
1

Binspector
Documentation & Reference

Table of Contents 

1. Table of Contents_______________________________________________________1
2. Document History______________________________________________________4
3. Overview_____________________________________________________________4
4. Binspector Uses________________________________________________________5

Validation___________________________________________________________________________5
Interpretation________________________________________________________________________5
Analysis_ ___________________________________________________________________________5
Fuzzing_____________________________________________________________________________5

5. Language Grammar_____________________________________________________5
6. Hello, World!__________________________________________________________7
7. Basic Building Blocks_ __________________________________________________7

Structures_ _______________________________________________________________7
Atoms___________________________________________________________________8

Field Type_ ___________________________________________________________________ 8
Signedness_ _________________________________________________________________________8
Size________________________________________________________________________________9
Endianness__________________________________________________________________________9
Example_ ___________________________________________________________________________9

Identifier_ ____________________________________________________________________ 9
Example_ ___________________________________________________________________________9

Field Size_____________________________________________________________________ 9
Integer______________________________________________________________________________10
While_ _____________________________________________________________________________11
Terminator__________________________________________________________________________12
Delimiter_ __________________________________________________________________________12
Shuffle______________________________________________________________________________13

Offset________________________________________________________________________ 13
Example_ ___________________________________________________________________________13

8. Advanced Building Blocks________________________________________________15
Invariants_ _______________________________________________________________15
Die______________________________________________________________________15

Example_ ___________________________________________________________________________16

Constants_ _______________________________________________________________16
Type Definitions___________________________________________________________16
Notifications______________________________________________________________17
Summaries_ ______________________________________________________________18

Example_ ___________________________________________________________________________18

Skip Fields________________________________________________________________18
Slots and Signals___________________________________________________________19



2

Binspector Documentation & Reference

Example_ ___________________________________________________________________________19
Example_ ___________________________________________________________________________19

Special eof Slot_______________________________________________________________ 20
Example_ ___________________________________________________________________________20

9. Include File Support_ ___________________________________________________20
Example_ ________________________________________________________________21

10. Conditional Evaluation_________________________________________________21
Example_ ___________________________________________________________________________21

11. Enumerated Evaluation_________________________________________________21
Example_ ___________________________________________________________________________22

Default Enumerate Cases_ ___________________________________________________22
Example_ ___________________________________________________________________________22

Empty Enumerate Constructs_________________________________________________23
Example_ ___________________________________________________________________________23

12. Sentries_ ____________________________________________________________23
Example_ ___________________________________________________________________________24

13. Path Deduction_______________________________________________________24
14. Builtin Expression Commands___________________________________________25

The position type__________________________________________________________26
Template File Command Reference_ ___________________________________________26
integer sizeof(@field)__________________________________________ 26
integer sizeof(@field1, @field2)________________________________ 26
position startof(@field)________________________________________ 26
position endof(@field)__________________________________________ 26
integer byte(integer)___________________________________________ 26
integer peek()__________________________________________________ 26
integer card(@field)____________________________________________ 26
string str(@field)______________________________________________ 27
string path(@field)_____________________________________________ 27
integer indexof(@field)_________________________________________ 27

Example_ ___________________________________________________________________________27

integer fcc(string)_____________________________________________ 27
Example_ ___________________________________________________________________________27

position gtell()________________________________________________ 28
Example_ ___________________________________________________________________________28

integer ptoi(position)__________________________________________ 28
Example_ ___________________________________________________________________________28

position itop(integer)__________________________________________ 28
Example_ ___________________________________________________________________________28

position padd(...)______________________________________________ 28
Example_ ___________________________________________________________________________28

position psub(arg1, arg2)_______________________________________ 28
Example_ ___________________________________________________________________________28



3

Binspector Documentation & Reference

15. Command Line Interface________________________________________________28
Command Line Commands__________________________________________________29
quit (q)________________________________________________________ 29
help (?)________________________________________________________ 29
print_struct (ps) (ls) (ll)_____________________________________ 29
print_branch (pb)_______________________________________________ 29
print_string <path> (str)_______________________________________ 29
step_in <path> (si) (cd)________________________________________ 30
step_out (so) (cd ..)___________________________________________ 30
top (t)_________________________________________________________ 31
detail_field <path> (df)________________________________________ 31
detail_offset <offset> (do)_____________________________________ 31
evaluate_expression <expression> (eval) (ee)____________________ 32
dump_field <field1> <field2> (duf)______________________________ 32
dump_offset <start_offset> <end_offset> (duo)___________________ 32
find_field <name> (ff)__________________________________________ 32

