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For the student

This book is your introductory guide to mathematical modelling and modelling with differential and
difference equations. It is divided into modules, and each module is further divided into exposition, practice
problems, and core exercises.

The exposition is easy to find—it’s the text that starts each module and explains the big ideas of modelling
and differential or difference equations. The practice problems immediately follow the exposition and
are there so you can practice with concepts you’ve learned. Following the practice problems are the core
exercises. The core exercises build up, through examples, the concepts discussed in the exposition.

To optimally learn from this text, you should:

• Start each module by reading through the exposition to get familiar with the main ideas. In most
modules, there are some videos to help you further understand these ideas, you should watch them
after reading through the exposition.

• Work through the core exercises to develop an understanding and intuition behind the main ideas
and their subtleties.

• Re-read the exposition and identify which concepts each core exercise connects with.

• Work through the practice problems. These will serve as a check on whether you’ve understood the
main ideas well enough to apply them.

The core exercises. Most (but not all) core exercises will be worked through during lecture time, and
there is space for you to work provided after each of the core exercises. The point of the core exercises is
to develop the main ideas of modelling with differential or difference equations by exploring examples.
When working on core exercises, think “it’s the journey that matters not the destination”. The answers
are not the point! If you’re struggling, keep with it. The concepts you struggle through you remember
well, and if you look up the answer, you’re likely to forget just a few minutes later.

Contributing to the book. Did you find an error? Do you have a better way to explain a concept? Please,
contribute to this book! This book is open-source, and we welcome contributions and improvements.
To contribute to/fix part of this book, make a Pull Request or open an Issue at https://github.com/
bigfatbernie/IBLModellingDEs. If you contribute, you’ll get your name added to the contributor
list.

For the instructor

This book is designed for a one-semester introductory modelling course focusing on differential and
difference equations (MAT231 at the University of Toronto).

Each module contains exposition about a subject, practice problems (for students to work on by them-
selves), and core exercises (for students to work on with your guidance). Modules group related concepts,
but the modules have been designed to facilitate learning modelling rather than to serve as a reference.

Using the book. This book has been designed for use in large active-learning classrooms driven by a think,
pair-share/small-group-discussion format. Specifically, the core exercises (these are the problems which
aren’t labeled “Practice Problems” and for which space is provided to write answers) are designed for use
during class time. practice problems were designed for students to practice at home by themselves and
include some more computational exercises, and projects were designed to be solved through teamwork
during tutorials with an assistant around to provide guidance.

https://github.com/bigfatbernie/IBLModellingDEs
https://github.com/bigfatbernie/IBLModellingDEs


A typical class day looks like:

1. Student pre-reading. Before class, students will read through the relevant module.

2. Introduction by instructor. This may involve giving a broader context for the day’s topics, or
answering questions.

3. Students work on problems. Students work individually or in pairs/small groups on the prescribed
core exercise. During this time the instructor moves around the room addressing questions that
students may have and giving one-on-one coaching.

4. Instructor intervention. When most students have successfully solved the problem, the instructor
refocuses the class by providing an explanation or soliciting explanations from students. This is
also time for the instructor to ensure that everyone has understood the main point of the exercise
(since it is sometimes easy to miss the point!).

If students are having trouble, the instructor can give hints and additional guidance to ensure
students’ struggle is productive.

5. Repeat step 3.

Using this format, students are thinking (and happily so) most of the class. Further, after struggling with
a question, students are especially primed to hear the insights of the instructor.

Conceptual lean. The core exercises are geared towards concepts instead of computation, though some
core exercises focus on simple computation. They also have a modelling lean. Learning algorithms for
solving differential and difference equations is devalued to make room for modelling and analysis of
equations and solutions.

Specifically lacking are exercises focusing on the mechanical skills of algorithmic solving of differential
and difference equations. Students must practice these skills, but they require little instructor intervention
and so can be learned outside of lecture (which is why core exercises don’t focus on these skills).

Real-World problems. The projects have a more open ended or real-world lean. They are meant to give
students some practice dealing with “messy” data or having to build their own model and assess it. They
should be incorporated into the course alongside the core exercises, so that students get a taste of both
the conceptual and practical aspects of modelling. Information is sometimes purposefully lacking and
students are encouraged to find it out by themselves: by experimentation, internet consultation, or just
by reasoning.

How to prepare. Running an active-learning classroom is less scripted than lecturing. The largest
challenges are: (i) understanding where students are at, (ii) figuring out what to do given the current
understanding of the students, and (iii) timing.

To prepare for a class day, you should:

1. Strategize about learning objectives. Figure out what the point of the day’s lesson is and brain
storm some examples that would illustrate that point.

2. Work through the core exercises.

3. Reflect. Reflect on how each core exercise addresses the day’s goals. Compare with the examples
you brainstormed and prepare follow-up questions that you can use in class to test for understanding.

4. Schedule. Write timestamps next to each core exercise indicating at what minute you hope to start
each exercise. Give more time for the exercises that you judge as foundational, and be prepared to
triage. It’s appropriate to leave exercises or parts of exercises for homework, but change the order
of exercises at your peril—they really do build on each other.

A typical 50 minute class is enough to get through 1–3 core exercises (depending on the difficulty),
and class observations show that class time is split 50/50 between students working and instructor
explanations.



License

Unless otherwise mentioned, pages of this document are licensed under the Creative Commons By-
Attribution Share-Alike License. That means, you are free to use, copy, and modify this document provided
that you provide attribution to the previous copyright holders and you release your derivative work under
the same license. Full text of the license is at http://creativecommons.org/licenses/by-sa/4.
0/

If you modify this document, you may add your name to the copyright list. Also, if you think your
contributions would be helpful to others, consider making a pull request, or opening an issue at https:
//github.com/bigfatbernie/IBLModellingDEs

Incorporated content. Content from other sources is reproduced here with permission and retains the
Author’s copyright. Please see the footnote of each page to verify the copyright.

Included in this text, in chapter 1, are expositions adapted from the handbook “Math Modeling: Getting
Started and Getting Solutions” by K. M. Bliss, K. R. Fowler, and B. J. Gallizzo, published by SIAM in 2014
https://m3challenge.siam.org/resources/modeling-handbook.
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Request on the book’s GitHub page: https://github.com/bigfatbernie/IBLModellingDEs/
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In this section, we study some strategies to model problems mathematically in an effective manner.

We also provide a structure to modelling problems by breaking them in small parts:

1. Define the problem

2. Build a mind map

3. Make assumptions

4. Construct a model

5. Analyze the model

6. Write a report

In this chapter, we follow the approach of

Math Modeling: Getting Started and Getting Solutions, K. M. Bliss,
K. R. Fowler, and B. J. Galluzzo, SIAM, Philadelphia, 2014

https://m3challenge.siam.org/resources/modeling-handbook

and

GAIMME: Guidelines for Assessment and Instruction in Mathematical
Modeling Education, Second Edition, Sol Garfunkel and Michelle
Montgomery, editors, COMAP and SIAM, Philadelphia, 2019

http://uoft.me/gaimme

(image adapted from xkcd - comic #605)
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Defining the Problem

In this module you will learn

� how to define a problem mathematically.

The first step is to define the problem we want to solve.

Important. To do this, we should start from the end!

We need to decide on what kind of mathematical object we will use in the end to show that we solved the
problem we were tasked with.

Mathematical Object. A “mathematical object” can take several forms:
� a whole or real number (this type of object is the most popular);

� a vector of numbers;

� a function;

� an equation, an inequality;

� a geometrical shape: in the design of a school building or a protective helmet;

� a graph, as for the study of a subway line, of the fluidity of the Internet or for the study of the danger
during a spill of a dangerous substance on a road near sources of drinking water.

Despite your love for numbers, stay open to all “mathable” objects.

Once this is done, we can define the problem mathematically.

Example. Your team was tasked with optimizing the layout of an airport.

The team decided to define:
� T = the total time (in minutes) necessary by the average person to walk from their airport transporta-

tion (taxi, train, bus) to their gate, disregarding the time spent in security or immigration.
At the end of the project, to show that the team did find a good layout for the airport, the team will show
that the new layout reduces the value of T .

Once this decision is made, the problem to solve (or improve) becomes clear:
� Minimize T

Practice Problems

For each exercise, what “mathematical object” would you
use to communicate that you have solved or improved the
problem? Then define the problem mathematically.

1 Help the city of Toronto choose the best recycling
system.

2 Help the Canadian Institute of Health Information
(CIHI) estimate how significant the outbreak of ill-
nesses will be in the coming year in Canada.

3 Create a mathematical model to rank roller coasters
according to thrill factor.

4 Gas stations offer different prices for gas. I would like
to create an app that finds the best gas station to go
to. What should “best” mean?

5 Is it better to buy or rent?

(a) Is it better to buy a car or rent Zipcar, or Car2go?

(b) Does the criteria you used to evaluate the previ-
ous question change if the question is whether
to buy a bicycle or use Bike Share Toronto?

6 Help Airbus design the interior of an airplane.
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1 You are hired by theBigCompany to help with their “elevator problem”.

This is the email you received:

——– Forwarded Message ——–

Date: Monday, 7 September 2020 21:41:35 + 0000
From: CEO <theCEO@theBigCompany.ca>
To: Human Resources <hr@theBigCompany.ca>
Subject: they’re still late!

Hey Shophika!

I still get complaints about staff being late, some by 15 minutes.
With the staff we have, that’s about one salary lost.
Again the bottleneck of the elevators seems to be the problem.
Can you suggest solutions?

Thanks, the CEO

(problem adapted from GAIMME, SIAM http://uoft.me/gaimme )

What mathematical object would you use to convince the CEO that you have solved or improved the
problem?

Teamwork.
With your team, you must decide on one answer and be prepared to report on your decision and the
reason for your choice.

5 © 2020 Galvão-Sousa-Siefken
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2 The mayor of Toronto wants to extend the subway line with a new orange line as in the figure below.

(Map taken from Wikimedia Commons created by Craftwerker)

2.1 What “mathematical object” would you use to communicate that to the Mayor that this line is optimal (or
sub optimal) ?

2.2 Define the problem mathematically.

© 2020 Galvão-Sousa-Siefken 6
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Building a mind map

In this module you will learn

� How to create a mindmap.

A mind map is a tool to visually outline and organize ideas. Typically a key idea is the centre of a mind map
and associated ideas are added to create a diagram that shows the flow of ideas.

Example.

Let us focus on the question: “What is the best recycling system for Toronto?”
Then we can think of many different definitions for what the word “best” means:
� The system that gets the most participation from the population, which can be measured by the

fraction of the Toronto households participating in recycling;

� The system that costs the least amount of money for the city. How can this be measured?

� The system that processes the most amount of recyclables.
In the figure below, we focus on the definition of “best”, with these three possible definitions branching off
to be further explored.

“Best” recycling centre

Most par-
ticipation

Least cost
to the city

Processes
the most
recyclables

From here, we can focus our attention on one of the branches at a time.

Let’s think about the least-cost option first.
We probably can’t determine how much any recycling program costs without knowing more about the
recycling program, so a good place to start is to ask the question “What kinds of recycling programs exist?”
If we aren’t familiar with different types of recycling, we might need to do some research to see what kinds
of programs exist.
A possible next step on your mind map for the least-cost approach could be the one shown below.

“Best” recycling centre

Most par-
ticipation

Least cost
to the city

Processes
the most
recyclables

Drop off
centre

Curbside
single stream

Curbside
(pre-sorted)

Pay as you
throw

Reprinted with permission. All rights reserved. 7 © 2014 Society for Industrial and Applied Mathematics.



M
od

ul
e
2:

B
ui
ld
in
g
a
m
in
d
m
ap

Important. There is free online software to help creating a mind map. One such is FreeMind
(http://freemind.sourceforge.net).

For more details on creating a mind map, check the book:

Math Modeling: Getting Started and Getting Solutions, K. M. Bliss, K. R. Fowler,
and B. J. Galluzzo, SIAM, Philadelphia, 2014

https://m3challenge.siam.org/resources/modeling-handbook

Practice Problems

1 Expand the mind map from the example above by
focusing on the other two approaches:

(a) Most participation

(b) Processes the most recyclables

For each part, create a mind map. Focus on the same
approach you had for the questions from the previous
module.

2 Help the Canadian Institute of Health Information
(CIHI) estimate how significant the outbreak of ill-
nesses will be in the coming year in Canada.

3 Create a mathematical model to rank roller coasters
according to thrill factor.

4 Gas stations offer different prices for gas. I would like
to create an app that finds the best gas station to go
to. What should “best” mean?

5 The mayor of Toronto wants to extend the subway
line with a new orange line as in core exercise 2. Is it
optimal?

6 Is it better to buy a car or rent Zipcar, or Car2go?

7 Help Airbus design the interior of an airplane.

© 2020 Galvão-Sousa-Siefken 8
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3 Consider the elevator problem from question 1.

Your team decides that the mathematical object you will use to show the CEO that you solved or improved
the problem is

• T = the sum in minutes by which every employee is late.

Note that employees that are on time count for 0 minutes (not a negative amount of minutes).

Create a mind map for the question: How can T be minimized?

9 © 2020 Galvão-Sousa-Siefken



4 The city of Toronto decided to tear down the Gardiner expressway. While the demolition is taking place,
several key arteries are closed and many intersections are bottled. At peak times, a police officer is often
posted at this intersection to optimally control the traffic lights.

4.1 What mathematical meaning can we give to the word optimal in this circumstance?

4.2 Create a mind map for this problem.

© 2020 Galvão-Sousa-Siefken 10
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Making assumptions
In this module you will learn

� that we need to make assumptions to be able to create a model

� how to strike a balance between accuracy and solvability

� that it is crucial to inform future users of your model of its assumptions and conditions

Real problems are complex, so when modelling a real problem mathematically, we must make some assumptions.

The assumptions that we make will affect the problem we are solving and its difficulty, so we need to strike a
balance between:

� accuracy – the fewer assumption the better, and

� solvability – the more assumptions the better.

Many assumptions follow naturally when building a mind map.

When figuring which assumptions to make, keep in mind the key-factors of the problem and find data when
available (usually online). If not available, measure data when possible, and if it’s not possible, make a
reasonable assumption on what the data might look like.

Another thing to keep in mind are time constraints. Whether in a class, test, or working in a project, there
will be deadlines. Your assumptions should take your time constraints into consideration.

Example.

Let us revisit the example of the previous module about the “best” recycling centre.
For this example, imagine that the team decided on focusing their attention on the least cost to the city
through building drop off centres.

For this, we need to find out how many people would make use of the drop-off centres (termed “likelihood
of participation”).

The two extremes would be to assume that 100% of the people near a recycling centre would use it or
that none would use it. Neither of these seems like a reasonable assumption, so what would be a better
assumption?

Maybe the best idea is to do some investigation and see if there has been any successful research on
participation rates in drop-off centres.

The team found a study that had been done in Ohio (that would have to be cited in the report) that
estimated that about 15% of households participated in drop-off centre recycling, and made an assumption
that this rate would hold in every city across the U.S..

One might ask if it is safe to assume that across the U.S. 15% of households will participate in drop-off
centre recycling if it is available. Is it true that residents of Arizona will behave the same way residents
of Ohio do? Certainly some cities would garner a participation rate much higher than 15%, while other
cities would have a significantly lower participation rate. In fact, what are the chances that any city would
actually have a participation rate of exactly 15%?
In some sense, one might say that assigning one participation rate to every city across the U.S. is a ridiculous
assumption.

In response to that line of thinking, remember two things:
� First, remember that one must make assumptions in order to make a model. It is not practical or

feasible to poll every citizen of every city to determine who will bring recyclables to a drop off centre.
If we had to rely on data with that level of certainty at every juncture of the modelling process, we
would never get any work done.

Reprinted with permission. All rights reserved. 11 © 2014 Society for Industrial and Applied Mathematics.
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It’s practical and important to make reasonable assumptions when we cannot find data.

� Second, you are developing a model that is intended to help one understand some complex behaviour
or assist in making a complex decision. It is not likely to predict the exact outcome of a situation, only
to help provide insight and predict likely outcomes. When you provide a list of your assumptions,
you’ve done your part to inform anyone who might use your model. They can decide whether they
think your assumption is or is not appropriate to model the behaviour they are interested in predicting.

Practice Problems

For each part, you are required to make an estimate for some
quantity. Make assumptions and justify them in order to
solve the problem.

1 What is the number of piano players in Toronto?
(Fermi problem)

2 How many linear km of roads are there in Toronto?

3 How much salt the city of Toronto needs for its roads
during the Winter?

4 The skating season in Canada is shortening: What are
the key-factors determining its length?

5 How much soy sauce is consumed daily in Toronto?

6 How high would the Niagara Falls need to be so that
Toronto could be powered by the Lewinston hydro
power plant alone?

7 How much nuclear fuel would be needed per year
to power Toronto using the Pickering nuclear power
plant alone?

8 How many tennis balls are used in the World per year?

9 How many screws are in the Eiffel tower?

© 2014 Society for Industrial and Applied Mathematics. 12 Reprinted with permission. All rights reserved.



5 Consider the elevator problem from core exercise 1.
We now give you some technical details about
theBigCompany:

• The company occupies the floors 30–33 of the
building Place Ville-Marie in Montréal.

• Personnel is distributed in the following way:

– 350 employees in floor 30,

– 350 employees in floor 31,

– 250 employees in floor 32,

– 150 employees in floor 33.

Note. Even though these details are fictional, the
numbers respect the building code.

Hint. Focus on a few parameters and variables.

——– Forwarded Message ——–

Date: Monday, 7 September 2020 21:41:35 +
0000
From: CEO <theCEO@theBigCompany.ca>
To: Human Resources <hr@theBigCompany.ca>
Subject: they’re still late!

Hey Shophika!

I still get complaints about staff being late, some by
15 minutes.
With the staff we have, that’s about one salary lost.
Again the bottleneck of the elevators seems to be
the problem.
Can you suggest solutions?

Thanks, the CEO

(problem adapted from GAIMME, SIAM
http://uoft.me/gaimme)

5.1 With your team, decide on what kind of information you would need to have to be able to solve this
problem.

5.2 Find the relevant information about the elevators (search the internet, by experimentation). Check the
reliability of the data you found.

5.3 For the relevant information that you cannot obtain, make assumptions. These assumptions should be
reasonable and you should be able to justify them.

13 © 2020 Galvão-Sousa-Siefken

http://uoft.me/gaimme


© 2020 Galvão-Sousa-Siefken 14



6 How much would it cost to make a bridge between Toronto and the U.S.?

15 © 2020 Galvão-Sousa-Siefken
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Construct a model

In this module you will learn

� how to build a model based on the previous steps

This is the part of the modelling where we connect all that we have done so far: the problem we defined, the
mind map, the assumptions, and all the variables and parameters in a mathematical model to answer the
“mathematical” problem defined in Module 1.

With the problem statement clearly defined and an initial set of assumptions made (a list that will likely get
longer), you are ready to start to define the details of your model. Now is the time to pause to ask what is
important that you can measure. Identifying these notions as variables, with units and some sense of their
range, is key to building the model.

The purpose of a model is to predict or quantify something of interest.

Creating a model usually means writing down mathematical equations, constructing a graph, analyzing a
geometric figure, or do some statistical analysis.

Example. Your team is tasked with finding the best recycling centre (we looked at this example in Module
2 and your team has chosen to minimize the cost to the city by using drop off centres.

As part of modelling process, your team has made the following assumptions/measurements:
� People would be willing to pay $2.29 to recycle per month or $0.53 per week

� People would make one weekly trip to the centre

� Gasoline costs around $1.26 per litre

� On average a passenger car consumes 10 litres per hundred kilometres

This means that the (one-way) distance people are willing to travel every week to the drop-off centre is

d =
1

4.3 trips/month
·

$2.29/month
($1.26/L) · (0.1 L / km)

= 4.2 km/trip.

This should help us figure out the best way to place the drop-off centres.

The Mathematical model might look like this
� Maximize (number of people within a 4.2 km radius of a drop-off centre)

� subject to a certain number of drop-off centres (given by the city budget)

Assuming that this project was requested for a specific city, the final report should also include some suggested
locations for various different budgets.

Practice Problems

For each question, create a model to answer the question.
Remember all the previous steps.

1 Describe the possible positions of the hands in a clock.

2 You want to open a piano store in Toronto, where
should you open it?

3 There was a big snow storm in Toronto and the roads
need cleaning. How should the city deploy its snow
plowers?

4 The city of Toronto wants to deactivate the Pickering

nuclear power plant in favour of renewable power
sources. What is the best way to create the same
amount of electricity using only renewable sources in
the GTA?

5 Loblaws wants to start an online food delivery service.
How should they do it?

6 The city airport (YTZ) built a tunnel to access the
island airport from the city. Before that, they used a
ferry. Was building the tunnel a good decision?

Reprinted with permission. All rights reserved. 17 © 2014 Society for Industrial and Applied Mathematics.
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7 Recall the core exercise 5.

• The company occupies the floors 30–33 of the
building Place Ville-Marie in Montréal.

• Personnel is distributed in the following way:

– 350 employees in floor 30,

– 350 employees in floor 31,

– 250 employees in floor 32,

– 150 employees in floor 33.

Write down a mathematical model for this problem.

Teamwork.
Each team should have one model and be pre-
pared to present it to the class.

——– Forwarded Message ——–

Date: Monday, 7 September 2020 21:41:35 +
0000
From: CEO <theCEO@theBigCompany.ca>
To: Human Resources <hr@theBigCompany.ca>
Subject: they’re still late!

Hey Shophika!

I still get complaints about staff being late, some by
15 minutes.
With the staff we have, that’s about one salary lost.
Again the bottleneck of the elevators seems to be
the problem.
Can you suggest solutions?

Thanks, the CEO

(problem adapted from GAIMME, SIAM
http://uoft.me/gaimme)

19 © 2020 Galvão-Sousa-Siefken
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Model Assessment

In this module you will learn

� how to analyze a model

� to check the quality of the model

At this point, you have defined a problem statement, and a mind map to help you decide how to approach the
problem. You have made assumptions and made note of them and justified them. You finally created a model
to solve the problem.

The next step is to analyze the model.

There are two types of analysis:

Superficial assessment. Are the units correct? Are the variables and parameters of a reasonable magnitude?
Does it behave as expected? Does it make sense?

In-depth assessment. Once the superficial assessment is verified, we need to understand the model at a
deeper level.

What are the model’s strengths? What are its weaknesses?

When you change the inputs of the model, how do the outputs change? This is called sensitivity analysis.

Example. Modelling the flu

History of the project:
� Split population into two classes: infected and not infected

� Assume that each infected person infects R number of non infected people every b days

� Define I(n) = number of infected people after n days

� The two previous points imply I(n+ b) = I(n) + R I(n)

� We can then conclude that I(nb) = (1+ R)n I(0) (why?)

After plotting the resulting function I(n) (with R= 5, b = 2, I(0) = 20), we can assess our model.

� https://www.desmos.com/calculator/deh5qeea20

Reprinted with permission. All rights reserved. 21 © 2014 Society for Industrial and Applied Mathematics.
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Strengths:
� After two days (b = 2), there are 6 infected people, so it is following our assumption

� The number of infected people increases faster and faster as expected

� The disease spreads at a constant rate. Also on Desmos, check the infection rate
I(n+ b)

I(n)

� We could find an explicit formula for the number of infected individuals I(n)

Weaknesses:
� The model is too simple, so it doesn’t model the spread of the flu accurately

� The model yields an exponential rate of infection, which is not possible for very long

� The model predicts that eventually the disease will spread to everyone

� The model assumes that there are only two types of people: infected and susceptible. Do people
recover from the disease?

After assessing the model, if time allows, it is important to re-think the model and the assumptions made.

Practice Problems

Assess the models created for the practice problems from the
previous module.

1 You want to open a piano store in Toronto, where
should you open it?

2 There was a big snow storm in Toronto and the roads
need cleaning. How should the city deploy its snow
plowers?

3 The city of Toronto wants to deactivate the Pickering
nuclear power plant in favour of renewable power
sources. What is the best way to create the same
amount of electricity using only renewable sources in
the GTA?

4 Loblaws wants to start an online food delivery service.
How should they do it?

5 The city airport (YTZ) built a tunnel to access the
island airport from the city. Before that, they used a
ferry. Was building the tunnel a good decision?

© 2014 Society for Industrial and Applied Mathematics. 22 Reprinted with permission. All rights reserved.



8 Continuing on the elevator problem, let us think of this model for the problem.

Facts:

• Loading time of people at ground floor = 20 s

• Speed of uninterrupted ascent/descent = 1.5 floors/s

• Stop time at a floor = 7 s

• Number of elevators serving floors 30–33 = 8

(these elevators serve floors 23-33 = 11 floors)

• Maximal capacity of elevators = 25 people

Assumptions:

• Personnel that should start at time t, arrive uniformly in the interval [t − 30, t − 5] in minutes

• First arrived, first served

• During morning rush hour, elevators don’t stop on the way down

• Elevators stop only at half the floors they serve

• Elevator failures are neglected

• Mean number of people per floor is equal to the mean number of people per floor of the BigCompany

• Elevators are filled, in average, to 80% of their capacity

Model:

• Mean number of people per floor = d =
350+ 350+ 250+ 150

4
= 275 people / floor

• Number of people on floors served by elevators (11 floors) = N = d · 11= 3025 people

• Time ∆t of one trip

∆t = loading time on
ground floor + time of flight

ground→ 33 + time of flight
33→ ground + stop time to

6 of the 11 floors = 106 s

• Number of trips necessary per elevator = n=
3025
20 · 8

≈ 19 trips

• Time necessary to carry the staff of the BigCompany = ttt =
19 · 106

60
= 33 minutes

• Accumulated late time = TTT = 180 · 20 · 8+ 74 · 20 · 8= 40 640 seconds = 11h18m

Your task is to assess this “model” (first estimate of the number of minutes employees are late). Be ready
to report on your assessment.

Teamwork.
Each team should have one assessment and be prepared to present it to the class.

23 © 2020 Galvão-Sousa-Siefken
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Putting it all together

In this module you will learn

� how to put all that you have done together into a well structured report

This is the final stage of the modelling project.

By now, you have started with a mathematically defined problem, with some assumptions, and you have created
a mind map to help you navigate the problem. You have also constructed a model and assessed it to make sure
it is sound.

All that we have left is to put all this work together into the form of a report.

The report should consist of two parts:

1. Summary. Should be at most one page long, and contain a statement of the problem, a brief description
of the methods chose to solve it, and some final results and a conclusion. In this part of the report, you
should keep mathematical symbols to a minimum, so the reader gets an idea of what to expect in the
remainder of the report without getting bogged down in unfamiliar mathematics.

2. In-depth report. This is where the details go in. It should start with an introduction to the problem
assuming that the reader is not aware of it. It should then be structured according to the steps we did
before:

� Optionally, you can include a mind map with a description of how it guided the whole process

� Assumptions and variables in the model

� The model described in detail

� The solution process

� The assessment of the model

� A conclusion, with a description of the results

Example. As an example of an excellent report, please read the report from the winning team of the 2019
M3C challenge:

� https://uoft.me/modelling-app-report

� Read the summary and chapters 1, 2, 5.

Reprinted with permission. All rights reserved. 25 © 2014 Society for Industrial and Applied Mathematics.
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Report checklist.
Component Questions about your model and how you

made it
Useful vocabulary

Defining the
problem

What is/are the big problem/s that you have been
asked to solve?

open-ended problem

What is the specific problem your model is going
to solve?

specific, focus

Making
assumptions

What ideas did you think about that you decided
not to try?

eliminate, prioritize

What have you assumed in order to solve the
problem? Why did you make these choices?

assumption, constraints

What quantities are important? Which ones
change and which ones stay the same?

variable

Where did you find the numbers that you used
in your model?

resources, citations

Getting a
solution

What pictures, diagrams or graphs might help
people understand your information, model, and
results?

diagram, graph, labels

What mathematical ideas did you use to describe
the situation and solve your problem?

situation

Model
assessment

How do you know that your calculations are cor-
rect? Did you remember to use units (like dollars
or metres?)

calculation, unit

When does your model work? When do you need
to be careful because it might not?

limitations

How do you know you have a good/useful model?
Why does your model make sense?

testing, validation

If you were going to make your model better,
what would you do?

improvement, iteration

Reporting
results

Explain your mathematical model in words and
math.

clarity, concision

What are the strengths and weaknesses of your
model?

strengths, weaknesses

What are the 5 most important things for your
audience/client to understand about your model
and/or solution?

client, audience

This checklist is adapted from

GAIMME: Guidelines for Assessment and Instruction in Mathematical
Modeling Education, Second Edition, Sol Garfunkel and Michelle
Montgomery, editors, COMAP and SIAM, Philadelphia (2019)

https://uoft.me/gaimme

© 2019 Society for Industrial and Applied Mathematics. 26 Reprinted with permission. All rights reserved.
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(image from xkcd - comic #793)
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Introduction to Differential Equations

Differential Equation. A differential equation is an equation involving an unknown function and one
or more of its derivatives.

