{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Exercises Set 1" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Question 1\n", "How does machine learning relate to scientific inquiry loop?\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Answer 1\n", "Through machine learning we evaluate plausability of our beliefs on hypotheses given observations (data) via Baye's rule. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Question 2\n", "Give the setups for supervised, unsupervised and reinforcement learning problems." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Answer 2\n", "Supervised learning setup: given data set $D=\\{(x_1, t_1), \\ldots, (x_N, t_N) \\}$, infer $p(t|x)$.\n", "Unsupervised learning setup: given data set $D=\\{x_1, \\ldots, x_N \\} $, infer $p(x)$.\n", "Reinforcement learning setup: let $s_t \\in S$ be environmental states, $a_t \\in A$ be actions and $r_t \\colon A \\times S \\to [0,1]$ be a reward function. Reinforcement objective is to; \n", "$$\n", "\\begin{align*}\n", "\\underset{a_t}{\\text{maximize}}& \n", "&r_t\n", "\\end{align*}\n", "$$" ] } ], "metadata": { "celltoolbar": "Raw Cell Format", "kernelspec": { "display_name": "Julia 1.1.0", "language": "julia", "name": "julia-1.1" }, "language_info": { "file_extension": ".jl", "mimetype": "application/julia", "name": "julia", "version": "1.1.0" } }, "nbformat": 4, "nbformat_minor": 2 }