16. bmp Template File Example______________________________________________33
17. utf-8 Template File Example_ ___________________________________________34
18. Intelligent File Fuzzing_ ________________________________________________35
19. Fuzzing Engine Usage__________________________________________________35

Fuzzed File Details_ ________________________________________________________35
basename_____________________________________________________________________ 36
offset_ _______________________________________________________________________ 36
type_ ________________________________________________________________________ 36

Zeroes______________________________________________________________________________36
Ones_______________________________________________________________________________36
Enumerated_ ________________________________________________________________________36
Shuffle______________________________________________________________________________36

extra_________________________________________________________________________ 37
extension_____________________________________________________________________ 37
Examples_____________________________________________________________________ 37

Summary Document________________________________________________________37
Path_________________________________________________________________________ 38
Informative Lines_______________________________________________________________ 38

attack_type__________________________________________________________________________38
use_count___________________________________________________________________________38
enumerated_option_size_ ______________________________________________________________38
array_size___________________________________________________________________________38

Fuzzed File Lines_______________________________________________________________ 39
Fuzzing Engine Errors and Warnings_______________________________________________ 39



4

Binspector Documentation & Reference

Document History

Author Date Description
fbrereto 2011-05-20 Initial Draft

fbrereto 2011-06-03 Added info about eof slot

fbrereto 2011-06-07 Added info about bit work and peek

fbrereto 2012-02-28 Added info about the enumerated language construct

fbrereto 2012-03-13 Added info about sentries, shuffle, die, default, etc.

fbrereto 2012-03-30 Added info about include, position and its operations.

fbrereto 2012-04-02 Merged Binspector and Hairbrain (tools and docs)

Overview

Binary file formats have been around as long as computing. Though they are an ideal format for 
a machine to read and write, for the average human the results of these i/o operations can be very 
hard (if not impossible) to interpret contextually.

Binspector gives a user the ability to inspect and analyze the contents of a binary file in-situ. In 
order to accomplish this the Binspector first requires a template file which describes the internal 
structure of a binary file format. The template file is then given to Binspector to provide a means 
of interpreting the contents of a binary file:

JPEG
Template

File

Binspector

JPEG
Analysis

The purpose of this document is to give the user a high-level overview of the binary file format 
template language. With this language a user will be able to create their own template files for 
most binary file formats. From there it should be possible to process binary images and use the 
Binspector command line interface to further analyze the results.



5

Binspector Documentation & Reference

Binspector Uses

Given a well-formed binary file format template, there are several possible use cases for Bin-
spector:

Validation
Does a given document parse successfully? In other words if the template is a format repre-

sentation, does a given file model that representation? Can it be asserted that a binary file is an 
instance of a certain format?

Interpretation
What does an arbitrary bit sequence within a binary file mean? What is the context of the se-

quence and what does it describe in light of that context?

Analysis
Are there any errors within a binary file? Are there any logical incongruities, invariants, or 

other requirements a binary file fails to meet? What might need altering in an attempt to repair a 
corrupt file?

Fuzzing
What bit sequences should be changed that might cause adverse side effects within a body of 

code trying to read this file? When a corrupt file reveals weaknesses within a body of code, what 
in its contents caused the unintended behavior?

Language Grammar

» Note:» For some, the language grammar specification may be completely uninteresting; in 
such case you can skip to the next section. I promise you won’t miss much.

The language is built on top of asl’s common expression language (cel), so there are con-
structs mentioned in the grammar that are not detailed here. (For more information on cel see 
the asl documentation at its web site.)



