{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.5"
},
"colab": {
"name": "Facebook_Friend_Recommendation.ipynb",
"version": "0.3.2",
"provenance": [],
"collapsed_sections": [],
"machine_shape": "hm",
"include_colab_link": true
},
"accelerator": "GPU"
},
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "view-in-github",
"colab_type": "text"
},
"source": [
""
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "QGUBrE5C-Pt8",
"colab_type": "text"
},
"source": [
"
Social network Graph Link Prediction - Facebook Challenge
" ] }, { "cell_type": "markdown", "metadata": { "id": "qotXQBUD-Pt-", "colab_type": "text" }, "source": [ "### Problem statement: \n", "Given a directed social graph, have to predict missing links to recommend users (Link Prediction in graph)" ] }, { "cell_type": "markdown", "metadata": { "id": "U1VtYvxV-PuA", "colab_type": "text" }, "source": [ "### Data Overview\n", "Taken data from facebook's recruting challenge on kaggle https://www.kaggle.com/c/FacebookRecruiting \n", "data contains two columns source and destination eac edge in graph \n", " - Data columns (total 2 columns): \n", " - source_node int64 \n", " - destination_node int64 " ] }, { "cell_type": "markdown", "metadata": { "id": "JXhF2X8O-PuB", "colab_type": "text" }, "source": [ "### Mapping the problem into supervised learning problem:\n", "- Generated training samples of good and bad links from given directed graph and for each link got some features like no of followers, is he followed back, page rank, katz score, adar index, some svd fetures of adj matrix, some weight features etc. and trained ml model based on these features to predict link. \n", "- Some reference papers and videos : \n", " - https://www.cs.cornell.edu/home/kleinber/link-pred.pdf\n", " - https://www3.nd.edu/~dial/publications/lichtenwalter2010new.pdf\n", " - https://kaggle2.blob.core.windows.net/forum-message-attachments/2594/supervised_link_prediction.pdf\n", " - https://www.youtube.com/watch?v=2M77Hgy17cg" ] }, { "cell_type": "markdown", "metadata": { "id": "Zu_jGwgZ-PuD", "colab_type": "text" }, "source": [ "### Business objectives and constraints: \n", "- No low-latency requirement.\n", "- Probability of prediction is useful to recommend ighest probability links" ] }, { "cell_type": "markdown", "metadata": { "id": "Rk3d4zJJ-PuF", "colab_type": "text" }, "source": [ "### Performance metric for supervised learning: \n", "- Both precision and recall is important so F1 score is good choice\n", "- Confusion matrix" ] }, { "cell_type": "code", "metadata": { "id": "XFqwGBjI-PuH", "colab_type": "code", "colab": {} }, "source": [ "#Importing Libraries\n", "# please do go through this python notebook: \n", "import warnings\n", "warnings.filterwarnings(\"ignore\")\n", "\n", "import csv\n", "import pandas as pd#pandas to create small dataframes \n", "import datetime #Convert to unix time\n", "import time #Convert to unix time\n", "# if numpy is not installed already : pip3 install numpy\n", "import numpy as np#Do aritmetic operations on arrays\n", "# matplotlib: used to plot graphs\n", "import matplotlib\n", "import matplotlib.pylab as plt\n", "import seaborn as sns#Plots\n", "from matplotlib import rcParams#Size of plots \n", "from sklearn.cluster import MiniBatchKMeans, KMeans#Clustering\n", "import math\n", "import pickle\n", "import os\n", "# to install xgboost: pip3 install xgboost\n", "import xgboost as xgb\n", "\n", "import warnings\n", "import networkx as nx\n", "import pdb\n", "import pickle" ], "execution_count": 0, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "4Jsq-SFM_HJO", "colab_type": "code", "outputId": "8b9b0fe8-6aeb-4936-cb0e-7776082a3165", "colab": { "base_uri": "https://localhost:8080/", "height": 125 } }, "source": [ "from google.colab import drive\n", "drive.mount('/content/drive')" ], "execution_count": 0, "outputs": [ { "output_type": "stream", "text": [ "Go to this URL in a browser: https://accounts.google.com/o/oauth2/auth?client_id=947318989803-6bn6qk8qdgf4n4g3pfee6491hc0brc4i.apps.googleusercontent.com&redirect_uri=urn%3Aietf%3Awg%3Aoauth%3A2.0%3Aoob&scope=email%20https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fdocs.test%20https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fdrive%20https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fdrive.photos.readonly%20https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fpeopleapi.readonly&response_type=code\n", "\n", "Enter your authorization code:\n", "··········\n", "Mounted at /content/drive\n" ], "name": "stdout" } ] }, { "cell_type": "code", "metadata": { "id": "kQkft9We-PuO", "colab_type": "code", "outputId": "9f759c26-b4e5-4789-fa5f-b3a4568278c0", "colab": { "base_uri": "https://localhost:8080/", "height": 126 } }, "source": [ "#reading graph\n", "if not os.path.isfile('drive/My Drive/FacebookGraphRecomm/data/data/after_eda/train_woheader.csv'):\n", " print(\"true\")\n", " traincsv = pd.read_csv('drive/My Drive/FacebookGraphRecomm/data/data/train.csv')\n", " print(traincsv[traincsv.isna().any(1)])\n", " print(traincsv.info())\n", " print(\"Number of diplicate entries: \",sum(traincsv.duplicated()))\n", " traincsv.to_csv('drive/My Drive/FacebookGraphRecomm/data/data/after_eda/train_woheader.csv',header=False,index=False)\n", " print(\"saved the graph into file\")\n", "else:\n", " g=nx.read_edgelist('drive/My Drive/FacebookGraphRecomm/data/data/after_eda/train_woheader.csv',delimiter=',',create_using=nx.DiGraph(),nodetype=int)\n", " print(nx.info(g))" ], "execution_count": 0, "outputs": [ { "output_type": "stream", "text": [ "Name: \n", "Type: DiGraph\n", "Number of nodes: 1862220\n", "Number of edges: 9437519\n", "Average in degree: 5.0679\n", "Average out degree: 5.0679\n" ], "name": "stdout" } ] }, { "cell_type": "markdown", "metadata": { "id": "r0gjAc3m-PuZ", "colab_type": "text" }, "source": [ "> Displaying a sub graph" ] }, { "cell_type": "code", "metadata": { "id": "SIfulo_s-Pub", "colab_type": "code", "outputId": "e91300dd-3aff-430c-e596-771ef434bb66", "colab": { "base_uri": "https://localhost:8080/", "height": 428 } }, "source": [ "if not os.path.isfile('drive/My Drive/FacebookGraphRecomm/data/data/after_eda/train_woheader_sample.csv'):\n", " pd.read_csv('drive/My Drive/FacebookGraphRecomm/data//data/train.csv', nrows=50).to_csv('train_woheader_sample.csv',header=False,index=False)\n", " \n", "subgraph=nx.read_edgelist('train_woheader_sample.csv',delimiter=',',create_using=nx.DiGraph(),nodetype=int)\n", "# https://stackoverflow.com/questions/9402255/drawing-a-huge-graph-with-networkx-and-matplotlib\n", "\n", "pos=nx.spring_layout(subgraph)\n", "nx.draw(subgraph,pos,node_color='#A0CBE2',edge_color='#00bb5e',width=1,edge_cmap=plt.cm.Blues,with_labels=True)\n", "plt.savefig(\"graph_sample.pdf\")\n", "print(nx.info(subgraph))" ], "execution_count": 0, "outputs": [ { "output_type": "stream", "text": [ "Name: \n", "Type: DiGraph\n", "Number of nodes: 66\n", "Number of edges: 50\n", "Average in degree: 0.7576\n", "Average out degree: 0.7576\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb4AAAEuCAYAAADx63eqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsnXdYFFcXh9/dpXeQooKAqIACYlcU\nFXuJvfceK/Zu7L3HWGI3MYoaozF2Y4w12LABIqioqCBK77Bs+/5YWUWwUOKXxHmfh0ecO3Nn5gJ7\n7j33nN8RqVQqFQICAgICAl8I4v/3AwgICAgICHxOBMMnICAgIPBFIRg+AQEBAYEvCsHwCQgICAh8\nUQiGT0BAQEDgi0IwfAICAgICXxSC4RMQEBAQ+KIQDJ+AgICAwBeFYPgEBAQEBL4oBMMnICAgIPBF\nIRg+AQEBAYEvCsHwCQgICAh8UQiGT0BAQEDgi0IwfAICAgICXxSC4RMQEBAQ+KIQDJ+AgICAwBeF\nYPgEBAQEBL4oBMMnICAgIPBFIRg+AQEBAYEvCsHwCQgICAh8UQiGT0BAQEDgi0IwfAICAgICXxRa\n/+8HEBD4ksmUKQiPSycpU0a2QomORIyZvjYVLA3R05b8vx9PQOA/iUilUqn+3w8hIFBQ/u0GIy5d\nSnB0CpHJWYgAxVt/hRKR+l9bUz08Splgaaj7f3lGAYH/KoLhE/hX8V8wGGExqdyITEah/PifnkQs\nooadKa7WxoW61+eYIPzbJyECXx6C4RP41/A5DcbfRUHeIYfCvMvnmCD8FyYhAl8mQnCLwL+CghoM\nhVLFjchkwmJS/7Zn2rdvHxUrVsTQ0JBy5cpx6dIlrl69SrNmzbCwsMDKyoquXbsSHR0NqA1FzjvI\nZdlM79qY8V/V0vR3//Y1hjVwzfU1oKY9V88c50ZkMuu3bKd69eqYmJhgZ2fHlClTkMvlAEilUgYP\nHoyDgwOGRsZUr1aNY8dPolTlNkig/r9CBc+Ssjh1P7ZQYxQWk8qp+7E8S8r62+4hIPB3IRg+gf8L\nBTEabxuMiLBgFg/twrAGroxpUY3Te7dr+ox98Zylw7sz1NuZaV0aEXTlIjcik4lLz8517yZNmiAS\niTRGAyAiIoJGjRphYGCAq6srZ86cyfe5M2UKgqNTWP3TQcZOnMzYhWu4/CCK03+ew8nJicTERIYO\nHUpERARPnz7F2NiYgQMHAhAcnaIx3Cd2bcbY3CJX3y5Va7P5Ypjma9y3P6BnYEhlLx8UShXh0Qms\nWbOGuLg4rl27xp9//snKlSsBkMvllClThh0Hj7PxfAidhk/i+xkjiX3x/IM/h8JMEP6JkxABgYIg\nGD6Bz84ff/zB1KlT+eGHH0hNTeXixYsfNBo5BiM1KYFVY/rh07E3688EsuzXi7jXaaDpd9PM0Ti4\nuLH+TBCdR05m/bQRJMbHERydojnHz88PmUyW55l69uxJ1apViY+PZ9GiRXTp0oXY2FhNe1y6lHPh\nsRwIekHgi2Q2rlzCV4PGoO9QieCXqVyJF/EgU4eaDRrTtWtXTExMMDAwwNfXF39/fzJlCiKTswCI\njXrGlZOHaNN/1HvHaPOssawe2w9ZtpTZfVpx4be91GjTA89qNejVqxf16tXj1q1bHDlyBABDQ0N8\nJ09nw9YdDKpTjo3f+CLNzGB610bERD4F4Mz+H5nauSEDajkwyMuJye3rcf5XP+4H3qRLu68wt7DA\n0NAQAwMDjIyM6NGjBykpb8Zu/Pjx6OjoULGkKZM7+eB//ECuZ/Y/foABNe258NvePO8jlUppUrsa\npW3t3oxpXBz16tWjRIkSmJmZ4eXlhb+/v6b9xx9/RCKRYGRkpPk6f/78e8dMQOBTEQyfwGdnzpw5\nzJ49mzp16iAWi7G1tcXW1pZWrVrlazRyDMbvfltxr9OAuq06oq2ji76hEaXLVgDg5dPHPA27S4eh\nE9DR06Nm49aUKe/CjbMniErOJEumIDk5mXnz5rF8+fJcz/PgwQNu3brFvHnz0NfXp3Pnznh4eHDw\n4EEgr1tPJlfwJDSI1MR4pnSsz5jWtfhx2SzCXyblcetdvHgRNzc3wuPSeb3txe6Vs+kycgraenrv\nHaPmPQYiFmsxab0fY1dt5+DGlTwJDeJRfDre3t7s3r0bXV1dHB0dNdcER6egVKmo1awtyw9dQqKt\nw3y/U1jbOQBgbGFJ4qtonKvUxKtFB0Ys/p69axYQERpMww49GTBuOra2trRt2xYvLy8yMzMZPXq0\npv/AwEDKulTC3NKGr+euxm/VXB4G3gAgPSWJoz9swNbJOd/3ObFrM0bmFsgUSs0xIyMjduzYQWxs\nLImJiUydOpW2bdvmWol7eXmRlpam+fLx8XnvmAkIfCqC4RP4rCgUCm7cuEFsbCzly5fHzs4OX19f\nMjMz85x78eJFyjq7agzGo7u3MTIxY+GgjoxuXpVvxw8k/mUUAFGPH2Bla4++oZHm+jIVKhH1+CEA\n4fHpzJgxgxEjRlCyZMlc9wkJCcHJyQlj4zfBI56enoSEhOTr1ktOiEUhl3Hj7AlmbD3AfL9TPL1/\nlyM71uZy6wUFBTF//nxWrFhBUqYMhQpunjuFUqGkeqOWHxynF08fYWxugWu1OogQIRLBy+dPSZOL\nGDduHA8ePEAmk9G9e3eAXCtKpVLJ5llj8P6qM6Udy2v6dK1am2xpFuU8qgHg5OZJacfyGJmaUatp\nG/wvnGPAoMFMnTqVq1evMnXqVH7++WcyMjJ48uQJL15E0/brCSCCcu5Vca5Si/DgWwD8smEZzboP\nxMjMgnd5e4WrUKnIkikA0NPTw8XFBbFYjEqlQiKRkJiYSEJCwgfHRkCgqAiGT+Cz8urVK2QyGQcO\nHODSpUvcuXOH27dvs3Dhwlzn5RiNoVPmaAInEmKi+ev4QXpNnMuqo1ewsi3Dxm98AcjKTEffKHfU\no76RMVnpaShUcOXqdfz9/WnZsiUuLi6ac86fP0/nzp158OCBxp22c+dOTE1NiU1M4kZkMv6nDjO9\na2OG1ndhcgdvnt0PAaBy3UZsnTOeaZ0bEvnoPn/+8hNJca9QKFUcv3KHuvXqkZKSQqtWrWjuYc+w\nBq7s+XYevSfNIzUpgd3LZ5EU+4oRjdxZMKgDDwMDNM/lf+wARqbmDKvvwvSujTCztKFyvcZkK5T8\n9ttvTJ8+HUtLS0xNTQE0K0qVSsWNP49z//Y17t++ztkDuzR9mpawok6L9jx/EAoqFeFBN4l7GUUF\nz5qac+LSpZpVqkqlQiqV8vDhQ0aPHs3wKTPR1VWvUrOzsnhyLxBbJ2ceh9whIjSIRp375Pszf3eF\nGx6fnqu9cuXK6Onp0a5dO4YMGYK1tbWm7fbt21haWuLs7MyCBQtyrQYFBAqLoNwi8FnR19cHYPTo\n0ZQqVQqACRMmsHDhQhYtWgRAeHg4rVq14rvvvqN0tdqalYyOrh7VfVrg5OYJQIch4/Ft5klGWgp6\n+oZkpecOnshMT0PP0AilUsmq2VPYvO47xo4dS+XKlblx44bmPHNzc2xsbLh3757m2OjRo5GKdQm8\ncoFf1i1hxOINOLlVITkuBgAL61JkZ2XSsGMvfOs05M5fZ9m9Yhbb5k1iwIwlLBnRC/caXpS3tWb3\n7t1cehzPuSsBzO/flsVfd0GlUiHPzkIFaGnr4N2mK2smDGLt77dJiosh7NZVlh44h2WpMoQH3yTs\n5lW0dHS4/dc5lk0ZxfHjx+nUqZPmeZMyZciVKiIfhlHWzZNJa3fzPDyU9VOHYWBsQp0W7QGo3bwd\nG7/xJVuaxZXff6Pf1EWUKFkaAHcvH/x2rEWansbevXtZtmwZACdPnkShUFDdpyXH//gTgJ1Lp1Om\nQiXcanmzYFB7+kxegFicdx799go39OYVABIzcu+xBgUFkZWVxaFDh8jOfhOI1KBBA+7evYuDgwMh\nISF0794dLS0tpk+f/pHfMgGBDyOs+AQ+K+bm5tjZ2SESiTTH3v7+6dOnNG3alFmzZtG3b190JG9+\nRe3Ku+Y6l7e+t3VyJibqOZnpaZpjzx/ew9apApnpqTy4e4f27dtz8eJFQkLUKzY7OzuCgoLQ1tbm\n8ePHpKa+MZy379zBzNaJ3zZ/S7shYynvUQ2xWIy5dUnMrUvi3bYb929dw7VaHZRKBecO/kQ1n5Y8\nDAxg2YgeNO3an9IV3DQuUjN9bRzKu7Dq2FXm+51kwZ5TDJ69CrMSVszbfQJTC0vSU5JJT0ni8slf\nKV+5OtZ2joglEpyr1CIhJpp9385j4cThHDx4kFq13qRBAGQrlOxcOoOk+BgmrduNnqEhFTxr0KzH\nIAL+PAHAi4hwNn7jS9UGzajXuhOL9p3h5K5N3PlLbcycq9YmNTkZLS0tvv76axo1agTA5s2bWbt2\nLdmv9+cy0lKJfHSfUUu+5+zBXZQpX5Hyr92nbyPNzGD/usX0njQvz7O+i56eHj179mTp0qUEBgYC\n4OTkRNmyZRGLxXh4eDB79mwOHDiQ51oBgYIirPgENHwuBY6BAweybt06WrZsiba2Nt9++y1t2rQh\nKiqKxo0b4+vry/DhwwG1wZCI1Dlh9dt2Y/3UYTTtPhDbcs4c2f4dzlVqYmBkgoGRCfbOlTi8dQ2d\nRkwi+PJ5nj8Mw3fZZoyNTTj6103G9O3CL7/8wsaNG9m2bRs3b97k3r17JCQkoFKpsLOzo1+/ftSt\nW5egoGB6zFzDrpVzqdKgKVM61keWLaVawxZ0H/MN7YaMIS0pgamdfdDW0aVWs6+wsCmNgbEJsVHP\n+G3rt8hl2Sjkcvbt3UPFipWo1b43jTr31YyDoakZqYkJTG5fD4VcRoP2PTCxsMT/+EFa9R2Wa8yU\nCgU3//qTtJQUWrduDUBGRgZTp07l2rVrJLyM4vyvfmjp6DK2ZXXNdZ7eTeC1RkXUo/uUtHfC2s6B\nhFfRlHIsR+V6jQm+fB67ci6sHN2HkdPmsHLmJABOnz6NlZUVkZGR1K9fH5lCRWpqMjKplIRX0aSl\nJHEvwJ/7t64S6H8OUAe5PLsfwrMH92jQvgdxLyJZ/HUXABTybDLSUulW152bAddyBebkIJPJePz4\nMZ6ennnaRCIRgt6GQHEgKLcIfHYFDplMxtixY9mzZw96enp069aN5cuXs2zZMubOnYuhoWGu8zde\nCCUntuTsgV0c2bGW7KxMKnjWzOWqi33xnG3zJvI45DYlbGzpO2UBbrXrA/D7xkVUKufAzBnTGTdu\nHN999x0ymYy4uDgSEhI0K46AgABMTEyYs24HIssyjG9dC8eKHoxbvQOJljbfTRyMa3UvuoyckusZ\nnz8MZenwboxZuQ2XqrUBdcBNxTI2tKtVkWvXrtG2Q0e6jZ2lcTvmkC3N4tb535HLsvFu05WUhDju\n3bhMFe8m6OjqEXL9L9ZNGcqsNVuYOawPUqkUlUpF+fLl2bFjBw0aNOBBgpSg6BQCzp/GpWotDIxN\neXIvkLWTv6bLyCl4t+lK9NNw5vT5iqoNmiGWSGgzYCRrJgzGp2Mvzh/aQ/02XRgyoC8ta3sSGhpK\nt27dGDVqFB07dgRg5uIVHNizC5VKxXy/U5iYlyAzIw2ZVKp5l/VThlGjSWsatO+Orp4BqUlvAlXC\ng26ye8UsDv35F/XdnAgICEAul1OrVi0UCgVr165l4cKF3L9/n9KlS3Py5EmqVauGjY0NYWFhdOnS\nha5duzJnzpwi/w4KfNkIhu8L598gA3YuXJ1KUFie3g9hy+wxLPQ7iYOlCSd3fMeLZxHs3r07z7lX\nr16lTZs2/HwllPvPXzKqSWWGzFmFd5uuAAScPcHR7euY73dSc82r5xEsGdaVrr7TqNe6c67+7Ez1\naFLBCoBZ8xdy6sJlfJdtzvc5p3dtzIhF6zGzsmHD1OE8exiKSqXEsqQtzXsMYtn0cVga6uDo6MjT\np09zXRv6IJyAFB02zPDl7rWLyLOzMbcuRZMufWnWYxAAh7as5vDWNbmuK1+5Om6163N46xp09PSQ\nvTaqIpGIlStXMmHCBM25IpEIsUQLpUKB7uu92jYDfWk70FdzzpJh3ajbqiMNO/TM836hN6+wZfZY\nXkRGoqct4cKFC4wZM4bHjx+jra2Nh4cHCxYsoEEDdW7mpEmT2LVrF2lpadjY2NCnTx9mzZqFtrZ2\nvuP3KQi6ogIguDq/aAqrwAF8VuPnUcqEqBRpgfQt3ybs5hViX0Qy9isvAKSZ6aBScu/ePW7dupXr\nXJFIhFKp/kA0NDHDwrpU7v1IRLnOj4uOZPmoXrQbPCaP0QNy7VEa6WpjpqeFRCzK910UchmxUc+w\nd67E9C2/aI7nTDgsDXUAtcpMfkSHxzJi0fr3jkPHoRPoOHTCe9vszfRpVN7yvderVKqPTkKmb97/\n3raK1b046B+sMTANGzYkMDAwjzG69DgeM31tFi5ZplGmKSof82oEvkgWdEW/IITglv8gffr0oVSp\nUpiYmODs7My2bdsAyM7OpkuXLjg6OiISidj126lcH8ChNy6zdHh3Rvi4MbFd3Tz9Pr0fwoLBnajm\nZEtpWzsWLFiQqz0jI4ORI0dqwuxzZu455Mh9XXocz58PY7n0OJ7g6BRNXtf7sDTUpYadKRKx6IPn\nvQ+fTr1ZfugS8/1OMt/vJI069aFyvcas332Qc+fO8fTpU1QqFc+fP2fatGm0b99es7fo3bYbZ37+\nkZSEONJTkji9d5t63wxIjHmpCWRp/NbeXQ53LpxGnJ2GSqXi+vXrrF27lj7dOlPDzpQnIbd5cOc6\nclk22VlZHN/5PSkJcTi5V8nVR0FW2R6lTAo9RhKxCI9SJp/1Hu+q4TxOyCAyOYvHCRkEvkjmQNAL\nzoXHEpcu/UCvH0fQFRV4F2HF9x9k+vTpbN++HV1dXcLCwvDx8aFq1ap4eHjg7e3NuHHjaN+pM4p3\nvNy6+gbUb9eNOs3bcfTHDXn63TxrNNV8WjJt036002KZ3Kcdnp6etGvXDoChQ4cil8sJDQ3FwsKC\nO3fuAJ8+23a20GX25PGcOXOGhIQEypUrx5IlS2jVqhWu1sZcuXiebyaNJ/5lFE7uVRkyZxWWpd5I\nYIVcu8T+dUuIfvoIQxNTeo6bRa1mbdHV0+fl08fsWDiZ6Cfh6Bub4ODsxuMsbZ5cC6BDhw6aiE4D\nAwMqVaqEo5kud16gCWKZ2NYLuVyGSCQmJTGeeq07cfX0YU0gy29bv30zThfDALh6+gg/LZ6CVCrF\nzs6OqVOn0r9/fwCq2hgwYfw4XjyLQKKlhV05V8Z/+yPmViXf2lfVf70C0fmkn3vOBKGw1R8+5T7F\ndY+PeRtyfkeeJWURlSIttIv93+LVEPi8CCu+/yBubm7o6qrdNSKRCJFIxKNHj9DR0WHcuHFUr+2F\nSpT3R+/kVoV6rTtjZWufb79xLyLxatkBsUQCZiXxqltPkxoQFhbGkSNH2LJlC1ZWVkgkEqpXr16g\n2fbJ0JfoW1hz4cIFkpOTWbhwId26dSMiIoK4uDjGDe7DggULOHLzIU6VKrNxxhuty6jHD9g0awyd\nR0xm47kQFvj9jmNFDwDksmzWThpC3Vad2HA2mDb9RxL1+AFSqRTvLoO4desWCQkJKJVKnj17Rmho\nKFs3bsDOVA8tLW0cXN2xsS/Lwr2n2X7lERPW/IiRmQUdvh7PjwHPcglL5xg9gMUbthMfH09aWhph\nYWGMGTNG09a+ZVMehd4lMSmZq/efsfXAcap61+Cy9A6O1lp0qVyaRuUtP9no5eBqbVyg1XFh9m1z\n7nH2l53M7fcVQ+qWZ+vc3C7U638cZXrXxgxvWJEZ3ZqQFHRJc4+g53GMGz+e0S2qM7KxOz8t/Qa5\nXJ3bJ8uWsn3BZEY29mBgbUcG1HJgyfCeGjWcefPmoaWlpfm9zvn+5s2bmnv7+flhamqKSCSiUklT\nvp04RNP2rpB5yLVLmjaVSsXBjSsY3bIG1ZxsqVe/oeb3G9R/V2/rhmppadG2bVtN+9GjR3F3d8fI\nyIi6devmygsV+GchGL7/KCNHjtRUGihVqpQmBB7UKh+FoXnPwfgfP4hcLiM64hH+V67QtGlTAK5f\nv46DgwNz5szB0tISDw8P1u7YXaDZtrauPnV6jiLLoARisZg2bdpQtmxZbt68ya+//oqbmxuD+/ak\nhZsdW9csJuJhCC8iwgE4umMdPh17U7leIyRaWhiZmWNt5whA2M2rKBRymvccjLaOLs16DEKlUnEv\n4DJRyZnY2jtiZmYGqD/8xGIx4eHheJQyQYSKw1vX0Gv8bGydnBGJRFjbOWJkavbBd/lU16GetgT3\nkibUdypBiO4ttmQeYFTUBrSKEGfham1MSxdr7M30kYjeROZqnu31MXszfVq6WBdqZeNqbUwjT2c6\nDh9Og3bd3k6pJDHmJZtnj6P3+Fkcv/OEFSuWM2XkYGJiYohLlzJ30RKe3Ati4b4zLD14gYj7dzm6\nfS2gTtuwsClFl1FTGLV0Ix5eDQm7dZWXkc+4EZmMS+Wq7N27l+TkZNLT0/Hy8kJfX59q1dR5hPfv\n36dv37707t2bI7fCWX38Og3addc8W35C5imJ8QAEnDnGpSM/M2PLATb8GYSDWxX69n3jwg4JCdFo\nhqamplKmTBm6dlUHPT18+JDevXuzadMmkpKSaNu2Le3atROUZv6hCIbvP8r3339Pamoqly5dolOn\nTpoVIKhVPgqDlo4uv+/ZyhCvckzp0ojqXg3w9PSkS5cujB07lrt375KYmMiLFy9YuGI1U3yH8SDo\nFlvnjmd086qMbl6VQ1tW59t32M2rDKhpz/4NyzWlhL777juCg4Pp168fvr6+BAQEaNT5v4k+iH5p\nS078tJFJ7etx9fQRzh3cxdRODRnbsjqbZ40lLTkJUK8Gy5SvmCtIpUwFV6IePwDUElp79uzBxMQE\nS0tLAgMDGTZsGJaGutiJ00iIiSby0X0mfFWbSe3rcWjzKpTKvEnYORTEdfg2P7+6DsD99Gi+eVS0\nRG1LQx0albekS+XS2FmKMTSSYWeqh5OFAVVsTQu9osxBpVJxq5qUbytdo1xZCywMdHCyMMDOVA/9\nrERMTU1ZMKI3jStY0atzBwwNDXn06BHB0SncvvgHTbsPxMjUDBPzEjTrPpBLR9RBMbr6BnQcOoHG\nnftSo1ErHF090DMwICIsGIVShY1H3VxC5pmZmSgUCs3PduDAgTg6OrLqu3UkKXUwt7KhSn315OxD\nQuagXg1WqFITazsHxBIJlRu3fe+q7eLFi8TFxdG5szqg6ffff6d+/fp4e3ujpaXF1KlTiYqK4sKF\nC4UaX4G/F8Hw/YeRSCR4e3sTGRnJxo0bNcfzU874GAFnT/Lb1m/5qv9ItvqHM/vHozwIu8umTZvw\n9vamTx+1TmPfvn3R0dHBpHwVXKt74bdyDtKsTFYeuczsH49w+cSvmg+5HORyGX6r5uLkXhVQ77Pc\nfhbP5s2bsbGxIT09nb59+zJx4kR8fHz4+eU19r26hihbSci1vxj/7Q+IxRK0dHQZNv87lv16kWxp\nFrtXzAYgKyMfHU9DE7Iy1DqeiRkyevXqRUpKCg8ePGD48OHY2NgAoJelNp4h1y6xYN9ppm7cx9XT\nR7h4eF/+Yy6iUPtRL6VJPMlUl0GSquSseHqSS4n3C9RHfuhqiRn0/FuGv1pFkwpW1HcqgXtJkyKF\n7mcr5XQP3sCmqHNoicTIkGOur019pxI0qWDFkPZNcHerxOmTx1EoFPz222/o6upSoaKbRn6Ot/aX\nVSoVCTHRZKSl5LmXNCODzPQ0TdWHnEoboFb5uXXrFhUrVtScHxoaqp7AmJvRv6YDY5pXIzxI7Qb9\nmJB57ebtiIl8ysunj5HLZVw6doC6Pk3zHYOdO3fSuXPnXDmnqnfeSaVScffu3QKNrcDnQTB8XwBy\nuZxHjx5p/v92iP2ncnjrt+jo6NJp+CS0dXRwcvOkVotO7D10jD5fj6BDhw6ac3MqBYhEIqIe3ad1\n3xHo6uljVboMDdr34NLRn3P1fWr3Ftzr1KeUQzlAXV1g1thhSCQSypVTHzMyMiIlJYWHGS8ZfG87\nWfJs0l/GUr99d2ydnNHV08enY0+c3KugZ2BI24GjCLp8FgA9A0Oy3pIyA8hMT0XPQP0B+PZEoEKF\nCri5uTFy5EjgjbbovJnTqVimJCVty9C4U2+CLp/TXPO263BJ2nZ6P1nB86z4Ao3vxaT7SFVyJIgx\nlejTxboGhpKih9UfjAkgUppAijyToNRnRe4vU5GNz80lHIsLRKZSoCvSJlORu9CvRCKhX79+9OrV\nC11dXXr16sXmzZuJzgQR4OHlw+l9O0hJjCcpLoYzP/8AQHZW7godcrmMWxd+x9rOIVeViRyR6+XL\nlyORSFi3bp2mLT09ncDAQMbOWcL6M0GYWlqxcrR6UvYhIXMAM0trnD1rMq2LD0O9nbn+5wmGTZ+f\nZwwyMjI4cOAAAwYM0Bxr2rQpFy5c4Pz582RnZ7N48WKys7PJyMgo4AgLfA4Ew/cfIyYmhn379pGW\nloZCoeD3339n7969NGmiDsGXSqXoi9QzZoVMRrY0SzNTVSqVZEuzUMjloFKRLc1CLstGqVAQHRGO\nUqViTItqjG9di23zJ3L19BEsHZ05dT8Wa9eqSCQS/Pz8CHuZzMM7AYTdvIJEWxvIPROOfPRmJRMX\nHcmlo/tpP2Scpn3HgsmkJMTRqd8Q7ty5g6WlJfv27ePYsWP8GRuCHAXiyFSUCgUKmYwJX9VGJpMS\nduPKGxfkOzqez8NDc83II8PDNKuIdycCb08UXFxc0NHRwdzgjevQ1lQfQ21Jvq7DbK10bqU+xeXy\nNJZGHEOm/LQ9nnaWVQmvu5xjVcZTxdiB/ZV9qWbi+EnXvo80eRbDw3YiUymQqxSsff5HkfoDSFNk\nkabIQqlSj7MSJRnvGL4zZ84wZcoUjRG4cOECQ4YMIeDmLRQqaDtwNA4u7szu3ZJFgztSrWFzJFra\nmFhYafpQKpVsmT0OsURCudeeAECzQg8PD2fz5s0MGDCA+vXra9olEgnly5enSYfuGJqYMmrpJrIy\n0ol/GfVBIXOAw9u+48m9IFYfu8bWvx7Sfsg4xvXpmMd4/frrr1hYWNCwYUPNMVdXV3bu3Imvry+l\nSpUiLi6OSpUqYWdnh8A/D8Frc+VZAAAgAElEQVTw/ccQiURs3LgROzs7zM3NmTRpEmvWrNGkHLi4\nuFDTyYbEmJesHN2Hod7OxEVHAnD/9jWGejuzelx/4l9GMdTbmRW+fV7Xn5NTomRpTC2syExP5crJ\nQ8izs2k7eAwKpYrAVxmYWVhw9epV6rqUYfuiqXw991s86zXh+I/fk5mexqvnEVw68jPZWW8SoP1W\nzqHTsInoGahdRkGXz/EiIpyxq3dQqaY3d+/eJSYmhv379xMVFcWlGTtI8FqHyX51UMvzh/dYsO80\nHYdN5EHgDY7/uAFpVibHd36vybdzrV4HsVjCH/t2IMuWcmb/jwBUqlkXiQjOHtpDTIy66sK9e/dY\nsmSJZqJgYGBA9+7dWb58OampqcS9iubovp/o371Tvq5DVwO1fFqmMps5jw5R90buckvvQ0+iQzkD\nG6oY23M3PbJYNCkXPDlMkky9OlIBfi+vkKEoWk6clY4JQXUW4WVWHi/T8ihVKmSq3Mb9zp07NGjQ\ngBo1aiAWi6lZsya1a9fm2l/nAdDR06PvlAWsORHAisP+GJma41jRQ1Pd4e3JT43GrRG9E4H8/NlT\nvL29kUgkrF6de8+4VCm14EDOZObtaz8kZA7w7EEItZq1wcKmFBItLeq37UpaclKefb6dO3fSr1+/\n3ILpQJcuXbh79y7x8fHMmzePiIgIatasicA/D8Hw/cewsrLiwoULJCUlkZKSQnBwMF9//bWmPSIi\nApVKxdmHMfwY8IwfA55hVboMoFbWyDnWZ/J8HCt68Cj4FvvWqD+82w70ZcHe3xmzYivGZiWIDA/l\n23EDiIuORKFUoRRJWLLqO44FRrB4/1mqN2pJ70nz0NbVY2qnhnw3cTB1WrTH3FpdCPb2xT/Iykin\ndnO1UZZmZmgEjse2rM6Arxrg4eHB3r17adiwIdOmTePgwYOUsChB8uOXALTpNwJDY1O+6jeCitW9\nOLxtDZPaeqGlrUOf11UBtLR1GLNyK/4nDjKysTuXjuxnzMqtaGmrAzseBd3Ew8MDQ0NDWrduTevW\nrVm8eLFmzNavX4+RkRGlS5fGy8uLXr16MWjQoHzH31H/jfKJgUSHuWU75Hve+7DRUdfXe5mdXKDr\n8qNFCQ8mObTGUtuIasYOuBvaEZtd9OTsyKwEAlOfc8JjPC/qrMbDwA6FQkFWVhZyuZyaNWtqai2C\nuqbepUuXcK7oDqijPhNjX6JSqQgPvsWR7WtzKcrsXDqDqCcPGbVk42slHYXGE5EY85LJ/Tvj6OhI\n9+7dcxUPBhg1ahTh4eFcPX0EmTSDDdOHo29oRImStpR0cNIImWdLs7h57hTPH4ZRo7E64rlsJU8C\n/jxOcnwsSqWSKycOopDLKV/+jZs1MjKSc+fOafIx3+bmzZsoFApiY2MZOnQo7dq1w9XVtcjjLVD8\nCAnsXygfkwEzs7Sh7aAx3L16geysLI10V2pSAuumDKNBhx7cu/4XjhUr8/2MUcz+4TAAjxMyqPG2\nTJepGcMXrtX8/8CGZTi5qdVJ7gX48yQ0iDEt1NUEMtNT0NU3oFLNeoxdtR0nCwPqO5XQXFu5cmUq\nVarEnkvHaH11OVGtN2Jl9GYfzKOuD7oGBoxZsTXP+zi4uDNv14k8x21N9flp548fHCsTExP27cs/\nmOVd7PVKIAIam1ciTpZKixIen3RdDiKRCA8jO+6mRVJK98MpEx+jsUUlGltU4mDMDfa6j8TZsOTH\nL/oEtkVdoFfJOqxZupJ5896UHNq9ezdz5sxh7ty5zJ07ly5duvDq1SusrKyYMWMGzZs3J/BFMjGR\nT9kydzypCXFY2JSmi+803OuoVX7ioiM5/6sfIrGE0c3fqNhcOXmI9l+PQywS8eJZBC+eRRAYGMiv\nv/4KQFqaehU3ceJEbty4wbRRQ1AqlZiYWzJxnZ+mnxGL1rNt3kRGNfGghI0tvks3YmKu/h1r3W8E\nKQnxzO7dEmlWJjZ2juzbv1+T6gKwa9cuvLy8NHvPbzN27FgCAwPR1tama9eueVajAv8cBJHqL5hP\nUbU4uHEFCa+iKVHSluDL56jVrC3XzxxDW0cHl2petBkwklFNKzPrhyOsGT+Ar2evpGPLJjxMzEaJ\niJjICAyMTDEwNuHu1YtsmTOO6Zv3Y1vOhcz0NKSZb/ZP9qyai5mVDe0Gj8XUzIzUsOt0auqdR53f\nZVgLDsQEYLAygJexcXSdsZq0lBSWj+pFq77DaNi+xye9v0QsoqWLdaFD+vMjPjuNGFkKrgalaHpr\nOW0sPRnv0LJAfYy5vxtHPUsmFPC692F2fgRP6q3EXNvw4yd/BJlSjqP/RE5VnYSHUZkCXZspU3Ag\n6AWFlFwF1EFEXSqX/qSo1KKKm39Mu1Tg34uw4vuCyQm5/5Qk8xzproMbVyAWi2nQoQdtB/mio6uH\nSqlkTm/1h/Ry3z4sB1Yd8adEqTJEhAazZ/U8MlJTsLF3YtiCtdiWcwFA39AoV2i5tq4euvoGmuTw\n+zf9qTxhZC51/hkzZjAr4hBVjOwZs74/Q4cOZVyrmugZGdOwfc9cycoforC5dh+jhI4RJXTU77Sp\nYn+8AhbQ2aYm9nolPnLlG9wNbbma/OjjJ34CUqWMdIUUMy2DYunvWNwdyupZFdjoAei/DggqijGy\nNdX/5FSMooibvytAIFR1+G8hGL4vHFdrYywNdQmOTuF5Uibv+4jQ0tKm37RFyGTZGJtZ0G30dE1b\n2UqeNOzQi/pt1SoWThYGyJVKniVlUatZW2o1a/ueXnPz9dw3riFbU336rF7NmnzcRYFpzxhp1ySX\nC/KfWF6pgkFJxpVpjm/YTxz2HJcnGOJ9eBiVYeuL4kl8jstOxVLb6JPv/TE2Rp5lhF3jQl9fnMbo\nYxSHrqhQ1eG/iRDcIqBR+Shp/PE/XD19gzw5cVnpaei9lcibrVD+rZUC7qQ+o4pxbj3RT5XpiiQS\nE5ukzyZAPMXxK8IzYzgUe/PjJ7/GzciW0PQXmpSBohArS8VKp3jeNTzjFbdTn9HZukah+yhspY2C\nrtBVKhUXEsNoH76QC4orhdIuFao6/HcRVnz/QP5fbhX9T+jb1smZv46/kdOSZmYQE/lUkxMH6ry4\nv6tSwEtpEtkqOXa6Fnnacgx4lkxBeHw6iRlvxs/cQJvyJQyxvLSAzKRs1iv7MtyucbGthN6HjliL\nLRUH0iP4e5pYVML0E1yOJlr6WGob8zgzlvIGNkW6f2x2KtY6n75K+hBbos4zoLQ3epKiuYddrY3J\nUEgJjEpDzMd/5wqyQpcrFex/dZ15T37jWVY8WUoZ7ewVtLS1Jjg6hahkdZL8uys3yF0NQ6jq8N9G\nWPH9g/hc9cneR04NOgCFXE62NAulQpErnLxao5ZEPXpAwNkTZEuzOLxtDXYVKmqUNSQiMDdQV8gu\ncKUAEUTpPMK+xPs/WAPTnlPFyOGDButt4ed3c+30JNooUTHx4T563t2YR3Xk78DbzJnWlpX5JvzT\n9TfdjWy5mxZZ5HvHylKx0i76B3GWIpsfX1ximG2jIvf1e1wwDcJmsDBta7ELaU9YMZveDdvywGcl\nWUvPYyDWoa1VFSwNdahd2oBLWxczulkVRjVyY9WIbnkECEy0wdnFlboezrmMnlKh4ODGFYxrVYPh\nDSsyu3cr0lPVhq6oVR0UCgUzZ86kdOnSGBsbU7VqVZKSkoowwgIfQ1jx/UP4XPXJPkR5S0PuvFD/\nMR/ZsZbDW9do2nLCyTsOnYDvsk3sWjGbLbPH4uRWNU/V7/Il3rg9395D/Nhs27aEGJebO5gXs5uZ\nZdsxukxTjLX0c/Wdn5uzIOQEMWcqs/nl1XVK6piwxqVPofv7VJaV747blRn0LVWP2qZ5Q+HfxcPI\njuC0SDpYVy/SfWOyU7AqhhXfwZgbVDG2L9IKNEWeyciwnfwac4NMpYxkrcSPrtAL6uHwqVCdrCmj\n2Xp4D0gVyFQKapiUBd7Ui3xwP0xTL7K6U+6goxUrVqBnYg5JufMoD21ZTXjQTWbu+I0SJW2JevQA\nbR311oCmqsPWg1iWsuOPH76lb9++3Lp1CyCXEVSpVDg5OWmqOgDMmTOHy5cvc+XKFezt7QkJCUFP\nT69A7y1QMATD9w/gn+JWeTvqruPQCbmSit/GrXZ9lh44l29bflF3n+KCzLnGVEufZHkmC54cZknE\nUeY5dcoV1n8n9SmtLT0L/Y5ylRI9sTZSpYz5Tp0Ya9+80H0VBHNtQ1Y592Bo6A/cqDUXbfGH//Tc\nDe04HHuryPeNzS6eFd+mqHNMsG9RpD6Ghv7AL6+uo3wdQmX2Or0iZ4VeHHTo2IEfA5/ics2Bx8+f\n4qRvjYFEV1MvMjIyEhMT9b2qV889qXjy5Am7du2mzcjp7Fg0VXM8PSWJ03u3s2DPKU3hY7vyLpr2\nt6s6AFRu3JZff9yc7/O9W9UhMTGRNWvWEBgYiIOD+np3d/diGQuB9yO4Ov8mpFIpgwcPxsHBAWNj\nY6pUqcLJkyc17fv376dixYoYGRvTpE51rp89pWm7dPQXBtZ2ZFgDV81X6M0rmvan90NYMLgT1Zxs\nKW1rx4IFCzRt9+7do0aNGpibm2Nubk7Tpk0LVBDz7wxK+ZALMofqxo4AZCllyFVK4mW5A2kC057j\nWYhQ+hw6WldnjXNvulrXQkeshZHW55tZ97CpQyldM9Y8O/3Rcz2M7LibHlXke8bKUooc3BKc9pzH\nmTG0sazy8ZM/wCbX/vQu6QWACBHGkuIf+1mPfiVZnklH6xp0sKrOHvfhQP71Ig8ePJjr2tGjRzN8\nykx0dXM/V2T4fcQSLQL+PMGYFtWZ2rkhZ/bv1LQXpapDcHAwWlpaHDhwgJIlS+Ls7MyGDRuKc0gE\n8kFY8f1NyOVyypQpw4ULF7C3t+fEiRN069aN4OBgtLW16dOnD4cPH0a3fHWOHj/B99NGsPLIZUws\n1Amz5T2q8c22X/Pte/Os0VTzacm0TfvRTotlcp92eHp60q5dO0qXLs2BAwdwcHBAqVSyYcMGevTo\nQVBQ0Cc9998VlPKpNDBz4XxiGGKRiFrGTiws11nTlqGQEpEZh6th6UL3/6ObWr7Ny7QcLW+vYnSZ\npkUO1vhURCIR37v0o1bAPLrY1KSsvtV7z3UxLMWTzFikShm6Yu1C37M4VnybI88xpHTDj65SP4aZ\ntiGpiiwm2bfiTtozrIthJfo2P7+8xp6XV7heaw7f/bYcA4mORug7MjKSu3fv0rlzZ168eMGVK1f4\n6quvqFSpEhUrVuTQoUMoFAqq+7Tk+B9/5uo3ISaazLQUXj57wsrD/rx6/oTlI3tS0qEs7rUb5Krq\nIJZIsLApzfo9v+V5vpyqDkeOHNEci4yMJDk5mQcPHvDkyRMePnxIkyZNcHZ2plmzZsU6PgJvEFZ8\nBSRTpiA4OoVLj+P582Eslx7HExydoqkRloOhoSFz587F0dExTzXxyMhIzMzM8GnanKgUKVW8m6Cr\nb0BM5NNPeoa4F5F4teyAWCIBs5J41a2n2UcwMzPD0dERkUiESqVCIpEQHh5eoHcscFBKMebFNS3h\nhqexPbdqzSdBns6WqPOatrtpkbgalkKniB/AAJWN7alh4sgP0ZeK3FdBcDKwZrJDa0aG7fygELWu\nWBsnfSvC0qOLdL+iRnWmybPY8/IqX9v6FOk5AM4m3CMw7TkLynXij2pT8PMYUeQ+c7iVEoHv/V38\n5jk23z1NfX19tLW1mTlzJjo6OjRs2JBGjRpx+vRp0tPTmTJlCmvXrs23VqXO6xVg+yFj0dHTo0yF\nitRq3o4gf7W7vyhVHXLKXs2ePRt9fX0qV65Mjx49OHEir7yeQPEhGL5PpKgRl69eveLBgwe4ublR\no0YNKlasyFa/X1ApFNw8/ztaOjqUqfCmoObT+yH4NvVkaueGHN72nbpU0Gua9xyM//GDyOUyoiMe\n4X/lCk2b5natmJmZoaenx+jRo5kxY0aB3/dT8+IKGnX3MeqZOXOr9nw8jMtwsPJoZj46yI2UJ8Dr\nwBajwge2vMuMsm1ZHnHik0sHFRcT7FsQJU1k/+uK6+/Dw6gMwWnPi3Svoubx7X11lQbmLtjp5U0f\nKQgKlZJxD/xYUb57sa+wX0mT6Ri0lk2u/fF8T+BT5cqV8xzLiQx++PAhERER1K9fn2513Vk/ZShJ\ncTGMaVGd2BfPKVPBNdf56u/f9FOUqg45z5W77783xUZAMHyfRFETWWUyGb1796Z///64urpqCnVO\nGzWEgXXLs3nmaPpPX4KuvjrHy6VqLRbt+4O1p2/ju2wz104f5uSuTZr+PL2bcOPsCYZ6OzOlSyNa\nd+mVp/xJUlISycnJrF+/nqpVq1IYcoJSulQuTRVbU5wsDPKtQVfcsl85OBuWZKNrf7oGrSdBlsad\ntKJFdL5LHdPylNW3Yt+ra8XW56egLdZis+tAxj/YQ+LrskH54W5oy920ou3zxWSnYKVduBWfSqVi\nY+RZhhdDCsP2qAuYaxnSqQjJ7/khVcroHLSOAaW86WxTE7lcTlZWFgqFIlfFiAYNGmBvb8+SJUuQ\ny+X4+/tz7tw5mjdvjru7O8+fP+fOnTscOPMXg2cux9TCkvl+JylhUxprO0ecq9bi6I51yLKlvHjy\nkGunj1LlddmrolR1KFeuHPXr12fRokVIpVJCQ0PZt28fbdq0KdZxEsiNIFL9EQoacQm5XX9KpZJe\nvXqRkpLC4cOH0dbW5syZM3Tv3p0FW/ehb+dMRGgw300cxITvfsLBxS1Pf1dPH+Hkrk3M23WCtOQk\nJrWvS9/J86nTogPJ8bFs+WYko4cO0lQNfxulUomVlRWhoaFYW1sXaSz+X4y/78fDzFfEZ6exrEI3\nGpgXX6mXM/EhjHmwm7t1FiEWfd554MiwnShVKjZVHJBv++GYW2yJOs/xqvlH134MmVKOwbmhSBtv\nK9S7XU9+RI+7Gwmvu7xIY5Msz8Dl8jROVplIVROHQvfzLiqViqGhPxAvS+NAZV/EIjFz587NVTEC\n0FSMCAkJYciQIQQFBeHg4EDVMR34uXw0Rlq6mEjULseK+mWoftOOTbPH8u3xNyvyxJiXbF8wmYeB\nAZiYl6B1/xE06qROg8mWZrFvzUJunjupqeqwduVS2rX5SnP9kiVLOHHiBJcu5XWtR0VFMXjwYP76\n6y+sra2ZOnUqw4YNK7ZxEsjLF2H4jIyMcv0/MzOTkSNHsm7dOu7du0e/fv00FberV6/O2rVrqVSp\nEnHpUlbvPsyhrWt4GnYXAxNTVh25nO89wm5eZenwbrQdNJrOIyYjEYtIvH6SsSOHIRKJNL78Y8eO\ncePGDfz9/bkacJP4uBjEYgkyqRQrW3uW/ZpXo/Ha6SOc+GkT83af4Mm9QFb49ub7s3c17TcO/8ST\n21c4duxYnmvlcjnGxsZcvny50Cu//zcypRyfm0u4kRJBTMN1n6R+8qmoVCpqB8xjumMbOhbzauRj\nJMszcLsyg589RlLPzDlP+6OMVzS+tYyn3oUrbxMtTaLKtVm8arCuUNcPCtmGi2Eppjp+9fGTP8CU\nhz+TIEtjW6XBRernXdY//4PNkee5UnNWoaJzryaH0+jmUrKUMgBEwDDbRnTT/kqo6vAf54twdaal\npWm+Xr58ib6+viaBNCcKMiEhgbi4ONq1a0ePHuqyNsHRKWjr6VO/XTe6j3n/PplcLsNv1Vyc3N8Y\nFoVSxY4fdmJoaEhycrLm/j4+PppCnQq5jAmrdzBj6wH0jY3pO0WdlhDkf47k+FgAXkSEc2T7Wqo2\nVEd4lbR3QqWCK6d+Q6lUkhofw8WThzV7BX/88Qe3b99GoVCQkpLChAkTMDc3p2LFivxb0RZrsbR8\nNxQqBTdTIoq1b5FIxAzHtiyOOFYsVc8LgqmWAWucezM09Aey89lnLKtvRbwsjWR5Rj5Xf5zY7BSs\nC+nmTJSlcyj2JgNL1y/U9TmEZ7xix4uLuaJzi4OzCfdY+OQohz3HFtjoyZUKDsXcYFb4Qc2464u1\n+drWh40VB/ytKT0C/wy+CMP3NgcPHsTa2pr69dV/0O+LgsyUKYhMzsLJrQr1WnfGyvb9e0undm/B\nvU59Sjm8UeSIi47kznV/0tPTKVmypEauyM/Pj4YNGzJ37lwS4+NYPWEw66cMo80AX00xznsB/szq\n1YKh9V34dmx/qjdqRZuBvgDoGxkzevlmTu/ZxqjGHszs3YrqnpWZOXMmoN7b69mzJ6amppQrV45H\njx5x6tSpf70SxMvsZGqblqPP3c1EZSUUa9/trKqSoZByJiHk4ycXM52ta1BW34oVT/NG8YlFYioZ\nliakkPt8RQls+Snan1YlKhdZ53Pyw31McmhFySIW1X2bxxkx9Lq7iT3uw3Ey+HT3/QtpIvMf/0ZZ\n/0msfHqS/qW9WevcGzEi6pu58L2rev/tcwlpC/z/+OLy+PKLrAK1AUxLS0OpVDJ//nzC49L5lF/7\nuOhILh3dz7xdJ9i1fJbmuGUpO76es4rdy2ehp6eHhYUFffv2pXt3db04X19fVq5cSUpaOlkZ6dy9\negG3Wt7YO1eix7iZ9Bg38733rFSzHnN+Urs15bppVLAT8ZI0Siu06Nq1ay45pP8Kd1Kf0byEOxLE\n9Li7kbPVphY5rywHsUjMdMc2LI44SrMSn1c1QyQSscGlH9Wvz6G7Te08kmDqyM5I6ppVKHDfsdmF\nM3wqlYpNkWfZ/J69x0/lbMI97qQ+Y6978aUtpMozaR/4HTPLtqWxRaWPnq9SqTibeI+NkWc5mxBK\nd5taHK8ynsqvg6TSFVIeZcWysFxnJG/tYxakViXk3tf/3CLzQq3AgvNFGb6nT59y4cIFtm/fnqct\nKSmJ9PR0du7ciYODA0mZsjzRm/nht3IOnYZNRM8gb3XrClVq8cPJS3StX4WQkBC6d++OlpYW06er\na9n5+flh7+LG6fuxnNqzjZWj+7LkwFkMjU0/6X0kYhGL4/fw8NUz9MQ6ZCvl6Eu0OVR5LE1L5A2S\n+TdzJ/UZQ219aGtVhcvJ4UwP/4WVzj2Lrf8eNnWY/fgQl5MeFsrIFAUHfUumO7ZhRNhOTlednGtS\npo7sLJxYtTqis+CG78JrAYH6Zi4fP/k9KFRKxj/Yw4oKPYotfUGpUtI3ZAteZuUYZZe/MkoOibJ0\ndkb/xabIc2iLJIywa8yOSkMweUf71VCiy2rnXvn2URCdWbV7U8W58NjPVrtPqBVYeL4oV+euXbvw\n9vambNmy+bYbGhoyfPhw+vXrx6uYVx/t7/bFP8jKSKd283b5tlvbOWBZugxisRgPDw9mz57NgQNv\nFPrr1atHGUsz6lUoSfvBozEwNuHB7Q/nduWQM8NcVqkD2iIJmcpsFCiRiMTUeK1W8V/iTtpTqhjb\nIxaJ2eU2jAMxN/g15kax9a8lljDFoTWLI44WW58FYWyZ5sTL0vB7mTt4KmfFVxgK6+rcFHWO4bZF\nK9m048VFTLX0i1S7713mPv6NeFka613yemxyCEh+zKCQbTj5TyIg5QnbKg0iqM5CRpZpksfofQqf\nmtITly79rLX7hFqBReOLWvH99NNPTJs27YPnKJVKMjIySI59hVapD39o3Avw50loEGNaqMVuM9NT\nEIslRIaHMXaVelWpI3kzt8jZR3yXHLeKWCSCTwiweNut4kp16pk5czExDBChL9YhMO05DYsx5P//\nTWx2ChmKbOz11Er6JXSM+MVjFF/dWY2HkR0VDEoWy30GlPJm/uPD3El9ShXj4gu7/xS0xBK2VBxI\nmzvf0qqEJyV01JHI7ka2BKc/R6VSFdgQxWanUrmAuqavpMn8Hh/MJtf+Hz/5PSTLM5j96FeOV5lQ\nbMnYv7y6zs7ovwioNTePck+GQsrel1fZGHmWeFkaw+0ac7/CsmKrQwgfFtL+3CLz/xRR+38zX8yK\n7/Lly0RFReXZ/3pfFKSnuxsSkdoQ5tSiQ6UiW5qFXKau4dZp+CSWHjjPfL+TzPc7SdX6zWjYoSeD\nZ68C4O7lcyjSEwEICwtjwYIFtG/fHoBnz57h7+9PdnY2WVlZHN25CWlqEj4N6hdYKWVbxUGIRCJ8\nzF353qUffe5u5ut7Oz6YHP1vIjD1OZ5G9rk+RGuaOjGvXEe6BK0nQ1E89Qn1JDpMcGjB0ojjxdJf\nQalhUpbuNrWYEv6z5piNjilixLzMTv7AlflTGLmyHS8u0tm6hqZyQmFY/OQorS09NTqZReVO6lNG\nhv3Eb5XH5nqfsPQXjLvvR5m/xvNb7C3ml+tEeL0VTHX8qlBGz8fHBz09PU0gmouL2tW7ePHiXPX0\n9PX1EYvFxMXFEZcuZcLESUzqUJ/hDSsyrUsj/I/nrruYXy2/lOQkbkQmE5eezePHj2nTpg3a2tqI\nxWJ0dXVxdnZm27ZtJCQkUKNGDUQiEWKxGD09PTztrelbvQwRoWr93d/3bGNy+3oM96nEuFY12LN6\nnkbpKSUhjo3f+DK6RXWqOdlSy6su1669EWxQqVQsWrQIe3t7TExM6NGjBykpKQUeu38bX4zh27lz\nJ506dcLYOPeM531RkG52JVAB929fY6i3M6vH9Sf+ZRRDvZ1Z4atOXNU3NMLM0lrzpa2rh66+AUam\n6gi2kAB/OjWpg76hAU1bNqfOV40ZPHEUAKmpqYwYMQJzc3NsbW05deoUp06dpENN5wIrpTgZWHOs\nygT83IfT0aYGIV6L0RVr4XZlBvtfXfvsYfrFTY6b812G2zbG3ciOUWE/Fds7DrNtxJ8J93iQ/rJY\n+isoC8t15nT8XS4khgFqL4G7kW2hpMsKWplBoVKyJeo8w+0aF/heOTzKeMX2YkxfiMlOoUPgWta7\n9KWqiQMypZxfXl2n8c2l+NxciqFEl1u15nO0ynhaW3rmClApDOvXr9ekHt2/fx+AGTNm5EqJmjp1\nKj4+PlhaWhIcnYKOnj5jV+/g+3MhfD13NX6r5vIw8I0b/u1afhvP32PovDVo6+iiUKq49TSOZs2a\n0bhxYy5fvkxiYiIBAdKxajgAACAASURBVAEcOXKEmTNn0rNnT8qVK0dqaioXL15ES1uHtgN9sbK1\nx8HVA4CqDZoyd/cJNp2/x8J9Z3j+MJQ/fv4B4H/snXV4VEcXh9/djbsnxIMFEpIACcEhSClSrFiB\n4hR3dylQtFCcFodCBZcixSVokKAJSSAOxN02u/f7Y5uFEBfsa98+eUrunZk792Z3zp2Zc36HjLRU\nHJzcmLf7L9afe0Djdl1p164dKSmKrCe7du1i9+7deHt7ExkZSXp6OqNHjy7TM/wc+FcEsJeWC4HR\nZQpkDZC/YFHSVjTEqqiJVEiXZ/G1mTu/u4wsx14WzLWEAIY83Y6Dpinrq/VVLhV+bnz7aBMtjZzp\nn09MWaosE89b85hg25pBVk3zqV1y5gUdIjwzrtwDrovL4ag7TAvch2+9BaiLVRnj/yv2Gia58hIW\nh+rXpnHAdTROOlbFKn8yxpfZQQfxqTu/6MIF8LXvGuroOTDdoX3RhYsgS55Ny7tLaWzgyDDrZmyO\nuMSWiEtU0TJnhHULOpu5l4tgeQ5eXl58++23DB48uMAygiBQqVIl5s6dS/de37L/QSTvrjj+NGEg\njrXr0ebbIaQmJTDhq3os2HsKM2v7PO1dOrQH/0vH8b56Nddxf39/mjZtSkxMDE+ePKFq1aqkS2W0\n7NgNv7s3adKxB52+G5+nvZSEeDbMGIGFbUX6TluU57xEBCOaOXPhwgXc3d3p2rUrdevWZfLkyYBi\nZax58+bExcWhpVV+QhGfGv+aGV9pKGsga/+qLuiraJIhl5IkU3iFFeWNVp40MKjC3brfU1evIrVv\nzmFN6N/IhLzq8586hWVd15aoc8B1NNMC93EvqXjZLYpitM0XHIy6Q1hGbLm0V1I6mblTXbsCS4IV\nISuKbOwln/FFlXDGtzH8PMPLMNu7EPeUe8khjC9jwtocRvvvJksu41FKODVvziZemsqZ2pO55DGD\nHhZ1y9Xo5TB9+nRMTExo2LAhFy9ezHP+ypUrREVF0aVLl3xDnrIyMnjxxBerigolnqJy+QU9vIeR\nhTVt2rTBxMQEKysrNDU1qVatGoaGhqiqqlK1qqKtwJhUjC2siHsdScO2uWfU108dZpiXE6O+cCMs\n4CleX/fO9/5C/B+TmZWVS0f07bmPIAhkZmYSEBBQksf22fGf4SuEsgayVjYw5GTNSWj+k09NW6JO\nr0ebWBt6hnRZ1vvoch7UxCrMqtgRb49ZHIjyocHtBTxIDv0g1y4P0mVZPE+Pxkm74FlLNW1L1jn2\noevDtSSUw76msZoOAy0b82PIqaILvyfWOvZhXdg5/FNfUkO75Elps+UyErPTMVLVKbowEJoRi3di\nAN9Y1CtNd5XhC8uqlD37QmxWCl/7rmF75BXSZJl8ZVqTkIYrWVutD8461mVquzCWLl3K8+fPiYiI\nYMiQIbRv314pZZjDzp076dq1Kzo6OvmGPO1cMh2bKk641FesPryby2/Ukk0c2byKRzcvK+416iUn\njxxgzJgxREZGMm7cOCwsLDh//jwNGzZUZosHSEiXEh7kj6aObh5BjfqtO7Hp4hOWHLiE19ffKvN6\nvk16SjKb5oyj/+jJ6OsrQqZat27Nli1bCA4OJjExkaVLlwLkSan0/8Z/hq8Iypqbrr5BZb7/Z7/j\nWM3xHHIbw9m4x1TynszKkFOklpNjRlE4alfggvs0vrNqSsu7y5gRuO+DGd+y8Dg1gqpaFkW+3few\nqEs7k5r0e7y5XPb7Jti1ZtdLb6KzPs5Gv7WGEbMdOjDMbwdO2pY8SYko0Ww9VpqCoYp2sfe8tkRc\nordFA7QlpYv32h55GV0VDbqa1Sm6cD4IgsD1hED6PvoZe+8JnIx9wN4aw/Ctt5DvrLxKpcVZUurW\nrYuuri7q6ur069ePhg0b5sqLl5aWxr59+5QZFt7N3ff76kWEB/kzcvEGpSNWUbn81NQ1qOFelzZt\n2qCmpsakSZOIi4vDyMiIhIQE4uPjle1nyeQE+PpgUqFg429h64BVparsXppbACMrI4OfJgykYo1a\ndB8yRnl84MCB9OzZEy8vL5ydnWnWTJGJw9r6/b1gfAr8Z/iKQVlz0020bc0l9+k0MqiKh54DR2qO\n40StCVxLDKCS92SWBv9Fcnb6e78PsUjMYCsvHtRbSFB6FK43ZnE+7knRFT8ivsmhuOkWzyV/RZVv\neJ2VlK/8V0mxVDeku7knq0P/LnNbpWWkTUtSZJkcjPbBVE2PF+nRxa4bLU3GrJjLnFJ5NlsiLjG0\nlMlmk7LTmR10kJ+q9ipx+EJKdga/hF+g1s059H38CzYaRmhJ1DnmNp6u5p4fNTfdu+FHhw4dwsjI\nCC8vLyB3qNKhn3/k4bULTF67B02dN8+9qFx+1pWrK8KY8kFHRweZTKZcdvS/d5u0lCSqezQotN/y\n7GyiIt4s+0uzMlkzeTCGZhXoP2NJrn6LxWLmz59PcHAw4eHhODs7Y2VlhZVV8faFP1f+M3zFpCy5\n6UQiUZ5UOjV17djvOppztafgmxxKJe/JLHx+pNSCxCXBQt2AP1xGsrJqT/o/3szAx1uIzUp579ct\nDSVJPqsmVuFP15GsDD2t9IosC1Ps2rIp4sIH+Zvkh0Qk5pdqA5gWuI+qWhYl2ueLzkoudh6+o9H3\nqKxlVuplxB9eHKONsSvuevkLQ+TH45RwRvntwvaqYna3vEoP7njO43iMLzPs239w5aGEhAROnz6t\nzN+3Z88eLl++TOvWbxyK3pU7NNBURSKC49vXceP0ESav34uOgWGudovK5de4bWee3r/Dvn372Lt3\nL0uXLsXY2JiwsDD27dtHgwYNmDNnDqmpqfy5ZR0ikYimHb/JdY1Lh38jKS4GgIjnzzi+Yz1OdRoC\nCgH9dVOHoaquwXfzVqIqEWOopaqsGxcXR1BQEIIg8OTJEyZMmMCcOXMQi//PTYPwH58ET1MihD4P\nNwnGF0cIcwIPCLFZyR/kuknSNGGM327B4tJoYe/La4JcLv8g1y0ujW4vFM7HPilRnVMxDwTLy2OE\nyIz4Ml+/98ONwuIXx8rcTlmY6L9XcL42Xfg+6HCx6/z+8obQ1Xdtscq2uLNE2PvyWqn6FpT6WjC+\nOKJYzzpTJhV+e3ldaHx7oWB5eYwwJ/CAEJYeKwiCIMjkMuHr+2uEAY82f/DPYFpWtnDxYZBQzaWm\noKmtLejo6gkutT2E4ydOKsuEh4cLEolECAgIyFVvl0+oAAgqqmqCuqaW8qfLiCnCjtuhwo7bocKq\nv24JNeo1FdQ1tQRTSxuh3/QflOd2+4QKv/2xT7C3txckEokgkUgEbW1twbmGs7Bh00YhKiZa6Nix\no6CpqSmIRCLhqwEjlXVzfhp91U3QMzIR1DQ0BeMK1kLrb4cKv1x9Juy4HSpM2/SnAAhq6hrKvmlr\nawuXL18WBEEQ/P39hapVqwqampqCra2t8OOPP37QZ/+x+C+c4RMjMO01i4OPczj6DkOtmjHBtjUm\npVTYLwk3E4P47uk2rNWN2FCtL/aapu/9mkUhF+QYXBxOcKMfi+2kkcO8oENciH/KudpTURGXXqj3\nUUo4Le8u43nD5WiVcv+rrKTKMrG/OgEnbSsuecwolijxurAzPEmNVGYcKIhnqa9o5LOQsMarUBer\nFlo2P7r4rsVdz54ZhYQvBKdH80vERbZFXsFZ24oR1s3pYForl8j4/OeHOB37iAvu00rVj9JQlNYl\nkEfrMlsu43VWIsEZMaiJJKRE672X3H2Wl8fyKiuBtwfnKXZtaS1q/l+uwHLgXyVZ9ilQ1KBVWcuc\nrU6DmJ3egSXBf+F4fSoDLZswybYN5urFE68uDXX1K3HHcz7LQ07icWseM+3bM8a2VZkDgsvCi/Ro\nDFW1S2z0AGZX7Mj1e4HMDNrP0io9St2HGjrW1NOvxLbIy4yy+aLU7ZQFbYk6cx06seb5Jc4GRPEy\nKbNIUWLFUmfRL0y/RFxggGXjUhmbi3FPuZMczK818mYLlwlyTsc+ZEP4OW4kBtHHogGX3KfjqF0h\nT9mDUT5sjbjMLc+5H8zoFSX7lfNsQxMyiEjKJFwtkEXRv5Emy0RFJCFLyKaOrgMnakwnIimz2PJh\nb1NY7r6OprXYEnGJbBQONOZqesx26EBGpvi9XO/fxn8zvg9Ead4uAcIyYlkWfII9r67Tr0JDJtu3\nxVI99z5CeROQ9oqhT3eQLMtgc/UBH1y3MocDr2+z66U3R2qOK1X9mKxk3G/NZU3Vb+loVrvU/biZ\nGET3h+sJaLDsvcSOFYfHrxPxDo1BTaSKqIiEWRKxiACVp5gaUqixTpdlYXt1AjfrzClRXjtQGDaP\nm3OZ7vAV3c3rKo9HZSWxLfIyP4dfwFRNl+HWzelhXrfA2fLDlDCa31nKqVoTS7RHWBZKqnUJgEhg\nT9pfnMm8AYCGWJXnDVdQQd2gVO296/2dQ5Y8m10vr7LwxVHCMuKQI6AtUede3e+VmrTleb1/K//n\nO5ifBmVRUrfRMGZttT48rv+DQr7q+kxG+u0i9D0GV1fRsuBc7akMt2pOq7vLmRrwR7npYZYE35Sw\nAgPXi4OJmi5/uIzgu6fbCEorOttGQdTVr0QVLXP2vrpe6jbKgl9UMvciklEXqRVp9EAhSmybVRnD\nzMLFu/dH3cZdz77ERg9gR+QVtCXqdDPzRBAErsT70+vhRhyvTSUg7TX7XEdxy3MeAyybFGj0YrKS\n6ei7mjWOvT+Y0YtJzcQnPJHTv29nXt92DG5Qmc3zJijPZ0uzWDd1KBM7NKB/HVue3vnnby6I6KrR\niooSK7TEaiyu1I0K/yTXLWvIEyheQtaGnqGS92T2vb7NLuch9K3QEBGw23lILiH28rjev51/5Yzv\nQyZuLO+3s6isJH4MOcmWyEt0MfNgun17HN7jftzrzETGPdvDraTn/FxtwAf1tutwfxX9LRvzdRlT\n26wNPcO2yMtcqzMbzVIGV5+Pe8IIv108rv/DB13+zUl3c/r37Vw9vo/wQH/qturAd/NWAhD48C6H\nNq0g2O8hYrEER/d6fDtpPgYm5ohEAm2rWRSYEbzh7QVMsWtX4tlwUnY61a5NY6/LMB6nRLAp/AJS\nQcZw6+b0rdAQw2IIXEvl2bS6t5y6epVYUqV7ia5fFnJkCH3On0QkFvPoxiWyMjKUzzNbmsW5fbtw\ncHJl/bThDFu0juru9f+pLXBX+pSTwjme1l+S53MQk5pV7Nx9OX+TpOx0Noaf56fQ09TVr8RM+/bU\n0a8IwKvMBM7GPebbCg3zvZfSXO8/FPyr9vhKkrjx9+2b2bFjBw8fPqRnz57s2LEDgBs3bjB79mzu\n3LmDRCLBy8uLNWvWUKFC7r2LrKwsari4EpOQyKq/8ubY8/5rP5vnTWDAzKU07aRIqHrol5Uc37YO\nFTXFh1QiFvHwwQMqVlR8Ec6fP8+kSZMIDAzEyNiY8EEy6jS+Q3uTmhjuf84vy9cq25fJZGRmZhIV\nFYWJSek3s83V9fnNZQQnYnwZ/HQbTQ0d+bFKzw/icFOSUIbCGGXTEu/EAMb4/8pmp4GlaqOZYXUM\nVLQ4FHWHrualC9IuDQ9fJiGTCxiYmNN+4BjlQJ1DWlIiTTv3YlS9pohVVPh12Wy2zJ/EpLW7EQQR\nD18m5evM8CA5lJCMWNqZuJW4T+Oe7UFXRYOvfdfS0siJNY7f4mVYrUQxd+Oe7UVbos6iyl1LfP3S\nki6VEZ6oeHYezdsAEPz0AXEZL5VlVFTV+LKXQqtTLHn3JVhEbdXqDKpSI9+Xn5yQpwypjMDYVOLT\n3rxYG2qpUtn4zYt1nDSFNaFnWB9+ji+MnPm79mRc3kkhZaFuUKDRK+n1/iM3/xrDV9LNbLm2IbNm\nzeL06dOkp78JLo+Pj2fIkCF8+eWXqKioMGrUKAYMGMCpU7nlrZYvX46GniEk5E0nk5qUwLHt65V6\nfm/j+UV7hi5YDSg8sCpWVAxaUqmUzp07s2zZMoYMGYKPjw/NmjXjZOuznNd8yTovXzp1WcFMhw5U\n17Zk3rx5XL58uUxG723amrjxqN4iZgcdoMaNmayo0oPeFg3eW4BxbFYKidnp2GuWvf8ikYjN1Qfg\neWs+OyKv5Ct2XZw2Zjh8xbznh+li5vFBAquLM1C7NmyWq06L7v1YMvTNDCoiMZ0MqSzPALgp4gLf\nWTUttsdrhiyLfVG3+Sn0NPeTQ5lg15oJtq2Vy30l4ZfwC5yPe8INzzkfdPacn7ZmSZGIRIjTdaEQ\nP7PCcve9ykxgZehptkZeopOpO9fqzCpzPsnCrvcf+fOv2OMrTeJGI7emVGvQAmPj3BkN2rRpQ7du\n3dDT00NLS4tRo0bh7e2dq8yLFy/YvftXWvUZnm/7+9Yv5YseA9AxMCq0HzmDFigCTZOSkvi1xivu\nJAdTp04dqlevTnjAC+ZW7ExQw+U4aVvR1OcHejxYz5ad25XSSuWFjooGqxx7c8xtHCtCTtHm/o8l\nUhMpCb4pCsUWcTkNjLoqmux3HcXkgD/wLaVW6VcmNZHKZZyOfVgufSqK0gzU/ndvYvnOC1VgbG79\n0uTsdH5/dZPBlkVnswhKe82UgD+wvTqBPa+uoy5WYW7FTiyv8k2pjN6VeH9mBR3giNs49FU+rPp/\nftqaJUUmQHyatMT1QjNiGe23G6frM0iTZXLX83u2Og0qtyTK/1EyPqsZn5eXFzdu3EBFRdFtKysr\n/P39uXDhAmPGjCEsLAyJREKTJk1Yt24dVlZWxKRmsn7br5zau5XQZ49xcK7J9J//VLbpf+8mK8fm\nNhCZ6WmMXLoJWrbj6PG/ePr4Efv3K5JLSqVS1NTUSE5WOKAcPnwYiUSCoaEh6urqdO3alefPnzNs\nyiyipXlds58/vk/w0wf0nbqIW2eP5zl//8pZRrZwQd/YjC969Kem1Shi1SOZGPwbkuaVuP7HKZ47\nfIn08StCQkJo1KgRAHoqmsxwaM8Ymy+YfGANka9fcrBqNK5JIdTSK1+vzDr6FbntOZeVoaepc2se\n0+zbMda6FRKxGAGF7qLiPxT/F976d1HnBcX/r8Y/o6pWBV5nJha/rTzt5pRTHBMhYrJdGzr4/sRv\nNYajI1EvsGxBbX1t5s60wD/Rlqi/U/at+sVsq+CyimOZ8frIhOIbh7CApxzdupoxK7Yoj+U3UO99\ndQMvw2pYaeT/4pUtl/FXjC8bI85zJymY/paNuFZnNhGZ8fR7vJnJdm2L3ae3CUmPofvD9eyuMZSq\n2h9+wH9XW/NDtBOY9polwcc5GHWHwVZNeVL/ByxK8cJQHnxI34ZPnc/K8IEiUeS7+bKcnJw4ffo0\nlpaWZGZmMnv2bIYPH87Ro0d5+DIJTV19WvUcyMvgIJ74XMtV17FWXX6+/Ebe6umd66yeMBDX+l7I\n5AKuDZpRu6abco+vf//+SjmfBw8esHjxYlq2bMmhQ4dISEigbt26aGlp4e7Vmr/OnMt1LblMxq6l\nM/l28oJ8JYE8W36FV+de6BuZEvToHuumDiVZJ4ODdf/R3fOyhZXX6bFBodVnPKEFjUN+QgjJbRDi\nd51BvUklLmQEcPzWXFREErTEaqiIJfkMuMUzVLz9+ztlJgf8weQARdZw0T9+hyKR6M2/Ef3zezHP\niyA1OxNVsQpHo+/mUzannXzaynWd/MsmZ6fT+t4KbNWNEYtF+bSVX58VbSGAX9pLRvjtwkBVq+Br\nid661wLaKuq8p7Qe5hTP8L0OC+bHsX3pNXEejrXq5jr39kAtCAIbw8+zLB+HkleZCWyJuMQvERex\n1jBiuHVzDruOQUOihkyQ0/3hepZW7l4qB6FUWSadfFcz2a4tXxq7lLh+efC2RuX7budRSjiLg4/z\nd+wjRlg3J6DBMozVSh6PWh6UxLfh7VCq/2c+O8OXH+bm5rl+l0gkBAYGKvdInOsq9nQuHf6tyLa8\nj+/Ho3lb1DUVA05yZjZ6/yyRpqamcuDAAY4fP05gYCBt2rTB1NSU0aNHo6Ghga6uLklJSdSvXz/f\nt8Jz+3dhU7k6lV3y96J7e8+vipsHX3wzkIhLPvTq0J59d84i/eEKqvNasLzHeJwSdPiuax9m1xtA\nizZfKAfPjLQ03K9sZfu+X2nUoAmZ8mx+f3WD9eHncNSyYIJta+rqV8o7+BZhqCikDAL8+uoakwP/\noI9FA+ZX+rrUKv85uN2YxTanQe/FzT1TLqWxzyK+Ma9X4uSuoNijOhx9lxO1JpZ7397myvNYnscV\nrRMa8zKcZSN70WHQmDx52gBuJAdw48V1XHVskAlyUmQZtDRSeOcKgsDFeD82hp/jTNxjepjX5VjN\n8bi9E0ayM/IqWmI1upt7lvg+BEFgwOPNuOralFuuvtKQo60pE0CWnY1Mlo1cJkMul5GVmYFEooJE\nRQVpVqbyZU8mlZKVmYGqmjoikQiJiFxal+/ik/SCRS+Ocj0xiPG2X7KxWj/0VDQ/1C3moaS+Df+W\nsIfPzvBNnz6dadOm4ejoyKJFi5RK6aGhobi6upKUlIREImHz5s0l3iPJTE/D5/wJxq7clut4UmY2\nAAcOHMDU1BQ7Ozu8vLyYPXs2IpGI33//HS8vL7y9vUlISODUqVOcOVeDzKxM0lKSGfOlO7O3H+bJ\nbW/8797A95+UJKlJCYT6Pyb02RP6TFmQpz8ikQgVkZg9LsNp9kib6Q53SPKwoqK2GV/Y16LTVx24\nd/4ag77upayz58ApjI2M6daqg9IBY7pDeybYtWZn5FVG+e+moqYZcyp2pOk7wtmlRgR9LRvRxsSV\n8c/2UuP6DDZV71/qN/tMuZSAtNc4F5KDryyoi1XZ5zIKz9vz8dSvSCODvE5GhdHPshHfvzjCvfew\njPw2xRmok+JiWDr8G1p260fzLn3ytCESgY2OLo+yw1gffk4p3t3YZxESkZiAtNdoidUYZdOSLU6D\n8h2kk7PTmRV0gKM1x5XKqWfRi6OEZsRx0X3aR822UNlEm/uRCmezo9vWcGTzT8pz108eouN34+g8\nZALTujYj9mU4ACtGfwvA8iPemFoqvC4rG+cN17gS78+i4GM8Tolgsl0b9tQY9tEk7nIojW+DT7ji\n+fy/G7/PyvAtXboUJycn1NTU+P3332nfvj3379+nUqVK2NrakpCQQFxcHJs3b6ZatWol3sz2uXAS\nHQMjqtWupxxoZDIZ0iwpGRkZ7Nixg06dOtGiRQtGjRrFsGHDePr0Kb/88gt6enrIZDK6d+/OTz/9\nhF9UCof/vsCuZbOZt/sEeobGDJ77I9LMN4Hg66YMxaNFW5p0VEhq3b30N461PNHS1efFE1/O/rGd\nibPmAdDMsyHpoTEclHfjS2NXgoKCOH78OFOmTMl1D+8qyOegLlZliHUzBlg25tdX1xj8ZBuW6gbM\nduhICyOnchmQTNX0+LXGME7HPmS4304a6FdmVdVemKqVzOPsSUoklTTNypzQtDDsNE3Y7jSYbx5u\n4I7n/BLJwamLVZlo25rFwcf403XUe+tjcQZqkUhEdEQohzev4vDmVcrzOcv3YqCrgxN9VV2Ik6Zg\nd3UCrYxqcDr2EVW1LHDTseV1ViIzgw7wc8RFXHWscdO1xVXHBjddW2zUjVgcfJxWxjXwKMXs+0jU\nXTZFXOCW59z3+vcsDpqqEqz1NQhNyKDzkAl0HjIh33I/Hr2W73FQxMXl7IcJgsCZuEcsfHGUiMx4\nptl/xRG3sWWWXVu3bl2+oVTBwcE4ODigrf3G8E6dOpXZs2cD4OzsTEiIYltEADIyMnCp78X4VdsB\nxVbLoV9WcuXoH2SkpWJmbc/UTb+jravPjsXTuX7ykLJdQZady5chLi6OQYMG8ffff2NiYsLixYvp\n1Uvxwl2Yj8WnymcdwN66dWvatWvH6NGjcx1/9eoVbm5u7L54n5ep2crjlw7/xrWTh3I5t7zNshE9\nqeLmQeehEzn0y8pcAw0oZmCjR49mzZo1aGtrIwgC6enpqKiokJycTEpKCgMHDsTR0ZH5ixazYNsB\nNs0Zm28cH8Diod1p0KazMo5v48xRPLp5meysLAzNKtCyWx82/zBL+UX7888/+f777wkJCUFfX5/e\nvXuzePFi5X5hREQEdnZ2+Pn5Ubly5UKfXbZcxu+vb7DoxTEMVbWZ7dCB1sau5fZGnirLZG7QQXa/\nusayyj0UKhTFbHt75GXOxz1ldz4akOXN7KADeCcEcKb2lBK51qdkZ1DRexJXPGbmqz9ZXuQEXJcW\nWwNN6jno8cfrm8wNOkiMNJVZDu0ZaNkkl7GXyrPxS3vJg+QwfFPCeJAShm9yKGmyLNLkmfSxaEgD\ng8q46djirGNVrNnMo5Rwmt1Zwl81x+OpX6nU91Ce5AgClFbrsrWjGUZaKhyLvs/C4KOkyjKZad+e\nHuZ1yySG/jYHDx5ELBYrQ6neNXxSqVTp4FcQ5wOi6OHlQech42nYThEreWDjcgIf3GHQnBUYW1gR\nEfQMMxs7ZbLct/nth8lYGmixbZti9atnz57I5XK2bt3K/fv3adeuHdeuXcPZ2ZnXr18jk8ly+Vj4\n+flx9OjRcnke74PP2vC1adOGNm3aMGbMmFzHw8PDsbGx4fidAGLkb76ghRm+2FeRTO7UkCX7L2Bm\nbZ/rnL2RBgd2LufM32fosnsmt5NeMMqmJfVFNpiampKQkIC+vmIQOXz4MLNmzeLRo0flMmi9byV1\nmSBn/+vbLHxxFA2JKrMdOtDepFa5GcC7ScEMfroNI1Vtfq7Wn0pa5kXWGev/K7Yaxky0a1MufSgM\nmSDny38UREoaTL3g+RFepEezzXlw0YVLSVkGarEI/LTu8UvU33jqOeCbEsaeGsNKtMTd/v4qjFV0\ncNW1wTcllAfJYfinvcJWwzjf2WHO5yY2KwXP2/OYV7EzfQoJwv4YlFZNyd1aj/vyx/zw4jhqYgkz\nHTrQybR2uYXcvMusWbMIDw8vseFLl8pYuP0gK8cPYPWpO6hrapGalMCEr+qxYO+pPOPbu2SmpzG2\ntTtHjx7lixbNGgznlAAAIABJREFUSU1NxdDQkEePHlG1qmJboE+fPlhZWbFkyZLcdTMzmTdvHkeO\nHOHJk083yfVns9SZkJDAzZs3adq0KSoqKvzxxx9cvnyZ1atXc/DgQZydnalSpQqxsbFMmDCBWrVq\nYVvBjPjIRKTZMrKzpchk2QiCnKzMDMQSCSoqb5Ykrp08SGVX9zwfCokI1rw8wcFtP6PSw5XFwcdR\nEYkZZt0ME1MTHBwc2LhxI5MmTSIlJYWdO3fi6uoKgEsFvU9eSV0iEtPDoi7dzOtwOPouc4MOMTfo\nELMcOtDZzL3MX+raevbcqjOX1WF/U/f290y2a8sE2y9zpaR5l/vJoXQwrVWm6xYXiUjM3hrDcb85\nl/r6lfnKtGax646yaUnla5MJzYjFVsO46AqlwERbHQ9r/RIP1FJByrHM8zjp63HLcy4v0qMZ67+H\nJgaOxW7jcrwfD1LC8Ku/JJcn57uzw/Xh5/BNDiVDLsVVx4YaOlacj3tKff3KdCmj3Nz7IGf/qrjP\nVCIGqU40HQLWYK6mx7Iq3ct1daQwZHKBhy+TSEiXEhqi0Oe1srFFRSKm1RdfsHz58jwiFYExqVw9\nvh/3Zm2UTnrhgf6IJSrcPneC03u3oqmjwxc9BtKye95YX5/zJ9A1NMLCyR2AZ8+eoaKiojR6AG5u\nbly6dEn5e34+Fp8yn43hk0qlzJo1Cz8/PyQSCdWqVePw4cNUrVqV06dPM3HiRKKiotDV1cXLy4tD\nhw5h9s8eifeJg2z9/o0H3pBGVWnYrqtSnw/A+68DtOmT/9JauxRdDsakkd3EBhCQCjIuxftjqqbH\nvgP7mTh+AkuXLkUikdC8eXNWrVLstZR20MrR6vyQ+npikZivzTzobOrO8Zj7LHhxhLnPFQawm7ln\nmRQ2VMQSJtq14WszD4Y93cFvr26wxWlgvntGgiDgmxKGWzlIlRUXMzU9/nAZQecHa7ihM6fY2qeG\nqtoMtmzKipCTrHH89r31ryQDtVyQIyWbBK1w/nTvp9xvmhrwB8OsmxV7sJYJcsY925tv+IKqWAUX\nHRtcdGzo/dbxqKwkHiSHMf/FYZJk6TxOicDk0qgiZ4cfg2pmuphoqxeqdSkAWWrJbEo6hg4itjgN\npImB4wfpd0xqJsFxaYTEp+EbmYhMgAyJNnN3HsPB0ZmUxHj+XDmXbt/05MLZM7nqvopL5Nb5E4z9\ncavyWFzUS9JTkngV+oIVR7x5HfaCZSN6YmHnQI26TXLVv3p8Pw3adiEhXbFNlJKSgp5e7pdwfX19\n5f4fkK+PxafMZ2P4TE1NuX37dr7nRo8enWefLwdrfQ0at+9G4/bdCm1/yf4L+R630tekmfvXeMVG\n0MBnAVFZybjp2KCnoskov91EZsbTbn1vxpquoJWxSx43/pK/XX5cJXWRSER701p8ZVKT07EP+f7F\nEeY9P8xMh/b0NK9Xpn0MB01TTtWaxJ5X1/jq/ip6WdTj+4pfo6PyZo8hJCMGHYn6B9ECfZsGBlWY\nbv8V3R6s46rHzGI7Yoy3/RKn6zOY5dABsxI68ZSEtwfqkIRU5MiRvPX1zRKkqIjEGOlKWJNwlFW2\nXZRG71VmAmfiHpdIp3TXy6toilXpYV636ML/YKamR0hGDFFZSTyu9wMGqtpFzg4VxtC6RHuH5UVB\nWpciscCTzGB+ijmAs6QCP9XoSt0PuEeZsxSblJmN8FY2Fw0tbRycFNqqOkamfD1uHuPaeHDneSTu\nFS2V9c+fPIa2ngHVatdTHsvZx+s4eCxqGhrYVKmOZ6sOPPC+kMvwxb6KwO/uDQbMXKoMydLR0SEp\nKSlXH5OSktDVzfsdNTIyol+/fri5uREREVHkXuTH4tPsVTlSXsuNFbXM8PGcT2OfRYyx+YIBVk34\nvtLXhKTHcDT6HhvCz9Pv8WaaGDrSwaQW7U1r5UpbUtTbJXxaSuoikYjWJq58aezC+fgnLHh+lPnP\nDzPDvj19KjQodKmyqHa/rdCQ1sauTAz4jRo3ZrKxWl/a/COWfD85tEypiMrCWJtWeCcEMO7ZXjZV\n71+sOhbqBvS0qMdPoaf5oXLhL1dlJWegPvn6FTuf38dabIaWSAs7LUNqG1rgbGaAhqqEIZef5/Kk\n3Rp5mW7mdYotEZacnc7MwAMccRtbotmNd8Izpgfu44rHTAz+ydBQ1OzwQUoYVxKesT7sXLH2Dt8H\nOVqX8dJU1oadYW3YWVoYOXGw1khcP/BnsST7jznP5E5YAto6usqX5bOH/6Rh2y65nplNlWq56ij+\nnbdN7xMHqeLmgZm1nTJQv2rVqmRnZxMQEECVKlUA8PX1xdk5/0wt2dnZREVFkZSUhJFR4bKMH4vP\n2rmluJRnaiC5IFcGb79LYnYaJ2MecDT6HidjH1BVy4IOprXoaFobZ20rRYD5Z6ykfjnejwUvjhKY\n9ppp9l/R37JRmV23z8Q+YpjfDjz1KvJT1d5sDD9PtiBj4QdU7X+bpOx06tyaxyyHDsV2yghOj8bj\n1jwCGyxTDvjljSAI3Ep6zsbw8xyJvktydgYXPabTUL9Krs+iXJCjfn4wac1+QVWsgkyQU9F7Eodc\nx1Bbz75Y15oZuJ/wzDh2Og8pdv9CM2Kpd+t7tjgNpG0pMj5AwZ6l73t2GJWVxMqQU2yOvEgHk1pM\ns//qvXrqFkSOI1NWlsIf4cjmn4iLesmAmUvxOX+SAxuXkxQbjb6JGb0nzef6iYMkxccybdMfyMgm\n2SAEteRkRtfpzNIDFzCxss/V/g9DumJpX5nek+YTHRHK4qHdGb5wLU6ejZRlpnXxom2/4TTr2IOa\nVvpK8etvvvkGkUjEli1buH//Pm3btlV6db7rYzFy5EgCAwO5e/fuh3x8JeJfYfigZMavPJYbs+TZ\nXEnw52j0PY5E30MsEtHBRGEEGxlUKfWM6VPgekIgC14c4VFKOFPs2zLYsmmZYrTSZJnMf36YHS+v\nYqluyAy7r+hmUXKFkPIiJyv4Bfdp1NCxLladfo9/wVGrAjMc2pdrX1Jlmfz26jobws+TmJ3GMKvm\nDLBsTJ1b8/i79uQ8IsexWSlUuTaFOK8NAPwVc5/vnx/hpufcYl0vx4j71l1QoJbnu6TJMmnks4hv\nzOsyxb5dyW6wGLw9OyyJZ2lRhGfEsTzkBLtfXqOnRT2m2LXFrhyygZSWHC/w/EKpNLV1+bL3d1w9\n9idJcTGoa2njUr8p3UfPwMDEDLkg5670Keu2zsDsXjIrNp/n3aEuPuoVWxdMJsD3NnqGxgoD9/Wb\nvenAB3dYNrIXq0/dQUdHh66ulm/SKMXFMXDgQM6cOYOxsTFLlixRxvGtXbuWlStX5vKxWLp0KXZ2\n70/coaz8awwffLzEjYIg8DAlTGEEY+4RlBZFGxNXOprWorWx60eVNCoLtxOfs/DFUXySXzDJtg1D\nrZuV6S38XlII9W5/T21dO3bVGPJRlet3RV5lUfAxbnvOK9bf52lqJF53FvOi4YpymYk8TY1kY/h5\n9ry6RmMDR4ZbN+cLI2ell237+6sYaNmYzu94TT5NjaST72r8GywF4Kv7K+li5sEAyyZ5rpEf3R+s\nw0XHhtkVOxarvCAI9Hy0ERWRmN3OQz+Yw0pZZodBaa9ZGvIX+1/7MNCyMRPt2pQq00R5ki6Vsf9B\nZB5jBbBwYGcad+xB047fFNpGliDFW/0i21z6cyko9pMPpfqY/KsMXw5FLTe+bxXziIw4jsf4ciT6\nLlcTnlFPvxIdTWvT3rTWe3OLf5/cTw5h4YujXE0IYILtl4ywbpHLYaW4JEhTsbkynvmVOvND8HEm\n2LZmsl2bjzY7Hvp0O/HSVP5wGVmsAb2L71qaGjoyxrZVqa6XJc/mcPQdNoSdxz/tJYOtmjLEygub\nfD4TMwL3oSFWZU7FTrmOX473Y0bgfq7WmUVIegy1b80hrNGqYhnjK/H+9H60Cb8GS4ptvBe/OMbB\n6Dtcdp9R6uz25Ulhs0N7DWNeZSXyPD2aAZaNme3Q8YM7URXEw5dJSu/Nt5HLZHzXqCqdh07g8pHf\nkWZlUrvpl/QYMxM1jdzfMRky6lgZ4lJBv1wC9T8FX4P3xb/S8BVEUSrmQLmrmKdkZ/B33COORN/l\nrxhfbNSN6Ghamw6mtaila/dRXb5LyqOUcBa9OMq5uCeMtW3FKJuWJcq5dinejxmB+/CuM5vg9GiG\n++0kIjOezdUHflCvuhwyZFk09FlI3wqNGFsMY+aT9ILOvmsIargctRIY69CMWH4Jv8DWyMtU17Zk\nuHVzOpnWLtTg7311ncNRd/JIph14fZtfX13jkNtYZgbuJ1WWyU+OvQto5Q1yQU6dW/OYZNeGnhb1\ni9XvY9H3GOa3g1t15hZ7WfRjcCsxiBlB+7md+AI3XRtURSo8SY34JDxLcyhIkDw++hXj23piX92F\ncSu3IVFRZfXEQVRzr0/XEVPylK9opEXjiooXpfL0bfh/4/PdaCpnPpaKuY6KBl+befC1mQfZchnX\nEwM5En2XHg83kCGX0sG0Fh1Ma+FlWK3MjiTvmxo61vzmMgK/1Eh+eHGMyt5TGGndgrG2rTAshtOH\nwqNTsS9gr2nKiZoT+f31DTr5rqabuSeLKnVB9wMuC2tI1NjvOpp6t7+njp4DDQyqFFreQ88BJ21L\ndr/0ZpBV4Ule5YKc07EP2Rh+Hu/EAL61aMB592lU17YstF4OLjrWLHh+JM/xaGkyZmp6ZMmz2Rp5\nmQvu04rV3q6X3qiJVfjGvF7RhYEnKREMerKVozXHfbJGzzvhGYteHONBShiT7NpwxG1crnCjdz1L\n14Wdwz/tJXYaJrjp2iiMoo4trro2792ztKAcfzlhCC2798fARKF69GXv7zi2dW2+hu/tdj63UKoP\nyX+Gj09HxVxFLKGxoSONDR1ZXuUb/NNeciT6Ht8/P0yP1EhaGTnTwbQWbU3cMFL9OLm9ikM1bUt2\n1RhKYNprFgcfp8q1KQy1asZ42y8LXVq6nxySy7iIRCJ6WtTnS2MXJj37HefrM9hQrV+J1FXKioOm\nKVuqD6THww3crTu/SMHtGQ7tGfxkG/0tG+cb9B+dlcT2yCtsiriAkYo2w62b85vLiBKncXLUqkBw\nRgwZsqxcjkXRWcmYqupyJPou1bQqFMuQpmRnMDNoP4dcxxRrcI+TptDRdzXLqvSgnn7hmrAfGkEQ\nOBf3hEXBRwnJiGWaXTsOuY3J96XRTE2PlsbOtDR+45b/7t7huvCzH8SztKAcf9p6BhiZVcgdhlBI\nzpl32/kcQ6k+BP83S50FKZrv2bOHoUPfKLLI5XLS09Px8fHB3d2dmNRMNh0+z+4f5xHi9wh1TS2+\n6j+SVj0HARDg68PelfN5GRyIiaUNfacupGpNhcehWARPj27n1+1bSEhIoG3btspMDaBIWrt3717U\n1N58mBITE5FISr5P+Dozkb9ifDkac4/zcU9w17Ong4liNlgc/cuPSXB6NEuC/2Jf1C0GWTZlom3r\nfLMh1Loxm5+r9y9Q0Ph83BOGPt1BLV1b1jh++0EzWU8P/BOfpGBO1ZpUqIqNIAg08lnIGJtW9LCo\nqzx2LTGAjeHn+SvGl06mtRlh3YI6+hXL1Kca12fwa42hylkywGi/3VTWMudI9F2GWjVT9qEwZgXu\nJzQjll3FEAXPlstoc/9HamhbsaoYS6gfCkEQOB5zn4UvjpKUnc6MchBceJuc2aFvSug/jjRh5To7\nLGiPD+Dgph95eO0C43/agURFhdUTB+FYuz5dhk/KVU4iIlcIwrt8zqFU5c3/jeErSNH8XXbs2MGC\nBQsIDAxEJBJx+JYffVs3ouf4OdRp0ZZsqZT4qJdYOlQhJTGBqV2a0G/aD3g0a8ON00f4dcUclh++\niraeAVeP7+P07o14XzyPoaEhvXv3xsDAgJ07dwIKw2dtbc3ChQvL9V7TZVmcjXvM0eh7HIu5j4mq\njnJJ1FOv4nsTzS0rYRmxLAs+wZ5X1+lv2YjJdm2V3nRZ8mwMLg4ntun6Qp0k0mVZLHhxhC0Rl1hU\nuSuDLJt8kPvNlstodW85jQyq8n2lrwst+1fMfWYE7ueK+wz2vr7BhvBzZMqzGWbVjH6Wjcpttv7N\nww20M3HLFW/4zcMNeOjZsyLkFKGNVha515jjAONbdyHWxViyHO+/h8epEZyoObHcjEpZyBFZ/yH4\nGGJEzHTowNfloDFbHN6dHfomK4xiaWaHhXl1ZmdL2btiHtdPH0FVTR3PL9rRffSMPFkVJCJyhSD8\nR8H83xi+HN5VNH+XZs2a4eXlxdy5c0mXyugxdCwxryIZ+v3qPGXvXznLn2sX88Of55THpnZpStu+\nw2na8RvWTR1K5Rq12L7iezRUJVy7do3mzZsTFxeHlpbWezN8byMX5NxKev5PvOBdYqWptDepSQfT\nWrQ0cv4kPO3eJTIznhUhJ9kReZVeFvWYat+OOGkqvR5t5HH9xcVq40FyKN893Y6GWJVfqg/4IAHH\nrzMTcb81l83VByiVZgrqW/O7S8mUSfnSxIXh1s1pblg+OQ/fZtE/s5ulVXooj7W4sxR9FU2qaVco\nlpJMj4frcda2yuMdmh87Iq+w6MUxbnnOLdae7ftEKs9mz6vrLA4+jrGqDjMd2tPW2O2TcAYr7ezw\nU8nm8r692j8F/lV7fCEhIVy+fFmZYyowJpXAh/ewruTIwoGdeR0eTEXnmvSduhBji5wkiu+8FwgC\nEUH+b/0qEBibSg0LPQRBIDMzk4CAANzcFAPjhg0b2LBhAw4ODsyYMYMuXbqU6z2JRWLq6Vemnn5l\nfqjcjcC01xyLvsePIafo/WgTzY2c6Ghai3YmNd+rlmRJsFQ3ZGXVXky1a8fK0FPUvDkbV20bKmma\nFbsNV11brtWZzfqwszT0WchYm1ZMtW9XbG/K0ny5zdX1+a3GcLo9XM/NOnNyBTtnyqUciPJhQ9g5\ngjNiaG5Ynefp0exzGfXeBuMa2tb8HJFbY/Z1ViJ3k4P5sWrPIutfTXjG9YRAtjsVnVbpekIgUwL+\n4JLHjI9q9DJkWWx/eYWlwSeopGnGpmr98TKs9kkYvByKs3e4NuxMntmhm1plVEWWCELJ76U8srkU\n5dXuG5lY7l7tH4t/leHbtWsXjRs3xsFBkRUgIV1KXNRLgv0eMXndHqwrO/Ln2h/YOHMUs7YeorKL\nO/HRUdw4fQSPFm25ceowUeEhZGUoNold6ntxYvcmvu7aDRvNiixdqggaTktTuCWPGTOGH3/8EX19\nff7++2969OiBhYUFDRu+v/xklbXMGW/XmvF2rYnNSuFkrC9Hou8x/tlvOGtbKkMlHLUqfPTBwlxd\nn6VVejDZri3t7q/kVtxzBj7ewgyH9lQuxr6lRCRmjG0rOpm5M9JvF7VvzmFz9YHUNyjY4aKsX+7G\nho5MsmtNt4fruOIxk8jMBH4Ov8D2l1dw07Fhol1rZT7DatemcTnBv0T570qCi441j1LCcx0Lz4jD\nXc++yAwTckHOOP89LKnSvUgHjfCMOLo+XMs2p8HF9jotb1KyM/g54gIrQ09RW9ee312Gf3KONYVR\nlGapb0ool1MeIM9+TmNxXdRFxV+pKY9sLh/Lq/1j8a8zfDNmzFD+niWTo6augbvXl1R0VszQOg0e\nz6gv3EhLSULHwJCxK7bwx+qF7F42ixr1muLk2QhDM8WyWuMOPYh7HcmYXh1RQc7EiRM5duwY1tYK\nmavatWsrr9W2bVt69+7NwYMH36vhextjNR2+rdCQbys0JFMu5ULcU47G3KPl3WVoSdQURtCkFg0M\nqpQp7VBZMVHTRVuizi7nITxKDaf+7QW0NnZhpkN7qhVjoLXVMOao2zj2Rd2iy4O1dDZzZ3HlbnkU\nV8rryz3O5ksOvPahqvdU0uRZ9KvQkKseM/MozUyzb8cPL469N8Nnr2lCXHYqCdJUDFS1kQtyEmXp\njLRpWWTd3S+voSqW0LOI8IV0WRadfFczyrrlB/WmzSFBmsq6sLOsCTuDl2E1/qo5IZczz+dOfrPD\nx68TuROehGIXqrCXUwGJqOgQBEEQCMmIwb6Al6FPxav9Q/JpekG8B7y9vYmMjKRr1zfix2oSMdaV\n31kmeWcWVM29HnN3HWf9uYcMmf8TL4ODqOisGADEYjGdh05k3+V7hIeHY+dYCTNLCwK1kskPkUjE\nx9pSVRer0trElQ3V+hHWaBW/1RiOlliNMf6/YnF5DP0fb+ZglA8p2aXfYygtgiBwPzmURgZVmVux\nM4ENl1Fd25ImPj/Q8+GGPLOa/BCJRHQ3r8vj+j+QJc/G+foMDkfdUZ4v7ZfbL+rN3/J1ZqIiPvHa\nFKSCjAy5lOVVerCias985dX6VGjIk9RIfJJeFOuaJUUsEuOsbcXj1AgALsf7I0JER9PahdZLyc5g\nRtA+fqrau9BZvyAIDH66jSpa5kyz/6pc+14U0VlJzAjcR6VrkwlIf81ljxn86Trq/8roFYSzuT5t\nq5lja6CFRPQm5CAHATkyZATIg1mQ/AudAhehqqWOurYmmtpaaOvoIJFIlKna7iWH4LC2N8YVLdHS\n0qJZs2aEhIQAihWQi4+DWTt1OCNbujKqpRubZo0hPeXN5z46Mowlw3owpFFVpnVtxuObV5Tfj5jU\nLFatWoWFhQV6enoMHDiQzMxMZd1r167h6emJrq4urq6uXL169f0/wGLwf2P4srOzycjIQCaTIZPJ\nyMjIIDs7W3l+586ddOnSJVcOKQNNVZp26M6di6cI8X9MdraUo1tXU7VmHbR0FOvlIf6PyM6Wkp6S\nzO+rF2JkXgGX+org5JTEBKLCX7Ay8ijq27rQZWQ/4ntUosvDtQDs37+flJQU5HI5f//9N7/++isd\nOnT4gE8lf0QiEe56Dsyv9DX36i3Ax3MeHnr2bAo/j+WVsbS7t5Kfwy8QmRn/QfoTlhmHhlhVGeKg\nr6LFDIf2PG+4gtq69rS8u4yuD9ZyPzmkyLYMVbXZ7DSQ3c5DmBr4J1181/I0PiZfo7d4aHcGN6zC\n0CbVGNqkGtO6eOU6n/Pl/vvlM755uIFq16cRnBHNIdcx+NSdz9+1JzM54A+epETk2xc1sQqT7Nqw\n+MXx0j2YYuCiY83Df14MNkVcwFBFq8jZ+9KQv2hu6FSkGs7ykBP4pUay1WnQB1sWj8iIY7z/Hhyv\nTSNemoqP53x2Og8p1sz//4mcFFRdXS2paaVPRSMtrPU1qGikhYe1Ib3cbFjo2YSHTeayz3Uk24PO\nM/b+DppcmY/O/m+Rq4m54pLJGP9fWf7gIMy/SEqf6jieGodjzRr06KFwiHr4Mol965eTmpzIisPe\nLDt8haS4aA5vXqXsy6ZZo7FzdGbd2Qd0GTGZddOGkxQfi0wusO3PwyxZsoRz584REhLC8+fPmTtX\nIYgeFxdH+/btmTx5MgkJCUyZMoX27dsTH/9hxpVCEf4PSMvKFoZNmCag8ERR/sycNVsQBEFIT08X\n9PX1hbNnz+apt8snVOg7dZFgYGouaOnqCW6NWgg/Hrsh7LgdKuy4HSrUbdVB0NTWFTS1dQXPll8J\na07fVZ5bsv+iYGFbURCpqwiYaQsM9RA401dodWeZIJVlC40aNRL09PQEXV1dwdXVVfjtt98+xuMp\nEQnSVOH3lzeEXg83CoYXhgt1bs4VFgQdFnyTQgS5XP5ernkk6o7Q5u6KAs+nZmcIK4NPCpaXxwgd\n7q0Sbic+L1a76dmZwqzA/cLE62eF7bdDlH+3nB/H2vWEATOX5jn+9s+2W8HC9JsXhDUhfwsJ0tQ8\n19gWcUmo5j1VSJam59uHlOwMwezSKOFxcnjxHkYJWRVyShj5dKeQKE0TdM4PETxuzCm0fHBatGB8\ncYQQlh5baLm/ou8LFS6NEULTY8qzuwXyPC1KGPpku2B4Ybgw3n+PEF5E//6jYHbs2CHY2tsJp6Mf\nCCuCTwhmk1sJOJkKnOkrcKavIDnWW1DTUBfuPXgk7PIJFVzqewl9pixUfua/nbxAqFGviXKMU1FV\nEzZefKI8X7VmHaHvtEXCjtuhQv0vOwqTp0xVXvvs2bOCubm5IAiCcOzYMcHJySlX36pUqSJs2bLl\ngz6P/Pis9/jedlRo2GsE9XqOUJ7LWR64EBiNSwU9EhIS8tTXVJVgra9B8659aN61T77XGL5oXYHX\nt7CryN5zN3G2VcPz1nwiMuOQICY4PRqrq+PosnkwC8w8aWzo+FH30EqCvooWPSzq0sOiLlJ5NlcS\nnnE0+h4dfRXhHjnxgk0MHMtNPNo3OQw3XZsCz2tJ1Blv15ph1s3ZGnmJzr5rcNGxZrZDx0IdWTQk\nasyw7cS+hEhKu8IsFompLq5EtwqWaKjk9fYcYNmEqwkBfPd0G3trDM8zM9KWqDPG5guWhvxVovx2\nxcVFx5pDUXfY8+oaNXSsMFfLKwzwNtMC/2S0TctCY/b8UiPp/3gzh9zG5CuQXZ48TY1k8YtjnIh9\nwDCrZvg3WFKkOs5/FM7OnTsZ0K8/rUxcaGXiwtKQuYgqGqEpVkNdrIqbhQ2hDrc4f/MuZrW8aNGt\nL+f376bel4rVqDsXTlKzsWKfOOL5M0ytbNHUfhN7alPFiYjnAQCEP3+GWec3mTzc3Nx4/fo1sbGx\nAHm2dgRB4NGjR+/1/ovD5zEa54NfVDKn/BVxL3KBPIoHsn+OhSZkcMo/Otdezdu4VNBDIi7dMk6O\nC7GZmh4368zBUt0QDYkqTxos4ZrHLGzUjRj/bC/WV8Yx2m83V+L9kQv5a/J9iqiKVWhu5MRPjr15\n3nAFR2uOw0xNj+mB+zC/PIZeDzfy+6sbJGbnFdctCfeTQ6mpU/TejaZEjVE2XxDYcBmdTGvT69FG\nWt5dyuV4vwLrBMakFvoh379+KaNaurFwUGee3rmebxkREBibWmAb6xz74Jf6kvXhZ/M9P9K6Bcdj\n7hOcHl1IT0pHDW1rHqaEsTH8PPX0KmGqWrCzgXfCM64mBDDZrm2BZeKlqXTw/YnFlbvR0KBqufc3\nh/vJIXRmoF5WAAAgAElEQVR7sA6vO4tx1K5AYINlLKzc9T+jV0ZCQkK4dOkS/fr1Ux6zkuvR1NoF\nn7rziW26ngse07EwNCUmTqEUY1etBtnSLEa1dGNUSzfEYjEtuvUFICM9FU2d3J8pTR1dMlJTFOfT\nUkHtTXiLvr7ixSs5OZn69esTGRnJb7/9hlQqZefOnQQFBSm93j8mn6XhKw9HhRxMtNXxsNYvsfF7\n14XYXF2f257zOOo2DolITCUtc6Y7tOdevQVccp+BuZoeI/13YXN1POP893AtIeCzMoIikQgXHRtm\nOnTgluc8HtVfhJdhNXa/vIbNlfF8cXcZ68LOEJIeU+K276eEUFPXttjl1cWqDLFuxrMGS+ltUZ+B\nT7bi5bOYc3GP87xhJqRL85WBAug+ejrLDl9l1YlbeHXuxeoJA4kKD85TTiZAfJq0wP5oStTY7zpK\nkfA1MSjPeQNVbYZYebE85GSx77G4mKvrIwiQIsvEUEUb0wK0UOWCnHHP9rKkcrcCwxdkgpyejzbS\nxti1SJHt0nI9IZCv7q+k3f2V1NevzPOGK5jp0OG9Za7/t7F7924aNWqkDNkCaGLpTHWRKdW1LZUr\nEklJSahqKTKnbJg+Agvbimy69JSNF59gam3Hz3PGAqChqU1Gau5xMz01BY1/ZoAaWtokJiUpzyX9\n829dXV2MjY05cuQIK1euxNzcnFOnTtGyZUul1/vH5IMZvnXr1uHh4YG6ujr9+/fPdS4tLY0RI0Zg\nYmKCvr4+TZq8SZp54cIFmjVrhr6+Pvb29sSkZuYyehM7NOC7Rm8cFJaPehMlI83KZO/K+Yxr48FQ\nL2dGjRzJywTFm3tmZiaDBg3Czs6OOpUsWdS3LY+uX1TWvXbykLLNoU2qMaRRVfrXsSX46YMCVczN\n1PRoko/relVtC2ZV7MiDeos4W3sqRqrafPd0G3ZXJzLh2V5uJAZ+NG/P0mKpbsgQ62b8VWsCkY1X\nM8K6OT5JwXjcmkfNG7OZG3SQO0kviryvxOw0XmclFStu711UxSoMsGyCX/0lDLZqwki/3TTyWcip\nmAfK6xakeg9QqUYtNLV1UFVTp9FX3ajs6oGv94V8yxbWDkCl/7F33tFRlV0X/01J7703Egg1tJDQ\nIfSOFEEFVJAiSlOkCUrvioK8UkSlKr1XRUBKhJCQ0AME0nvv0+/3x8CQkIQaMPix12Ixtz137mTm\n7nvOc87exg6srTWUAVf/R4ai7APWBLfO/J5ynhR52ZT7i8JAokcHq9pkqgoqjPg2JwcjQcy7jhW3\nL0y5sw2VoObb6k9ufn8WCILAiawbtAtbxLvXVtHDtgF3my/lc48uzyzO/QaPx8aNG0tFewB16tTh\n8uXLuuXCwkLu3r1Ldd/aAMTdvkHbvoMwMDLG0NiEoL6DuXL/d+BSrQZpifEU34/wAOLv3MClWnXd\n9thbN3TbLl++jIODAzY22hR5mzZtuHjxIllZWWzatInIyEgCAgJezsU/A14Z8Tk7OzNjxgyGDRtW\nZtvIkSPJysri5s2bZGVl8d13DyuKTExMGDZsGEuXLgW0VUiPRnoTvv2FNacjWXM6kkkrt+jWH9rw\nIzE3rzBv63EW7fqb6MhrTP1qFqCtAnVzc+Pvv/8mNzeXpYsWsOrLT9AvSEciglbd+ujGXHM6kg+m\nzsfexZ1WTQPo4mv/3P0rtUyc+braW1xvtpCjDSdiJjHkw+vr8Dw3kUl3tnIx995rR4KmUkP62Puz\nvs4IUlqv4AffwRRpFLx7bRVuZz/jk8gNHM24glxTNmq6kh9PPVPXF5oDlYolDHZqwfVmCxjr1pEv\n7mwl8OJsDqSHo/doLfhjIBKJqGgysCL1/JJ4y74xAx0CGXx9DepHonkHAwsGOTbju7hjT/1+ngaZ\nigKylYW4GlqTrsgvV51H276wk+9936tQw3Jj0ln2pl9iW91PK02DUxAEDqZH0Dx0Lp9EbuQDp5bc\nab6Yj13blXKUeIPKQXBwMImJibz9dmmpuj59+nDt2jV27dqFTCZjzpw5+Pn5Ub9ubSQi8Kpdn7/3\nbUUhk6GQyfh7z2+4+dQCtHUM7jVqs++n71HIZYSdPEr8nUj822nT5a269+Pwzi3cuHGDnJwc5s2b\nVyqwCQ8PR6lUkpeXxxdffIGbmxudO3d+ZZ9JRXjlWp2Pamk+eAJISEjQuRqUh+PHj/PR8OHM23Wm\nlJDrxF7NGTZ9MXUCW5U5Ztb73en2/mgCOmh7kP45upcdKxeSGB9friyVn58fM2fOpHuvt8qomE8c\n0ofO7YOYO2f2i30A5UAQBK4VJrAt5QLbUkNQo2GAfQADHAJeOzPaRxFZmMT+9HD2p4dzrTCRjg+s\nlWzqY6Nvyg9xf3KjMJFVtT6stHNqBA170sKYG72PetShraQpUlHpQpzC/FzuXYvAt1EgEomUC38e\nYP2CqczZfARHj9KuCU9SvS8JlUZN+0uLaW9du4z+5QNB6KjmSytN9uvb2CPsTLtITWMnEuTZTPLo\nSiebeqX2+frubu4Vp7G57sfljhGSe5fuEd9xqvFU6pi+eBpKLWjYnRbKgugDaBCY7tWTfvZNXpsC\nr9cVo0aNoqioiE2bNpXZdvz4ccaMGUNsbCyBgYGsX78eBxc3dl5JIjUhjs3fzCTqahgIAl61GzB4\n0hwc3bXp0vSkeNbNnsi96+HYOLgwZPJc3f1WIoLEE9tY9s1SiouL6devH6tXr8bAQBvJv/vuuxw+\nfBiALl268MMPP2Bv//TShC8L/3pVZ0hICB4eHsycOZNNmzbh5OTErFmzytW0VKmFcnUM1nw9HkGj\nwd23DgPHTce9Ru2HG0vwuiAIZKUmEx6dRLMapasIU1NTuX37NnXq1MFQT1LqJhcbG0vY+XNs27zh\nha+3PDyYP6vn48Zc735cLohje2oIb19diQgRAxwCGOgQiJ+p22tHgjVNnKlp4sxkz+6kKfI4lBHB\n7rRQxkRuoqGZB8UaBd0fI/j8PMhVFRMny6RIreCScI02krLpPbVKxe5VS0mOvYtILMHJ05tx3/xU\nhvQewMfm6YhKKpawtd4n+IfMpKmFdykS8jCypZdtQ1bGH+erar0fM8rTQSNoWJ1wksme3ViTcBKl\noMZOrzQ5x8ky+V/CcSIC55Y7RpI8m75XfmBdrWEvTHpKjYrfU86zIOYgllJj5nr3o7tt1RCO/v+A\nNWvWVLitQ4cOREaWLQJztTBEI7jz2Xe/VnisnbMb09ZsL3ebi4URgyd9wZRJX5S7/ffff3/Cu/53\n8K8TX0JCAteuXaNfv34kJSXxzz//0L17d2rXrk2tWrVK7asRhDKFCh/PXY6Hbz0EBP78/We+GTuE\nhTtPYGJmQb1mbflj6y/U9G+ORq3m+DbtHzclK6/UGEqlkkGDBvHBBx9Qs2bZObpHNT5fJkQiEQ3M\nPGhg5sF87/5cyo9he2oIb11ejr5YygAHbSRY18T1tbuh2OubM9S5NUOdW1OsVvBX1g2G3viJFfF/\nsi31grZVwrYRgRbPZ610MfceqxJOsCc9jO629fm1znCaW1Tn5N0M4nOKKSn/ZG5lw8yNT9dY7mJh\n9Eyq9E4Glmyp8zHvXFvFxYCZpVoCpnh2p3XoAj5z74yp1PAxozwZJ7JuYizRZ6B9ABNubcFcYlSm\nuGXqne2Mde1YbluCTK2gz+UVfOwSRG/7x6u9PA4ytYL1yWdZHHMILyM7/ldzyEtxo3iDykc9J3MS\n8+RPXShYEpUhjP1v4V8nPiMjI/T09JgxYwZSqZQ2bdoQFBTEH3/8UYb4yvvTVK/fRPe6x9AxnD20\ni9vhITRs3ZGeQ8dSlJ/H14O6oKenT5u33iX21nVMrR6q6ms0GoYMGYK+vj4rV5bfs/eoxuerwgOF\nlcbmXizyGcDFvHtsTw2he/gyTKWGunRobVOXJw9WxWAk0aezTV0K1QpSW6/gxv2U6Iibv5ChLKCH\nbX2dtdLjRJSL1HJ+TznPqoQTZKkKGeUSxO3qi0uVxfs5mZP0nD9uDWp8HYyevOMjaGtdi8/cOzPg\n6v/4u/GXOteImibOtLGqyU+Jp/jMo8szj1sSqxNP8LFrEOZ6xtjrm5MgyypFfME5dziTc5ufaped\nVxcEgZE3f8XD0IbpXs+nJlSolrM24STfxB2hgakHW+p+THPL6s99PW/w6vGgqv1ZquShcoSx/038\n68Tn5+dXZl1FT4pP8/xYskBB39CQIZPnMmSyNs1zavcWPGvVw1BPe9mCIPDRRx+RmprK4cOH0dPT\nKzNeeRqf/wZEIhEBFt4EWHizpPpAQu6TYKfwpVhKjXXp0FfhS1dZuFWUgruhDWZSIwItvAm08Ga+\nT3/uFqVyICOC7+KOMfjaGoKsatHLriE9bBvoZM0iC5NYnXCSTSnnaGFRnbnefelsU6/cSPF5f9xi\nEVwWXWXx1XOsrfVhuRW7j8Mkj64E59xh0p2tLPcdrFs/zbMHvS5/zydu7TEQl/3OPQ2S5Nn8lXWD\nVdWHcTU5jw8M3yJfoiAkJg9LIz28bYyYcHsLC336l1s5uSzuKFcLEjjbZMYzR2a5qiKdcHQryxoc\nqP8Zjcw9n+s63uDfx4NCvYvxOeUa4T4KsYg37gxPC5VKhUqlKqWlKZVKad26Ne7u7ixcuJBp06Zx\n4cIFTp48yZIlSwBtRKZQKFAqlVobGYUMQSRGqqdPZkoiWalJeNWuj0aj4fj29RTkZOmiwOy0FBCB\npa0Dd6+Fs//nFQz/eilWxtqbzejRo7l58ybHjx/HyKj8p/ryND7/bZT04Pum+jv8kxvF9tQQgsIW\nYadvpkuHliecXJUQkV9+/563sQMT3Dszwb0zWcoCjmRcYV/6JSbe+R0HfQtUgpo8VTEjndsSHjgX\n96dQF3nwI31a8nvwRDvEviet05x579pqutr4saT6wKcuTBGLxKyvMwL/kJk0t6jOQMdAABqZe1LP\n1JWNyecY4dL2qcZ6FJtiQ/nKYjhHb2QhArzwBD24l1WERASXEnPoImpPJ7PGZY49lnmVb2KPcCFg\n5jO1E2Qo8vk+7hirE0/SzcaPU42n/Ws2RW9Q+Xjax5//QgL7lVV1zpo1i9mzS1dEzpw5k1mzZnH9\n+nWGDx/OlStX8PDwYP78+fTp0weAU6dOERQUVOo430ZNmbZmO4l3b7FqxljSEmLRMzDAvXptBoyd\nhldtbbHErUsXWDvrM/KzMrB2cKbX8PEEdOnJes02ZKkZhPb+FpG+BEM9A8T3/5xr1qxh0CBtL6BM\nJsPR0ZFdu3bRvn37l/0RvTA0goazObfZnhrCzrRQnA0sGeAQwNv2TfB+jj65l40vbv+Orb7ZE5X/\n42WZrE08xbqEv7HTN8fJwIIbhYkYivXpZdeQ3nYNaW5R/anK8DMKFVxNziMxV+upWHLOWIUKQQDB\noIiuXh64mj2UacpVFTEtagd70y6x3HcQ/e2bPHWkFJ4XS6fwpZzx/1Intnwm+xZDb6wjstmiZ24f\nuJGax7m4DPRFUp5oWyMWl3o6v12YQsvQeezyG0srK9+nOl+SPJtvY4/ya9IZ3nZowhSP7lQz/vcr\n896gcvCsgiBAhb3MrwteeTvDi+JklFam7HlxS32XhfkPK5gkiLnX8punihpeJ6gFDWeyb7Et9QK7\n0kJxN7RhoEMgbzs0qdCX61Wjw6XFTHTvQtdyqjo1goY/s66zKuEEZ3JuMcixOR+7BOnmM4X7Vkb7\n0i+xPyOcOFkm3Wz86G3XiE42dTGTPn5eTqZUl2lZsTLWo1g/m0Xx+wnOvcNEjy587NKuVBHKuZzb\njLz5K9WM7Pmx5vtPrWW5LvEU38f9USrKahU6n09c2/GuY7On/ciITMvnQnw2PINL94OblJO1hMCQ\nOXzu3pmRrkFPPC6mOJ3FMYfYlhrC+04t+MKj62M1Pt/g1WLlypWsX7+eq1ev8u677+paxLZs2cKo\nUaN0+2k0GoqLiwkNDaVx48Z07dqVM2fOANq6CblcgZNHNeZt/ROAXau+IfzvYyTFRNFz2Fj6jPy8\n1Hn/3PYrx35bR0FuNr41arByxXJatmxZah+FQkH9+vXJz88nIUHrHnL79m0mTZpEcHAwarWaJk2a\nsGLFCnx9n+4BrDLx2hFfRqGco7fSn6tQAcDaRMpfuZe5rYznrOISUgmsq/0Rb9k1eq5KwtcBKo2a\nv3Mi2Z4awu60MKoZ2WkjQYeAf43wBUHA/vRYrjSdh5OBpW59hiKfX5POsCbxJOZSI0a7tuM9x2ZP\nTMnFyTI5cL9f8J/cKFpYVqe3XSN62jbA5Tlu1lcL4pkffYCT2TcZ79aJMW4ddMa2co2SxTGHWBH/\nJzO93uITt/ZP7FETBIGhN9ahEtRsqjMKkUjEkYzLTL6znctN5z7Vd6+87/7x7es5e3AHCVG3COzU\nixGzlpV7rEQs4gh/YGUsZWXN9x97nluFySyMOciBjHBGuQQxwb1zuY3xb/DvYvfu3YjFYo4dO0Zx\ncbGO+B7F+vXrmTt3LlFRUWWyFCej0hk9sBe1/ZvTe8QEAM4e3IG5lS0nd2/G3bdOKeK7ey2cxaPf\n4cu1O/CoWY+Iw9vYsnIJKSkpSCQPMxfz58/n2LFj3Lt3T0d8ISEhXL16lT59+mBmZsacOXPYsWNH\nuW0WLxuvHfHB84Xmj0IhaOcMMShmr+wkUaoEpnh2Y5Bjc10F3n8RSo2Kk9k32Z4awt70S9QwdmSA\nQwD97Zu80qf5RFkWjUJmktJqBQDnc++yKuEvDmRE0NuuEaNd2xFgXu25SuLzVMUczbzC/vRwDmdc\noZqRndZt3q7hM/dC3ixMYkH0AY5mXmWMW3vGuXXSzfFFFiYx8uavKDRqfqo9lHqmFTtMgLYCtdnF\nuYx2bcfHru0QBIFGF75mjndfeto1fOJ7KS/bEXriCCKxmGvn/0Yhk1VIfAICccQzrVFgha4al/Pj\nWBBzgJNZNxnr1pExbh0qrdH+DV4eHhUFeRRBQUG0bdtW55P3AMVKNauOXuCLt1qxZM8Z7JxLf3/X\nfDUeezePUsR34Y/9HN3yEzM3HABAKStiRKuaJCUl4eSkLayLjo6mW7duLFu2jBEjRuiI71FkZWVh\nY2NDRkaGTuLsVeG1vMM/a6FCedAX3a+mU+jxjvQtzOyKWJmyl6/v7mGiRxdGuLT9T+oI6omldLKp\nRyebeqzSfMBfWTfYlnqBOff2UdvEmYEOgfRz8MfZwOqlvo+IgjjqmriwNvEUqxJOUKSR87FLO773\nHYS1numTB3gMzKVGDHAIZICD1lrpbM4d9qdfos+VFWgE4X6/YENaW/k+8SGnlokzm+qO4k5RCguj\nD1I9eDIfuwTxmXsXapo4c6rxNH5OOk27sMWMcGnDV169MapAjstYYsBOvzG0uDgPf3Mv/M29+NKr\nJ/OjD9DDtsFjCblYqSYht2yK379dVwBibl4hS5Zc4fEiRHiJ3FGrReg9Elyez41ifvQBwvJimOjR\nhZ9rffTCPYZvUDUQGxvL6dOnWffzujLbojIKOXdoFzUaBJQhvYrg1zyIw5tWc/daOF61/Di9bxs1\n69bD0fFhId3YsWNZsGBBhQWDD3D69GkcHR1fOenBa0p8oCU/WxODCgsVngVqjUB+tjE/uI4m3yCd\nxbGHWBB9gDFuHRjj1uGFb8RVFXpiKV1s/ehi64dCo+LPrGtsTw3h63u78TN1Y4BDAP3s/XEskYqs\nDFwrSGDuvX1cLojHQmrM0uoDaW9d+6WkmvXEUoKsaxFkXYtlNd7jemEi+9PDmXF3F7eKkuliU49e\ndg3pauP3WIeA6saO/FJnONHF6SyKOUiNfyYz3LkNEz26MsKlLT1sGzDu1mb8zs9gba2hBFnXqnCc\n1bU+pP+VlYQFzKavvT8z7u7iVHZkhceA9ib1otV0D+yV6jqaIwgCp7IjmR+znztFqUzx6M6Oep++\n0dD8j2Hjxo20aNmCujELaZdbi0ke3WhjVRORSEROsZKzh3bRc9i4px7P0MQU/3bdWDC8HwICxqbm\nfLt+m+6hbc+ePajVavr06cOpU6cqHCchIYFPP/2UZcvKz1C8bFSZSa2K3BsUCgX9+/fH09MTkUhU\n6sO0NdGnoa2Uo99PZ3znRkzo3Ig/fl1e7g0iMuw8HzZxZ9eqpbp1Zw7sYGigJ6Na12R4S18aeDqS\nFHyXnX5jOe3/JbuX/IydrwdiqYTPZ0wpNZ4gCMyfPx93d3fMzc155513dJYcryP0xVK62zZgQ52R\nJLdazkSPLvyTG0XNf6bRLmwRqxNOkKZ4/uuTa5T8nvIPrUPn0zl8KXkqGd9UH8ju+uPoaFP3lcyv\nikQi6pq68qVXT84HfM2NZgtpZ12b31LO4372czpcWsyKuD8e65vnZWTHmlpDCQ+cS6FaTs3gqUy8\nrZVl2uE3hm9rvMMH19cy7Po6spQF5Y7R196ffvb+vH99LSJgqmd3FsQceOx7f5y90tPigb3S4YzL\ntAydx6jIXxnk2Iw7zZfwiVv7N6T3H8TGjRsZ8v77yDRKDmdeoVvEtzicHsvYyE2EXQgmNzOdJu0r\n9md8FKf3beXsge3M33acdcF3GTlnOVOGv0dSUhKFhYVMnjyZFStWPHaM9PR0OnXqxCeffMK771au\nE8jTospEfA/cGx5M1JZEy5YtmTBhQhnVcYDPPvsMuayY+LhY0tLSaN66LUY2TrTqNUC3j0qlZMu3\ns6hWt+w8ik+9Rkxft1u3bG6pDc9rmjjzWbP+iLoOZvaKJaxKOEHejZ+Z7NGdGiaObNy4kU2bNnHu\n3DmsrKwYNGgQY8eOZcOGl6Pn+SphKNGnl10jetk1olit4FjmVbalXmDKne00sfBioEMgfewaY1uB\n91tJxBSnsybxJL8knaGeqSsT3DvT07YBtf/5kiCr2k88/mXCycCSES5tGeHSlkK1nD8zr7E/PZx5\n0ftxMrDUpUQbm3uWIWZ3QxtW1nyfL716sjTmMHX++ZLBTs2Z7NGNa80WMD1qJ3X++ZLvarzHQIfA\nMmnMRT5vExS2iIUxB5ns0Y1Z9/YSknuXAAvvct/rk2yRnhbHM26yJ+0IX3r25G2HgDfC0a8RVBo1\nOaoispSFZKkKyFQWkKUsJCT3Hmn5yYyN3ESWqpCs++sTw26RmBDDx/anAG3hSbFGiUyjZHvqBZrs\nzaVxUBcMjZ9+Hjfu9g3qt2yv07T1a94WW3tHgoOD8fHxISYmhlattALWCoWC3NxcHB0dOX/+PJ6e\nnmRnZ9OpUyd69erF9OnTK/sjempUGeLr27cvAKGhoaUmQ/X19ZkwQVttVLJq6AEOHDjAkSNHMDY2\nxsHFjRY9B3LmwLZSxHd081rqNm1FXlbmE99HYm4xMqUaQz2Jztfqjx0HcHZzx9jAmhah82hrVZOs\n3Yf46KOPcHPT5sanTJlCu3btWLVqFcb3DR7/CzCS6POWfWPesm9MkVrOkYwrbE8L4YvbW2lq4c0A\nhwD62DculQ5WCxqOZl5hVcIJzufe5X2nFpxpPJ0aJtp5gHxVMUnybGpUoQZ7E4mB7jrVgobzuVHs\nTw9nyPW15KuL6WnbkF52DWlnVatUZORsYMV3voOY4tmdb+OOUv/CDAbYBzDVsweDnJox4savbEw+\nx6qaH+Bh9FAqT08sZVu9T2gSMpumFt5M8ujKwpiD7Kk/vtz3Vyw8fwtPSdQ0syei5tNVkb7By4FC\noyJbWViKpLT/Cu6vK7xPave33V9XoJZhKTXGWs8Ea6kpliJDrMRGZMnzEdQCnmIrmlh4YGdkgbWe\nKctWz4R+b/Nbj404nxlPjrIIE4kBP/gOpo9FAxyOODFmSVlha5VKiUatRhA0aNRqFHIZUqkeYokE\nr9p+HPh1JR0GfIidizs3Q86QEH2XunXr4uPjQ3x8vG6c4OBgxowZw6VLl7CzsyMvL4/OnTvTokUL\nFi1a9Co/8jKoMsT3InhQmBqVUQiCQMLdW7ptGckJnDmwndmbDrNpyVdljo29dZ0xHepjYmFJ8659\n6T30U908SEkYS/SZ5d2HLzy68lPiKb7MjSI+QYR/Vg/aWtVEEATkcjl37tyhfv3KdRuoKjCWGNDP\noQn9HJpQqJZzKCOC7akhfH77d1pYVqeLTT0ylPlsTA7GXt+MT1zbs6PemDLFHlcLEqhj6lJpvm+V\nDYlITAvLGrSwrMHi6gO5VZjMgYxwFsYc5N2rq+hw31qpu219XdTraGDJ0urvMNmjG9/FHaNRyNe8\nZdeY7fU+ZU96GI1DZjLdsyfj3DvpoiwXQ2s21x3FoGurOeM/nXnRB7hekEA1AyeiMgrJKX7YY3i3\nIANzrBBT+jNTq1So1So0ajUajfYmJZFIkUjL/rQlIqhn5fiG9CoJco3yIWEpSxCWqnwye7BcrFFi\nJTXGWs9US2J6JlhLTbDWM8VGz5TaJs7315veX699bSE1KvW304qCPJyC+WLf38ycOZP3Z81CJpNx\nbPdBdu3ahUQkpqVFddwMbZjr3RczqRG///47VlaW1PJvXkYD+dd5Uzh3aKdu+cAvP/DR19/Squfb\ntOjen7SEOBZ9PJCi/Fys7Z3434+rdOL+JYtcrK2tEYvFunV79uzh4sWLXL9+vVQF6o0bN3B3L6vg\n9DJR5doZHlea6+rqyubNm2nbtq1u3eDBgykqKmLDhg0cvBjJ+Pf7k52WwrrgKACWT/yIpp17E9ip\nFz/N+hxrByf6jZ4EQFpCLCKRCBsnVxLv3WbVl5/QvGtfxk2cTKtqNqXO4ePjw6xZs3TrVq1dw+xF\n8zBe2h1rK2vEi89y8Y8zBAcH06zZ0zckv+4QBIFjmVeZE72P0LxoAAItvBnp0pZedg2xkJaNfn+M\n/4uIgljW1iornlzVka7I4/B9CbW/sm5Q38ztvnpMo1IScVnKApbH/cH/Ev6im40f7zk2Z3HsQQrU\ncn6qNZQGZh66fRdEH+BwxmV6WTZFlG+Bo+Colecr8ctUCkr0RGV1PfesXca+n74vta73iAllmo5B\nS9KJIU4AACAASURBVHz9/ZyfyWni/wOK1PLSBPZoJKYqIFNRWIbQlIL6IXlJTbDREVlJQnv4Wrvd\nFDOJYZVxrnhRQRB3SyOCfGyfvGMVw2sf8a1YsYKxY8dSvXp1DM0sadq5N+eP7QMg/PSfyIoKCexU\nvvq8vevDm4+bT016DZ/AkU2rUUwo31uqJEYNH0FKYhIbJm4gWlGM8YAG8Af8I03CX6OqsFfqv4I8\nVTGbks+xKuEEakHDaNd2HG7wOWKRmAPp4WxPDeHTyI0EWdVigEMAvewa6tRUIgpiaWDq8YQzVE3Y\n6ZvzgXNLPnBuiUyt4ET2TfalX6JN6EIspEY6Egy08Ga2d18+9+jCyvjjvH99DR2s61DLxJlOl5Yy\n1LkVM6u9hbHEgKme3UnJUmOb64NIEKEp555YHukB9Bn5ebkkVx6e1V7pdYIgCBSq5WVIS5cyVBWW\nic4eEJlGELC5H23pCKsEoXkZ2ZUgroeRmInEoMoQ2PPijS3Rawpra2u2bNkCwJl7mSyZO5NqdRoA\ncOPiOaJvXmFcZ61Qb3FhHmKxhISoSMZ/+3OZsUQAAuhLnpwKEovFzJ49W6c/euzYMQZvj+Agt1ke\nPJkv3LvykUvrx1rqvI6IyI9lVcIJtqeG0NG6Dit9h+jKox9gkFNzBjk1J0dZyP70cH5PPc8nkRtp\nb12bAQ4BhOXF8KFTq3/xKioHhhJ9utnWp5ttfVbV1BCWF8O+9Et8HLmeFHkuPWwb0NuuERPcOzPO\nrSOrEk6wLO4YgRbeROTHUe/8dNbUHIqr2p0AGqOGl6YA/LrcpARBIF8tI0v5sHijJEmVJK/MRwhN\nKpKUJq8S0Zatnhm+xo5l0ofWeiYYifVfewJ7Xvx/tSWqMqnOB+4Ns2fPJiEhgZ9++gmpVIpUKkUu\nlyMIAj4+Pvzyyy+0bt0aAwPt09bdu3extLTE0tKSNVv3MuXTEUxbsx0Xb1+KCwuQFxfpzvHbt7Ow\ntHOg10fjMbWw5Mq5k3jUrIuFjR1JMVH8b8rH+HfoRvVRHbjMdWIL0kguzsH8+3A+bNyVGTNmoKen\nh0QiISsri+zsbKpVq8bNmzcZMGAA48aNY+TIkVzIvcvimEOcy73DWNcOfPqaK2DI1Ap2pF3kx4S/\nSJRlM9KlLR+5tCklNfYkZCsL2ZsexraUCxzLusZbdo14z7EZ3Wzr/yeFAqKL09l/X0LtYt492ljV\npLddQ9pZ1WZv+iW+iT2Ch6ENKoWUGvuVBB/cVUZ2LPHebX6a9RlpCbEAeNasx6AvZuNSrcYzvZd/\nQ1BYI2jIVRVXnD58QGyPzH9lq4owFOs9Mu9VcfqwZGT2ph3j+fEsalivu0A1VCHie5x7g6enJ7Gx\nsaW2RUdH4+npyfbt25kwYQI5OTn4VK9B5xFfULdpm3LP8egc39bv5xF8ZDeyokIsrG1p1rUvPYaP\nYWLht+QLRbDkHPx5t9QYv/76Kx9++CG3b9+mZ8+exMfHY2dnx/jx4/n889Ipp5uFSSyOOcT+9HA+\ncmnNZ+6dX7oiSmUiqiiVNYkn2ZB0lkbmnnzi2o5uNvVfqCjlRkEiPSK+Y7pXT7alXuBC7j262NZj\noEMgXW38KlQ9eZ2RrSzkyH0JtWOZV/E1dqKbrR8ytRJVpg1Fp+8gFkvKyI4V5udSlJ+HrZMrgkbD\nXzs28Nuy2egbPlTEUMhltOv/PkMmzSn33C96k1ILGnKURSUirhLRVgXzYVnKQnJURZhKDEsQWGmS\nevD60fShlZ7Jf1oysCojo1BBaEI2qfmKx+7nYKqPv5sltiav7wNrlSG+ykJlTNaGSM4zK3ovMo0S\nAF9jR4Y5t+Zdx6ZPrcZfEnGyTL6NPcKm5GD6O/gz2aM7PlXQJgi0vUIHMyJYlXCC8PxYPnRuxSiX\ntpVma/R7yj/sTgtjh98YQFsssictjO1pIYTmxdDNxo8BDgF0san3n3yCV2hU/J0dyf70cP7KiORz\ng+HoibQ3+l2rlpKVmlyu3qZapeLk7i1sXzGftWdvAyArKmR8l8Z8/v0GfBsF6vYVEBAB7pbG1HMy\nx9ZEH5VGTXaJ6KrCuS9VYak0Y75ahrnEqHSE9RSFHFZSkypbtfsG5eP/U9T32jxaFSvVZUq8LY30\nqG5rUmrCvjIma4NMepCvlrM49iD1Td35rsZ7bE4JpsGFr6hv6s5gx+b0c/Avt2KxPLgb2rDcdzAz\nvHrxQ/xxml2cSzvrWkz16EFD86pR5JEsz2Fd4t+sTTyFu6E1o13bsa/++Eonn4j8uFLms3b65ox0\nDWKkaxBpijx2pV3k+7g/GHpjHT1sGzDAIYBONnWf26m8qkFfLKWjTV062tTlanIu4Um5POnRc3RQ\nXeTFhQgaDX1GTdStDz1xGHMrG2o0DCi1vwgRKkHFV5lrSUzJJEtZSKFGjpUu8no0XWiCr7FT2QhM\nzwQLqfGbJvf/B3hW4X+1RiA0IRfgtSS/Kh/xZRTKuZqcR0KurEyJt+T+fLSLheH9J1tt6F0ZxoqC\nIDD73l4CzKvRzU7blyfXaOWeNif/w1/ZN+hkXYfBTs3pYuP3TOmZfFUxaxNPsSzuKH6mbkz17EFr\nS99XPsEuCAIns2+yKuEEf2XdYIBDAKNd21G/HFf0ykLnS0sZ596R7rYNHrtfijyHXWmhbEu9wLWC\nRHraNWCgQyAdrOv8Z1JhZ+5lci/r4Rz04yI+eXERZw/uxMbJhQYttabIi0e/Q42GAeVWdapQ4WIr\nooa9tuHZ/JEesDf4/4utW7cye/Zs4uLicHR05PtVawlLLmTnj0uJibyKWCzBt3FTBn8xG0tbbabn\n23HvczsiRDeGSqnEyaMaC7cfp4uvPcsXzWXv3r3cvHmTGTNmlGr9qoqo0sT3IqH3yw7bs5QF7Ey9\nyOaUYG4WJvO2QxOGOLagqYX3UxOYXKNkU/I5Fsccxk7fjKme3elh2+Cl36BylIVsuN+KoCeSMNq1\nHYOdmuv85l4WBEHA4fRYLgXOeSYLpERZFrvSQtmeGsLNoiR62zZigEMA7a1rv9ZtI3/dSS/luPA4\n4gOtoejYTg1YuP0ECrmMSW+1ZMnu09i5lP+gUs3auFQ/6hu8wZ9//snw4cPZtm0bAQEBJCcncy46\nkwthEciKC6nXtA1iqZTNS74iOz2VL37YVO44C0cN0Hn4uVsaEXfuEPb29qxevZqGDRtWeeKrsneN\nFw29n+Te8DBaNNLNgzwLrPVMdSm6mOJ0fks5z7Ab61AIKgY7NmeQY3OdRFdFMBDrMdylLUOdW7Mr\n7SKz7u3ly6idTPXszkCHin3TnhehedGsSjjB7rRQutr4sa72MFpYVH9lkWaKIhcNAi7PWODjYmjN\nOPdOjHPvRLwsk52pF5kdvZfB19fQx64xAxwCCLKq9VrNKSk1KlQon+kYQaNBISsmOz2Fy2dPUKN+\nkwpJD0BeSfqeb/DfwcyZM/n6669p2rQpANb2jshTNPi1CCq1X/sBH7Bo1IDyhiA9KZ7bESEMn/kt\noJV5HPjeYAz1JLrWsqqOl058bdu25fz580jvSyi5uLhw69YtFixYwIIFC3T7qdVq5HI5aWlpYGTG\nqesx/LrgS65fPIsIEXWbtuGDqfMxMtVGZXcuh/Lbstkkx0Rh6+zG+1PmUaNBAKEJuUSG/sNXUyYS\nHx+PRCKhRctWjJ+1CH0LOxRqDT8vncOJQ3soys/DysqKUaNG8eWXXz73NXoa2fGlV0+mefbgUn4M\nm5ODaR22AA9DGwY7NmegY+BjHawlIjEDHAJ52z6AP7KusSjmIDPu7maSR1eGObd+oUrHIrWcrSkX\nWJV4ggxFPqNcg7jVfPG/4qgdkR9LAzP3FyJaN0MbPvPowmceXYgtzmBn2kWm391JdHEGfe0bM9Ah\nkNaWvv8KCao0atKV+aTIc0lV5JKiyCVVkUeKPEf7v0K7PlWRR66qmL5G7eio1wKxmnJlx26GBWNm\naY2bTy3kxUXsWr0UEzMLnDx9+PHLT+n+wSePfT/XCmPRZKbQ2MwLG/3/prXWGzw91Go1oaGh9OrV\nCx8fH2QyGa06dqPj8ElIDEr7L966dAHnCtpmgsvx8CtP5rEq46WnOtu2bcvgwYMZPnz4Y/ebNWsW\np0+f5sSJE5yMSmfe1ImkJsQwZtFqBARWTh6FW/VavPvZ1xTk5jClX2s+mLoA/6CunD+2j83ffM3S\nvWcxMbfEVJVPM3dLnJ2dkcvlfPXVV0RGRrJ//34Abt26haurKyYmJiQmJtKpUyfmzp2rE8quDKg0\nav7KvsHm5GAOZETQwqI6Q5ya08uu4VM1tZ/PjWJh9EEu5N1jnFtHPnFt91i/uEdxqzCZ1Qkn2JQS\nTDMLH0a7tqOzTb1/tVBhYfQBMpUFfFOj8q1IoovT2ZEawvbUEOLlWfSz92eAfQCtrHxf6JrVgoYM\nRX4p0ipLbNrlbFURNnqmOOib46hvgYO+OQ4GFrrXjvqWOBhot1lKjdmUcB5NqgsHf1pRruyYS7Ua\n7F79LdlpyegbGOJVpwFvfzoFWVEhS8cMYvnRMIxMyic0paDipvgGYcIVwvNjsdYzwd/ci8bmnvib\naf9/nXtL3+DZkZSUhIuLC40bN+bAgQPo6ekR1Lk7nvUD6P/JZN1+8XdusujjAYz7Zh2+DQPLjDO5\nTyt6DhtHq54P3XIepNXLk3esiqgSqU5BENi4cSMzZ87UOU2nJ8XTqE1nXYTXqG0XIs78CUDUlVAs\nrO0I6NADgObd+rLv5+WEnjxKm97vUKxnhrXdw/J7iURCVFSUbtnX17fU+cVicantlQGpWEJnm3p0\ntqlHgUrGvvRLrE8+y+jIDfS2a8Rgx+YEWdeq8Kbc1MKHfQ0mcL0ggcUxh/AOnsRw5zZ85t65QmNY\npUbFvvRwViWc4HphIsOcWxEaMAtPI7tKvbbnxeWCeHrYvhwBby8jOyZ7dmeyZ3eiilLZkRrCZ7d/\nI0WRS3/7JgxwCKCFZXXEIjEaQUOmsqACEisZneWRqSzAUmqsJS+DB4SmJTM/UzccDR4u2+qbPZFk\nBUHgYEYEU6O2Y6NnynjTQY+VHXvwHS+J9Qum0jioS4WkB9osgpWFwCmfaWgEDXeKUgnNiyYsP4Y5\n0XsJz4/DXt9MS4Zmnvibe9HIzOOZHq7e4PXCA0f0sWPH4uTkBEDfoaNY/8MyHfGlxsfw7fj3eW/i\nrHJJ73ZESLkefpVlm/Wq8EqIb9q0aUydOhVfX1/mz59fSmQa4MyZM6SlpdGvXz+d03T7t9/nxM5N\nNO2s1dkMO3mEBq06lDjqkUBVEEgs4cpw5nIkb3doQV5eHhKJhP4LxyEIgi7NtmjRIubNm0dhYSFe\nXl689957L+HKtTCVGupkvFLkOWxNvcDUqO0kyXN4z7Epg52aU9+0/BRgHVNXNtYdRUxxOt/GHqX2\nP18ywCGASR5ddb11CbIs1iaeYl3i31Q3dmC0azv62vtXuerHiPw4ZniVr5v6ohAEgSxloS4q8zSy\n5QPnltwoSOJczm3WJ59BrlGhL5IiF5SYS4xKkdaD6Ky2iXOp6MxOz6zS5lqDc+4wJWo7OcoillQf\nSDeb+mQWKTh6K/2ZKpA//PLJli4SQxmXi2IAEIvE+Jo44WvixCCn5oA2kr1dlEJYXjSheTF8fXc3\nlwvicdS3wN/cUxcZNjL3fOlFT2/warC18BLWzvbEyDLIVxVjJjVCr4TVW0ZyAks+fY9eH42jRbd+\n5Y5x9uDOcj38nkbmsSrhpd8ZFy9eTO3atdHX12fr1q307NmTiIgIvL0fGm5u2LCB/v37Y2pqSk5a\nJmoBPGrWRaVUMKaDNkKo3aQF7d9+HwCfeo3JTk/j/LF9+Lfvxvmje0lLiEUhe1jEYmjtyL7o83wV\n/hv//H6Erfo32Siodc3CU6dOZcqUKURERLB3714sLCxe9kcBaO1rJrh3ZoJ7Z24WJrElOZi3Lq/A\nVGLAEKcWvFdBk7ynkR0/1BzCV9V6syLuDwJCZlPP1BWxSExEfhyDHJvxZ6NJ1DF1fSXX8awoVMuJ\nk2Xi+wwefIIgkKsqKpNSLG85TZGHicTgIZHdj848jWxpauGNg4E5xWol/+RGcSTjMvlqOZ1t6jHA\nIYBA86evxH0e3CxM4suoHYTlxTDXux+DnZrrIsPn1Up8HBSCEnOLIq7FJ1S4j0QkppaJM7VMnBns\n1ALQkmFkYRJheTGE5sewOy2MKwXxuBhYlYgMPWlo5qETHH+D1wOCIDA9aif57ZyZ891iZluHINaT\n4v3zTRq2ak92WgqLR79Dh7c/oF2/IeWOoZDJuHj8EGOXri21XiICUz2QyWRoNBpUKhUymUwn71gV\n8crbGbp06UL37t0ZO3YsAEVFRTg6OrJv3z6CgoJ0Jd7zh/fFzacWA8dPRxAEti6fR2FeDp8uXAVA\nZNh5ti2fR1piLHWbtqEgN5saDQLoPVxr5HlddYdvCjYiIEBWMYw6wPTzGzE3MMZEYoCpxPD+/wbs\n+WEDhZm5fL14HqZSA0wkBpiIDV5ZgYRG0HAu5w6bU4LZmXYRP1M3bZO8vX+Z1FOmooBfk0/zY/wJ\n5BolhWo5gRbezPDqRSsr3wrO8O/jfG4Un0ZuJDRgNvlq2SMklnt/Oa8UsaUq8jAQScukGMvMnRlY\nYq9n9kzN9tcLEtieGsK21BCKNQoGOAQwwD4Af3OvSiPBRFkWs+7tZV/6JaZ4dudT1/YVvsfn6T2t\nEHpyDhYE85c8hKQ2y15IhEClUXOz6D4Z3k+VXsmPx93Q5uGcobkXDUzdMZUaPnnAN/hXEC/L5O0r\n/+NC1h34MQRORCMx0GfowCE0Hfw5BzesYu/a7zAwKi3KseZ0pO71+WP72LFyEd/sDy71G5GI4Njy\nGWzetLHUsQ/kHasiXjnxde3ala5duzJu3DgAtmzZwvTp04mOjkYkEumaeke1rsn0dbtxr1Eb0BrG\nLhjRr9Qf4gHUKhWT3mrJ0OmLqddMq9NZoJ/JtMxVyDVKFGl58N4upl38DQsDV6QqQxBEyAQ56WRz\nYN1KMq5H47CoNwUqOYVqOQVqGXpiKaY6ktQvRZaPkmepZenD5fL2fVzqrGST/PGs63Syqcsgh2bY\n6JvyU+Ip9mdE0NuuIaNd2xFo7o1co2Rj8jmWxB7GUd+CqZ496G5b/5U3wxeoZBVGY6mKPC7nx5Gh\nzEclaJCIxOUWfDwarTnoW7x07U5BELhWmMC2lAtsSw1BJagZ4BDAQIdAGpp5PNfnmKMsZHHsIdYm\nnmKEc1umenZ/qrmzjEKFrv1Gg4AgPP/fUCQSkGtU5EoyGVKjHg6mlUdKSo2KG7rIMJqwvBiuFiTg\nZWSrmy/0N/eigZn7f86d5HXCvaI0dqWFsistlDvFKTQx8+J0zi0EINDcm6MNJ2Io0X9hmUdjPQnW\nxnoVqmlVRbxU4svJyeHChQu0adMGqVTKtm3bGDlyJOHh4dSooS2V7dSpE02bNmXOHK3I7tXkPC4n\n5TJ/1EBcvH0ZOFbbZrD1+7nE3b7BjF/2ABB76xou3r4oZTJ2r/mW6BuXmfGzdtulk0fo0KwxQYG1\nmRO+jdWTl2CUrOSb304gaDSc2PMbAR16YGxmQeyNy3w38SOGjJ7AzKkTdeovgiAg1ygpuE+CWjJ8\nSIqlllUyCjXyUqRZqFaU2q/kaxE8njTFBphKDVELas7lRHGzMBGloMbHyIH3HJvS2rImptKSZGqI\ngUjKgYxwFsceRoOGKR7aXsAXiVqL1PJySOxhdFay0lEjCPfnzMqSmIO+BRuTzuFn6sZkz25VNjIQ\nBIHLBXH3I8ELiBBpI0GHgArnYEtCplbwY8IJFsUcpJddQ2ZV6/NMjfq6cZRq/kqI41xGDO0t6yII\nUKBQkSdTIROUGFTgzVceNIIGjUhDQxczGjm9PMNQhUbF9YJEwvK1c4Zh+TFcL0jE28j+flSoJcT6\npu7/SSHyqoJbhcnsSgtlZ9pFEmRZ9LFvTD97f4KsaiFChO3pT2ls5snhhhN1MoAZhfJnnmeuCBWp\naVU1vFTiS09Pp1u3bkRGRiKRSKhZsyZz586lY8eOACQmJuLh4UFkZCQ+Pj6AVpNz55UkUhPi2PzN\nTKKuhoEg4FW7AYMnzcHR3QuAVdPHcOXcSQDqNWvD4ElzMLfW/rD/2vYrp3f+SnpaGsYmpng3COTt\nsVOxdXJDo9GwbPwHRN+IQKVUYmnnQMseb9Pjw0+RSsSvRHhVoVE9ljxvFyXzR+Z1QvOjcTe0praJ\nC/oiCTeLkrlXlI4aDdZSE4wk+igFtY5oVYIaE7EBemIxRWoFakGDm6EN1YzsMZcaYioxxPD+l11A\nQCWoUWjUFKsVFGkU5Ktl5KmKydY5TGuw1zfHSd8CRwOLR4pBLEoRnekTXKWbhsxhafWBVTodWxKC\nIHApP4bt91sk9MVSHQnWNXEtda1qQcOW5GC+urebhmYeLPDuT21Tlxc6/6msm8y6t5dT/tN0685l\n3mVZ5FnaGfpjJpg/Wt71WCgEJd6OerRzc3vyzpUEhUbFtYIEQvOidZHhzcJkqhs7lIgMPfEzdftP\nCpK/CgiCwPXCRHamXmRXWiiZygL62fvTz96/3FaeO0UpeBjalil8q9RU+31UZSHrKilZVhkOC0E+\ntpWi2fmqoNCo2J0WyqqEE9wpSmW4SxtGuLQpU+jy4Ia8JeUffk85j5uhNe84BBJkVRu5oCS2OJN4\nWSaJ8myuFiQQkR9HjqoIE4k+Co0apaDWzmFKDDAUS9EXS5GKJIjuO6Bq0KDUqJELKorVCgrUcuQa\nJca6yPQxqV+p4f1otXQUayTWp++VFfzZaPJ9kjTQvYfXQT9SEAQu5t3TkaCJxEA3Jxgrz2Rq1HbM\nJIYsqT6QFpbP5pVXEY5mXOH7+D842vAL3brpUTtRySX4FNXn9I4tnD24o4yHH0DInwfYs/Y7stOS\ntTZcn0yhcdvOKAQlZo65vOPWsFLe4/NArlFy9QEZ5mnJ8FZRCr7Gjrr5wsZmnviZuf1nhMkrG4Ig\nEJ4fq4vsZBol/ez96W/fhKYW3s/9m/r/RH5VkvhKht6jWtcsta2k/1jwkT1sWPjwiVjQaFDIZRw/\n8w/1GzbkwNUENi6dyaVTx1CrlPj4+fPhtIVY2WsrC49vX1/uzUMiFtHF154Th/Yyc+ZMEhIScHNz\nY8GCBbz11lu68927d49x48bx999/Y2BgwLBhw1iyZMkzXWtMcTprE0/xS9IZ6pi4MNq1Hb3ttDem\n8lVASizLc4mXZ1OolgNgJjHEy8iWeqZuuBpa6aKzQrWcvelhnM25wyiXtnzm3gUHg6evYlULGop0\nad6H6dzHp3of7puqyCMsPxpfY6dSqd9itQJDsd5jSfPx86n6pdK9JhJ93TgvqzBJI2gIybvH8rg/\n2J0Whgjoa+/PV169qPWCUV5J7E0LY33yWfbWH69b53d+Ol9bjKCgUEzYiaOIxOIyHn7ZaSl80bsF\n479ZR73mbbl87gQ/Th3NN/uDMbe24YY6CrFNBvO8+1cZ1wWZWsGVgnhCSxTQ3ClKpZaJU6mG+3qm\nblWuRedV4cH37sGcnRgR/e2b0M/e/7EFWStXrmT9+vVcvXqVd999l/Xr1wNw/vx5vvrqK8LCwpBI\nJLRt25YVK1agZ25TSuZRrlDw1XtdkBUV8N2hhyLVGrWaPWuXcWb/NmRFhdi7ejJl9VZMzCw4c2AH\nv8ybhH4JNZhtu/bSu2tH0tLSGD9+PH///TeFhYXUrVuXZcuWERio7Rk8efIk48aN06lutW7dmpUr\nV+LiUnm/LagiDeyPomSJd8lilgf+YwHtuwPQvGsfmnfto9t+7uAOjq7/gXYtAjl1N4Ojv/3M3auX\nmPvbMYxMzVi/YCqbl36tK8e1tHWg57BxupvHA6g1AifCbzF48GD27dtHly5dOHToEP3e7s/ha+do\n790YhUJBx44d+fTTT9m2bRsSiYTbt28/9rrUgoZ0RR6J8hwOZ1xmV9pFbhelUNPYmSbmXhSpFcy6\nt4fRkRvIURVhq2daJqXobmhDgEU1bWXjfWKz1jOhSK1gX/olNqcEczAjgl733b7bWddGIhLzkUsb\noovT+Sb2CDX/mcq7jk2Z5NENr6dobpeIxJhJjZ67hF1bOHKB3fXHlVqvETQU369MfRJ5FqhlZCkL\niJNlPtUc64PCpKcqRnrMPGvpKNdA9xmez73LyppDqGHsyO60UNpfWoKdvpkuHVr9Gdo2yoNMo9Sl\npUH7gJQvV1JcJEEE+Lfrql1/8wpZsmTdfllpyRibmeu0Fxu0bI+BkTFpCbGYW9tSV1qd33Iu0yNi\nGb/VHV0l1FsMJfoEWHgTYPGwxalYreByQRyhedH8kxvFD/HHuVucRh1TF11bRWMzL+qaurzWQuWP\ng1rQEJxzh51pF9mdFoaZ1JB+9v7s8RuHn6nbUxVeOTs7M2PGDI4dO0ZxcbFufXZ2NiNHjqRz585I\npVLGjBnD0KFDOXr0KEE+tsiUaqIyC1m+dDG2trYkxhWUGnfP2mVEXQljxi97sXF0IfHubfT0H87n\n+dRrxPR1u3XL5pbae0dBQQFNmjRh2bJl2Nvb8/PPP9O9e3diYmIwNTWldu3aHDt2rJTq1ujRo3Wq\nW5WFKvuNeRAalwy9K/IfA22UdvnPvXw09ENkKo1O/aVu09ZY2Ghv7gEde7L1u7m6Yyq6eQDcuBuN\npaUlXbt25UZBIl/bhaAwgF/CDtPeuzHr16/H2dmZ8Z9NuK8CkkWqi5jNyecqrGzMUhZgKNZDrlFh\nKNajjokLI1za4mZoXapU39HAEhs902d6Ii+vSX5a1I4yTfL/q/k+X3v1Znn8H/iHzKSLjR9TPbtT\nz/Tlzf1EFMSW8uB7ALFIrEt5VqZ2aMnCpDLRaTmkmacuJkme89jCpAK1jHyVDA0ChmI9bPRM+Tb2\nqI40G5i5I9Mo2JwczPzoA5hJDPEzcyPQvBoeRrblkm3J1wZivVI3sgffkQc4kB7BEItOiNSPHnZm\n+gAAIABJREFUv3avWn44e/oQ/vcf1G/ZnvAzx5Hq6+NWvRYAImCR81DW5x8iIGQ2e+qPo24V7P00\nkujT1MKHphY+unWFajmX87VkeCbnNt/FHSOmOIM6pi7a+cL7kWFtE+fXlgxVGjV/50SyKy2U3Wlh\nOOpb0M/en2MNv3iueeMHMoyhoaEkJDzs6+zatWup/caMGUPL1q34LvYoH7u2w0hPH5PiTM4e3s3C\nJUsZNnyEbt/CvBz++P1n5v52FFsn7XfH1efxc/eJucXIlGqqVavG558/VCkaOXIkX3zxBbdu3aJx\n48Y4OJQ2vH5UdauyUKW/HY86LJw7tIvm3fvpbhAlHRYsldmEnj/H1s0bdOovrXsNZMu3s8hOT8HY\nzILzR/dSr3nbpzp3tVp+uFWrTssVo7hQU47qn1jQk3DGKo0u4d8Qsn8zxUYy9ALd4VYmRt721J3S\nF586vrrorK6JKw765iQrctifFs7J7Jv0c2jCaNd2+Jt7vZwPjcc3yQ92as57js1Y4PM2Uzy7szrh\nJJ0uLaWxuSfTPHtU2hxVSUTkxzHatV2lj1sRRCIRhhJ9DCX62PJicwt5qmKWxh7mx4S/+NyjCxPd\nu6Avlj424sxTF3O9IJFL+TEsizuGsUQfFwMrbPVM0SCUUyGsQKlRlYo4ZWolSkFNl/BvMJUYEJxz\nh1HGb/ME3kMskdC8ez9WfzUOpUKOVKrHJ4tW6fqz1AIkFBTwiVt7XAysaB26gHnefelqWx8RWhNb\nkUikew1astSuE5W7j3b5WfYvvZ3y9iknmjGRGNDcsjrNLavr1hWoZETcjwxPZt9kaexh4mSZ1DN1\n01WSNjb3pJaxc5V171BoVPyVdZ1daaHsSw/H08iW/vZNOOs/HR9jhycPUAk4ffo0Zt6OTIraxpzo\nfXzt1Zs/x6xgwYIFZClK/y0Som4hlki5+Ndhjv32M0ampnQcOIwOAz7Q7RN76zpjOtTHxMKS5l37\n0nvop+UKWUdERKBQKHTFjQBxcXH4+fnpVLd++umnSr/eKk18ALYm+gT52HIr6h63Lp1n5jc/YGth\niL5EjJWxHj422p6RuXNX0apVK7y8vDhzT6v+4uDuhbWDM591C0AskeDqXZPJk+Y++aSAIJbg36MH\na6d8DQo16InhqzYYGBsyzq0jc4r2EXbmOvv27qFzx04sX76cVdNWcSYyEn19ffJUxWxODmbSnW0o\nBTUfuwbxS53hrzy1VMvEmXk+/Znj3Zfg3Cg2JZ+j4YWvdE3yo1zaMt6tI+uTzzLk+lpcDKyY5tmD\nrjZ+ldYLqHVdrxpO808LuUbJ6oSTLIg5QDcbP8ID5+JeotDIWu/p3A4ePMFvTw1hd1oY1YzsGOgQ\nyNsOAaXGU2nU98lTS4RrE08RW5zOMJfWpCnyOJQegZOeNU9yMrp+4Qzbf1jA1NXb8KhZj5ibV1k+\ncRj/x955R0V1dW38N8PQe0c62ECQJvausfeaRKMxMbZYY2KNvcWWWKKxRWOLvffewYgodlGQJiC9\nCsww7fsDGUWKoKjo+z1rsYB7zj33zsyds8/eZ+/nGbtsMw7V3QDwTw1jdOJhlCjRUVNn1ON/0Qvd\ng6G6DkqlEiV5Wb+8+K1Uvvit+v+Vv19pz+vPi/bi+hdsp4g+r6LUhvKVPmoCIfeeR3P7eRRrYy4g\nVypQoEQkECISqKH+4kckUHvN2L405HnXeM2AF2PsC9zXG/rkt0PeoipVlk2aNBttNXVM1PWw0zJB\nXaDGocSbHE4MesMC49XxS16QPIq/hjglnS63lhbqkxESw8Xpf2I2rxNypYI0WTa//LMAZWII/etX\n4vm5+AKfSUrCM3KeZxAXFc7ig37EPw1n4Y9fY+XghHvdJlT3rsPcHacxrWRLTNhjVk3+ETU1NZx/\nHl9gnIyMDPr168f06dMLMGfZ29uTlpZGSkoK69atw8WlYJ5HeaDCG7587N6xjUaNGvFlU58i2zdv\n3qySFsonTN2yYCoyaS4rztxBU1ubY5tX88fo/kzb+OZ48f1rl9n++yL8Ll7mqR3MPfUPd8duQWpj\nR/uGnqzRN6FRo0Z06pBHIvzLL78wZ84cDgSe45xxHLviA2hpUoNl1fvm1dB84ILy1yEUCGlkVI1G\nRtVYXv0bVZH82MfbaW3qzjdWDbhXdy4Hk24yKXQ3k0J3M9GxA70s6pR5pZwjlROalEVajpRMqYSe\n6u1ITxUhNpNX+MJWhVLB9rj/mPJkL256NpzxGf9OYWCRUI2WJm60NHFjRfV+XEgNZmf8NXyuTaOq\njiVfWtalp0VtbLVMMBTqYCjK88zMNfQRCYS0M/NkV/w1mpvUwFXfqoBie1GIevyA6t51caqRR/Xn\n7OaJs7s3DwKuqAxfW3M35jo3UZ2TkJtB7zsr0VXT5F/3IRWCqLqA8XyDoSzJ2Ob3T5dlcyfzKUGZ\nkdx+/pRbmVEk5GbipmuNh74dNfXs8NCzw0nbDDWBsPCYhcZ/xfC/aIcSFghKyFZIuJIWwrmU+/il\nh1JN24ou5j40NXbBXEO/yDEL/l3cguTN97hV7z5JmfF8Z924QP/Y8KdMHzmbwXPH8aCuFs/SHiLI\nkaH4+wYeSwfgpWfPUUVcgc8mP2mlyw+j0dDSwq6qK3Vad+aO33nc6zbBwvblIteuigudfxjD8S2r\nyR3zMkM5JyeHTp06Ua9ePSZNmkRRMDEx4dtvv8XT05OYmBiVtF154JMxfJs3b2bixIlFtvn5+REb\nG0vPnj2Bl4SpUY/v0+PH8egZ5qkZfPHlAPav+Z3MtBT0jUouLI56/ACv2vVpUCdPsPHLb+vRes9T\nqj7NCz14eHjg5+cH5GWl7YoPIEsuYeSjLQxv2ot79ediXUbB1Q8FTaE63Sx86WbhS6o0iz0J1/k9\n6jgDH66nt2Ud/qrenzRZNvMjjzLlyV7GObRnQKVGb6y1SsqScPdZBtHpYgS8FP71VXfndmwGt2Mz\nKmxhq1Kp5FTKPSaG7EJTqM5Gt0E0NS7flaa6UEQrU3dambqzSvEtZ1MesCs+gNnhB3HVsaa3ZR16\nWtbGWtMYsSIXzRf7VIcSg+hs7o2Rmjpqgrz3VS6TFanh51TDk6Ob/iLy0X0cqrsR+egej28F0LJn\nHs+tABDL5IilLxchFhoGnPYZxy8hO6hzfSYHPEa/cx3iuyLf08r7593HM1HXw0nbgi4WtVTH0qRZ\n3MyM5EZGBP7pISx/eoqE3Ey89e0LqFZU1bF86xKBDFkOR5NusSc+kDMp96lr6EwPi9psdhtSpszq\nd0WArhU6WjK6vvL6IyMjafpVL+ZNn8XQoUMZ8vAfLqYF84XYnnPxOcSP2EUzdpEtlvA8M4NRbWox\n9Z8D2FXN+168upgvaV0vAFC+nJclEgldu3bF1taWNWvWlHjfMpmMhIQEMjIyMDEpOxlEcfgkDJ+/\nvz8xMTH06tWryPZNmzbRo0cP9PXz9nOMtPMmCKcanvgd3YtLrXpoaGlzbs8WjMwtVUavuMlDTSSi\nspsnJ7es4tatW3h5eREUFMQN/2v8MnIMAN988w2Lf/+d3huncN4+BdOjTzEzMyPs67/R0fp0CHyN\n1XUZZNOMQTbNVEryPzzcQK5SRl+rBrjoVmJb3FVmhh1gjH0bhtm2KJKt/001QPlGMCpNTEyGpELV\n9gRmhDMhZBfRkhR+q9KLbua13ruHri4U0dbMg7ZmHuQqZJxOuceu+ACmh+3HQ88OTaEIXwMnZAo5\nx5PvML9Kb0zVdLkVmw7AoQ0FNfyuHt9Pl0Fj6DZ4LF0H/8TKiUPJSElC38iEjgNG4F4vz8NTAnEZ\nEvbciS2wCFEXilhW/Rt8Yq/Q7MZvrHEdQDcL3/f6HnxsGKnr0sIkL/M5HynS59zMiORGZgQHEm8y\nNWwfSbmZ+Og7FmCgqaxtUawxTJVmcSgxiD0J17mYGkwT4+r0sPBlret3H1wQWCaTIZPJkMvlyOVy\nxGIxIpGI+Ph4WrRowYgRIxg6dCgAU5w6M9GxI3bqxiQ9fVlGs/3oGWZN/JkZW/KSC4VqalTzrsPh\nDX/S95eZJMZEce3UYYbN+ROAO37ncXBxx9DUnNiIUA6tX06dLzpgrKOOVCqlZ8+eaGtrs2nTJoTC\ngu/hvn37cHNzo2rVqiQnJzN27Fi8vb3L1ehBBa3jex1DhgwhOzubLVu2FGoTi8VYWVmxd+9eWrZs\nCbxkf8lITWXr4uncD7iMTCrFtnI1vv5pGs5uXkBeSm5RAqDdBo9FTQCJV/az8s/lxMfHY25uzvDh\nwxn90xiOJt1mVcw5/I+cRe3vIKSpWfj61GLlypW4ubm9/zfkPSO/QHZrnD/b4/7DXsuU5sauhGTH\nczEtmCE2zRlt31qVifkpEQW8itDseKY82cvltEdMd+rK99ZNPnoChEQh5VTyPcaH7CRCnISLTiWS\npc8JrDsTCw2DdyZ3eB1FfQ6BGeF0v72cAdaNmeHc9ZMgGXifSM59zo0XzDP5dGxpsmx89B1UdYZO\n2mbcyoxiX+IN/NNCaGlSg54Wtelo7qUKX38MzJgxg5kzZxY4Nn36dAQCATNmzEBXt2BY+/nzgmUL\nACfPnOXrvt8UqONLTYhj/exxhNy+joGxKe2/HUbz7t8AsGPpHPyP70OcnYWhiRn123Wn26BRfOXj\nwDX/KzRr1gxtbe0CRu/48eM0btyYP//8kz/++IOEhAT09fVp1qwZCxYswMGhfHMEPgnD9zYoL/aX\nfMRJ0vg75iJrYy5go2XMMJsW9LKs89nzDr6uJO+tZ49IKCQwPYK+leoz2KINdyKkBYyeNFfC5gVT\neBBwhayMNMxtHOg1fIKqtiwf+UQBZrof9j2Ml6QzO/wgO+KvMda+LaPtW6NbwciUhz3ciIuuNedS\nHhCWk8hTSQq+Bo58adwY7RQ7lQddHijK+MVL0ul1dwWGIh22ug/5qJN3RURibgZnUu6zPe4/rqaH\nkizNQiQQUl2nEl+Y1KCBUVVq6TvipG3+0ff3ywPlPZ9+bHy2hu9diFfzJ2RTHXUupAazKvosp1Pu\n09uyDsNsW3xyGYrlhXwl+a1x/lxND8VO05RWNKOmejWEvFy9SXKyObZlNY069sLUyoY7fudYPWUk\ns7efwty6YKLIh/xCZMpy+D3yBH9Gn6a/VUN+deqMmUbFCLe+ju/ur6OxUXV+izjCzpo/4qJbieNJ\nd9iVEEBmuogeWq0RlXKnYs3U0Ty4fgWJOAdDU3Pa9xtK065fF+gjFEA7F8sCixCpQsbYx9s5lXKP\nA56jcdW1LtfX+CkiSpzMvoRA9sRf535WDB3MPOlpUZs2pjXJlItVwr75DDQ5ilxq6TsWYKBx0DL7\n5IxhecynH3qBWxI+C8P3ahZhrlyhkscQALeeZZQ5BOdWSZtL0husjj6HUCBgmG0L+lVq+P+r3lcQ\nJ0lj57NA9BIrIxK8eQKe8nVrugwaQ+0W7QscVxNATw/r95rtmauQsTbmPHPCD9PKxI1ZlbuXirHm\nY+Lru3/ha+DIkqhTPG20pMBEmSWXcCD8MeI0PYRK4RtDkTFPHmFh54i6hiaxEaHMH/IlY5f+g6Or\nh6qPQqkgQS2eLtVtcXnNwP0Te4kJIbtY5/o9XSyKzqr+nPEkO15FFRaaE08XMx96WPryhYnbG/lE\n4yRp3MiMUPGSXs8IR6qUFyDprmXghJ2mSYU3hp/qlkZR+CSSW4pDcVmE8LK43UBLRIZYVqrQkECg\nJFjtASMfHaCtaU3WuA6gsVH1Cv9AfgxYaRrRQrMOt4Xpb3xv05MTiYsKx8a56OL4ogpbywMKpYLd\n8df59ckequpYcsL750/GW5coZNzJjKaTmVeh509XTZO+VWqSlJVLUGwqsekSZMiL9QBtKr9k1civ\n7UqIjixg+IQCIZYKS9oGLqGRaWWmOXWlmm4e7dp31k1w07Whx50VBGVGMs25y2e/7xecFZtHAh1/\nndjcNLqa+zCncg+aGbuUiRXGStOIDppedDDzUh2LlaSqhH3Xx15iWPBmFEqFiqQ73zO00TSuEHPP\nq46FvoYa6WJZqZRBKqrRg0/Y4yvL6kMoAEMtdTLEedW/r07UUqUMkUBImDKS07lX6WRdg4HWTT5o\nqvGninzR4JIgk0n5Y1R/LGwdGDB5fpF9nE10aOxsWmTb2+Jsyn0mhOxCIBCwoErvApl7nwLaB/1O\npDiZxVW/pJ2ZZ4l9xVI5l8OTic2QFNtn8/xfuXJkN7kSMQ7V3Zm0djdaOgUTG9QE4GKlwwnJFZY9\nPU17Mw+mOnVRsYfESdLodXclJiJdtrgPKTK791NFviBxvrxPijSrRHmf8r52TL4xVCXRhCMUCFW8\npPkMNB+yRKokx6I4vMqmlZcxXHHCm6/ikzR8b+tye1bSRyAQ8F9SFA8z48hUZPNUEYdS+zkjHFrQ\nzsyjwjDWfwo4G5JIdHrxG94KhYLVU0YiznrOqN//RiQqOixka6hFy6rlE3oMyohkYugunuQkMK9K\nT3pZ1KkQq+ayovH1udzMjCC56cpSadWVZhGikMsJvXuD4Bv/0f7bYUV+HvmLkHRZNsuiTrH86Wk6\nmXkxxakzlXUsyVXIGPP4X86lPOSA56hCYdFPCfkSX3sS8oydRCErF3mf8rq3aEnKC/mmCFW4VEMg\nUpVV1NLPC5VaaRqV+/XLOscaaYkw0dEowKZVkfHRDd+OHTuYOXMmUVFRWFlZsXHjRqKiohgyZIiq\nj0KhICcnh8DAQBxc3GnZui2Pgl6m1sqkUio5ODNnx2kAEmOfsn7WL4TdC8LEyoZ+42bhVrcxakIB\nmYbh/Lh4LOy8BxI5gsYODF/0K3/WHACAo6Mj8fHxqKnlfXANGjTg1KlTH+4N+YRQ0mSrVCpZP+sX\nkp5FM3bpJjS0ilddLw+PLyw7galh+ziX8oCpTl0YZNP0kyUqBqjqNw5rTWMu+k4uVf83LUJexcbf\nJmHjVJVWX31fqO31RUiaNIslUSdZGX2WLuY+THHqjJO2OetjLjIpdDfrawykk/nH0/crKxRKBdfS\nw9j7wtipCYSlkvepCFAqlUSJk1WJM/lGUVtNHV99J5VXWEvf8Y0Rq1yFjFyFDD1R4e/l57SXVxw+\n6sxw+vRpJkyYwM6dO6lTpw7PnuUpJDRu3Ji+ffuq+m3cuJHZs2fj4+PDhSdJjF22ucA4vw3pTQ3f\nBqr/V08ZSZWaPoxduonb/udYMXEYC/ZdxMDYlEenHqK+6yHeq4eSZSQkdMJOTizZChsGqM4/fPgw\nX3zxxft98Z8B8okCigqBbJo/mdiIUMav3Fai0VMTgLHO2wuOJuZmMCf8EFvj/Blt15o1LgOK/DJ/\nakiSPqevVYM3d3yBfFaM0kAhl5MQHVmqcYzUdZlZuTtj7NvwR9QJfAOm093cl1+dOnHIawy97qwk\nKDOSKU6dK+y+n1ypwC/tMXsSAtmXEIiBSJueFrU54Dm61PI+FQECgQAHbTMctM3oYVkbyDOGEeIk\nVfLMH1EnuJERgZ6aFr4GjmhcfMrVFftIjolXORaNGzdm4KqpbFu4Gs2UXBztHFRao0lZEgKj0zm2\ndR1HN60iV5JD7Rbt6T9xrkp2aP7QL4l58gipNBdzazu6DfkZn6atCYxOR5aZwuSfRhIYGMizZ88I\nDw/H0dFR9RrGjx/P9u3bSU9Px9jYmCFDhqioJj/oe/kxPb4GDRowcOBABg4cWGK/5s2b06xZM8ZP\nnsKeO7G8uhBJjH3K+G6NWbj/MubWdsRFhjHl69b8efoW2rp5LAnzBvWgXtuutOjRjzVTRtLI04WF\nC/L2m86ePUvfvn2Ji8vjo3N0dOTvv//+f8NXCuQTBby+MEx6Fs0vnRsg0tBUec4A3076rYB+Irx9\nVmeWXMKSyBMsfXqKPlb1meLUuVyljT4mJAopOucGcaHWJBoblyz3ko+7zzK4HVs40SgjJYkHgf54\nNWqJhqYW9wOu8Of4wQyb8yfeTVsX6JurlBImCsGjkgHtTD2K5OxMzn3OH1EnWB1zjl4WdRho3YQx\nj//FQsOATW6DK8y+n0wh50JqMHsTrrM/8aZK3qeHhe9Hp2N731AqlYTlJLDh8E5WjJ1Nlbm9CLVX\noJeuwFPXjpr6dixqMhDlzOZo1XWgT5Q924cvICIigvsZAo4eP8m6GT8x4a/tGJlbsnzcYCq7e9N7\nZB6n5tOQh1g7VUVNJOLJvSAWDe/D/L0XMDKzRE+WSfzNC3h7e9OgQYNChu/Ro0fY2tqiq6tLTEwM\nrVu3Zvbs2Sr5pA+Fj+bxyeVyAgMD6dy5M1WqVEEsFtO1a1cWLVqEtvbLL09kZCSXLl1iw4YNKrmh\nV+F/dC/VvOqo6sNiwh5jbmOvMnoAdlVrEBMWAkB02GMsunVRtXl6ehIfH09ycjKmpnnhtr59+6JQ\nKPD29mbRokV4epacXPC/Cm11NWwNtQoVtppVsmXj9ahSjWFjqF0moydVyFgfe4lZYQdpalyda7Wn\nUfkDSbd8KFxIDUZdoIZNGRIZqpi9pDMrAIGA83u2sOm3ySiVCsysbOgzdnohowegJVTHyVSLf+Ou\nMuThRnwNnOhk5kUnc29Vgouphh5zq/TkJ/s2LI48Tttbi+lpUZtsuYS6ATM56DlGlQ36oZEv77Mn\nIZCDiTdx0jb/4PI+FQECgYDKOpacX7aDP2bNZ+CAgSiUCp7kJBCYEc6Ry2dQ6mlAHRvEShkb7cIR\naMLdh8HE6jnhd3QPTTp/qcoG7jJwFKunjlYZvnxtx/xryWQyUuKfYWRmSY66Pt8PGoJIULQ/Vb16\nwYWcUCh8L3p7b8JHM3zx8fFIpVL27NnD5cuXUVdXp0uXLsyZM4e5c+eq+m3evLmQ3NCr8Du2l07f\nv1T2Fudkoa1XMM6sradPakKeRyfOzgKNlyvZfDmMzMxMTE1N+ffff/Hx8UGpVLJs2TLatGlDcHAw\nRkblv4H8OaBmJQNiMiRvXdhas1LpvDSlUsnehEAmP9mNg5YZh73GUOs9ahp+TBxODEJDKEJLrfQh\n4OIWIQbGpkxau/uN5yuUCrLV0xlm35TB9k3Jlks4k3Kfw4m3WBh5DCORDp3Nvelk7k19wyqYaegz\nv2pvfnZoy6LI4+yOv46nvh31r89is/vgAun77xM58lxOJd9jT8J1jibdxlW3Ej0sajPVqTOOFbxW\n832iJMfii0412Ga3EvWrsajVs0P5XzQKdRFa1k4IMvKcB+8mrVRj2VWrQUZKIs/TUtEzyluMLflp\nAPcD/JDlSnCv17RAaUxochYuZsXXPM+fP585c+aQlZWFk5MTffr0eX9vRDH4aEH5fK9u5MiRVKpU\nCTMzM8aOHcuxY8cK9Nu8eTPffpsncJgvN5SPx7cCSE9OpHbLl0XRWtq6iLMyC/TLyXqO1gsPUEtH\nl/SMDFVbxou/8wmuGzZsiLa2Njo6OkyaNAkjIyMuX75cHi/5s4SZria+toaoCcu2T5KrlFK9kmap\n0p0vpDyk3vVZzIs4zMrq/TntM/6zNXpKpZJDiUEIEBRQYC8NalYyKPPnoLquQMmilB18dWclUoUM\nHTVNOpv7sK7G98Q0Xsomt0FoCEWMCN6C1aVR9L+3hj3x19EUqrOw6pcEN5hPLX1HpEo5X95dyYTH\nO1AoFW++8FsgSy5hd3wAX939i0qXR7P06UnqGjpzt94c/GpPZaxD2/9poweFHYtbt24RFBTEnDlz\nQCjAs1szBPOvIG23GeFvV9j/z3YUajrIlXnOgbbeywVpviORk/2Sx/OnJRtZffEBY5duwr1eExXv\nplwJqdkli0ZOnDiRzMxMbt68Sb9+/Qpo8X0ofDTDZ2xsjK2t7WvSFgW/tMXJDeXjypE91GretkA9\nko1zNRJinpKT9fJDehryABvnqqr2yEcPVG23b9/G0tJSFeZ8HQKBgE+w4uODwsVCv0zGT00oIF0n\nhoGRS0nOLUyKm487mVG0D/qd7x+uZ4x9awLrzKCVqXt53XaFxJ3nT9EQipAq5WU2fG+7CFEgx18Z\nwDK3XuxPvEk1/wlcTw9TtQsFQuoYVmZ25R7cqjebG3VnUs+wCn/HXsT28hha31zIzrhrjLD7gscN\nFvC1ZX1+f3qSav4TCM2KK+HKpUeGLIdtcVfpfns51pdGsy7mAi2MXXncYAHna01ihF0rbLTKl8H/\nU0ZJjsXtSwE8XXEav4uXyc3N5eLFi/zwww88uHsbyHMOXnUexC+Iq7V1CipLiETqeDRszr3/LhF0\n8WXm++sOSlEQCAR4e3ujra3N9OnT3/n1lhUfNQ3ru+++488//yQhIYHU1FSWLFlCx44dVe3FyQ0B\n5IrFXD9zlEYdC0oVWTk4Y1+tBgfXLSVXIubG+RM8DQnG9wVVVuMOPTi2518ePHhAWloac+bMYcCA\nAUCe5L2fnx+5ubmIxWIWLVpEUlISDRs2fP9vxicOFwt92la3wN5IGzXBy0LWfOQqpQgFedycbatb\n8HONRrQ19aBN0CLSpFkF+kbmJNH/3hpaBS2inakHwfXn87VV/QqbNVieOJQYREdTTyQK6RvpsIrC\n2yxC6tmbkKAew6mUe1yqNZkU6XPaBC3mp0f/8lxWuETCXsuUH+1acsL7F2IaL2WobQtuZkZQJ2Am\nrYMWYaFhwO6aw9ESqlP96kS+v/838ZIi9h/fgBTpczbGXqbTrSXYXh7DtrirdDL3IqzhYk75jGew\nbfPPJqGpvFGSY3Hr1i2aNGmCr68vQqGQ2rVrU7duXW7/lxfZsnGuRlTIQ9V5USEPMDAxV4U5X4dC\nLiMh5uWeflkyjGUyGU+ePCnTaysPfNSZZOrUqdSuXZtq1arh6uqKt7c3v/76K5AnN7Rr1y5VmBPy\nNvDzfa+bF0+io2+Aq2/hlO9hc1cQ/vAOw1vWZPeK+YyYvwoD4zyPzqNBM8aNG0fz5s2xt7fHwcFB\nJduRmZnJsGHDMDY2xsbGhhMnTnD8+PFivcH/R0GY6WrQvIoZPT2s8bIxxNpInfuyEJw5MsxxAAAg\nAElEQVRNdAgWPkRgGUPzKmaY6WqoGFUaGFWl3a3fyZTlkJz7nJ8fb8cnYBpO2uaENFjISPtWaHzC\n9XhlxaGkIDqYeyEUCN+aTOHVRYhQAFJlwdCTVClF7ZVFiKuFAVvch3Ay5S6Psp9xwHMMagIBj7Kf\nUfO/XzmRdKfYa+mLtOlu4cs/boN41mQ5a1y+Q4GCqU/2kSjNxEvPga1x/lTxH8e4kB0k5mYUOxbk\nlaesi7lAm5uLcLzyMwcTb/KVZV2eNl7CEa+xfGfd5INr2n2qKM6xqF27tir8CRAUFMTly5fx9PBA\nTQAN2vfg0sGdxIQ9JiszncMb/qRRx7yoW2xEKHf8zpMrFiOTSfE/to9HQQFU96kL5C14dYRyJJI8\nFiGJRIJYnLd4UigUrFmzhtTUVJRKJQEBAaxcuVIlJ/ch8dEL2MuKz00e43OGRCFF7/wQclus55/Y\nyxxPvsNujxEF+iiVSn54sJ5zqQ/JlOfQ27Iu05y6vBc2ioqOWEkq7ld/JbTBAhz8fiGzecnq1KWB\nWCpnT/hDHqQnkCOT083Sm7UJp/mpekNqGdsX6HvveTTNb8znlPc4oiUpDHr4D7OcuzI/8hgNDKuw\npFofzMvgYYVlJ3Ak6RZbnvkTmBmOoZoOUqWMAdaNmOncXaWMEStJZX/CDfYmBHIzM5I2pu70tKhN\nO1OPz6Im832jOJJ+R0MNJvwylm3btqGlpUXv3r1ZuHAhWlparFixgqVLlxbQGv1x1BhVedKJf9dx\nbPMqciVifJu349tJ8/JIzsND+Hvmz8SGhyAQqmFl50jH70ZQq3lbIM/w9fO1L3SPSqUShUJB+/bt\nCQgIIDc3F2trawYMGMCkSZM+eC3lJ2f4Pjd5jM8dWud+IKXpSrLkEqr6TyCu8TIVBZdMIeefZ5eZ\nGXYAkUCItaYx53wmlIqi63PE2ujzXEgNZln1vtS4OpnEpivKZVy5UoHnf1MIzY4nudlfTArdTSUN\nQyY5dSrUd1f8NSaG7uZ67RmcTLnL+JCdHPf+mU2xV9gad5XFVb+kr1WDMk9UD7Ni6XxrKdlyMcnS\nLGRKOfZapuioaRAjSaOjmRc9LHxpY1rzs9e4LC+UhqTfxlDrBWdm6fQm/1cci09u0+RtN/DzKXX+\n3+h9WBiKtEmX5WCuYYCHni3nUh+iVCrZnxCI+3+/si3uKvs8RhLaYBH2Wqb0vLuCXIXsY9/2R8Hh\npFt0MvdCrJCWObGlJKgJhMxw7oYCJam5z+lg5snRpNtF9u1tWZeeFrXpc28VX1rWZYpTZ7rcXsZP\n9m044vUTiyNP0O7W70TkJJbpHlx1rTnoORprTROEAgGaAnXSZNk8yHqGVCFHIMi7T2WpeP//H8EJ\nmZx4lGekFMrC7EnyF8ei0sSceJRIcEJm0QO9hnfJDC5LedLHxidn+ODtNvA/JR65zwlGIh3SZXl8\nnl3MfVgVfZaGgXOYEXaApdX6cM5nInUMKyMSqrHFbTDqAjW+uvsX0v8x45ctl3AxNZi2ph7lbvgA\nulvUQigQcDDpJnV1q2IuseFMaBxnQxK5HJbM3WcZiKVyAOZV7olMqWDak30MtW3BEJvmtApahKOW\nGdfrTKe5sSu+ATNYEnkC+RtKFoKzYpkbfgjv/6bS/OZ8fPQdGGjdFD2RFtvch/Gk4SLamXmwNz6Q\nkY+2YHlxJJ1vLWFdzAWeSdLK9T34XFBWLk25QklgdHqpjN//imPxyYU6X0VSVi53n2UQk54DFOfq\nf1h5jOLi7VXNKj5j+ftAnYAZLK/+DfpqWox6tJULqcFsqPED/So1KDJLU6KQ0u32cgxF2mx1H/o/\no5ZxKPEmy6JOc7bWBO4+f0qfu6u5W3/um08sA5pf/Z16wlrUEFUmVykroN/3emhMqS7BN2AGS6v1\noZuFL5NDd3Mq+R7nak3EQKRNSHYcgx/+Q5ZcwjrX7/HUz9vXeV3eJ1WWRXdzX3pa1qaRUTXV53k5\n9RFf3v2LUfatmODQgbCcBOaEH+JQYhDNTFxBqeR8ajCVdSzobOZNJ3MvPPXsPxlezfeF4rZ6EmOf\nsmXBFELv3kCkrkntlu3pM3Y6aqJXPuMybPWUxbh+io7FJ2348iGWyglNziI1+6Wx+dDyGO8j3v45\noPH1ueioaRCUGckkx46si7nI+hoDqW9UpdhzcuS5dLq9BFtNEzbUGPg/Ucbww4P1uOvZMsa+DdfT\nw/jx0Wau15lRbuMHJ2TiF5VUKsX2/InsuVYS7YN+55LvZKrrVGL4o83cfx7Dce+f0VHTRKlUsiH2\nEhNDdtHR3AszdX0OJt0kVyFXyfvUNXQu9nrR4hS631mOo5YZG2r8gJ5Ii9DseGaHH+RY0h2G27bE\n18CJsyn3OZx0i1yFjI7mXnQy86K5sev/5F5wcXtwf4z+Fn1jU76dNI/szAwWj+hL065fF1LgKMse\nXEV0LMoLn4XhKwof0vP63FdHb4NUaRa/RRxhWdRJOph58o/bIAxFOkwJ3YNUKWdB1S9LPD9LLqFd\n0GJq6NqwyuXbz3qlr1AqsL48Bj/fX6msY8nl1EdMfrKHy76/lsv47yIz4y8NYlHkMa7VmY6emib9\n768lRZrFPo+RBGVGsTfhOrviA0iVZaEuUOO3yr0YbNu81J+XWJ7LsOBN3MiM4IDHaJx1LAB4nBXH\n7PCDnEy+yxj7NoywbUlMbhqHE4M4nHSLO5lPaWlSg07meerm/wv1fMWRwgNM6tWCr8ZMwbNhCwB2\nLJuLOCuzkPjz25DCF+dY2BhqEZ0m/iSjW2ozZsyY8bFvojyRlCXhWlQq/0WlEp8pISVHSoZERmqO\nlITnEh7EZ5KcnYu+pggdjXevDyvrpKJUQlymBA01wWfp+eXIc1kadZKv7q3CWdscZ20LWpvWpIFR\nHnOOgUib3yKOMMKuZPULDaGInha1WRR5nPtZMbQxrfnZGr+AjDBOp9xjinMeeXpIdjz/ZYTSv1Kj\ndx47KUvCpfCUYp/PuKhwxrSvw7OIJ/i2aKc6nv+cdrCtTljuM/6Nu0pPi9qYqOuyIfYyU8P2cik1\nGE99B+ZU7sHSan2poWfNxNDdPMyKpbFRtVJlZ4qEanQx90GBgv4P1uGpZ0dlHUtMNfTobuFLJ3Mv\ndsdfZ8zjbZio6zLc9guG2rZgkE1T1ARCjibd5qfH2ziYeJOE3AyM1XUxV9f/LJ+V4ITnxGdKikz/\nUROpccf/PO71m5KZksyBtX/QrFsfrJ0KRlaEAtAQCbHQK/3cI1LL6+9grIOzqS66GmqEp2QTGJ3+\nQebY94HPKob0vjKdikO+dtXrk0pseAgLhn3FsGZujO/WmBvnTxS8jxebzUlZue90/YoEuVLBP7GX\nqOY/gavpoVz2ncwa1++opGmkSm4BqKXvyHO5mOCs2DeOqS/S5oT3z1xOe8Sk0N2fLXXcocQgOr8i\n5lqeyS13n2WUuCjbsnAKzjU8imyTK5TciU2ns5k3fmkhGF8cxs+Pd9DPqgEeevY0NKrGTOdueOjn\n7b11Nvfhfv15aAhFuF2dzJ7466X6zAQCASPsWrG75nC+vb+ORRHHVOe56FqzreYwLtSaxK3MKCr7\nj2NhxFG01TTob92I3R4jSGjyJ7OcuxOXm07HW0tw9vuFUY+2cjr53meVIZyWIy1S+xKgunddYsIe\nM6xZDX7qUAdHVw98mrUp1K80XJol4UPPse8Ln43he5+ZTsWhqElFLpOx7Jcf8GzUkpVn7zBg8nzW\nTBtNXGRYwX4KJXeflcxi8SlAqVRyODEIz/+msCH2MrtqDmef5yhcdK2B/KzOHFV/gUBAF3MfDiYG\nlWp8I3VdTnmP51jybWaFH3gvr+Fj43BSEJ3Myt/w5UjlJaqy/3fqUB77Ue3iKfnC0p4zP/w4A22a\noCPUYEHV3sys0p3TPuO4+zyacSE7Chg3A5E2K136s9tjONPC9tHtznJixCmlut8mxi4E1JnOzvhr\n9Lm3iiy5RNVWQ8+GHTV/5KzPBAIzwqnsN47FkcfIlkvQEIpoZerO8urfEN5wMYe8xmClYci0sH1Y\nXBpJ7zsr2PLMr0Re2E8BxXFgKhQKfh/Vn1rN27HmUjArTt8mOzOdXX/OK9M4AOE5icUuVj7GHPu+\nUKEMn0QiYeDAgTg4OKCvr4+XlxfHjx9Xtf/9999UqVIFPT092rZtS2xsnteQ73k9eXCHeYN7MqSJ\nC6Pa+HBq+3rVufOHfsnIVl4MbVaDqX3acPPiKdUH8+uM2ejp6al+tLW1EQqFJCUlAeDm5lagXSQS\n0b5DxyInlWcRT0hLjKdNnx8QqqlRo3ZDqnr64ndsX6G+Mek5qhTyTxH+aSE0uTGPSaG7mV+lN5dq\nTS6UtGL4muED6GLuzYHEG6W+jqmGHqe9x7Mj7hoLIo6Wy71XFETkJBInSaeuYWXVMbEit1wMX1H6\nlfnIeZ7J/jW/8/WYaSWOoSkU8Zf9j8yr0otdHiPof38dETmJ6Iu0OeY9llMp95gbfqjQeQ2NqhFU\ndxZeevZ4XZvGquizpVJrsNMy5bLvr2gIRTS4Ppvw1+oF3fVs2eUxglPev3A17QmV/caxJPIEOfK8\n6IlAIKCmnh2TnTpxtfY0HtWfT1tTD/YlBOLs9wuNA+eyMOIowVmxn1wEoTgOzKyMNJLjYvii97eo\na2iiZ2RMo069ueN3vlDfIU1caO/pgKauNjp6uqipqTFy5EgANmzZiLOJNeq6Wujp6aGjo4NAIODG\njRskZUmYOW8BE3u1ZGhTV37p0pBjW1YXGHvvqsVM+aoV39dzYv/aP4CXxi/xuYS5c+dib2+PgYEB\nX331lUoZ51WkpKRgbm5Oo0bvHuYvCRXK8MlkMuzs7Lh48SLp6enMmTOH3r17ExERwYULF5g8eTIH\nDx4kJSUFJycnvv76ayDP80pLSeb3Uf1p1q0vK87cZsG+S7jXa6Iau+/PM1h6PJDVFx4wYPJ81k4b\nTVpSPHKFki++Gcbz589VPxMmTKBZs2aYmeVlP92/f1/VlpmZiZ2dHQ3bdCp2UikEpZKYsEdFNoUm\nZxV5vCLjYVYs3W4v46u7fzHQugm3682ho7lXkfsqhiLtQiTUzYxdCc56VqY6LUtNQ874jGddzAWW\nRZ168wmfCA4n3qKjmVeBso3y8vhKCo3tW72YJp2/xMSyUoljKF4JjTU1dmGiYwe63/mTHHkuJup6\nnPIex6ZnfvwZdbrQuZpCdWZU7saFWhPZ8syfJoHzeFiKELe2mgYbawxioHUT6l+fzZnk+4X6eOjb\ns9dzJMe9f+ZS2iMq+41jWdQplQHMh6WmId/bNGG/52jimyxnsmNHwnMS+eLmQqr5T2Ds422cT3n4\nSdSNvkrS/yr0jUwwt7bj3J4tyGUysjLT8Tu6p4BgbD7WXn7IX0F+fBe4Ctcjo1FoCDnsmkK/e2u4\nU0eE9tFvER3+BvMTQ5i25DecnZ3x8fHh7rMMFAoFg2YuYeXZu/y8bDNnd23iv1MvFz2Wdg70HjlZ\nlWCTD7lCye9/rWPLli0qxZ2cnByVwX0VEyZMwNW18H2XNyqU4dPV1WXGjBk4OjoiFArp2LEjTk5O\n3LhxgyNHjtCrVy/c3NzQ0NBg6tSpXLp0ifvBj4lOF3Py33W412tCg3bdUNfQRFtXD2unqqqx7aq6\nqmpaXlUNhoKeV6w4lcV/r0C9dbUi7/HSpUskJSVRu0W7IicVK0dnDIxNOb5lNTKZlHv/XSL45jVy\nxTmF+r5rvP1DI0acwqAHG2gSOI+GRlV51GABA6wbl1hrl8/c8io0hCLamXpwuJThznzYaJlwrtZE\nlkadZHX0ubd6DRUNh5KC6GReULS1vAxfcSGtyEf3uR9whTZ9fijzOKPtWuOiU4mhwRtRKpVYaRpx\n2mcciyKPsSn2SpHnu+nZcsX3V762qkeTwHnMCjvwxr03gUDAKPvW7HAfRr/7a/g98niRHpqXvgP7\nPUdz1Gss51IeUMV/HCuenkYsL7x/rqWmQTszT1a5DuBpoyXsqjkcI5EO40N3YnlpFH3urmJ73FVS\npRVzMfoqSf/rGLFwLXevXmRkay8mdGuCmkjE1z8V9uaFCOjr7MFq1wGMiqyOUyU79n8zl2bGLtzI\niECskCJRyogQJzFp1XxcujRCLFMQnS6mff9hOLrURE0kopJjZbybtiLkdqBq7EYde+HRsDlaOoVJ\nxM+dPEb/Ad9hZ2eHnp4eEyZMYOfOnWRnv9z/9/f35969e3z33Xfv/F69CRUz5eYF4uPjefz4MW5u\nbly9erXAg5//99mrNzDxaMSTe0HYVq7OnO+7ER8dgbObF/0nzMHUykZ1TkmqwcGJmRyXXGbmwTVI\nktNJrWdKrkJGqjSLVFkWKS9+L1y1kBpt6/NEno4OhYmURSJ1Ri3+m62LpnF08yqcXD2o80VHRBpF\nZ7iVRrvqYyNNmsXCyGOsiTnPD9ZNedxgAcbqum8+kaJDnZDH4rLp2RUG2zYv073Ya5lyxmc8zW7M\nR0uozgDrxmU6vyIhXZbNtfQn7PcYVeB4eRm+4kJjwTeukvQsmrEd6wMgyclCoZAT+00IM7ceK9T/\n1XEEAgHranxP/euzWBV9jh/tWuKobc4pn3E0vzEffZEW3S18C40hFAgZbvcFnc29+TF4Mz7XprHO\n9fsS6zkBmpm48l/taXS7s5ybmZGsc/0OHbXCGYneBg4c9BpDYEY4M8L2syDiGJMcOzLQpkmR8k4C\ngQBvAwe8DRyY5tyVWEkqRxJvsS3uP4Y83EgtA8cXhfPeVNGxLPEePxS01dWwNdQqso7Pobobk9bs\neuMYNobaqlKDTZs20b9/f7wNHPE2cORk8j0ECNBV00Qal4bkbjyt1nQuMmSuVCp5HHSdZt1Lr56e\nlPVyz1apVCKRSAgJCcHT0xO5XM6IESNYt24dd+/eLfWYb4sKa/ikUil9+/bl22+/xcXFhbZt2/LV\nV18xdOhQqlatyqxZsxAIBCSnZ2KohJSEZ0QE32Pcin+xrVKdXX/OY9WvI5iyfr9qzJ+WbEQmk/Lg\n2hViI0ILqAavjbjC6uw9KE8+gsYOBMpi0D0/GCORDibquhiLdDGQifA/co4Of41BRvErVruqrkxa\nu1v1/5zvu9GwY48i+5ZFu+pDQyzP5a/oc8yPOEInc29u1Z2NnVbZJJryPL7sQsfbmXkw6OEGMmU5\n6Iu0yzRmZR1LzviMp8XN+WgKRXxtVb9M51cUnEy+SyOjaoUUCMTydzd8ibkZPJZGAUYFGFoAmnXv\nS93WnVX/n9i6lqRnT+k/sXAyhJoAjHUK3ouumib7PUbRIHAOXvr2NDCqiouuNUe9xtI2aDH6alrF\nCgbbaZlyyHMMuxMC6HHnT3pY+DKvSs8SnwEHbTP8fKcw+OE/NLw+h/2eo4pVWPc1cOKI11gC0p8w\nI+wA8yOOMNmpE99bNylR3spa05jBts0ZbNucbLmEsykPOJQYxMLIYxiJdOhk7k0nMy/qG1ZBJPx4\nNWo1KxkQkyF5a5L+fC7NyMhILl68yPr1L/MgmhlXx13PhnamHhxbtpXzjeMZU7cHl8OSC0W3Dqz9\nA6VSQeNOvUt1bff6zdi9dQ2jBvbH2NiYBQsWAKg8vuXLl1O3bl1q1ar1QQxfhZx1FQoF/fr1Q0ND\ngxUr8hjqv/jiC2bOnEmPHj1wdHTE0dERfX19jC3y9ig0NLWo1awNzm6eaGhq0fWHnwi9c4Ps5wU3\nUItTDa6sZYW+VASXIqF1ZSw09MltsZ7Epit41GAB/9WZRv8we2zMLNnfbx7NLCoXGW8HeBrykFyJ\nGIk4h+Nb1pCWnFBIMBeKnlQqAuRKBZtjr1D96kQupgZzvtZE1tcYWGajBy+yOuWFPT4DkTYNjapy\nIvntHvLqupU46T2Onx5vZ19C4JtPqIA4lFg4zAl5Ht/biNDGSlJZ+fQMLW7Mp6r/BC5KbiCi8CSt\nqaWNkZmF6kdTRwd1DS2VZuXrqGJa2LuvrGPJPzV+oPfdlaq9Wh8DR/Z5jqLPvdX4p4UUe58CgYDe\nlnW5V38u2Ypc3K5O5kjirRJfm7aaBpvdBvOtdSPqXZ/NuZQHJfavY1iZY94/s8tjOAcSb1LVP29/\nuDR7eTpqmnQy92Zdje+JabyUzW6D0RKqM+rRVqwuj6L/vTXsjg8go4hIxvtGeXFpbtmyhUaNGuHk\n5KTq86PdF0xz7kptQ2e2btmi0kJ9PSp1ZtdG/I7t46clG1HXKF09YOPOX9K8QzeaNWuGm5sbzZvn\nRXpsbW2JjY1l+fLlzJ1bvhR9JaHCGT6lUsnAgQOJj49n7969qKu/nACGDx9OSEgI8fHx9OjRA5lM\nRjXXGgDYVnEpmFzxhgLW11WD6xg5sSK5GRamZtRv0hBNgXqhZI380IBAICgx3u53bB9j2vkyqrU3\nD677MW7Fv8U+IEVNKh8LSqWSY0m38b42lTUx5/nXfSgHvcbgpmf71mMavkJS/Tq6mPtwIPHmW4/t\nrmfLMa+xDAvexNGkkifOigaZQs7x5DsFyhjyUZZQZ5Q4mSWRJ2h0fQ7uV3/lWvoTRtu15lnjZWz2\n+AF7ozd7090Gj2XI7GVFtr0aGnsd7c08GWzTjF53XipqNDKqxha3wXS7s5xbmZElXtdEXY/1NQay\n0W0QYx7/y1d3/ypRqV0gEDDGvg3b3IfS595qlkSeeGNmZj3DKpzw/oXt7sPYFR9ANf8JrI+5WOpk\nFqFASG1DZ2ZV7k5QvdncrDuLeoZV2BB7CdvLY2h1cyF/Rp0us1rFu6A8SPo3b95cQOT7VeQnoPTs\nmSc++2pU6tKhnRzd9BfjV257Y2LUqxAKhQwaO4mIiAiio6Nxc3PDxsYGGxsbAgICePbsGTVq1MDK\nyorRo0cTEBCAlZUVcvn7yXqvcJRlQ4cO5datW5w5cwY9vZebpGKxmNDQUNzc3Hj69Cn9+/enQYMG\nfD1yIrdj07kb4MeKCUOYsGonNpWrsWv5PCIe3mHyur3ERoSSFPMUl1r1EYrUCDh1mPWzxzH1nwN5\nm7UC8LIxZGz/ntSrV49Zs2ahVCoLGL6Q8Ehcq1Zm6+n/MLd1QENNSHK2hHTx238wFUm7KiD9CRNC\ndxEnSee3Kr3oYu5TLuwXUoUM7fODkLbYUGi8fOHV+CbLUX8HlfVr6U/odGsJ/7oPLTbEVtFwMTWY\nsY+3caPurEJtI4O3UE3HipH2rYo890l2PHsTAtmTcJ2wnES6mPvQ08KXliZuhcJ571u/UqFU0OX2\nMpy0zVle/RvV8T3x1/NIyWtNopqu1RuvlSPPZWbYATbEXmJB1d4MqNS4xOcvIieRbreX46ZnwzrX\n70ut4Xcl7THTn+wnQpzIFKfO9LNq+Nahy+cyMadT7nEoMYijSbex1DCkk7kXncy8qWPo/N4J1t+W\nS9Pf359WrVoRFxeHvn5h6sTBgwcjFovZvHkzkJc1fzs2ncvH9rNj6Rwmrt5RIHEwHzKZFIVczobZ\n4zC3safT9yMRidQRqqmRk5GGg46ctnU9efjwIb1792bUqFEMHjwYiURCamqqapydO3eybds2Dh48\niJXVm5+dt0GFMnyRkZE4OjqiqamJ6BVW8TVr1tChQweaNGnCkydP0NfX57vvvmPOnDnkKlDx153b\ns4VDG5aTK86hqmdt+k+Yi6mVdalUg+ubKqlexZng4GCqVHm54Z5PPr1q6WJu+51n8rq9qjahgCJ5\n80qDiiKK+zgrjl+f7OFqeigznLsyoFLjct/D0Dk3iIQmfxappl03YCZzK/fkC1O3d7rGlbTHdLu9\nnD0eI2hq7PJOY30I/PJ4O/oiLaY7dyvUNujBBuoYOjPIppnqWHBWrErx4FluOt3MfehhUZumxtXf\nuGh4F67O0nDKpkmzqB0wk2nOXehX6WUx/IaYS8wMP8Bl31+xL2WYPCgjkkEPN2Ao0mGt6wAql5BY\nki2X8MODDTzKfsZ+z9GlvgbApdRgpoft56k4hWlOXehjVf+dnnu5UkFAehiHk4I4nHiLBGkGHUw9\n6WTuRSsT9/eqJF9Wkv4hQ4aQnZ3Nli1bCo8lFmNlZcXevXtp2bIl8JIjdGznhqTGPyuQqFe/XTcG\nTPoNgHUzxuJ3dE+B8QZO+53GnXqREBXGuomDiY5+irm5OaNHj2bs2LFFvp6NGzfy999/c+VK0VnC\n5YEKZfjeFu9LNfhtJozSoCIQVT+TpDEr7AC7E67zi0M7Rtm1KjJbrjxQ6dIoAuvMwEbLpFDbb+GH\niZGkssKl/ztf51zKA768+xeHPMe8MVvwY0KpVFLNfwI7a/6Ij4FjofZ+99bQysQNL317lWeXLsuh\nu4UvPS18afiKvE9pkf8sS+XyEtUZlCgRCYVlfj7vPY+m+Y35nPIeh7eBg+r40qiT/BV9lsu1fsVS\n07BUY8kUcpY9PcVvEUcY79CesfZtizVKSqWSP6JOsDjyONvdh+VJGpUB51MeMj1sH3G56Uxz6sLX\nVvXLxVMLz0lUEWpfS39CQ6OqdHohr/Q2e+UfG5+bMvtnYfjeRzjnczV6GbIcFkUe46/os3xXqTGT\nHDthqlG47qY84eI/kX0eI6mhZ1Oo7WFWLK1vLiKq0R/lElo9kXSH/vfXcsz7Z3wNnN58wkdAcFYs\nX9xcyNNGSwq8ZqVSyY3MCL65t5p0WQ5aQnV6WPjS4w3yPqVFUlYuyx9co4rQASGCAqExoSBPCzFY\nHsYYt3rY6pf9mdgZd41JT3YTWGcGJuovz58Ztp/9CTc5X2tiqctgAMKyExgavJEk6XP+dv2+yEVC\nPs4k3+eb+2uY7NiRkXatyvQsKZVKzqU+YPqT/SRJnzPNuQtfWtYtt1BlhiyHk8l3OZwYxLHkO9hp\nmtDJ3JvO5t746Dt8ErJb7ztk/qHxWRg+eGmoTu74hytHdhMd+oi6rTszaMYfqj4ScQ47l84h4MwR\n5DIZ9tVcOXDiDC4W+syYMYO5c+eiqamJkjy2gdnbTmJh68CjoGv8MbrgRrAkJ+yE1sQAACAASURB\nVJvhC1ZTu0V7ABKiI/n39+k8unkNkboGjTv35stRebIyORlp/D17HPevXcbMzIwF83+jT5+8+hel\nUsm8efNYs2YNaWlptG/fnrVr12JgUL4yKxKFlDXR55kbcZi2pjWZ5dwdB+0PswKrFzCLJdX6FOmF\nKZVKql+dwHb3YdQqJ0N1MOEmQ4I3ctL7F5VAakXCoohjhOUksMp1AAqlgmvpYexJyAtjagjVUCqV\n/GjbkjH2bcpdZaBt0GJGWbfBXulQKDQ2Nnot2Uox3Sxq8bNDuzcPVgR+ebyde1kxHPUaqzIcSqWS\nsY+3cS0jjFPe48oU9lMqlWx55se40J30r9SQmc7dio1MhOck0vX2Mrz07VntMqDU+36vXutMyn2m\nh+0nTZbNdKeu9LKsXa6GSaaQczU9lMNJtzicGES6LIeO5p50MvOmpUmN9xZ1KQ+875D5h8RnY/gg\n74NZtXkHSgTc++8iuWJxAcO3Zupo5HIZ34ybhaGRMbppkfRolUdrNmPGDEJDQ9m6desb3fqHN66y\nbOz3LDtxA01tHWTSXCb1akHLXt/SvHtfjHU0yIp/il1VVzTUhPz28xB0REI2/rOBW7du0aFDB/z9\n/XFzc2PTpk389ttvnD59GmNjY/r27YuRkRGbNm0ql/dEoVSwI/4aU57sxVXHmt+q9MTjAxuDNjcX\n8ZN9G9qaFa0CMD5kJ5pCEbMrF13r+DbYFX+N0Y/+5azPhCI9zY+JRtfn0Nnci2hJGvsSAjES6eQJ\nt1rWxl3XltZBixjn0I7WpjXL/dpf3l1Jd3NfvrSqW6htfsQR7mQ+5VzqQ0IbLHyrfSmZQk6roIU0\nNKzKnCo9VceVSiU/PNxAlDiZI14/lblcIyE3g58eb+NqeihrXAYUm8SUJZcw8MF6QrPj2e856q3C\nikqlklMp95j+ZD/P5WKmO3elh4Xve/HMQrLjOJx4i8NJQdzIiKCpsQudzb3paOZFJc3CBBkfG5+L\n9miFLWB/G7hY6DN12LfcfZZB5MM7pEieqdpiI0IJunya5UevUcXG4kWmk0OhMd7EaA/gd2QPvi3a\no6mtA8CVw7sxNrekbd9BAEiAr1o1REtdjaysLM4cPcS9e/fQ09OjUaNGdO7cmS1btjB//nwOHz7M\nwIEDsbOzA/K46lq0aMGqVavQ0dF56/dCqVRyOuUeE0J2oSEUscF1YJn3P6B8BH0NRdqkFVPSAHmk\n1cOCN5Wr4ettWZdchYzWQYs4X2siVXXeT3ZYaSFVyLiY+oitcX74p4fwXC6ml2UdzviMVylZ5EOs\nkKItfD9hISORTrGfRQczT9bGXKC5sQsros8w0bFjmccXCdXYWXM4vtem42vgRFeLWkBeKcJa1+/4\n6u5ffH13FbtqDi9TMomFhgH/ug/lWNJtfni4gWbGLvxRtU+hML2umibb3YexOPI4dQNmsaPmMJqU\nMdlJIBDQxrQmrU3cOZ58h+lh+5kdfpDpTl3pZlGrXA1gVR0rxjq0ZaxDW1KlWZxIvsOhxCAmhOyi\nso4FnczyskS9Xkg/lTfK+v12sdDHTFfzk1dm/6wMH4CZrgbNq5hx0kKPh881cDbRIVeu4HHEQ2zt\n7Lmzbw2T/v2XSpUqMWPGDHr0eDnZHj58GCsLM/RNzGnZawAtevYrNL4kJ5vAc8cY/ccG1bEn94Iw\nrWTL76P6E/7gNraVq6Oz+A+6N6/P48ePEYlEVKv2kvvT09OTixcvqv5/nYrtVSqft8GNjHAmhO7i\nqTiFeZV70t3Ct8xfmvxs1uh0MQIKP9y3Y9OxMdR68XCXHJ4pjrYsH/UMqxCfm0FYdoJKgbs88E2l\nhogVUr64uZCLtSYVy/bxviBRSDmb8oC9CYEcTLxJZW0LnLTM+MLEnVM+44o9L6+A/f18NUsyfO66\ntkgVcvpVasCA+3/zo21LDMrIqgN5RmqPxwg63lqCq6411XXz6r3UBEK2ug+hy+1lDHy4nn9q/FBm\nI9LezJP79eYx5cn/sXfWYVGl7x++Z4buFgFBFCVEEAUTFbtbd621a23dVdfurrVw7d5V1+5Y18Au\nWixQlFBAupn4/TEyinS5+92f93VxXTrnzHte4sxz3ud9ns/nKDXuzmBt9T70rlA/x9+3QCBgSuX2\nOGtXopf/JmZbd2aMRcti3wMCgYD2Rs60M3TibIwvc0OOsfDVKeZV6Vpm7T6fo6+sSR/TBvQxbUCW\nVMzN+BecjvGml7+8T7KjcS06GdWimb49asVM435Jae7v7M/Y4laT/pv49++qlhAlkRB9dWUaVzGk\nRTVjNDPjefn0CYb6+kRERLBx40YGDhxIUFAQAN999x1BQUGcvP+MQTOWc3L7r9y9eDLXuA+vnkdL\nzwC72vUVr8VGRXL/0mlafT+YX88/wMm9OWMH9iEzM5Pk5ORc+3W6urokJck9qtq2bcv27dt5/fo1\nCQkJuaR8isPL1Pf09vekk8+v9DKpS0D9xfSo4FbsG7SszSbzky3LRiQQ0tnIhZOlaGbPj2HmHkyx\nakeLx8sJK6IvXGlIk2RyIuoRPwRswfTGeJa+PkNNLQse11vAvbpzESOlr2n9AscoC8my/JAHvrxF\nmOUf9E48TXlHG8OarC+FC0Zd3aosselJN7/1JH320KMqVOaY0zhC0qKZ8OxAiayBtJTU+NW2Hyed\nJ7Dk1Rk6+qzlTfqHXOe1NqzJbddZbA2/xpAn2/MUri4KAoGAjsa1eFh3PguqdmN+yAnq3J/LqejH\n5WZtpCxUopmBPWuq9+VFwxVcrD2FympGLHl9hgo3xtPNdx27Im4QlZm3p+fL1PeIpXn3GJfV/a2m\nLMLRVEfxGdu4iiGOpjr/+qAH/+HA9yXq6uooKysza9YsVFRUaNq0Kc2aNePSJfnN7eDggJmZGRIE\nVHN2pVXvITy4kluw99aZIzRq3z1HMFFRVaNaLTecGjVDSVmFdv1HkhAXS1BQEFpaWrl8pxITExWN\no0OGDKFPnz55SvkUlajMRMY+3Uv9BwuoqWXBi0YrGGnRrERN4eVhNlnYig9Kr+JSEGMrtWK0RQua\nP15WLCukopIsTufP9/f53n8TFb0msP7tZRro2vCkwVK8XGcy0bINlmqGZEiz+Cv2Ce2NCl7JZ8iy\nUCuvVKeyBvFZ+T+EdDBy5myML3OqdGHd28u5LKWKwzBzD9z1qjH4yfYcAUJDpMqZWpO4lfCCOSG5\nfSqLSj3dqjyqN5+GejbUvjeH9W8uIfnC86+qRgXuuM0hRZJBk0dLSvXwk+0y/7jeAmZbd2Z28DHc\n7s/jTLRPuXr7CQQC7DXNmFq5A16uMwlutJLuJq6ci/Gj+u1pNHiwgCWvTuOf/BaZTEaWVIzz3Vl0\n8V2XywXjv2QmWxr+3wQ+J6fchRV5rYSy5XkEAgF88cf84V0ETx/fpVGHnHtRFjb2ucbK/l/16tUR\ni8W8ePFJu9DX15caNeQN20KhkPnz5+cp5VMYSeI05occx/7OLygJRAQ1WMpM685olrAyLNvQ9+LB\nXcwb0IFhDW3YNi/vJtOT235lkJslgfe8FDdHTEreT9SFrfgAWhg44JP0hpjM8rnBfrJqxwDTRrR8\nvJzofJ6Si0OCOJUDkbfp7rsec6+J7Ii4QUuDGrxouJy/6/zC6EotchUnXIt7Sg1NM0xUCq7YTZdk\noSYqnxWfbgGpToDm+g7cTwyhgoouHY2c+bWU3ocbbH/gbXosK0NzPkTqKmlw0eVnjrx/wKrQ3A+Y\nRUVFqMRM687ccp3F0aiHNHqwiIDksBznaIpUOVRzDD1M3Kh7fz5ecXl7YxYVgUBANxNXvOstYHrl\njkx/+Sf1HsznfIxvuQXAjRs34urqiqqqKj+PGMcPFRvxp9NYTqv0I2PKeRa49KGWhS1azW3p/PdS\nZMi4GveElo+Xc+vBXZo0aYKmlhb17Ktw/sB2xbh5GXRnEx/znl8nD2FcmzrYV9Dh8ZPnOeb0888/\nU61aNbS1tbGzs1MovXzJ3r17EQgEbN++Pc/j/wT/ucAnFotJT09HIpEgkUhIT09HLBbTpEkTLC0t\nWbp0KWKxmFu3bnH16lXatGkDwMmTJ4mLi0NXTYnXgT5cPrQLl6Y5JaNunz+GjVMdTCwq53i9Ybtu\nBPs/JvCeF1KJhMt/7EDf0BB7e3s0NTXp3r07c+bMISUlhb+v3+D4iZM4eHTiyotozj5+ybk7PqRl\ninny5AmTJ09mzpw5CucIkFdmHn3/QHFTZUrFbHr7F9VvT+NF6nse1p3Pr7b9MC7kA7Uw/CMTkUhl\n6BlVoNOQ8TTunLfyelTYax5cOYue0af9OIlUhn9k3gFFrwgrPnWRCi0NanCmHDU3Z1XpQjfjOrR+\nvJLYrORivz82K5ldETfo6LMGS6/JHHp/jy7GtXntvpoLLj8z3NyjwN/BqWhvOhvXLvQ6ZWVLlBeF\n/S60lNRoqGvDX7GBzLbuwsawv0r0s8pGVajMEaexrH1zMZehrLGKDpdrT2XT2ytsC79W4muAXLT8\nap1fGGLWmGaPljE7+GiO1KZAIGBa5Q7sdBhKT/+NeL69UuogJRQI6VHBDd/6C5li1Z4pLw7R4MFC\nLn7wL/MAaGZmxqxZsxgyZEiO15MTkpg+ZjJRbyJIDI+mtYULd2bvIU2aRZo0i5uh/jRp3ZzeQ37g\n2L2nRTboBhAIhNRs4MHY5VsAeBaV8+9AU1OT06dPk5CQwJ49e5gwYQK3b9/OcU5cXBxLlixRPOj/\nW/jPBb5Fixahrq7OsmXL2L9/P+rq6ixatAhlZWVOnjzJuXPn0NXVZfjw4ezduxc7O3nF18GDB7Gx\nsaFhdXO2zJ1EhwE/5nJUuHX2KI069Mx1zYqVqzJiwTr2LJvB6BY1eXz9EidPnETlo7SPp6cnCckp\nGBmb0Ov7PvwwbREyI0vCEtIJeBXO0N490NPRplmrNnzffwAjRozIMf66N5fp6b+Rw+/vcejdPRzu\nTOd0jA/nav3EfsdRWJdB0cbn1ayuzdtRx6MNWrr6eZ67d/lseo2bjkg5Zzruc0PfzylslZFNV5Py\nS3dms7BqD1oYONDWe1Whq1CQp5G3hl2l9eMVWN/8mTPRvvQzbcDbxms5VWsSA83ci9SULZPJOB3t\nTSej3G4MX1Lega+w30V7I2fOxfhSRcOEbsZ1WBN6oVTXrKRmyO+OP9I/cAuhaTE5jlmoGXC59lTm\nhRzn0Lt7pbqOUCBkhEUzfOsvJDA5nFr35uRa3bU1cuKW6yw8w64wPGgnGdLSG0ELBUJ6VaiLX/1F\nTLJsw6Tnv+P+cBGXPwSUWQDs3r07Xbt2xdAwZ3tGu3bt6NWrFzo6OmhqajJ70jQSfd+gKlRGS6SG\n7MgTcDVDvbk9UemyYhl06xoa06LXAKwd5Kn5d0npOe7v+fPnY2dnh1AopF69ejRu3Jg7d+7kmN/0\n6dMZP348Rkb/HtUW+A9Wdc6bN4958+bleSzb0DYv/vjjD8W/8+vjW3bkar7XdW3eDtfm8qZfSz11\nan8mzxMlVqbvfE++n5v7JjC1qsKyo9cU/xcJBTyNSlL0vgQmhzEzWK5/90PgVmpqWrDFfhAtDMr2\nCSovs8m8uP/XGZRVVHBu1DzvcT6k4Gj6RTFPEVKdIN9fGvN0L6mSjHJr5BUIBKys1ptxz/bR3ns1\nF/NoqI7IiONY1EOORj3EO+kN7QxrMsK8GcedJ5Q4jeyb/AYVoRL2X7Qu5MU/H/icWP76LDKZjFnW\nnal9fw4TLdtgpFLyfqxmBvZMtWpPd7/13HSdlaO53EajAhdcfqbl4xVoKanSoQgPBwVhpqrPMefx\nHIt6SO8ATzoZubC82nfoKmkornfXbQ6Dnmyj6cOlHHUam6ecXnERCoR8b1qPnhXcOPT+HuOe7cdY\nRZv5VbrRTD/3dkh5cOPGDSxtqzDPbiCOWhb89G4wtZyasa77T4SEBBfboPtL8rq/AdLS0njw4AGj\nR49WvHb//n0ePnyIp6cnhw8XbpL7NfnPrfjKgpoVdYrtd5XN52aPULrN5EypmHbeq0mTylM2QgQM\nMnMv86AHEJ+Wlau660vSUpI56rmCvj/Ny/O4RAZxqbmfoItS3AJymxpXHWsufQgoypRLjEAgYL1t\nf+w1zejku5ZUSQahaTGsDb1AowcLcbwzk/sJIUyybMO7xuv4o+ZoelZwK3HQAzgd7UNnY5dCP/wk\nMilimRRlQflUxhVW3ALy3jItJVV8kt5gpW7E9xXq5dqjKwmTLNtQXcOU0U/35FoJ1dSqxEnnCQwK\n3M71uKelvhZAdxNXAusvQYaMGndmcPwz30YtJTX+rDmWzsYu1H0wn1vxzwsYqXiIBEL6mjYgsMES\nRpp7MOrpbjweLS2z7ys//Pz8WLBgAfvWb2OQWWNcdayJDI9gz549jJ61iNWn72BsXonNM8fmeN+k\ntbv57foTJv+6B8f6TXJss3xOfvc3yF11nJ2dFVtHEomE0aNHs3HjxnzH+yf5983oX4CRpirPLh5k\nfh4FHuEhz5k3oAOjmzsyurkjK0b3ITxEftOIhAJ8T+7Go15ttLW1sapcmflLlucZ9J4+ussgN0uO\nbl6peC0rM4Pf18xnXJs61LGpRJ0+7XibEoOqQAkNoQrid4nM6D0afX19TE1NGTt2LGLxp6qtESNG\nYGtri1AoZPfu3cX6nr80m8yLE1vX0rBdd4zNKhVrHPmKr2imnV2Na5dLW8OXCAVCpli1JyErlYo3\nJuB6fy6BKeHMtu7Cuybr2es4ks7GtUvdL5XNqRjvPL33viTj42qvvFYHRU07tzd05twHXwBmVO7E\n9ojrBXrlFQWBQMB2h6E8THzNlvDc2ZP6ujYcqjmaXn4beZj4qlTXykZPWZMt9oP53XEUv7z8kx6+\nG4jIiFPMZ4Z1J7bZD6Gb73q2hOWf0SkJIoGQ/hUb8aT+UoaaNWHokx00f7Ss1MU1efHy5UvatWvH\nunXraNy4seJ1dXV1unXrRtUatUpk0P0led3fU6ZMISAggMOHDyv+bj09PXFycqJ+/YJbd/4pvgW+\nfHCxrcLkqdNp8kWBh55xBcYs+41NV/zZeNkXlyat2DxzrEKex1hThb179xIXF8eCrX9w+dBu7l46\nlWMMsTiLA6vnUcUx5wfh2T2evA7yY9HBv1h29BpZz2IZelWfgAZLeNZwOR77EuharSGRkZH4+Phw\n/fp1PD09Fe93dnbG09OT2rULL6D4ks/NJvPjyYNbXD60i/Ft6jC+TR1i30fgOWM0Z/d8mkNe4xRk\nRvslXYxrcybGN98epNISlBLBwpCT1Lo7m6aPluKmW4Va2pbU06mKp91A2ho55fK0Ky0RGXEEp0bh\nrpfbw+xLyjPNCaAhVCFLJslV5v4l2W0NIN+H62fakBVlsOrTFKly3Hk8c0OOcyf+Za7jzQ0c2GY/\nhI4+a3mSHF7q62XTRN8O33oLcdAyw/nubLaGXUX6sfWhvZEzt9xmsf7tJUaU0b7f5ygJRQwwc+dp\ng2X8ULEhA59sk1dbltEqMzQ0lJYtWzJ79mx++CGn6IaTkxMCgeDTfVlMg+4v+fL+njt3LufPn+fS\npUs5+pWvXLnC8ePHMTU1xdTUlNu3b/PTTz8xduzYL4f8R/jP7fGVFd27dwcg5IkfT16+UkjxaGrr\noqktt1cRIEMkEhEdFqpQH7ebOhWQF4sIDS1wadqKF74Pqd+6s2LsC/u34li/MYmxOZtufbz+ov2A\nH9HSlZfBN+81iFO/rWD78vUAhIe+ZfL4iaipqWFqakrbtm0JDPxUKTdmzBgA1NSKr7Gop66MSPCx\neVUsRiIRI5VIkEolZGakIxIpMc3zD8TiTx8KCwZ2ovek2Tg1lPceigSgr5H7Q1tXSZ0kSXouc9+8\nsFI3wkJVn9sJL4otNZUXMpkMv+S3CnufJHE63U3qsMG2Pw31qiESCMmSiunpt5F+Ab/xh+OPZe5H\neCbah7aGNYvUV1meqi0gX+Vk7/MV1FbRRN+WgOQwYjKTMFLR5pfKHXC8M5OfrdqVWkPSRqMCOx2G\n0st/Iw/rzsP0i/G6mNQmWZJOG+9VXK8zvczUfNREKiys2oPvKtRl2JOdHHh3h632g7HVrEg1DVPu\nus1hYOA2mj1axhGnsZip5l3cVVKUhCIGmzWhv2lD9kbeon/AFqppVGB+le4KAfdT0d6oCES5dG3F\nYjFisRiJREJmlpiHr6JIypIR9f49k/t3offAYQwaOjzXNQcPHkyPHj1o12cIMh0zTu1YR/Vabmho\n6eRp0P3M+z7fjZ+heH9mRjoyqfwBQZaViYbw0wPp0qVL+f333/Hy8spVdLN7927S0z/VSXTv3p2e\nPXsydOjQ0v8gy4BvK75C0FARYaqjRk8nM2qZ61LFQAMLXTXGNndkaKNq7Fs5h1kzZ+TSpHsZkwIy\nGc+9H2Be5dOTfkxkGF6nD9Nl2MS8L/iFfFl4WBgJCfIU08SJEzl48CCpqamEh4dz/vx52rZtWybf\np42RJtlXPrVzPSPcq3N2jyd3zh9nhHt1Tu1cj5aePnpGJoovgUiEprYuahqfqhptDHNXOCoJRagJ\nlUmWFM3Pq7TVnTKZjAcJIfzy4jDVb0+jm9960qSZ7HQYSqj7atbZ9qexvq3CPUBZqMRhpzEkS9IZ\n+GRbribo0nIqxpvOxoWnOQEypOJyXfFBdktDwStwVaEyzfTtufjBH5AXjAwyc2fZ6zNlMocORrUY\nbt6UXv6byMpj9dmvYkOmV+5IK+8VitRkWVFTqxK33WbTw8SVRg8XsfjVKTKlYrSV1DniNJb2hk7U\nvT8/zxVpWaAsVGKoeVOeNVxOrwp16ROwmXbeq/CKe8agwK309N9IcOr7HO/5vFr9j98P4FalAutW\nLePg/t1EvHnNplVL0dPVQV1TE02tT/qlzZs3Z8mSJUwY9D1jWrnw/u1rRi7cID8ok3Fi21rGt3Fh\nXCsXLh/cyeglm6hs90kcfYR7dUY2kT+ATu3ZDFfrT8bAM2bM4M2bN9jY2KClpYWWlhZLliwBQE9P\nT7HaMzU1RUVFBR0dHXR1i+bJWN78p9wZyoNZs2YRFhaW555ZSkoKe/bswcrKig4dOuQ45hXygdVL\nF/L4+iXm7D6Fsoq8MGLdT0Op36YL9Vp3Ztu8yRhUqEiPH+W6jUc3ryTo4W3Gr9qOVCJh/c/DCAn0\nISIigooVKxIUFET//v3x9fVFIpEwcOBAdu3alWsV5e7uzrBhwxg0aFCRv88LMX5cD46lusgaYQmf\nhwoymzT3msBdtzlFUsv3SQqlh98GXjZcWeS9LqlMyt2EYI5EPeBY1CNUhUr0NHGjh4krLtpWRRon\nTZJJB581WKsbs81+cJmIEadIMqh4Yzxv3NegV4S2h6CUCLr7rieo4bJSXzs/3O7Pw9N2AG66VQo8\nb2vYVa7HP+OA4ygA3mckYH9nOn71F2FRBlWQUpmULr7rqKJuzDrb/nmes+z1GfZF3uJGnZnl4hsZ\nmhbDj0/3EJYRyzb7IdTTrQrIV+lDnmxnsU1Phpt7lPl1PydTKmZXhBfTXhwiWZKOFLDVMMWn/kKF\ni0VZuCL818xkS8O3FV8p0NTUZNSoUQwYMICoqKgcxw7v3satc8eYtHa3Iuh537hMemoK9T5Le35O\np8HjsLJ1ZE6/tiwe2o3aTVujpKxMhQoVkEqltG3blu7du5OSkkJMTAxxcXFMmzatVN9DtofZuGf7\nqW9hhHIJ03xfVrN+SVErOwGctSyRyGQEpIQVeJ5EJuVabBDjnu6j0s1JjAzajY5InTO1JvG0wTIW\n2/Sktk7lIgdPdZEKp5wn8iwlknHP9pdJD9ZfHwJx06lSpKAH5avTmU1hbhnZtDNy4uIHf8UKuIKq\nLsPMm7K0jFZ9QoGQfTVGcC7Gj/2Rt/I855fKHelk5EJbn1UkFvHvpzhYqRtxttZkplfuSBffdUx8\ndoBkcTodjWvh5TqTNaEXGBW0u9A90dKgIlRiQMVGIAAJMmTIeJ76jr7+m4Gykxkry2r1/3W+Bb5S\nIpVKFanHbHbu3MmhbeuZuul3DCpUVLz+5MEtXgX5KYpD7v91mkt/7GDdT/K8t4qaGj9MXciv5x6w\n8uQttHT1sXV0RigUEhsby5s3bxg7diyqqqoYGhoyePBgzp0rWcFBqiSDuR+1BuvpVCGgwWK6mDvi\naqFb7Jsj+wmzIAuSovbygXwfqouxCyejcqc7s6RiLn3wZ2TQLsy8JjD5xR9UVNXj79q/4N9gMfOq\ndsNRy6LEVZFaSmqcc/mJB4kh/PTij1IHv+KkOeFjcUs5yZVlUxQlHZA3npur6nMvIVjx2hSrdhx8\nfzdPUegSzUVZk2PO45j0/A98kkLzPGepTS9ctSvT2edX0kooNF0QAoGAPqYNCKi/mDhxCo53Z3I+\nxhdbzYrcqzuXd5kJNHu0VKHzmi7JLFH6tX///lSsWBEdHR2qV6+ukPDKzMykY/cuJPY+AK32ouIX\ng0gg5GS0N8HxcTwMSyD4iR9LRvRkZBM7xrepzaU/dgCQGBvD5pljmdjOlR89arBoaDeCA7xzyAhu\n2LABa2trqlQ0ZtmQzrz0faCY0+rxAxjZxE7xNbRBVWb1zqlYVZT7+3+Nb4EvH/KTPrt8+TLe3t5I\nJBISExOZPHky+vr62NvLve4OHDjAjBkz2HboJBUr5fT76z7qZ5YducaCA+dZcOA8Lo1b0bRrH4bO\nWQ1AXNQ74qLfIZPJeOn/mFM71zN+qnyj2cjICGtrazZv3oxYLCY+Pp49e/bk0CDNzMwkPV1eRJKV\nlUV6ejpSac79KplMxvGohzjcmcHT1Ei53qB1J0VKxc5Eu1jBr6hmk0X9sM2mq3EdxT5fhjSLszE+\nDA7cRkWvCcwJPo6NegXuuM7mcb0FzLDupLC+KQt0lNS56DKFq7FBzAo+WuJxpDIpZ2J8iqTWkk15\nV3VCwQ4NX9LeyIlzH6s7QS4zNsq8OYte5XYuKSk1tSqxwbY/3f025CmPUMxt7QAAIABJREFUJhAI\n2GQ3AHM1fXr5b8xzT7AsMFLRZk+NEWyzH8yYZ/voF/AbGdIsjjmNo7WhI27353E7/gVdfNfR4P5C\nRVVoUZk+fTqvX78mMTGRU6dOMWvWLB49egRAp2ZtuHHkPKamplysPYXMFjsRt9zFmxgx8bEfWD1+\nAB7d+rHxL98csmPpqSlYOzgzb99ZNl3xw71DT9ZOHER6agoSqYzD56/yyy+/cOTIERISEhgzcjib\npo1A8HHuP63fy5YbTxVfNk51cGvxadvm32wmWxq+Bb58yE/6LD4+nj59+qCrq0vVqlUJDg7mwoUL\nikrKWbNm8eHDB/q1b8awxvKnqN1LpwOgrqmVozhEWVUNVXUNRRVnVFgoi4Z2Z2RjW7bPm8x3Y39h\nQI9PadFjx45x4cIFjI2NsbGxQVlZmbVr1yqOt27dGnV1dW7fvs2IESNQV1fnxo0biuPPUiJp672K\nWcFH2ekwlEM1x+S552Znok1bWxMs9dQRCT6ZS2aT/ZqlnjptbU2KdFMUp6UBwFW7Ms9SI+nuuw7T\nG+NZ/vostbSt8K63gLt15zClcvsy9e77En1lTS7VnsLJ6McsCinZh/z9xBCMlbWLNc90aeZXCnxF\n+110MKqlaGvI5ierthyLekRIalQ+7yo+vU3r0824Dn0DfsuzuEgoELLbYRhCBAwI3FrmBUif08rQ\nEf/6i6mooovj3ZkceHeHOdZd8bQbQKvHK7gW95RYcXK+urJpWRL8IxPxCvnAlRfReIV8wD8ykarV\n7VBVlW97CAQCBAIBwcHBqKioMHHiRNzd3RGJRDnGCUtI5+KBbTjWb0LDdt1QVlHNITtmYmFF237D\n0TOqgFAkwqN7P8TiLN6FylfpT168xN7BgTp16iAQCBgwYABxHz5Q24Bc93d0xFue+9yncccexb6/\n/9f4VtxSjvxbNpOTxGksenWKHRE3mFm5E2MrtSyyZVFZmU2ODNqFi7YVoyzyljoDub3P2RhfjkY9\n4FJsIOpCZZrq2bLWtl+pS+hLyruMeJo+Wsows6ZMqdy+WO+d+fIIMmQsselV+MkfOR71kL2Rtzju\nPKG4Uy0yi0JOki7NYpFNbt3ZLxFLJZjcGId//UU5ZL3mBh/jbXosO2sMK7N5iaUSWnmvwF2vOgur\n9sjznHRJJu191lBNowK/2Q0qdxmwR4mvGPZkJ8Yq2vQyqcv45/tJ/9jnV1PTAr8GixXnFmbuCvDn\nmjlcPn6ItLQ0XFxcuHHjBlqfVWFaWFiwf/9+PDw88I9MxDcigSWjemNR1ZZXT/x4H/Y6T9mxbEKf\nBbJwSFfWX3yEhpYOmSlJrB3Xl13btuDq6oqnpyc7d+7k8ePHCASCHPf3jnUr8L13k30nzv9PmMmW\nhm8rvnLkn95Mlslk/P7uDvZ3pvMuM4GA+ouZZNW2WD59ZWU2mZ9iSII4lf2Rt+jquw4zrwnsjvSi\ntaEjLxouZ5PdAD6IU/6xoAdgqqrHldrT+C38bza8uVys956KLppay+d8jVRnUdVbQN6K0trQkQsf\n2xqymWTZhlMx3rxIfVdm81ISijhUcwx7Im7mub8L8l68k84T8El6w7SXh8vVBw+gjo419+vOpYVB\nDcY+2ydvexCpIQD8U8I4Ey1f9RXV3LX7pAX8dj2I/acu0r17d8UKMC+yZQRjoyK5efYofX+al6/s\nGEBachLb5k6k67AJaGjJPzuUNbRwb90Rd3d3VFVVmT9/Plu3blU8MHx+f988e5QJo4b/z5jJloZv\nga8cMdJULbdikcLwS3qDx6OlrHx9jkM1R7OnxohcjcJfk8+LWz5kJrMz/AYdvNdQyWsSh9/fp7tx\nHULd13De5WeGfbT3aW3gyL2E4FKZoZYFFmoGXKk9jVVvzhfZPudVWjRRWYnULaRl4Eu+yh6fctED\nH+RUcfk0hiYTKrVmYQnTwPlhoqLDn05jGR60k2cpkXmeo62kznmXnzgf41dmFaYFoSxUYlrlDgQ2\nWEIjvWqYqujyo3lzqqgb4xX3tNhVlzKBEJm5AwEvXrF58+Z8z8uWB1NRVaOORxuq1HDOV3YsMz2d\nXycPoYqjCx0HfwqKN04e5NyR3wkMDCQzM5P9+/fTsWNHIiIiclzr5s2bvHv3jp49C88C/Bf4FvjK\nmfIqFsmP+KwUxj/bT8vHK+htWo+H9ebTSK96icYqSwTA7fiXtHq8giq3fubcB1/6V2xAWONfOVVr\nEgPysPfRUlKjqb4d5z74/TOT/ozK6sZcqT2N+SEn2Btxs9DzT0d708HQWdEkX1QypGJFoVF5UdxC\no7aGNfk7LihXSf8Ey9Zc+ODP05SIfN5ZMurpVmWxTU+6+60nKZ95Gihrcan2FHZG3GDT27/K9PoA\nr1+/pn379jl0cSurGHK9zgz6ptiytesU3rTcwPnvlnP0ym1F0Lv4+3amdGnEKA8HJrZz5fc185F8\npqf7wvch8wd2YnhjO86cOMpfV68rji1ZsoSIiAjatWuHlpYW7WtaMriuFaaWVXKmdL9I72ZlZrB+\nyjD0TSoyaEbO/s83z5/QsHlrqlevjlAopG3btlSsWDGXb96ePXvo3r17jrTrf5lvge8rUB7FIl8i\nlUnZGX4DuzvTyZSKedJgKT9atCj2B29ZkL25f/FFBNv9njD74XXuhccQnZ7CKPNmRDRZxxGncfQx\nbYCOknqBY30t0eqiYKNRgcu1p/LLyz8L9Y4rbhtDNl+vqrPoKz5jFR3sNCriFZ9TXFlHSZ1Jlm1Y\nUMarPoDh5h401K3GkCc78k1nVlTV46/aU1n2+iz78ukDLCmjR4/GxMQkly5uVlYWu4YvYNawiXS5\nuZwKzd1ZO3ko4ix5m4VLk5bM23+O3649YdHBv3j7IojLh3aRGBvDtRN/sHbyYNr0G87oJZvISEvj\n8sULxMXFkZGRweTJkzEzM+PkyZPExMQwePQE7Oo0oFmP/jy6doHQZ4GIxVk5ZMfE4iw2ThuFsqoa\nw+etyeWEULWGE/ev/0VISAgymYzLly/z/PlzHB0dFeekpaVx+PDhYgle/K/zTavzK2GkqUIzG6My\nKRbJkoqZ9vIwc6t0RVdJgwcJIYx9tg+hQMDZWpOoo2Ndzt9N3sSkZHA3LIaYJDESmRQlgRLKaGOD\nNjZqlZHQHIMkTdK0QLNo/dx0NKrFTy8OkiHNKveVUFGw1zTjgstPtPZehapQia4mdXKdkyBO5X5C\nCK2cHfMYoWC+zh6feqHWRF8ib2vwy2WJNbZSS2xuTyUwOYwaWhZlOU022PanyaMlrAo9n29hUWV1\nYy7VnkLzR8vQFqnl+fsoCa9evWLs2LG5dHGvXbuGWCxmzs/TSRdLOSwL5/Hvx3jy4DZODT0wsaj8\naZCP2rRRb1+DQMDlP3aQlpzE7iW/YGRqTv8pC7iwfwuH/jzCsiWLCQ2V9zFmW/uYW1jQftgkHNwa\n0XP0NNZOGkRmehrVnN0UsmMvfR/he/MKKqpqjG7+6e9t8ro92LrUw71DTwwzY/Hw8CAuLg4LCwu2\nbNmiMOAGOHHiBHp6ejRr1qxMfnb/C3wLfF+Z7M3kz0nLkvAiJoX4tE/BUE9dmWpGeQfDxa9Os+7N\nJeKzUlESCjkd7cNSm14MqNioTGS2isvzlHecDw1BM8UUESKEAiFKueYhRAS8iU8nPDGjyOncCqq6\nOGqa83fsE9oZOZfL/IuLk7YlZ2tNop33alSESrT/Yl4XYvxprGdbIv++r6HcoqesWawVH8gdDH4I\n2MLq6n1yvK6tpM7Plu2YF3KCP53KVnlfTaTCUadx1L0/n9o6Vvn6UNprmnG21mTaeq9CS6RGS8PS\n+1Vm6+JmB4zz58+zcOFCAgMDFY4HL2NSEAkEVKpmR3jIc5waegBw58IJ9iybQXpKMtp6BvSeOBsd\nfUN6jf2FwxuWsOTw34rrnN/3G7ce+vD69esc179x4wbt27ena9duRGdB854/0LxnTucFALs69dn9\nIH83BQs9DX5YvIglixfle06fPn3o06dPvsf/i3xLdf6DxKRkcPVlNEf8IvCNSCAkNpWwhHRCYlPx\njUjgiF8EV19GE5OSoXjP05QIVoSeRYqMXZFepEuyeNpwGYPMGiMUCPPtIUrPKjubH5lMRmByGAtC\nTuB0dyZTfc6inWqGskC5SIE3P0ml/OhqUpuT0d6lnXaZUkfHmpPOExkUuI0rsYE5jpU0zQlfT7ml\nuIGvtrYVceLUPHv3xlRqwc345/gm5f8BXFIqqRnyu+OP9AvYQmhaTP7z06nMUadx9AnYXCbi0k2a\nNCEwMBAdHR0sLCxwdXWla9euJCcnK4SWs6su1TV1SE/91HjfoG1Xfrv2hGVHr+PRvT86BvKWJJua\ndYiLjuLuxZOIxVncPPMnUWGhJCTlbtrfs2cPPXv2pK6N2TeZsXLgW+D7hyhq+fOb+HQuPIvmaVQS\nUplULtv0mV/Y09RIdETqJQqixUEmk+GTFMqsl0dwuDOdtt6ric1KYbXVIHqqt+Hq4X3My8O4Nzri\nLYPcLHPIIp3cvi6HpFJhdPm4z1dcpYzypoGeDUecxtLHf7PCXDRLKubCBz86lnB1+jVSnVoiVdKk\nmcXyPBQKhLQzrKkwp/0cDZEq0yp3YF7I8bKcpoJmBvZMsWpHD78NpBcgWdZY35a9NYbT1W8dfqUI\nwgXp4mppaZGYKK+mzK66TEtJQk0jd1GIqaU15lWrs2/5LAC09PSZsGo7Fw9sY0Kb2vjfuY5DXXcM\nK+RUHUpNTeXPP/9k4MCB/2hl+H+Zb4GvFOSnvQdw+PBh7O3t0dbWxsHBgRMnTiiOLdvwG+2aNmJ4\nE3smdajLofWLc1R+Ady9dIrpvZozorEtkzs34sDpS+x+7sOLV8HQai90+h1B5z945LGU8b/MUgTR\nxPh4NvwymjEtnRjb0pnfZo0nOSkpVxD9kg+Zycx+eTRHcJHJZNxPCGbqi0PY3J5Cd78NZMok7K4x\nnFD31fxq2w+lFD0kUhl6RhXoNGQ8jb8w7s3G8+8AhSxSl2Hy5myJVIZ/ZGKe539ONQ1TDJQ1eVBG\nrtxlSRN9O353/JEefhu4m/CSW/EvsFYzztHsXRy+RuATCoToiNRJlBRP9DkvFZdsRpo3435iCI/K\n6Xc02bItVTVMGP10b4G9e+2MnNlo+wPtfFaXuMewIF3cGjVq4Ofnh0wmU5iyhr18inmVvCunpWIx\nUeGfNEjt6tRn7t4zbLriz4j5vxL5OhjHWjn3JY8fP46BgQEeHh7y93zlyvD/D3wLfKUgP+298PBw\n+vfvz5o1a0hMTGTlypX07duXqKgoYlIyeBoRS5/Jc9h42Yc5u07x5MEtzu/fohg34N4N/tywlKFz\nVvHb9SBmbD2CYUVLVFJMuFNrIQBZSWlIUzMJfB1Dve9/VJRTH9u8kpSkBFaduMWKE14kxkZzYtsn\nWbO80owxmUnUfzCfJa9PcyfhJTfjnzPp2QGsbk7mh8CtKAtEHKk5juCGK1lR7Xvq6VZVpFXDEuTK\nNK7N21HHow1ausUz7wxPSCtSGraLcW1ORD8q1thfi5aGNdhVYxhdfNexPeJ6idOc8HUCH5SswKWV\nYQ1uxr8gVZI7a6AuUmF65Y7MCzmRxztLj0AgYIf9UO4nhrC1kF7KXhXqsqBKd1o9XsnbEohpF6SL\n6+HhgUgkYv369WgIpfx9eDcADm4NAbh+4g8SY+Up2fCQ55zZvQkHt0aKsUOfBSAWZ5GWnMTBdYsw\nrFCRNm3b5Lj+nj17GDBgQI4Whq9RGf7/iW+BrxTUqFEjT+29sLAw9PT0aNeuHQKBgA4dOqCpqUlw\ncDD+kYk06/EDb18EsWhoN6Z0dUcgEPLC96Fi3H0rZiPOymLV2H7M6t2SkCe+6JuYIpHK2L3vMAC6\nurpoamlRq7IpAQ8+9eS8fhbAu9AQJnWoy5LhPbH4uPEO4HPzCouHdWdE0xrUd6hK/0FDePUhnHr3\n5/MqLQZpYjpNu7XFw6oWWxr8SM2Nr7lfYwaLbXrioiP3tFu3bh3W1tZoampSw8GBd6EhRfpZ/dS5\nAZM61GX7/J9Iio/Ncezlh8Ib1OVtDf+ufb7P6WBUi822Azn47h52GmYlHudrBb6S7PPpKmlQR7sy\nf8cG5Xl8mFlTfJLecP8zN4eyREtJjePO45kdfJS7CQXv4w01b8qESq1o9XglUZmFZxW+JD9dXBUV\nFU6cOMHevXtxt7fk+qnDjF+1DSVleUrxhe9DZvVpzYjGtqyZOAinRs3pMXqqYtxze39jXMtaTO5Y\nn4SYKCas2pbDvDk8PJy///6b7/r0y7VXH5mYTgMr/Vym2FUMNKhlrktPJzOa2Rh9S28WgW9VnaVk\n9OjR7N69W6G91759e9TV1bG3t+fUqVN06NCB06dPo6qqSjX7GpwPlrupZ6cGA+5ex/fm34qnwg+R\n4bx/8wr3jr147nOfxNgPbJo2ihUnvDCqaEFChjwlqqenR6ZEhp2bOxZVbQFITognPOQ5FSwqM2/v\nWR7+fY59K2fTbaR8zy0tOYlOQ8ZjW7se4swMds2bgO3gVmSNd5N/M7u9ESRnEfNGrpjRo0cP5s+f\nz5o1awDYvn07O3bs4OzZs9jb23Po2iM+SAuuXNTWM2DuntNYVq9BckIc+1bMYsvs8fy8YT8g38eM\nS80qcAwAVx1rEsSpPEuJLFMnhrLEXssMXSV1Jj4/gJO2BXaaxQ+AGV8r8BVTvSWbDkbOnPvgS0fj\n3I4TaiIVZlp3Ym7Icc67/FwW08xFNQ1TdjgMpZffJh7WnUcF1fwdvSdZtSVenEqbxyu5WueXInsi\nAtSqVYtr167leczFxUXhqvClHu+wuasLHPfHxRsV/5bKpFjpa+So3FbVM+Ly00i8E9IRpCbk0vv0\njUjAXFeNmhV1clWHf6PofFvxlRJPT0+SkpLw8vJSaO+JRCIGDBhA3759UVVVpW/fvmzZsoXINLmC\nCXxKDca+jyQ5IY52P4wE4O1L+dN0WPBTZmw7wtIjV0Eg4PgW+Q2lpqGJrYMjT1+GMHfvGdJTk9ky\nezwAL/0eomdogpauHuPbuLB3+UyUlJXR/Jh+bNC2K04NPVBVU0dTR48GnXqj9iSehrrVqKRqgOBd\nCuIGZsQop6Orq0u3bt0IDJRXLEqlUubPn8/atWtxcHBAIBBgbGGlcJbIDzUNTawdnBEpKaFraEz/\nKQsJuHuDtJRPlWzZRQIFIRQI6Wzk8q9pZs+L09HefG9aj6U2vWj1eCXBqe+LPcbXXPEVxy0jm+x+\nvvz22YaYNSEoJZLb8S9KO8V86WTswhCzxnznv6lQi6J5VbrRVN+Ojj5rSckjRVtaSqPHm4WYV6JP\nK9eSFLx9o2R8C3xlgEgkwt3dnbCwMDZv3sxff/3F1KlTuXbtGpmZmVy/fp1hw4bx4NHjHH/Mj65d\nJOjhbRzc3NHWkxdDVHWsDUA1J1d09I147vMAdU0t3jx/Ir+Wsiqhr0KwNDdj8fCeGJtb5QgkcVGR\nmFpW4bfrQWy+9gSRSImL+7flOe/n3vdo5NiAW26zeNN4Lcdne9L8uQ766crExcVx9OhR2rVrB0BY\nWBhhYWEEBARQqVIlrK2t2b9hRS6/v8LI3reQfVZEk10kUBhdTer8qwPfqWhvOhu5MNDMndnWnWnx\neEWBJfh5kf6VGvVLkuoEcNCUOwI8SQnP87iKUIlZ1p2YE3KsVPMrjLlVuqIlUmPKi0MFnicQCFhT\nvQ/VNCrQ3Xc9L1LfUe3WFC7ElI0MXkmrLjNkmRxMO8+okK28y4gvM5f1bxSNb4GvDBGLxQQHB+Pj\n40OTJk1wdXVFKBTi5uZGvXr1uHfzmuJcv9vX2L14GnVbdURT51O6RlvfAA1tXa4eO8CwRjZsmTWO\nZj36IfjYH2frUpdtZ65z4v5TxizfwuPrFwB5ILGpWYfMjHQMTM0QKSvz8O9zpKUkEx3xNtdcA+7d\nwOvMEX4Y92n/wa2OKwKxDCMjIwwNDRGJRIwePRqQBz6AS5cu4e/vz9WrV7l69jg3Tx0EQCIWk5mR\njlQiQSqVkJmRjkQsJjjAm8jXwUilUpLj4ziwai52dRoo1ONFAtDXKNoHvYe+HYEpEbzPSCjib+Tr\nEZ2ZSEBKOM0M5IbEIyyaMdmyDc0fLyM8PbaQd3/i6xW3aBS7uAXkgSR71ZcfAyu68yotmutxT0sz\nxQIRCoTsdxzJmRgfDkTeLvTcbfZDAHC8M5PgtCh2R3qV2Vw+r7pcOvI7hjWqpmjd+aWHBwBBD28z\nq3crfmzmyJiWTmyZMRxXJQ0a6lYjMimNS4+fsmbSEMa0qMmkDnX5++g+xfhJ8bEsGtqNMS2d+LGZ\nIwuHdOWF7wNF8Nu2ez+2trbo6upiYmLCwIEDFS0X2Rw8eBB7e3s0NTWpWrUqXl5l9/3/L/It8JWQ\nqKgoDh48SHJyMhKJhIsXL/LHH3/QokUL3Nzc8PLywsdHblni7e2Nl5cX1e3lkkJPHtxiy5zxjF2+\nBX1j0xzjBt7zIiszHRMLS9acuceENbs4v28Lle3lTutJ8bEIpGIyJVL0jSqgpWuAqoYmGlo6aOnp\nY1m9Bpd+38741i743vwbfZOK6BkZ57jGS//HbJk1nrHLfqOC5Sf3gO+++47q1auTlJREYmIiVatW\npX///gCoq8s1NadOnYqenh6VK1dm1MiR+N66CsCpnesZ4V6ds3s8uXP+OCPcq3Nq53qiw9+wesIA\nRjW1Z2bvliipqDBq0YYc8/l8c78gVIXKtDWsyemYf1+Ry7kYP1roO+RYrY23bM1I82a0eLyiyMH6\nayi3QMlXfJC3W8PnKAuVmGPdlTnBx8rVNkhfWZNjTuOY+Pz3Qpvng1IjuJcYTKZMjAz576ss+0Kz\nqy7VlIQMnLqA7V7y1p1lR68BUKlKNaZu3MdZ72CehbyhhYsrT5ed4LrrDOLjldg8awJGZpVYd/Ex\nk9bu5qjnCoIeygO6qroGQ2evYsMlHzz/9qf9gB/5dfIQJGIxEqkMnao1uXXrFgkJCYSEhCAWi5k1\na5ZibpcvX2batGns2rWLpKQkbty4QZUqxXMN+a/xrbilhAgEAjZv3syoUaOQSqVYWVnx66+/0rmz\n3DF93rx59OzZk/fv32NsbMyMGTNo3bo1vhEJnNqxnrTkJNZMHIg4KwuZTEpibAw/rd/Lm+dPcKzX\nBH1jU6b3ao6yiioGFcwwMbcE4EP4G6bNGceHmBhUNTSpUMka44qfNBLHrdjC/lVzeen/iMD7N8nK\nSOeHqZ/kikKfBbDup6EMmb0Sh7ruOdKMPj4+bNq0Cc2PQpqjRo3C3d0dAFtbW1RUVHKUWKsoiVBW\nkm/SdxsxmW4jPjWuf079Nl3y/Tma66oXy/urq3Ft9r+7zTBzjyK/52twKjpvtZaplTuQLs2i5eMV\nXK3zC0YqBZeZfw3lFpAXt7xKiy7Re5vp29PbfzMJ4lR0lTTyPKefaQMWvz7F1bggmhs4lGaqBeKk\nbck6235091vPg7rzMFDO213gYeIrMqRitESqJEsySJNmcj8hhPp6Nopz0rIkvCyGdOCXGGmqoKeu\nTB0LPWqZ6+bU47WwUejxZmRkIBKJePnypfyakR94+ugOo5d6oqSkjGV1B1ybt+fGqUPYuzZERVWN\nipWrAvK9dqFQSEpiAimJ8egYGJGlYZCjjSh77Gzmzp3LnDlzqF+/PgDm5rkNbP+/8S3wlRBjY2Ou\nX7+e7/GxY8cydmxO7cK0LAk+EQn88tsh+dOaRMzJbb8SGxXJ4JnLkYjFWDs4c3aPJ1M2/c6AXxYT\n+iyAFWP6Utm+JgAa2jrcun2HRJEW528/Yv3UUbi17KC4RmpyIuNWbiUrPZ1jW1bz6okvTbp8D0DY\ny2esHj+A/j/Px6VJq1xpRjc3N7Zv386KFSsA2Lp1K05O8pWmhoYG33//PStWrMDFxYWEhAS2bt2K\n26CuZCFGleKXUJdEUqmdkRMjgnaRLE5HS0mt2NcsD9IlmfwVG8hv9gPzPD7bugtp0kxae6/kSu1p\nueyXcoz1VYtbitfAno26UAVnLQt+DNrD89R3LLbpSRvDmjnOURKKmPtx1ddM375cndL7mjbgQUII\n/QJ+40ytyXk6kgw2a8L3FepxPOoR695e4kHiK5a/PsfxWuMLdU7/vJLSSLNw/dU5s2YimzkDW1tb\nFi9eTOOPjehv3rzBycmJxMRERCIR27Zt42VMCmSvij9bHctkMsKDn+cYd1af1kS+DkYizqJJl94K\nKTSAw+f+YtyA70hMTERDQ4Pjx+UqOhKJhIcPH9K5c2dsbGxIT0+na9eurFy5UpHF+f/It1TnV0Rd\nWYSFrvzDOr/UoF2d+nQdMYlNv4xiVFN7Nk4dScdBY3Gs3wSAUL971K3jQn2biqyaMJA6zdrlMJ78\nsk9o/MpPhS0XDmwlKe4DOxdNZWQTO4Y1tuO75g0Ux3fu3Mnr16+xsLDA3NyckJAQ9uzZozi+ceNG\ntLS0MDMzo0GDBvTt25fIVvocTDtPhqxw6bHPKamkkq6SBg10bbj4hSP4P8m1uKfU1LLAWCXvIC4Q\nCFhStRdN9Wxp672KxI8BJ12SmSsV+FUb2EuQ6ryfEIzxjbE8SHzNoff3CEgJyzdl2Nu0Ph+ykrkc\nG1Da6RbKimrfkyrJZH4BDfQaIlX6VWzI/brzeNZgGcuq9SrzSsrly5cTEhJCeHg4I0aMoFOnTgQH\ny/saLS0tiY+PJyYmhkWLFmFnZ0d8WhYqGlpUc3bl5I71ZGak8/qpP4+uniczPeeDyaI/LrH5WiCj\nFm2gei23HHO0rulKQkICYWFhTJkyhcqVKwPw/v17srKyOHLkiGL7xdvbm0WL8het/v+AQFaeSfhv\n5CImJYMLz6KLXL31OSKhgLa2Jopg8WUPUXGx1FOnmY1RvscLS/2IpRI0r44gUyamlWp9eqq1RkWg\njID8n+5lSFESikolqeT59gp3El6yz3Fkid5f1ox5uhcrNUOmVu4T2GsuAAAgAElEQVRQ4HkymYwx\nz/binxzGqmq9aeu9il0Ow3JY6ehf+5GQRqsKXBWWBVdjg5gfcoJrrtOL9b7YrGRq35tLWHosEqSo\nCpUIabQKM9W8FXsOvbvH2jcXueM2u1xXfQDvMxJwvT+PTXY/0Nm4dqHnF7eSEoovB9a2bVs6dOjA\nuHHjcrz+7t07nJ2d2XfNh8gUMTGRYexbMYuQAB+MzS2p4liL8ODnTNt8MM9xp/dqzo+LN2JZXZ5G\nttBVo0U1+V7+3bt3GT16NI8fPyYuLg4DAwN2797NwIHyjMTRo0dZtGgR3t7/vr3yr8W3Fd9XpixF\nZ0vTQ1RQmrGogtdnI56QKRNTQUWH9lZVaFndECs9jXwllUDGe+H7UksqdTZ24dwH30J7uL4GMpmM\nU9HedCqCTJlAIGCj7Q/oK2nS6MEi4sWp7IzIWV2XIRX/q4tbDJS1uOU6E8OPe2lChFRUyb+Xs1cF\nN5Il6Zz/UDbtA1+ipaWl+KpqaE6Ex3q+HzmI5ylync7t27djY2ODlpYWbdu2JSJC7hYfk5LBjNlz\nGVTXOoeAelTYJ13NXYun8UsPDwbXtcLr9J8AOcTV165di6mpKTo6OgwZMoSMjJx9guvWrePGjRv8\n/PPP2Nvb8/z5p9SlWCwmKiqKrDS5apFRRQsmrd3Nhss+zNl9iuT4OKrUyC0SkI1EnEV0+KeCns/3\n6rOrywH09fWxsLDI8dBR3g8g/wt8C3z/AGUlOlseyu3FSf0kvdfjUJVpRDZez0TLNlTR1aOZjVG+\nkkoGleK4LvAqtaSShZoBVdVN8Ip/XvjJ5YxP0hvUhMrYaRRNTcY7KZS/454gQZ4e/Cs2gMyPAVwm\nk33s4yv/rfeSKrcAmKsZcNNtJioCEfpKGgV+kAoFQuZX6VZuFZ7JycmKr3fv3qGurs6YvkPo5reO\n81cuMWPGDE6ePElsbCzW1tYK3zn/yESkMhl1W3VSiKdvufEUEwsrxdiVqjkwYNoirOxyGgpLpDJ2\nHj7BsmXLuHLlCqGhoYSEhDBt2jQuXrxIeno6W7ZsYfXq1chkMvz8/Bg3bhxxcXFIpVKio6OZPHky\nLi4uWFY0QSSAiFcvSEtJRpyVye1zxwi4e4M2/YYD8irs5z73EWdlkpmeztk9niTGxlDFUR4Y7144\nTnqsPNCHhoYyc+ZMWrRooZjv4MGD2bBhA1FRUcTFxbF27Vo6duxY5r+L/yW+Fbf8Q9iZaGOkqYp/\nZCLhCfJc/peb6iCvepRvqucdLLKDYVFTNgWlaordRCuDzHgdnkUn5xgvL7NdgPh49RKpheSFXLT6\ncblWDBaF0zHedDKuVeSn6Fdp0SgLRGiL1EiSpJMhFXP5QwAdjGuRJZOgLBCRIZbxMiaxxNWFRaE0\n7Qwglw47VWsSzxLf4x9Z8Fy7mdRh0atTnIr2potJ4SnIknL06FFMTExY0X08cU93MfG35fTs2ZMa\nNeTGtLNnz8bc3JzAp88JSym8sKPld/LUoLJK7oKWE4d+Z+CgwTnG7tOnD7du3SIoKIjU1FRsbW3Z\nsWMHtra2XLp0id69exMVFYW2tjYeHh4cP34cEyNNfCIS8L9znTO7NpKRnoaVbQ1+Wr8XHX1DAMSZ\nmRxYPZfo8DeIlJSwqGrHpLW7Fa1QESEvGNR1BfFxcejr69O+fXuWLl2qmOvs2bOJiYmhevXqqKmp\n8d133zFz5szS/bD/x/kW+P5BjDRVaGZjRHqWhJcfUnKWP2soK8qfC6M4QbRjrco5duDS0tIYPXo0\nc5etyhH0Tm77leNb1zBl4wFq1GusOD/wnheHNywlMjQYTR1d+kycDW06kxARypK5M7l9+zYSiQQ3\nNzfWr1+Pra2t4r26SuolriT8kq7GtWnvs4Z11fv9o6mbU9HerKrWu8jn96xQl24mrnjFPWNL+FUO\nv7/PytDzdDCuRWRyKmM0enPEL6JMqgsLQkdJnSRxGlKZtEjmwV8Sk5KBSpwp+gl6+FKwpqSRpirz\nq3ZjTvBxOhnXIk2ahYpAhHIZr2yzXQ2EQiGbbH+gsngHPkmhpEgyWPn6HL2V5JWnV+48wsBJ3qbj\n4/UXY1rURNfQhJbfDcrT5TwvwkKeY9LtU5uOs7Mz0dHRBAUFkZKSgpWVFaNGjWLIkCEoKSkxYMAA\ngoODEQpz/6wtdNVo03cYbfoOy/NadnXqs/D3i/nOZeKMuTTbuSHf48rKynh6euLp6Vmk7+3/A98C\n37+A/FZIxaGoQTQl+ZNGZnJyMqampvTq1Qv/yERF0IsKe82DK2fRMzLJcY3wkOf8Nns8w+euoUa9\nxqQlJ5GaLA+Wj15F0LlzZ3bt2oW2tjYLFiygS5cuPH0qV++IzkzkfUYiUZmJnI/xRVtJHXe9vD3M\nioKDpjnKAhE+SW9w0bEq/A3lQHh6LK/So2mkV61Y7xMJhHgY2ONhYM9Oh6FkSSU8jUriwdsEaipV\nJ68Fd3ZgeROfTnhiRqn91kQCIZoiVZIk6fn24uVHYZmBvObaydiFucHH6eW3kXMf/FhXvR8jLJqV\neP5fEhoayvXr19mxYwcgF8xe0+9n+vfpR+W9Q4g1EXD30AEEAgEfEpLQlUHdlh3x6NYXXQNjggO8\n2ThtJBraOgX2nWaTnpoCKp8KkLJd2ZOSkhT7iNkqR/Hx8bRu3RoLCwuGDx+ea6yaFXUIT8woccHb\nN5f14vNtj+8/RnYQbVzFkBbVjGlcxRBHU508V47ZqSHX+g0VvnoAe5fP5v/aO8+oqM6uDV/D0IZe\nBBEUEXvDQiQKiL1Eg5VYYo9K7MTYsYAlUaNGjYm9BJBoDKjEgl0RsWssiBIloiJIk6L0Geb7MTI4\nAaNJNMn78Vxr8YM5bc4ZFnv2fva+748mzkKqo1le3bd1DW17D8LJrR1SbW2MzMyxruoAgIlDfQYN\nHY6FhQU6OjpMnjyZ2NhY0tPTUSqVOJyZQo/rK0ktekafG2sYHbP1b92nRCKhl1Vzdqdc5mh6NCdf\nYZXzLtmfdp2ulk5/K3ORSfVIzFBwOSGLYiVvlH29LZ1Gs78gW/ZXNSVX3o7iTm4Se1KvIFcqyC3+\nc+MvryMoKAh3d3dq1Kihfs20hSPaw5qRNmcfxYNDKbDWw9jYGHNr1XqsnWMdzK1s0JJKqd3kPToN\n+IRLxw++0fX0DQzJekkWrEQizNjYuFyVo08//ZSDB8s/t3BZ/+cRga8CU1IaikvPVZc/Lx7bj46u\nLk3c2pfZP+6mSiB6zoBO+HR1ZsNcH55nZaq3v+yrd/r0aWxsbLC0tEQikTCxWidKvCmkaOFj3/lv\nvfewlKucz4rji/h9dL/2NV89OPC3zvdXKBGlLiE+Pp5u3bphbm6OjY0NEyZMQC6Xk5aWhpubG5aW\nlpiZmdGqVSuioqIAVcnw5UCydOwAhrewRyEv7VhdMqY/Ezs1ZUzbBsz9uAtXI46oA8oPoXtxd3fH\nzMwMGxsbRo0axbNnpQHx6dOn9O/fH0tLSypVqsSgQYPU/6TNdAy4fucW+vr6amm6pKQkevToga2t\nLRKJhPj4ePW50nIK+HzKVKb2as2YNvWZ6dWOqAMh5T6bqAMhDG9hT8TeHSiKlRjn2FJNywYlUFyo\nYHH70VStWqo4FBkZqdGhaWRkhEQiITQ09I0+i8DAQHW7fgkz7/2EVs/6ENAbfupHRktL5HI5deqX\nvy4skUg0hsj/CDvHOjyIjVH/fv36dSpXroylpWW5KkevK8cLl/V/FhH4KiglpaFhw4aRmVeEQgl5\nOc8JXfsVH0/xL/eYpylPOBu+mwlLN7B092kKC/LZvmweoOmrl5CQwPjx49U+fgBzHXsie9Gmr0TJ\nkCpuZS/whiiUxXx6ZxtRWXdRokSuVPCecY3XH/gWyVEUEJkZS9dKpYol48aNw9ramqSkJK5du0ZE\nRARr167FyMiIrVu3kpqaSkZGBjNmzMDT0xO5XK5RYj4bvgeFouyIxqAp/qwKv8z6UzEM913Cxnk+\nZKYloyhWEvMgmTlz5pCYmMjt27d5/Pgx06ZNUx87Z84cMjIyuH//PnFxcSQnJ+Pv7w+oMr6Fn/vS\nokXpMLSWlhZdu3YtN+DcTMpGV1+Gz9dbWXvyFqP9vyZ4hb+GiTJATnYm+7Z9h51jaSlbV6LDSBNP\n9LS0Kd51E0MLzfJc69atNTo09+/frx5BeB1nz57l8ePHfPTRR5qvN5mFn6Qt9noWSFJyuL5wF5Mm\nTaKajRVSCVyNOEJOdiZKpZLfbl3j6I/baNamk/p4eVEhhQX5KJVKFPIilQj7CzeS1t37cjAkmJiY\nGDIzM1m0aBHDhw8HNFWOnj17RkJCAhs3bnxtJ6VwWf/nEIGvgvJyaajED2/vxpW4ftAHK9tq5R6j\nq6dPa8+PsKnuiL6BIZ4jxnPj7An19kKFqlW7c+fOjBs3Tt06DmAo1WN13UEAfFTZBUPpX2/OkEq0\niHxvNubaqjUWXYk2jY2rvuaot8vR9GhcTB011sfu379Pv3790NfXx8bGhq5du3Lrliqjqlu3Llpa\nWiiVSqRSKRkZGTxOTlWXmHOfZxO2eRX9JvqWuVa12vWRaqvKqRKJBLlcztNklVlwvTbdaNuhEwYG\nBpibmzN69Gh1Nlnynnr16oWJiUkZj8Xnx2LRMzHQaH2vXLky48aN0wiGoBIzSMjKp/enU7B1qIWW\nlhY1GzWjTlMX7t3UtIr66buldOo/AqMXVlsl2CltWaT3ARy/T81PylYUXiYgIAAvLy+1buzr9u3T\npw/GxpqBQFEoZ8dny0jruhGTz05i5lQd/wXzsTDQQaGEC0d+ZnofD8a0qc9Gv8l0HzoW9w9Lg+ey\nCYPxdq/DvRtX+P7LmXi71yH2lwsAOLm2Zdq0abRr1w57e3uqV6/O/Pnz1ceWp3L0ySefvPZeStbq\nhcv6u0U0t1RQAgMDmTlzJlA6/BpzKYqMlCSOh6gsUZ5lprPWdxzdho6l+7BxVKtdT1OV5Xflm4Ln\n2XTu50WPHj3KbZceZOPK8geHmGL/+m/xr6O2gQ1n3ptNi4v+5BUXqn3i3jW7ky9jINVlb+pVjTIn\nwGeffcbOnTtp27YtGRkZhIeHs3DhQvV2Jycn7ty5Q1FREaNGjSJbyxAJKteGkO++on3fIZhaajpp\nlLBy8nBuXYxCXlhAo5Zt1G4doCoxlzRHnT59Wt1iDzB+/HjWrl2r/hISGhpKjx49yM7O5t76wywI\nWUfm/tcPl99Lyymjx1OYn8/9mOu09xqqfu23W9eIv32DoTO+4OKx/WXOs89/M8sWL8XW0ppp7C53\nFMJWBiEhIezbt++17wtgw4YN5b5uZmbGjRua91ayRgmabujlMWvDrlduszOVMXjaVGZMK99p3sTE\nhJ07y1ddeRPeRsOb4NWIwFcB+X1pyEymg1QCM9buQC4vUu+3YJgnAybPxclV1X3n7tmPn7d8Q6sP\nemNayZoDAWtp4q7KFgpznjHjsyG0cXNjyZIlZa5ZIn+2xvozUp4UE5ma/rdn0xoY2XGs+Qw6Xf2K\n2gaV/9I5/iwL74dxOyeRAqWc3/JSsNMzp29lVXbk4eHBxo0bMTExQaFQMGzYMHr16qU+9saNG+Tn\n57Nnzx4KCwvVJeb7Mde5e/0yg6b48zQlqdzrTl75PXJ5ETEXzpAYf0/dFv9yifno0aMEBARw4cIF\n9XHNmzensLAQS0vVTFiHDh0YN24c06ZNo1HftmhZl+9m8HtK3uvLBCyZRbXaDWjcqg0AxQoFgUtn\nM3jawnLb9i+eOERBoZzhvYYTtDecvCIF1xPLjkJ8dyAUIzMLGr7X8o3e25vyVyTKykN0Uv7vI0qd\nFZDfl4ZqVTJECRiZmWNWyVr9I5FKMTQ2Rd9AVW7y6NEft259WDiiJ1M9W6Gto8vgqaryzuVTh4i+\ndpVt27ZpNChcu3P3jeTP0nIKXvV2/5BWZrVIbb2OX5PziPwtneN3U4n8LZ2bSdnkFyneyvN6meYm\nDhQoVetwUZl3WXA/DFDZxXTt2pU+ffqQk5NDWlqaej3vZfT19Rk4cCBLlizhdvQNiouLCVw6h0FT\n/NXlzFehra2Dk1s7os+f5peII+rXCxXFnD9/no8//piQkBDq1CldWyvPY/HDDz/k2LFjeIzsRWJB\nJhlFOShe401XUg4vYefqL0iIi2X84rXqxo3jIYFUq1WfWo3LDqkX5OWya82XDJs+n0OxqSQ/V3V1\nlqcMFLk/hPe79ubwr2mv7Fy9e/euRlPOyZMnady4MWZmZlhaWtK7d28ePy51id8cGIxnp3aMdK3N\n4k/7lTnf8Bb2eLeuq5Yu27qo1KD5YNB6ZvfvyJg29Zna043rYd+rS40pKSkMHDgQW1tbTE1NcXNz\n0/jiIfhvIkSqBcC7Ebz+M9+w/0qX2uvsZIC3NvBdwrqE40yK3Y5CqaSavgWXXfyx0jUhLS0NKysr\nMjMz1TNde/fuZc6cOURHl3UnqFWrFiOmzMO8XnMmdHDC2Fz17JTFCp5lPsXEworxS9ZSt9n7ZY79\natxAmrh3UA88y5PuMWtkf7Zs2YKnp6fGvkZGRkRFRdGkSRNA5bnYwsUFuVQJsheBNk+OtlKLxg0a\ncvWqar1OLpejo6PD/fv32b9/P99u2Exc7G3e79yDSlXsuHwiHO/5q/Ab0g09mWqds6igAKm2NjIj\nVTb0PCsDCSCRStHV1SMv5xnGZhYg0UIhLyTnWTZaWlJ0dHSwqlqdoTMWYWlTlWm93FgSchLrqg5I\ntSTsWTaL3Tu3c/fuXWrVUvnnubm5cevWLXJzc7G3t2f27Nl06dIFW1tbvv/+e7y9vSkuLkZfX5/i\n4mLy8vLwGj8DRVERMZfPliljDm9hz9Ldp6lczaHM8z4YuI4GLu441GmAtfwpYwb2ZunSpQwYMIDf\nfvuNvXv3MnDgQKytrdmyZQu+vr7Ex8djZPRm2bTgn0eUOgXA2x+i/avzXsAbBb+/MkT9NrrgGhlW\nRa4sxkLHkLPvzVFbEVWqVIkaNWqwbt06pk6dyvPnzwkICMDJyYnz588jl8txcXFBoVDwzTffkJyc\nTMuW75OokLHy4CX1+Z8mJ7FguCfzgw5gbG5BYvw90h4/op5zK7S0pVw8so/YXy7Sb5KqCSYxLpbl\nEz5m7bdrygQ9eIXHYlMn7syoR65ClXVJQ27TqagGARtVw9/5+fkoFKpsuaCggEqVKjF28nR+PhhO\nXPQ17t24zKyNIRQVqrL0tSeikWprk/Msi6KXhJrnDfoAmZEx09f+gK6ePmumeVOlRi16e39O9PnT\nbFkwhaEzFuHe3YuLx/az6vNP6PDRcGo5OavnQ29fvcCtX+9q3FNwcDA3btzA1dWVSpUqMXLkSDw9\nPdVuAwMHDiQ2NpawsDBiYmLYuGUrc/3m033YOE6H/fl1t25DxwLQqXYlbE0d6NmzJ1FRUQwYMABH\nR0c+/7zUgNnb25upU6cSGxuLs7Pzq04p+JcRpU4B8Ooh2sT7d1k6dgBj2zZkeu/WXDl5SL2tID+P\noKWzmdipCTVtrfDwUHkGpuUUELgnnC+8+zG2bUOm9HAtc70Hsbf4cnRfxrZtyOTuLoRtXq2hfL9r\n1y7q16+PsbExDRo0YO/eUp+1OynPOHj+Bst9hjGmTX0mdGzCj9988cp7e1sD3wANjewwlcq42MIP\nO33NrsXdu3dz6NAhrKysqFWrFjo6OqxcuZKCggLGjx+PpaUldnZ2HDx4kAMHDuDaqBZIJBrlZWNz\n1TlNLCqhraMLSiV7N61kUpdmTOzUjKM7tzLuy+9wqKcaowgP3khGehojR45Ul5dfbm4pz2NxZ/AO\nFrcYip6lMVjIcDCvgoWhCVZWqsYamUymzlbq1avHwIED8R7SHyNTcx7ERpP+JJEZfTyY3U+1vrs/\nQCWFZWhsqnEvCnkhNeo7YVnZFmMzC1w6eZKelIBZJWsyUp8g0ZLStvfHaOvq4tqtD8bmlkTs3YFb\ndy/V5yaXs32ZH4OnLlDfT3Z2NrNnz0ahUNCyZUskEgnt27fHzc2Nb7/9FjMzM2QyGcuXL2f6dFW5\ncvPW73Hr3ve1s3SLvb2Y1MWZNdO8SU18pLFNKoGneUUolUoiIyM1nvHLXLt2jcLCQnVmKvhvIjI+\ngZrfC14r5HJWTx1Fuz6DmfZtMHeunmfV55+wYHs4NtUdCfhyJqa6En69cwcLCwuuXbsGqOa9dPRl\ntO7Rj5ade7Dv++/KXGvD3Ik0b9uVmet3cfvKOZaN/5iYS1HM2rCLiZOnsnPTGvT09JBKpdy7d4/e\nvXsTExODlb0jkbEJzB7YBbm8CJmhCV0HjcbJtS2gUrLfs3458XduoqUlpa5zSwZPnY9ZpcpcTshC\npyiPBb7TCA8PB1SzdyVzbS8TERFB27ZtmT5zFoMnzdToPIys9xV25fjlNW3alFOnTpV5vXLlyly/\nfr3cZ17VVF+jxGxlW43vL5XazdjWqM28738u/wMD5n+9lnY/v7r7sEaNGuV2R9YodmRx/H6SC7PY\nsuQb2pjXU2971eqHsZ42bt29GO2vms9MTXzEtJ5unAwN4tTu7TR0aU1/n9mqciYw2n8lJ0KCyMlW\niRxcORlO09YdAahWqx429g6aF1AqadmlB216qrRPD+/YTN1mLlSrXR+AgiIFc+fOpXfv3mzatOl3\nhyp59OgRmZmZPH36lE2bNlGvXj0ePHjAlfNR9Ju+mD9i1oafqNm4GQX5eexet5xVk0ewIPiQet21\npInI39+f4uJiRowYUeYc2dnZDBkyBD8/P3W5W/DfRGR8Ag1eHqJNfhBHZmoyXT4ehZZUSoMWbtRp\n8h7nwndDegI3zhxjZ+A2rKyskEqlODs7q+e9HBs2xa1bX6zs7Mu9TlpiAq269kJLKuVg4DqMTM3J\ne6ZSFKnr1hErKyvy8/PJycnB19cXHR0dMjMzuZmUzZoZY5FIJKwOv8ysDT9y+IfNZKQmA5CbnUWb\n3h+zPOwsy/edQ2ZgxOb5qpZzRbGS8ZN8yM3NJT4+nosXLxIUFMS2bds03ltRURHjJ06ifhNn7qQ8\nfydNOSW8K0/F16GtJWVF7QFY6ZjgYVb39QcA1ka6GhMsxmYW+AXsY8XP5/APPEB+7nM2zJ2k3l69\nXiPkRYVM6NiECR2boKWlRYePVKMPtRo7k5GawvnDYcjlRZzZ/xMpCQ/UruPpTxI5tTuY3mOmqM93\n4uIvHDt2jEWLFmFtbc3Zs2cpLi7myJEjREREkJurkl+zsLBg2LBh9OzZk23bttHovZav/DssoW7z\n99HW0cXQ2JRBU/xJTXxEYvw9jX12fb+JwMBADhw4gJ6e5ppxXl4enp6etGzZklmz/py5r+CfRwQ+\nQRlKhmg717FCSyLRGKI10pNSnPoASfJdHKpXx8/Pj0qVKtG4cWNCQ0PLnfcqj84DRxJ1IJSo8D1I\ntLSQy4swfSGK7VjfCfuadfj555+Ry+WsW7cOIyMjatdvSEJWPrFXL1CjQRPWz5nEl6O90NHV5cgO\n1fqUk1s7XDp+iMzIGD19GR36DePejVJlkajjh/H5fAoGBgY4ODgwcuRItm7V1A2dOf9LqjdzxaJq\nDZT8sSfhodjUv1VC/bd0GvOKFDSmESHV/DlxL+2NOmENdLWpZKirfq/6BobUaNAEqbY2ppZWDJ62\nkOjzp8nLUQmhr501Dht7R9ZH3GbdqRisqlZnwzwfQNVB7LN8M4eDN+HTpTk3z0XQwMVdraP5w9fz\n6TnKBwOj0sB+6eJF4uPjqVmzJtnZ2Zw4cYIdO3bg5eVFv379NCTQSoxeAwMD6db3zd0zSvi9fNnp\nn3/kx03fcPz4cY3rgGodtFevXlStWvWVM4WC/xYi8AleiVOjBthUtuZ86FY8HMzIu3eFK+eiKMjP\nIyEhgejoaExNTUlMTOTbb79l2LBhXLt5q0ygKI8m7h24dGw/m+b5EH0ugup1G2Jkag6AUktKh54f\n8fHHH6Ovr09KSgobN24kKQ9yszMpLMjnztXzdOo/glXhl6jTzIXbl88iLyorfBx79QK2jpouEI8y\nS62RlEqlRtfl8Su3+CEogB4jfd7oGb2N9cMSnUYkxcC76YAtIS2n4G+Nl5jq67wyUJesoSlfjEY8\n/DWG9l6DqWxugr6BIe36DOZG1MnS+3ZuiV/gfr47fhPv+atIio9Tu47HXIrix2++ZFIXZyZ1UTWJ\nhP0QwLJly7h27RrR0dFMnjyZvn37EhcXx6VLl7C3t9cweq1Tpw7Jycn07N0HSbGCwoJ8FAo5SmUx\nhQX56pnVx3GxPIi9RbFCQX5uDjtWLcTcyoYqNVTrdGfD9xC69is2/xiGo6Ojxj0XFRXh5eWFTCYj\nICCg3PlFwX8P8SkJXomOjg579+7lwIED2NjYsGLFCvU3a5lMho6ODnPmzEFXV5c2bdrQrl07zp8+\n8drzPs/KZIXPUKyrOtB33HS+3n+BlIQHPHn4G6Dy/Fu3dD6nTp1i6NChdO/enYkTJ3LpylVyclTl\nrFpO7+Hk1g5tHVVjRLFCTuJ9zdLUgcB17Fy9iIe/3mJaL3dif7lA41Zt8Zvqg6OjIwYGBnzxxRfq\nEllaTgHTPp+MTfWaTOnRigtHwoi5FKWx5lXevNfLTTlXr17Fw8MDIyMjKleuzOrVq9XHnj17FhcX\nF4yNjXFycuLMmTOAKvsqUiixNZahr60a5v99WHkbOo13Up5xKFY1tlKsfPNMVi6Xqzs9FQoFDiY6\ndKxpQU58DCkP4pAoi3memUHwcj/qObfC2NgEqQTqOzXj/qm9GGopKMzPJ2LPD1SrVV99vQex0cjl\nReQ9f8bO1YuwqFxFPQy/NPQUC4IPsSA4nAXBqvXYpZt/YMSIEdjY2JCSkoK+vj7a2toEBASQlpam\ntsRq3LgxWlpaNG/enL59+9LEwYYzB3fj7V6HwCWz+fWXi3i712HbItWMZdbTNNb5jmdM2wZM6+VO\nWlICn63chra2Slt29/rlPM/M4ONu7dQNRGPGjFF/pvv37xclj6kAAA+BSURBVOfIkSOYmZmpt0dG\nRv7pz0fwzyGaWwR/iJOTExEREerfXV1dGTZsWLldaxKJBOkbmMKmPn4ASshIfcIHg73R1tHFzrEO\nCXGxgCpTaNqiFQ0aNCAkJISwsDBWr17NhTOnaNK5L6CadyshL+d5Gfm0yP27CPluKZ6fTKTX6Mlk\npaUA0KLTh6ybNQ4TYyMcHByQyWTExKhU9jds/4mkB3GghIXBh9mxcgG3L5/l5O7ttO9balC68IfD\nZea9FMVKzty6j/eHXVm5ciVeXl4UFhaSkJAAqFwSPD09Wb9+PX369GHHjh186OlJ4LGLZKFfZg4R\nVMFPT1sLCwMdqpjov7ExcXn8nfGSnWtXaOhQbt++HT8/P+rWrctXvr6kJKcgMzKiuWsbZi3aTC07\nU2pZGuK2I4hJkybh5e6EXFFMjQZNGeVfKlx+MHC9OgNs3KoNk5aVNqyYWGjOhALY21qrLX+CgoLY\nvHkzRUVFZGVlceHCBY2/yfz8fGxsbAgNDUWmI2Xg4CG4ffhRmXMCNGjhxpLQU698FsvDosqdUwVo\n06bNK5uBBP9dRMYn+ENKZLZyc3NZvnw5SUlJDB8+HA8PD+zt7Vm8eDFyuZyoqChOnjxJx06dkUpU\nSiaFBfkqex2lUlVaelGKtLF3RKEoIjkhnsndWzKhUzNuXThD9tM0/AZ3o2bDJty8fJ5Vq1ZhYWGB\nqakpkZGR1KnfCEMTM4zNLLgfc4NbFyIpViiI2KOaE7N9UZpKS0og4EtfWnbpSZ9Pp6ClpYW5tQ3m\n1jb8evUC3fsNIi0tjZiYGFxdXcnPz+fWnV85HXGS5EfxZKan4D/0Q66dOUZ+bg4h3331Rs9q6/o1\ndOzUmUGDBqGnp/J+q19fleGcPXtWbforlUp5r3NPZCbm7N27t9zsS/niJ19eTPLzQrS1JEiK5Ywc\nOZLq1atjbGxM06ZN1d2pwcHBGoo5BgYGSCQSrly5QlpOAed+S2HLFzOZ1KU54zs0ZuXkEWSkPClz\nD08e3meUW202zPVRB7+mLq40atQIU1NTLCws6NWrF6NHj2bgwIHE37/PuHFjsTA14fzxcGYO68PV\nI3vR15GqO0qTklNZd+ImU9cEYWNf6qIx9otvWXfqFutO3WLc4rXlBrsSgi4/pP17pfqky5YtIyMj\ng+fPnxMeHl7mi5i+vj6ZmZlqAe5/q4lI8N9EBD7BHxIUFESVKlWwtrbm+PHjHD16FD09PXR0dAgL\nC+PgwYOYmpoyevRoAgMD6dSqGUog9pcLeLvX4evPhpH+5DHe7nVYNkElLyUzMmbC0g3YOtSmqCAP\niUTlb9bEvQNT1gRR37kl8/z8WLRoEUlJSXh5eeHr60vnzqqg2rpHf6yrVmfblzMZ264hd66cp7/P\nHLR1dMlIecLSsQNQKOTYOdZheu/WTO7uQtBXcynMzyf3eTYUFaBQKAgPDyc4OBiA4+eu4DVmKnp6\nMsZ+8S0LgsNp1roTzu26onhJvxRePe917+YvaMmMcXV1xdraGk9PTx4+LB1NKMkMSrIvpVLJ4xdZ\n7h9REoBuJWZQrVo1IiIiyMrKYtGiRfTr14/4+HgGDRqkYeuzdu1aHB0dad68OTeTsjn0wxbibl5l\n4Q+HWXnwEoYmpmpLKY3P+6s5ODZw0ri2wqIqhw8fJjMzk8TERGrXrs3YsWPV+xgaGrJv3z6ysrII\nCAjAx8eHs2fPqrfLdKRUNdV/7X3+EXamsr+c7YIwexVoIkqdgj9k2bJlLFu2rNxtDRs25Ny5c2Ve\nr2qqT7FzK415tN/TxK29htntno1fk/LoASbmltiZymjn1ZdpUz7nzp076m/zeUUKriVm0fvTz3mW\nkc6lEwfRkxnQ+9OxtO+rCqoRYTtIfay6bujaZei8aDt/EBvNz1u/wczSirBt32IUFkrt2rVp2bIl\nhw4dIj3rGY4GRhQU5GFlZ49ZJWt09PTR1ZdRkJeLUqlEIpFozHstHN6TGX080NWTYVrJitznz3gU\nG83qVSsJDg7m6NGj1KxZk169euHv709iYiIbtwUiqeXC15M/IflRPCdCgkh+FM/wWYsxt7ZRP4/z\nR34mbNMq0p88xtTSilF+K8C5JTb2NWjUqJF6v9zcXGrUqMHly5dxdnamoKAAHx8ftm7dilQqpfuH\nnnSZ4Edq4iMatfRQuz+4dPJk58pS54iSaxoYm2Dr5EzKowfq1/N0jLGwKhUBL5mtLOHlMuj7779P\n69atOXfuHK6upcIFb1sZ6K/w+znVN7muMHv9/4nI+ARvnb9SVurt/TmfLlyt/idnZ2eHXC7XKGGV\nZA46unqMnLec9adi+ObwVboOGq3ep9foyXx3XGVFM3LeMjZGxrIxMpYug0ZzI+okn82ax5o1a6ha\ntSrJycm0bt0aY2NjdRu9vsyQ/Bft+KP9v6ZNz/7oGxiqOxZfnvcav2QdUm0dZm/Zjc+KLeRkZdDo\nvZZUqVKFMWPGcOfOHeRyOXp6ekyZMoWwsDC+XrmS8Z2a8TD2FnWbv0+3oWPLZF/RF07z05rFqnuM\nuI3vxhCs7aqjKFZS16O7OquLi4tDKpVSrVo1mjdXCUOvXr2aiIgI5HI5v/zyC1IDY7Yvm4dHj/7c\nvX6ZjNQnFOTncf7QXhq/GPoHyHv+jD0bVjDws7JZIEDk9TvlqqL8nry8PC5dulRG2eS/knEJs1cB\niMAneAe8y39ybxJUDU3MsLCuoiFRJUGCRKI6fvz48dy9e5fk5GT69u2LXC6nTv0GgKrk+vDXGPVx\nD+/eLjMOUYKdYx1V+7pSiQQJUm1tCnJz+OCDD/joo48wMVFlKSXmsC6u7sze9jPuH3rh0XMAqY8f\nUbvJe7h08uTxb7+qz7t3w0p6jPKhVuPmGuuTAI+z8sgvUlBUVMSgQYOwsrJi5MiR6nu9f/8+lpaW\neHh4UK9ePVp37UFC3K9Utq+BRWVbJndzYWzbBiTev0fPUZ+pr7l7/XI8evTHonKVMvepUIK+hQ2Z\nmZmkpaWxaNEi6tWrV2Y/gDFjxtCkSRO6dOlSZlvJ2Mab/l28q4xLmL0KROATvBPe1T+5Nw2q7p79\nOPbj92Q/TSMnO5MjOzbzQbduGEmLiY6ORqlU8vDhQ7y9vfHx8aGajRVSCbh276NSgkl5QkbqEw5t\n34j7hyrtyPLmvbSk2iwc0ZNZH7XDwroKd2/f5Nq1axQVFbFw4ULc3d355ZdfaNiwIftOnkUhL+L9\nTp6cO7wXEwtL6jRz0ci+ihUK7t++wbOM9DLrkyX8mvqMIUOGoFAoSE5OZujQUiPYkSNHcuXKFXr0\n6EFubi6H9obQ2LUtQUvnIi8q5NtjN9hw+g7O7brytY/quAext7h18Yza7aE8SmyJXlZFkcvlGvtM\nmzaN6Ohodu3a9UpdzP9SxlVi9tra0ZIOta1o7WhJIxuTv7WWKPjfQNgSCd4paTmF3EzK5nGWami8\nfOsg2QvroDf/hv269ny5vIgflvtz7nAYunp6ePbqw6ZvV5Gfn4+HhwdxcXEYGxszYsQIFi1aRGEx\nhNxIRFGsZNeaL9Uq/h49B9Bvoi8SiYSYS1EELpnN05Qk9GQG1HJypv+k2Vjb2XPv5hVir5zHrV41\nln+1lNzcXNzd3Zk4cSIDBgwgLCyM+V+t5OzJYyiVSgyMTXianIiWVErVmvWYvnYHRqZmZKQ+YXI3\nFxzqN+azr7ci1dZh9ZSR1HNuhde46SiVSnYtnUleehKtW7fm9OnTGvqghw8fpnv37igUCqRSKY51\nG+DzTTCLvb3oO246zdt0BiDnWRbj2zdmzdFrnD24m9B1y9A3UAlTF+TlUFyswNahNvO3HwTA0cKA\n1o4qM9uEhASqVatGeno6FhYqXU4/Pz9CQ0OJiIhQm96+jvwiBffSc8jILdVBNTfQ+VtjGwLBmyAC\nn+Af4V38k3vbQfXvehKGrphLx1bNmTRJpVd579492rRpw5IlSxgyZAjH76aSkJXPhrk+FOTn8smc\nZejJZBwMXM/1M8eZ9/3P5GRnMr6DE6P8VuD+Yu7s0omD7NuyhgXB4Xy/eBZP4u5w6cwpmjVrhq+v\nr4Zgcu3atSkoKODatWsYGhoyZe5Cwg8ewLZGbfJynjNy3jJ09WWEB23g+E8BrDp4iYL8PPKelyrP\nHNq+kbSkRwyd+SUm5pZcPRlOx1bOdHdtRnp6OuPHj+fevXtq777FixezdetWIiMjsbGxQSD4ryO6\nOgX/CCVlpbdJyVrN2wqqf7fz0ERPi7i4OAAePHhAx44dmTt3LkOGqIbfdaWqlYWHv96i77jpGJma\nAdCx/3D2bFjBs8ynGJtZlLs+Car5xFO7g9HV1VOLeE+YMAFdXV0GDRpEfn4+v/32G35+fupMbPa0\nyXy37Au8569i76ZVzOjTBnlREVVr1lEPjOvpy9DTl6mvp2dggI6uPibmqswtI+UJE4d4MSAlBWNj\nY9q2bcuePXvU+/v6+qKrq6vRiOTr64uvr++ffo4CwT+BCHyC/3neVlAtWT98k3b37KdpxFw+S1P3\nDshkMvLvXmXPTz+yY8cOHj9+TPv27ZkwYYJa2grATKaDVAI1GjQh6kAo9Zxboqsv40RIEGZWldV2\nPiXrk41btUWqrc2RHZtp4t6BSlWqEnT5IU3tTPlm3lTy8/MJDAwsfQ76+gwdOpTr16+TlZWFgYEB\n2zZtwLKyDTbVHRmz6Js3eg69vT/X+H3Ep+MILGfmrwRRNBL8ryFKnQLB73gTea/sjHS+mzGGR3dv\nI0FJDYfqTJo0idGjRzN//nz8/f0xNNT07EvNUIlAZ2dksH25H7cuRqqzr4GT56kFml9en9TR1cOl\nU3f6TfRFV08fqQQ+rGOBQzU7QkND1cokJaSnpzNp0iSOHj1KYWEhjRo1Yt4XS0gxdvjLmWzXutai\nw1Hw/woR+ASCcnhXTTl/dx3xVZqRr+PPanWCGOAW/P9FBD6B4A942005aTkFHIpN/Veyrz8T/ETQ\nE/x/RgQ+geAf5t/Mvt5VJisQ/C8hAp9A8C/wb2dfYoZOUJERgU8g+JcQ2ZdA8O8gAp9A8C8jsi+B\n4J9FBD6BQCAQVCiESLVAIBAIKhQi8AkEAoGgQiECn0AgEAgqFCLwCQQCgaBCIQKfQCAQCCoUIvAJ\nBAKBoEIhAp9AIBAIKhQi8AkEAoGgQiECn0AgEAgqFCLwCQQCgaBCIQKfQCAQCCoUIvAJBAKBoEIh\nAp9AIBAIKhQi8AkEAoGgQiECn0AgEAgqFCLwCQQCgaBCIQKfQCAQCCoUIvAJBAKBoEIhAp9AIBAI\nKhQi8AkEAoGgQiECn0AgEAgqFP8HTsi6+Snc/GUAAAAASUVORK5CYII=\n", "text/plain": [ "Social network Graph Link Prediction - Facebook Challenge
" ] }, { "cell_type": "code", "metadata": { "id": "Q8lS7fVyVFFl", "colab_type": "code", "colab": {} }, "source": [ "#Importing Libraries\n", "# please do go through this python notebook: \n", "import warnings\n", "warnings.filterwarnings(\"ignore\")\n", "\n", "import csv\n", "import pandas as pd#pandas to create small dataframes \n", "import datetime #Convert to unix time\n", "import time #Convert to unix time\n", "# if numpy is not installed already : pip3 install numpy\n", "import numpy as np#Do aritmetic operations on arrays\n", "# matplotlib: used to plot graphs\n", "import matplotlib\n", "import matplotlib.pylab as plt\n", "import seaborn as sns#Plots\n", "from matplotlib import rcParams#Size of plots \n", "from sklearn.cluster import MiniBatchKMeans, KMeans#Clustering\n", "import math\n", "import pickle\n", "import os\n", "# to install xgboost: pip3 install xgboost\n", "import xgboost as xgb\n", "\n", "import warnings\n", "import networkx as nx\n", "import pdb\n", "import pickle\n", "from pandas import HDFStore,DataFrame\n", "from pandas import read_hdf\n", "from scipy.sparse.linalg import svds, eigs\n", "import gc\n", "from tqdm import tqdm" ], "execution_count": 0, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "1znHayNeVFFt", "colab_type": "text" }, "source": [ "# 1. Reading Data" ] }, { "cell_type": "code", "metadata": { "id": "ksalPoq0Evpo", "colab_type": "code", "outputId": "0bd4022d-44dc-4cd7-f4c8-b646f7f0eae9", "colab": { "base_uri": "https://localhost:8080/", "height": 128 } }, "source": [ "from google.colab import drive\n", "drive.mount('/content/drive')" ], "execution_count": 0, "outputs": [ { "output_type": "stream", "text": [ "Go to this URL in a browser: https://accounts.google.com/o/oauth2/auth?client_id=947318989803-6bn6qk8qdgf4n4g3pfee6491hc0brc4i.apps.googleusercontent.com&redirect_uri=urn%3Aietf%3Awg%3Aoauth%3A2.0%3Aoob&scope=email%20https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fdocs.test%20https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fdrive%20https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fdrive.photos.readonly%20https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fpeopleapi.readonly&response_type=code\n", "\n", "Enter your authorization code:\n", "··········\n", "Mounted at /content/drive\n" ], "name": "stdout" } ] }, { "cell_type": "code", "metadata": { "id": "Uq9HbHwEVFFv", "colab_type": "code", "outputId": "4fb7ed10-db4c-43c7-9c87-6244109787dc", "colab": { "base_uri": "https://localhost:8080/", "height": 126 } }, "source": [ "if os.path.isfile('drive/My Drive/FacebookGraphRecomm/data/data/after_eda/train_pos_after_eda.csv'):\n", " train_graph=nx.read_edgelist('drive/My Drive/FacebookGraphRecomm/data/data/after_eda/train_pos_after_eda.csv',delimiter=',',create_using=nx.DiGraph(),nodetype=int)\n", " print(nx.info(train_graph))\n", "else:\n", " print(\"please run the FB_EDA.ipynb or download the files from drive\")" ], "execution_count": 0, "outputs": [ { "output_type": "stream", "text": [ "Name: \n", "Type: DiGraph\n", "Number of nodes: 1780722\n", "Number of edges: 7550015\n", "Average in degree: 4.2399\n", "Average out degree: 4.2399\n" ], "name": "stdout" } ] }, { "cell_type": "markdown", "metadata": { "id": "HmlUa64tVFF7", "colab_type": "text" }, "source": [ "# 2. Similarity measures" ] }, { "cell_type": "markdown", "metadata": { "id": "ivVMUMiWVFF9", "colab_type": "text" }, "source": [ "## 2.1 Jaccard Distance:\n", "http://www.statisticshowto.com/jaccard-index/" ] }, { "cell_type": "markdown", "metadata": { "id": "NoWCYuRBVFF_", "colab_type": "text" }, "source": [ "\\begin{equation}\n", "j = \\frac{|X\\cap Y|}{|X \\cup Y|} \n", "\\end{equation}" ] }, { "cell_type": "code", "metadata": { "id": "Seo4z5SnVFGB", "colab_type": "code", "colab": {} }, "source": [ "#for followees\n", "def jaccard_for_followees(a,b):\n", " try:\n", " if len(set(train_graph.successors(a))) == 0 | len(set(train_graph.successors(b))) == 0:\n", " return 0\n", " sim = (len(set(train_graph.successors(a)).intersection(set(train_graph.successors(b)))))/\\\n", " (len(set(train_graph.successors(a)).union(set(train_graph.successors(b)))))\n", " except:\n", " return 0\n", " return sim" ], "execution_count": 0, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "Oa9FMlS8VFGF", "colab_type": "code", "outputId": "426a6833-1631-4024-c24a-d21ae7686472", "colab": {} }, "source": [ "#one test case\n", "print(jaccard_for_followees(273084,1505602))" ], "execution_count": 0, "outputs": [ { "output_type": "stream", "text": [ "0.0\n" ], "name": "stdout" } ] }, { "cell_type": "code", "metadata": { "id": "Gf8njOv6VFGK", "colab_type": "code", "outputId": "8ba07727-a0ab-498e-819f-0d310876191c", "colab": {} }, "source": [ "#node 1635354 not in graph \n", "print(jaccard_for_followees(273084,1505602))" ], "execution_count": 0, "outputs": [ { "output_type": "stream", "text": [ "0.0\n" ], "name": "stdout" } ] }, { "cell_type": "code", "metadata": { "id": "LO-a5ZkKVFGO", "colab_type": "code", "colab": {} }, "source": [ "#for followers\n", "def jaccard_for_followers(a,b):\n", " try:\n", " if len(set(train_graph.predecessors(a))) == 0 | len(set(g.predecessors(b))) == 0:\n", " return 0\n", " sim = (len(set(train_graph.predecessors(a)).intersection(set(train_graph.predecessors(b)))))/\\\n", " (len(set(train_graph.predecessors(a)).union(set(train_graph.predecessors(b)))))\n", " return sim\n", " except:\n", " return 0" ], "execution_count": 0, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "DlbX2t0jVFGQ", "colab_type": "code", "outputId": "7e4b4536-442a-4b0c-ae02-fb442c1955db", "colab": {} }, "source": [ "print(jaccard_for_followers(273084,470294))" ], "execution_count": 0, "outputs": [ { "output_type": "stream", "text": [ "0\n" ], "name": "stdout" } ] }, { "cell_type": "code", "metadata": { "id": "OgeBW2LMVFGU", "colab_type": "code", "outputId": "1e12fabe-d990-4506-bb6b-c86b01d1b0af", "colab": {} }, "source": [ "#node 1635354 not in graph \n", "print(jaccard_for_followees(669354,1635354))" ], "execution_count": 0, "outputs": [ { "output_type": "stream", "text": [ "0\n" ], "name": "stdout" } ] }, { "cell_type": "markdown", "metadata": { "id": "MnH2my2UVFGX", "colab_type": "text" }, "source": [ "## 2.2 Cosine distance" ] }, { "cell_type": "markdown", "metadata": { "id": "XNvdBGS2VFGY", "colab_type": "text" }, "source": [ "\\begin{equation}\n", "CosineDistance = \\frac{|X\\cap Y|}{|X|\\cdot|Y|} \n", "\\end{equation}" ] }, { "cell_type": "code", "metadata": { "id": "Iznz67EdVFGZ", "colab_type": "code", "colab": {} }, "source": [ "#for followees\n", "def cosine_for_followees(a,b):\n", " try:\n", " if len(set(train_graph.successors(a))) == 0 | len(set(train_graph.successors(b))) == 0:\n", " return 0\n", " sim = (len(set(train_graph.successors(a)).intersection(set(train_graph.successors(b)))))/\\\n", " (math.sqrt(len(set(train_graph.successors(a)))*len((set(train_graph.successors(b))))))\n", " return sim\n", " except:\n", " return 0" ], "execution_count": 0, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "H55ALjkMVFGc", "colab_type": "code", "outputId": "531fceba-60f4-4e6b-97f4-f37733dc468f", "colab": {} }, "source": [ "print(cosine_for_followees(273084,1505602))" ], "execution_count": 0, "outputs": [ { "output_type": "stream", "text": [ "0.0\n" ], "name": "stdout" } ] }, { "cell_type": "code", "metadata": { "id": "q0RGKgJFVFGf", "colab_type": "code", "outputId": "41202fc6-f4aa-4a1d-d8f6-84f960a3fbba", "colab": {} }, "source": [ "print(cosine_for_followees(273084,1635354))" ], "execution_count": 0, "outputs": [ { "output_type": "stream", "text": [ "0\n" ], "name": "stdout" } ] }, { "cell_type": "code", "metadata": { "id": "KJ_yGxA0VFGj", "colab_type": "code", "colab": {} }, "source": [ "def cosine_for_followers(a,b):\n", " try:\n", " \n", " if len(set(train_graph.predecessors(a))) == 0 | len(set(train_graph.predecessors(b))) == 0:\n", " return 0\n", " sim = (len(set(train_graph.predecessors(a)).intersection(set(train_graph.predecessors(b)))))/\\\n", " (math.sqrt(len(set(train_graph.predecessors(a))))*(len(set(train_graph.predecessors(b)))))\n", " return sim\n", " except:\n", " return 0" ], "execution_count": 0, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "75QrFJb6VFGm", "colab_type": "code", "outputId": "f01e0558-f1e3-465f-ab14-0e4ca764f4aa", "colab": {} }, "source": [ "print(cosine_for_followers(2,470294))" ], "execution_count": 0, "outputs": [ { "output_type": "stream", "text": [ "0.02886751345948129\n" ], "name": "stdout" } ] }, { "cell_type": "code", "metadata": { "id": "-ut4k_F0VFGq", "colab_type": "code", "outputId": "8bc9607a-7262-43e2-9de8-f71d276762fc", "colab": {} }, "source": [ "print(cosine_for_followers(669354,1635354))" ], "execution_count": 0, "outputs": [ { "output_type": "stream", "text": [ "0\n" ], "name": "stdout" } ] }, { "cell_type": "markdown", "metadata": { "id": "DaIHhWh6VFGv", "colab_type": "text" }, "source": [ "## 3. Ranking Measures" ] }, { "cell_type": "markdown", "metadata": { "id": "6nfV1SprVFGx", "colab_type": "text" }, "source": [ "https://networkx.github.io/documentation/networkx-1.10/reference/generated/networkx.algorithms.link_analysis.pagerank_alg.pagerank.html\n", "\n", "PageRank computes a ranking of the nodes in the graph G based on the structure of the incoming links.\n", "\n", "
\n",
"\n",
"Mathematical PageRanks for a simple network, expressed as percentages. (Google uses a logarithmic scale.) Page C has a higher PageRank than Page E, even though there are fewer links to C; the one link to C comes from an important page and hence is of high value. If web surfers who start on a random page have an 85% likelihood of choosing a random link from the page they are currently visiting, and a 15% likelihood of jumping to a page chosen at random from the entire web, they will reach Page E 8.1% of the time. (The 15% likelihood of jumping to an arbitrary page corresponds to a damping factor of 85%.) Without damping, all web surfers would eventually end up on Pages A, B, or C, and all other pages would have PageRank zero. In the presence of damping, Page A effectively links to all pages in the web, even though it has no outgoing links of its own."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "GkkfYYZ6VFGy",
"colab_type": "text"
},
"source": [
"## 3.1 Page Ranking\n",
"\n",
"https://en.wikipedia.org/wiki/PageRank\n"
]
},
{
"cell_type": "code",
"metadata": {
"id": "AtvqwZ34VFGy",
"colab_type": "code",
"colab": {}
},
"source": [
"if not os.path.isfile('data/fea_sample/page_rank.p'):\n",
" pr = nx.pagerank(train_graph, alpha=0.85)\n",
" pickle.dump(pr,open('data/fea_sample/page_rank.p','wb'))\n",
"else:\n",
" pr = pickle.load(open('data/fea_sample/page_rank.p','rb'))"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "lXGKYYf6VFG2",
"colab_type": "code",
"outputId": "bb3d1b7a-81f9-44ab-dbe7-3214ccd47179",
"colab": {}
},
"source": [
"print('min',pr[min(pr, key=pr.get)])\n",
"print('max',pr[max(pr, key=pr.get)])\n",
"print('mean',float(sum(pr.values())) / len(pr))"
],
"execution_count": 0,
"outputs": [
{
"output_type": "stream",
"text": [
"min 1.6556497245737814e-07\n",
"max 2.7098251341935827e-05\n",
"mean 5.615699699389075e-07\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "5xwlah4oVFG4",
"colab_type": "code",
"outputId": "992fdfad-7ff6-4626-c9ee-d9bce220a680",
"colab": {}
},
"source": [
"#for imputing to nodes which are not there in Train data\n",
"mean_pr = float(sum(pr.values())) / len(pr)\n",
"print(mean_pr)"
],
"execution_count": 0,
"outputs": [
{
"output_type": "stream",
"text": [
"5.615699699389075e-07\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "HhPbSL1tVFG7",
"colab_type": "text"
},
"source": [
"# 4. Other Graph Features"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "AgsorCl7VFG8",
"colab_type": "text"
},
"source": [
"## 4.1 Shortest path:"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "E7teH2LCVFG9",
"colab_type": "text"
},
"source": [
"Getting Shortest path between twoo nodes, if nodes have direct path i.e directly connected then we are removing that edge and calculating path. "
]
},
{
"cell_type": "code",
"metadata": {
"id": "RA076ovzVFG9",
"colab_type": "code",
"colab": {}
},
"source": [
"#if has direct edge then deleting that edge and calculating shortest path\n",
"def compute_shortest_path_length(a,b):\n",
" p=-1\n",
" try:\n",
" if train_graph.has_edge(a,b):\n",
" train_graph.remove_edge(a,b)\n",
" p= nx.shortest_path_length(train_graph,source=a,target=b)\n",
" train_graph.add_edge(a,b)\n",
" else:\n",
" p= nx.shortest_path_length(train_graph,source=a,target=b)\n",
" return p\n",
" except:\n",
" return -1"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "AxnKId11VFG_",
"colab_type": "code",
"outputId": "15ca223a-6a04-4549-d010-54619b472a9e",
"colab": {}
},
"source": [
"#testing\n",
"compute_shortest_path_length(77697, 826021)"
],
"execution_count": 0,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"10"
]
},
"metadata": {
"tags": []
},
"execution_count": 21
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "0huWCNtRVFHC",
"colab_type": "code",
"outputId": "6debfa4f-2067-48bc-84b3-ab86e2d9dea6",
"colab": {}
},
"source": [
"#testing\n",
"compute_shortest_path_length(669354,1635354)"
],
"execution_count": 0,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"-1"
]
},
"metadata": {
"tags": []
},
"execution_count": 22
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "baE_95bzVFHF",
"colab_type": "text"
},
"source": [
"## 4.2 Checking for same community"
]
},
{
"cell_type": "code",
"metadata": {
"id": "15CIQqAbVFHG",
"colab_type": "code",
"colab": {}
},
"source": [
"#getting weekly connected edges from graph \n",
"wcc=list(nx.weakly_connected_components(train_graph))\n",
"def belongs_to_same_wcc(a,b):\n",
" '''\n",
" Input two nodes : a , b .\n",
" Output : Boolean (1 : They belong to same community (Weakly connected components), 0 They do not belong to same Weakly connected components)\n",
" '''\n",
" index = []\n",
" if train_graph.has_edge(b,a):\n",
" return 1\n",
" if train_graph.has_edge(a,b):\n",
" for i in wcc:\n",
" if a in i:\n",
" index= i\n",
" break\n",
" if (b in index):\n",
" train_graph.remove_edge(a,b)\n",
" if compute_shortest_path_length(a,b)==-1:\n",
" train_graph.add_edge(a,b)\n",
" return 0\n",
" else:\n",
" train_graph.add_edge(a,b)\n",
" return 1\n",
" else:\n",
" return 0\n",
" else:\n",
" for i in wcc:\n",
" if a in i:\n",
" index= i\n",
" break\n",
" if(b in index):\n",
" return 1\n",
" else:\n",
" return 0"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "fAzOHtCFVFHI",
"colab_type": "code",
"outputId": "ef76d4b2-514a-4042-af5d-c667f8b6b935",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 35
}
},
"source": [
"belongs_to_same_wcc(861, 1659750)"
],
"execution_count": 0,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"1"
]
},
"metadata": {
"tags": []
},
"execution_count": 7
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "9jLC1oRHWUmM",
"colab_type": "code",
"outputId": "1957035a-efe7-4849-c40f-c2ddbd4274cf",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 35
}
},
"source": [
"train_graph.has_edge(861, 1659750)"
],
"execution_count": 0,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"False"
]
},
"metadata": {
"tags": []
},
"execution_count": 9
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "HMdYpPuGVFHK",
"colab_type": "code",
"outputId": "2005e22c-b60f-48d7-839b-650bf97cae35",
"colab": {}
},
"source": [
"belongs_to_same_wcc(669354,1635354)"
],
"execution_count": 0,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"0"
]
},
"metadata": {
"tags": []
},
"execution_count": 25
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "q74nth0OVFHN",
"colab_type": "text"
},
"source": [
"## 4.3 Adamic/Adar Index:\n",
"Adamic/Adar measures is defined as inverted sum of degrees of common neighbours for given two vertices.\n",
"$$A(x,y)=\\sum_{u \\in N(x) \\cap N(y)}\\frac{1}{log(|N(u)|)}$$"
]
},
{
"cell_type": "code",
"metadata": {
"id": "CeS98LI5VFHO",
"colab_type": "code",
"colab": {}
},
"source": [
"#adar index\n",
"def calc_adar_in(a,b):\n",
" sum=0\n",
" try:\n",
" n=list(set(train_graph.successors(a)).intersection(set(train_graph.successors(b))))\n",
" if len(n)!=0:\n",
" for i in n:\n",
" sum=sum+(1/np.log10(len(list(train_graph.predecessors(i)))))\n",
" return sum\n",
" else:\n",
" return 0\n",
" except:\n",
" return 0"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "KezFeRmyVFHQ",
"colab_type": "code",
"outputId": "2f9c0e11-02d9-4f28-d67a-65e3d4943e99",
"colab": {}
},
"source": [
"calc_adar_in(1,189226)"
],
"execution_count": 0,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"0"
]
},
"metadata": {
"tags": []
},
"execution_count": 27
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "vj_m89bBVFHV",
"colab_type": "code",
"outputId": "68a0a099-2954-402f-c80f-6d436ffa1aba",
"colab": {}
},
"source": [
"calc_adar_in(669354,1635354)"
],
"execution_count": 0,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"0"
]
},
"metadata": {
"tags": []
},
"execution_count": 28
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "pBUudhFAVFHY",
"colab_type": "text"
},
"source": [
"## 4.4 Is persion was following back:"
]
},
{
"cell_type": "code",
"metadata": {
"id": "j_mwmopLVFHZ",
"colab_type": "code",
"colab": {}
},
"source": [
"def follows_back(a,b):\n",
" if train_graph.has_edge(b,a):\n",
" return 1\n",
" else:\n",
" return 0"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "LdjUXIfbVFHb",
"colab_type": "code",
"outputId": "ed3d8640-9834-4a95-e712-804292da70e9",
"colab": {}
},
"source": [
"follows_back(1,189226)"
],
"execution_count": 0,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"1"
]
},
"metadata": {
"tags": []
},
"execution_count": 30
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "PmZtL65YVFHf",
"colab_type": "code",
"outputId": "18ea6fe2-3f96-42c0-d116-ecb76ddba4b5",
"colab": {}
},
"source": [
"follows_back(669354,1635354)"
],
"execution_count": 0,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"0"
]
},
"metadata": {
"tags": []
},
"execution_count": 31
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "29Vrq2EXVFHi",
"colab_type": "text"
},
"source": [
"## 4.5 Katz Centrality:\n",
"https://en.wikipedia.org/wiki/Katz_centrality\n",
"\n",
"https://www.geeksforgeeks.org/katz-centrality-centrality-measure/\n",
" Katz centrality computes the centrality for a node \n",
" based on the centrality of its neighbors. It is a \n",
" generalization of the eigenvector centrality. The\n",
" Katz centrality for node `i` is\n",
" \n",
"$$x_i = \\alpha \\sum_{j} A_{ij} x_j + \\beta,$$\n",
"where `A` is the adjacency matrix of the graph G \n",
"with eigenvalues $$\\lambda$$.\n",
"\n",
"The parameter $$\\beta$$ controls the initial centrality and \n",
"\n",
"$$\\alpha < \\frac{1}{\\lambda_{max}}.$$"
]
},
{
"cell_type": "code",
"metadata": {
"id": "CN5OSqrkVFHj",
"colab_type": "code",
"colab": {}
},
"source": [
"if not os.path.isfile('data/fea_sample/katz.p'):\n",
" katz = nx.katz.katz_centrality(train_graph,alpha=0.005,beta=1)\n",
" pickle.dump(katz,open('data/fea_sample/katz.p','wb'))\n",
"else:\n",
" katz = pickle.load(open('data/fea_sample/katz.p','rb'))"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "gcU83vw7VFHm",
"colab_type": "code",
"outputId": "05f49ad4-46fe-4cf6-f32a-2fe4846b0714",
"colab": {}
},
"source": [
"print('min',katz[min(katz, key=katz.get)])\n",
"print('max',katz[max(katz, key=katz.get)])\n",
"print('mean',float(sum(katz.values())) / len(katz))"
],
"execution_count": 0,
"outputs": [
{
"output_type": "stream",
"text": [
"min 0.0007313532484065916\n",
"max 0.003394554981699122\n",
"mean 0.0007483800935562018\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "qcboIksiVFHt",
"colab_type": "code",
"outputId": "99f52422-9edb-479a-d5d9-e33401160da7",
"colab": {}
},
"source": [
"mean_katz = float(sum(katz.values())) / len(katz)\n",
"print(mean_katz)"
],
"execution_count": 0,
"outputs": [
{
"output_type": "stream",
"text": [
"0.0007483800935562018\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "SRZqGFgYVFHx",
"colab_type": "text"
},
"source": [
"## 4.6 Hits Score\n",
"The HITS algorithm computes two numbers for a node. Authorities estimates the node value based on the incoming links. Hubs estimates the node value based on outgoing links.\n",
"\n",
"https://en.wikipedia.org/wiki/HITS_algorithm"
]
},
{
"cell_type": "code",
"metadata": {
"id": "WXNHRdzUVFHz",
"colab_type": "code",
"colab": {}
},
"source": [
"if not os.path.isfile('data/fea_sample/hits.p'):\n",
" hits = nx.hits(train_graph, max_iter=100, tol=1e-08, nstart=None, normalized=True)\n",
" pickle.dump(hits,open('data/fea_sample/hits.p','wb'))\n",
"else:\n",
" hits = pickle.load(open('data/fea_sample/hits.p','rb'))"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "PSUwSZBVVFH3",
"colab_type": "code",
"outputId": "77448253-5409-4229-f0be-b8dbc14d7f46",
"colab": {}
},
"source": [
"print('min',hits[0][min(hits[0], key=hits[0].get)])\n",
"print('max',hits[0][max(hits[0], key=hits[0].get)])\n",
"print('mean',float(sum(hits[0].values())) / len(hits[0]))"
],
"execution_count": 0,
"outputs": [
{
"output_type": "stream",
"text": [
"min 0.0\n",
"max 0.004868653378780953\n",
"mean 5.615699699344123e-07\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "4Jb0MRmKWck5",
"colab_type": "text"
},
"source": [
"## 4.7 Calculating Preferential Attachment"
]
},
{
"cell_type": "code",
"metadata": {
"id": "w0PnvOMZWvC4",
"colab_type": "code",
"colab": {}
},
"source": [
"#Preferential Attachment\n",
"def calc_pref_att(a,b):\n",
" try:\n",
" return len(set(train_graph.predecessors(a))) * len(set(train_graph.predecessors(b)))\n",
" except:\n",
" return 0"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "D4oHR6j8X6yR",
"colab_type": "code",
"outputId": "53d86888-33a5-440b-c41d-314632ba807d",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 35
}
},
"source": [
"#testing\n",
"calc_pref_att(1,189226)"
],
"execution_count": 0,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"9"
]
},
"metadata": {
"tags": []
},
"execution_count": 25
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "oUfVqysq2d3j",
"colab_type": "text"
},
"source": [
"## 4.8 SVD Dot Features\n"
]
},
{
"cell_type": "code",
"metadata": {
"id": "lgU1195IJvqE",
"colab_type": "code",
"colab": {}
},
"source": [
"#svd_dot_u\n",
"def svd_dot_u(node):\n",
" try:\n",
" s_node = node[['svd_u_s_1', 'svd_u_s_2','svd_u_s_3', 'svd_u_s_4', 'svd_u_s_5', 'svd_u_s_6']]\n",
" d_node = node[['svd_u_d_1', 'svd_u_d_2', 'svd_u_d_3', 'svd_u_d_4', 'svd_u_d_5','svd_u_d_6']]\n",
" return np.dot(s_node,d_node)\n",
" except:\n",
" return 0"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "udb4I1ILEEjK",
"colab_type": "code",
"colab": {}
},
"source": [
"#svd_dot_v\n",
"def svd_dot_v(node):\n",
" try:\n",
" s_node = node[['svd_v_s_1','svd_v_s_2', 'svd_v_s_3', 'svd_v_s_4', 'svd_v_s_5', 'svd_v_s_6',]]\n",
" d_node = node[['svd_v_d_1', 'svd_v_d_2', 'svd_v_d_3', 'svd_v_d_4', 'svd_v_d_5','svd_v_d_6']]\n",
" return np.dot(s_node,d_node)\n",
" except:\n",
" return 0"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "AfB8x3vRJcGh",
"colab_type": "code",
"outputId": "7ff375e2-f350-44a5-f3d7-835c20100ffe",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 35
}
},
"source": [
"svd_dot_v(df_final_train.iloc[1])"
],
"execution_count": 0,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"0.0009068718965871744"
]
},
"metadata": {
"tags": []
},
"execution_count": 47
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "ZZtowOLZVFH6",
"colab_type": "text"
},
"source": [
"# 5. Featurization"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "o6NnRWmLVFH6",
"colab_type": "text"
},
"source": [
"## 5. 1 Reading a sample of Data from both train and test"
]
},
{
"cell_type": "code",
"metadata": {
"id": "wgHje1UVVFH8",
"colab_type": "code",
"colab": {}
},
"source": [
"import random\n",
"if os.path.isfile('data/after_eda/train_after_eda.csv'):\n",
" filename = \"data/after_eda/train_after_eda.csv\"\n",
" # you uncomment this line, if you dont know the lentgh of the file name\n",
" # here we have hardcoded the number of lines as 15100030\n",
" # n_train = sum(1 for line in open(filename)) #number of records in file (excludes header)\n",
" n_train = 15100028\n",
" s = 100000 #desired sample size\n",
" skip_train = sorted(random.sample(range(1,n_train+1),n_train-s))\n",
" #https://stackoverflow.com/a/22259008/4084039"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "zOzuRFFlVFH-",
"colab_type": "code",
"colab": {}
},
"source": [
"if os.path.isfile('data/after_eda/train_after_eda.csv'):\n",
" filename = \"data/after_eda/test_after_eda.csv\"\n",
" # you uncomment this line, if you dont know the lentgh of the file name\n",
" # here we have hardcoded the number of lines as 3775008\n",
" # n_test = sum(1 for line in open(filename)) #number of records in file (excludes header)\n",
" n_test = 3775006\n",
" s = 50000 #desired sample size\n",
" skip_test = sorted(random.sample(range(1,n_test+1),n_test-s))\n",
" #https://stackoverflow.com/a/22259008/4084039"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "3D_SeUCOVFH_",
"colab_type": "code",
"outputId": "322902a4-0420-4b99-8606-5fd0de4bbea4",
"colab": {}
},
"source": [
"print(\"Number of rows in the train data file:\", n_train)\n",
"print(\"Number of rows we are going to elimiate in train data are\",len(skip_train))\n",
"print(\"Number of rows in the test data file:\", n_test)\n",
"print(\"Number of rows we are going to elimiate in test data are\",len(skip_test))"
],
"execution_count": 0,
"outputs": [
{
"output_type": "stream",
"text": [
"Number of rows in the train data file: 15100028\n",
"Number of rows we are going to elimiate in train data are 15000028\n",
"Number of rows in the test data file: 3775006\n",
"Number of rows we are going to elimiate in test data are 3725006\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "pCisf6PpVFID",
"colab_type": "code",
"outputId": "daf2af43-3f98-4466-ad99-03bc54464714",
"colab": {}
},
"source": [
"df_final_train = pd.read_csv('data/after_eda/train_after_eda.csv', skiprows=skip_train, names=['source_node', 'destination_node'])\n",
"df_final_train['indicator_link'] = pd.read_csv('data/train_y.csv', skiprows=skip_train, names=['indicator_link'])\n",
"print(\"Our train matrix size \",df_final_train.shape)\n",
"df_final_train.head(2)"
],
"execution_count": 0,
"outputs": [
{
"output_type": "stream",
"text": [
"Our train matrix size (100002, 3)\n"
],
"name": "stdout"
},
{
"output_type": "execute_result",
"data": {
"text/html": [
"| \n", " | source_node | \n", "destination_node | \n", "indicator_link | \n", "
|---|---|---|---|
| 0 | \n", "273084 | \n", "1505602 | \n", "1 | \n", "
| 1 | \n", "832016 | \n", "1543415 | \n", "1 | \n", "
| \n", " | source_node | \n", "destination_node | \n", "indicator_link | \n", "