Among differential equations, there are lots of types, that require different approaches, so we need to classify
them.

Types of Differential Equations. There are two main types of differential equations:
� Ordinary differential equations, usually denoted as ODEs: when the unknown function is a function

of one variable;

� Partial differential equations, usually denoted as PDEs: when the unknown function is a function
of several variables.

In this book, we are going to focus only on ordinary differential equations.

Among ordinary differential equations, we distinguish them according to:
� order: the order of a differential equation is the order of the highest derivative present in the

differential equation;

� linear vs nonlinear: A differential equation F
�

t, y, y ′, . . . , y (n)
�

= 0 is called linear if F is a
linear function of y, y ′, . . . , y (n). Linear ODEs have the form

a0(t)y(t) + a1(t)y
′(t) + · · ·+ an(t)y

(n)(t) = g(t).

All other differential equations are called nonlinear.

Roughly, to check whether an ODE is linear, we need to check that:
� The unknown y and its derivatives appear with exponent 1;

� The unknown y and its derivatives do not multiply by each other;

� The unknown y and its derivatives are not the “objects” of other functions – there are no occurrences of
things like sin(y) or e y ′ , ln(y ′′),

p

y (3), etc.

In general, when tackling a differential equation, linear ODEs are easier to solve and study than nonlinear.

In the following chapters, observe how the methods and theory for linear ODEs is much more developed.
Nonlinear ODEs are usually tackled on a case-by-case basis, and there is no theory that applies to a class of
nonlinear ODEs.

Fortunately, many important problems are modelled by linear equations.

A common approach to nonlinear problems is to “transform” them into a linear problem. This means that the
new linear problem is easier to study, but will be an approximation of the original problem, and often that
approximation is only reasonable within some restricted conditions.

Example. Consider the nonlinear ODE
y ′ = − sin(y).

This is a nonlinear ODE.
However, by Taylor’s Theorem, we can approximate the function sin(y) by y , as long as |y| is very small.
So we can say that the solution of the original solution is very close to the solution of

y ′ = −y,

as long as |y| is very small.

29 © 2020 Galvão-Sousa-Siefken
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Solutions of Differential Equations
In this module you will learn

� what is a solution of a differential equation

� the difference between a solution and an integral curve

When we model a quantity through a differential equation, we will need to study its solution.

Solution. Given a differential equation, a solution is a differentiable function that satisfies the differential
equation.

Example. Consider the differential equation

t
du
d t
= u+ t2 cos(t).

Then the function
u(t) = t sin(t)

is a solution, because

t
du
d t
= t

�

sin(t) + t cos(t)
�

= t sin(t) + t2 cos(t) = u+ t2 cos(t).

There are several different approaches to studying the solutions:

� finding an explicit or implicit formula for the solution,

� finding an approximation of the solution,

� or just finding some of its properties.

We will see all these approaches in the next modules.

Here we are interested in what it means to be a solution and the different types of solutions.

General solution. Given a differential equation, its general solution is an explicit or implicit formula for
all the possible solutions of the differential equation.

Example. Consider the differential equation of the previous example:

t
du
d t
= u+ t2 cos(t).

In the previous example we saw one of the solutions. In fact, all the possible solutions for this differential
equation have the form:

u(t) = t
�

sin(t) + C
�

,

for an constant C .

This is called the general solution of the differential equation.

Roughly, the general solution of an nth-order differential equation must contain n constants.

This means that the space of solutions of an nth-order differential equation is a (affine) subspace of dimension
n.

Integral curve. We can represent all the solutions geometrically as an infinite family of curves. These
curves are called integral curves.
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Example. Consider the initial-value problem






d y
d x
= −

x
y

y(0) = −3

Then, we can check that curves of the form x2 + y2 = C satisfy this differential equation.

This gives us the solution
y(x) = −

p

9− x2.

However, the integral curve for this initial-value problem is the curve

x2 + y2 = 9

x

y

y(0)

x

y

y(0)

Solution of the initial-value problem Integral curve for the initial-value problem

Practice Problems

1 Check that curves of the form x2 + y2 = C satisfy the

differential equation
d y
d x
= −

x
y

.

2 Is the piecewise-defined function

y(x) =

¨

−x2 if x < 0

x2 if x ≥ 0

a solution of the differential equation x y ′ − 2y = 0
on (−∞,∞)?

3 Consider the differential equation

y ′′′′ − 8y ′′′ + 26y ′′ − 40y ′ + 25y = 0.

(a) Is y = 3e2x a solution?

(b) Is y = 4e2x sin(x) a solution?

(c) Is y = −8xe2x cos(x) a solution?

(d) For the three function above, if they are solu-
tions, what are initial conditions of the form

y(0) =
y ′(0) =
y ′′(0) =
y ′′′(0) =

that the solution satisfies?

4 Consider the functions

f (x) = 3x + x2 g(x) = e−7x

h(x) = sin(x) j(x) =
p

x

k(x) = 8e3x `(x) = −2cos(x)

Match each differential to one or more functions
which are solutions.

(a) y ′ = 3y

(b) y ′′ + 9y ′ + 14y = 0

(c) y ′′ + y = 0

(d) 2x2 y ′′ + 3x y ′ = y

5 Consider the differential equation u′ = −2(u− 10).

(a) Check that the curves of the form u = 10+Ce−2t

satisfy the differential equation.

(b) Sketch one solution of the differential equation.

(c) Sketch all the integral curves for the differential
equation.

(d) What is the difference between a solution pass-
ing through the point (1,20) and an integral
curve passing through the same point?

6 Consider the differential equation y ′
�

3y2 − 1
�

= 1.

(a) Check that the curves of the form y3− y = x+C
satisfy the differential equation.

(b) Sketch the solution of the differential equation
that passes through (1,1).

(c) Sketch the integral curve for the differential
equation that passes through (1, 1).
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(d) What is the difference between a solution pass-
ing through the point (1,1) and an integral
curve passing through the same point?

(e) Repeat (b)–(d) with the points (1, 0) and (1,−1)
instead of (1,1).

7 Consider the ODE y ′(t) =
�

y(t)
�2

. One of these two
graphs cannot describe the solution. Which one?

t

y

t

y

8 We seek a first-order ordinary differential equation
y ′ = f (y) whose solutions satisfy

¨

y(x) is concave up if y < 1

y(x) is concave down if y > 1

Write down or graph a function f (y) that would pro-
duce such solutions.
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9 Which of these shows solutions of y ′ = (x − 1)(x + 1) = x2 − 1 ?
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10 We seek a first-order ordinary differential equation y ′ = f (x) whose solutions satisfy







y(x) is increasing if x < 2

y(x) is decreasing if 2< x < 4

y(x) is increasing if x > 4

Write down or graph a function f (x) that would produce such solutions.
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11 Consider the ODE y ′(t) =
�

y(t)
�2

. Which of the following is true?

11.1 y(t) must always be decreasing

11.2 y(t) must always be increasing

11.3 y(t) must always be positive

11.4 y(t) must always be negative

11.5 y(t) must never change sign.
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12 Consider the differential equation 2x y ′ = y .

12.1 Check that the curves of the form y2 + C x = 0 satisfy the differential equation.

12.2 Sketch one solution of the differential equation.

12.3 Sketch all the integral curves for the differential equation.

12.4 What is the difference between a solution passing through the point (1,−1) and an integral curve passing
through the same point?
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Slope Fields

In this module you will learn

� what is a slope field

� how to sketch a slope field

� to interpret a slope field

As we saw in the previous module, once we have found a differential equation that models a situation, we
often want to figure out what happens to the solution.

In this module, we will focus on getting an idea of the solutions and integral curves using what is called a
slope field.

Slope field. Consider the differential equation y ′ = f (x , y). If we evaluate f (x , y) over a rectangular
grid of points, and we draw an arrow at each point (x , y) of the grid with slope f (x , y), then the collection
of all the arrows is called a slope field.

We can sketch Slope Fields with Wolfram Alpha.

For a differential equation
d y
d x
= f (x , y), we need to input

� Vector Field: (1, f (x , y)).

http://www.wolframalpha.com/input/?i=slope+field

Example. Let us take an example from the previous module.

Consider the initial-value problem






d y
d x
= −

x
y

y(0) = −3

We can use this definition to sketch the slope field for the differential equation
d y
d x
= −

x
y

.

We now sketch this slope field with Desmos:

https://www.desmos.com/calculator/scmz6ps0or

Now notice that the arrows have the slope of a solution. This means that solutions will be tangent to the
arrows, so we can roughly trace the solution by following the arrows.
Below, we did just that starting with the point (0,−3).
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approximated solution approximated integral curve

Important. Remember that this gives us only an approximation of the solution and integral curve. From
the approximation, we can tell that the solution seems circular, but we still need to show that it is so.

Video.

� https://youtu.be/MI2xCwBekX4

� https://youtu.be/8Amgakx5aII

Practice Problems

1 Use Wolfram Alpha, Desmos, or another software to
sketch the slope field for the following differential
equations. Then roughly trace different solutions.

(a) y ′ = 2y − x

(b) y ′ = x y

(c) y ′ = cos(y)

(d) y ′ = 1
2 + cos(y)

(e) y ′ = 1+ cos(y)

(f) y ′ = 2+ cos(y)

(g) y ′ = sin(x y)

(h) y ′ = tan(x + y)

2 Sketch a slope field for the following differential equa-
tion

y ′ = f (x , y)

where

f (x , y) =

¨

−x if x < 1

y if x ≥ 1

3 Sketch a slope field for the following differential equa-
tion

y ′ = f (x , y)

where the function f (x , y) satisfies all of the following
properties:

(a) f (x , y) is continuous

(b) f (x , y)> 0 when x > 1 and y > 1

(c) f (x , y)< 0 when x < −1 and y < −1

(d) f (x , y) depends only on x when x < −1 and
y > 1

(e) f (x , y) depends only on y when x > 1 and
y < −1

4 (a) On the slope field from the previous problem,
show that there must exist a smooth continuous
curve with horizontal lines.

(b) Show that the curve divides the (x , y) plane in
two parts.

5 Consider a differential equation

y ′ = f (x , y)

where the solutions satisfy

lim
x→∞

y(x) = 1.

(a) What property must the slope field satisfy?

(b) Sketch a possible slope field for this differential
equation.
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13 Consider the slope field from the first video of the module.

13.1 If y(0) = 5, then estimate y(−7).

13.2 If y(0) = a, then y(x)> 0 for all x > 0. For which values of a is this statement
true?
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14 A catapult throws a projectile into the air and we track the height (in
metres) of the projectile from the ground as a function y(t), where t is
the time (in seconds) that elapsed since the object was launched from the
catapult.

Then, the slope fields for y(t) and y ′(t) are shown below:

Slope field for y(t) Slope field for y ′(t)

(These slope fields were created using WolframAlpha)

14.1 On the slope field, sketch a possible solution.

14.2 Consider the graph of y(t). Does it form a parabola? Justify your answer.

© 2020 Galvão-Sousa-Siefken 42



15 Sketch the slope field for the following differential equations.

15.1 y ′ = x

x

y

1

1

15.2 y ′ = y2

x

y

1

1
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16 Consider the following slope fields:

(A) (B) (C)

(D) (E) (F)

(These slope fields were created using WolframAlpha)

16.1 Which slope field(s) corresponds to a differential equation of the form y ′ = f (x) ?

16.2 Which slope field(s) corresponds to a differential equation of the form y ′ = g(y) ?

16.3 Which slope field(s) corresponds to a differential equation of the form y ′ = h(x + y) ?

16.4 Which slope field(s) corresponds to a differential equation of the form y ′ = κ(x − y) ?

16.5 Which slope field(s) corresponds to a differential equation of the form y ′ = 1+
�

`(x , y)
�2

?

16.6 Which slope field(s) corresponds to a differential equation of the form y ′ = 1−
�

m(x , y)
�2

?
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Approximating Solutions

In this module you will learn

� to approximate the solutions of differential equations

We just learned to sketch a slope field and how to use it to sketch a rough approximation of a solution of a
differential equation.

The method of “following the arrows” of a slope field, when formalized mathematically is called Euler’s
Method.

So let us start with an initial-value problem
¨

y ′(t) = f
�

t, y(t)
�

y(0) = y0

The idea is to follow the directions given by the differential equation, so we know that

� y(0) = y0

� y ′(0) = f (0, y0)

This means that we have a starting point (0, y0) and a direction. We still need to decide the distance that we
want to follow the arrow:

� smaller distance: more accurate approximation, but will take more calculations

� longer distance: less accurate approximation, but will take fewer calculations

The typical way to decide is to set a parameter ∆t, that measures the distance we will travel in the t-axis.

t

y

2∆t 3∆t 4∆t0 ∆t

(0, y0)

(∆t, y1)

This way we find our second point (∆t, y1) where:

y1 − y0

∆t
= slope of the arrow = f (0, y0) ⇒ y1 = y0 + f (0, y0)∆t

We continue in this way to find more points (t i , yi):
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t

y

2∆t 3∆t 4∆t0 ∆t

(t0, y0)

(t1, y1)

(t4, y4)

(t2, y2) (t3, y3)

Euler’s Method. Let y ′(t) = f (t, y) be a first-order differential equation. The Euler approximation to
the initial value problem

¨

y ′(t) = f (t, y)
y(t0) = y0

with step size ∆t is the sequence of points (t i , yi) given by (t0, y0) if i = 0 and
� t i = t i−1 +∆t

� yi = yi−1 + f
�

t i−1, yi−1

�

∆t.
The method used to generate (t i , yi) is called Euler’s Method.

Example. Consider the initial-value problem
¨

y ′(t) = sin(y) + t
y(−3) = 2

Then, we can follow Euler’s Method with h= 0.5 to obtain:
� y0 = 2

� y1 = 2+ 1
2

�

sin(2)− 3
�

≈ 0.95

� y2 = 0.95+ 1
2

�

sin(0.95)− 2.5
�

≈ 0.1

� y3 = 0.1+ 1
2

�

sin(0.1)− 2
�

≈ −0.85

Here is the link to the desmos graph:
� https://www.desmos.com/calculator/

kkgj5jhggd

Video.

� https://youtu.be/q87L9R9v274

� https://youtu.be/g3Xw1r7QGOE
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� Euler’s Method helping to take a person to the Moon

Practice Problems

1 For the following initial-value problems, approximate
their solution with different values of∆t and compare
with their exact solutions.

(a) y ′ = −y + 5+ t, y(0) = 4,5, 6

(b) y ′ = y + 5− t, y(0) = −4

(c) y ′ = (t − y) sin(y), y(0) = −1

(d) y ′ =
y + 3t
1+ t2

, y(0) = −1, 1

Hint. Write a computer program that does the ap-
proximation for you.

2 Consider the differential equation

y ′ = −
x
y

.

(a) Sketch a slope field for this differential equation.

(b) Use Euler’s Method to approximate the solution
for some values of ∆x and for some initial con-
ditions.

(c) Does Euler Method do a good job approximating
the solution?

3 In this module, we derived Euler’s Method. One of
the main steps was obtaining the equation

y1 − y0

∆t
= slope of the arrow.

In Euler’s Method, we used the slope at the beginning
of the arrow. We can derive a new Method where we
use the slope at the end of the arrow.

(a) Find a formula and the algorithm for this new
method.

(b) Use this method with to approximate the so-
lution of y ′ = −y + 5 + t, y(0) = 4,5,6 and
compare the results with your results from ques-
tion 1.

(c) Which of these two methods gives a better ap-
proximation?

(d) In your opinion, which of these two methods is
better? Why?

4 Consider an initial-value problem with solution y(t).
If we want to find an approximation for t ∈ [0, T ], we
define the error of the approximation {y∆t

i } by

E(∆t) =
�

�y(T )− y∆t
N

�

�, (E)

where T = N∆t.

(a) For the initial-value problems from the previous
question, study what happens when the value
of ∆t decreases.

(b) What do you expect to happen as ∆t converges
to 0?

(c) Estimate how fast Euler’s method converges.
Find a value of p such that

E(∆t)≤ C(∆t)p,

where the constant C changes for each ODE, but
doesn’t change if you keep the same ODE but
change only the value of ∆t.

5 Using Euler’s Method with a step size of ∆t = 0.05,
and keeping only three digits throughout your com-
putations, determine the approximations at T =
0.2, 0.3, 0.4 for each of the following initial-value prob-
lems.

(a) y ′ = −y + 5+ t, y(0) = 4

(b) y ′ = y + 5− t, y(0) = −4

Compare the results with what you obtained for prob-
lem 1. Where do the differences come from?

6 Round-off errors become important when the value
of N is very large, which happens if we want a very
accurate approximation. This means that the actual
error (E) of the approximation has two components:

E(∆t) = f (∆t) + g(∆t),

where

� lim
∆t→0+

f (∆t) = 0 (approximation error)

� lim
∆t→∞

f (∆t) =∞ (approximation error)

� lim
∆t→0+

g(∆t) =∞ (round-off error)

� lim
∆t→∞

f (∆t) = 0 (round-off error)

Answer the following questions and justify your an-
swers based on these ideas.

(a) Justify why the four limits above make sense.

(b) Does the approximation converge to the solu-
tion as ∆t → 0?

(c) Is there an optimal ∆t that gives the best possi-
ble approximation?

7 The idea of the Euler’s method is to approximate the
first derivative:

y ′(tk)≈
yk+1 − yk

∆
.

Similarly, we can approximate the second derivative.

(a) Use a similar approach to obtain the following
approximation:

y ′′(tk)≈
yk+1 − 2yk + yk−1

∆2
.
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(b) Use this to create a “Second-Order Euler

Method” to approximate the initial-value prob-
lem:











θ ′′(t) = − g
` sin

�

θ (t)
�

θ (0) = θ0

θ ′(0) = θ1

8 Let us try a different type of approximation.

(a) Give a linear (quadratic) approximation of the
angle of the hours hand depending on the min-
utes hand near 5:20.

(b) Use this approximation to estimate the angle of
the hours hand at 5:23 and at 5:47.

(c) What can you say about the error of the approx-
imation?
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17 Consider the initial-value problem
¨

y ′ = − sin(x) + y
20

y(−10) = 2

The solution satisfies y(10) = 20sin(10)+400cos(10)−2e(−401−10 sin(10)+200 cos(10))
401 ≈ 6.7738406 . . ..

17.1 Using some software, approximate the solution at x = 10 for different values of ∆x .

17.2 Calculate the error between the solution and the approximation at x = 10 for the different values of ∆x .

17.3 Plot the error. Is it decreasing as ∆x decreases? Does it decrease linearly / quadratically / cubicly as
∆x decreases?
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18 Consider the differential equation
y ′ = y − 2.

18.1 Use Euler’s Method to find an approximation of the solution of this differential equation that passes
through the point (0, 3).

18.2 Find the solution of the differential equation with the same initial condition.

18.3 Use Euler’s Method to find an approximation of the solution of this differential equation that passes
through the point (0, 1).

18.4 Find the solution of the differential equation with the same initial condition.

18.5 Compare the approximations with the actual solutions. Is there a property of the Euler’s Method that
you can infer?

18.6 Explain in words why the Method satisfies that property.
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19 Which differential equations will be approximated perfectly using Euler’s Method?
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Modelling with Differential Equations
In this module you will learn

� how to start modelling a physical phenomenon into a differential equation

We started by studying some mathematical modelling in chapter 1. Then, we just used mathematical tools that
we learned before.

We now want to focus on mathematical models that arise from physical applications. These will often take the
form of one or more differential equations.

The modelling of the situation will develop in a similar way.

Step 1. Defining the problem

As before, we should start by thinking about what our ultimate goal is. Once we settle on a goal, we define it
as the function we want to study.

Example.
In this module, we are going to think about the catapult problem from
Module 12 (Slope Fields).

A catapult throws a projectile into the air.
Our goal is to track the height (in metres) of the projectile from the ground.

This means that we have a goal: to find the height of the projectile at every
moment in time after it is launched.

So we define
� y(t) = height of the projectile, in metres, t seconds after it was launched from the catapult.

Step 2. Building a mind map

A mind map will help us identify the notions that we want to include in our model.

Example.

In the catapult example, since we decided to study the projectile’s height, we need to find everything that
affects its height.

Projectile

Catapult push

Gravity

Air Drag

Wind

Energy lost through sound

Shape affects trajectory

We can include more layers to these topics if we want.
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Step 3. Make assumptions

This is a fundamental step in any modelling endeavour. The real world is too complicated, so we make
assumptions that simplify our model.

This has two main consequences:

1. It makes our model simpler and easier to study;

2. It creates constraints on our model: it is only valid under certain conditions.

Example.

Let us discuss the topics included in the mind map above:
� Catapult Push – the catapult pushes on the projectile for a small period of time when t < 0. If we are

considering only t ≥ 0, then this will likely provide us with some starting conditions for the projectile

� Gravity – The height of the projectile is affected by gravity. We have a choice to make:

� assume that the Earth is flat and gravity is constantly accelerating the projectile downwards;

� assume that the Earth is spherical and gravity is constantly accelerating the projectile towards
the centre of the Earth;

� assume that the Earth is spherical and gravity is a force accelerating the projectile towards the
centre of the Earth with a magnitude that decreases with the square of the distance to the centre
of the Earth

� or other more complicated and more accurate models.

� Air Drag – air is making it hard for the projectile to move forward. We have another choice to make:

� assume that the air drag is a force that accelerates the projectile in the direction opposite to its
movement and with magnitude proportional to its speed;

� assume that the air drag is a force that accelerates the projectile in the direction opposite to its
movement and with magnitude proportional to the square of its speed;

� or other more complicated and more accurate models.
I will leave it to you to think about the remaining three topics in the mind map.

We now need to make a decision about what to assume.

To keep this model simple, let us assume the following:

1. The projectile’s height will stay within a small range: y(t) ∈ [0, 100]. Is this reasonable for a catapult?

This means that we can consider the first of the gravitational models above: define gravitational
acceleration as a constant −g.

2. The projectile will not move very fast, so we can approximate the air drag to be directly proportional
to the speed: define air drag acceleration as ±γv, where γ > 0 is a constant that depends on the
projectile and v is the velocity of the projectile. Which sign should we have?

3. Again, the projectile will not move very fast, so we can approximate the air drag to use only the
vertical speed of the projectile: define air drag acceleration as ±γvy , where γ > 0 is a constant that
depends on the projectile and vy is the vertical velocity of the projectile. Which sign should we have?

4. The shape of the projectile will affect air drag in the form of the constant γ > 0.

5. Assume that for a medieval catapult (as in the drawing above), the other components are negligible.

We come out of this step with some conditions for the validity of our model and some new constants and
terms to use in our model.
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Step 4. Construct a model

This is the part where we put together the last three steps into one (or a system of) differential equations.

This should not be a difficult part if the last three steps were completed carefully.

Example.

Summary of Steps 1–3:
� Goal: study y(t) = height of a projectile in metres, t seconds after being released from a catapult

� Forces:

� Gravity: constant acceleration −g

� Air Drag: acceleration ±γy ′(t)

� Conditions:

� y(t) ∈ [0, 100]

� Air drag should really by quadratic, but in this example we will consider this as an academic
case.

So the model we end up is:
Fy =

vertical component
of force = −g ± γy ′.

Now we bring a little bit of a Physics class into here: Newton’s 2nd Law states that F = ma , so we
obtain the model

my ′′(t) = −g ± γy ′(t).

Step 5. Model Assessment

We just found a differential equation (model) for our situation. It is now time to test it to make sure that it
behaves correctly.

For this step, we need to obtain a solution of the differential equation, either by solving it mathematically and
finding a formula for the solution (see module 21), or by approximating the solution numerically (see module
16).

Then we need to check the quality of the differential equation in one of several ways:

� We can test it empirically: make an experiment and compare the results of the experiment with the
results of the model

� We can test it mathematically: change the parameters and the initial conditions to make sure that we
know how the model should behave and test some qualitative aspects of the model

Important. Even if the model passes all the tests, it might still not be correct.
Also, if it fails one test, it might mean that the model is incorrect, or that it has some limitations that are
more subtle and we hadn’t thought about them.

Example. We have found the following model:

� y(t) = height of a projectile in metres, t seconds after being released from a catapult

� It satisfies:
my ′′(t) = −g + γy ′(t).

(note that I chose the + sign for the air drag component)

� Constraints:

� y(t) ∈ [0, 100];

� γ > 0 is the drag constant: more air drag for larger values of γ;

This differential equation tells us what the second derivative, y ′′(t), of y(t) is, given the first derivative
y ′(t). This means that to start solving the problem, we need to know what the initial values for y ′(t) and
y(t) are.
Need to know the starting conditions:
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� y(t0) = y0;

� y ′(t0) = v0.
For this example, consider a situation where:
� g,γ > 0 can take any value.

� y(0) = 0;

� y ′(0) = g/γ > 0;
The projectile is being catapulted from the ground with a positive velocity, so we expect it to go up for a
while and then come back down to the ground.
What happens is

y ′′(0) = −g + γy ′(0) = 0,

so the initial acceleration is 0, which means that the velocity is not changing.
The result is a function with constant velocity equal to its initial velocity:
� y(t) = g

γ t.
This means that the height of the projectile keeps increasing, so the projectile never falls back to the ground!

This means that there is a problem with our differential equation:
� Is the model incorrect?

� Is there a limitation on the initial velocity that we were not aware of?

We must check our process again and correct it.

Step 6. Putting it all together in a report

We’re not going to elaborate much on this step. For more on the subject, please check Module 8.

Video.

� https://youtu.be/njg8xwMviGQ

� https://youtu.be/nKDsJB8iwb0

Practice Problems

1 Model the pollution in a lake where water flows in
and out at the same rate and incoming water is pol-
luted with 2+ sin(2t) kg/L of pollutant, where t is
measured in years.

2 Construct a model for a population with a rate of

growth proportional to its current size.

3 Find a model for a population that grows proportion-
ally to its current size but with a variable proportion
constant. This variable proportion constant should
guarantee the following properties for the population:

� If the population is too large, then it should
decrease;

� If the population is small, then it should in-
crease.

4 Improve the previous model by considering also a
survivability threshold: if the population is below
this value, it should decrease and eventually become
extinct.

5 Consider two competing populations, like cheetahs
(c(t)) and lions (`(t)): two populations that do not
hunt each other, but compete for the same food (prey).
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Create a model for these two populations that captures
how the competition for food affects them.
Hint. It might be helpful to think about how one
population would grow in the absence of the other;
and how one population is affected by the competition
of the other.

r(t)
✓

↵

6 People are in a stadium watching cricket match. When
the match is over, people leave the stadium.

(a) Model the way people leave the stadium.
To help you with this task, use the fact that in
this situation, people behave like a fluid accord-
ing to Torricelli’s Law:

The area of the region occupied by the fans
decreases proportionally to the square root of
the radius and also proportionally to the size

of the exit.

(b) How do the parameters θ and α affect the total
time it will take for the stadium to empty?

20m
5m

2m

7 Consider the pool in the figure. The goal is to track
the amount of chlorine in the water for one Summer
month. At the beginning of the month, the pool is full
and contains 150g of chlorine uniformly mixed in the
water. Consider evaporation and rain. To make the
model simpler, assume that water evaporates with the
chlorine.

8 Model an iceberg floating in the ocean. How much of
the iceberg is underwater?

9 Model the average temperature in a room.

10 After solving the core exercise 20 below, we find a
property of this model.

(a) The constants g and L (length of the string)
appear only has g

L . What does this imply?

(b) We are sending a mission to the Moon and we
need to know how a 1m long pendulum behaves
on the Moon. To test it, we need to build on
Earth a pendulum that behaves in the same way.
How long should the length of the string be on
Earth?

11 After solving the core exercise 20 below, construct a
model for the same problem considering string ten-
sion.

(a) Show that you obtain the same model that you
get while disregarding tension.

(b) Explain why this makes sense.

12 The alien world of Robotron is inhabited by billions
of tiny nanobots. These nanobots all share a common
source of power, and their speed is directly propor-
tional to the total amount of energy shared among all
the nanobots.
One day the nanobots decide to beam their energy
into space. They all form lines, march to the edge of
their colony, and send a tiny portion of their shared
energy into space. Since the nanobots are very polite,
after an individual nanobot has sent its energy into
space, it moves aside and lets the next nanobot take
a turn.