6

Binspector Documentation & Reference

	 translation_unit   = { struct_set } 
	 struct_set         = [ struct | pp_statement ] { struct_set } 
	 struct             = “struct” identifier ‘{‘ { statement_set } ‘}’ 
	 statement_set      = scope_or_statement { statement_set } 
	 scope_or_statement = conditional_scope | enum_scope | sentry_scope | statement 
	 conditional_scope  = if_scope { else_scope } 
	 if_scope           = “if” ‘(‘ expression ‘)’ scope_content 
	 else_scope         = “else” scope_content 
	 scope_content      = ‘{‘ { statement_set } ‘}’ | scope_or_statement 
	 enum_scope         = “enumerate” ‘(‘ expression ‘)’ enum_content 
	 enum_content       = enum_entry_list | enum_entry_map 
	 enum_entry_list    = ‘[‘ enum_list_item_set ‘]’ 
	 enum_list_item_set = enum_list_item { ‘,’ enum_list_item_set } 
	 enum_list_item     = expression 
	 enum_entry_map     = ‘{‘ enum_map_item_set { enum_map_default } ‘}’ 
	 enum_map_item_set  = enum_map_item { enum_map_item_set } 
	 enum_map_item      = expression ‘:’ scope_content 
	 enum_map_default   = “default” ‘:’ scope_content 
	 sentry_scope       = sentry ‘(‘ expression ‘)’ scope_content 
	 statement          = [ typedef | unnamed_statement | named_statement ] ‘;’ 
	 unnamed_statement  = [ notify | summary | die ] 
	 named_statement    = [ invariant | constant | skip | slot | signal | field ] 
	 typedef            = “typedef” field_type identifier 
	 field_type         = named_field | atom_field 
	 named_field        = identifier 
	 atom_field         = [ “float” | “unsigned” | “signed” ] expression [ “big” | 
“little” | expression ] 
	 notify             = “notify” argument_list 
	 summary            = “summary” argument_list 
	 die                = “die” argument_list 
	 invariant          = “invariant” identifier ‘=’ expression 
	 constant           = “const” identifier ‘=’ expression { “noprint” } 
	 skip               = “skip” identifier ‘[‘ expression ‘]’ 
	 field_size         = ‘[‘ { [ “while” | “terminator” | “delimiter” ] ‘:’ } 
expression ‘]’ { “shuffle” } 
	 slot               = “slot” identifier ‘=’ expression 
	 signal             = “signal” identifier ‘=’ expression 
	 field              = field_type identifier { field_size } { offset } 
	 offset             = ‘@’ expression 
	 pp_statement       = pp_include 
	 pp_include         = “include” string

» Note:» There are bugs in the grammar and not all corner cases in the grammar are cur-
rently implemented.

» Note:» Comments are not part of the grammar. However the lexical analyzer does allow 
for and will skip c- and c++-style comments within the template. They are not passed on to 
the parser and are not a part of the resulting ast.



7

Binspector Documentation & Reference

Hello, World!

As no language is ever truly valid until one can write Hello World for it, let us get the formali-
ties out of the way:

struct main 
{ 
	 notify “Hello, World!”; 
}

All of the above will be further explained below.

Basic Building Blocks

Structures

Structures are the top-level encapsulating constructs used to build out the template file. Each 
template file is required to have at least one structure, and one of those structures must be named 
main. At the time Binspector interprets a binary file it will begin with the main structure and 
work its way through the rest of the template file based on its description. The structures can be 
defined in any order in the template file, but no two may have the same name.

Here is an example of a complete, well-formed and utterly boring template file:

struct main 
{ 
}

In the above example we have a single structure, main, which is empty. Structures can refer to 
other structures that have already been declared, and it is through this method that more compli-
cated structural relationships can be defined within the binary file format:

struct c_string 
{ 
} 
 
struct main 
{ 
	 c_string first_name; 
	 c_string last_name; 
}

Which will result in the following structure hierarchy, where first_name and last_name are 
both children of main and siblings of one another. Binspector processes earlier fields in the defini-
tion first:



8

Binspector Documentation & Reference

main

first_name last_name

Although in the above example we are using multiple structures to define a more complicated 
binary file format, we still have not given Binspector anything really useful information. What is 
missing from this equation is the second essential building block: atoms.

Atoms

Atoms are discrete fields within a structure that give that structure context and size. Atoms can 
be defined in many number of ways that add power and flexibility to the template file as Binspec-
tor uses it for interpretation. There are a handful of components to an atom, each of which is 
worth going into detail. They are the field type, identifier, field size and offset.

» Note:» Though we are talking about identifier, field size and offset as attributes of atoms, 
they also apply to structures (unless otherwise noted). (Field type is an attribute unique to 
atoms.)

Field Type

The field type for an atom is broken up into three distinct parts: the declarations for signedness, 
size, and endianness. Each atom declaration requires all three an in the order mentioned.

