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XIX

Foreword

Since the mid-twentieth century, our scientific world of information technology
has become more and more multidisciplinary, combining the knowledge and
experience of many disciplines such as biology, psychophysics, mathematics, and
engineering.

The first attempts to widen their field of view came from engineers and mathe-
maticians who were fascinated by the tremendous faculties of our brain to process
and extract information from the noisy and changing world of our environment:
would it be possible to mimic our brain to build a novel kind of machines for
signal, images, and information processing? This opened the era of artificial neural
networks.

Among the pioneers of this new approach are the seminal works of McCullogh
and Pitts (1943) for their Formal Neuron, Von Neuman (1948) for his Automata
Networks, Hebb (1949) for his famous Synaptic Learning Rule, Rosenblatt (1958)
for his Perceptron, Widrow and Hoff (1960) for the Adaline, inspired from a com-
bination of the perceptron, and Hebb’s learning rule in the framework of linear
predictive filters in signal processing.

Later, in the following decades, Minsky and Papert (1969) revisited the percep-
tron and its limitations, opening the way to the multilayered perceptron with a
new learning rule: the gradient back-propagation suggested by Werbos (1974) and
extended by Rumellart and McClelland (1986). We also cite the Hopfield networks
(1982) derived from some statistical physics considerations. The common feature
of all these networks is that they are taught to classify or recognize items according
to an ad hoc learning rule.

In the mean time, a new concept of artificial neural networks, called “self-
organization” emerged from the pioneering work by Kohonen (1984) with his
self-organizing maps. In this framework, the neural network rather than to be
taught what to do, was left able to evolve with respect to the input information
structure, according to some general learning rule. With this concept, artificial
neural networks acquired some scent of “intelligence” and many researchers
worked around this idea of self-adaptive networks: among them, in nonlinear
dimensionality reduction and data visualization Demartines and Herault (1999)



XX Foreword

with curvilinear component analysis, Tenenbaum (2000) with isomap, Lee and
Verleysen (2004) with curvilinear distance analysis. We also cite the sources
separation network also called independent component analysis (Herault, Ans,
and Jutten, 1986) widely used as a signal processing technique to extract signals
from unknown mixtures of them, provided that these signals are statistically
independent and that the mixtures are different.

During this period, many international workshops and conferences concerning
neural networks (ICANN, NIPS, IWANN, ESANN, etc.) were launched, gathering
researchers mainly from mathematics and engineering. However, several biolo-
gists and psychophysicists progressively attended these conferences, often under
the solicitations of the early participants.

Since the beginning of the 1980s, some researchers turned themselves toward
more “realistic” models of neurons, among them Carver Mead (1988) who defined
the concept of neuromorphic circuits, with his famous CMOS electronic model of
the retina: he mimicked the retinal electric synapses by means of simple resistors
and capacitors. He designed an analog electronic integrated circuit which
exhibited the main properties of the vertebrate retina. This circuit was much
more efficient than the usual digital approaches: fast, robust, continuous-time,
and low energy consumption are the most important qualifying terms of this
approach.

Maybe because this work was about the retina, it has motivated a renewal of
interest in the biological model as an alternative – or rather as a complement – to
computer vision. Hence, many researchers in engineering began to consider and
study the biology of vision, asking for help from their colleagues in biology and
psychophysics. This led to the creation of several multidisciplinary teams around
the world, acting in the framework of cognitive science. A new era was thus
born.

This book is the congregation of internationally renowned scientists in biology,
psychology, mathematics, electronics, computer science, and information tech-
nology. They have made a number of major contributions in biological vision,
computer vision, and cognitive science. The book addresses the most important
aspects of the fields, from visual perception to technology at a high scientific level.
Across its chapters, it offers a comprehensive view of biological motivations,
theoretical considerations, as well as application suggestions.

On going through the chapters, the reader will discover in-depth studies of
the state-of-the-art statements in various disciplines and cross-disciplinary
topics related to vision and visual perception. Without any order of precedence,
the following subjects are of interest: electronic neuromorphic circuits, retinal
and color processing, insect vision, visual psychophysics, visual attention, and
saliency, Bayesian inference in visual perception, detection of scale-invariant
features, object recognition, spiking neurons, sparse coding, plenoptic cameras,
motion detection, visual navigation.

Far from being a simple list of topics, this book offers the opportunity to con-
sider a global approach to vision and invites the reader to make his (her) own point
of view on a synthetic basis. It will be of great importance for researchers who
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are interested in the fundamental principles of biological vision and in computer
vision, hardware, and autonomous robotics. Bringing together scientists of differ-
ent disciplines, and bi- or three-disciplinary scientists, the book offers an example
for future organization for academic and even industrial research teams.

Grenoble, Spring 2015 Jeanny Herault




