{ "cells": [ { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "# Regression" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### Preliminaries\n", "\n", "- Goal \n", " - Introduction to Bayesian (Linear) Regression\n", "- Materials \n", " - Mandatory\n", " - These lecture notes\n", " - Optional\n", " - Bishop pp. 152-158 \n", " - In this and forthcoming lectures, we will make use of some elementary matrix calculus. The most important formulas are summarized at the bottom of this notebook in an [OPTIONAL SLIDE on matrix calculus](#matrix-calculus). For derivations, see Bishop Appendix C. \n", " " ] }, { "attachments": {}, "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### Regression - Illustration\n", "\n", "\n", "