Signedness
The sign of the atom can be one of three values: signed, unsigned or float. The first two each 

have the meaning you would expect, while the latter refers to a floating-point representation of 
the data.

» Note:» At this time the use of float is restricted to atoms of 32 and 64 bits in size. The use 
of float with other sizes will result in an error.



9

Binspector Documentation & Reference

Size
The size of the atom is defined in the number of bits the atom consumes in the binary file for-

mat. Typically the values are byte-aligned (e.g., 8, 16, etc.) but do not need to be.

» Note:» The maximum size of a single atom is limited to 64 bits.

Endianness
The endianness of the atom can be one of two values: big and little. It is also possible to 

use an expression to represent the endianness of an atom. This is useful for some binary formats 
(e.g., tiff) where the endianness could be either way, and it is up to the reader of the binary file to 
discern the endianness of the data. In those situations the expression must return a boolean value. 
When the value is true the atom is big endian, otherwise it is little endian.

» Note:» Though unnecessary, atoms of bit sizes 8 or less still must specify an edian inter-
pretation. This is a current limitation of the language grammar.

Example
struct main 
{ 
	 float 32 big scale; 
}

Here we have a single 32-bit atom in the main structure named scale to be interpreted as a 
floating-point value. We have just given substance to a template file, as we have instructed Bin-
spector how to interpret the first 32 bits of some imaginary binary format. Atoms inserted into a 
structure will be analyzed based on the current “read position”, which advances by the number of 
bytes interpreted by an atom when one is specified.

Identifier

The identifier for the atom is its name. These must be unique within a structure. Additionally 
no field may be named main or this.

Example
struct main 
{ 
	 unsigned 16 big some_word; 
}

Here we have a single atom in the main structure with the identifier (name) some_word.

Field Size

Atoms can describe static and dynamic arrays in addition to singletons. The field size is an 
optional parameter for atoms that instruct Binspector to bundle up multiple atoms under a 
single field in the structure. There are several field size declarations, each with different nuances, 
however all field size declarations will build contiguous arrays. The declaration types are the 



10

Binspector Documentation & Reference

integer, while, terminator, and delimiter; each will be detailed below. All field size descriptions are 
wrapped in brackets to denote the fact an array is being constructed. Additionally, all field size 
expressions are evaluated at the time the field is to be read.

Integer
The integer field size is the most familiar and is used to define a discrete array of entries. For 

example:

struct main 
{ 
	 unsigned 16 big magic_word[2]; 
}

Here we have a single field magic_word that Binspector should use to interpret the first 32 bits 
of the binary format in the form of two 16-bit values.

» Note:» An array of zero elements is valid. That being said it is possible to use Binspector’s 
template language to avoid their use to make output easier to read. See the section on condi-
tional statements for more information.

In addition to a static field size it is possible to derive the length of a field based on values previ-
ously found in the binary format. For example, a pascal string is an 8-bit length value followed by 
that length’s worth of 8-bit characters that constitute the string. To describe such a structure to 
Binspector one might declare it as follows:

struct pascal_t 
{ 
	 unsigned 8 big length; 
	 unsigned 8 big string[length]; 
} 
 
struct main 
{ 
	 pascal_t first_name; 
	 pascal_t last_name; 
}

In this example we are using values found within the binary file to continue the file’s interpreta-
tion. We started by wrapping the length-prefixed pascal string into its own structure, pascal_t. 
The first field is an 8-bit atom we called length. We then used the value of length to define the 
field size for the second atom, string. Finally we leveraged the pascal_t structure twice within 
main. Visually, Binspector is walking the structural hierarchy created by the interpretation of the 
binary file’s bytes based on the template file:



11

Binspector Documentation & Reference

main

first_name last_name

length string
[length] length string

[length]

1

2

3 4

5

6

7

8 9

10

11

It is the bottom-most row of nodes that represent actual data in the binary file; the structures 
are important as they add additional context and structure to the data, but it is the atoms them-
selves that define the data’s actual meaning.

To bring the two uses of an integer field size together one could also write:

struct main 
{ 
	 pascal_t name[2]; // first and last name 
}

And the template file would produce a functionally equivalent result.