(a) Suppose the nanobots live in a tube with an
opening at only one end. Come up with a differ-
ential equation to model the amount of energy
left in the nanobot colony over time.

(b) How does your model change if the nanobots
live in a disk where energy can be launched
from anywhere on the perimeter? What about
a sphere?

(c) Newton’s law of cooling states that the rate
of change of temperature of an object is pro-
portional to the difference between the object’s
temperature and the ambient (outside) temper-
ature. Does this law relate to your model for
the nanobots? If so, how?

13 An ant queen, known affectionately as Aunty Ant, is
commissioning a construction assessment for a new
tunnel. Aunty Ant’s worker ants only know one way
to construct a tunnel: they grab some dirt in their
pincers, walk the dirt out of the tunnel, deposit it, and
then return to grab more dirt.
Prepare a report which uses differential equations to
address the following construction scenarios. Include
a description of how you modelled the scenario and a
graph of tunnel-length vs. worktime. Also make sure
to define any variables and constants you are using.

(a) One tireless worker is assigned dig the tunnel.
The worker walks the same speed whether she
is carrying dirt or not.

(b) One tireless worker is assigned to dig the tunnel,
but she can walk twice as fast when she is not
carrying dirt as when she is carrying dirt.
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(c) Aunty Ant really wants the tunnel to progress
linearly after the first day of construction (that
is, the graph of tunnel-depth vs. time after the
first day should be a straight line). She will
give you full control over how many workers
are devoted to the tunnel at any given time.

(d) (Optional) A single ant is assigned to dig the
tunnel, but she gets fatigued the farther she
walks. Her speed after walking a total distance
of k units is 1/k.
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20 A pendulum is swinging side to side. We want to model its movement.

20.1 Define the problem. Which function(s) do we want to find in the end?

20.2 Build a mind map.

20.3 Make assumptions. Remember to use your mind map to help structure
the problem.

20.4 Construct a model. You should end up with one (or more) differential
equations.

Remember that there are some Physics principles that can help you (e.g.
Newton’s 2nd Law, Conservation of Energy, Linear Momentum, and Angular
Momentum, Rate of Change is Rate in − Rate out).

20.5 Assess your model:

(a) Find one test that your model passes.

(b) Find one test that your model fails.
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21 Model the spreading of a rumour through the students of a school.

Hint. Start with a simple model and then include more details.
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Solvable Types of ODEs

In this module you will learn

� to identify specific types of differential equations that can be solved rigorously

� how to solve these types of differential equations

We just learned how to model a situation and end up with a differential equation. We will now focus on solving
differential equations.

There are a few different techniques that depend on the differential equation.

12.1. Separable Differential Equations

Separable ODE. A differential equation is called separable if it has the form

g(y)y ′(t) = h(t),

that is if we can separate all the y ’s into the left-hand side and all the t ’s into the right-hand side of the
equation. Observe that the y ’s on the left hand side must all be multiplied by y ′(t).

Method of solution. The idea to solve this type of DEs is simple:

1. Integrate both sides with respect to t:
∫

g(y)y ′(t) d t =

∫

h(t) d t

2. Change variables on the left-hand side to u= y(t), so du= y ′(t)d t and we get
∫

g(u) du=

∫

h(t) d t.

3. Solve both integrals and we obtain a solution, usually in implicit form:

G(u) = H(t) + C .

4. To finish, recall that u= y(t), so we obtain

G
�

y(t)
�

= H(t) + C .

Important. Observe that the solution is given in implicit form. In general, when using this technique,
the solution y(t) will be given in implicit form, so there is still some work ahead to find an explicit formula
for y(t).

A simplified method of solution is the following:
� Start with the differential equation

g(y)
d y
d t
= h(t).

� “Move the dt to the other side”:
g(y)d y = h(t)d t.

� Integrate both sides
∫

g(y)d y =

∫

h(t)d t.
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Example. The shape y(x) of a free falling chain under its own weight, called a catenary, satisfies the
differential equation:

y ′′(x) =
1
a

r

1+
�

y ′(x)
�2

.

It doesn’t seem to be a separable equation, but if we can define z(x) = y ′(x), which satisfies

z′(x) =
1
a

r

1+
�

z(x)
�2 ⇔

1
Ç

1+
�

z(x)
�2

z′(x) =
1
a

.

This is now in the form of a separable ODE.

We can solve it using the method described above: we need to solve
∫

1
p

1+ z2
dz =

∫

1
a

d x =
x
a
+ C1

The integral on the left can be solved using a hyperbolic substitution z = sinh u:
∫

1
p

1+ z2
dz =

∫

1 du= u= arcsinh z.

This means that the solution satisfies

arcsinh z =
x
a
+ C1 ⇔ z = sinh

� x
a
+ C1

�

.

Now recall that z(x) = y ′(x), so we need to integrate z(x) to obtain the catenary curve y(x):

y(x) =

∫

z(x) d x = a cosh
� x

a
+ C1

�

+ C2.

To find C1 and C2, we use the fact that y ′(0) = 0:

y(x) = a cosh
x
a
+ C2.

(the constant C2 moves the curve up or down, so it doesn’t change the shape).

Video.

� https://youtu.be/txtFH89HwOA

� https://youtu.be/8xG_Xg6X2MQ

� https://youtu.be/ZE1Agfkhr28
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12.2. First-Order Linear Differential Equations

First-Order Linear ODE. A differential equation is called first-order linear if it has the form

y ′(t) + p(t)y(t) = f (t).

The idea to solve this type of DEs is to transform it into the result of a product rule.

Example. Consider the following first-order linear ODE

t2 d y
d t
+ 2t y = sin t.

Observe that the left-hand side of the DE is the result of the product rule:

d
d t

�

t2 y
�

= sin t.

So we can integrate both sides with respect to t to obtain

t2 y = − cos t + C ⇔ y = −
cos t

t2
+

C
t2

.

Now let us look at another example, where the left-hand side of the ODE is not in the form of the result of a
product rule, but can be transformed into one.

Example. Consider the first-order linear ODE

d y
d t
+

1
2

y =
1
3

e
t
3 . (?)

Again, the “trick” is to look at this equation and realize that the left-hand side can look like the result of the
product rule. It’s not obvious that this can be done (yet!), but if we multiply the whole ODE by the function

e
t
2 ,

then we obtain

e
t
2

d y
d t
+

1
2

e
t
2 y =

1
3

e
t
2 e

t
3

and now the left-hand side is the result of a product rule

d
d t

�

e
t
2 y
�

=
1
3

e
5
6 t .

We integrate both sides to obtain

e
t
2 y =

1
3

6
5

e
5
6 t + c

thus

y =
2
5

e
t
3 + ce−

t
2 .

This last example required us to come up with a function to multiply the ODE so that it becomes of the right
form: with a left-hand side that is the result of the product rule.

This function is called the integrating factor.

Let us now see how we can find this function in more detail.

Example. Consider the same ODE (?):

d y
d t
+

1
2

y =
1
3

e
t
3 . (?)
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So we multiply both sides of the equation with an unknown function µ(t), called the integrating factor:

µ(t)
d y
d t
+

1
2
µ(t)y =

1
3
µ(t)e

t
3 .

And we find which µ(t) makes the left-hand side equal to the product rule:

d
d t

�

µ(t)y
�

= µ(t)
d y
d t
+

dµ(t)
d t

y,

and this needs to equal the left-hand side:

µ(t)
d y
d t
+

dµ(t)
d t

y = µ(t)
d y
d t
+

1
2
µ(t)y ⇔ µ′(t) =

1
2
µ(t).

We now need to solve this differential equation for µ(t). Fortunately, this is a separable ODE:

µ′(t) =
1
2
µ(t) ⇔

µ′(t)
µ(t)

=
1
2

⇔ ln |µ(t)|=
t
2
+ A

⇔ µ(t) = ae
t
2 ,

where a = eA.
We say that the function µ(t) = e

t
2 is an integrating factor for the equation (?). Observe that we chose

a = 1 (A= 0), because we only need one function µ(t) that satisfies our condition µ′ = 1
2µ, we don’t need

to find all possible solutions.

After finding the integrating factor µ(t), the rest of the solution is the same as in the previous example.

Now that we have a good idea of the method needed to solve these ODEs, let us tackle the general equation.

Method of solution. This method is also known as the Method of the Integrating Factor.

1. Multiply both sides by µ(t), the integrating factor:

µ(t)
d y
d t
+ p(t)µ(t)y = µ(t)g(t).

Note that we don’t know what this function is yet. So it is just a placeholder for a function we will find
next.

2. Find function µ(t) which satisfies
µ′(t) = p(t)µ(t).

This is a separable ODE, so we can solve it:

µ(t) = Ae
∫

p(t) d t .

We only need one function µ(t), not the general one, so we take A= 1 to get

µ(t) = e
∫

p(t) d t .

3. Observe that µ(t) satisfies
µ(t)p(t) = µ′(t),

so we use this in the equation:
d
d t

�

µ(t)y
�

= µ(t)g(t).

4. Integrate the equation:

µ(t)y =

∫

µ(t)g(t) d t + c,
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which means that the solution is

y =
1
µ(t)

�∫

µ(t)g(t) d t + c

�

,

where
µ(t) = e

∫

p(t) d t .

Important. Observe that the solution is given in explicit form. This is always the case with this type of
ODEs.
Also, be careful to add the integration constant as soon as you integrate, so that in the end you will have a
term c

µ(t) .

Video.

� https://youtu.be/ezhi3E_bdvk

� https://youtu.be/VdD26Iy4Bkk

� https://youtu.be/GIpOcHNK7eQ

Practice Problems

1 Solve the differential equation ln(t)y ′ +
1
t

y = 3.

2 Decide whether the following differential equations
are separable, first-order linear, both, or neither. If
they are of one type, solve it.

(a) (t2 + 4)y ′(t) =
2t
y2

(b)
1
t2

y ′(t) = 2

(c)
d y
d x
=
p

y(x + 1)2

(d) y ′(t) = t + y

(e) y ′(t) = t + y2

(f) y ′(t) =
t
y

(g) y ′(t) = −
1
t

y

(h) y ′(t) = 1− 4t −
5
t

y

(i) y ′(t) = 5t − 2t y

(j) y ′(t) = 2+ cos2(y)

(k) e−t y ′(t)− e−t y = 3e2t

3 Decide whether the following statements are true or
false. Give an explanation or a counterexample.

(a) There are differential equations that are both
separable and first-order linear.

(b) There are differential equations that are separa-
ble, but are not first-order linear.

(c) There are differential equations that are first-
order linear, but not separable.

(d) There are first-order differential equations that
are neither separable nor linear.

(e) All first-order linear differential equations have
solutions defined in the whole real line.

4 Consider the differential equation

y ′ −
y

2(x + 4)
=

1
2(x + 4)

(a) Find the general solution.

(b) Find the solution with initial condition y(0) =
−5.

(c) What is the domain of the previous solution?

(d) Find the solution with initial condition y(−5) =
−5.

5 Even though the following differential equation is not
linear, find its general solution:

2 ln(x)e2y y ′(x) +
e2y

x
= 4x3.
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6 You are consulting for the police on Bernardo’s mur-
der.

These are the facts about the murder:

(a) The body was found at 9am;

(b) The body was found with the temperature of
25oC (average temperature is 37oC);

(c) The victim measured 185cm tall (average is
176cm) and weighed 75kg (average is 80kg);

(d) The body was found in his living room, which
measured 25m2, and the thermostat was set to
22oC;

There are five suspects that were with the victim the
previous night:

� Pedro (height 179cm, weight 82kg) met with
the victim at 6pm-8pm;

� Jason (height 176cm, weight 65kg) met with
the victim at 8pm-10pm;

� Mihnea (height 183, 83 kg) met with the victim
at 10pm-midnight;

� Paco (height 172cm, weight 79kg) met with the
victim at midnight-2am;

� Ricardo (height 178cm, weight 76kg) met with
the victim at 2am-4am.

Who killed Bernardo? (Your answer should stand in a
court of law!)
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22 Decide whether the following differential equations are separable, first-order linear, both, or neither. If
they are of one of the solvable types, solve it.

22.1 θ ′′(t) =
g
L

sin
�

θ (t)
�

22.2 P ′(t) = rP(t)
�

1−
P(t)

K

�

22.3 v′(t) = −g −
γ

m
v(t)

22.4 y ′(t) = −g t −
g
m

y(t) + 10
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23 23.1 Calculate
�

sin(x) f (x)
�′

.

23.2 Find the general solution of
sin(x)y ′ + cos(x)y =

p
x .

23.3 What is the integrating factor for the differential equation

y ′ +
cos(x)
sin(x)

y =
p

x
sin(x)
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Properties of Differential Equations

In this module you will learn

� to find some properties of solutions without the need to find a solution or approximating it

� existence and uniqueness of solution theorems

Until now we studied problems where there was one unique solution. Is this true for every problem?

� There are DEs with no solutions, e.g. (y ′)2 = −1 or sin(y ′) = 2.

So if a problem has a solution, is it always unique?

� This is also not true. For example: t y ′ = 2y with y(0) = 0.

Check that

y = 0 is a solution

y = t2 is also a solution

It is important (not just to mathematicians) to know whether a problem has solutions or not before trying to
solve it. It is also important to know whether there is one unique solution or multiple solutions.

So for linear differential equations we have the following theorem.

Theorem. Let p and g be continuous functions in an open interval I = (a, b) containing the point t0.
Then there exists a unique function y = φ(t) that satisfies

y ′ + p(t)y = g(t) for each t ∈ I ,

y(t0) = y0,

for any y0 ∈ R.

Example. Consider the initial-value problem
¨

y ′ + 1
sin(t) y = et

y(1) = 2

We can see that
� p(t) = 1

sin(t) , which is continuous for t ∈ (0,π) and t0 = 1 is included in this interval;

� g(t) = et is continuous for all values of t.
So we can conclude, from the Theorem, that there is a unique solution y(t) defined for t ∈ (0,π).

Example. Above, we saw that t y ′ = 2y has more than one solution. We can now see that this Theorem
doesn’t apply to this differential equation.

First, we need to rewrite the differential equation in the same form of the Theorem:

y ′ −
2
t

y = 0.

Now we observe that p(t) = − 2
t is not continuous at 0.

Example. The equation y ′ = 2
3 3px

with the condition y(0) = 0 has a unique solution:

y = x
2
3 .

So even though g(t) = 2
3 3px

is not continuous at 0, the ODE still has a unique solution.

71 © 2020 Galvão-Sousa-Siefken



M
od

ul
e
13

:
Pr
op

er
tie

s
of

D
iff
er
en
tia

lE
qu

at
io
ns

What can you conclude from the last two examples?

The previous Theorem is very restrictive – it only applies to some very particular differential equations.

Below, we state another Theorem that applies to a much broader range of differential equations.

Theorem. Let the functions f (t, y) and ∂ f
∂ y be continuous in some rectangle |t − t0| ≤ a and |y − y0| ≤ b

for a, b > 0.
Then, in some interval (t0 − h, t0 + h), there is a unique solution y = φ(t) of the IVP

y ′ = f (t, y)
y(t0) = y0.

Partial derivative. Consider a function f (t, y). Then its partial derivative with respect to y at the point
(t0, y0), denoted by ∂ f

∂ y (t0, y0) is g ′(y0), the derivative of the function g(y) = f (t0, y) at the point y0.
Roughly, assume that the variable t = t0 is a fixed number and take the derivative on the variable y .

In fact, the condition that f (t, y) be continuous is sufficient to conclude that the solution exists.
The condition that ∂ f

∂ y be continuous is required to be able to conclude the uniqueness of the solution.

You should spend some time comparing these two Theorems.

Observe that the last Theorem gives a much weaker result when the differential equation is linear.

Example. Consider the IVP
¨

y ′ = y2

y(0) = 3.

This problem is nonlinear, so we need to use the second Theorem. To apply, compute

f (x , y) = y2

∂ f
∂ y
(x , y) = 2y,

which are continuous for all x , y ∈ R.
The previous Theorem guarantees that a solution exists and is unique in some interval around x = 0.
Even though the rectangle spans the whole space of x and y , it doesn’t mean that the solution exists for all
x .
In fact, this is a separable ODE, so we can find its solution:

y(x) =
1

1
3 − x

,

which is defined only for x < 1
3 .

This kind of Theorems are called Existence and Uniqueness Theorems.

Video.

� https://youtu.be/53BPf9JrFcU
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� https://youtu.be/GV1gFLZ7V18

Practice Problems

1 For the following initial-value problems, answer the
following questions:

(i) Is there a unique solution?

(ii) Without solving, what is its domain?

(a) y ′ + y = t with y(0) = 0.

(b) y ′ +
1
et

y = t with y(0) = 0.

(c) y ′ +
1

et − 2
y = t with y(0) = 0.

(d) y ′ + ln(t)y = t with y(e) = 1.

(e) y ′ +
1

1+ t2
y = tan(t) with y(0) = 0.

(f) y ′ +
1

1+ t2
y = tan(2t) with y(π) = 0.

(g) y ′ =
1

1+ sin(t)
y − tan(t) with y(0) = 0.

(h) y ′ =
1

1+ sin(t)
y − tan(t) with y(t0) = 0.

(i) y ′ =
1

1+ sin(t)
y2 − tan(t) with y(t0) = 0.

(j) y ′ + ln(y) = t with y(e) = 1.

(k) y ′ =
t y

1+ y
with y(0) = 0.

(l) (t + y2)y ′ = t y with y(−1) = 1.

(m) y ′ =
t sin(y)

y
with y(1) = 0.

2 Consider the problem

y ′ + p(t)y = g(t) with y(t0) = y0,

where p(t) and g(t) are graphed below

1 2 3 4 5 6 7 8 9

-3

-2

-1

0

1

2

3 p(t)

g(t)

t

(a) Is there a unique solution satisfying y(3) = 2?
If so, what is its domain?

(b) Is there a unique solution satisfying y(t0) = −1
for which values of t0? If so, what is the domain
of these solutions?

3 Consider the problem

y ′ = f (t, y)

where f (t, y) and ∂ f
∂ y (t, y) are continuous for all t, y .

� Assume that y = 1
t is a solution for t > 0

� Assume that y = −e−t is a solution for all t
Let y = φ(t) be the solution of this ODE with the
initial condition y(1) = 1

2 .

Calculate lim
t→+∞

y(t).

4 Consider the initial-value problem:
¨

y ′ = ln(t + 2)y + 1
t−3

y(0) = 0

(a) Is this ODE linear or nonlinear?

(b) Show that this problem has a unique solution.

(c) Use the Existence and Uniqueness Theorem for
Linear ODEs. What is the domain of the solu-
tion?

(d) Use the Existence and Uniqueness Theorem for
Nonlinear ODEs. What is the domain of the
solution?

(e) Compare both Theorems.

5 Consider the initial-value problem:
¨

y ′ = ln(t + 2)y + 1
t−3

y(0) = 0

(a) State the conditions to be able to apply the
Existence and Uniqueness Theorem for Linear
ODEs.

(b) State the conditions to be able to apply the Exis-
tence and Uniqueness Theorem for Nonlinear
ODEs. Simplify the conditions.

(c) Compare the conditions of both theorems.

6 Consider the initial-value problem:
¨

y ′ + p(t)y = g(t)
y(0) = 0

(a) State the conditions to be able to apply the
Existence and Uniqueness Theorem for Linear
ODEs.

(b) State the conditions to be able to apply the Exis-
tence and Uniqueness Theorem for Nonlinear
ODEs. Simplify the conditions.

(c) Compare the conditions of both theorems.
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24 Consider the example in the video:
(

x
d y
d x
= y

y(0) = b

Without solving, but only according to the Existence and Uniqueness Theorem, what can we conclude?

(a) We can conclude that there is a unique solution.

(b) We can conclude that if b = 0 there are many solutions, but if b 6= 0, then there are no solutions.

(c) We can conclude that there are many solutions.

(d) We can conclude that there are no solutions.

(e) We can’t conclude anything.
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25 For the following initial-value problems, answer the following questions:

(a) Is there a unique solution?

(b) Without solving, what is its domain?

25.1 y ′ = t + y
t−π with y(1) = 1

25.2 y ′ = t +
p

y −π with y(1) = 1

25.3 y ′ =
p

4− (t2 + y2) with y(1) = 1
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26 Consider a differential equation y ′ = f (t, y) where

• f (t, y) is continuous for all t, y ∈ R;

• ∂ f
∂ y (t, y) is continuous for all t ∈ R,y > 0.

t

y

y3

y2

y1

t0

26.1 Can green y1 and blue y3 be two solutions of the same differential equation above with two different
initial conditions? Why?

26.2 Can green y1 and gray y2 be two solutions of the same differential equation above with two different
initial conditions? Why?

26.3 Can gray y2 and blue y3 be two solutions of the same differential equation above with two different
initial conditions? Why?

26.4 Based on the answers to the three parts above, write a Corollary to the Existence and Uniqueness
Theorems.
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27 The initial-value problem






y ′ = −
x
y

y
�

1
2

�

=
p

3
2 .

has the solutions

y1(x) = cos
�

arcsin(x)
�

and y2(x) =
p

1− x2 .

27.1 Does the problem satisfy the conditions of one of the Existence and Uniqueness Theorems?

27.2 What can you conclude?

Hint. “When you have eliminated the impossible, whatever remains, however improbable, must be the
truth.” – Sherlock Holmes
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Autonomous Differential Equations

In this module you will learn

� what is an autonomous differential equation

� how to obtain some properties of solutions of autonomous differential equations without solving them

In this module, we focus on another type of differential equations. The ultimate goal of this module is to learn
that with some creativity and observation of the differential equation, it is possible to study solutions without
actually solving them.

We start by defining autonomous equations.

Autonomous differential equations. A first-oder DE is called autonomous if it has the form

y ′ = f (y).

These are basically ODEs where the rate of change does not depend on time, meaning that the nature of the
ODE always stays the same.

Observe that autonomous ODEs are also Separable ODEs.

So let us look at an autonomous ODE and think what happens when f (y0) = 0?

Then if the solution is unique (what are the conditions that will guarantee that?) and if y(t0) = y0, that means
that

y ′(t0) = f (y0) = 0.

So we can find one immediate solution:
y(t) = y0,

a constant solution. Since the solution is unique, that must be the solution.

This is a property of autonomous ODEs:

Equilibrium points. Consider an autonomous ODE y ′ = f (y). The zeros of the function f are called
critical points. They can also be called equilibrium or stationary points.

Important. Consider an autonomous ODE y ′ = f (y) and let c be a zero of f , i.e. f (c) = 0.
Then the constant function y(t) = c is a solution of the ODE, called an equilibrium solution.

In an ODE where solutions are unique, these equilibrium solutions are extremely important, as they give bounds
for all other solutions.

Example. Consider the autonomous ODE

y ′ = sin(2y).

The equilibrium solutions for this ODE are
y = kπ,

for all values k ∈ Z.
That means that even without solving, we can infer that the solution passing through y(0) = 1, must satisfy

y(t) ∈ (0,π),

for all t.
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Equilibrium solutions are even more important, because we can also study what happens between equilibrium
solutions without having to actually solve the ODE.

If the function f (y) is continuous, then its sign cannot change between equilibrium points, so the solutions
will be monotonic between equilibrium solutions.

Example. Consider the same ODE:
y ′ = sin(2y).

We can study whether solutions will be increasing or decreasing by studying the function f (y).

y · · · −2π −π 0 π 2π · · ·

y ′ = sin(2y) 0 + 0 − 0 + 0 − 0

y(t) · · · c ↗ c ↘ c ↗ c ↘ c · · ·

In a graph, we have

y

t

y

0

π

2π

−π

−2π

0

π

2π

−π

−2π

We can infer that the graphs will approach the constant solutions without touching because the derivative
y ′ will become smaller and smaller the more they approach the equilibria. We also know that solutions
cannot touch each other.

There is also a distinction that we make about equilibrium points that helps us understand the behaviour of
solutions. We will study this distinction in the core exercises.

Population Models. The fact that these differential equations keep the same rate of change independently
of time, makes them an ideal candidate when studying populations.

Video.

� https://youtu.be/swt-let4pCI
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Practice Problems

1 Show that all autonomous differential equations are
separable.

2 Consider the ODE y ′ =
1
y

. Then which of the state-

ments below are true or false and justify your choice.

(a) The solutions always stay positive.

(b) The solutions always stay negative.

(c) The solutions never change sign.

(d) The solutions always change sign.

(e) Some solutions change sign, and some don’t.

3 In this problem, we are trying to deduce some prop-
erties of slope fields.

(a) Sketch a slope field for the autonomous ODE

y ′ = cos(y).

(b) Sketch a slope field for the autonomous ODE

y ′ = tan(y).

(c) What is a common property of all slope fields of
autonomous ODEs?

4 Consider the ODE

y ′ = sign(y) =











1 if y > 0

0 if y = 0

−1 if y < 0

.

(a) What are the equilibrium solutions?

(b) Find two solutions that satisfy y(0) = 0.

(c) Are there solutions that satisfy lim
t→∞

y(t) = π?

(d) What are the possible limits of solutions as
t →∞?

5 Consider a function f (y) such that

� f (1) = 0;

� f ′ is continuous for all y;

� f ′(1)< 0.

(a) Show that there is an open interval (a, b) satis-
fying 1 ∈ (a, b) and f ′(y)< 0 for all y ∈ (a, b).

(b) Show that

� f (y)> 0 if y ∈ (a, 1),
� f (y)< 0 if y ∈ (1, b).

(c) Consider the initial-value problem y ′ = f (y)
with y(0) = y0. Show that this problem has a
unique solution.

(d) Show that if y0 ∈ (a, b), then lim
t→∞

y(t) = 1.

(e) Write a Theorem about equilibrium points based
on the results of this question.

6 Consider a function f (y) such that

� f (2) = 0;

� f ′ is continuous for all y;

� f ′(2)> 0.

Complete a study similar to question 5 for this func-
tion f .

7 Consider an autonomous ODE y ′ = f (y) with two
stable equilibrium solutions y = 1 and y = 2 and
where f is continuous.

(a) Show that there must exist another equilibrium
point c ∈ (1,2).

(b) Show that if f (y) 6≡ 0 in (1, 2), then there must
exist an equilibrium point c ∈ (1, 2) that is either
semi-stable or unstable.
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28 Consider the ODE from the video in the module.

Select all the initial conditions that yield a decreasing solution.

(a) x(−2) =
p

2

(b) x(20000) = 0.000000001

(c) x(5) = π

(d) x(0) = 1
2

(e) x(3) = − 1
2

(f) x(1000) = 1
e
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29 Consider the differential equation y ′ = f (y) where f (y) is given by the following graph:

y

y ′

−4 −3 −2 −1
1 2 3 4 5

−2

−1

1

2

29.1 What are the equilibrium points?

29.2 Which equilibrium solutions are stable, unstable, or semi-stable?

29.3 Write a definition for a stable, unstable, and semi-stable equilibrium point.

29.4 Roughly, sketch a solution satisfying:

(a) y(0) = 2.5.

(b) y(0) = − 1
4 .

(c) y(1) = 1
4 .

29.5 If y(0) = 2, then y(t) =

29.6 If y(0) = 1
2 , then lim

t→∞
y(t) =

29.7 If y(0) = −2, then max
t∈[0,∞)

y(t) =
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30 Consider a differential equation y ′ = f (t, y) with the following slope field.

t

y

−1

0

1

2

30.1 What are the equilibrium solutions of the ODE?

30.2 Directly on the direction field above, sketch the solution of the problem

(

y ′ = f (t, y)

y(0) =
1
4

30.3 From the direction field above, circle the correct type(s) of this ODE? Justify your answer.
(a) separable.

(b) of first-order and linear.

(c) autonomous.

(d) none of the other options.

30.4 Assume that y = g(t) and y = h(t) are two solutions of the differential equation with g(0)< h(0), then

(select all the possible options)

(a) g(3)< h(3) (b) g(3) = h(3) (c) g(3)> h(3)
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Modelling Two Quantities
In this module you will learn

� how to model two or more inter-dependent quantities using systems

Often, when modelling something, we are faced with two or more quantities that depend on each other. This
means that one equation is not enough, so we need to learn how to deal with a system of equations.

Just like we did in module 19, we will follow the step by step procedure developed in chapter 1.

Step 1. Define the problem

Example. We want to model two interacting populations, like the populations of bears and salmon in a
specific natural park.

