAwoPSSWdL5UesHztNKpJI21tZhUkpBlEwoGfK+swe+XDJgg0+tnAvDeqHc9SyzjMeZdeaM8ybQwEiXgGqo3bMQ17qB58emCIlZ//1es+PEdpIpKyVvyAbNOP4CxN38bFY912vaYkww33q4JhgzPPGFxyRkW7W2Dkm1BEARB2GUZPIsmLVZhUJYvJikr09drTJcFhTK9XywDyjdCAzqJbZIkVYiEFcQzj3yDyLgYC1xl9yl98GJgGKPA2P5iZRS2rLGlQFvePiJeCYIgDGmC771L5WHzKb7+x929q4bJ2J+PFgU59ZxKVq8JUlXp8Ktb6tlthrPlHVTuH/4XP0A5GGpiG1g+ajEAEzdM9od4DYcXWjaPSpEZbpZMJv2OpV6egxoiS5fspP9OJBIk4nEUEAoGsLBQyhoyd2hG/UxsbVOfV8fqolX+2uwJaQO2ZRMKhTAYWltacV2NGuR4Yk1HnMxHf3qOxoOPxXIdqn57M3NO3IOil5/ttN2hRxl+cbcmmmd49SWLC062aWoYpEwLgiAIwi7I4HbDKYVSCq0NSoF2Xd8XymB1WVAG1+rLAgYL1yiUsvyeY6/32DbaW5TBxmC0wTV9S18ruuXRAixFZ7cxX5TTeniY+IIgCB9HVHMzpV//MpWHHDBsvasAXn4tzJkXjGJzrc3kSSlu+1kdU6dsWbAyW9EFlPKm1fv9xl+jLU1+TT6VTZW5ezM032yq299KgW17HkipVApjTFctKMNQPCOP7tfbAI7r4LouKIVlWWij0xG5dn4WeyDiRplRtxsAb4x5FY3O+dW/D5YnkiplkXKS3i9DIPtO2QhW3nAPy6+9i2T5KCLrVjLjkuOZ9PVLCTTUZbbbd77htvtcCosMC95SnH6Uzbo1g5hxQRAEQdiFGDTRKt2DZgwYrT0xSUFAgY3psmgsozHK9HrRypBSAVIqhOOl4AlLvlt95lNZoGyw6FP6Cp0Vv7xoGN6iXSyjsX3xzRthoVHWUI78IQiC8DHFGPIeeoDRe82h8De3obQmdvSx1D7yj2HlXQXwjyfyuPjTI2lts5i3e4Lbf17HhPFbjw1kunx2ZWnrRzzb9CQAVe+NwcZmKA4F7A0q82/P7+NcSWioynFdMcrzVNJoX+XxxB8vAtbQuU+za3cn5IRpjjSzqGIhuVc3HQdfYXkxyBzjC1iDldvuNB92Agvvf4HNp12MUYqKx/7EnONmU/7oHzPq2u57wG//4jJilGHlMsWph9t88O7g5lsQBEEQdgUGbfZAYwzaGGzb9ma/0RrturS0ttLR0Y5Kd7GpXMOm9xaMYywcyyakNA2NbTjNdajWJm84oE6gFBiCaBQddcXUrSsmv49xdRUajOUbhr4IhwZLEYqEKS4t87zJLMv/TRAEQRgqBJYspuwrXyTy4vMAOOMn0PSNb5M4+phhEWg9jTFw+51F3HBLCQCHHhzjh99toLCgFzunR677nzmvXIyB25Zfh8FQWTeags35uOOGg5xjuvytAIOjXTAQtAOgep7FLsMQEkx6IhOAwCgsZWFhZ7yrFOR4Mw2NEwnpILtvnsvbo9/k7ao3md4wk4DJCsImI7yBFbAy64aScKXzC1n3teupP+5MJt74DaKrlzL5G5+m/JE/svaHvyI+eQZTpsPv/+Zy9WdsVixVnH2cza//oDny+KH+zAiCIAjC0GXQRCulFJZSnpeV8mSf2upN3H3nnWxcv863ViBtmikDAd1760UrwHKx3DgJR7OhJUVjEiyjCZECY3BVCKXg2Q+CfPiPfCzT+8uh/eGKnqWfNn69PGsMlaOruOiTlzB5+kywQJtsuFpBEARh8FAdHRTddB1Fv/wZKpXChMO0XnIZrZd/DgqLBjt7fSKegG98p5xHHs8H4PRPtPHVq5uJRHqfRvchgp6C9Vr9i7xW/xI2AXbbNI9GU4PrdJ190H/3Dcm3WzpvxvPqdl1AEYpEus+U2CX7w0ZiUIpAMEggGEBj0Dp36N3QuifTGqazuGIR7aE2Fox8h31q9s+5B16oBoMiFAp7sRaGVvYzdOy+Dx/d+x9G/enXjP7DrRS/9jyzT9qDzRddwcYvfJeRlaXc9YDLN660eOtVi8+cY/Hd6zSfvtIMKRFOEARBEIYLg+dplf70ZxC0jGbRwoW89PxztDY3EbBtLz5UZmvVJ9HKoEElCRgHDTiBKC5BjNGkTAqlwCUAWNRuTtBgNIbeW/lGGVxlAG+K7HQ2DRrXdVm6JJ899tyLSdOme2azMSg1VA17QRCEjwHGEH3sEUq/800Ca72AM/GDDqH5mu/gzJg5tNw6ekFtncVnPj+CdxaEsS3DlZ9r5sJz2/vkJLYlcUZj+NXyawE4uvxEqqJjqNfVxOPxXqYwFMjmTWtNIpHEKCgpLSUQCma9lRRkBS7f4lAM0VPLmeTFJxgKEc3PQylFMuV4cUKtoScm2sZmj+o9eXn8f3l/1AJ2q59DvpMHeDZSMpnCsiyKikv8iXmGUu67EAhSc8nVNB31Ccb94vsUv/48lffeSvljf2LDl34I517Grb8LcN134Z+PWPzoGpuF72uuu1X3SVAWBEEQBGEQRStP3vG8rdIBy51kArQmZNuMHDWCvGgU8LyULMtC98GCNFhoZWMbLwCtowJobBQutvF6W7XyIk/ZxsXG6ZN9qvCmmjZYGOVN+20ZSCbj1NTUYGmDk0xie4MIh11jSBAEYVci/Mr/KPnONwm/+QYATmUVLV/7JrETTx5WcavSvPteiMuvqmDjpgAFBZrvf7uBww9JbOerxnT6AHhy08Msa/uIPLuA88d/ho9WvgOWIp5I4GpDwLK9ziFg6EoLnnCjsHBSSZKpFMFQiIryMmw7gDbeb36Pkx82IP1+H9yc90xOplR2VSAQoKJiBAE7SCqVIpVMEI3k4XYKeD74GGBC80QWdXxEQ149b1e9waHrDvd+05qOjhhKKcZPGI9lD6J52gcS4yaz/JY/Uvjac4y79YdE165g4g+uYuSf72Ddd27hezccxZTphl/dZPHw/RbLlyjuesBlVNVg51wQBEEQhg+DaBVknfNVegigH4shHA4xauRI8vLy0MablNpYCqcPdrHBAmNjGw0YjFKeSIZBGe3HfPBEK4VBKRfdByvVMoaA9sxbrbz4C8oYUok47W1txOIJLOPPiogZuja9IAjCLkxg6RJK/t93yPvn4wDoaJT2Cy6m9fLPY0rLBjl3fccY+MP9Bfzg2lJSKcW4sSmu+2EDu83Y8gyBWyNH+8iMyG9KNXLrCs/L6tQx51NVMIZN5WsJRyI4KYdUMoGdcRcZmi83zw9aeYG90SQSMbTWlJSXUVJWhjaApTA6O4vgkPbsgVxnMI8crXFUZRWRSIRkMoHjukNOsMqi2Kt6b56Z/BRLyhcxo34mozpG4bguiUQCLMW48eMJ2HZWRRwGtB5wJB/tcygjHrmX0b//OXnLFjLjkuNpPPJkPv2tm5gyYzrfudrivbcVJx1sc9u9LgccMti5FgRBEIThwaDNHtiVdDBzz0vfixGV8VCybbRJm5W9WywMAZPCwsHGIWBShEySoEkR8NcFSRLE+24Z06f0vUtnoZWFVl4MLdOpi9t0miFRPK0EQRB2HlZNDaVf+gJV+84j75+PYyyL9tPPZPPf/03LN789LAWrjg7FVV8t5zs/KCOVUhxyYIy7f1273YJVBtPZs+iWpd+nPlnLmOgEzhhzIRpDeUU50fwCHO2STCT8LT1RaCji6TtZ4SYRT2AMFBeXUFBUlFGnlKX8oXQ9pzGk6OFSp8Pijxo1knAkQiKZJJn04o4Nufz7VLZXMqFpIkYZXpjwHK5yicfjuK5LUVER5RUVYFmZWfmGDYEAtedcxocP/JfNp30SY9mUPvdP5pwwl3OfuoI/37mBiVMMtTWK80+yufVGhR6q2qIgCIIgDCEGT7QyntO+Z3Cp7OJbWY7WaAMuChfAsrCM6vWijOcB5VgBHBXAVTZa2bjKxlUBf8ldZ/ctfRSusnCVQivlDRHMDC1Q2MrO+pKpbCB2QRAEYeBQra0U3Xgdo+fNpPDuO1GuS+yQw6h96BGabvgp7sSJw7ITYeFHQU46o5LH/pGPbRk+d1kzN13bQHlZ/71blIH/1j3DEzWPYGHx+SnfJBoowBhDaXk5JcXFaNehrT2WedcNTby3b9qH23Vc2tvbMRhKy8soLCj0JoLxtzbuFtSgoYryPdDTwhtQVFREcXExrusSi3UMecFnv437EXYiNEeaeKvyTdrb2zDGMH7cePLy8siM1xyGuMVlrPvadXx071M073soluMw8i+/5aRPTeXZ/b/Oice1o7Xilh/bXHyaRd3mwc6xIAiCIAxtBtfTKuM9lbvOd+u3baxAAK0UrvE8mSxUrxeFwlgWRtloK4C2bN8rysa1grhWEK0C3jrLxqhAn9IHhbHSx/DjWvkL/gw+2p8JZ7gaXoIgCMMF1dRE0Q3XMnr2VEp+/H2stjaSs+ZQd+c9NPz2HlLz9vS8N4YZWsMddxdy8lmVLFsRpLzM5ZYb6vnMp9r6LRRX+g3VmmrmusXXAHBS1VnMK9kXg0Epi4LCYibPmIZtB2htbSYRj+NFdbR68LYyXZaBYmvHSUtqhlhHO+0dHRQXFzFn7u4EQuGcrQ1YfoeTyQ1cMBRRXT49DArbDrDb7NnYgSAtLS2kMt5w22Jn3avORwy5EfbbsD8A749awDprA8qymDl7FiWlpV6ZGuLC27aIT57B8p/fz5JfPkjrnL2xkgkm338Lf39xBD879EHCYcP/nrM47gCb5/4zdEudIAiCIAw2g2rBp/s50x5KaYzB87IyBmMplGWB8WJS9XYxGCzjZBftYhlvUf7iffd+U8btU/pepCwyGc819xQKS1kopbxzMIYtjD4QBEEQdgCroYHiH/+AMbOmUPKTH2A3NJCaMJGGa2+g9qFHSBx5FASGR1DnrmzcZHP+JSP5yY1e/KqD5se497e1HHzg9gZc3zo/X/ZjapM1VEXGcvGEz2GjCKAwxkDQZvrceeQX5BGPx+jo6MBk5CoLM2TknnR0TAALVxuaW1tw3BQjKyuZOGMWxrbBgA2ewdFT1lXWk2lo4ccCzR3SaSkIBJm+2xzyCouJxVPEOuKQsYdUzv1R2/CQGyihSPn/WRgsXBRjWycwrnk8RhkWH7CI4hHlTNttNwKRqOedvot0+LXtfRBLf/MYS3/6R9pn7I4dj/Hll87jDWt/ppXUULdZcemZNtd8waK9bbBzKwiCIAhDj0EVrWzjmVJGgevbJpbBC4+uQCuDUgZLp4Oe92WBzqenvJn+UChj/Jn/8A057y/Tl/T9/Aa0IeD66fljAZXxpm92lcHY3jmpjMolCIIg7ChWbS3F3/8Oo2dNofjGa7FaWkhNmUrDtTew+R//JnbO+RAOD3Y2twtj4M8P5nPUiVW8/GqESETzlS828dPrGqiqdPvvQBkdQ/Fq3Qv8fdODKBSfn/x1CoNFXhxs48VnNAZGj65izu5zUcqiqakZ13HJHeA/NF5yuXnRxOJxmptbsAMh9tpnbwoK8jF+Z1In/OuQ/q9TCMuhgkp7bqtO2TO+wFM+opxZu80CpahraMB13BwJz+8kRHfzjNt5p5mdfMfG663cc+3eBJIBYmUdNB5Ux7jxE9DaxVb20ChO/YVStB5wBIvvfoLl191Nx+SZzI29yXtNE7k6cBsAf7nX87p64+VBzqsgCIIgDDEGTbTqi4Gkun7p1ZLtUVTpIXpbWXJswd4tA3zOgiAIQnfsNaspueZrjJ49leJbbvKGAU6fQcONt7D5sX95YlU0OtjZ3G5WrQlw7idH8s3vltPaZrHbzCR33V7L+We399twwK5sjK3jewu/CMBxlaeyV+kBnYQdhUIpRTAUZt/9DiCaX0hbewdNzc1b6Ozx9hp4OaTrMbJRMsGgDTTWN5BIpRhVWcWM3WZnJkixhuFQ0S3hiYqGaF4es+fOoqC4iI54nLbWVtLzJ3pnrXvwslI9SFgDlE8/DwAYjWVAN2qq3hoHwNsjXufNjjc8mU0P/+GBPaIUzYcez6J7n2LFD38N48fwC+cqnuMIxrOGdasVZx8X4JqrLJobBzuzgiAIgjA02HWsNkEQBGHXxBjCL71IxXlnMXr3GRTd9kusjg6Ss2ZTf8svqX3kH8TOOAsikcHO6XaTSMDtdxZyzMmVvPKa5131+c82c9dt3uyAAzVSKu7G+Np7l9GcamRy/nQ+PfGL2JadEXeUUrja8+6yLIuRVVXMmjMHY2Dz5s0k4nF/Lt1cuSMdCH1ndNVkRSuVkw8FtDU309jchB0Iscfe+5BfWOR3UuXk1Bd8unleDWVMD1+VAtti/KSpTJ0+jaTrUtvQgBNP+rG6TM7WXZed41bmRflUnqeVsnATKeobGihcWcy42kkYDNcs/AIbYms9cW0Y3ZI+Y1k0HXUKH/3peZZfdxf7zGnjfebyGe4G4C+/tzhqjss//rZraneCIAiC0BdEtBIEQRCGJCoWI//e31F5wF6MOvFo8v75OEpr4vsfQP2tv6b2b48TP+W0YTsMMM1zL0Y4+uQqrv9pKfG4xd57Jrj3zlo+/cm2AdXhjDH86KOvsbRtIUWBEr4541oKg0WdfoccrySliOQXctChhzGysoqU47J582ZSqaQ/AL+rz9PA0z38uhfJKRGPU1NbiwGmz9yNvfbdj0AwnBGotNbDS6jaBsYPcFVUXMyBBx9C+YgRtLe3U1e7GeM6AJlgCD3uP/A5JDcog065NDTU09baTklZOVdO+jozCmfT6rTw5fcvpT3ZivVxCAZqWTQfegJL73iMjXf8gZsPfZjn1RHMYDG1zWG+cEmAT+1bw9J34oOdU0EQBEEYNES0EgRBEIYU9rq1XryqGRMp/8LnCC38EB2N0n7G2Wz+2+PU33c/8RNOYsDGy+0kVq4OcOnlFXzyspGsWh2krMzlm19t5Laf1TF1ysB5V6X545o7eKrmcWxl89Xp32d8/iSAjLBjWVbm78yibMZPnMwhRxxBOByhsbGJpqYmTwTKRInMHSIIOz473bb2VTn/QjKRoq6ulvaOdkaOquKY446juLQUbG+CFKVUp3NTXbyvhhvZs1co22LilCkcdOhhWIEA9Y2NtLa2eedKZ18q0ymNgTr/XG8u/5uGluZmGuoaCIcjHHHkUcycOZvv7HYzJcEyVrUv4weLvoRxdx1RsTd0zNmHldfdTflffszTJ9/E9+0fEyLBi4vHcPyhEX6838u0/O+jwc6mIAiCIOx0RLQSBEEQBh3V0UHeQ39hxCeOZ/QsL16V3dCAUzWa5qu+TM1Tz9N0w82k5u0Btj3Y2d0hajZbXPO9Uo44voqnn8vDtg3nnNHGX+6t4ezTO3aKFvdS7dPctvx6AD414Qr2LTu4F3spb8IRy2LeHnswZ95cUBY1tXU0NTejtek02Ixu4lV/0F3ASotkGnAch/qGBuqbmgkEw+w/fz6TpkzFKBtXm067DjehytDzUDHvmis/9DxYgSB77rMPU6fPwHE1NZs3097R0Tkd0nfFInsF+/s+9UxHR4zq2lqSrmbqzOnM3WtvwtEoZeERfGfWT7FVgBfq/sMdK2/ux/wMH5JjJ7H5mh9z2t9P49mzf84p4SdxCXD3R4dxyPHj+PPM36B+90dUe/tgZ1UQBEEQdgrDcx5wQRAEYfhjDKHXX6XgT38g75G/YrW0ZH5K7L0v7eddQOy4E4Z1YPVcGpss7vxdIXffW0g87vUZHbBvnM//XwuzZqYG3LMqzf/qnuWb71+ORnPEiBM4fcwF3eI89fQ3eKKJqw15BYUce9wJtLW2snTxIjZsrMY1UFJS6nkxYbAyPkDpiEqd5ZLek+uxRc7fqpM4pl1NbW0dm+sbMCj2O2B/9t1/fy+Skq26HX24iVbd8E/GGIOlVI7wZCguLuXIo48h1tbK2nXr2LBxE5WVIyksLOpy9TU9X9/+xJ8QB0NbWxubNlbTkUgwomoUhx55DEUlpZloV7OK5nLl5G9y64pr+d2aWwnYQT47+csDlK+hjVtcRvTqi/l/V2nO+NN/uPlPU1nYMYVvr7+KW6/exLe/8WPOvzCBc/F5JPfZj51WgQiCIAjCTkZEK0EQBGGnYq9ZTf5fHyT/z38guGxpZr0zegyxE0+m47QzcKZNh11khrfaOovf3lPEH+4voL3dO6dZuyW4/NOtHLBfYqc6jv2v7lm+/t5nSZkk+5cdylVTv03A6r1rl1IKY4PRhopRlZxyxuk8/jAsWbSIjZuqMShKS0uwVDqCkvKjGRmyw9i2xwOrp8Ft2RhJyWSKmtpaGhobCQSD7Lv/ARx17HHkFRZhLAutTWam4OGOQaGMPxTTkBGs0l5YSllgGabMmM5Jp53G4489yro1a1m/YRPjRkNhUVEnmUob482gvNWoV9tLesCooa21jU3V1bTHYlSNG8cJJ3+CSdOmgKXAZAconlB1Os2pRu5b+2vuXHkLwMdWuALAspjzyTnccyE88eBqfndfEevbq/hi4qfcfM9arrnnBi4e9xn0uafRcdY5pGbvLgKWIAiCsEshopUgCIIw4ASWLSXv8UeJPv4I4XffyazXkSjxI4+i49TTSRx48LCeAbAra9ba3H1vEfc/lE8i4YlVUyYnueSiVo4+Ir7TQ3J1Fay+OeNaooHee7EZ4wX8VgBKoTFUVo3lhJNOwnEdli9ZSnV1NU4yQVlZGcFQkK7xpraPXMEqK3h5azTxeILNmzfT1NyKsiz23nd/jjr2eErKytAKtNYo3/srve+uQloSSnuzZcRCAwaLyTNmcszxJ/DPv/+duk3VbNpUg9KG/IJ8rIBnAmYFq/4gPURUYSmFNhoDtDQ1s7lmM+0d7YwYPZoTTj2F6TNnQsDGGL+MmGwa542/FBTct0aEqzS2DZ+4IMjxZ8d4+NEG7vt9hHWt47mSX/ODdZu5+qe/5IqfHkXFjErazz6PjrPOwZk6bbCzLQiCIAg7jIhWgiAIQv9jDMGFH2aEqtBHC7M/WRbJPfei46RTiJ14EqasfJfxDDAGXnk9zD33FfLUs9FMg3y3GUkuOq+VIw/f+WIVwL+rH+WHC7+63YIVZG+RwfNaMtqgLIvxkyZz1tln88Q//sHijxZSU1NNW3sro0aOJJpXiG3bbH3uut6QFa4UngCVTCVpb2lkc1098USSUDjKfvMP5OhjjyOvqBijPC8vZVloX9gZ7hiVK+6kyQqD2tVYtoWy8L3LLObM2wMFPP+fp1i7ehXr1q2npKSIihEjCEUiePMtAv4MkDuGwkJh0LjGkIjHaWhoorGxAe24jBk9lpPOPIOps3bDBIK4AMZgK6vTIFKAc8dfCmSFqw63nS9M/Ra2Gt4x7XaUYBDOOyfGaafGePixJPc/kE9N7Ui+y7XcwDV8cskfuPIntzPrJz8gOW9POk76BLETTiQ1b89dxntVEARB+HghopUgCILQL6iODsL/e4nIM08RferfBJcvy/xmAgES++xH/MijiR9zHO7o0btUA6qxyeLRv+dx/0MFLF4Syqzfd+84557ZxkHzE70Xq/pxhJajU/xy+bX8Zd3dAJ5gNf1aona05+Nkhpj5XztPMYdRaWFBo2xfDLIUI8eM5fTzzuP1l//L66++QkN9HfFEkhElZRQUFhKN5mEHLN8ryNuvpxPemi+UJ3sptKtpbW2hqbmJ5uZGNDBuwkQOPuQwZs/dg2h+AVgKbcDyhwbalur7dTXZoPK6h0x1T8502aTLMXNFP/ru3ZQJcG86Z0UBxjUoW2HZCqO9+6Zs2zuWBXPm7UFJaRnPP/sMH763gJqGBtpiccoqKigqLCAQDPpiU9ez6io2qoxnV/pcup6FweC6hpaWFjZvrqUjFiMcibDHvH048JBDmDh1Csa20GmJzPLicmUO5Q93VAbOG/dpFIp719zOH9fcwdLWj7huzu0UB0v7dO36g1yx0GRHv3rfMxvtPD++SBguPLedc89s599PRfnD/YWsXF3Ir7mSX3Mlh/MCV753G6e8dz0l1/0Ip7KS+HEnEDv+JOJHHIUpKNhJORUEQRCEHWOHRSttFCbHsOstBoXrG5G275quAWMptFZeYFED2oDGYFmqz/bmtnLQ8+TPvT8LhcIog067w/vTZ2sUWDZGK5RROMoLSGvtyIzf/Ywy2fM03opOQVy7zs2U/iX7qdIjEFDKN9WV8WNjKJTZeYZbb8iNpuKt8M8pnffclpk/7KXXJ2A8Y1apbD+x8QKNdC9VJh2SdogUBJ90efDKQnaAR/ey4G3VucGUbZh55SEbwya9RW+lifTxhWGCMQQXfkDkmaeJPvMU4Vf+h0omsz+HQsQPOJDYkUeTOPoY9IiRu5RQ5brwymthHvhbAf9+Ko9E0iu8kYjmmCNjnH1GOzOnp3bglHfsYWhI1nHNB5/jnaZXATh99IV8asIVhO3cIZg5QddzYkSlQ0YZQFmeVxWk68z01n6Np7wfCkpKOPToY6kcM4aXXniBVStWUrO5hubmZgoLCikoLKKgoBCs9DvddKth0mHBO89CCEaD6zi0tbfR3NxMe3sHScfBiuQxd/fdOfyIIxg3fqIn1FhWNo9eVZxTR/XlHd95yBr4rwo/Y110i86YnP397V3/5Izy60mzncPyVA/nYWXfyVmlLX0vLYxSjB4/gU+ccSYVI0fy9htv0FBXR3LjJtrzopQUF5NfWIAKBTMB9NNJZe91WjbsOlQzi5NM0trWQWtrCy2t7biuobi0nIMOOpj9Dz6IguJSP6/pYaaeYGXSKqny3ke5Z3fuuE8zIlzJL5f/hNcbXuKiN07klrm/Y3rh7L5fux1AZcqQZ+foHLsh81wY/3nYFianbJApXdnrQE652oY5ErDh5BNinHR8jNfeCPPQI/m8/FqEF/ThvMDhlAWauYA/c2n13ex53+8puO/3Xt188GHEjzuexKGHk5o1p491s8q5HvS73aC278kYMLZkQ5Iptl67Jb3O0Mty4CXu28wqu6/RnWzIzKFM+mjp+npo0KlNodIidJeykKmHu7Ypsg+B92xZmXZJuk1hDZ1TBbqWB5Mpy8qv1IzJPgs72qYw6X+71g2Z4jbU2hT9Wzdky9HwrBuyPRxsf92gsm20rnWDggF7PnaknA9ElnZYtPIyZfnden0oRgq0pcAFW3txGCzLwjE6+xIwnhCk8bftJ4wvLuEbHpks9SH/llEorXCVwVhecFfLKLSyMCi0UVjYWMozFjUKu9eldOBJV3gZ40tnK8TsddiCeZ8xxhXKAtf4L6hO9k5uc2MokK3k/D5c79OYTBmzLAtX64wh3ZcnLqAsXO1XqipteOQ2Z1SnPAyla6PSxjOdywN+QzT3NdM11yqnLKRvuePvmy7u3kdvjWG9YycjDCzGEFiymPBrrxB+5X9EnnuWQPWmTps4lVUkDjiQxIEHEj/scEzprjP0D7xX3dvvhnj8n/n888k8auuyQ5WmTE5y4nEdnHBcByPKzXaftmfjdBd0+sIrdc9z3eJvsjmxiYgV5Yop3+SIkSdgKQudfs4ylR1+vW4yLwevUyanY0KBZW2pQ0L5hppFNBxl3ty9GD92Aq+/9ioL33+P2toaahrqqW1qJBKOUJBfQCQSJhKJEAjYXpVp2yhfzDDGoF0NWpN0HOLxBIlEkvb2NjpiCUCRV5DH+DGT2X2ffZi3xzzy8wvBstBKZb12chpJ2bdaH66plb02mevVRQTL1oF473rLZC8a2XrQGFAWvtilMu8KjR4Y6w7vOLaVtqG9C1JSXMoxxxzLrFm78dxTT7N65Uqa2tppaWsnGApQVFJMQV4egVCYkB3Esm0v3/6F8N5qXoa1dtGui+s6pJIpYh0xmpqbiMfjYAWI5OUzecpUDjn0ECZOnkIgHMX1y5cn3IE22rc5dOZiZcTQnHM5fOTxjMubxE8WfZ1N8XVc+tYpXDX1O5w59uKdM1xQgbZznhX/ulq2X/ZzRCjTi/upAFsp324g877tLoP2voGmFMzfP8n8/ZNsqrb46yP5/Os/edQ3FHMbV3AbVzCreB3n6Ac5t/VuZj73NNHnngbALS0jcfChJA453BOxdpu9VRFLGa+hlG1U5z53O2Y3ZAXdodPBkSsLqMw98uzHTra0Md55pS9OL7H8StbVGs/TMHdm1Bx5x1dHuzSTB52MDWk8j8+soKt8QddsWXzt1KZQONrf3sokimdDDp3zTT+XOVKC/+o0/rsblOXZ0n1tUyi8NoWjdVa0yahUOW0KpXI6VYbOtencpvD+TWsb6mNaN7ADdYOtPO9p108n15rJGjoDdf93oJwPgF2jjOnN67U7LS0tFBcX88HGBooKC7FQOH1pcCqVeevbxmC7Dk89+S9uvuF63FSS6dOmk19YgMFrxnrqYv9dAcu2wRi0zslzH+65ZTwRyrUMWpmMZ5gTS7B6xSqSSYfLr7qKMy68gJTtCVeWHiDLdLtQ/sOfFSnsjIHuS5E5RrlrmRyxOP0y9f7V2mDbFiYTFSOdzNA5X6MsvxI1OdVLVkPOiFaudy5K960hYdLXMOc6eMZrz5XT0Lky4N3PrJdYulzYud4V2bYsKK889FQW0rfcsn1xOFcE61VOGP7T0O9KJBKE3n2b8KuveELVq69gN9R32kRHoiT33ofE/vNJHHIoqekzIBTaQoLDk2QSXn09wlPPRXn62SgbN2X7e4oKNYcfEuOkEzuYOzvZL/GqMsJK9+BFPlt+RuoSNdyy5Ac8U/NPAKoi4/jGjB8zvXBWD89WZ2m957zkHk9h6y7dGbmWitZYypvZDjzhqbGtnqWLl/DRBx+yctkymhsaaG1pAgOFBQWUlBQTCoa9xn/6mK4hkUqSSqVIJZMZDyVlWYyqqmTq9BnM3G0mU6ZNJ5yfD8pCWTau6/pD4rpfrVzRaofqXwNKWTmGm8oRrfDsgVwxMAcLMFp7jTjtN+52JC/bQGHhmlzxNH3nvPGD8Y52Vi1fwdJFi1m8eDF11RvRyRQpJ0VhQSHhSIRwOEI4GERZXqPRGJeUq7EshZNK4SZTxONx4ok4CrACQcpHjGDajOnsNmd3Jk2ZQiQv3x9KanvvWjyxyvIbMPT0nvQbKV2vT2uqmRsWf4cFTW8AMKtoHt+edcPO8bpKizKozPsP8DzT/LLQ5yTxjP7Ms6jwetJ7SGt7yq3jwCuvRfjnk3m8/GqUVCqb7m7lmzgj+iSn1N7DPolXsHKO4JaVEz/4EBLzDyKx974k5+2BycvLSTlrQ2aECYMnkvbZbvA99K2s3ZCOmTdU8Dp1s3VbTm2VtZ+UPyRZ+U3qvuTft5OUZaFUrs+Zd7yu5WHoXJk02fLg2dKuF8vQ6Iygmy4LCnBtk+5PoFubwhhsy7Ol04+Zd9mHzllvuU2R9o7y3hPpc+lTm0KBMf7EGpYiPZ7Hu779VzcMHDl1g18xKBTWFuoGowzaYljXDSpbSHMEHjrXDdrr5LAM21U3WHZ6MpnudcNAXY2tlXPwPeMtC91D27m1pYXZY8tpbm6mqKioX/Kzw6LVhxtqKS4oQCmFY/f+wikUSnvGi6U1ttH854l/cvMNN6Bdh6lTp5KXl+89qmmBqz9ui/8AZU873QvQNyzjLa4Ckw7LYAxOLM7qFatIJJJ8/otXc9aFF5BQYGxrSFUq6fNPq9beyzjd22N8I9zKtJk8j7KetHHvkVSkDS1PAjKWtT32204h98HLDM/wjQ3wvAuCui+FQnkVLngvaP/TgkyvWM6mALjW0HrJpF8MXqPEszC9JopfHoxXKSvf5vREzK7N3bQBD8a4XpnwZ+3SvegU8V5gQ83x92NEKkVw8UeEFrzrLe+9S+jdd1CJRKfNTDhMcvbuJPfYk8S++5PY/wAoKGBX8qYCb+a//74c5aWXI7z0vwht7dlCHI1qDp4f56jDY8zfP05+fn8fve+1Q0oneWTD/fx6+U20u61YWBxfeToXT7icklDpto+Y+07ws9DZBdxbqYzla1Sqy3AF49cjeMPSLO/doi0NRtPS2MjaVStZvWIFb7/+BqtWLMNgKCsuwbYDaNfF0ZpUMkkikcT1QnRnsJXN4UcdzYGHHMKo0ZXk5+cD2bhIacNwS17fub27vSa3QxPPQAsGQ573UcZQzdkm92tPj4PRoA2pZAq6nN+AoKysV3k2i516Qy0MsViMjevXs3bVKhYvXMiCd95GOy6hcAhXa68BGggAhlQyicEQCoaJRLxA/vFYB47jMHePvdl7//2ZNHkKlaNHEy3I9zzlVfrYvnxoDEa7OMlUzruyc6k3bPkpcI3Lk5sf488b7iamO7CwOavqIi4Z9zmKgiX9fRUzZEUaMjHDQsEQyvI8vZTpi90A2iIrYAIYne246WI3GDxbc0fshuZmxbPP5/Hs83m8uyCM42QL6cjiGMeMfp8TnH9wzLr7GBlf32lfY9ukZs0msc8+JPbZ1xOyZs5E+Sq9X8ywcgRdZVRmqKdR4Crdg6DrFUYLhdGufz38eHlD9JWSbZQa/3/le1l5vxplsI2F1QdF2iiFVmk7yKsblNZYltWtLID3TA2l65P2svOGSUL6aU8Lurk2JIBjeUpW5zZFWq4wfjvEf6cApg/ty51JrkCR26YwftvKE68UAbcvN0vhZuoGf/SHdj2Rfwt1gx6ybYoudUPazsipG7Ty7ISe2pde3UBOZ89wrxsgYDz9o7doK+2/5T0X3rOhsZSV0bPdAXY821I5T7edja+l5JbzISla/e+9ReSFQ2DA7ZOHtl95aY2NwQZeeO5Z7vzNbzCOy/iJ48nLLwCUN2SQ3g8w2jpZwzyNZdme51VfGl0GbBTGUqRcB8dJoYxGJ1NsWLueZCLFhZd8ihNPPZWUL1oNJTJuzPhuvJZFWXkFwWAop1JUGcvbEyhMZriI8d3Yld/zpIwh1tZKe2sbGD/K15CqVLpXh94KT/1WlsJxDaFwmNKyMiwr0NPWW07d7wVQxtDS2EAyHkcZnR1nnPGY8CqfoVXhKr8d4TX2XFeTX1hIYWERStnezybd2Eh/eKJVbgMtIzdpjXFdmhsacFIpT8TszfkqRTiSj1KD9KzkNFA9QwOi0TwCwSCdykLXczGdf8qUfQNOKkVHexvxWIxkMonrOGj/5UvGuOs8DNfgef0FAgFCoRChcNirn3rK6HY+ZFZTE+HlS4ksXkT0g/eJfPg+kcWLsLoIVABOSSmpufNI7rmX51G1++6QX0i63GQVjs5XIfeEEokEqWRycK2qnGxlhzdpEokE8VicdRuDvPdhCe9/WMLb75WwcVPnmfVKS1IceECSg+bHmL9fYps6XW4MB++h0STiCVzH6dfTirsx/ln7Nx7YdA+1yWoAJkWncenYL7Bb/lzPsNkR/FNI9+wFgkFCoWDGMM/c+hzRJjNMOnMV0i0tjXZSrFy2jJ/f8BNaW1sywb+3VTTGjBnHuRd/kklTp+amSPrQ/cOW3hPpYu79olEUFBYSCoX8rXvzHObEJDGaVCJBrKMDtOsb8p2fm/S2A/HIdBKwMrkDjCGVSrFqxXLeffMNXn/lZVJOyt9HEfC92PLz8kk5Dq7rEAyEqBo3htlz9+Cgw49kVOXoTJnzXhs574lMSgAapSHW3k4ykfAEvS6XcVvn3piq596a3/Bm6ysARKwonyg7izNHXEhpsHz7Lk4POeh2hy3Qmoz9EIqEKSwo8sWrvtkNnrLr0trSgptK+vaUv0GXjqH+tBtaWm3+92oJr75ZynsfFhKPdzbgZ46p49CSdzgs9RwH1fydCc2LuqXhRqPEpk0nNn0G7dOmofbaG7Xn3jCqyp/lsqvdoMnV9XLtBqU1TjJJS1MjruN4tcKQspOgx/pBkZkhVhvvuS0rryAUCtOXVktakFRGE2tvp72lFaWdrEdKZryVP2y7b/rogON5FXlDfV1XEwiFKC0rx7YDZIexdW9TpMt0ur6zAIzBMoaWpkbiHTG/LAyls4VttSmwFK5ryCvIp7CoGEv1oW5IC5LGgOvS1FDv1Q06Z3ZXlZExgCHWpsiIVV7uXG0oKSsjEs3D8v05sx0Y9KpuSCUStDQ1YVwHhk3d4Ak6PbWz+143eO3LjrY2OlpbUdrN1A1mQAXs3rWdI3lRiotLsXLega0tLew+ZoiJVmdc+ClWL1/uvWj78rJWeLGgjFdJK2NIxGK0tbZgtCEUDnnKpD9+04ulseOO9J7ybbCUhesr1/n5BeTl59GnyZ6N55VkFHTEO+hob0c7DpY2uI6D0YaC4mJC+Xl+f+rQCiToCRRebeECxWVlfPv//T9m7b47Gj8uCGSuv+0LMtlGiV+pGOONt3UcHrz/zzz6t78Ra23H7tIQH3S28MLTni+379lvMXv2HL75rW9TVFXZt0rAdwGOtbXyi5t/yuuvvAyOg5WpVNJNPu+6WXpo+RMZ48VR0ACWxUmnncanLv004bw8vyyk49t4r5GAP9Y+K2ICeENkLWDdqpX89MYbWbVsOQqwe1vN7BRvnS3lJdvr5wLhUIQvfulLHHrk0biBYLcXqjHGD3mjMoaWN+THixlkuZrXXnqeO2//FXUb14Pj4KZS3jbK8jwQUNgo36XWZIIrWrYnpFvBEHYggB20wVI4rsZWNkorf9Y23/3ctnEdF2Vli7oyhhGpJBNjMSbEOpgUizEx3sHkWAflqVSPV6DdslgVjbIqmseKSJQlefm0jBvPF77+NSZMnoxRFtovC57BpLBz4sB1rRsspTAph78++ADPPfUfErEE3Qdv9TOOIWgHMga0Nhqdvld+vZ1y8miJzaaxfTca2mfQFNudpFvZKRmFQ15oEYXhdyiOvslRx5Rx6ef+z/stt5zm6A3pIOJp29wFbH8YVKytjT/8/vcs+WgRlvG8j7JSULZsWb2sGeLRGNUTNrBh6hpSES/4fTAeomrlOCpXjcE2/RHnx2Qcl7QBbItDDz+Cww4/AjsUytQJ3pZ+z3raE6VToypdcxg2rVvH3/76ECuXLCPW1kIi1oGjHRQWATuAFfC8V3JRSlFcWkYkEmHA6eHyG5OOO+S9K8KhMGedcy7TZ8/JxjnqFf5VMoZ33nyTZ576Dx2tLZn3RKdnCD+KyyDZDVobajZtIJlMEAqGCYRCBINBrzc1GEYbTXFZGeedfz7jJk0mHI2iM8+FV4/ZOWUBOpcHC4VOpXjin//k3bffwkmmsLbTbmgYWcfa3VYSK+oAwHItKleNoWrlOAqbd8BY7ikzBr8B4nc6KIs99tyT8867gGBxUR/7Ebzr0NzYwB9/fy8rli7x7eFsY8Q/pHdeA1QWXB2gqX0e9a3709Q+l47khG7b5AWqmRRawF68weH6VU5OvMxI09pzehUVJGfPITlrDqlp00hNnoozZSqMHYcJBDrbDb4NqYzmw3cXcOsvfk71+g2+LTGEjOYtdMR6dYPXgaONoqCwiG99+zvsvu8+OH3prE4PiXMd/v7Iozz45z/R3tyMnSNa5b5fLaMGrW7oibQNafAa0JOnTedb3/0ulWPGoHPsBn8cBwE/NIvJqfPIaVMkYx3c/stf8tLzL+AmU8OjTWHwA1H7YoWyOfrYY/m/z30eu491g/LrhpoNG7j5+utZumgRdrpu6NYR4JWHoUK2pPqhV4JB/u+KKzjuxJNQgYBvR+K/7ywsP0xQtzZFum7Qmrdee43f3PYraqtrhl3dYHxhu7S0jO/+v//HtLlzcfoSp9uvG7Tj8NCf/8yjf/sr8ba2TnXDgKl4Wyrn/jswXc4PPOggrrr6S4TLyzJZaW1pYV5VRb+KVjsciL2poY66zdVYriaQ7lXpBUYZksoLaOp1xmXHS1oKUsmE13thqczQT9WPlVbaddEFmpINNDU29i31tBWvQNm+W7MxnhLu9zC3tTTjNDd6AWYN2ENJCjfaPwWFCgVIxWKoZBJbuyjlmcvGFzEUBlsbLL8Bk5n623iNCeM6BDGk2tpo2FRNvL3d336okNsk7LzeGPyZphS2HaCprJpgysEyutdVosLzunNTScKWRVtDPY3V1ZiUk2OEm5xGnBcXZujIVsZvQCtvGnKl6GhowNYOtr9eq3Q3oG9UaO0baemXC4DyXqaOQxBoqtlMQ00NltYEhtL7ZQvlIe1pplFYdoBWpdBtHQS0g8bKvBcMOZ2eaQHKr08sW4F/vhaKZCxOU109rU0tWMbJ9DF5T5P3jKUgI8irnBx6n+khWNmg2Lb24zgqRVS7jHNSjHOczOd4J8VYx2Gc6xDdilhYa9msCQRYEQixNBRiSSDE+kCAFP6QTg0qniB/82ZUKoWtDa7lYpE1QBVej2imbvDr80zd4DgEFSRaW2ms2UwynsA2A1s3pF2oDeASoSM1lZgznXZnJrHUNGLOdBLuuB72SxENLCE/9AEFwQXkBd8kaLdi8ETBjqa90K6DZQfoFlvDr9tVrohjvJlxLQw4LjbQ1thIU91mLFd3ep+lY/co8J+VnusGN+jSOLmR+ul1tI5pzWwWbAtSsaiC0qVlBJwAcZp38CqmMaQjqBrLc8lPtLViaRfLaG9onjKkI3ko8GI3KrqF+FEYb4iDNrQ1NqGMoSCaT2E46sWisiwv9kdavel67h0x2jti/XReWznfntb6dYMnKAeIWxYkEtjpa9BLvDg3/tDpZIK2xka/11RnzzinEWeZ3ouYA0FRNA8TzfNz4NVtKIVJxFF2AMtxKSspJi8c9mZ5Ntke31wBk9y6Af85cV0CliLZ3k5rQwNuyvE6x7Yjn+EGm6mLp9IytoXN82qIVcTYOHUdG6euI1ofpXxJOWXLywm19yXW3lY6N/z6FyyUZdHR0EDQdbHQvQ5V4u0N2nUIKUVbYyPN9fUo1+0Ucrq3dcOOEuYpRoeeYnQIkm45Lcn9aE3uQ3tqNnF3Ah1OJQud41nI8fwRAJdieynjrQ+ZoRYzT3/EsdFV7NH6DqG6OqIvvkD0xRc6HcMEg7gTJpKaMhVn6lScSZNxxo5DjxuLM3o0tuvQWF1DY00NajjZDZaFNmAHgiSaW1DxOAGt+zRkx0ZhnBQ24MY6aKiupqO5xfPY94+fK/DYRg0hocL4bQrPfiIYoCG/AMt1PFvRAk/AyBoIdmb4X46XSMZuSBFWivbGRhqrN+GmHAJ6KIlW225TeD2IFu119QQdB9C9DsmlUNgYXDdFSEFT7WYaa6qxXJdMK9sXrrS/fSDTMBsCGM++0SgI2LhKkWpr89qXJi1YeeVBoT3RyrcbctsUSinvfelqlJOiIV03uHrHxYt+pWeHmq51g9sRw0p47Wy3Dx7wtv9MBIFkeyuN1dXE29ozdYOnoQzEve9FOcdC2RYtm2sJOk6nd2B/OBp1ZYfvuwJv3DW5Qbp6gW/QpwVK76J3TheVHjeZXvrhDeYbn17oC41tWYyqrKSiYkSn+BzbRvkNVmhubqamZhPJRCIbDwQA7RW2nJ6zoYLvv4ZR2nM7dSOsW7WKSDjsj5+1/F7TbI+p1UUJx1fCLUC5LvU1NSjX8Rulun/uV7/R88OXnsdCG4ObSpJKxFmxfAkFLY05vca9QylIdnQQa2nBcl3vmch5aNPTehuGkqBHtpNAGVztYgy0NjayfPFiwtFcT6tM4C4Cfq2kO5WFrIixcf063HgcW6cN8KE2K2D38qDwegwwGuOmsKwAmzauZ9nij3D93mF63qtL0gobC6VdqtesQydTWHhGqbe/Sm/mp5Uzc6efRNhoKhxNmXapcF2qHJdR2mGU41LluoxyHEa5LsXbeCm4wCbbZl0gyDrbZm0wyKpAgNWBIK2W1UMZN1nvQDSukwTXYcOaNSjjja3XpOPVeU942pjssW5QgOPQUl+fqRtssh5G/YGjC0i444g740i4Y4m7Y4m744mlphN3J7AlN+ygtYm8wBKiwcUUBBeSH/oAm7bsTEfgGxwKx3Vpa2li/YqlRItKSMZiOafQvZ7oJNb4Xq3xtnacWAxbG9/bLOcaGNNFnMiUDDoqOmgZ30LzuBbaRrVBjgNVXk0eJStLKF1Rgp0Zn9+Pz5rJfRe7YKC9pZWN69djB4I5gmr64TDYuR0b6U/jJaaM571jUinPgMWz7S3Lzh6w0+dg0NN7At+8NmjXwSZIXW0tG9esQdt99GhTgNY01NV53ri6U1QuX3DNrQ8G9z2aLZWG9JxmGoN2UmjXoXrjJlLJlF+XdK4brJy6oVNVmY5T4zp0tLSgtM40Yrf3fBVQvL6QovUFtFW1UT+zntYxbcTKY6w/cD3rD1xPtC5K8boiitYVUbCpAGubwRa3YDeotN+gRruaREeMtWtXE2jcnt5kQ3tLE6l4DFtr//HOeQ66CZcDXx5Cdi0V0X9REf0XAI6bR7szh/bU7rSnZtHh7EZKj6TZ3Y0P3N34APgb8L1WsG3NhPJGphWsY7paxhRnKZPbFzK16X0mplYQXb6MwPJl8J/uxx0ZDnO/slgPbLID1Ng2tbZNnW1Ta3mfdbZFcrBCCGzJbki/MZ0kBAKsW7uagtKSvnlagR8P0KV2wwZUyiHgj0JROXVD+p2ttlPgHSgU2UDhbjKJm0yyatky2lvbvJhFfiddum4I+p5WGv99mVM32ICTiNPe1IRyXQJ+m2Kw68LO9FA3GPzwFgatXVzj0tbSzLKliwkUFfU59wpDfU2NZze4Xt2QaVP47bG0k8RQKguQnnjXe18qZVFbvYnlixZhBQJ+m8LK2r3GEDAmUxZy2xSWbzesW7US4ztWWGpgBJEdo3t+utUNboQ1q1diRcO4W5mZtSeUAlyXhpoacHqoGwaMLb8Dvbazi065xNrbWL5sCaG6zZmt29va+j03Ozw88OjjT2L5ooU5w396/+h07TTq5oWmul+qHX0wc0/Xm9VMEwgECASCfZQSDK7W2N5UKV5MBtIFdHigfUVQ+Z5GBYVF3qxIKisTgh9825/DNP1YZu62H/jWBpLxOIlYhx/swTB0AjNvpSGkvGEQlmWjUQQCQaJ5+SjL7vWdNPiB2H1X1o62VtxEItN7nqlUVNrsp48C6c7B1V6wXVcbInl5hILhzIxRmScvHVTVD5rYqTpT6Vm0vFhe7S0taNchG6tkqJzzlgRM77WjDdh2ANcYCgoKsawAltWl+dhNwMqtrCzSTRqVSmK1NFHgpih0HQoxFGpNmdaUaEOZdilzXcq0ptR1KXc9oSq/D9Vyq1JU2zabArb3adtsDNhssANsDNgksDB9mBJeAW66/87vMczPL/DF/py6IRNgt0t8s3Q6SvlDBCERi5OKxcnOBbvtsuDqCCk9wlvcEST9z5QeQVKPJOmOJu6MwzUlW03HVk1EAquJ2KuIBFYTtZcTDS4jaDWgVHpauh4USQWu0V7dYCAQDBIJhzF2zjn6993qum8O2ptKE0tBrL0Dk0rleNZl6wbXNiSKk3SUxugY2UH7iHY6RnSgQ52NoVBLiOLVxZSsLCHcHN4p7xxtDFbAmyEmFIkQsIP+jGe5dUP6q+n+hKXjlfiByOOxDoyr8ftiGVp1Q3fSdQP470sDkbw8/33Zh9gUKuuhqFMpkvEYSpuMiJM+WPZZGirXxcO7DhklE2XZXjB2KxN9hE4noOhUN3jrchrdCpKxOG4ySbZe7r9zdkIOTZObaJrcRGxEZy895Sqi9VHyavPI35xPtD5KpCmCncoVULfwUCtwNd6wbA2hcJBQMOK/L3tL1m6wFMTa2jGO07luyFzKTpbEkCDhjKLDmU27M4WkO4m4M56EOwFtolvdL8+qo8Jax2i1jgmsY5ypZqK7kYmmmlHUMJLNjGQzEbrHV0zTrCxqbYtG26bZsmiy0p9W5+929nubyqnnt4ut2w3GeF6Y2kBBYSHKCviCQu/Qft1gAalEnER7u2dDZuqGdHlQme2HGtpovz0Bth0kL7+gy3si127IxjDqbkN6tnSsrY1UIk4mkveQOeeti+uuNr4tTWYG1u1tU1hAe2uzZzdkRrB0rhvSQ9CGEgbPGcAO2LjakF9QiG0H/Pdl5zaFHydoC20KryPVOA4dba0YrT1HkCHTpthy+1IBrsE7Dz/WU35hIUrZfa8b8ITAZDxGsqOjU91glMk4mfQv23oHGq+tpCEU9iZmyS3nruvywYfvDq2YVkcffxIrFi3EMga3D4Woi7nrYbp8Uel1OYbMDlZa6WGB6WlZvaDIPTRYtpWO8gz5TOwBPz0UGRfQdE4zjeGh8HwBkI1Tgn8tPDdMMrMRWGTHyyvjzRanM3GZrE5peft4MVr816k3lGTIWFim299pI8C7DgqUhau9BqoxEMyZObE3pJRfnlwXy5vqwo9H0lOAYdW38cwDjn8dLJURclXufzlTuqeHyDn+tDim+1OMrRSum/LiM2gXy7ZwhkxZgEx5MJ7HS9AYwgYiRhM2hjwDYSCiNREDUQP5riZiDBHT+TNsDFFjKNCaQqMp0N7fBUZTqDV521e9ApACWiyLBsumwbY69TRX2xY1ls3mgE2r7Q1zztaNuQKa6vK57WvTq7ohnarxZhZN1w3a2GgTQZs8XBMFCnDdMNpE0dpb55KPa/JwdQGOLsY1xd6nLsHRxZl12uRtKZPdsFUTIbuaoFVNKFBN2NpEJLCKaGA5QVWHUk7G4aqrEKBy3i+ZYLGkp5/3nglHuyhl48VDdHP2zV7rrp7Cyk8jqWwIQiqUREcdUpEkToFDKj9BMj9FsiBJvCRBsjDZ422yUhZ5m/PI21RA4cZCT6jaaRZq5+uQWzcAmbrB+9t/L+bE7+t6QpZSGO1k3sEqZ/j/0KBzZlSXtV4fjfI6O4wXj64vcYY0Bm/eb0N6iL7ZynDZbPy4oUD394SlLN/jXGXqBvCvm283ZPdWndJSysp2cJE2vgdOmElFUrSNaaVtdBvtlW240Z5nbwy0Bwg3Rwi1hgi1Bwm2hQi2BwnEbQKJAHbCxkrY2NoCZXuxUTN2Q99ulpOxG7Qfc0/7Mzh37bX3ahRnyJQF6FQ34NnDRluk9GgSqcnEnSkk3Amk9EiS7kiSelSf6vQozRSreoppooQmKkwjI2mkzP9eQhMFtJFPO/m0k0dHt7/z6CBKDAuDC7QrRbtl0a4s2i3V/TPntw5lkVCKhFIklSKhIO5/Ztcp4unvlk3SAOlODizsPjiDeDN0p+sG1y8P/sxp3ewIhVZq6LUp/LrBdV1sy8Zo061Nka4bHDsbgqOnNoXRLmnPS88EGUqibec2hcr527MmlF83pGd/VN6M5H1I3bG896V2Ha/TVGtsS2H0FuqGITZ8I103gN/u7tSeyL43lfFshvS7onObwg+7AZnrkJ490B06hYGuwlWmfUm6LKRjP3nt4qCx+mQ3OCrXbvBmWFU5dYM3M+tAiVbZv3su57ltZ0Uop5y7WrNyw6qhJVodcPCJxPopzsSA1L89JqoyD1EnYWyAVPzcWDhbZsu/5jy+Wz9Or1PsXRqdTcxc6XAL+VC5W+cW757z1/X3vrL1q5GtAHtzV02XLXs+zy3nNBPXKbOL6r59pkFM187oHvLTnV6Xzu0txjkHNdv5OKicK+ct6RH3JvPZtWrN9VLJ/S2TRuY30+k3i2ygYss3bNJD29KxxNIBGzPbG38fujYUez7Z3s1Ys+0L5eAJSynAVZC0FCkUSTzjN72kUCR9I9jJNOA6p58rCaQlF1TOWZt0T1Z60LZ/9iZ7VwyWP+NR+sqkt7PB2HhzulpgApj0/K4mPc+r92lMAOOv834PYNhGzJg+R45NYasOLNWOpTqwVTuW1YGt2rCtFgJWE7bVhK2SpL24emo3dmkud8lS53KF/14wlsFYBq105m9jGcj521vA2Bod1LhBjQ66uAH/M6jRIY2xe3feVtIi1Boi0hAlUh8lWh8l3BTGcnOlwp2L13bKFR/S+l/WtyZbHL3Oq+xt7p7nbB+R97Aa0/N2g0v3t226Ye6PH/WvQx8nWPEbX+mGGL5o1el1YbJXYyBFnO0hnS/te0llwzd0rvfTmdaqy7l1ffbSG2fKwbbtnP7AYEgWJolVdBCriBEri5EsSmxRyOoJ5SjshCdkWQkby7WwHQvLUSjXwnKzfyutvMUAJvuZNgwVoLR3ERTKc072t1M647fbu7KwgwWmL4K4MunmS/bQlv88d33PawMO+ThuKY4pw3HLcE0xrs7HJR+tC3BNPq7Jpx8il3QiRJwwCQI4BHD9Twfb/0yvszPrXYJdvtt4McvSb1UvBIb2o1N6f6fnQTVkxdiMj6bSkLM+HVohPXNq5heVDbvgz8OdlnQ7vfu7TnRhyH3Munu7dv6ejo+Vs0Zl89JbcpvqmTor/aWbPZwuL9njd2Zr5dtLrLca4ODXmZ3ts+2RE7q2DzKvyZyTU122HcrkFofetnlyUf4/JucdPBxId0xlpay+zBuYpVN5GFLXwTu3nsq56zp88P5/h4Zo1dzcTElJCXwZzy1BEARBEISe0WQauYF4gEBHEDseIBgLEGqLEG4JE4gFCZgh1WXaqTcvLT/nNm66NzWyEZk6i/8K7Us26eabJ5Nuj0k/MHTvSOgsFWQ8D72pB3LMtd6isFC4mT11t4ZY9tp1b/gPNtmGqc4Mi9RbKQuegZ7pk/W3yXY/aLLeFhqvLAxmiAUn5JAsjBMvTpKKJnGiKVJRByeawg26uCG323BdQRAEQRC6kAB+Dk1NTRQXF/dLktvdndHa6k91+/N+yYcgCIIg7NK4/n+JrcRrEQRBEARBEIThTmtra7+JVtvtaaW1ZuPGjRQWFmZjQg0hWlpaGDduHOvWres3tzRB6C1S/oTBQsqeMJhI+RMGEyl/wmAhZU8YTKT8CYNFT2XPGENrayujR4/2Yrv1A9vtaWVZFmPHju2XTAwkRUVF8vAKg4aUP2GwkLInDCZS/oTBRMqfMFhI2RMGEyl/wmDRtez1l4dVmqEVPEMQBEEQBEEQBEEQBEEQENFKEARBEARBEARBEARBGILssqJVOBzm+9//PuGwTG0o7Hyk/AmDhZQ9YTCR8icMJlL+hMFCyp4wmEj5EwaLnVX2tjsQuyAIgiAIgiAIgiAIgiAMFLusp5UgCIIgCIIgCIIgCIIwfBHRShAEQRAEQRAEQRAEQRhyiGglCIIgCIIgCIIgCIIgDDlEtBIEQRAEQRAEQRAEQRCGHMNCtPrNb37D3LlzKSoqoqioiPnz5/Pkk08CkEql+OY3v8nuu+9Ofn4+o0eP5pOf/CQbN27capr33nsvSqluSzwe3xmnJAwTtlb2AC655JJuZeiAAw7YZroPP/wws2bNIhwOM2vWLB599NGBPA1hmLKt8tdTHaaU4uabb95imlL3CdvD9ddfj1KKL33pS5l1xhh+8IMfMHr0aKLRKIcffjgLFy7cZlpS/wl9pWv5E9tP2Fn0VPeJ7SfsLHoqf2L7CQPFD37wg25lpLKyMvP7YNp9w0K0Gjt2LDfccANvvfUWb731FkceeSSnnnoqCxcupKOjg3feeYfvfe97vPPOOzzyyCMsXbqUU045ZZvpFhUVsWnTpk5LJBLZCWckDBe2VvbSHH/88Z3K0BNPPLHVNF999VXOPfdcLr74Yt577z0uvvhizjnnHF5//fWBPh1hmLGt8te1/rrnnntQSnHmmWduNV2p+4S+8Oabb/Lb3/6WuXPndlp/00038bOf/YzbbruNN998k8rKSo455hhaW1u3mJbUf0Jf6an8ie0n7Ay2VPeB2H7CwLOl8ie2nzCQzJ49u1MZ+eCDDzK/DardZ4YppaWl5u677+7xtzfeeMMAZs2aNVvc//e//70pLi4eoNwJuzK5Ze9Tn/qUOfXUU/u0/znnnGOOP/74TuuOO+44c9555/VXFoVdmK3Vfaeeeqo58sgjt7q/1H1CX2htbTXTpk0zTz/9tDnssMPM1VdfbYwxRmttKisrzQ033JDZNh6Pm+LiYnPHHXdsMT2p/4S+sKXy1xNi+wn9ydbKnth+wkDTl7pPbD+hv/j+979v5s2b1+Nvg233DQtPq1xc1+WBBx6gvb2d+fPn97hNc3MzSilKSkq2mlZbWxsTJkxg7NixnHzyybz77rsDkGNhV2FLZe+FF15g5MiRTJ8+nc9+9rNs3rx5q+m8+uqrHHvssZ3WHXfccbzyyisDkm9h12BbdV9NTQ3/+te/+MxnPrPNtKTuE3rLlVdeyUknncTRRx/daf2qVauorq7uVJeFw2EOO+ywrdZlUv8JfWFL5a8nxPYT+pNtlT2x/YSBpLd1n9h+Qn+zbNkyRo8ezaRJkzjvvPNYuXIlMPh2X6BPWw8iH3zwAfPnzycej1NQUMCjjz7KrFmzum0Xj8e55ppruOCCCygqKtpiejNnzuTee+9l9913p6WlhV/+8pccdNBBvPfee0ybNm0gT0UYZmyt7J1wwgmcffbZTJgwgVWrVvG9732PI488krfffptwONxjetXV1YwaNarTulGjRlFdXT3g5yIMP3pb9913330UFhZyxhlnbDU9qfuE3vLAAw/w9ttv89Zbb3X7LV1f9VSXrVmzZotpSv0n9Jatlb+uiO0n9CfbKnti+wkDSV/qPrH9hP5k//335w9/+APTp0+npqaGn/zkJxx44IEsXLhw0O2+YSNazZgxgwULFtDU1MTDDz/Mpz71KV588cVOjbdUKsV5552H1ppf//rXW03vgAMO6BQ08aCDDmKvvfbiV7/6FbfeeuuAnYcw/Nha2Tv33HMz282ZM4d99tmHCRMm8K9//WurLxClVKfvxphu6wQBelf3Adxzzz1ceOGF24xPIHWf0BvWrVvH1VdfzVNPPbXVMrU9dZnUf8K26G35A7H9hP6lN2VPbD9hoOhL3Qdi+wn9ywknnJD5e/fdd2f+/PlMmTKF++67L1N+BsvuGzbDA0OhEFOnTmWfffbh+uuvZ968efzyl7/M/J5KpTjnnHNYtWoVTz/99FZ72nrCsiz23Xdfli1b1t9ZF4Y52yp7uVRVVTFhwoStlqPKyspu6vLmzZu7qdCCAL0rf//9739ZsmQJl112WZ/Tl7pP6Im3336bzZs3s/fexBIXGQAACJhJREFUexMIBAgEArz44ovceuutBAKBTH3V17pM6j+hN2yr/LmuC4jtJ/Q/vS17uYjtJ/QXfSl/YvsJA01+fj677747y5Yty8wiOFh237ARrbpijCGRSABZo2XZsmU888wzlJeXb1d6CxYsoKqqqr+zKuxi5Ja9rtTX17Nu3bqtlqP58+fz9NNPd1r31FNPceCBB/ZrPoVdk57K3+9+9zv23ntv5s2bt13pSd0ndOWoo47igw8+YMGCBZlln3324cILL2TBggVMnjyZysrKTnVZMpnkxRdf3GpdJvWf0Bu2Vf5s2xbbTxgQelP2uiK2n9Bf9KX8ie0nDDSJRIJFixZRVVXFpEmTBtfu61PY9kHiW9/6lnnppZfMqlWrzPvvv2++/e1vG8uyzFNPPWVSqZQ55ZRTzNixY82CBQvMpk2bMksikcikcfHFF5trrrkm8/0HP/iB+fe//21WrFhh3n33XXPppZeaQCBgXn/99cE4RWGIsrWy19raar761a+aV155xaxatco8//zzZv78+WbMmDGmpaUlk0bXsvfyyy8b27bNDTfcYBYtWmRuuOEGEwgEzGuvvTYYpygMYbZW/tI0NzebvLw885vf/KbHNKTuE/qLrjMY3XDDDaa4uNg88sgj5oMPPjDnn3++qaqqkvpPGBByy5/YfsLOJLfsie0n7Gx6mj1QbD9hIPjqV79qXnjhBbNy5Urz2muvmZNPPtkUFhaa1atXG2MG1+4bFjGtampquPjii9m0aRPFxcXMnTuXf//73xxzzDGsXr2av//97wDssccenfZ7/vnnOfzwwwFYu3YtlpV1LGtqauL//u//qK6upri4mD333JOXXnqJ/fbbb2edljAM2FrZi8VifPDBB/zhD3+gqamJqqoqjjjiCB588EEKCwszaXQtewceeCAPPPAA3/3ud/ne977HlClTePDBB9l///0H4xSFIczWyl+aBx54AGMM559/fo9pSN0nDBTf+MY3iMViXHHFFTQ2NrL//vvz1FNPSf0nDDjr168X208YFGzbFttPGHTE9hMGgvXr13P++edTV1fHiBEjOOCAA3jttdeYMGECMLh2nzLGmP45TUEQBEEQBEEQBEEQBEHoH4ZtTCtBEP5/O3cTUlW3x3H8uzHNt0gtzZCTUUpYEZVRWCFJg1QCB9EkKQ5UA8HCgYoNCqpJRIMa2QtxjF5woohIIU2iVyoJR4nZwBwkBGUTJTnFuYMHDleye7mPt3t3+v0M1/7v9V97DX+stSVJkiRJmr8MrSRJkiRJkhQ6hlaSJEmSJEkKHUMrSZIkSZIkhY6hlSRJkiRJkkLH0EqSJEmSJEmhY2glSZIkSZKk0DG0kiRJ+g+Njo4SBAGDg4P/sm7Pnj00NTX9T9YkSZI03xhaSZKkeSsajRIEAUEQkJqaypo1a2hubmZycnJO80YiEcbHx9m4cSMAjx49IggCvn79OqOuu7ub8+fPz6mXJEnSQrXo/70ASZKk36m6uppYLEY8HufJkyccO3aMyclJ2tvb//acKSkpFBYW/tu6vLy8v91DkiRpofOklSRJmtcWL15MYWEhkUiEQ4cOUV9fT09PD9PT05w8eZKCggLS09PZvXs3r1+/Tr43MTFBfX09+fn5ZGRkUFpaSiwWA2ZeDxwdHaWqqgqA3NxcgiAgGo0CP18PnJiY4MiRI+Tm5pKZmUlNTQ0jIyPJ5x0dHeTk5NDf309ZWRnZ2dlUV1czPj7++zdKkiQpZAytJEnSgpKRkUE8Hqe1tZWuri5u3brFmzdvKCkpYd++fXz58gWA06dP8/btWx48eMDQ0BDt7e0sX778p/kikQhdXV0ADA8PMz4+zpUrV2btHY1GGRgYoLe3lxcvXpBIJKitrSUejydrpqamuHTpErdv3+bx48eMjY3R3Nz8G3ZCkiQp3LweKEmSFoxXr15x7949qqqqaG9vp6Ojg5qaGgBu3LjBw4cPuXnzJi0tLYyNjbFlyxa2bdsGwOrVq2edMyUlJXkNsKCggJycnFnrRkZG6O3t5dmzZ+zcuROAu3fvEolE6Onp4eDBgwDE43GuXr3K2rVrAWhsbOTcuXP/rS2QJEn6Y3jSSpIkzWt9fX1kZ2eTnp5ORUUFlZWVnDhxgng8zq5du5J1qampbN++naGhIQAaGhro7Oxk8+bNtLa28vz58zmtY2hoiEWLFrFjx47k2LJly1i3bl2yJ0BmZmYysAJYuXIlnz59mlNvSZKkP5GhlSRJmteqqqoYHBxkeHiYb9++0d3dzdKlSwEIgmBGbSKRSI7V1NTw4cMHmpqa+PjxI3v37p3TNb1EIvHL8X9eR2pq6oznQRD88l1JkqT5zNBKkiTNa1lZWZSUlFBcXJwMhEpKSkhLS+Pp06fJung8zsDAAGVlZcmx/Px8otEod+7c4fLly1y/fn3WHmlpaQD8+PHjl+tYv349379/5+XLl8mxz58/8+7duxk9JUmS9Bf/aSVJkhacrKwsGhoaaGlpIS8vj1WrVnHx4kWmpqY4evQoAGfOnKG8vJwNGzYwPT1NX1/fL8Ol4uJigiCgr6+P2tpaMjIyyM7OnlFTWlpKXV0dx48f59q1ayxZsoS2tjaKioqoq6v77d8sSZL0p/GklSRJWpAuXLjAgQMHOHz4MFu3buX9+/f09/eTm5sL/HV66tSpU2zatInKykpSUlLo7Oycda6ioiLOnj1LW1sbK1asoLGxcda6WCxGeXk5+/fvp6KigkQiwf3793+6EihJkiQIEv4kQZIkSZIkSSHjSStJkiRJkiSFjqGVJEmSJEmSQsfQSpIkSZIkSaFjaCVJkiRJkqTQMbSSJEmSJElS6BhaSZIkSZIkKXQMrSRJkiRJkhQ6hlaSJEmSJEkKHUMrSZIkSZIkhY6hlSRJkiRJkkLH0EqSJEmSJEmhY2glSZIkSZKk0PkHMFI8WQ05d3sAAAAASUVORK5CYII=", "text/plain": [ "Figure(PyObject