While
The basics of a while declaration are that Binspector will continue to extend the size of the 

field until the while expression evaluates to false. An an example:

struct main 
{ 
	 slot done = false; 
 
	 other_structure_t my_array[while: !done]; 
}

(We’ll get more into slots and signals later; for the sake of the example a slot is a variable.) Here 
the while expression will continue to return true (and thus expand upon the array) until some-
thing inside other_structure_t alters the value of done from false to true, ending the while 
loop.



12

Binspector Documentation & Reference

Terminator
An atom with a terminated field size is one where Binspector will continue to inspect a binary 

file’s contents and grow the array until said terminator is read in the file. At that time, the termina-
tor will be included in the array before Binspector continues to the next atom for interpretation. 
The best example of this kind of field in a template file would be the traditional null-terminated 
string:

struct main 
{ 
	 unsigned 8 big string[terminator: 0]; 
}

Here Binspector will continue to read bytes in the file until the terminator’s value (0) is found. 
The value is included as the last entry in the atom’s array, and the field is complete. During inter-
pretation, here is Binspector’s process is forming the string:

'H'

unsigned	
  8	
  big	
  string[terminator:	
  0];

unsigned	
  8	
  big	
  string[6]	
  =
'Hello\x00'

Read

'e'

Read

'l'

Read

'l'

Read

'o'

Read

0x00

Read

Stop

» Note:» The bit size of the terminator must match the bit size of its field.

» Note:» Terminators cannot be applied to structures.

Delimiter
An atom with a delimited field size is very similar to the terminated type, however there are 

two main differences. The first is that the delimited value is not included in the atom’s resulting 
array. As a consequence of the this the second difference is that the delimiter’s bit size need not 
be the same as the atom’s. The most common use case for a delimited atom declaration is when 
Binspector should skip over some uninteresting portion of a binary file until a sought-after piece 
is found. For example in a jpeg template file one might want to skip over the image data stream, 
requiring a delimiter field until the end of image marker is found:



13

Binspector Documentation & Reference

struct main 
{ 
	 //... prior JPEG template file declaration	  
	 unsigned 8  big image_stream[delimiter: 0xFFD9]; 
	 unsigned 16 big eoi_marker; // will be 0xFFD9 
}

Here we have an 8-bit array filled with image stream data that the template file is otherwise 
uninterested in. The delimiter however is a 16-bit value, which is legal because the value will not 
be included in the image_stream array. As noted in the example the following 16-bit value will 
be 0xFFD9, the end of image marker Binspector found while processing the image_stream atom.

» Note:» At this time the bit size of the delimiter is deduced by the number of bits required 
to represent the value described in the template file.

» Note:» Delimiters cannot be applied to structures.

» Note:» When you have the option, use delimiters in lieu of peek; the former is far more 
efficient.

Shuffle
Whenever an field size is specified for a field the option is available to add the shuffle key-

word to the end of the definition. While this does nothing for analysis it does earmark this field 
for fuzzing, which will then produced alternatives of this array by shuffling around the its ele-
ments in place.

Offset

Binary file formats are not always written to disk in a contiguous fashion. Sometimes formats 
specify offsets relative to locations in the data where other data can be found. An example of this 
is the tiff ifd metadata format, where values beyond a certain size are appended to the end of 
the metadata block, and offsets are specified within the metadata itself as to where the extended 
information resides. Binspector provides means for fetching remote data and analyzing it as part 
of a structure located elsewhere in the file.

Within Binspector’s template files offsets are always specified with absolute values. Many binary 
formats use relative offsets so Binspector’s language has primitives to assist in converting between 
relative and absolute offsets.

Example
In the following example let us extend our pascal_t structure from above to include an extra 

field that specifies the remote location for the string data as an absolute offset:

struct pascal_remote_absolute_t 
{ 
	 unsigned 8  big length; 
	 unsigned 32 big absolute_offset; 
	 unsigned 8  big string[length] @ absolute_offset; 
}



14

Binspector Documentation & Reference

In the example our first atom is the length of the string and the second is the remote offset. 
Since the value is absolute we can use it without modification in the third atom definition. Bin-
spector will seek to that absolute offset within the file and proceed to read length 8-bit values to 
constitute the string atom for our structure.