The first step is to decide on what we want to find at the end of the process. In this case, we want to know
the number of individuals in each population and how they change as time passes. So we define:
� b(t) = number of bears in the natural park at time t;

� s(t) = number of salmon in the natural park at time t.

Step 2. Build a mind map

Example. We start with both species in the centre:

Salmon Bear

We can start brainstorming about the things that affect these populations:

Salmon Bear
food

hunts

reproduction

habitat limits

competition

Step 3. Make assumptions

Example. In this step, we discuss which of the boxes in the mind map we want to actually consider in our
model, and which assumptions we need to make to consider them.

Let us start with how these species interact with each other:

1. Salmon provide food for bears: the bear population profits from each encounter with salmon. How
does each bear-salmon encounter affect the bear population?

2. Bears hunt salmon: the salmon population is likely to decrease with each encounter with a bear. How
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does each bear-salmon encounter affect the salmon population?

These two components are essential in our model, so we need to include them. It still leaves some freedom
on how to do this.

There are other elements that we might want to include in our model:

3. Salmon reproduction: in the absence of predators and under ideal conditions, salmon should grow
according to the Malthusian model, i.e. the rate of growth is proportional to the number of salmon;

4. Bear competition: bears are mainly predators, so without salmon, their numbers will decrease, also
according to the Malthusian model;

5. Habitat limits: these species live in habitats that have limited resources, so we can consider a carrying
capacity for each species.

To make the model simpler, we will ignore habitat limits. This means that this model will not be accurate
if the populations become very large.

Step 4. Construct a model

Example. We will start with our populations:

� b(t)

� s(t)
and we will start adding components to each of these one by one.

For the first two items, we need to estimate the number of encounters salmon-bear. We assume that the
number of encounters is proportional to the number of all possible encounters: b(t) s(t).

1. Salmon provide food for bears: for every possible salmon-bear encounter, there is a probability that a
bear actually encounters a salmon, and then there is a chance that the bear will catch the salmon.
Each catch improves the possibility that the bear population will increase. All these put together
means that this factor should increase the bear growth rate by a b(t) s(t), where the constant a needs
to be found.

2. Bears hunt salmon: similarly to the previous item, for every possible encounter, there is a probability
that the bear actually encounters a salmon, and then there is a chance that the bear will catch the
salmon. Every catch will decrease the salmon population, so the salmon growth rate will decrease by
c b(t) s(t), there the constant c needs to be found.

Right now we have the following model:
¨

b′(t) = a b(t) s(t) + · · ·
s′(t) = −c b(t) s(t) + · · ·

We continue with the other elements:

3. Salmon reproduction: this was explained before and should contribute to the salmon growth rate
with the term ds(t).

4. Bear competition: this was also explained above and should contribute to the bear growth rate with
the term −eb(t).

5. Habitat limits: we decided to ignore this.

We have the model:
¨

b′(t) = a b(t) s(t)− e b(t)
s′(t) = −c b(t) s(t) + d s(t)

To find the constants a, c, d, e, we would probably need to go back to Step 3 and make further assumptions
related to the way that we are measuring them.
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Step 5. Model assessment

Example.

We can do several things here.
One of the things that we can do is approximate its solutions using Euler’s Method discussed in Module 16.
Let us assume, for this example the constants: a = 1, e = 10, c = 1, d = 5 and a time step ∆t = 0.5 and we
assumed an initial population of b(0) = 6 and s(0) = 9. Then we obtain the graph below:

� https://www.desmos.com/calculator/zywspwstwk

The x−axis is the bear population while the y−axis is the salmon population. Each dot gives an
approximation of the populations ∆t = 0.5 time units after the previous approximation.

From this approximation, we can say infer that this model creates a population cycle, but it seems to spiral
outwards:

� Is having a population cycle a feature that our model should have?

� Is the spiralling outwards a feature we want in our model?

� Is the spiralling a feature of the model or the approximation? If it’s from the approximation, how
does the model behave?

I’ll let you brainstorm and think of other ways you can assess this model.

91 © 2020 Galvão-Sousa-Siefken

https://www.desmos.com/calculator/zywspwstwk
https://www.desmos.com/calculator/zywspwstwk


M
od

ul
e
15

:
M
od

el
lin
g
Tw

o
Q
ua
nt
iti
es

There are lots of other tools to create slope fields and approximate solutions of systems of ODEs.
� GeoGebra approximation of the same model, called the Lotka-Volterra model:

https://www.geogebra.org/m/KqNV7eHB

� WolframAlpha slope field of the same model:

https://uoft.me/modelling-sys-wa

� WolframAlpha stream plot of the same model:

https://uoft.me/modelling-sys-wa2

� There are also better methods of approximating ODEs and systems, e.g. Runge-Kutta methods

https://en.wikipedia.org/wiki/Runge-Kutta_methods

Practice Problems

1 Create a model for two cooperating populations, like
sharks and remoras.

2 We have a spring attached to a mass and
with a dashpot.

(a) Model the position of the mass as
time changes.

(b) Obtain a system of two first-order
ODEs. Remember to explain how the
new functions relate to the spring-
mass-dashpot system.

m

3 Model a vehicle with a special engine that provides
an acceleration to the car proportional to the fuel left.

4 Imagine two twin babies and model their crying vol-
ume. Assume that they naturally become tired and
stop crying if alone, but they cry more if the other
twin is crying.

5 Model a ping pong ball travelling through the air.

6 Create a simplified model for a tree, consid-
ering the height of the tree and its leaf area
and how they affect each other.

7 Create a model on how a student’s confidence in her

own ability affects her learning/knowledge of a sub-
ject. Remember the Ebbinghaus’ “forgetting curve”.

route a

route b UofT

YYZ

8 Imagine that there are two ways to travel from UofT
to Toronto’s Pearson airport (YYZ). Both paths take
the same time if there is no traffic. You want to di-
rect people on the fastest path. Create a model for
choosing the fastest path.

9 Create a model for the sales of a specific brand of
sneakers. The goal is to capture the influence of fa-
mous people and non-famous people on each other’s
purchases.

10 Create a model on how the population and the cost
of living in Toronto affect each other.
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31 We want to model two competing populations, like cheetahs and lions: they don’t hunt each other, but
they hunt the same prey.

31.1 Create a model for these two populations.

31.2 Using Desmos or WolframAlpha, create a slope field in the plane where the horizontal axis is one
population and the vertical one is the other.

31.3 Using the slope field, deduce some properties of your model and discuss how closely it matches what
you expect from these populations.

31.4 Extend the model to include a population of antelopes.
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32 A cheetah is chasing an antelope. We want a model of their positions as they run.

© 2020 Galvão-Sousa-Siefken 94



M
od

ul
e
16

:
Sy

st
em

s
of

tw
o
lin
ea
r
O
D
Es

w
ith

co
ns
ta
nt

co
effi

ci
en
ts

Systems of two linear ODEs with constant coefficients
In this module you will learn

� how to solve systems of two linear first-order ODEs with constant coefficients

First, a system of two first-order ODEs has the form:
¨

x ′(t) = f
�

t, x(t), y(t)
�

y ′(t) = g
�

t, x(t), y(t)
�

where the functions f and g are continuous and have continuous partial derivatives.

This system could be nonlinear. We are only considering linear systems with constant coefficients, which
means that they have a very specific form:

¨

x ′(t) = ax(t) + b y(t) + e
y ′(t) = cx(t) + d y(t) + f

⇔
�

x ′(t)
y ′(t)

�

=
�

a b
c d

��

x(t)
y(t)

�

+
�

e
f

�

⇔ ~r ′(t) = A~r(t) + ~b

where

~r(t) =
�

x(t)
y(t)

�

, A=
�

a b
c d

�

and ~b =
�

e
f

�

.

The unknown functions we are trying to find are x(t) and y(t), or equivalently, ~r(t).

Homogeneous Systems. These are systems of the form above with ~b = ~0.

This means that we want to find all functions ~r(t) that satisfy

~r ′(t) = A~r(t).

Example. Let us start with an example of the same problem where ~r(t) is a “one-dimensional” vector, a
scalar function u(t), and the matrix A is a “one-dimensional matrix”, a constant a.

We want to solve the problem
u′(t) = a · u(t).

We have seen how to solve these kind of problems before. The solutions are

u(t) = ceat ,

where c can be any constant.

In our two-dimensional case, it is a little more complicated. We can’t just write eAt where A is a matrix (this
expression can make sense, but we would have to find out what is the exponential of a matrix).

So we can use the example above to make an educated guess: the solution should look like an exponential:

~r(t) = ~c eλt ,

where ~c is a constant vector.

If our guess is correct, to find ~r(t), we only need to find λ and ~c.

Let us see what happens when we use this guess and plug it into the system of ODEs:

~r ′(t) = A~r(t) ⇔ ~cλeλt = A~ceλt

⇔ ~cλ= A~c.

95 © 2020 Galvão-Sousa-Siefken



M
od

ul
e
16

:
Sy

st
em

s
of

tw
o
lin
ea
r
O
D
Es

w
ith

co
ns
ta
nt

co
effi

ci
en
ts

This is a problem you have seen before – and eigenvalue-eigenvector problem:

� λ can be any eigenvalue of the matrix A

� ~c can be any eigenvector of A associated with λ

This means that we might have multiple choices for eigenvalues and eigenvectors, or even that eigenvalues
and eigenvectors involve complex numbers. Let us split our study of possible solutions in three cases.

3.1 Two real and distinct eigenvalues

Example. Consider the problem

~r ′(t) =
�

10 18
−6 −11

�

~r(t).

Then, the eigenvalues and eigenvectors of the matrix are

� λ1 = −2 with eigenvector ~v1 =
�

3
−2

�

� λ2 = 1 with eigenvector ~v2 =
�

2
−1

�

This means that we found two solutions:

~r1(t) =
�

3
−2

�

e−2t and ~r2(t) =
�

2
−1

�

et .

Then, we can show that

~r(t) = c1

�

3
−2

�

e−2t + c2

�

2
−1

�

et

is also a solution of the problem for any constants c1 and c2.
In fact, we can show that this formula captures all possible solutions for this problem.

Video.

� https://youtu.be/YUjdyKhWt6E

3.2 Two complex eigenvalues

We actually don’t need to know a lot about complex numbers to be able to understand how to solve this case.
The results about complex values that are necessary to know will be included in the box below.

Complex numbers.
� A complex number is a number of the form z = a+ i b where i is called the imaginary constant and

satisfies i2 = −1.

� Given a complex number z = a+ i b, we call z = a− i b its complex conjugate. It satisfies:

z · z = a2 + b2 = |z|2.

� If a matrix has real components and two complex eigenvalues, then the eigenvalues are complex
conjugates of each other. Moreover, the eigenvectors are also complex conjugates of each other.

� Euler’s Formula: eiθ = cos(θ ) + i sin(θ ).

Example. Consider the problem

~r ′(t) =
�

1 1
−1 1

�

~r(t).
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Then, the eigenvalues and eigenvectors of the matrix are

� λ1 = 1+ i with eigenvector ~v1 =
�

−i
1

�

� λ2 = 1− i with eigenvector ~v2 =
�

i
1

�

This means that we found two solutions:

~r1(t) =
�

−i
1

�

e(1+i)t and ~r2(t) =
�

i
1

�

e(1−i)t .

Then, all solutions of this system of ODEs can be expressed as

~r(t) = c1

�

−i
1

�

e(1+i)t + c2

�

i
1

�

e(1−i)t .

There is a problem with the form of these solutions: they involve complex numbers!
Imagine that we start with a problem where we have two (real) quantities that interact with each other
through this system of differential equations. Then we expect these quantities to measure in real numbers,
not complex.
� This means that we expect the imaginary part of these solutions to cancel out.

So let us manipulate this formula using Euler’s formula and see if we can re-write in such a way that doesn’t
involve complex numbers.

We have:

e(1+i)t = et · ei t = et
�

cos(t) + i sin(t)
�

e(1−i)t = et · e−i t = et
�

cos(t)− i sin(t)
�

So our solution expands to:

~r(t) = c1

�

−i
1

�

et
�

cos(t) + i sin(t)
�

+ c2

�

i
1

�

et
�

cos(t)− i sin(t)
�

.

We can now manipulate this expression:

~r(t) = et

�

−ic1

�

cos(t) + i sin(t)
�

+ ic2

�

cos(t)− i sin(t)
�

c1

�

cos(t) + i sin(t)
�

+ c2

�

cos(t)− i sin(t)
�

�

= et
�

(c1 + c2) sin(t)− i(c1 − c2) cos(t)
(c1 + c2) cos(t) + i(c1 − c2) sin(t)

�

= et
�

(c1 + c2)
�

sin(t)
cos(t)

�

+ i(c1 − c2)
�

− cos(t)
sin(t)

��

So now we do something that might look like cheating. We define:

a1 = c1 + c2 and a2 = i(c1 − c2).

Then the solution is

~r(t) = a1

�

sin(t)
cos(t)

�

et + a2

�

− cos(t)
sin(t)

�

et .

This last form doesn’t include any complex numbers and is equivalent to the previous form.
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It may look like the final solution above still includes complex numbers in the constants a1 and a2.
To convince yourself that this is not the case, solve the following exercise.

Find the unique solution of

~r ′(t) =
�

1 1
−1 1

�

~r(t) with ~r(0) =
�

−3
2

�

Find the constants c1, c2 and then the constants a1, a2. Which ones are complex and which ones are real?

Video.

� https://youtu.be/TRVS5Wo9LoM

3.3 One real repeated eigenvalue

Example. Consider the problem

~r ′(t) =
�

5 0
1 5

�

~r(t).

Then, there is only one eigenvalue with one eigenvector

� λ1 = 5 with eigenvector ~v1 =
�

0
1

�

, which yield a solution ~r1(t) = c1

�

0
1

�

e5t .

This is a problem because we need two solutions to put together and obtain two constants, as in the two
previous cases.

To convince yourself that it is a problem, try solving the problem above with initial conditions

~r(0) =
�

0
4

�

.

What about with initial conditions

~r(0) =
�

1
4

�

?

This means that we ware missing one solution – that will enable us to solve the problem for any initial
conditions.

Let us re-write the original problem in a different form by letting

~r(t) =
�

x(t)
y(t)

�

.

Then we have
¨

x ′(t) = 5x(t)
y ′(t) = x(t) + 5y(t)

These are two ODEs, but the first one is independent of the second on. We can solve the first and then
tackle the second one.

¨

x(t) = c2e5t

y(t) = c1e5t + c2 te5t ⇔ ~r(t) =
�

c2
c1 + c2 t

�

e5t ⇔ ~r(t) = c1

�

0
1

�

e5t + c2

�

1
t

�

e5t
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Observe that the solution we found has the form:

~r(t) = c1

�

0
1

�

e5t

︸ ︷︷ ︸

solution ~r1(t)

+c2









�

1
0

�

︸︷︷︸

new vector ~w

e5t +
�

0
1

�

︸︷︷︸

~v1

te5t









.

So we can make another educated guess that the solution we were missing has the form:

~r2(t) = (~w+ ~v1 t) eλt .

With this form in mind, we can plug it into the system of ODEs ~r ′(t) = A~r(t) , which has exactly one
eigenvalue λ, to get:

λ~weλt +λ~v1 teλt + ~v1eλt = A~weλt + A~v1 teλt

which is equivalent to:
λ~w+ λ~v1

︸︷︷︸

=A~v1

t + ~v1 = A~w+ A~v1 t ⇔ (λI − A) ~w= ~v1

Since at this point we already know λ and ~v1, we can now find ~w in a similar way used to find the eigenvector
~v1. The vector ~w is called a generalized eigenvector of A associated with the eigenvalue λ.

Video.

� https://youtu.be/hCShTLmeZN4

Practice Problems

1 Find the general solution of the problem ~r ′(t) = A~r(t)
for the following matrices:

(a) A=
�

−7 6
−9 8

�

;

(b) A=
�

22 24
−15 −16

�

;

(c) A=
�

0 1
−5 0

�

;

(d) A=
�

0 1
5 0

�

;

(e) A=

�

1
p

3p
3 −1

�

;

(f) A=

�

1
p

3
−
p

3 1

�

;

(g) A=
�

0 1
−4 −4

�

;

(h) A=
�

−4 −6
2 3

�

;

(i) A=
�

2 −3
0 2

�

;

(j) A=
�

2 0
0 2

�

;

(k) A=
�

0 0
1 0

�

;

(l) A=
�

0 0
0 1

�

;

2 For each of the problems in the previous exercise, find
the solution that satisfies the initial conditions:

(i) ~r(0) =
�

0
0

�

;

(ii) ~r(0) =
�

1
3

�

;

(iii) ~r(1) =
�

−2
2

�

.

3 Consider the problem ~r ′(t) =
�

2 0
1 3

�

~r(t) +
�

−2
11

�

.

(a) Show that ~e(t) =
�

1
−4

�

is a solution of this prob-

lem.

(b) Find the general solution of

~u′(t) =
�

2 0
1 3

�

~u(t).

(c) Let ~r(t) = ~u(t) + ~e(t). Show that this is a solu-
tion of the original problem.

(d) Let ~r1(t) and ~r2(t) be two solutions of the origi-
nal problem.

i. Is ~r1(t) + ~r2(t) a solution?
ii. Is 3~r1(t) a solution?

iii. Write a result on how one can safely com-
bine solutions of non-homogeneous prob-
lems.

4 Consider the problem ~r ′(t) =
�

1 2
3 0

�

~r(t) +
�

−5
3

�

.

(a) Observe that this system is an autonomous sys-
tem of ODEs. What is the equilibrium solution?

(b) Sketch its phase portrait using WolfamAlpha’s
streamplot function. What can you observe
from the phase portrait?

(c) “Redefine the centre”: Let the equilibrium solu-
tion solution you just found be called ~e. Con-
sider ~u(t) = ~r(t)− ~e, where ~r(t) is the solution
of the original problem. Show that

~u′(t) = A~u(t).

(d) Find ~u(t).

(e) Find ~r(t).
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(f) Write a procedure to solve any problem of the
form

~r(t) = A~r(t) + ~b.

5 Consider the problem d ~r
d t =

�

4 −1
8 −2

�

~r −
�

5
10

�

.

(a) Find ~r(t).

(b) What is the solution taht satisfies ~r(0) =
�

2
3

�

?

(c) Sketch the phase portrait.

6 Consider the problem ~r ′(t) = A~r(t). Assume that
we have two solutions ~r1(t) and ~r2(t).

(a) Show that ~r(t) = ~r1(t)+ ~r2(t) is a solution also.

(b) Show that ~r(t) = 2 ~r1(t)− 3 ~r2(t) is a solution
also.

(c) Find all possible solutions of the problem.

7 Consider the problem ~r ′(t) =
�

1 −2
−2 1

�

~r(t).

(a) Find the solution that satisfies the initial condi-

tion ~r(0) =
�

1
0

�

. Call it ~u(t).

(b) Find the solution that satisfies the initial condi-

tion ~r(0) =
�

0
1

�

. Call it ~v(t).

(c) Define the matrix function

Φ(t) =
�

~u(t) | ~v(t)
�

=
�

u1(t) v1(t)
u2(t) v2(t)

�

.

Show that ~r(t) = Φ(t)~r0 is a solution of the
original system of ODEs. Which initial condi-
tion does it satisfy?

(d) Write a result relating Φ(t) to the solution of
initial-value problems.

8 Consider a system of ODEs ~r ′(t) = A~r(t) with two
solutions ~r1(t) and ~r2(t).
We want to study the conditions that are necessary on
the solutions ~r1 and ~r2 to guarantee that we can solve
any initial-value problem.

(a) What is the general solution for this problem?

(b) If the initial condition is ~r(0) =
�

1
2

�

, then what

are the conditions on ~r1,~r2 ?

(c) If the initial condition is ~r(0) = ~r0, then what
are the conditions on ~r1,~r2 ?

9 Consider a system of ODEs ~r ′(t) = A~r(t) with two
solutions ~r1(t),~r2(t).
Let R(t) be the matrix R(t) =

�

~r1(t) | ~r2(t)
�

and
let W (t) = det R(t).

(a) Show that W (t) is a solution of W ′ = (a11 +
a22)W .

(b) Solve the ODE above to obtain an expression
for W (t).

(c) Show that W (t) is either identically zero, or it’s
never zero.

(d) Use this result to simplify your answer to prob-
lem 8(c).
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33 Consider a cheetah-lion inspired problem:

d ~r
d t
=
�

3 −2
−1 4

�

~r.

33.1 Find the two solutions ~r1,~r2.

33.2 Is ~r1(t) + ~r2(t) a solution?

33.3 Is ~r1(t)− ~r2(t) a solution?

33.4 Is 2~r1(t) + 3~r2(t) a solution?

33.5 What is the general solution?

33.6 Find the solution that satisfies ~r(0) =
�

6
7

�

?
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34 Consider a problem:
d ~r
d t
=
�

2 −5
1 −2

�

~r.

34.1 Find the general solution.

34.2 Find the solution that satisfies ~r(0) =
�

6
7

�

?
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35 Consider a problem:
d ~r
d t
=
�

2 −5
1 −2

�

~r −
�

9
4

�

.

35.1 Find the equilibrium solution.

35.2 Find the general solution.

35.3 Find the solution that satisfies ~r(0) =
�

8
6

�

?
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Phase Portraits

In this module you will learn

� how to sketch a phase portrait for a linear system of ODEs with constant coefficients

� how to use a phase portrait to deduce properties of solutions

When we solve a system of two ODEs, we obtain two functions x(t) and y(t), so when we want to graph
solutions, we have a problem:

� Should we sketch each of these functions separately?

� Should we sketch them together?

� Should we sketch the path as if a particle is moving with coordinates x(t) and y(t)?

Example. Consider the initial-value problem

d ~r
d t
=
�

0 1
−1 0

�

~r with ~r(0) =
�

0
1

�

,

which has the solution

~r(t) =
�

sin(t)
cos(t)

�

.

Which of the following ways are better?

� t
xxx

t

yyy

� t
xxx

yyy

�

yyy

xxx

There is no correct answer, but the last graph gives more information on how the two quantities interact
with each other, so we will focus on that type of graph.
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The graphs in the example above are graphs of one specific solution. They don’t give us an idea of what all
other possible solutions of the system look like.

Example. In the last graph of the example, what are the other solutions?

yyy

xxx

yyy

xxx

Sketching phase portraits for systems of two first-order linear ODEs is important because it gives us insight on
how the two components affect each other for all solutions.

Example. Consider the problem
d ~r
d t
=
�

−2 3
−3 −2

�

~r,

where the matrix A has the eigenvalues and eigenvectors:

� Eigenvalues λ± = −2± 3i with eigenvectors v± =
�

∓i
1

�

This means that the general solution has the form

� ~r(t) = a1

�

−i
1

�

e(−2+3i)t + a2

�

i
1

�

e(−2−3i)t

or

� ~r(t) = c1

�

sin(3t)
cos(3t)

�

e−2t + c2

�

− cos(3t)
sin(3t)

�

e−2t

We can use the general form and start sketching some solutions.
� Let c1 = 1 and c2 = 0 and we obtain

~r(t) =
�

sin(3t)
cos(3t)

�

e−2t .

To sketch this solution, let us start by ignoring the term e−2t .

So we want to sketch ~r(t) =
�

sin(3t)
cos(3t)

�

:
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The path is going in circles in the clockwise direction.

By multiplying the solution by e−2t , which starts at 1 when t = 0 and keeps decreasing towards 0 as t
increases, we are creating a graph that keeps revolving around the origin as it converges towards the
origin, yielding a spiral.

yyy

xxx

In this graph, we also include the graph for t < 0.

� Let c1 = −1 and c2 = 0 and we obtain

~r(t) =
�

− sin(3t)
− cos(3t)

�

e−2t

We add this graph to the previous one.
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yyy

xxx

� Let c1 = 0 and c2 = ±1 and we obtain

~r(t) =
�

∓ cos(3t)
± sin(3t)

�

e−2t .

And add these to the graph:

yyy

xxx

Sometimes, we need some solutions of the type c1 = ±1 and c2 = ±1 to get some different types of solutions,
but we’ll let you discover that on the core exercises.
These four solutions seem to give a good idea of all possible solutions: clockwise spirals converging to the
origin.

Also observe that ~r(t) =
�

0
0

�

is a solution of the system, so this system has an equilibrium solution. This

kind of equilibrium is called a spiral sink and it is asymptotically stable. This means that it is a spiral and
it converges to the equilibrium (the origin).

Video.

� https://youtu.be/nyI_JPDrJ_I
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� https://youtu.be/dpbRUQ-5YWc

Practice Problems

1 For each matrix from practice problem 1 from Module
17, sketch its phase portrait and label them as asymp-
totically stable or unstable. The system of ODEs is
~r ′(t) = A~r(t) for the following matrices:

(a) A=
�

−7 6
−9 8

�

;

(b) A=
�

22 24
−15 −16

�

;

(c) A=
�

0 1
−5 0

�

This is called a cen-
tre, which is stable, but
not asymptotically sta-
ble. Can you tell why?

(d) A=
�

0 1
5 0

�

;

(e) A=

�

1
p

3p
3 −1

�

;

(f) A=

�

1
p

3
−
p

3 1

�

;

(g) A=
�

0 1
−4 −4

�

This is called an im-
proper node.

(h) A=
�

−4 −6
2 3

�

;

(i) A=
�

2 −3
0 2

�

;

(j) A=
�

2 0
0 2

�

;

This is called a proper
node.

(k) A=
�

0 0
1 0

�

;

(l) A=
�

0 0
0 1

�

;

2 Consider a system of ODEs ~r ′(t) = A~r(t). For each
part, give an example of eigenvalues and eigenvectors
of A that would yield the required phase portrait:

(a) Spiral sink (asymptotically stable);

(b) Spiral source (unstable);

(c) Centre (stable);

(d) Sink node (asymptotically stable);

(e) Source node (unstable);

(f) Saddle point (unstable);

(g) Improper node (stable);

(h) Improper node (unstable);

(i) Proper node (stable);

(j) Proper node (unstable);

3 Consider the system of ODEs

~r ′(t) =
�

1 1
k 1

�

~r(t).

This system of ODEs changes behaviour depending
on the parameter k.

(a) Label the behaviour of the system for different
values of k.

(b) We call the k? the critical value of k when the
behaviour is different for k < k? and for k > k?.
For the critical value of k, sketch the phase por-
trait.

4 Consider the system of ODEs

~r ′(t) =
�

0 1
−4 −k

�

~r(t).

This system of ODEs changes behaviour depending
on the parameter k.

(a) Label the behaviour of the system for different
values of k.

(b) We call the k? the critical value of k when the
behaviour is different for k < k? and for k > k?.
For the critical value of k, sketch the phase por-
trait.

(c) Which kinds of behaviours could be critical val-
ues?

5 Consider the system of ODEs

~r ′(t) = A~r(t).

Let T = trace(A) = a11 + a22, D = det(A) = a11a22 −
a12a21, and ∆= T 2 − 4D.

(a) Show that the equilibrium solution is a saddle
point if D < 0.

(b) Show that the equilibrium solution is a spiral if
∆< 0 and T 6= 0.

(c) Show that the equilibrium solution is a centre
if T = 0 and D > 0.

(d) When is the equilibrium point a node?

(e) Show that the equilibrium solution is asymptot-
ically stable if T < 0 and D > 0.

(f) Show that the equilibrium solution is unstable
if T > 0 and D < 0.
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36 Consider the following model for cheetah’s and lions, where

~p(t) =
�

`(t) = population of lions
c(t) = population of cheetahs

�

which satisfies
d ~p
d t
=
�

1 −1
−3 1

�

The general solution is:

~p(t) = c1

�

1p
3

�

e(1−
p

3)t + c2

�

−1p
3

�

e(1+
p

3)t .

36.1 Without computing them, what are the eigenvalues and eigenvectors of the matrix?

36.2 Sketch the graph of the solution with c1 = ±1 and c2 = 0.

36.3 Sketch the graph of the solution with c1 = 0 and c2 = ±1.

36.4 When one constant is set to 0, what is the shape of the graph? Is it always like that? Can you prove it?

36.5 Sketch the graph of the solution with c1 = ±1 and c2 = ±1.

36.6 Provide an interpretation of the different types of solutions.

111 © 2020 Galvão-Sousa-Siefken



37 Let us expand the model from the previous exercise to:

~p(t) =
�

`(t) = population of lions
c(t) = population of cheetahs

�

which satisfies
d ~p
d t
=
�

1 −1
−3 1

�

~p+
�

−10
50

�

.

The extra term corresponds to the effect of harvesting 10 lions and bringing in 50 cheetahs every year to
the reserve.