|---|---|---|---|
| 0 | \n", "848424 | \n", "784690 | \n", "1 | \n", "
| 1 | \n", "483294 | \n", "1255532 | \n", "1 | \n", "
Social network Graph Link Prediction - Facebook Challenge
" ] }, { "cell_type": "code", "metadata": { "id": "9wb9N5RzHglP", "colab_type": "code", "colab": {} }, "source": [ "#Importing Libraries\n", "# please do go through this python notebook: \n", "import warnings\n", "warnings.filterwarnings(\"ignore\")\n", "\n", "import csv\n", "import pandas as pd#pandas to create small dataframes \n", "import datetime #Convert to unix time\n", "import time #Convert to unix time\n", "# if numpy is not installed already : pip3 install numpy\n", "import numpy as np#Do aritmetic operations on arrays\n", "# matplotlib: used to plot graphs\n", "import matplotlib\n", "import matplotlib.pylab as plt\n", "import seaborn as sns#Plots\n", "from matplotlib import rcParams#Size of plots \n", "from sklearn.cluster import MiniBatchKMeans, KMeans#Clustering\n", "import math\n", "import pickle\n", "import os\n", "# to install xgboost: pip3 install xgboost\n", "import xgboost as xgb\n", "\n", "import warnings\n", "import networkx as nx\n", "import pdb\n", "import pickle\n", "from pandas import HDFStore,DataFrame\n", "from pandas import read_hdf\n", "from scipy.sparse.linalg import svds, eigs\n", "import gc\n", "from tqdm import tqdm\n", "from sklearn.ensemble import RandomForestClassifier\n", "from sklearn.metrics import f1_score" ], "execution_count": 0, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "XC4OJFKkHglU", "colab_type": "code", "colab": {} }, "source": [ "#reading\n", "from pandas import read_hdf\n", "df_final_train = read_hdf('drive/My Drive/FacebookGraphRecomm/data/data/fea_sample/storage_sample_stage4.h5', 'train_df',mode='r')\n", "df_final_test = read_hdf('drive/My Drive/FacebookGraphRecomm/data/data/fea_sample/storage_sample_stage4.h5', 'test_df',mode='r')" ], "execution_count": 0, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "_w-HZuVUTzis", "colab_type": "code", "outputId": "b1ffc812-4561-4f8f-89c0-91d931386f84", "colab": { "base_uri": "https://localhost:8080/", "height": 35 } }, "source": [ "type(df_final_train)" ], "execution_count": 0, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "pandas.core.frame.DataFrame" ] }, "metadata": { "tags": [] }, "execution_count": 5 } ] }, { "cell_type": "code", "metadata": { "id": "5Gm-BHRkHglW", "colab_type": "code", "outputId": "8d9a1d29-5973-49f6-98bf-89d8b66ca0e7", "colab": { "base_uri": "https://localhost:8080/", "height": 265 } }, "source": [ "df_final_train.columns" ], "execution_count": 0, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "Index(['source_node', 'destination_node', 'indicator_link',\n", " 'jaccard_followers', 'jaccard_followees', 'cosine_followers',\n", " 'cosine_followees', 'num_followers_s', 'num_followees_s',\n", " 'num_followees_d', 'inter_followers', 'inter_followees', 'adar_index',\n", " 'follows_back', 'same_comp', 'shortest_path', 'weight_in', 'weight_out',\n", " 'weight_f1', 'weight_f2', 'weight_f3', 'weight_f4', 'page_rank_s',\n", " 'page_rank_d', 'katz_s', 'katz_d', 'hubs_s', 'hubs_d', 'authorities_s',\n", " 'authorities_d', 'svd_u_s_1', 'svd_u_s_2', 'svd_u_s_3', 'svd_u_s_4',\n", " 'svd_u_s_5', 'svd_u_s_6', 'svd_u_d_1', 'svd_u_d_2', 'svd_u_d_3',\n", " 'svd_u_d_4', 'svd_u_d_5', 'svd_u_d_6', 'svd_v_s_1', 'svd_v_s_2',\n", " 'svd_v_s_3', 'svd_v_s_4', 'svd_v_s_5', 'svd_v_s_6', 'svd_v_d_1',\n", " 'svd_v_d_2', 'svd_v_d_3', 'svd_v_d_4', 'svd_v_d_5', 'svd_v_d_6',\n", " 'svd_dot_u', 'svd_dot_v', 'pref_att'],\n", " dtype='object')" ] }, "metadata": { "tags": [] }, "execution_count": 28 } ] }, { "cell_type": "code", "metadata": { "id": "XRW7VZ4AHglc", "colab_type": "code", "colab": {} }, "source": [ "y_train = df_final_train.indicator_link\n", "y_test = df_final_test.indicator_link" ], "execution_count": 0, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "4lj9M_qtHglf", "colab_type": "code", "colab": {} }, "source": [ "df_final_train.drop(['source_node', 'destination_node','indicator_link'],axis=1,inplace=True)\n", "df_final_test.drop(['source_node', 'destination_node','indicator_link'],axis=1,inplace=True)" ], "execution_count": 0, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "lIEc91uVHgli", "colab_type": "code", "outputId": "31f04b72-ebe5-4b13-ccca-a5ae3bc4f09c", "colab": {} }, "source": [ "estimators = [10,50,100,250,450]\n", "train_scores = []\n", "test_scores = []\n", "for i in estimators:\n", " clf = RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',\n", " max_depth=5, max_features='auto', max_leaf_nodes=None,\n", " min_impurity_decrease=0.0, min_impurity_split=None,\n", " min_samples_leaf=52, min_samples_split=120,\n", " min_weight_fraction_leaf=0.0, n_estimators=i, n_jobs=-1,random_state=25,verbose=0,warm_start=False)\n", " clf.fit(df_final_train,y_train)\n", " train_sc = f1_score(y_train,clf.predict(df_final_train))\n", " test_sc = f1_score(y_test,clf.predict(df_final_test))\n", " test_scores.append(test_sc)\n", " train_scores.append(train_sc)\n", " print('Estimators = ',i,'Train Score',train_sc,'test Score',test_sc)\n", "plt.plot(estimators,train_scores,label='Train Score')\n", "plt.plot(estimators,test_scores,label='Test Score')\n", "plt.xlabel('Estimators')\n", "plt.ylabel('Score')\n", "plt.title('Estimators vs score at depth of 5')" ], "execution_count": 0, "outputs": [ { "output_type": "stream", "text": [ "Estimators = 10 Train Score 0.9063252121775113 test Score 0.8745605278006858\n", "Estimators = 50 Train Score 0.9205725512208812 test Score 0.9125653355634538\n", "Estimators = 100 Train Score 0.9238690848446947 test Score 0.9141199714153599\n", "Estimators = 250 Train Score 0.9239789348046863 test Score 0.9188007232664732\n", "Estimators = 450 Train Score 0.9237190618658074 test Score 0.9161507685828595\n" ], "name": "stdout" }, { "output_type": "execute_result", "data": { "text/plain": [ "Text(0.5,1,'Estimators vs score at depth of 5')" ] }, "metadata": { "tags": [] }, "execution_count": 6 }, { "output_type": "display_data", "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEWCAYAAACXGLsWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3XucXHV9//HXezf3+z0hN0IgXALKLSDeMAJqxBZEsKJIvVBRq1RbrZXWH7W0VvuQ1rYqVlREtEW5tEo1lSIXpSqSoEB2gZAQLlmSnWzu98vufn5/nDO7J5PZnclmZy8z7+cj85g553zPmc85O5nPfL/ne75HEYGZmVl36vo7ADMzG/icLMzMrCQnCzMzK8nJwszMSnKyMDOzkpwszMysJCcLK0nSayWt7O84rG9IWiypqULbnicpJA3ppe39naSNkpp7Y3vWNSeLKibpeUl7JO3MPL5Sxnoh6bj8dEQ8FBEnVCjGWyT9XSW2bb3/5dyD939e0gUV2vYc4BPAwoiYUWR5ft+zn///V4lYakG/fICsT/1+RPysv4OoFEn1EdHW33H0FklDIqK1v+MYJI4GNkXEhhLlJviYHjnXLGqUpOMk/VzStrQa/4N0/i/SIo+nv8TeUdgskf5a/HNJT0jaJelbkqZL+h9JOyT9TNLETPk7JDWn7/ULSSen868GrgA+lb7Xf6fzT5L0oKStkholXZTZ1i2SviZpqaRdwOslXSjpyfS9X5L0ySL7Ozzd3imZeVPTmtc0SVMk/Tgts1nSQ5IO+f+hxJckbUj354n8NiWNlPSPkl5Il/2fpJHpsovSfdma7ttJBcfzLyQ9AeySNETSTEl3SWqR9JykP+nmb/kWSb+TtF3SWkmfzSzO/z23psf4lUXWH5ke1y2SngTOKljeZSySPivpTkk/SI//byWdmi77LjAX+O/0vT+V2ewVkl5MP3t/1c2+jZd0a/reL0j6jKQ6JbWVe4GZ6bZv6Wob1ksiwo8qfQDPAxd0sew24K9IfjCMAF6TWRbAcZnpxUBTwXYfBqYDs4ANwG+B04HhwP3AX2fKvx8Ymy77Z+CxzLJbgL/LTA8FVgN/CQwDzgN2ACdkym8DXp2JfT3w2nT5ROCMLvb5ZuBzmemPAD9NX38e+Lf0/YcCrwVUZBtvAh4FJgACTgKOSpd9FXgwPSb1wKvSfT4e2AW8Id32p9J9HJY5no8Bc4CR6X49ClyXHoP5wBrgTV3s12LgZel6LwdywFvTZfPSv+eQbj4nXwAeAialMTTk/96lYgE+CxwALkv37ZPAc8DQYp/BTDzfSPf1VGAfcFIXsd0K/Ijk8zMPeAa4qtjnssi6+fd6CWgCvg1M6e//l4P10e8B+FHBP27yH3UnsDXz+EC67FbgJmB2kfXKSRZXZKbvAr6Wmb4G+GEXMU1Itz8+nb6Fg5PFa4FmoC4z7zbgs5nytxZs80Xgg8C4EsfjAmBNZvqXwB+mr69Pv5SOK7GN89IvrHMKYqwD9gCnFlnn/wG3F5R9CVicOZ7vzyx/BfBiwTauBb5d5t/9n4Evpa/zX5jdJYs1wJLM9NV0JotuYyFJFg8X7Fs2eT9P8WQxOzPvEeDyInHVkySShZl5HwQeLPa5LLL+GGARSXP7dOBO4J6++L9XjQ83Q1W/t0bEhMzjG+n8T5H8Mn4kbR55/2FuN5d5vafI9BhIzilI+oKkZyVtJ/nyAJjSxXZnAmsjoj0z7wWSX+t5awvWuRS4EHhBSdPaIU0tqfuBkZJeIelo4DTgv9JlXyT5tf+/ktZI+nSxDUTE/cBXSGoROUk3SRqX7s8I4Nku9umFzDba033oap+OJmle2Zp/kNS0pheLKd2fB9Kmmm3Ah+j6+BYzs+D9X8i8LieWjnXTfWtKt9mdbO+l3aSflwJTSGoz2XgKPwtdioidEbE8IlojIgd8FHhj+veyw+RkUaMiojkiPhARM0l+rd2oTA+oXvQu4GKSX/XjSX5ZQpKoIPmVmbUOmFNwvmAuyS/xvIPWiYhlEXExMA34IXB7sUDSL7LbgXemcf04Inaky3ZExCciYj7w+8CfSTq/i+38a0ScCZxM0sT058BGYC9wbJFV1pF86SY7LomkuaerfVoLPFeQ5MdGxIXF4gH+A7gbmBMR40ma07o6vsWsT+PJm3uYsXSsm/7dZqf7XO77d2UjSRPX0Zl5hZ+Fw5GPRd2WsqKcLGqUpLdLmp1ObiH5j5TvVZQjaZvuDWNJmhI2AaOAvy9YXvhevyFp3/+UpKGSFpN8eX+/2MYlDZN0haTxEXEA2J7Zj2L+A3gHyYn1/8hs5/eUnPRXZhuHbEfSWekv+aFpnHuBtjQR3Qz8U3pCuF7SKyUNJ0lQb5F0frreJ9Jj8qsuYnwE2J6e9B6ZbusUSWd1UX4ssDki9ko6myQR5rUA7XT/97wduFbSxPQzcc1hxnKmpLcp6Z778XTfHk6X9fizFEkvt9uBz0kam9YG/wz4Xjnrp3+nE9IT4pOBfyVpwtrWk3hqnZNF9cv3RMk/8s0uZwG/kbST5FfpxyLiuXTZZ4HvpM0Of3CE738rSdPBS8CTdH6J5H0LWJi+1w8jYj9wEfBmkl+WN5KcV3i6m/e4Eng+beb6EPDurgpGRD4ZzQT+J7NoAfAzknM8vwZujIgHi2xiHMnJ2S3pfm0CbkiXfRJYASwDNgP/QHJeY2Ua05fTffp9ki7N+7uIsS0tcxrJyeKNwDdJambF/DFwvaQdJCeiO2pWEbEb+Bzwy/QYn1Nk/b9J9+U54H+B7x5mLD8iScBbSP4Wb0sTNyQdBz6TvvchvdTKcA3J32sN8H8kCf7mMtedD/yUpINEA0kSe2cPYjDS3h5mZj2RdtM9LiK6TNBWHVyzMDOzkpwszMysJDdDmZlZSa5ZmJlZSVUzkOCUKVNi3rx5/R2Gmdmg8uijj26MiKmlylVNspg3bx7Lly/v7zDMzAYVSS+ULuVmKDMzK4OThZmZleRkYWZmJTlZmJlZSU4WZmZWkpOFmZmV5GRhZmYlVc11Fnb4DrS1s3NvK0F6e10gAoIg/dcxHQHtkTxTML9wfQjao6BM5nXh+u0F60b2vQviKtxW9r05pEw25oLtFqxPpmy3203Xb+9YFl3EWmS7Be9N/j0KlrV3HgyQqBPUpc+SOl7XSahjXvdl6iTq6pJnyJfNlu8s09X6AurqSrxHkW2qjDJ1EqrL7APZ8gfvq/UPJ4saExE0vLSd25ev5UePvcT2va39HZJ1QerMGZbQIUkxk2xEJqF1XaZoIux4LpZ4i6xf11VCK514RbEy3cWYn9d1jDPGjeDSM2eXPH5HwsmiRmzauY8fPraOO5av5enmHQwbUseSk2dw2pwJHR+4/H820l+R+Q92x3/C9EWyLFMmUw46P/zZdZNl2enO9bvcLtmYOv+TZWMtud3CbXUTV12R9+5Yv2BZnTpjKvbeSneo5HYL1s/vX1ZEUttoj+iopbRn5uVrNV2Wac9O52t90VHzam+nYJ3OMoXbjG7jyJbPr59sv7OWV6RM+8H70rEsX/NsL+M9ujwWxcscEnd7Z62uu/1oj6CtPTjQFh21y2Jluj9OhxPjwTHlnwudNmeCk4X1XGtbO79Y1cLty5q47+kcB9qCU2eP52/fegoXvXwm40cN7e8QrQySqBfU+9bRlipM5H3ByaIKPduykzuWN/Gfv21iw459TB49jPe8ch5vXzSHE2aM7e/wzOwI9ccPCCeLKrFzXys/eWIdty9v4tEXtlBfJ15/wlQuO3MO5504jWFD3PHNzHrOyWIQiwgeeW4zty9vYumK9ew50MaxU0dz7ZtP5JLTZzFt3Ij+DtHMqoSTxSC0ftse7nq0iTsebeKFTbsZM3wIbz19JpedOYcz5k5w90Iz63VOFoPE3gNt/OypHLcvb+KhVS1EwDnzJ/Gx8xew5JQZjBrmP6WZVY6/YQa4hpe2ccfytfzwsXVs23OAmeNHcM3rj+OyM+cwd/Ko/g7PzGqEk8UAtHnXfn702EvcvryJp9ZvZ9iQOt508gz+YNFsXnXsFOrr3MxkZn3LyWKAaG1r56FVG7nj0bXc+2RyTcTLZo3nby8+mYtOneVrIsysXzlZ9LPnNu7ijuVrueu3TeS272PiqKFcec483r5oNicdNa6/wzMzA5ws+sWufa38ZMV67li+lmXPb6FOsPiEafzNRbM578TpvibCzAaciiYLSUuAfwHqgW9GxBcKlh8N3AxMBTYD746IJkmnAV8DxgFtwOci4geVjLWv/Gr1Rv7o1uXs3t/G/Cmj+YslJ/K2M2Yx3ddEmNkAVrFkIake+CrwBqAJWCbp7oh4MlPsBuDWiPiOpPOAzwNXAruBP4yIVZJmAo9KuicitlYq3r4QEXxu6VNMHjOM777jNM6YO9HXRJjZoFDJ9o6zgdURsSYi9gPfBy4uKLMQuC99/UB+eUQ8ExGr0tfrgA0ktY9B7cGVLTSu28415y3gzKMnOVGY2aBRyWQxC1ibmW5K52U9Dlyavr4EGCtpcraApLOBYcCzhW8g6WpJyyUtb2lp6bXAKyEi+Nf7VzFrwkguOb3wMJiZDWyVTBbFfjYXjqX7SeB1kn4HvA54Cei4G4+ko4DvAu+LiPZDNhZxU0QsiohFU6cO7IrHr57dxO9e3MqHFx/L0HqfwDazwaWSJ7ibgDmZ6dnAumyBtInpbQCSxgCXRsS2dHoc8BPgMxHxcAXj7BNfvn8V08cN57IK36DEzKwSKvkTdxmwQNIxkoYBlwN3ZwtImiIpH8O1JD2jSMv/F8nJ7zsqGGOfWPb8Zh5es5mrzz2WEUPr+zscM7PDVrGaRUS0SvoocA9J19mbI6JR0vXA8oi4G1gMfF5SAL8APpKu/gfAucBkSe9N5703Ih6rVLyV9JX7VzN59DDedfbc/g7FBrK92yD3JOQaINcILSuhfgiMmgwjJyXPoybDqEnpIzN/2GhwhwmroIpeZxERS4GlBfOuy7y+E7izyHrfA75Xydj6yuNrt/LzZ1r4iyUnMnKYaxUGtLfB5jWdSSHXmLze+mJnmRETYNpJ0LoPmlfA7s2wZwuHnvZL1Q/rTCYjJxYklmyyySSaYWOcYKxsvoK7wr7ywGrGjxzKu89xraIm7d58cELINcKGp6B1T7Jc9TBlAcw+C858L0x/GUw/GcbNPPSLvL0tqX3s3pQ+Nne+3pN/vSV5zjUm8/ZsgUP7hiTqhnZfWxmVec7PGz7WCaZGOVlU0FPrt3Pvkzk+fsECxo7wQIBVra0VNq1OE0KmxrD9pc4yoybD9FNg0fuThDDjFJhyAgwt8+r9uvrOL3UWlLdOezvs3dqZWDqSSjbRpAlmw9OdZbpNMNmkMqmLGsxkGJXWcIaPc4KpAk4WFfSVB1YzZvgQ3veqY/o7FOtNuzYmTUPZGkPLSmjblyyvGwpTT4B5r0mSwvSTkxrDmGl9/6VZV5dJMMeVt057O+zblkkohYkmP28zbHymczrauohhSPFmsEPOw2Sa0EaMd4IZYJwsKmT1hp0sXbGeD7/uWA8vPli17k++DAtrCztznWXGzEiSwfzFSa1h+skw5XgYMqy/oj5ydXXJl/bIiTD52PLWaW+HfdsPrqkUbSrbDBtXw+7fJPO6TTCZcy8drzMJpjABDR+fxG4V4WRRITc+uJoRQ+q56jWuVQx4EUkCyCeE5vR540poT68RrR8O006E4y7I1BZOgdFT+jf2gaKuDkZOSB7liuhMMLu3cOj5l0wNZvMaaFqWzGtvLb491Rc5uT+peA0mn4BGTHCCKZOTRQW8uGk3P3psHe971Twmjxne3+FY1oG90PJ05oRzmhh2b+osM25WkgiOf1NnUph8XNKN1XqPlDQ3jRgPk8pcJwL27Ti4plK0qWwzbH4OmpanCeZAFzHUFdRgJh3cVFasuaxGE4w//RXwtZ+vpr5OfODc+f0dSu2KSE4u55NCvrawaXVn08eQkTB9IZz4ls4mpGkL0/Z9G5AkGDEueVBmrT0C9u88uKbS1cn+rS/Aut8mr9v2dxFDXZIwyupJls4bOSHpoDCIOVn0snVb93Dno01cftZc36Oir+zflfTk6TivkNYY9m7rLDNhbpIQFl7cWVuYdMyg/w9sZZCSLr/Dx8LEeeWtE5F8rg5JKkVO9m9dC+seSxPMvq6CSBJGV+dbitVgRk4cUJ9PJ4te9vWfP0sEfPB1rlX0uojkl1+2F1JzQ9Kenb9YbdiYpHZwyqWdSWHaSUlTh1m5JBg+JnlMPLq8dSLgwO6CZrEuTvZvb4LmJ5LXrXu7CiI9D9TNdS/5eWOml98ZoYecLHrRhh17uW3ZWi49YzazJ47q73AGt307Dh76IteQTO/fkRZQUjOYfjK8/B2dJ50nHF2T7ck2AEjJsCvDRic12XLt311GDWYzbF+X/DjaszlJSlmzzoQP3N+7+1PAyaIXffOh52hta+fDiyub4atKeztsee7grqnNK5IaRN7w8UkiOPXy5EK26afA1BOTX31mg92wUcljwpzSZfMO7Dm4plJf+e75Tha9ZPOu/Xzv4Re46NSZzJsyur/DGZj2bElrC9mhL57s/JWkuqTX0awz4IwrO4e+GD/bF2iZZQ0dCeNnJY8+4mTRS27+v+fYc6CNj7y+zKtkq1lbK2x+tmCgvEbYlrlx4siJSQ3hjPd0Dn0x9cTkP4GZDThOFr1g254DfOdXz/PmU2awYPrY/g6nb+3adOjoqS1Pd560qxuSXNE89xyYflXaRfUUGDvDtQWzQcTJohfc+qvn2bGvtbprFW0HYOOqQ4e+2LG+s8zoaUkt4aw/6rxuYeoJMMQXJpoNdk4WR2jnvla+9cvnuOCkaZw8s0q6Z+7cUDBQXmNSW8hfBVs/LEkC8xcfPPTFmGn9GbWZVZCTxRH694dfYOvuA4OzVtG6LxkttXDoi10tnWXGHpUkguPOzwyUt6BPel+Y2cDhZHEE9h5o4xsPreG1C6Zw+tyJ/R1O1yKSPtrZXki5xmRE1Y6hL0YkF68d/6bM0Bcnw+jJ/Ru7mQ0IThZH4LZHXmTjzv18dCDVKg4Z+iJNEHu3dpYZPzdJBie+JRkbafrLYNJ8D5RnZl3yt0MP7Wtt4+s/X8PZx0ziFfP74dd3e/uhQ1/kGosPfXHyJQcPfXE4w0ibmeFk0WN3PfoSzdv38sW3v7zyb7Z3W8HQF+nFbPt3pgWU1Aw89IWZVYiTRQ8caGvnxgdXc+qcCbzmuF68+U17G2wqdjHbi51lRoxPmo1OuyJTWzgxGY/GzKxCnCx64EePraNpyx7+5qKTUU8vLNu1CTYUNCFteKrzYjbVJxezzTkbFr2v86TzuJm+mM3M+pyTxWFqaw9ufGA1Jx01jvNO7MF1BS8+DHe+P7kxT97oqUkyyF7MNuV4GOr7YZjZwOBkcZiWrljPmo27uPGKM3pWq1i5NLmO4Y1/54vZzGzQcLI4DO3twVfuX81x08aw5OQZPdtIc0MyYN6rrund4MzMKshdZQ7DvU/lWJnbwUdffxx1dT08b5BrTGoTZmaDiJNFmSKSWsXRk0fxey8/qmcb2bURdjYnw3GbmQ0iThZlevCZFla8tI0/XnwsQ+p7eNiaVyTPrlmY2SDjZFGGiODL961i1oSRXHL67J5vKNeYPDtZmNkg42RRhl+v2cRvX9zKh143n2FDjuCQ5RqSUVw9OJ+ZDTIVTRaSlkhaKWm1pE8XWX60pPskPSHpQUmzM8t+KmmrpB9XMsZyfPm+1UwbO5y3LzqMG6oXk2tIusuamQ0yFUsWkuqBrwJvBhYC75S0sKDYDcCtEfFy4Hrg85llXwSurFR85Vr+/GZ+vWYTV587nxFD63u+obYDyb0j3ARlZoNQJWsWZwOrI2JNROwHvg9cXFBmIXBf+vqB7PKIuA/YUcH4yvKVB1YzafQw3vWKuUe2oY3PQNt+mPGy3gnMzKwPVTJZzALWZqab0nlZjwOXpq8vAcZKKrtBX9LVkpZLWt7S0lJ6hcO0omkbD65s4arXHMOoYUd4/WLHyW03Q5nZ4FPJZFHsqrUomP4k8DpJvwNeB7wEtJb7BhFxU0QsiohFU6dO7XmkXfjy/asYN2IIf/jKo498Y80rkntXT15w5NsyM+tjlRzuownInhGeDazLFoiIdcDbACSNAS6NiG0VjKlsTzdv53+fzPGx8xcwdkQv3G8615gM8+G70ZnZIFTJmsUyYIGkYyQNAy4H7s4WkDRFUj6Ga4GbKxjPYfnqA88yelg973v1vN7ZYK7B5yvMbNCqWLKIiFbgo8A9wFPA7RHRKOl6SRelxRYDKyU9A0wHPpdfX9JDwB3A+ZKaJL2pUrEWerZlJz9+Yh1XvnIeE0YNO/IN7myBnTmfrzCzQauibSIRsRRYWjDvuszrO4E7u1j3tZWMrTs3PvAsw4fU8UevPaZ3NphrSJ7dbdbMBilfwV1g7ebd/PCxl3jX2UczZczw3tmok4WZDXJOFgVufPBZ6iWuPnd+72001+hhPsxsUHOyyFi/bQ93PrqWPzhrNjPG9+ItTZsbXKsws0HNySLj6z9fQwR88Nxje2+jrfuh5Wmf3DazQc3JIrVhx15ue+RFLjl9FnMmjeq9DW9aBe0H3G3WzAY1J4vUtx56jgNt7fzx64/r3Q03++S2mQ1+ThbAll37+e7DL/D7p87kmCmje3fjuQaoHw6TezkJmZn1IScL4Nu/fI7d+9v4SG/XKiBJFtM8zIeZDW41nyy27z3At3/1PEtOnsHx08f2/hu4J5SZVYGa/7m770A7F55yFFf2xsiyhXZugF0bnCzMbNCr+WQxdexw/uGyl1dm4/krt2c4WZjZ4FbzzVAV1XHDIycLMxvcnCwqqbkBxs6EUZP6OxIzsyPiZFFJuQZfuW1mVcHJolJa90PLSp+vMLOq4GRRKRufSYb58PkKM6sCThaV4pPbZlZFnCwqJbfCw3yYWdVwsqiUXKOH+TCzquFkUSnNDTDdw5KbWXVwsqiEjmE+3G3WzKqDk0UleJgPM6syThaV4BsemVmVcbKohFyjh/kws6riZFEJuQY3QZlZVXGy6G35YT58ctvMqkjZyULSayS9L309VdIxlQtrEPMwH2ZWhcpKFpL+GvgL4Np01lDge5UKalDr6AnlayzMrHqUW7O4BLgI2AUQEeuACtywugrkGpJhPiYd29+RmJn1mnKTxf6ICCAAJI2uXEiDXHMDTDvJw3yYWVUpN1ncLunrwARJHwB+BnyjcmENYrkGn68ws6pTVrKIiBuAO4G7gBOA6yLiy6XWk7RE0kpJqyV9usjyoyXdJ+kJSQ9Kmp1Z9h5Jq9LHe8rfpX60cwPsanG3WTOrOiXbSiTVA/dExAXAveVuOF3vq8AbgCZgmaS7I+LJTLEbgFsj4juSzgM+D1wpaRLw18AikqavR9N1t5T7/v2ieUXy7G6zZlZlStYsIqIN2C1p/GFu+2xgdUSsiYj9wPeBiwvKLATuS18/kFn+JuDeiNicJoh7gSWH+f59zzc8MrMqVe5Z2L3ACkn3kvaIAoiIP+lmnVnA2sx0E/CKgjKPA5cC/0LS42qspMldrDur8A0kXQ1cDTB37twyd6WCcg0wbpaH+TCzqlNusvhJ+jgcKjIvCqY/CXxF0nuBXwAvAa1lrktE3ATcBLBo0aJDlve55gY3QZlZVSorWaTnFIYBx6ezVkbEgRKrNQFzMtOzgXUF210HvA1A0hjg0ojYJqkJWFyw7oPlxNpvWvfDxpVw/Jv6OxIzs15X7hXci4FVJCesbwSekXRuidWWAQskHZMmmsuBuwu2O0VSPoZrgZvT1/cAb5Q0UdJE4I3pvIFr40pob3XNwsyqUrnNUP8IvDEiVgJIOh64DTizqxUiolXSR0m+5OuBmyOiUdL1wPKIuJuk9vB5SUHSDPWRdN3Nkv6WJOEAXB8Rmw977/pS/uS2h/kwsypUbrIYmk8UABHxjKShpVaKiKXA0oJ512Ve30ly/UaxdW+ms6Yx8DWvgCEjPMyHmVWlcpPFcknfAr6bTl8BPFqZkAapXANMPdHDfJhZVSp3uI8PA43AnwAfA54EPlSpoAalXKOv3DazqlXuz+AhwL9ExD9Bx9XZwysW1WCzI5cM8+GL8cysSpVbs7gPGJmZHkkymKBB5z0snCzMrEqVmyxGRMTO/ET6elRlQhqEOpKFu82aWXUqN1nsknRGfkLSImBPZUIahJo9zIeZVbdyz1l8HLhD0jqSYTdmAu+oWFSDTa7RTVBmVtW6rVlIOkvSjIhYBpwI/IBk7KafAs/1QXwDX+u+5OptN0GZWRUr1Qz1dWB/+vqVwF+SDPmxhXQAv5q38ZlkmA93mzWzKlaqGao+M8zGO4CbIuIu4C5Jj1U2tEGi2T2hzKz6lapZ1EvKJ5Tzgfszy3ypMiQ9oTzMh5lVuVJf+LcBP5e0kaT300MAko4DtlU4tsEh1wDTTvIwH2ZW1br9houIz0m6DzgK+N+IyN9gqA64ptLBDXgRSTPUCQP/jq9mZkei5M/hiHi4yLxnKhPOILNzA+zeCNM9LLmZVbdyL8qzYnIrkmd3mzWzKudkcSTyPaHcbdbMqpyTxZHINcK42TByYn9HYmZWUU4WRyLX4CYoM6sJThY91bovuXrbTVBmVgOcLHqqZWUyzIdrFmZWA5wseqrjHhbuNmtm1c/JoqdyjckwH5M9zIeZVT8ni55qXpEM81FX39+RmJlVnJNFT0SkPaF8ctvMaoOTRU/szMHuTU4WZlYznCx6wldum1mNcbLoiY6eUO42a2a1wcmiJ3INHubDzGqKk0VP5BrdBGVmNcXJ4nDlh/lwE5SZ1RAni8PV8nQ6zIdrFmZWOyqaLCQtkbRS0mpJny6yfK6kByT9TtITki5M5w+T9G1JKyQ9LmlxJeM8LLnG5NnJwsxqSMWShaR64KvAm4GFwDslLSwo9hng9og4HbgcuDGd/wGAiHgZ8AbgHyUNjFpQcwMMGelhPsysplTyC/hsYHVErImI/cD3gYsLygQwLn09HliXvl4I3AcQERuArcCiCsZavlyDh/kws5pTyWQxC1ibmW5K52V9Fni3pCZgKXBNOv9x4GJJQyQdA5wJzCl8A0lXS1pR2NziAAALs0lEQVQuaXlLS0tvx3+ojmE+fHLbzGpLJZOFisyLgul3ArdExGzgQuC7aXPTzSTJZTnwz8CvgNZDNhZxU0QsiohFU6dO7dXgi8oP8zHDw5KbWW0ZUsFtN3FwbWA2nc1MeVcBSwAi4teSRgBT0qanP80XkvQrYFUFYy1Ps6/cNrPaVMmaxTJggaRjJA0jOYF9d0GZF4HzASSdBIwAWiSNkjQ6nf8GoDUinqxgrOXJrUienSzMrMZUrGYREa2SPgrcA9QDN0dEo6TrgeURcTfwCeAbkv6UpInqvRERkqYB90hqB14CrqxUnIcl1wjj53iYDzOrOZVshiIilpKcuM7Ouy7z+kng1UXWex44oZKx9UizT26bWW0aGNcuDAYdw3z4Yjwzqz1OFuVqeRqizTULM6tJThbl6rjhkbvNmlntcbIoV64xGeZj0vz+jsTMrM85WZQrt8LDfJhZzXKyKEdE0gzlGx6ZWY1ysijHjmbYs9k9ocysZjlZlCOXH+bDycLMapOTRTk6kkXh7TjMzGqDk0U5mhs8zIeZ1TQni3LkGt0EZWY1zcmilAN702E+fOW2mdUuJ4tS8sN8uNusmdUwJ4tSco3Js5uhzKyGOVmUkmvwMB9mVvOcLErJNSRdZj3Mh5nVMCeL7uSH+fDJbTOrcU4W3dmxPh3mw8OSm1ltc7LoTsfJbdcszKy2OVl0p3lF8uxkYWY1zsmiO7lGGD8XRk7o70jMzPqVk0V3cj65bWYGThZdO7AXNq7yldtmZjhZdC0/zIdrFmZmThZd6riHhbvNmpk5WXQl15gO83FMf0diZtbvnCy60rzCw3yYmaWcLIqJSHtC+eS2mRk4WRS3Yz3s2eJkYWaWcrIopjk9ue1us2ZmgJNFcfmeUNMW9m8cZmYDREWThaQlklZKWi3p00WWz5X0gKTfSXpC0oXp/KGSviNphaSnJF1byTgPkWvwMB9mZhkVSxaS6oGvAm8GFgLvlFT4U/0zwO0RcTpwOXBjOv/twPCIeBlwJvBBSfMqFeshmhvcBGVmllHJmsXZwOqIWBMR+4HvAxcXlAlgXPp6PLAuM3+0pCHASGA/sL2CsXY6sBc2rfKV22ZmGZVMFrOAtZnppnRe1meBd0tqApYC16Tz7wR2AeuBF4EbImJz4RtIulrScknLW1paeifqlqcg2t0Tyswso5LJQkXmRcH0O4FbImI2cCHwXUl1JLWSNmAmcAzwCUnzD9lYxE0RsSgiFk2dOrV3ou644ZGThZlZXiWTRRMwJzM9m85mpryrgNsBIuLXwAhgCvAu4KcRcSAiNgC/BBZVMNZOzQ0wdJSH+TAzy6hkslgGLJB0jKRhJCew7y4o8yJwPoCkk0iSRUs6/zwlRgPnAE9XMNZOuYaky6yH+TAz61CxZBERrcBHgXuAp0h6PTVKul7SRWmxTwAfkPQ4cBvw3ogIkl5UY4AGkqTz7Yh4olKxZoL2DY/MzIoYUsmNR8RSkhPX2XnXZV4/Cby6yHo7SbrP9q3t65JhPmZ4WHIzsyxfwZ3VcXLbNQszsywni6zciuTZycLM7CBOFlnN6TAfI8b3dyRmZgOKk0VWrtHDfJiZFeFkkXdgTzrMh5OFmVkhJ4u8lqfTYT58vsLMrJCTRV7HDY/cbdbMrJCTRV4uHeZj4rz+jsTMbMBxssjLNXqYDzOzLjhZQDLMR/MK94QyM+uCkwUkw3zs3eqeUGZmXXCygOR8BThZmJl1wckCkiYogOmFtwg3MzNwskjkGmGCh/kwM+uKkwWk97Dw9RVmZl1xsjiwBzat9pXbZmbdcLLYtxNOfhsc/ar+jsTMbMCq6J3yBoUxU+Gyb/V3FGZmA5prFmZmVpKThZmZleRkYWZmJTlZmJlZSU4WZmZWkpOFmZmV5GRhZmYlOVmYmVlJioj+jqFXSGoBXihRbAqwsQ/CGUx8TA7lY3IoH5NDVcsxOToippYqVDXJohySlkfEov6OYyDxMTmUj8mhfEwOVWvHxM1QZmZWkpOFmZmVVGvJ4qb+DmAA8jE5lI/JoXxMDlVTx6SmzlmYmVnP1FrNwszMesDJwszMSqqJZCFpiaSVklZL+nR/x9OXJN0saYOkhsy8SZLulbQqfZ6Yzpekf02P0xOSzui/yCtD0hxJD0h6SlKjpI+l82v2mABIGiHpEUmPp8flb9L5x0j6TXpcfiBpWDp/eDq9Ol0+rz/jryRJ9ZJ+J+nH6XRNHpOqTxaS6oGvAm8GFgLvlLSwf6PqU7cASwrmfRq4LyIWAPel05AcowXp42rga30UY19qBT4REScB5wAfST8PtXxMAPYB50XEqcBpwBJJ5wD/AHwpPS5bgKvS8lcBWyLiOOBLablq9THgqcx0TR6Tqk8WwNnA6ohYExH7ge8DF/dzTH0mIn4BbC6YfTHwnfT1d4C3ZubfGomHgQmSjuqbSPtGRKyPiN+mr3eQfAnMooaPCUC6fzvTyaHpI4DzgDvT+YXHJX+87gTOl6Q+CrfPSJoNvAX4ZjotavSY1EKymAWszUw3pfNq2fSIWA/JlycwLZ1fU8cqbSY4HfgNPib55pbHgA3AvcCzwNaIaE2LZPe947iky7cBk/s24j7xz8CngPZ0ejI1ekxqIVkUy+zuL1xczRwrSWOAu4CPR8T27ooWmVeVxyQi2iLiNGA2SY38pGLF0ueqPy6Sfg/YEBGPZmcXKVoTx6QWkkUTMCczPRtY10+xDBS5fFNK+rwhnV8Tx0rSUJJE8e8R8Z/p7Jo+JlkRsRV4kOSczgRJQ9JF2X3vOC7p8vEc2tw52L0auEjS8yTN1+eR1DRq8pjUQrJYBixIezAMAy4H7u7nmPrb3cB70tfvAX6Umf+HaQ+gc4Bt+aaZapG2IX8LeCoi/imzqGaPCYCkqZImpK9HAheQnM95ALgsLVZ4XPLH6zLg/qiyK3wj4tqImB0R80i+N+6PiCuo1WMSEVX/AC4EniFpg/2r/o6nj/f9NmA9cIDkl89VJO2o9wGr0udJaVmR9Bx7FlgBLOrv+CtwPF5D0jTwBPBY+riwlo9Jup8vB36XHpcG4Lp0/nzgEWA1cAcwPJ0/Ip1enS6f39/7UOHjsxj4cS0fEw/3YWZmJdVCM5SZmR0hJwszMyvJycLMzEpysjAzs5KcLMzMrCQnC6tpktokPZZ5dDkqsaS3ZgehlHS9pAt6IYYJkv74SLdjVknuOms1TdLOiBhTZtlbSPra31mq7GHGMC/d7imHsU59RLT1Zhxm3XHNwqwISV+Q9GR6D4sbJL0KuAj4YloDOVbSLZIuS8s/L+nvJf1a0nJJZ0i6R9Kzkj6Ulhkj6T5Jv5W0QlJ+9OMvAMem2/1ierX4FyU1pOXeka6/WMm9OP4DWCFptKSfpPegaMiXM6uEIaWLmFW1kelIq3mfJxlx9RLgxIgISRMiYquku8nULIqMPr02Il4p6Usk9xF5NclVvY3AvwF7gUsiYrukKcDD6TY/DZwSySB+SLqU5J4SpwJTgGWSfpG+x9lp2efScusi4i3peuN78biYHcTJwmrdnvyXdF46CNxe4JuSfgL8uMxt5cccWwGMieR+GTsk7U3HXdoF/L2kc0mGvJ4FTC+yndcAt6XNTDlJPwfOArYDj0TEc5n3uUHSP5AksYfKjNPssLkZyqxAJPciOJtkZNq3Aj8tc9V96XN75nV+eghwBTAVODNNUDmSmkeh7m6YsysT5zPAmSRJ4/OSriszTrPD5mRhViC918X4iFgKfJykSQhgBzD2CDY9nuT+CAckvR44uovt/gJ4R3ozoqnAuSQD0xXGORPYHRHfA24AqvL+4DYwuBnKal3hOYufAv8C/EjSCJJf+X+aLvs+8A1Jf0LnENWH49+B/5a0nGS026cBImKTpF9KagD+h+TObK8EHicZIfdTEdEs6cSC7b2M5IR7O8mowh/uQUxmZXHXWTMzK8nNUGZmVpKThZmZleRkYWZmJTlZmJlZSU4WZmZWkpOFmZmV5GRhZmYl/X8iYJRtviYRrAAAAABJRU5ErkJggg==\n", "text/plain": [ "| \n", " | mean_fit_time | \n", "std_fit_time | \n", "mean_score_time | \n", "std_score_time | \n", "param_max_depth | \n", "param_n_estimators | \n", "params | \n", "split0_test_score | \n", "split1_test_score | \n", "split2_test_score | \n", "mean_test_score | \n", "std_test_score | \n", "rank_test_score | \n", "split0_train_score | \n", "split1_train_score | \n", "split2_train_score | \n", "mean_train_score | \n", "std_train_score | \n", "
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | \n", "97.085803 | \n", "0.124693 | \n", "0.334292 | \n", "0.005094 | \n", "7 | \n", "117 | \n", "{'max_depth': 7, 'n_estimators': 117} | \n", "0.979744 | \n", "0.978204 | \n", "0.977764 | \n", "0.978571 | \n", "0.000849 | \n", "1 | \n", "0.984583 | \n", "0.985000 | \n", "0.984861 | \n", "0.984815 | \n", "0.000174 | \n", "
| 0 | \n", "87.615296 | \n", "0.273111 | \n", "0.318346 | \n", "0.002365 | \n", "6 | \n", "120 | \n", "{'max_depth': 6, 'n_estimators': 120} | \n", "0.978181 | \n", "0.976840 | \n", "0.976982 | \n", "0.977335 | \n", "0.000602 | \n", "2 | \n", "0.981471 | \n", "0.982478 | \n", "0.982208 | \n", "0.982053 | \n", "0.000426 | \n", "
| 3 | \n", "78.619857 | \n", "0.440764 | \n", "0.275323 | \n", "0.001885 | \n", "6 | \n", "109 | \n", "{'max_depth': 6, 'n_estimators': 109} | \n", "0.977710 | \n", "0.976379 | \n", "0.976575 | \n", "0.976888 | \n", "0.000587 | \n", "3 | \n", "0.980002 | \n", "0.981254 | \n", "0.981200 | \n", "0.980819 | \n", "0.000578 | \n", "
| 2 | \n", "57.570641 | \n", "0.266449 | \n", "0.229950 | \n", "0.006425 | \n", "4 | \n", "113 | \n", "{'max_depth': 4, 'n_estimators': 113} | \n", "0.975583 | \n", "0.974826 | \n", "0.973761 | \n", "0.974723 | \n", "0.000747 | \n", "4 | \n", "0.975278 | \n", "0.975937 | \n", "0.975795 | \n", "0.975670 | \n", "0.000283 | \n", "
| 4 | \n", "38.288383 | \n", "4.263846 | \n", "0.151492 | \n", "0.027834 | \n", "3 | \n", "110 | \n", "{'max_depth': 3, 'n_estimators': 110} | \n", "0.974116 | \n", "0.973326 | \n", "0.972861 | \n", "0.973434 | \n", "0.000518 | \n", "5 | \n", "0.973911 | \n", "0.974101 | \n", "0.974025 | \n", "0.974012 | \n", "0.000078 | \n", "