/* Copyright 2018 Bert Melis Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONDHTTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "esp32DHT.hpp" // NOLINT #define RMT_CLK_DIV 80 DHT::DHT() : _status(0), _data{0}, _pin(0), _channel(RMT_CHANNEL_0), _onData(nullptr), _onError(nullptr), _timer(nullptr), _task(nullptr) {} DHT::~DHT() { if (_timer) { // if _timer is true, setup() has been called // so RMT driver is loaded and the aux task is // running esp_timer_delete(_timer); rmt_driver_uninstall(_channel); vTaskDelete(_task); } } void DHT::setup(uint8_t pin, rmt_channel_t channel) { _pin = pin; _channel = channel; esp_timer_create_args_t _timerConfig; _timerConfig.arg = static_cast(this); _timerConfig.callback = reinterpret_cast(_handleTimer); _timerConfig.dispatch_method = ESP_TIMER_TASK; _timerConfig.name = "esp32DHTTimer"; esp_timer_create(&_timerConfig, &_timer); rmt_config_t config; config.rmt_mode = RMT_MODE_RX; config.channel = _channel; config.gpio_num = static_cast(_pin); config.mem_block_num = 2; config.rx_config.filter_en = 1; config.rx_config.filter_ticks_thresh = 10; config.rx_config.idle_threshold = 1000; config.clk_div = RMT_CLK_DIV; rmt_config(&config); rmt_driver_install(_channel, 400, 0); // 400 words for ringbuffer containing pulse trains from DHT rmt_get_ringbuf_handle(_channel, &_ringBuf); xTaskCreate((TaskFunction_t)&_handleData, "esp32DHT", 2048, this, 5, &_task); pinMode(_pin, OUTPUT); digitalWrite(_pin, HIGH); } void DHT::onData(esp32DHTInternals::OnData_CB callback) { _onData = callback; } void DHT::onError(esp32DHTInternals::OnError_CB callback) { _onError = callback; } void DHT::read() { // _pin should be set to OUTPUT and HIGH digitalWrite(_pin, LOW); esp_timer_start_once(_timer, 18 * 1000); // timer is in microseconds _data[0] = _data[1] = _data[2] = _data[3] = _data[4] = 0; _status = 0; } const char* DHT::getError() const { if (_status == 0) { return "OK"; } else if (_status == 1) { return "TO"; } else if (_status == 2) { return "NACK"; } else if (_status == 3) { return "DATA"; } else if (_status == 4) { return "CS"; } else if (_status == 5) { return "UNDERFLOW"; } else if (_status == 6) { return "OVERFLOW"; } return "UNKNOWN"; } void DHT::_handleTimer(DHT* instance) { pinMode(instance->_pin, INPUT); rmt_rx_start(instance->_channel, 1); rmt_set_pin(instance->_channel, RMT_MODE_RX, static_cast(instance->_pin)); // reset after using pin as output xTaskNotifyGive(instance->_task); } void DHT::_handleData(DHT* instance) { size_t rx_size = 0; while (1) { ulTaskNotifyTake(pdTRUE, portMAX_DELAY); // block and wait for notification // blocks until data is available or timeouts after 1000 rmt_item32_t* items = static_cast(xRingbufferReceive(instance->_ringBuf, &rx_size, 1000)); if (items) { instance->_decode(items, rx_size/sizeof(rmt_item32_t)); vRingbufferReturnItem(instance->_ringBuf, static_cast(items)); rmt_rx_stop(instance->_channel); pinMode(instance->_pin, OUTPUT); digitalWrite(instance->_pin, HIGH); } else { instance->_status = 1; // timeout error rmt_rx_stop(instance->_channel); pinMode(instance->_pin, OUTPUT); digitalWrite(instance->_pin, HIGH); } instance->_tryCallback(); } } void DHT::_decode(rmt_item32_t* data, int numItems) { if (numItems < 42) { _status = 5; } else if (numItems > 42) { _status = 6; } else if ((data[0].duration0 + data[0].duration1) < 140 && (data[0].duration0 + data[0].duration1) > 180) { _status = 2; } else { for (uint8_t i = 1; i < numItems - 1; ++i) { // don't include tail uint8_t pulse = data[i].duration0 + data[i].duration1; if (pulse > 55 && pulse < 145) { _data[(i - 1) / 8] <<= 1; // shift left if (pulse > 120) { _data[(i - 1) / 8] |= 1; } } else { _status = 3; // DATA error return; } } if (_data[4] == ((_data[0] + _data[1] + _data[2] + _data[3]) & 0xFF)) { _status = 0; } else { _status = 4; // checksum error } } } void DHT::_tryCallback() { if (_status == 0) { if (_onData) _onData(_getHumidity(), _getTemperature()); } else { if (_onError) _onError(_status); } } float DHT11::_getTemperature() { if (_status != 0) return NAN; return static_cast(_data[2]); } float DHT11::_getHumidity() { if (_status != 0) return NAN; return static_cast(_data[0]); } float DHT22::_getTemperature() { if (_status != 0) return NAN; float temp = (((_data[2] & 0x7F) << 8) | _data[3]) * 0.1; if (_data[2] & 0x80) { // negative temperature temp = -temp; } return temp; } float DHT22::_getHumidity() { if (_status != 0) return NAN; return ((_data[0] << 8) | _data[1]) * 0.1; }