The general solution is:

~p(t) =
�

20
10

�

+ c1

�

1p
3

�

e(1−
p

3)t + c2

�

−1p
3

�

e(1+
p

3)t .

37.1 Sketch the phase portrait.

37.2 Provide an interpretation of the different types of solutions.
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38 For each of the following general solutions, sketch the phase portrait.

38.1 ~r(t) = c1

�

2
1

�

e2t + c2

�

−1
1

�

e5t .

38.2 ~r(t) = c1

�

2
1

�

e−2t + c2

�

−1
1

�

e−5t .
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Analysis of Models with Systems

In this module you will learn

� different ways to analyze models with several differential equations

In this chapter, we have learned how to create models involving systems of ODEs and how to solve some special
types of systems of ODEs.

Once we create a model that involves a system of ODEs, the ultimate goal is not to solve the system of ODEs,
but to be able to understand how the situation will develop. Solving the system of ODEs is often a large step in
that direction, but it is more important to know how to interpret it in light of the original situation.

Sometimes, when we cannot find an explicit formula for the solution, it is still possible to study the system to
find some properties and behaviours of the solutions.

In this module, we’ll study one example using a few different methods.

Example. The goal here is not the modelling but the analysis of the model, so we will quickly explain the
model.

We are going to model population versus cost of living in Toronto.
Consider the following functions
� p(t) = Population of Toronto (GTA) in millions, t years since the beginning of 2015.

� c(t) = Cost of living in Toronto (in thousands of dollars), t years since the beginning of 2015.

� Define a vector ~x(t) =
�

p(t)
c(t)

�

.

We assume that these two factors are related according to the following properties:
� In the absence of any migration, the population will decrease proportionally to the cost of living (with

constant a);

� There are always people moving into Toronto independently of its current population or cost of living
(with constant b)

� In the absence of any other factors, the cost of living; increases proportionally to the population (with
constant d)

� In the absence of any other factors, the cost of living; increases proportionally to the cost of living due
to inflation (with constant e);

� The city is always expanding, so the cost of living is always decreasing independently of its current
population or cost of living (with constant f ).

The constants a, b, d, e, f are all positive.

Our model is:

~x ′(t) =
�

0 −a
d e

�

~x(t) +
�

b
− f

�

Qualitative evolution of quantities

We can try to figure out how these quantities, p(t) and c(t), are going to increase or decrease.

As an academic example, let us imagine that initially p(0) = c(0) = 0.

Then, at t = 0, we have
p′(0) = b > 0 and c′(0) = − f < 0.
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This means that p(t) is increasing while c(t) wants to decrease.

Here we need to make sure that everything still makes sense: since it doesn’t make sense to have a negative
cost of living (government incentives to move into the city?!), we need to disregard our system and assume
that c(t) will continue constant while c′(t)< 0.

We then have:

ttt 0 +∞

ppp 0 ↗

ccc 0 → 0

While c(t) = 0, we have
p′(t) = b > 0 and c′(t) = d p(t)− f .

This means that p(t) is increasing with constant slope (linearly) until c′(t1) = 0. We can figure out when this
will happen:

0= c′(t1) = d p(t1)− f ⇔ p(t1) =
f
d

.

So we continue our table:

ttt 0 t1 +∞

ppp 0 ↗
f
d

ccc 0 → 0

What happens after t1?

Consider t > t1 slightly after t1. Then
¨

p′(t) = −ac(t) + b > 0 still positive because c(t) is very small, but the slope is decreasing

c′(t) = dp(t) + ec(t)− f > 0 increasing quickly as both p and c increase

ttt 0 t1 +∞

ppp 0 ↗
f
d

ccc 0 → 0

At a certain time t2, the population will stop increasing. Let us find out when this happens:

0= p′(t2) = −ac(t2) + b > 0 ⇔ c(t2) =
b
a

.

ttt 0 t1 t2 +∞

ppp 0 ↗
f
d

→

ccc 0 → 0
b
a

After this point we have t > t2 slightly after t2:
¨

p′(t) = −ac(t) + b < 0 decreasing rapidly while c′(t)> 0

c′(t) = dp(t) + ec(t)− f > 0 still increasing quickly until p(t) = 0

We expect that at some point p(t3) = 0. From that point on we have
¨

p′(t3) = −ac(t3) + b < 0 we need to ignore the model at this point and keep p constant

c′(t3) = ec(t3)− f > 0 still increasing exponentially, as long as c(t3)>
f
e
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So this is our final table:

ttt 0 t1 t2 t3 +∞

ppp 0 ↗
f
d

→ 0 →

ccc 0 → 0
b
a

Observe that to do this analysis, we didn’t need to know how to solve the system of ODEs.

Finding the equilibrium point(s)

This is often easy to find, and by using the intuition we gained while learning to sketch phase portraits, this
can give us a lot of insight about the solutions.

Let us find the equilibrium point:

¨

0= p′(t) = −ac(t) + b
0= c′(t) = dp(t) + ec(t)− f

⇔











c(t) =
b
a

p(t) =
a f − be

ad

Observe that if the population and cost of living are at these levels, then they will remain constant.

This also informs us that the disastrous scenario on the first analysis, where the population all left the city,
might have been caused by the stating position.

Interpreting the phase portrait

We have seen in the last module how to sketch a phase portrait for a system of ODEs such as this one.

Let us assume that the constants a = b = d = e = 1, f = 2. Then the phase portrait is

p

c

Observe that both quantities should be positive, so let us focus on the quadrant where both are positive:
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Observations:

� Whenever a graph hits the axes, we must stop the model and re-evaluate what that means: when the
graph hits the c = 0 axis, then the population will start increasing until c′ > 0⇔ p = 2, so the graph
will continue horizontally until the point (2,0) where the model restarts.

� The population seems to converge to 0 in all cases.

� The purple case seems to be an interesting one where the population and cost of living oscillate for a bit
near the equilibrium and then the cost of living goes almost to zero before starting to go up again and
forcing all the people to leave the city.

Properties of the system

We can look for other properties of the system of ODEs.

Based on the two analyses above, we can ask the following question:

� Is there a value for the cost of living such that if it is above that, then eventually all the population will
leave the city?

We know that

p′(t) = −ac(t) + b < 0 ⇔ c(t)>
b
a

.

So as long as the cost of living is above b
a , then the population will continue to decrease.

Observe that depending on the constants d, e, f , we could still have

c′(t) = dp(t) + e
b
a
− f < 0,

so that we could end up with a cycle around the equilibrium we found before.
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Practice Problems

1 Consider the model for student learning:

� ~x =
�

x1

x2

�

� x1 = student confidence in his/her own abilities
(x1 ∈ [0, 1])

� x2 = student knowledge measured in IQ past
100

� ~x ′(t) =
�

a b
c −d

�

~x(t) +
�

−e
0

�

� Constants a, b, c, d, e > 0.

(a) What is the equilibrium solution ~xe?

(b) If tests are harder, then d is larger. How
does that affect the equilibrium confidence and
knowledge of students?

(c) Is the equilibrium solution stable?

(d) Assume a = 1, b = c = 2, d = 3, e = 0. As
t → +∞, what are the possible outcomes for
~x(t) Explain the meaning for the students.

(e) Assume a = 1, b = c = 2, d = 3, e = 0. Some

solutions satisfy lim
t→+∞

�

c(t)
k(t)

�

=
�

+∞
+∞

�

.

Show on a graph which initial conditions ~x(0) =
�

c(0)
k(0)

�

guarantee this limit?

(f) If the tests become harder, i.e., d increases, then
is that good or bad for students?.

2 Consider the model for a tree:

� ~x(t) =
�

`(t)
h(t)

�

� `(t) = area of leafs on the tree

� h(t) = height of the tree

� ~x ′(t) =
�

a −b
c −d

�

~x(t)

� Constants a, b, c, d > 0.

(a) Is it possible to have the tree growing taller
and taller forever while the leaf area remains
bounded?

(b) What would happen to the tree if the area of
leafs is proportional to the height squared (not
square root)?

(c) If ad = bc, explain what happens to the tree as
t →∞.

3 Consider the model of a car:

� ~c(t) =
�

v(t)
f (t)

�

� v(t) = speed of the car

� f (t) = amount of fuel in the car’s tank

� ~c′(t) =
�

−2 1
−2 0

�

~c(t) +
�

0
−1

�

(a) What is the equilibrium solution ~ceq? What is
the meaning of your result?

(b) If the car runs out of fuel at 300 m/s, then de-
scribe what happens to the car.

(c) Describe what happens to the car when it starts
at rest with a full tank of 300 L.

(d) If the car attains its maximum velocity when
there are still 300 L of fuel left, what was the
car’s maximum velocity?

4 Consider the model for crying babies:

� ~c(t) =
�

a(t)
b(t)

�

� a(t) = volume of baby A’s cries in dB

� b(t) = volume of baby B’s cries in dB

� ~c′(t) =
�

−α β

β −α

�

~c(t)

� constants α,β > 0.

The constants α and β are 1 and 2. Does it make a
difference which is 1 and which is 2?
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39 Consider the following model for the sales from a designer clothing brand:

• x1(t) = purchases by “common mortals” (CM) at time t in years since the beginning of 2015.

• x2(t) = purchases by “famous people” (FP) at time t.

Our model is based on the following two principles:

(P1) CM will buy more items from the brand when CM or FP buy more.

(P2) FP will buy less when CM buy them, but will buy more when FP buy it.

The model we considered is:

~x ′(t) =
�

a b
−c d

�

~x(t)

39.1 Suppose that at the beginning only CM buy this brand. Describe how x1(t) and x2(t) evolve as t > 0.

39.2 Suppose that at the beginning only FP buy this brand. Describe how x1(t) and x2(t) evolve as t > 0.

39.3 What conditions on the constants a, b, c, d will guarantee that the solutions will spiral? In that case, is it
a spiral source or spiral sink? Is it clockwise or counterclockwise?

39.4 Are there constants a, b, c, d > 0, such that the solution ~x is periodic?

39.5 Consider the constants a = b = c = d = 1. Assume that initially CM were buying c0 > 0 items and FP
were buying f0 > 0 items. What will happen to x1(t) and x2(t) as t →∞? Explain the results in terms
of the evolution of purchases from CM and FP.

39.6 Consider the constants a = b = c = d = 1. If c0 = 10, f0 = 100, then at what time will FP stop buying
items? And at what time will FP be buying the maximum number of items?

121 © 2020 Galvão-Sousa-Siefken



© 2020 Galvão-Sousa-Siefken 122



123 © 2020 Galvão-Sousa-Siefken



4 Higher-Order Models Higher-Order Models
Ch

ap
te
r
4
–
H
ig
he
r-
O
rd
er

M
od

el
s

(image from xkcd - comic #226)

© 2020 Galvão-Sousa-Siefken 124

https://www.xkcd.com/226/


M
od

ul
e
19

:
M
od

el
lin
g
w
ith

Se
co
nd

-O
rd
er

O
D
Es

Modelling with Second-Order ODEs

In this module you will learn

� how to model physical phenomena to obtain second-order ODEs

Whenever we model the movement of objects, we often find ourselves using Newton’s Second Law of motion:

Newton’s Second Law of Motion. F = m · a, where a is the acceleration of the object, m is its mass,
and F is the net force acting on the object.

Because this “Law” includes the acceleration of the object, and we know that

acceleration= a =
d (velocity)

d t
=

d v
d t
=

d2 (position)
d t2

=
d2 r
d t2

,

we will often end up with a Second-Order ODE.

Just like we did in module 19, we will follow the step by step procedure developed in chapter 1.

Step 1. Define the problem

Example.

We want to model the position of an object attached to the end of a spring.

The first step is to decide on what we want to find at the end of the process. So
we define:
� y(t) = the vertical position of the mass, where y = 0 is the position of the

mass at rest.

m

Step 2. Build a mind map

Example. We start with the mass and then we brainstorm about the things that affect the mass:

Object
position

Acceleration

Newton’s 2nd Law

Forces

Gravity Spring Hooke’s Law

Dashpot Resistance

Step 3. Make assumptions

Example. In this step, we discuss the mind map we created and how we plan to address each of the
boxes, or only some of the boxes. This will involve making assumptions and providing an explanation to
the assumptions we make.

1. As we described before the example, the plan is to use Newton’s Second Law of Motion to describe
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the motion of the mass. This involves three quantities:

� mass: we assume that this is known to the modeller;

� acceleration: as we mentioned above, this is directly related to the position of the object. We
have y ′′(t) = acceleration, as long as we are assuming that the object is moving only vertically;

� forces: we need to find all the forces acting on the object and add them.

The forces acting on the object need to be discussed separately:
� Gravity: we will go on a limb here and say that the force of the spring is much larger, so we will

ignore this force;

� Spring: the force of the spring that acts on the mass follows Hooke’s Law that says that the force is
proportional to the extension/contraction of the spring. The constant of proportionality depends on
the spring and we assume that it is known;

� Dashpot: the dashpot provides resistance. We will assume that it provides linear resistance to
movement: the force is proportional to the velocity, with a proportionality constant that depends on
the dashpot and is assumed to be known to the modeller.

Step 4. Construct a model

Example. We will start with Newton’s Second Law of motion:

� my ′′(t) = F(t)

and we will add the different forces one by one:
� Spring: the force of the spring is −k y(t); (you should check that the sign makes sense)

� Dashpot: the force of the dashpot is −γy ′(t). (you should also check the sign of this term)

Right now we have the following model:

my ′′(t) = −k y(t)− γy ′(t).

Step 5. Model assessment

We’ll skip this part here, but you should try to develop some tests to check the validity of the model we came
up with. Specifically, the fact that we ignored gravity should be checked to make sure that it doesn’t affect our
model too much.

Practice Problems

1 Consider a mountain with shape y = f (x) a hiker
who is climbing down the mountain with horizontal
position x(t). She starts at a peak of the mountain
at x0 = 0. As she climbs down the mountain, she
notices that from her point-of-view, the rate of change
of the slope of the mountain is decreasing linearly
with time. The hiker also notices that her horizontal
speed is constant.

Model the hiker’s position and the shape of the moun-
tain.

2 Model a ping pong ball travelling through the air.

3 Model an old TV floating or sinking in the ocean.

4 Model a container floating in the ocean with a leak
that allows water to get inside.

5 Model a hot air balloon flying through the air.

6 Imagine a cylinder floating vertically partially sub-
merged in a lake. Model the position of its top.

7 Model a ball rolling down a hill.

8 Model an electric circuit with a resistor, and inductor,
and a capacitor in series.
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9 Model the shape of a rope hanging between two poles.

10 Model the shape of the cables of a suspension bridge.

11 Start with the Law of Conservation of Energy and as-
sume a conservative force. Then show that you obtain
Newton’s Second Law of motion.

12 Model a self-balancing device, like a segway or a
onewheel.

13 Imagine a device that can turn the handlebar of a
bicycle. Model how it should act to keep the bicycle
upright.
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40 Here are some facts about laptop keys:

(da) Each key must also include some damping,
so that it doesn’t keep oscillating back and
forth once pressed.

(di) A typical letter key is 15mm×15mm and
when pressed has a maximum displace-
ment of 0.5mm.

(fo) On average, a person exerts the force of
42 N with one finger on a key.

(gr) Gravity is much weaker than the spring
that keeps the key in place.

(hl) Each key has a spring to make the key
return to its original position after being
pressed (Hooke’s Law: “the force is pro-
portional to the extension”).

(lo) Keys last 50 million presses on average.

(ve) Keys can only move vertically.

40.1 Model a laptop keypress.

40.2 What happens if the damping system of the key is broken? What happens if the damping system is too
strong? How strong should the damping system be?

40.3 What happens to the key when the spring breaks?
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Second-Order Linear ODEs with Constant Coefficients

In this module you will learn

� how to solve this type of ODEs

In this module we will learn how to solve a specific type of Second-Order ODEs: linear second-order ODEs
with constant coefficients. These equations have the form

a y ′′(t) + b y ′(t) + c y(t) = f (t).

4.1 Homogeneous ODEs

These are ODEs above with f (t)≡ 0. So we are trying to solve

a y ′′(t) + b y ′(t) + c y(t) = 0.

The main idea to solve these problems is the same as for systems: making an educated guess that the solution
should look like an exponential:

y(t) = er t ,

and we need to find which values of r yield solutions.

We do that by plugging this formula for y(t) into the ODE:

� y ′(t) = rer t

� y ′′(t) = r2er t

We get
ar2er t + brer t + cer t = 0 ⇔ ar2 + br + c = 0.

This equation for r is called the characteristic equation.

We know how to solve it:

r =
−b±

p
b2 − 4ac

2a
.

That means that we have three possible cases.

Two real distinct roots. When b2 − 4ac > 0, we have two possible values for r that are real numbers: r1
and r2.

Then, similarly to what we did with systems of ODEs, we obtain two solutions

y1(t) = er1 t and y2(t) = er2 t ,

and the general solution is
y(t) = c1er1 t + c2er2 t .

Video.

� https://youtu.be/_8fcT95JV34

131 © 2020 Galvão-Sousa-Siefken

https://youtu.be/_8fcT95JV34
https://youtu.be/_8fcT95JV34


M
od

ul
e
20

:
Se

co
nd

-O
rd
er

Li
ne
ar

O
D
Es

w
ith

Co
ns
ta
nt

Co
effi

ci
en
ts

� https://youtu.be/nE_OnX8ulHA

� https://youtu.be/v1xKZOrGsVc

Two complex roots. When b2 − 4ac < 0, we have two possible values for r, but they are complex values:

r± = α± iβ .

What are the value of α and β?

Then we have two solutions
y+(t) = e(α+iβ)t and y−(t) = e(α−iβ)t ,

and the general solution is
y(t) = a1e(α+iβ)t + a2e(α−iβ)t .

Just like we did with systems with complex eigenvalues, we prefer to write the solutions without complex
numbers, so we expand it using Euler’s formula to get

y(t) = a1e(α+iβ)t + a2e(α−iβ)t

= a1eαt eiβ t + a2eαt e−iβ t

= a1eαt
�

cos(β t) + i sin(β t)
�

+ a2eαt
�

cos(β t)− i sin(β t)
�

= (a1 + a2) cos(β t)eαt + i(a1 − a2) sin(β t)eaαt

= c1 cos(β t)eαt + c2 sin(β t)eαt

How do c1 and c2 depend on a1, a2?

So another way to write the general solution is

y(t) = c1 cos(β t)eαt + c2 sin(β t)eαt .

Video.

� https://youtu.be/DORl6GMPtjM?t=396

One real repeated root. When b2 − 4ac = 0, then we are left with only one value for r = − b
2a .

We then have one solution
y1(t) = e−

b
2a t .

Example. Consider the ODE
y ′′(t) + 2y ′(t) + y(t) = 0.

To find the general solution, we assume that the solutions have the form y(t) = er t , which means that r
must satisfy

r2 + 2r + 1= 0 ⇔ r = −1,
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so y1(t) = c1e−t .
Now can we solve this ODE with the following initial conditions?
� y(0) = 2 and y ′(0) = −2.

� y(0) = 2 and y ′(0) = 1.

This previous example, should give a good idea on why having one value for r means that we are missing
something. We need to find a second solution y2(t).

If we want to find all the divisors of 42, and we already know that d1 = 2 is a divisor, then we can use the
divisor d1 we know to write

d1 · x = 42 ⇔ 2x = 42 ⇔ x = 21,

where x is the product of all the other divisors.
We used the divisor we knew d1 to obtain a simpler problem for the other divisors.

Reduction of Order. The idea here is the same. We use the solution we found to try to obtain a simpler ODE
for the other solution:

y(t) = y1(t) · u(t),

where y(t) is the solution we are still missing, y1(t) is the solution we already found, and u(t) is a function. If
we find u(t), then we find y(t). We hope that the function u(t) satisfies a simpler problem.

To do that, we need to plug the formula above for y(t) into the original ODE.

Important. You should do these calculations yourself. Remember to use the product rule and to be
careful not to make any mistakes.
Also remember that we know the value of r.

We obtain
u′′(t) = 0 ⇔ u(t) = c1 + c2 t.

This means that we found

y(t) = (c1 + c2 t)er t ⇔ y(t) = c1er t

︸︷︷︸

previous
solution y1(t)

+c2 ter t .

The general solution is
y(t) = c1er t + c2 ter t ,

where r = − b
2a .

Video.

� https://youtu.be/DORl6GMPtjM

4.2 Non-Homogeneous ODEs

We are trying to solve
a y ′′(t) + b y ′(t) + c y(t) = f (t), (?)

where f (t) is a known function.

Important. If u(t) is the general solution of

a y ′′(t) + b y ′(t) + c y(t) = 0, (H)
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and v(t) satisfies
a y ′′(t) + b y ′(t) + c y(t) = f (t), (?)

then y(t) = u(t) + v(t) gives the general solution of

a y ′′(t) + b y ′(t) + c y(t) = f (t).

This is a practice problem at the end of this module.

This means that to solve this ODE, we split the general solution into two parts

y(t) = yc(t) + yp(t),

where

� yc(t) is called the complementary solution and it is the general solution of the corresponding homoge-
nous ODE (H). It is solved using the technique we studied above.

� yp(t) is called the particular solution and it is one function that satisfies the original ODE (?).

Important. It may seem strange that to solve the original ODE, we need its solution, but what we are
trying to do is find all possible solutions of the original ODE.
To find all possible solutions of the original ODE, we require two things:
� One solution of the original ODE: yp(t),

� and all possible solutions of the homogeneous ODE: yc(t).

We already know how to find the complementary solution, so we will focus our attention on finding one
particular solution.

Method of Undetermined Coefficients. As you probably have gotten used to by now, this is a method of
educated guess-and-check.

Let us look at the equation from a different point-of-view

a y ′′(t) + b y ′(t) + c y(t) = f (t)
linear combination of

function and derivatives= f (t)

and remember that some functions don’t change much when differentiated:

� Exponentials y = cer t don’t change their form after differentiation y ′ = crer t = der t . They even keep
the same exponential term.

� Polynomials don’t change their form either: their derivative is also a polynomial, with lower degree.

� Cosines and Sines alternate between one and the other, so functions of the form y = c1 sin(r t)+ c2 cos(r t)
don’t change after differentiation.

Important. This means that, if f (t) is one of these types of function, then y(t) must be of the same form.

Example. Find a particular solution for the ODE

y ′′ − 4y = 10e3t = (constant) · (exponential of 3t).

Our candidate is
yp(t) = Ae3t .

Now we need to find the constant A by plugging it into the ODE:

9Ae3t − 4 · Ae3t = 10e3t ⇔ A= 2,

so yp(t) = 2e3t is a particular solution.
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Example. Find a particular solution for the ODE

y ′′ − 4y = 3t2 + 2t = (polynomial of degree 2).

Our candidate is
yp(t) = At2 + Bt + C .

Now we need to find the constants A, B, C by plugging the formula for yp into the ODE:

2A− 4At2 − 4Bt − 4C = 3t2 + 2t ⇔







A= − 3
4

B = − 1
2

C = A
2 = −

3
8 .

so yp(t) = −
3
4 t2 − t

2 −
3
8 is a particular solution.

There are some more details to deal with when using this method that will be addressed in the core exercises.

Video.

� https://youtu.be/CjZ0TfPnWVU

� https://youtu.be/ubdSxJ2nmVk

� https://youtu.be/YRvqem1n0nQ

Practice Problems

1 Find the complementary and particular solutions for
the following ODEs

(a) y ′′ − 2y ′ − 3y = 3e2t

(b) y ′′ − 2y ′ − 3y = −3te−t

(c) y ′′ − 9y = t2e−3t − 6

(d) y ′′ + 2y ′ − 8y = e−t − 2et

(e) y ′′ − y ′ − 6y = sin(t)

(f) y ′′ − y ′ − 6y = sin(t) + 3e3t

(g) y ′′ + 4y = (2t + 1) sin(t) + 4cos(2t)

(h) y ′′ + y = cos(2t) + t3

(i) y ′′ − y ′ − 2y = t cos(t)− t sin(t)

(j) y ′′ + 5y ′ + 6y = 2e−2t

2 What is the form of the particular solution for the ODE

y (6) + y (5) − 5y (4) + 31y ′′′ − 176y ′′ + 220y ′

= (3t−1)e2t+t3e−5t sin(3t)+(4t2−2t)e−2t sin(3t),

knowing that

x6 + x5 − 5x4 + 31x3 − 176x2 + 220x

=
�

(x2 + 2) + 9
�

∗ (x − 2)2 ∗ x ∗ (x + 5) ?

3 What is the form of the particular solution for the ODE

y ′′′′ − 4y ′′′ + 10y ′′ − 12y ′ + 5y

= tet + t2 cos(2t)− (2t + 1)et sin(t),

knowing that

x4 − 4x3 + 10x2 − 12x + 5

= (x − 1)2
�

(x − 1)2 + 4
�

?

4 Consider the ODE

t2 y ′′ + t y ′ − 9y = 0,

and a solution y1(t) = t3.

(a) Use the reduction of order technique to deduce
the general solution to this problem.

Hint. You should find a second-order ODE for u(t)
without the term u(t). So define v(t) = u′(t)
and solve the first-order ODE for v(t).

(b) Find the solution with initial conditions y(1) =
1 and y ′(1) = −3.
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(c) Find the solution with initial conditions y(1) =
1 and y ′(1) = 3.

(d) Find the solution with initial conditions y(1) =
1 and y ′(1) = 0.

5 Consider the ODE

t2 y ′′ − 3t y ′ + 4y = 0

and a solution y1(t) = t2.

(a) Use the reduction of order technique to deduce
the general solution to this problem.

(b) Find the solution with initial conditions y(1) =
1 and y ′(1) = 2.

(c) Find the solution with initial conditions y(1) =
0 and y ′(1) = 1.

6 Consider the ODE a y ′′ + b y ′ + c y = f (t), with com-
plementary solution yc(t) = c1 y1(t) + c2 y2(t) and
particular solution yp(t).
Consider also the initial conditions y(0) = y0 and
y ′(0) = v0.

Show that there exist constants c1, c2 such that y(t) =
yc(t) + yp(t) solves the ODE with these initial condi-
tions.
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42 Consider the ODE y ′′(t)− 9y(t) = f (t).

42.1 Find a complementary solution.

42.2 Find a particular solution for f (t) = 14e−4t .

42.3 Find a particular solution for f (t) = 9e−3t .

42.4 Find a particular solution for f (t) = 10cos(t).
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43 Consider the ODE y ′′(t)− 2y ′(t) + 5y(t) = f (t).

43.1 Find a complementary solution.

43.2 Find a particular solution for f (t) = sin(2t)et .

43.3 Find a particular solution for f (t) = (4t + 2) sin(2t)et .
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44 Consider the ODE y ′′ + 3y ′ = 3t.

44.1 Find the complementary solution.

44.2 Find a particular solution.

44.3 Find the solution that also satisfies
¨

y(0) = 0

y ′(0) = 0
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Analysis of Models with Higher Order ODEs

In this module you will learn

� different ways to analyze models with higher-order differential equations

In this chapter, we have learned how to create models involving systems of ODEs and how to solve some special
types of second-order ODEs.

In this module, we’ll study one example using a few different methods.

Example. Consider the model we found earlier for a mass attached to a spring:

� y(t) = vertical position of the mass, where y = 0 is the position of the mass at rest

� my ′′(t) = −k y(t)− γy ′(t)

� m, k,γ > 0 are constants for the mass, the stiffness of the spring, and the resistance
of the dashpot.

m

Qualitative evolution of quantities

We can try to figure out how these quantities, y(t), y ′(t), and y ′′(t) are going to increase or decrease as time
goes by.

Let us imagine that initially y(0) = 1, y ′(0) = 0.

Then, at t = 0, we have






y(0) = 1

y ′(0) = 0

y ′′(0) = −k < 0 (so object is decelerating, meaning speed will become negative)

This means that the object is decelerating, so we have two immediate consequences:

� the speed will decrease and become negative

� the position will start decreasing

Once the speed is negative, we see another effect

y ′′(t) = −k y(t)
︸︷︷︸

decreasing

−γy ′(t)
︸ ︷︷ ︸

positive

,

so the acceleration is negative but approaching zero at time t1:

0= y ′′(t1) = −k y(t1)− γy ′(t1) ⇔ k y(t1) = −γy ′(t1)

Let us summarize our results so far in a table:

ttt 0 t1 +∞

yyy 1 ↘ + ↘

y ′y ′y ′ 0 ↘ − ↗

y ′′y ′′y ′′ − ↗ 0 ↗
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The next milestone is:
y(t2) = 0 or y ′(t2) = 0.

If y ′(t2) = 0 while y(t2)> 0, then
y ′′(t2) = −k y(t2)< 0,

which means that y ′′ would have had to decrease again, become zero and then negative, so there would have
been another milestone before. We deduce that the next milestone is

y(t2) = 0 ⇔ y ′′(t2) = −γy ′(t2)> 0.

ttt 0 t1 t2 t3 +∞

yyy 1 ↘ + ↘ 0 ↘ − · · ·

y ′y ′y ′ 0 ↘ − ↗ − ↗ 0 · · ·

y ′′y ′′y ′′ − ↗ 0 ↗ + ↗ + · · ·

We can continue this analysis to conclude that the position seems to cycle back and forth between positive and
negative, like you would expect from a spring.

In fact, this study is flawed, since there is a possibility that the time t1 never happens and the spring only
approaches the state described without ever reaching it. This will happen for some configuration of the
constants m, k,γ.

Properties of the solutions

We learned earlier in the chapter how to solve this type of differential equations.

To solve them, we assume that solutions are of the form y = er t and then find a characteristic equation for r:

mr2 = −k− γr ⇔ r =
−γ±

p

γ2 − 4mk
2m

.

Depending on the constants m, k,γ, we can have:

� Two real distinct solutions

� Two complex distinct solutions

� One repeated real solution

How do solutions behave in each case? What kind of springs or dashpots imply each case?

Limiting behaviour of the solutions

From the analysis done above, we see that the possible values for r are either negative or when r is complex,
its real part is negative (why?).

This means that the solution will have the form

y(t) = e(negative constant)t [a cos(αt) + b sin(β t) + c] ,

so
lim

t→∞
y(t) = 0.

This means that the mass will slow down and eventually stop.
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Numerical approximations

In module 16 we learned how to approximate solutions of first-order ODEs using Euler’s Method.

We can extend that method to second-order ODEs, which we will leave as an exercise, and approximate the
solution:

k = 2,γ= 5 k = 2,γ= 1 k = 2,γ= 0

These graphs also give us some intuition on how the solutions behave.

You can access this simulation here:

� https://www.desmos.com/calculator/mufgdgku9w

Practice Problems

1 Consider the model for a hot air balloon:
� y(t) = altitude of the balloon;

� y ′′(t) = −g
︸︷︷︸

gravity

+
�

g − 9(y − 1000)
�

︸ ︷︷ ︸

lift

+p(t);

� g = gravitational constant;

� p(t) = passenger actions affecting the vertical
acceleration of the balloon.

(a) What is the equilibrium altitude?

(b) How does the balloon behave without passenger
actions?

(c) If the passenger actions are p(t) = 6cos(ωt),
study how the constant ω changes the be-
haviour.

2 Consider the model for a cubic object floating/sinking
in the ocean:
� d(t) = depth of the object;

� md ′′(t) = −mg − γ
�

�d ′(t)
�

�d ′(t) + Ar3;

� m= mass of the object;

� r = length of one side of the object;

� γ= water resistance constant;

� A= buoyancy constant (density of water minus
density of object).

(a) Does the object float or sink?

(b) What is the terminal vertical velocity of the ob-
ject?

(c) Assume the constants r = 1
2 m, m = 30kg,

γ= 1kg/m, A= 300 · 23kg/(ms)2, and approxi-
mate g ≈ 10m/s2. Assume that the initial depth
of the object is 0m (the surface of the ocean).
What is the object’s terminal velocity? Will it
reach the bottom of the ocean?

m

3 Consider the following model for a spring-mass sys-
tem:
� y(t) = position of the mass;

� y ′′(t) = −k y(t) + f (t);

� k = stiffness of the spring;

� f (t) = extra force on the mass.
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(a) How does the spring behave when there is no
external force?

(b) Assume k = 9. How does the spring behave
when the external force is f (t) = cos(4t)?

(c) Assume k = 9. How does the spring behave
when the external force is f (t) = cos(3t)?

(d) Assume k = 9. How does the spring behave
when the external force is f (t) = cos(2.95t)?

4 Explain how the initial statement of the comic makes
sense.
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45 Consider the second-order ODE:

y ′′(t)− 3y(t) = t
�

2+ sin(t)
�

.

45.1 Assume that y(0) = 0 and y ′(0) = b. Which values of b guarantee that y(t)> 0 for t ≥ 0.

45.2 Assume that y(0) = a < 0 and y ′(0) = b. Give an example of a, b such that y(t) is increasing for t ≥ 0.

45.3 Assume that y(0) = 0 and y ′(0) = b. Which values of b guarantee that y(t)< 0 for all t > 0.
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46 Consider the second-order ODE:






y ′′(t) + 4y(t) = f (t)
y(0) = y0

y ′(0) = 0

46.1 Let f (t) = 0 and y0 = 1. Sketch the solution.

46.2 Let f (t) = 396cos(20t) and y0 = 0. Sketch the solution.

46.3 Let f (t) = −4 sin(2t) and y0 = 1. Sketch the solution.

46.4 Let f (t) = 0.39 cos(1.9t) and y0 = 2. Sketch the solution.

Hint. cos(at) + cos(bt) = 2 cos
�

a− b
2

�

cos
�

a+ b
2

t
�
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(image from xkcd - comic #947)

© 2020 Galvão-Sousa-Siefken 148

https://www.xkcd.com/947/


M
od

ul
e
22

:
In
tr
od

uc
tio

n
to

D
iff
er
en
ce

Eq
ua
tio

ns

Introduction to Difference Equations

In this module you will learn

� what is a difference equation

� the different types of difference equations

Difference Equation. A difference equation is an equation involving a several terms of an unknown
sequence.

Example.

1. uk+1 = uk + uk−1

2. xk = 2xk−1

Among difference equations, there are lots of types, that require different approaches, so we need to classify
them.

Types of Differential Equations. Just like with differential equations, the main way we distinguish
difference equations is according to:
� order: the order of a difference equation is the difference between the highest and the smallest terms

of the sequence present in the difference equation;

� linear vs nonlinear: A difference equation F
�

k, uk, uk−1, . . . , uk−n

�

= 0 is called linear if F is a
linear function of uk, uk−1, . . . , uk−n. Linear difference equations have the form

a0(k)uk + a1(k)uk−1 + · · ·+ an(k)uk−n = b(k).

All other differential equations are called nonlinear.

Roughly, to check whether a difference equation is linear, we need to check that:
� The unknown uk and its other terms appear with exponent 1;

� The unknown uk and its other terms do not multiply by each other;

� The unknown uk and its other terms are not the objects of other functions – there are no occurrences of
things like sin(uk) or euk−4 , ln(uk+1),

p
uk−1, etc.

Example.

1. The difference equation uk = 2uk−2 is linear and second-order,because k− (k− 2) = 2.

2. The difference equation uk+1 = u2
k + uk−2 is nonlinear and third-order, because (k+ 1)− (k− 2) = 3.

Similarly to differential equations, linear difference equations are, in general, easier to study and their theory
is much more developed.
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Solving Difference Equations

In this module you will learn

� how to solve some types of difference equations

Let us start with a technique that is very simple and useful, although because it is so simple, it requires some
ingenuity to pull off in some cases.

23.1. Expanding to find a pattern

We’ll start with an example.

Example. Consider the initial-value problem
¨

uk+1 =
3
2 uk for k ≥ 0

u0 = 5

Then we can start calculating:
� u1 =

3
2 u0 = 7.5

� u2 =
3
2 u1 = 11.25

� u3 =
3
2 u2 = 16.875

� u4 =
3
2 u3 = 25.3125

� u5 =
3
2 u4 = 37.96875

�
...

As you can notice, it’s not particularly easy to find a pattern in these numbers.
The problem is that we over-simplified. The trick with this technique is to simplify without over-simplifying.
Let’s calculate again:
� u1 =

3
2 u0 =

3
2 · 5

� u2 =
3
2 u1 =

3
2 ·

3
2 · 5=

�

3
2

�2 · 5

� u3 =
3
2 u2 =

3
2 ·
�

3
2

�2 · 5=
�

3
2

�3 · 5

� u4 =
3
2 u3 =

3
2 ·
�

3
2

�3 · 5=
�

3
2

�4 · 5

� u5 =
3
2 u4 =

3
2 ·
�

3
2

�4 · 5=
�

3
2

�5 · 5

�
...

Now the pattern should be clear:

uk =
�

3
2

�k

· 5.

To show that this is indeed the solution, we need to use Mathematical Induction (see appendix 7.2) to prove
it.

The main idea of this technique is to calculate the terms of the fraction one by one in terms of the initial data.

This is a technique that requires practice, as it is often difficult to judge which parts to simplify and which parts
to expand to make sure the pattern emerges clearly.
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Video.

� https://youtu.be/0OcUAjOXmFc

23.2. Educated Guessing

This is the technique we used several times in the book already. We used it with systems of differential equations
and with second-order differential equations.

Observe that in the last example, the solution was an exponential, as was the case with differential equations.

Example. Consider the Fibonacci sequence:







fk+1 = fk + fk−1

f0 = 0

f1 = 1

We want to find a formula for fk. To do that, let us assume that the sequence is an exponential. So we can
assume that

fk = rk,

for some value of r.
Let us now use this form of fk into the difference equation to obtain:

rk+1 = rk + rk−1,

which can be simplified by dividing by rk−1:

r2 = r + 1 ⇔ r2 − r − 1= 0.

This is a quadratic equation that we can solve:

r± =
1±
p

1+ 4
2

=
1±
p

5
2

.

So we have two values of r that seem to work.
That is similar to what we had when solving second-order ODEs (and this is a second-order difference
equation). In that case, the solution turned out to be a linear combination of the two solutions found:

fk = c1rk
− + c2rk

+ = c1

�

1−
p

5
2

�k

+ c2

�

1+
p

5
2

�k

.

Now we need to find c1 and c2 using the initial data:

0= c1 + c2 (k = 0)

1= c1
1−
p

5
2

+ c2
1+
p

5
2

(k = 1)

This yields:

c1 = −
1
p

5

c2 =
1
p

5

So the formula we obtain is

fk =
1
p

5

�

�

1+
p

5
2

�k

−
�

1−
p

5
2

�k�

.

© 2020 Galvão-Sousa-Siefken 152

https://youtu.be/0OcUAjOXmFc
https://youtu.be/0OcUAjOXmFc


M
od

ul
e
23

:
So

lv
in
g
D
iff
er
en
ce

Eq
ua
tio

ns

Important. The idea of this technique is to assume that the solution is an exponential of the form rk

and find the values for r that solve the particular difference equation. The general solution will be a linear
combination of these solutions.

Video.

� https://youtu.be/A5tBvxDM9V4

Practice Problems

1 Consider the initial-value problem

¨

xk+1 = 3xk + 4

x0 = 1

(a) Using the expand-until-you-find-the-pattern
technique, find the solution of this problem.

(b) Observe that this problem has an equilibrium
solution x?. What is x??

(c) Define a new sequence yk = xk − x?. Which
initial-value problem does ti satisfy?

(d) Find yk.

(e) Find xk.

2 Find the solution to the problem

¨

xk+1 = −2xk + 3

x1 = 2

3 When we were solving ODEs, we considered expo-
nential solutions of the form uk = erk, but above we
considered uk = rk. Are these equivalent?

Consider the initial-value problem











xk+1 = xk − xk−1

x0 = 1

x1 = 2

(a) Solve the problem assuming the solution is of
the form uk = rk.

(b) Solve the problem assuming the solution is of
the form uk = erk.

(c) What can you conclude?

4 Find the solution to the problem











xk+1 = −2xk − xk−1

x0 = 1

x1 = 2

5 Find the solution for the problem











axk+1 − xk + (1− a)xk−1 = 0

x0 = 1

xN = 0

6 Consider the problem

xk − 2xk−1 − xk−2 + 2xk−3 = 0

Find the solution for the following initial conditions.

(a) x0 = 2, x1 = 2, x2 = 2.

(b) x0 = 1, x1 = 0, x2 = 1.

(c) x0 = 1, x1 = 2, x2 = 3.

7 Consider the problem










xk+1 = −2xk − 2xk−1

x0 = 1

x1 = 0

(a) Find the solution of this problem (it will involve
complex numbers).

(b) Show that xk ∈ R for all k = 0,1, . . .

Let us re-write the solution without using complex
numbers.

(c) Assuming the solution is an exponential xk = rk,
what are the possible values or r?

This means that the solution is of the form

xk = c1rk
1 + c2rk

2 .

We need to know how to easily write α+ iβ)k.

(d) Using Euler’s Formula in 3.2, write the complex
numbers r1 and r2 in the form

r1 = ρeiθ .

Also show that

r2 = ρe−iθ .

(e) Now it should be easier to compute rk
1 and rk

2 .
After simplifying, use Euler’s Formula in 3.2
again to get an expression for rk

1 with cos and
sin.

(f) Let us put everything together again to get a
solution of the form

xk = a1ρ
k cos(?) + a2ρ

k sin(?).

How do a1, a2 relate to c1, c2?

(g) Find the constants a1, a2.
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47 Consider the difference equation
uk+1 = 6uk − 9uk−1

47.1 Find the solution that satisfies u0 = 1, u1 = 3.

47.2 Find the solution that satisfies u0 = 1, u1 = 4.
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48 Consider a difference equation that has solutions uk = rk for r = 2 and r = 3 and satisfies the conditions
u0 = 7 and u1 = 6.

What is u22?
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Modelling with Difference Equations

In this module you will learn

� when to model a quantity using a difference equation instead of a differential equation

� different ways to create a model using difference equations

In all the modelling scenarios of chapters 2, 3, and 4, we dealt with continuously changing quantities, and so
the appropriate way to model these was through differential equations.

However, not everything changes continuously, somethings change at specific time intervals. For those quanti-
ties, differential equations are not the best tool and we turn to difference equations.

This module will be divided in several parts depending on the type of situation.

24.1. Economic Models

Economic quantities often change in bursts, not continuously. That’s what happens to a savings account as in
the example below, or to stock prices, or to the balance left on a mortgage. Economic quantities are usually
modelled by difference equations.

Example. We put a certain amount of money in a savings bank account with an annual interest rate of
p%, and compounded at regular periods of α (in years).

How does the balance in the savings account change over time?

Step 1. The goal is to model the balance on the account, so define
� b(t) = balance on the savings account at time t.

Notice that the balance on the bank account doesn’t change continuously, the balance doesn’t change at all
until the end of the compounding period. Then the bank adds the interest into the account.
So the balance only changes at each compounding period. We can change our goal to define
� bn = balance on the savings account after n compounding periods.

Step 2. Create a mind map.
We will keep this model simple, so our mind map is just:

account balance interest

Step 3. Let us make the following assumptions:
� We make one initial deposit into the account at time n= 0.

� We don’t make any more withdrawals or deposits.

� The only way the savings account balance changes is through the interest, which is the interest rate
p% of the current balance.

Step 4. We create the following model

bn+1 =
�

previous
balance

�

+ interest
bn+1 = bn + α

p
100 bn =

�

1+α p
100

�

bn.
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24.2. Probability Models

There are several circumstances that involve probabilities that can be modelled using difference equations.

Below is an example of one such circumstance.

Example.

A gambler plays a game at a casino. The game is played one round at a time.
Each round, one of two things happens:
� The gambler wins $1 with a probability of q

� The gambler loses $1 with a probability of 1− q

The gambler will stop playing only if
� The gambler is ruined (bankrupt)

� The gambler reaches $W .

What is the probability pnpnpn that the player will be ruined if he starts gambling with $n ?

Step 2. Mind map.

ruined starting with $n
=

ruined with $n

win ruined with $n+ 1

lose

ruined with $n− 1

The two boxes on the left are very important. The crucial idea is to realize that it doesn’t matter when the gam-
bler has $n. If s/he has $n at two different points in time, then the probability of becoming ruined is the same.

This mind map, shows us that we can relate pn, pn+1 and pn−1.

The rest of the modelling will be left as a practice problem.

Video.

� https://youtu.be/Rr2iSKlengg

24.3. Population Models

We have modelled populations using differential equations. Populations can be modelled using both differential
or difference equations. Which kind of equations to use depends on the goal of the model and the assumptions
that we make.

Below we’ll see an example of a population model using difference equations.

Example.

Model a population of mosquitoes, who reproduce at specific times of the year.

Step 1. The goal is to model the population, so we define
� p(t) = population of mosquitoes at time t.
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Step 2. We create a mind map for this problem.

Mosquitoes

Reproduce

Die

At the same time

Step 3. Given that the mosquito population all reproduces at the same time, we don’t need to track the
population at all times t.
So we can assume that the mosquito population doesn’t change (much) between seasons, and we change
our objective function from p(t) to pn:
� pn = population of mosquitoes at the beginning of season n.

We understand that mosquitoes die in between seasons, but in this model, we only count the deaths at the
beginning of each season.

The next assumption is that the number of nymphs (baby mosquitoes) is proportional to the number of
mosquitoes in the beginning of the season.
Similarly, the number of deaths is proportional to the number of mosquitoes in the beginning of the season.
Also observe that mosquitoes only live for one season, which means that the proportionality constant µ > 1.

Step 4. So our model is
� pn = population of mosquitoes at the beginning of season n.

� pn+1 = rpn −µpn = (r −µ)pn;

� r = the average number of nymphs per per mosquito per season;

� µ= the average number of deaths per mosquito per season;

� µ > 1, which means that each mosquito itself dies (at the end of the seasons if not earlier), but also
some of its nymphs will die.

Video.

� https://youtu.be/j__Kredt7vY

� https://youtu.be/qmm9GPhA1MY
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Practice Problems

Create a model for the following situations.

1 You just took a loan to buy a car. You’ll need to make
fixed payments every period, and the bank will charge
an interest on the amount you still owe every period.

2 A bird is chirping to find a mate. Unfortunately it
is standing next to a cave which echoes its chirps.
Consider the following:

(P1) The bird chirps once every minute;

(P2) The maximum volume the bird can chirp is M
dB;

(P3) If it hears a chirp, then it chirps at a volume
proportional to the volume of the chirp it heard
times the difference between the maximum vol-
ume it is capable and the volume heard with
constant A 1

dB ;

3 IBM just developed an new software that they wish to
charge for usage. In this program, there is a parameter
n that you can choose to change how it performs:

� n2 = number of operations it takes to run the
program;

� The profit IBM will make is − ln(error) in Cana-
dian dollars (negative means that IBM has to
pay a penalty).

Model the profit that IBM makes. Remember to con-
sider all sources of costs.

4 Let us study Engineering students at the University
of Toronto. Find a model for the number of under-
graduate students in the Engineering school at the
University of Toronto and how they change from year
to year.

5 You are working for Canada Revenue Agency and the
queue in the IRS complaints section is getting too
large and lengthy. One way to solve this would be to
stop collecting taxes, but that’s not possible, so you
are tasked with modelling the queue.

Model a queue on a typical weekday afternoon minute
by minute.

6 Read the example above about the gambler’s ruin.
Finish creating a model for it.

7 A ball bouncing on the floor.

8 A person has some fever and takes tylenol every 4
hours. What is the concentration of tylenol in her
bloodstream?
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49 Let us expand on the economic example above.

We put a certain amount of money in a savings bank account with an annual interest rate of p%, and
compounded at regular periods of α (in years).

Even though we call p% the annual interest rate, because it is compounded during the year, at the end of
the year the effective annual interest rate peff% is actually higher.

Calculate the effective interest rate peff%.
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50 The goal of this question is to try to understand the meaning of average lifespan.

50.1 Consider a small tribe, where the people in there died at the ages:

42, 56, 46, 52, 5, 103, 47, 67, 67, 85, 57, 42, 47, 67, 46, 42, 5, 46, 57, 42.

What is the average lifespan of this tribe’s population?

50.2 Consider another small tribe, where people recorded their lifespans differently. Below is a table with the
percentage of the population that died at each age:

Percentage of population 2% 5% 9% 9% 16% 22% 37%
Age at death 98 82 71 66 61 53 48

What is the average lifespan of this tribe’s population?
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51 Given a population with

• µ= probability that an individual will die between two seasons.

51.1 Define the following quantity

• P(k) =probability that an individual born at season 0 is alive at the beginning of season k.

Find a model for P(k).

51.2 What is the probability of the individual dying during the kth season?

51.3 What is the average lifespan of an individual in this population?
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52 Consider a population of special rabbits. Once a pair of rabbits is born, they
grow and one year later they are still immature. But two years after they
are born they give birth to another pair of rabbits. Model this population
of rabbits.

born0

1

2

3

baby

mature

mature

new baby

new baby
...
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53 Consider another population of rabbits. This is the lifecycle of a pair of rabbits:

(year 0) Born

(year 1) Immature (no babies)

(year 2) Young Adult (1 pairs of babies)

(year 3) Adult (1 pair of babies)

(year 4) Old (no babies)

(year 5) Die

born0

1

2

3

4

5

baby

young adult

adult

old

dies

new baby

new baby

Model this population of rabbits.
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Analysis of Difference Equations

In this module you will learn

� some ways to analyze models with difference equations

We have seen some different types of models involving difference equations. we have also seen a few different
ways to solve them.

We will now see an example of how we can analyze a difference equation.

Example.

Consider the following model for the number of Mathematics students at a University:
� ek = number of students in the year 2020+ k;

� ak = number of students admitted to the first year;

� g = percentage of students that graduate every year;

� q = percentage of students that quit the Mathematics program every year.

� ek+1 = ek + a− gek − qek

Finding the equilibrium point(s)

What is the equilibrium number of students E? This means that we are looking for a solution that remains
constant ek+1 = ek = E.

E = E + a− (g + q)E ⇔ E =
a

g + q

This is the value that the department should strive for, since it would remain stable.

Numerical approximations

For models with difference equations, we don’t need numerical methods, since the recursive definition of the
sequence is already a numerical method in itself.

We can follow the same approach however and run some numbers and with different values for the parameters
to gain some intuition on the solutions.

e0 > E e0 < E
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You can access this simulation here:

� https://www.desmos.com/calculator/wv3oxrjvrz

Qualitative evolution of quantities

Let us now look at what happens if the situation is not in equilibrium. The numerical study above, gives some
intuition about the behaviour of solutions.

Let us assume that ek > E. Then

ek+1 = ek(1− g − q) + a

> E(1− g − q) + a (see note below)

= E − E(g + q) + a

= E −
a

g + q
(g + q) + a

= E

Note. This step is only true if E and 1− g − q > 0. (Why?)

It’s clear that E should be positive, since it is a number of students.

The other quantity is not so obvious: g + q < 1 ?
In fact, g + q is the fraction of students that graduate or quit the Mathematics program, so it can’t exceed 1!
(Why?)

We conclude that if ek > E, then ek+1 > E. This means that if the number of students starts above the equilib-
rium, then it will always stay above it.

But will the number of students keep increasing without bound or will it converge to a number?

Let us check:

ek+1 − ek = a− ek(g + q)
< a− E(g + q)

= a−
a

g + q
(g + q)

= 0

So we conclude that
ek+1 − ek < 0 ⇔ ek+1 < ek,

so the number of students will decrease.

Our conclusion is that if ek > E, then ek+1 ∈ [E, ek]:
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ek

k k+ 1

E

ek

ek+1

Similarly, if ek < E, we can conclude that ek+1 ∈ [ek, E]:

ek

k k+ 1

E

ek

ek+1

ek
ek+1

So we can see that the sequence ek will be approaching E, so we can say that the equilibrium is stable.

Limiting behaviour of the solutions

From our previous analysis, we can see that it looks like

lim
k→∞

ek = E.

But we didn’t prove this yet. It could be that the sequence converges to some other value.

To show this, we would need to define a new sequence xk = ek − E, assume that it has the form xk = C rk and
then obtain a characteristic equation for r:

r = 1− g − q ∈ (0,1),

so xk = C rk and
lim

k→∞
xk = 0 ⇔ lim

k→∞
ek = E.

So we now know that the number of students will converge monotonically to the equilibrium.
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Practice Problems

1 Consider the following discrete population model:

� pk = population at the beginning of season k

� R = basic reproduction value for the population

� K = carrying capacity

� pk+1 = pk + Rpk

�

1−
pk

K

�

(a) Define:

� µ= 1+ R,

� xk =
R

1+ R
pk

K
.

Show that xk+1 = µxk(1− xk).

(b) What are the equilibrium values for xk?

(c) Take R = 1,µ = 2. Compare this model with
the continuous logistic model.

(d) In the continuous model, solutions cannot cross
the equilibrium. Change the value of R,µ and
show that in this discrete model, solutions can
cross the equilibrium.

(e) Take R = 3,µ = 4 (constants for influenza virus).
Below is a graph with x0 = 0.1 and x0 = 0.101.

Which conclusions do you take from this graph?

(f) Take x0 =
1
2 . What happens to xk as k gets

larger and larger: does it remain bounded, or
does it converge to ±∞? Check for different
values of µ.

(g) You’ll need to program for this exercise. Now
allow complex values for µ ∈ C. In a graph,
mark the values of µ ∈ C, for which xn does not
diverge to infinity.

2 Consider the model for a queue:

� qn = number of people waiting in the queue at
minute n;

� γ = fraction of the people waiting that are at-
tended each minute;

� µ = average number of people that give up wait-
ing in the queue per minute;

(a) First, let us find out a very bad scenario for the
queue. Find a number of initial people in the
queue q0 such that the size of the queue will
never change.

(b) Let

� pk = probability that a person who joined
the queue at time k = 0 will still be waiting
after k minutes.

Is pk increasing, decreasing, or not monotone?

(c) The probability that someone waited exactly k
minutes is pk − pk+1. Find another expression
for pk − pk+1 without using pk.

(d) The expected waiting time in the queue is given
by the “law”:

The expected waiting time is the weighted av-
erage of the possible waiting times, where the
weights are the probability of waiting that exact
amount of time.

Find the expected waiting time for this queue.

3 Two computers are facing each other on video confer-
encing software. The first computer makes a sound
and every fraction of a second, the other computer
reproduces the sound.

Consider the following model for the microphone feed-
back:

� vn = volume produced by the first computer (in
dB) for the n iteration;

� e = fraction of the original volume reproduced
by the second computer;

� M = maximum volume that first computer can
produce (in DB).

� vn+1 = evn

� M−evn
M + 1

�

.

(a) What is the initial volume that will just cause
the following iterations to be the same?

(b) Find a condition on e that allows for the previ-
ous situation to occur.

(c) Assume e ∈ (0,1). What happens if the initial
volume is softer than the equilibrium? What
happens if the initial volume is louder than the
equilibrium?

(d) Assume e > 1. What happens if the initial vol-
ume is softer than the equilibrium? What hap-
pens if the initial volume is louder than the equi-
librium?

(e) Assume e = 8
5 . Sketch a graph of the solution.

What is the behaviour of the solution as n gets
larger?

(f) Assume e = 1+
p

5
2 the golden ratio. Is there

an initial volume that gives a periodic solution:
v0 = v2 = v4, v5 = · · · and v1 = v3 = v5 = v7 =
· · ·?
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54 Consider the following difference equation:

uk+1 = a(uk − b)

54.1 What is the equilibrium solution?

54.2 Are there 2-periodic solutions? I.e. satisfying

• v0 = v2 = v4 = v6 = · · ·
• v1 = v3 = v5 = v7 = · · ·
• v0 6= v1

54.3 What happens to the solutions for different values of a?

54.4 What happens to the solutions for different values of b?
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55 Consider a drunkard that is walking randomly near a cliff.

q 1-q

1

safe

W

0

Consider this model for the drunkard’s chance of getting to safety from falling off the cliff:

• q is the probability that the drunkard will step towards safety;

• 1− q is the probability that the drunkard will step towards the cliff;

• pn = probability that the drunkard will get to safety if he is in step number n;

• The drunkard will stop moving if he gets to safety (step W ) or if he falls out of the cliff
(step 0);

• pn = qpn+1 + (1− q)pn−1.

55.1 Is pn increasing or decreasing?

55.2 What is p0? What is pW ?

55.3 Let q = 1
2 . What is pW/2? Is pn symmetric around n= w

2 ?

55.4 Let q > 1
2 . Is pW/2 >

1
2 ? Is pW/2 <

1
2 ?

55.5 How do solutions for q = α and q = 1−α compare?
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56 Consider a population of rabbits with the following lifecycle:

(year 0) Born

(year 1) Immature (no babies)

(year 2) Young Adult (1 pair of babies)

(year 3) Adult (1 pair of babies)

(year 4) Old (no babies)

(year 5) Die

Consider the definitions:

• We start with 1 pair of newborn rabbits
in year 0;

• rn = number of pairs of rabbits alive dur-
ing year n;

• ik = number of immature pairs;

• yk = number of young adult pairs;

• ak = number of adult pairs;

• ok = number of old pairs.

56.1 Show that bk = bk−2 + bk−3.

56.2 Show that yk+1 = ok + ok+1.

56.3 Show that rn = rn−2 + rn−3.
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Ecology of dragons

One of the dragons from the Games of Thrones series. (©HBO)

Scientists are sometimes asked to advise producers of fictional films: about the feasibility of a pileup, description
of a sinking ship, problems to be resolved during the colonization of a planet, etc. Another example is the use
of dragons in the Game of Thrones television series and in films from the books on the young wizard Harry
Potter1: how do you realistically and plausibly describe fictional animals? Sometimes science comes after the
film is made. L.M. Krauss’s The Physics of Star Trek (Harper (1995)) is one such example. This latest project
invites you to advise the producers of the Game of Thrones series after the fact.

In this series from the novels “A Song of Ice and Fire”,2 three dragons are bred by Daenerys Targaryen. At
hatching, dragons are small, around 10kg, and after a year they weigh between 30 and 40kg. Their growth
lasts a lifetime and depends on their environment and the food available to them.

Suppose that these three dragons live today and that the data in the previous paragraph is correct. You will
need to make additional assumptions, such as the ability to fly long distances, spit fire, and survive major
injuries. You will have to relate these hypotheses (height and weight, diet, etc.) to the questions you are
studying.

Task. Your team should analyze the ecology of dragons: their behaviour, their habits, their diet and the
interaction with their environment.

A non-exhaustive list of questions includes:

1. What are the dimensions, physical characteristics and longevity of an adult dragon?

2. What is the ecological impact and the needs of a dragon?

3. What is the energy expenditure of a dragon (daily, weekly?) and what are their calorie intake needs?

4. How much land is required to maintain these three dragons alive?

5. What is the size of the team (of humans) required to care for these dragons?

6. How much energy is released when a dragon spits? How long does a flame jet last? How many jets can
it emit per day?

7. Can dragons migrate? And if so, how far and for how long can they migrate?

Other questions may be added depending on your modelling process. If necessary, you can comment on the
impact of the climate (arid, temperate, northern regions) on the questions you have chosen. Some of the issues
considered will be linked together; you should highlight these links and ensure that the models developed are
not contradictory.

Finally, even if your analysis is focused on fictional animals, you are invited to describe and discuss (real)
situations, other than the ecology of fictional dragons, where your modelling efforts could be useful.

One last word. The animals are fictional, but the model must be realistic and plausible!

“Ecology of dragons” is a collaboration with Yvan Saint-Aubin.

1J.K. Rowling, Harry Potter, seven books published by Bloomsbury (in England) from 1997 to 2007.
2J.R.R. Martin, A song of Ice and Fire , five books published by Bantam (in Canada and USA) from 1996 to 2011.
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Influencers

You will no doubt have heard of the concept of a “small world”, where people measure the “degree of proximity”
to a well-known person. For example, I know someone (A) who knows someone (B) who knows the Prime
Minister:

� Me→ A→ B→ Prime Minister;

� This places me at 3 degrees from the Prime Minister.

Paul Erdös (1913-1996), was one of the most prolific mathematicians: yes, he published a lot (more than
1500 scientific articles), but he is also known to be an “original”: he had no fixed home, always moved from
place to place to work with friends. This very special life led to the creation of the Erdös number which works
exactly like the degree of proximity to the Prime Minister or to any known person!

In fact a whole website – https://oakland.edu/enp – is devoted to the work of Erdös and his collabora-

tors. On this site, we were able to extract a database
�

https://uoft.me/erdos
�

which contains

the list of mathematicians who have an Erdös number = 1. Each line of this database contains:
�
�

number of collaborator (classified in alphabetical order),

� number of collaborators in this same list,

� number of collaborators who have a Erdös number = 2,

� name of the mathematician,

� number of collaborators in this list separated by a comma
	

Example. {1, 7, 16, "ABBOTT, HARVEY, LESLIE", 186, 308, 318, 321, 401, 429, 450}

means that Harvey Abbott (no. 1 on this list) wrote papers with 7 others mathematicians whose Erdös
number is 1, and 16 whose Erdös number is 2. His collaborators with Erdös number = 1 bear the labels:
186, 308, 318, 321, 401, 429, 450.

Task. But who is important in this list?

1. Propose some models for “being important” within this community of mathematicians with Erdös numbers
= 1.

2. For each, explain its advantages and disadvantages in one complete sentence.

3. Will your model work for the following cases:

g1 g2 g3

Based on “How to measure influence and impact”, ICM 2014.

“Influencers” is a collaboration with Yvan Saint-Aubin.
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Elephants: too much is too much!

A large national park in South Africa is home to around 11 000 elephants. Wildlife management policies
establish that a healthy environment for this herd will keep it at 11 000 heads. Each year the park officials
assess the elephant population. During the past 20 years, part of the herd has had to be removed to keep the
population as close to the 11 000 number as possible. “Withdrawing” part of the herd means either slaughtering
the animals or moving them. Until now, 600 to 800 animals were moved each year.

Recently, environmental and animal welfare groups have protested against killing elephants. In addition, it is
no longer possible to move even a small population of elephants each year. Fortunately, a contraceptive dart
has been developed, which prevents a mature elephant from conceiving for a period of two years.

Here is some information about the elephants in the park:

� There is very little migration of elephants.

� The gender ratio is close to 1:1 and control measures should be chosen to maintain this ratio.

� The gender ratio of baby elephants is also 1:1. Twins are born in 1.35% of pregnancies.

� The elephant’s maturity period begins between 10 and 12 years and continues until the age of 60.
They produce an average of one baby elephant every 3.5 years. Gestation lasts approximately 22
months.

� Elephants who have received a contraceptive dart are in oestrus once a month, but cannot conceive.
An elephant who has not received a dart usually has only one seduction and mating period per 3.5
years; the monthly heat period can therefore cause additional stress.

� An elephant can receive a dart each year without negative effects. A mature elephant will not be able
to conceive during a period of 2 years from the moment when she received the dart.

� About 70% to 80% of baby elephants reach the age of one year. Afterwards, the survival rate is
uniform up to the age of 60 and very high (above 95%). Few elephants are over 70 years of age.

� There is no hunting or poaching in the park.

The park management team has data
�

https://uoft.me/elephants
�

on the approximate age and

gender of elephants relocated outside the park during the past two years. Unfortunately, no data is available
on the elephants that have been slaughtered or that constitute the herd present in the park.

Task. The overall goal of the project is to investigate the feasibility of a herd control program using contraceptive
darts. More specifically:

1. Develop a model and use it to describe the probable survival rate of elephants from 2 to 60 years old.
Also speculate on the demographic curve of the herd present in the park.

2. Estimate how many elephants need a dart each year to keep the herd at around 11 000 heads. Show
how the uncertainties in the data at your disposal can influence your estimate. Comment on possible
changes in the demographic curve and how these changes could have an impact on the tourism industry
over a 30 to 60 year horizon.

3. Some opponents of the contraceptive dart technique claim that, if there was a sudden disappearance of a
large part of the herd (for example following an illness or poaching out of control), the ability of the
population to return to its optimal level would be seriously compromised, even if the dart program was
quickly discontinued. Investigate this statement and respond to this concern.

“Elephants: too much is too much!” is a collaboration with Yvan Saint-Aubin.
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Managing a fishery

The population P(t) of a species of fish in a finite environment, like a lake is often described by the logistic
equation

dP
d t
= rP

�

1−
P
K

�

,

where r is the natural growth rate of the population and K is the maximum number of individuals that the
environment can sustain.

If that population is harvested at the rate of H(t, P) fish per year, then it can be modelled by the ODE

dP
d t
= rP

�

1−
P
K

�

−H(P, t).

This ODE assumes that the population is harvested continuously throughout the year, which is not exactly true.
Later in the course we will see how to make a better model.

Task. Your goal is to figure out the maximum profit you can generate from this population of fish. For that, it
should be clear that it is undesirable to harvest too much, since it may lead to the extinction of the fish.

1. Selling fishing licenses. As the manager of the lake, you decide to profit from it by selling fishing licenses
to people and allow them to fish there.

(a) Assuming that an average person, after a whole day fishing, has an efficiency3 of E%, what is H(P, t)
and what is the ODE that models the fish in the lake?

(b) There is a percentage E?, such that if E ≥ E?, then the population will become extinct. What is E??
Explain why the population will become extinct.

Hint. You don’t need to solve the ODE.

(c) A sustainable yield Y is the rate at which the fish can be harvested indefinitely: it is the value of H(P, t)
which doesn’t change with time and for the asymptotically stable population.

Determine the maximum4 value of E to maximize Y and then find the maximum Ymax.

2. Selling fish. As the manager of the lake, you decide to profit from it by harvesting the fish yourself and
selling it.

(a) Now the fish are harvested at a constant rate h. What is H(P, t) and what is the ODE that models the fish
in the lake?

(b) There is a rate h?, such that if h≥ h?, then the population will become extinct. What is h?? Explain why
the population will become extinct.

Hint. You don’t need to solve the ODE.

(c) If h≤ h?, what is the maximum sustainable yield Ym?

Further Investigation.

1. Can you think of other forms for H(P, t)?

2. If, instead of a logistic model, you include an extinction threshold as well, what can you say about the
model for constant effort fishing? for constant rate fishing? Is it a useful addition to the model? Have
fun with it!

3Efficiency of E% means that after a whole day fishing, that person will have caught E% of the existing fish in the lake.
4This value can be controlled, e.g. by defining the time available for fishing in a day.
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X-ray attenuation

An X-ray tube fires X-rays, which travel in a straight line. An X-ray detector will give you the intensity of any
X-ray that hits the detector. If there is a vacuum between the X-ray tube and the X-ray detector, then the
X-ray will have the same intensity when it hits the detector as when it left the tube. However, when X-rays
pass through matter they interact with the atoms in the material and are sometimes deflected off course, or
absorbed. We call this phenomenon attenuation of the X-ray and it results in a decrease in the intensity of
the X-ray beam. When this happens, the X-ray detector will show a lower intensity than the original intensity
of the X-ray.

The intensity of an X-ray is measured in keV (kiloelectronvolt).

Task.

1. Experiments indicate that the rate of decrease in the intensity of the X-ray beam as it travels through
some matter is proportional to the linear absorption coefficient A of the material. Find an ordinary
differential equation (ODE) to model the intensity, I , of an X-ray beam fired into some uniform matter
with linear absorption coefficient A. Be sure to include an initial condition.

� What are the units of A?

� Classify the equation.

� Solve the equation in terms of the initial condition and A.

2. How far into a material can an X-ray beam travel before its intensity has decreased to
1
e

times its original

intensity.

Now you will explore one of the main ideas behind medical X-ray imaging. In order to do this, you need to
know the linear attenuation coefficient of healthy human tissue.

3. You have a 15keV X-ray tube and an X-ray detector. When you fire the X-ray through 10cm of healthy

tissue, you measure
15
e

keV on your X-ray detector. When you fire the X-ray through 20cm of healthy

tissue, you measure
15
e2

keV. Using your model of X-ray attenuation, estimate the linear attenuation

coefficient of healthy tissue.

This is the basis for using X-ray Computed Tomography (CT) used in medical imaging! We can recognize
healthy versus unhealthy tissue by using what we know about their attenuation coefficients. To do this in a
human body requires more advanced mathematics such as the Radon transform introduced in 1917 by Johann
Radon. However, consider a simple case below.

4. Suppose that you have a 10cm × 2cm rectangle with the same linear attenuation coefficient as healthy
tissue, and somewhere inside this square is a circle of unknown size having a linear attenuation coefficient
different from that of healthy tissue.

� Using an X-ray tube and an X-ray detector, can you locate the circle and determine its radius? How?

� Can you determine the linear attenuation coefficient of the circle? How?

5. In actuality, a more complex model is needed for accurate imaging. The linear attenuation coefficient is
actually dependent on the intensity of the X-ray! How does this impact your model? Discuss how this
would impact your solutions to the above problems.

“X-ray attenuation” is a collaboration with Craig Sinnamon.
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Predator-prey chase

Question. What is the path of a lion chasing an antelope?

Rules.
� The antelope flees at a constant speed v in a straight line

� The lion chases at a constant speed u

Task.

1. Assume the antelope starts at (0,0) and moves up the y-axis. What is its position?

(0, vt)

2. Assume the lion’s position is
�

x(t), y(t)
�

. What happens if x(0) = 0?

3. Assume the lion’s position is
�

x(t), y(t)
�

with x(0) 6= 0. For simplicity, assume that x(0)< 0. What is
the sign of x ′(t)?

4. The goal is to find the path, so we are looking for an equation to describe y(x). Using the result from 3.,
explain why the solution will be a function y(x).

5. The lion’s speed is u. Express that condition using x(t) and y(t).

6. Find an expression for
d x
d t

without the variable t.

7. Which condition on
d y
d x

do we get from the fact that the lion is chasing the antelope? Draw a picture.

8. Use 7., and obtain an expression for
d x
d t

in terms of
d2 y
d x2

.

9. Obtain a Differential Equation that describes the lion’s path y(x).

10. For simplicity, assume that the lion starts at (−1, 0). Solve this Initial-Value problem.

11. When does the lion actually catch the antelope?

Further investigation.

1. Program the pursuit (it will be approximated) and check your answer.

2. Can you figure out the path of the lion for other antelope trajectories? Program that pursuit and check
your answer.

3. (for fun) Program a “game” where you control the antelope and the computer controls the lion.
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Epidemic modelling

Goal. We want to model the spread of the CoViD-19 pandemic in Canada.

SIR Model. This is the typical model for an infectious disease. We start by dividing the population into three
groups:

� Susceptible Individuals S(t) = number of people who haven’t contracted the disease;

� Infected individuals I(t) = number of people infected;

� Removed individuals R(t) = number of people that either died or recovered from the disease and are
now immune to it.

Assumptions.

(a) Population size N is large and constant (no birth, death, or migration);

(b) No latent/incubation period (there is an improved model that includes this - SEIR model);

(c) Homogeneous population;

(d) Recovery rate is constant γ (includes rate at which people die or recover from the disease);

(e) Out of all possible interactions between susceptible and infected individuals S(t)·I(t), there is a proportion
β
N that will result in the susceptible individual becoming infected;

(f) The probability that an infected person will either die or recover is γ.

ODE. From here we can obtain the SIR model:

dS
d t

= −
β

N
SI

d I
d t

= +
β

N
SI − γI

dR
d t

= +γI

Video.

� https://youtu.be/f1a8JYAixXU

Important.
� An important constant in this model is R0 =

β
γ , called the basic reproductive number, which informs

us about how fast the disease propagates.

� The expected time from infection to recovery (or death) can be proved to be T = γ−1.
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Data. Data from the Public Health Agency of Canada:

� http://uoft.me/covid19-canada

Task.

1. Explain how the system of ODEs relates to the assumptions.

2. Estimate the constants N , R0,β ,γ for Canada.

3. Using the idea from Euler’s Method (used to approximate the solution of one first-order ODE), create a
method to approximate the solution S(t), I(t), R(t) of the SIR model.

4. Compare your approximation from 3 with the actual data.

5. Observe that the data is the result of the lockdown measures imposed in Canada. Find a value for R0
that best matches your approximation to the data.

6. Study what happens to Canada if the lockdown measures are lifted when the number of infected people
is very small vs when the number of infected people is actually zero.

Further Investigation.

1. How does the model change if some people can get reinfected? What happens if there is a vaccine
available but it doesn’t ork for everyone? What happens when there had been lockdown and it is slowly
(or brutally) lifted?

Hint. All these require new hypotheses, changing the differential equations, exploring the new solutions,
etc.

2. Study what happens to the model when R0 < 1, R0 = 1 or R0 > 1.

3. Adapt your method to the SEIR model and answer questions 1-6 above for the new model.

4. Improve the SEIR model to better model different lockdown scenarios.
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Hunting inspiration

Snow collects on the brim of your fur coat and musket as you stalk your prey through the white woods. A
flash of orange, a rustling of branches, and then it’s gone. You mutter a curse under your breath. Foxes are
scarce this year, and you’ll have to explain to the Dutch East India Trading Company why you’ve come up
short. Worse yet, your rival, a trapper who only hunts rabbits, is having a terrific year. You shouldn’t have
teased him so much when rabbits were down and foxes were up just a few seasons ago.
If only you could somehow predict which game would be plentiful, you could always bid on the easier
contract! But how?
Back at camp, amid the crackling of your lonely fire, the answer comes to you. Just two months ago
you attended a talk by Dr.Lotka on autocatalytic chemical reactions. It was quite a spectacle when, after
Dr.Lotka had finished talking, a Dr.Volterra stood up and proclaimed that he had applied the same model to
predator-prey ecology. At the time you were rushed and didn’t think much about the proclamation, but now
the basic assumptions were making more and more sense:

In the absence of foxes, the rabbit population grows at a rate proportional to the number of rabbits.

In the absence of rabbits, the fox population declines at a rate proportional to the number of foxes.

The population of rabbits declines at a rate proportional to the product of the rabbit and fox popula-
tions.

The population of foxes grows at a rate proportional to the product of the rabbit and fox populations.

Pop! A hot coal explodes, snapping you out of your pondering state and into one of action. Grabbing a
piece of paper from your limited supplies, you begin to grapple with the consequences of the Lotka–Volterra
model.

Task. Let R and F stand for the rabbit and fox populations, respectively, and let α, β , γ, and δ be the constants
of proportionality for parts (a)–(d).

Work through the following before you begin your report.

1. Write down the Lotka-Volterra system of differential equations. For each of (a)–(d), explain whether or
not the assumption is reasonable.

2. When is the fox population increasing or decreasing? Given R and F , could you predict which one is on
the rise on which one is on the decline?

3. Is there a steady state for the fox population? Could the fox population remain steady while the rabbit
population is changing?

4. Sketch an RF -phase portrait for the Lotka-Volterra system of differential equations with the following
constants:

α= 0.2 rabbits per month per rabbit

β = 0.1 foxes per month per fox

γ= 0.002 rabbits per month per rabbit-fox

δ = 0.001 foxes per month per rabbit-fox

Hint: you will need to consider rabbit and fox populations of well over 100 to see interesting behaviour
in your phase portrait.

5. Does your phase portrait have any singular points? What do they mean?

6. Use technology to graph R(t) and F(t) for some initial conditions. Do the initial conditions affect the
period of the population increase or decrease? Does this seem reasonable when looking at your phase
portrait?

Your writeup should include the following:
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� An explanation of the Lotka-Volterra model along with a discussion of whether or not each assumption is
reasonable.

� A description of what behaviour you expect from which initial conditions. You may use the parameters
specified in question 4.. Include a phase portrait in your description as well as how to interpret the phase
portrait, and make sure to point out any critical points.

� Suppose you wanted to legislate limits on the hunting of rabbits and foxes to ensure the population of
either never dipped below a certain level. Based on the Lotka-Volterra model, propose legislation. Be
specific and comment on whether a flat-out hunting ban would achieve the desired effect.

Be careful with your simulations. Euler’s method loses accuracy quickly on Lotka-Volterra–based systems.

“Hunting inspiration” is a collaboration with Max Brugger.
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Arms race

In this project, you will develop and analyze models for an arms race between two countries.

Define the following:

� t ≥ 0 represent time in years;

� x(t) and y(t) represent the yearly military budget (in dollars) of countries Blue and Red respectively.

Task 1. Mutual Fear! For a first model, assume that each country increases its military budget at a rate directly
proportional to the existing military budget of the other nation.

(a) What are the equations that define this model?

Hint. There should be two constants in your model.

(b) Solve the system and sketch a phase portrait.

(c) What does the model predict about the long term military budgets of the two countries?

Task 2. The Richardson Model. Now include some limiting factors in to the model you set up above. Assume
that in addition to the budget increases in the mutual fear model, each country’s military budget decreases at a
rate proportional to it’s current military budget and increases at some fixed (independent of military budget)
rate due to a long standing grievance.

(a) What are the equations that define this model?

Hint. There should be six constants in your model.

(b) Under what conditions (on the six constants) can the arms race stabilize? By stabilize we mean that the
military budgets remain at some fixed amount, or that the budgets approach some constant amounts.

� There is a line LB, called the optimal line for Blue, in the phase plane such that if (x(t), y(t)) lies
on LB then x ′(t) = 0. What is the equation of that line?

� Show that Blue continuously changes its military budget to bring the solution (x(t), y(t)) closer to
LB.

� Repeat the previous two parts for a line LR, the optimal line for Red.

� What does the intersection point of LB and LR represent?

� Under what conditions on the constants will the point of intersection lie in the first quadrant
(x > 0, y > 0)? What will be the long term behaviour of the system for various initial conditions?
Explain.

� Under what conditions on the constants will the point of intersection lie in the third quadrant
(x < 0, y < 0)? What will be the long term behaviour of the system for various initial conditions?
Explain.

(c) What happens in the long run for various initial conditions if one or both of the “grievance” terms is/are
negative? (More of a “good will” term than a “grievance” term!)

(d) Can LB and LR be parallel? What happens in this case?

(e) Can LB = LR? What happens in this case?

(f) Produce examples that demonstrate these various cases and long term behaviours. Plot or sketch their
phase portraits.
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Task 3. Real World. One can argue that in the real world, a runaway arms race is impossible since there is a
limit to how much a country can spend. We can add carrying capacities in to the model. Let xM and yM be the
maximum budgets of the two countries. Then consider the model

x ′(t) =
�

1−
x

xM

�

(−ax + b y + c)

y ′(t) =
�

1−
y

yM

�

(d x − e y + f )

Analyze this model.

Further Investigation.

1. Another Nonlinear Model. Suppose that the equations underlying the model have the form
¨

x ′(t) = −ax + b y2 + c
y ′(t) = d x2 − e y + f

where a, b, d, e, f > 0. How many stable points are there? There are now optimal curves instead of
optimal lines. Discuss the outcomes of such an arms race for various intersections of the optimal curves.

2. The Richardson Model with Good Will. If instead of having terms representing increases due to a
grievance, what happens if you include terms representing fixed rate decreases in the military budgets of
both countries due to good will?

� What are the equations that define this model?
Hint. There should be six constants in your model.

� What possibilities exist for the long term behaviour of the military budgets of the two countries?

� How do the possibilities for the long term behaviour depend on initial conditions?

� Produce examples that demonstrate the various long term behaviours.

3. Richardson with carrying capacities.

4. Extend Richardson to three countries.

5. Increase not by absolute level but by amount over stable level.

“Arms race” is a collaboration with Craig Sinnamon.
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Spring data

Statement. A motion sensor was set up to measure the motion in a spring-mass system, but something went
wrong and the motion sensor measured the total distance traveled instead of simply measuring the distance
from the sensor. The experiment was conducted three times (same spring and same mass) with different initial
conditions. The total distance traveled is given as the data sets in the Google Sheet spreadsheet:

� https://goo.gl/AFMTn8

The conditions for the three experiments were:

Data Set #1. Initial position: y(0) = 1. Initial velocity: y ′(0) = 0.
Data Set #2. Initial position: y(0) = 0.5. Initial velocity: y ′(0) = 1.
Data Set #3. Initial position: y(0) = −0.75. Initial velocity: y ′(0) = −2.5.

Experimental Setup.

� The sensor gathered data at a rate of 20 samples per second.

� The experiment was run for 5 seconds.

� y(t) is the distance from the equilibrium position of the spring-mass system. Positive values of y(t)
indicate that the mass was above the equilibrium position. Negative values of y(t) indicate that the mass
was below the equilibrium position.

� There is some noise in the data.

Task.

1. Use the data in the spreadsheet to determine the governing ODE, which should include estimates for the
parameters.

2. Use the data in the spreadsheet to determine the height y(t) for the different experiments.

Hint. Recall that if y(t) is displacement and v(t) = y ′(t) is velocity then the total distance traveled is given by
the function

d(t) =

∫ t

0

�

�v(τ)
�

� dτ.

Further Investigation.

1. How many data sets and how many data points are needed to be able to solve the problem?

2. Add more noise to the data. Can you still solve it? How much noise can you add and still obtain good
results?

3. Create your own (fake) data mimicking a spring with different properties (remember to include some
noise in the data)? And solve it to show that it can be done.

4. Could you use this to detect an external force acting on the spring-mass system? Try it with two new
data sets:

� https://goo.gl/TxzQWw
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Wing flutter

Question. Is the airplane wing going to break?

Introduction (adapted from Stuart Lee – Click here for the original).

In early 1959, with great fanfare, Lockheed’s new, 4-engine prop-jet, the Electra II, went into service. The
Electra looked like a “regular airline”, except that the thick prop blades and the four enormous large engine
covers (the nacelles and cowlings) that housed the General Electric/Allison jet-turbine driver power plants
made the wings seem ever smaller and stubbier. In addition, the fuselage was relatively wide- making it one of
the roomiest airliners of its time. But the Electra’s appearance seemed slightly off.

The pilots soon got over the appearance and came to respect the airplane, The Electra had incredible power.
One pilot remarked that “It climbs like a damned fighter plane!”.

In the evening of September 29, 1959, Braniff’s spanking new Electra disintegrated in midair (description).

What had caused this brand-new jet prop to disintegrate over Buffalo, Texas?

The investigators combing the wreckage of the Braniff Electra noticed something alarming. The shards of what
appeared to be the left wing were found a considerable distance from the rest of the wreckage.

And the story got worse. On March 17, 1960, Northwest Airlines flight 710 left Minneapolis-St. Paul (descrip-
tion). Witnesses on the ground heard tearing sounds in the sky. They looked up and saw the thick fuselage
of the Electra emerging from the clouds. The entire right wing was missing, and only a stub of the left wing
remained attached to the Electra.

The airliner seemed to float for a while, but then it dipped, diving straight down toward the ground, trailing
white smoke and pieces of aircraft. The 63 people entombed in the fuselage struck the muddy ground, vertically,
at 618 miles per hour. Rescuers found nothing at the site of impact larger than a spoon.

But 3 km away, they found the wreckage of the left wing.

This was beyond, alarming. In a period of less than six months, two brand-new Electras lost their wings
and disintegrated with much loss of life. What could have caused this? Could it have been severe clear-air
turbulence (CAT), or was there something drastically wrong with these airliners.

The airlines who had Electra fleets were nearly panicking. Meetings were quickly set up with the FAA.
Investigations were set up. Boeing lent staff, simulators, and a wind tunnel to Lockheed. Douglas contributed
engineers and equipment; most notably flutter vanes that, when attached to the ends of the wings, could
induce serious oscillation.

The investigation, occurring in the early sixties, was the first serious use of computer stress analysis in this field.
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Electras were test flown in every possible form of turbulence. Test pilots tried to destroy the Electra by ramming
it into the severe Sierra Madre air waves, over and over again. Electras were put through every possible flight
maneuver that would normally cause a wing failure. Super severe wind tunnel winds were shot out at Electras
and mock-ups. Over and over, every possible test was done to try and break the Electra.

Finally, on May 5, 1960, an engineer stood up at a Lockheed meeting and announced: “We’re pretty sure we’ve
found it!”.

Basically, the problem was a high-speed aircraft in a conventional design. Every aircraft wing is flexible to
some degree. And wing vibration, oscillation, or flutter is inherent in the design. Flutter is expected on wings.
In engineering terms, there are more than 100 different types of flutter – or “modes” – in which metal can
vibrate. The “mode” that destroyed the Electras was “whirl mode”.

Whirl mode was nothing new. It was not a mysterious phenomenon. As a matter of fact, it is a form of vibrating
motion inherent in any piece of rotating machinery such as oil drills, table fans, and automobile drive shafts.

The theory was devastatingly simple. A propeller has gyroscopic tendencies. In other words, it will stay in
a smooth plane of rotation unless it is displaced by some strong external force, just as a spinning top can be
made to wobble if a finger is placed firmly against it. The moment such a force is applied to a propeller, it
reacts in the opposite direction.

Now suppose the force drives the propeller upward. The stiffness that is part of its structure promptly resists
the force and pitches the prop downward. Each succeeding upward force is met by a protesting downward
motion. The battle of vibration progresses. The propeller continues to rotate in one direction, but the
rapidly developing whirl mode is vibrating in the opposite direction. The result, if the mode is not checked,
is a wildly wobbling gyroscope that eventually begins to transmit its violent motion to a natural outlet: the
wing.

Whirl mode did occasionally develop in propeller-driver airliners. It always encountered the powerful stiffness
of the entire engine package, the nacelles and the engine mounting, the mounting being a bar truss holding the
engine to the wing. No problem usually. But on painful microscopic examination of the crash wreckage of the
eight Electra engines, it was found that something caused the engines to loosen and wobble, causing severe
whirl mode, which tore off the Electra’s wings. Specifically, the investigation centred on the outboard engines.

What the investigators found was that the engine mounts weren’t strong enough to dampen the whirl mode that
originated in the outboard engine nacelles. The oscillation transmitted to the wings caused severe up-and-down
vibration, which grew until the wings tore right off.

Project. In this project we will study mechanical resonance of an airplane wing due to a vibrating propeller.
We use Differential Equations to create a simple model of the wing flutter.

Start with a picture of a propeller mounted on a wing.

wing-body
joint

wing

We want to keep the model simple, so we consider only the wing’s centre of mass. This implies that the wing
behaves as a spring-mass system: the spring is the wing-body joint that allows the centre of mass to move up
and down.5 The forcing function is the vibrational force that results from the motion of the propeller.

5The centre of mass actually moves on an arch, but we consider only its vertical motion.
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For this example assume that the wing has a mass of 900 kg and the wing-body joint acts as a spring with
constant 8100 N/m. Also assume that the damping forces are negligible and the wing is at rest when the
propeller begins to vibrate.

Task.

1. Let y(t) be the position of the centre of mass of the wing and f (t) the vertical vibrational force from the
propeller. Write an IVP (Initial-Value Problem) that models the movement of the wing.

2. Assuming that the propeller vibrates with a force f1(t) = 1800sin(6t) (in N). Find the position of the
wing’s centre of mass and plot it.

Describe the position of the wing’s centre of mass as t grows large (0≤ t ≤ 25).

3. Just before wing-failure, the propeller actually slowed down. Let us simulate this by changing the forcing
function to f2(t) = 1800 sin(3t) (in N).

(a) Find the equation of motion using the new forcing function.

(b) Plot the solution.

(c) Describe the position of the wing’s centre of mass as t grows large. What consequences does this
have for the wing?

4. It is very unlikely that the frequency of the propeller will match exactly this, so assume that f3(t) =
1800sin(3.5t) (in N).

(a) Find the equation of motion using the new forcing function.

(b) Plot the solution.

(c) Using a trigonometric identity, re-write your solution as a product of two trig functions. Describe
how this new form for the solution explains the plot.

(d) Describe the position of the wing’s centre of mass as t grows large. What consequences does this
have for the wing?

Further Investigation.

1. If you were the Lead Engineer in charge of fixing this problem, what would you do? How would that
change the Differential Equation? Using the new differential equation, show that it would indeed solve
the problem.

2. What happens if there are two propellers (like the actual Lockheed Electra)?

3. Can you model wing flex?

wing-body
joint
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Bullwhip effect

Goal. Understand that Supply Chain Management is hard(!) and attempt to model it.

Video.
Watch the short video:

� https://youtu.be/2nlmkTYZG5s

to understand a bit better about the bullwhip effect.

Read.

� http://forio.com/about/blog/bullwhips-and-beer/

Near Beer Game (Novice). You own a (tiny) Beer Store.

You start with a stable situation where your customers have been asking for 10 cases of beer every week, and
your inventory and orders match the situation (so you don’t run low on inventory and you don’t accumulate
either).

From the second week, your customers start ordering 15 cases of beer instead.

It is you job to stabilize the whole supply chain as soon as possible.

Below is a screen from the “game”.

� New Orders from Customers: Number of beer cases your new customers want this week

� Cumulative Unfilled Orders: Number of beer cases that your
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Go to

� https://forio.com/simulate/mbean/near-beer-game/run/

The goal of the “game” is to try and stabilize the number of customer orders, your inventory, arriving orders,
and your order, so that you end up with the following situation

� Customer Orders: 15 cases every week (with no unfilled orders)

� Inventory: 15 cases

� Arriving Order: 15 cases

� Order 15 cases

Task 1. Play the “game” on Novice as a group and see how many weeks it takes to stabilize the situation.

Consider the following sequences:

� cn = number of beer cases ordered by customers

� un = number of cases ordered previously but not fulfilled yet

� in = number of cases in inventory

� on = number of cases ordered

� rn = number of cases of beer produced

where n is the number of weeks elapsed since the beginning of the “game”.

(a) What are the initial conditions (n= 0) ?

(b) What is the formula for cn?

(c) What is the formula for rn?

(d) What is in?

(e) What is un?

(f) Confirm that your modelling is correct, that is, that your variables follow the outcome of the game.

(g) Decide on a strategy for ordering beer cases. Decide on a formula for on that can depend on n, cn, un, in,
rn. Explain your choice.

(h) What is the result of your strategy? Does it go “amuck” – bullwhip effect6? Or does it control the supply
chain nicely?

6It’s ok if it goes “amuck”! The goal is to see the Bullwhip Effect in action... Now try to fix it!
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Task 2. Play the “game” on Expert as a group and see how many weeks it takes to stabilize the situation.

Consider the same sequences as for 1.

The difference between Novice and Expert is that the customer orders go from 10→ 50 and every week
25% of unfilled orders are cancelled.

(a) What are the initial conditions (n= 0) ?

(b) What is the formula for cn?

(c) What is the formula for rn?

(d) What is in?

(e) What is un?

(f) Confirm that your modelling is correct, that is, that your variables follow the outcome of the game.

(g) Decide on a strategy for ordering beer cases. Decide on a formula for on that can depend on n, cn, un, in,
rn. Explain your choice.

(h) What is the result of your strategy? Does it go “amuck” – bullwhip effect? Or does it control the ordering
nicely?

Further Investigation.

1. There is a more complex version of the game

� https://beergame.pipechain.com/

which includes 1–4 players from 4 different stages of the supply chain. It takes 2 weeks for orders to
arrive to a different stage and it takes 2 weeks to fulfill a request.

(a) Play the game with 2 players7 who do not communicate with each other, i.e., two-stage supply
chain.

(b) Define the new sequences
� cn = number of beer cases ordered by customers
� on = number of cases ordered by the retailer
� sn = number of cases in the retailer’s stock
� pn = number of cases ordered by the producer
� qn = number of cases in the producer’s stock

(c) Make a similar study for this case. Observe that now you have to decide on the strategy for both on
and pn.

2. In the article suggested at the beginning

� http://forio.com/about/blog/bullwhips-and-beer/

the author describes ways a few ways to reduce the Bullwhip effect. Program each of them with your
sequence on and study how well they reduce the effect.

3. You can avoid the Bullwhip effect completely with perfect information about the supply chain and the
future customer demand. In reality, we can predict the customer demand, but it won’t match exactly the
prediction. Add a little noise to customer demand and try to avoid the Bullwhip effect. You can still use
the fact that customer demand will still be close to 15 cases every week.

7Create a game and then use another computer to join the same game
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Approximating the temperature of a thin sheet

Task. We want to approximate solutions of a PDE.

The heat equation is
∂ 2u
∂ x2

+
∂ 2u
∂ y2

= 0,

where u(x , y) is the equilibrium temperature at the position (x , y) given
some boundary conditions.

This is a Partial Differential Equation (PDE), which we don’t know how to
solve. We can however obtain an approximation of the solution.
In this example, the domain is shown on the right Ω = [0, 2]× [0, 2] and the
initial conditions are the following

u(x , 0) = 90 , u(x , 2) = 30 , u(0, y) = 0 , u(2, y) = 60.

x

y

2

20
u = 90

u = 60

u = 30

u = 0

To approximate the solution, we divide the domain in N small pieces. In the example N = 4 and ∆= 2−0
N = 1

2 .

Then we define the points
~p1, ~p2, ~p3, . . . , ~pM ,

as the points in the interior of the domain (usually by moving left→right and bottom→top).

1. What are the points ~pn? What is M?

Then we define
un = u(~pn),

where u(x , y) is the solution of the initial-value problem above (PDE with boundary conditions).

The next step is to approximate the PDE itself. We do that by approximating the derivatives:

∂ u
∂ x
(x0, y0)≈

u(x0 +∆, y0)− u(x0, y0)
∆

.

2. What is the approximation for ∂ u
∂ x (~p5) ? What is the approximation for ∂ u

∂ x (~p3) ?

3. What is an approximation for ∂ u
∂ y (x0, y0)? What is the approximation for ∂ u

∂ y (~p8) ?

From here, we define the second derivative in a similar fashion:

∂ 2u
∂ x2
(x0, y0)≈

u(x0 +∆, y0)− u(x0, y0)
∆

−
u(x0, y0)− u(x0 −∆, y0)

∆
∆

=
u(x0 +∆, y0)− 2u(x0, y0) + u(x0 −∆, y0)

∆2
.

4. What is the approximation for ∂ 2u
∂ x2 (~p5) ? What is the approximation for ∂ 2u

∂ x2 (~p3) ?

5. What is an approximation for ∂ 2u
∂ y2 (x0, y0)? What is the approximation for ∂ 2u

∂ y2 (~p8) ?

We are now ready to put it all together.

The PDE applies to all points in the domain. Instead of applying the PDE to all points (x , y) ∈ Ω, we apply the
approximation of the (second) derivatives to all the points ~pn.
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6. What is the equation that we obtain for the point ~p5?

7. What is the equation for each point ~pn?

These equations form a linear system of equations. Define a vector ~u=









u1
u2
...

uM









8. Write the system of equations in matrix form A~u= ~b.

9. Solve it and plot the solution. (You should use some software to solve this!)

MATLAB. Here is a quick introduction to some tools in MATLAB that are useful for this problem.

� Define a matrix A=
�

1 2
3 4

�

by

» A=[1,2;3,4]

� Define a vector ~b =
�

5
6

�

by

» b=[5;6]

� Solve the system A~u= ~b by defining ~u= A−1 ~b

» u=A\b or » u=inv(A)*b

� To plot a 3D plot like this, define a matrix for the solutions and write

» surf(p)

To use the typical colouring for the heat equation, type

» colormap(cool)

Further Investigation.

1. Approximate the solution for the domain and boundary conditions

x

y

2

20
u = 90

u = 60

u = 30

u = 0

u = 60

u = 30

2. Formulate the procedure for a general N .

3. Formulate the procedure for a different ∆x and ∆y .

4. This method can be adapted to what kind of domains? And what kind of boundary conditions?
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Math of lungs

Lungs are somewhat important to human beings! They are the source of oxygen to our bodies, so it is important
to maximize the amount of oxygen that can be absorbed within the available volume.

Task 1. Let us find out the volume and surface area of the lungs.

(a) The lungs are composed of a branched structure as in the figure below.

The first segment is very large, then it bifurcates into smaller segments in a geometrical pattern.

Here is some data about human lungs:

� radius of first segment: r0 = 0.5cm

� length of first segment: `0 = 5.6cm

� ratio of daughter to parent length: α= 0.9

� ratio of daughter to parent radius: β = 0.86

� number of branch generations: M = 30

� average number of daughters per parent: b = 1.7

In the figure, there are 2 daughters per parent, in real lungs, it isn’t perfectly regular, so we have an
average that is not a whole number.

(b) Calculate the volume inside the segments. What is the limit as the number of segments gets larger and
larger?

(c) Calculate the surface area inside the segments. What is the limit as the number of segments gets larger
and larger?

(d) If we had b = 2 instead and the same number of generations, would that be possible? If not, how many
generations would be possible?

Based on a problem from Leah Edelstein-Keshet’s Calculus for Life Sciences Open Book.
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Task 2. Let us model the gas exchange that happens inside the lungs.

(a) Suppose that a lung has a volume of 3L when full. With each breath, 0.6L of the air is exhaled and
replaced by 0.6L of outside air.

After exhaling the volume is 2.4L and it returns to 3L after inhaling.

Suppose further that the lung contains a chemical with a concentration of 2 milimoles per litre before
exhaling (a mole is a chemical unit for 6.02× 1023 molecules). The ambient air has a concentration of
5mmol/L of the same chemical.

What is the concentration after one breath? What is the concentration after n breaths?

(b) Update your model to match the oxygen exchange inside a real human lung.

(c) The model above ignored the fact that the body absorbs some of the oxygen. Assume now that the lungs
absorb 30% of the oxygen with each breath. Update your model.

(d) What is the equilibrium concentration of oxygen in the lungs? Find the graph of the equilibrium
concentration as a function of the fraction of oxygen absorbed with each breath.

You may choose to model the gas exchange in the lungs using either a discrete time difference equation or a
continuous time differential equation.

(a) If you choose a difference equation, you might assume that every breath the concentration of the chemical
changes. If c(n) or cn represented the concentration of chemical after n breaths, your difference equation
might look like

� ∆c(n) = c(n)− c(n− 1) = some function at time n, where n is only allowed to take whole numbers.

(b) If you choose to use differential equations, the analogous equation would look like

� c′(t) = some function at t, where t can take any positive real value.

Based on a problem from

Calculus for the Life Sciences, F.R. Adler, M. Lovric, Nelson, 2015

https://shar.es/aHFfxU

Task 3. Assume that the lungs only absorb a fraction of the air in contact with its surface. Combine the two
previous tasks.

Further Investigation:

1. Investigate how the what is known about human lungs. Compare how the branching of real human lungs
differs from this model. Refine the estimate.

2. Investigate how the what is known about human lungs. Compare how the gas exchange of real human
lungs differs from this model. Refine the model.

“Math of lungs” is a collaboration with Kseniya Garaschuk and Miroslav Lovric.
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Dark day

At one in the morning, your phone goes off. After three attempts to turn off your alarm clock, you finally
realize that it is a call – -a call from a number you had promised to always answer. By 1:15, you’re dressed
and out the door where a black SUV is idling, waiting for you. After a transfer to a government plane, you
touch down in Washington, D.C., and as the sun finally begins to rise, you traverse down the Secret Service
tunnels to a large conference room lined with leather chairs.
“I’m not going to mince words,” a voice says, from the other side of the room. The chair at the end of the
table swivels round and you see the President emerge from the shadows. “It’s bad. It’s worse than bad. It’s,
uh. . . it’s zombies.”
A revelation like that would have thrown a lesser scientist, but you’re a professional. You’ve been preparing
for this for years, urging your colleagues to take the threat seriously.
“Where is the origin? Have we identified a patient zero in the US or are there multiple sources? What are
the parameters of the disease?” you ask.
“Straight to work, okay,” the President says, looking pleased. “Chicago police began reporting violent attacks
a few days ago. It started with a single report in the navy shipyard. The shipyard has been quarantined,
but we’re now getting reports from all over the city. These attacks are carried out by humans who always
attempt to bite their victims. Those bitten begin to show symptoms within a matter of hours, but those who
are attacked but escape without being bitten appear normal. I’ve sent in the Marines, and they estimate
that an infected person dies after eight days. They also predict about 3,000 individuals have been exposed,
five days after the initial report.”
“Has any quarantine been successful?” you ask.
“No.” The President pauses and the gravity of what he has just said starts to sink in. “There are approximately
9.7 million people living in the Chicago metro area. Obviously time is of the essence. Now, I’ve been told
that you’re the best epidemiologist we have. I need to know if the region has a chance of survival, and if it
does, what the impact will be. Is there any hope for Chicago?”

You may choose to model the zombie outbreak using either a discrete time difference equation or a continuous
time differential equation.

(a) If you choose a difference equation, you might assume that every day or every hour, the number of
zombies, humans, and dead increment. If Z(n) represented the number of zombies at time n, one of
your difference equations might look like

� ∆Z(n) = Z(n)− Z(n− 1) = some function of zombies, humans, and dead at time n, where n is only
allowed to take whole numbers.

(b) If you choose to use differential equations, the analogous equation would look like

� Z ′(t) = some function of zombies, humans, and dead at time t, where t can take any positive real
value.

(c) Modelling with a difference equation or a differential equation should give you similar results (why?).

Task. Model the zombie infection. Make sure to address the following in your report:

(a) What situation are you trying to model?

(b) What equations are you using, and what does each variable in each equation represent (for example, “In
this model, Z(t) is the number of zombies at t hours from initial outbreak).

(c) Justification for any constants that you use and how you estimated them.

(d) Is there any hope for Chicago?

Do not attempt to find an equation that solves your differential equations—this is really hard. Instead, rely on
estimates and simulations. You can use any computer program you like to assist you in estimating how the
zombie outbreak spreads and whether your constants match with the known information. Including plots and
figures in your report will make explaining things easier.

“Dark day” is a collaboration with Max Brugger.
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Maximus vs Commodus

Maximus, the Roman general turned slave turned gladiator is seeking vengeance! (In this life or the next).

He has managed to make his way to the Roman Forum, and now all that stands between him and nefarious
Emperor Commodus is the Prætorian Guard.

Maximus must make his way across the Forum, defeating all Prætorians in his way, if he is to achieve his goal
in this lifetime.

Conditions.
� The forum can be represented by the horizontal x-axis, in the interval [1, 1823];

� Maximus starts at the left side of the forum;

� Maximus moves at a constant rate across the forum - we call this Ms (Maximus’ speed);

� The arrival of Prætorian guards follows a Poisson process with rate Pr (Prætorian arrival rate);

� Prætorians appear at the right side of the forum, and move at a constant rate toward Maximus. This rate
is called Ps (Prætorian speed);

� Both Maximus and the Prætorian(s) will move toward each other until blocked (by Maximus in the case
of the front Prætorian, or by another Prætorian if there’s a lineup waiting to turn Maximus into pulp);

� The maximum number of Prætorians is limited by the size of the forum.

When Maximus meets a Prætorian. Fisticuffs ensue!
� Maximus and the Prætorians both start with a fixed health value, let’s call this H (initial health).

� Maximus strikes on the Prætorians are another Poisson process, with rate Mhr (Maximus hit-rate) Prætorians
strike Maximus also according to a Poisson process, with rate Phr (Prætorian hit-rate)

� When Maximus hits a Prætorian, he causes damage in the amount d = Mhv ·
Mh
H .

That is, the damage is given by a parameter Mhv (Maximus hit-value) multiplied by Mh (Maximus’ current
health) divided by the initial (maximum) health. It’s a tough world and Maximus’ strikes get weaker the
weaker he gets!

� The same is true for the Prætorians (with their own hit-value and corresponding health), but there’s an
additional factor here - it’s Maximus we’re talking about! He’s trained in the arena and defeated the most
skilled gladiators! Therefore, he is able to dodge many of the Prætorians’ strikes!

Prætorians land a blow on Maximus only with probability 1/Mt f where Mt f is Maximus’ training factor.
The better trained Maximus is, the harder it is for the Prætorians to actually strike him.

� If at any point the health of the Prætorian goes below zero, the soldier dies and Maximus can continue his
progress along the Forum (at least until he meets the next Prætorian).

If at any point Maximus’ health goes below zero, it’s over and he’ll have to get his Vengeance on the next life.

Happily for Maximus, as long as he’s just walking (not fighting), his health regenerates at a rate given by Mr r
(Maximus’ health recovery rate). How much he’ll recover depends on how far he can get before meeting his
next foe!
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To help you visualize the task, here is some code you can run on Octave or Matlab.

� https://uoft.me/maximus

Task.

1. Using the code supplied above, find some values for which sometimes Maximus achieves vengeance in
this life, and sometimes only in the next.

Hint. To speed the simulation, you might want to disable the graphics.

2. Model the fight with deterministic processes instead of the Poisson processes.

3. Fix all values and find the critical training value for Maximus with the deterministic processes.

4. Model the actual fight.

Will Maximus make his way across the Forum and get his vengeance on Emperor Commodus? And more
importantly. . .

ARE YOU NOT ENTERTAINED?????!!!!!!

“Maximus vs Commodus” is a collaboration with Francisco Estrada.
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7.1 Linear Algebra Review

Algebra of Solving Systems of 2 Linear Equations

We can write a linear system of equations

a11 x1 + a12 x2 = b1

a21 x1 + a22 x2 = b2

into matrix form
A~x = ~b,

where

A=
�

a11 a12
a21 a22

�

, ~x =
�

x1
x2

�

and ~b =
�

b1
b2

�

.

We can solve a system like this one in several different ways.

Example. Solve the system

3x1 + 2x2 = 7

2x1 + 3x2 = 8.

Solution by substitution.. We can write

x2 =
7− 3x1

2
,

and use this on the second equation

2x1 + 3
7− 3x1

2
= 8 ⇔ 4x1 + 21− 9x1 = 16 ⇔ −5x1 = −5 ⇔ x1 = 1

Then re-use the first equation we obtained to get x2 = 2.

Solution by Cramer’s rule.
Using the same method of substitution on the general system, we obtain

a12 x2 = b1 − a11 x1,

and we use this into the second equation (after multiplying by a12)

a12a21 x1 = a22 b1 − a11a22 x1 = a12 b2

This implies

x1 =
b1a22 − a12 b2

a11a22 − a12a21
=

�

�

�

�

b1 a12
b2 a22

�

�

�

�

�

�

�

�

a11 a12
a21 a22

�

�

�

�

Then we use this to obtain

x2 =
a11 b2 − b1a21

a11a22 − a12a21
=

�

�

�

�

a11 b1
a21 b2

�

�

�

�

�

�

�

�

a11 a12
a21 a22

�

�

�

�

Important. This implies that there is a unique solution of the system if and only if

det(A) = a11a22 − a12a21 6= 0.
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Solution by inverse matrix. A matrix is invertible or nonsingular iff A−1 exists iff
det(A) 6= 0.
If the matrix A is invertible, then we can write

A−1 =
1

det(A)

�

a22 −a12
−a21 a11

�

We can now use this to solve the system of equations:

A~x = ~b

A−1A~x = A−1~b

I~x = A−1~b

~x = A−1~b

Homogeneous Systems.
A system of equations is called homogeneous if ~x = ~0 is a solution, which means that ~b = 0:

A~x = ~0.

Otherwise, it is called nonhomogeneous.

Eigenvalues and Eigenvectors

We can think of the matrix multiplication ~y = A~x as a mapping or transformation: given a vector ~x it
transforms it into a different vector ~y .

In many applications, it is important to know which vectors ~x are transformed into multiples of themselves.

These vectors satisfy the property

A~x = λ~x ⇔ (A−λI)~x = ~0.

One such vector is ~x = ~0. But that’s not very interesting. We want to look for nonzero vectors that satisfy
this property.

These vectors are called eigenvectors and the corresponding λ is called an eigenvalue.

Important. The second formulation above implies that the matrix (A−λI) is singular, otherwise
the unique solution would be ~x = ~0. So that implies that

det(A−λI) = 0 (characteristic equation)

Example. Let us find the eigenvalues and eigenvectors for

A=
�

1 8
4 5

�

.

First we solve the characteristic equation:

det(A−λI) =

�

�

�

�

1−λ 8
4 5−λ

�

�

�

�

= (1−λ)(5−λ)− 32= 0 ⇔ λ2 − 6λ− 27= 0

which implies that
λ= 3±

p

9+ 27= 3± 6

Eigenvalue λ1 = −3. To find the eigenvector, we write its equation

(A−λ1I)~x = ~0 ⇔
�

4 8
4 8

��

x1
x2

�

=
�

0
0

�

which implies that
4x1 + 8x2 = 0 ⇔ x1 = −2x2.
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So one eigenvector for this eigenvalue is

~x1 =
�

−2
1

�

Eigenvalue λ2 = 9. To find the eigenvector, we write its equation

�

−8 8
4 −4

��

x1
x2

�

=
�

0
0

�

which implies that
−8x1 + 8x2 = 0 ⇔ x1 = x2.

So one eigenvector for this eigenvalue is

~x2 =
�

1
1

�

Theorem. Let A have real or complex eigenvalues λ1 and λ2 such that λ1 6= λ2 and let the
corresponding eigenvectors be

~x1 =
�

x11
x21

�

and ~x2 =
�

x12
x22

�

.

If X is the matrix with columns taken from the eigenvectors:

X=
�

x11 x12
x21 x22

�

,

then
det(X) 6= 0.
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7.2 Mathematical Induction Review

Mathematical induction is a very powerful tool for proving results. It allows us to prove generalized
results. Its shortcoming is that you already have to suspect what the solution is. It then allows you to
prove it.

The Principle of Mathematical Induction.
Assume that P(1), P(2), P(3), . . . is an infinite sequence of mathematical statements.

If If
(a) P(1) is true, first domino falls
and and
(b) for any k, P(k) implies P(k+ 1) if a domino falls, then the next one falls

then then
all the statements in the sequence are true all dominoes fall!

Example. For any n ∈ N, 1+ 3+ 5+ · · ·+ (2n− 1) = n2.

Let us prove this formula using Mathematical Induction.

Proof. If n= 1, we get 1= 12, which is true – P(1) holds.
Assume that 1+ 3+ 5+ · · ·+ (2k− 1) = k2 for some k. Then

1+ 3+ 5+ · · ·+
�

2(k+ 1)− 1
�

= 1+ 3+ 5+ · · ·+ (2k− 1)
︸ ︷︷ ︸

=k2 by induction hypothesis

+(2k+ 1)

= k2 + (2k+ 1)

= k2 + 2k+ 1

= (k+ 1)2.

By induction, the equality holds for all n ∈ N.

Example.

For any x ∈ R with x ≥ −1 and n ∈ N, then (1+ x)n ≥ 1+ nx . (Bernoulli’s Inequality)

Proof. For n= 1, 1+ x ≥ 1+ x , which is true!
Assume that (1+ x)k ≥ 1+ kx . Then

(1+ x)k+1 = (1+ x)k(1+ x)≥ (1+ kx)(1+ x)

= 1+ x + kx2 + kx = 1+ (k+ 1)x + kx2

≥ 1+ (k+ 1)x .

By induction, the claim holds for all n ∈ N.

In the proof, we didn’t use the fact that x ≥ −1, but for n = 3 and x = −4,
(1+ x)n = −27 6≥ −11= 1+ nx .

Where did we use the hypothesis x ≥ −1?
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Principle of Strong Mathematical Induction.
Assume that P(1), P(2), P(3), . . . is an infinite sequence of mathematical statements.

If If
(a) P(1) is true, first domino falls
and and
(b) For any k, P(1), . . . ,P(k) implies P(k+ 1) if all previous dominos fell,

then the next one falls
then then

all the statements in the sequence are true all dominoes fall!

Example.

Theorem. Every number n ∈ N, n≥ 2 can be written as a product of primes (or is a prime).

Proof. Base case: n= 2 is a prime.
Assume that the Theorem holds for n= 2,3, 4, . . . , k and consider n= k+ 1.
If k+ 1 is prime, the claim holds.
If k+ 1 is not a prime, then it is divisible by some 2≤ m≤ k: k+ 1= m · ` for some 2≤ m,`≤ k. By
hypothesis, both m and ` are products of primes, hence so is k+ 1. The Theorem follows by strong
induction.

Practice Problems

1 Is the triangle inequality true for more than two
numbers?

|x1 + x2 + · · ·+ xn|
?
≤ |x1|+ |x2|+ · · ·+ |xn|

If it is, prove it.

2 Is the AGM inequality true for any x1, x2, . . . , xn ≥
0?

p

x1 x2 · · · xn

?
≤

x1 + x2 + · · ·+ xn

n
If it is, prove it.

3 Prove that for any n ∈ N, 26n + 32n−2 is divisible by
5.

4 How many subsets does a set S with n elements
have (including S and ;)?

5 Show that If x1, . . . , xn ∈ [0, 1] then
n
∏

i=1

(1− x i)≥

1−
n
∑

i=1

x i

6 Can you use Mathematical induction to prove that
P(m), P(m+ 1), P(m+ 2), . . . are true? If so, how?

7 Can you use Mathematical induction to prove that
P(2), P(4), P(6), P(8), . . . are true? If so, how?

8 Can you use Mathematical induction to prove that
P(1), P(3), P(5), P(7), . . . are true? If so, how?

9 For which n ∈ N, 2n ≥ (n+1)2? Prove your answer.

10 Show that for even n’s, n(n2 + 3n+ 2) is divisible
by 24.

11 Prove that for any n ∈ N, a 2n × 2n checkerboard
with one single square removed has an L–tiling
(i.e., can be covered with L–shapes).

12 Read the following proof:

Theorem. All horses have the same colour.

Proof. Assume that the claim holds for groups
of k horses, and consider a group with k + 1
horses S = {h1, . . . , hk+1}.

By hypothesis, the horses in A= {h1, . . . , hk} and
B = {h2, . . . , hk+1} have the same colour. Since
the horse h2 is in both groups, we deduce that
the colour of the horses in A must be the same as
of these in B.

In conclusion, the horses in S = A∪ B must have
the same colour, and the claim holds by induction.

This proof is flawed. Explain how.
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