In the case we are dealing with remote offsets we need to convert them to absolute offsets be-
fore Binspector can find the data correctly. In such case we need to know which field is the basis 
for the relative offset, and construct an expression to use its offset to compute the final, absolute 
offset. In a relative-offset-based remote pascal_t structure, given that the remote offset is relative 
to the length byte of the string, we might have:

struct pascal_remote_relative_t 
{ 
	 unsigned 8  big length; 
	 unsigned 32 big relative_offset; 
	 unsigned 8  big string[length] @ startof(@length) + 
	                                      relative_offset; 
}

In this example we use the startof() routine to fetch the absolute offset of the length atom 
in the file and use it in conjunction with the relative offset of the string to compute the absolute 
offset of the string data.

» Note:» Within routine calls it is necessary to refer to fields (structures or atoms) with a 
prefixed @ symbol, otherwise the value of the field will be used instead of the field itself. This 
is loosely similar to pass-by-reference v. pass-by-value. However when the field is part of an 
expression the @ should be omitted (e.g., startof(main.foo.bar)).

For readability’s sake it would be fine to use a const field to construct the absolute offset before 
using it:

struct pascal_remote_relative_t 
{ 
	 unsigned 8  big length; 
	 unsigned 32 big relative_offset; 
	 const absolute_offset = startof(@length) + relative_offset; 
	 unsigned 8  big string[length] @ absolute_offset 
}

Reading remote data does not affect the read position once the reading is complete. For ex-
ample given the following fields:

unsigned 8 big offset; 
unsigned 8 big remote_data @ offset; 
unsigned 8 big some_value;



15

Binspector Documentation & Reference

The bytes offset and some_value are adjacent to one another in the binary file. However in 
the analysis remote_data will be between them as the remote data is brought into its interpreted 
location in the file at that time. In addition an analyzed structure’s starting and ending offsets 
(startof() and endof() values) are only affected by its nonremote (local) data, though this may 
change in a later version.

Advanced Building Blocks

There are several additional parts of the Binspector language intended to make life a little sim-
pler for those who use it. Though not strictly necessary like atoms and structures, these additions 
can help users ensure correctness, catch errors (both in the template file and in the binary), and 
increase clarity and flow of a template.

Invariants

Invariant declarations are expressions used to increase the reliability of a binary file’s interpreta-
tion. At the point an invariant field is declared it will be evaluated within the structure and must 
return a boolean. If the boolean is false a notification is posted of the invariant’s failure and 
analysis of the binary file is halted.

As an example consider the segmented jpeg file format. At the start of the format one is told to 
expect a start of image marker which is a specific value. Given that requirement within the binary 
file format one can add an invariant to assert the file is meeting the specification requirements of 
the start of image marker’s presence and value:

struct header_t 
{ 
	 unsigned 16 big soi; // start of image marker 
	 invariant is_soi = soi == 0xFFD8; 
}

In the structure above is_soi will be evaluated by Binspector the moment it is reached. If the 
invariant is true file processing will proceed, otherwise it will cease (implying e.g. an ill-defined 
template file, a corrupt binary file, etc).

Die

A die statement gives the template writer the ability to prematurely halt binary file analysis 
with an output message. Typically die statements are used when something unexpected has hap-
pened that could jeapordize further analysis.



16

Binspector Documentation & Reference

Example
struct main 
{ 
	 unsigned 32 big version; 
	 if (version != 42) die “Wrong version number found”; 
}

» Note:» Though invariants and die statements are similar, die statements always fail and 
allow a descriptive message to be added to the failure.

Constants

Constant fields are a way for the writer of a template file to encapsulate value calculations while 
still keeping the template file itself readable and (hopefully) maintainable. They do not consume 
any bytes in the binary file and have no “size”.

As an example a constant field was used to make the pascal_remote_relative_t structure 
easier to read by calling out the absolute value offset calculation and giving it a label:

struct pascal_remote_relative_t 
{ 
	 unsigned 8  big length; 
	 unsigned 32 big relative_offset; 
	 const absolute_offset = startof(@length) + relative_offset; 
	 unsigned 8  big string[length] @ absolute_offset 
}

Constant fields are strongly typed and their type is deduced from the result of the expression 
used to define them:

struct main 
{ 
	 const string_const = “Hello”; // OK- string type 
	 const integer_const = 42; // OK- integer type 
	 const sum_const = string_const + integer_const; // Error! 
		  // The types in the addition expression do not match. 
}

» Note:» Constants use a caching mechanism to speed them up, so the first time they are 
evaluated is the only time they are evaluated.

Type Definitions

Type definitions are a way of coalescing commonly used atoms and (less frequently) structures 
to ensure the template file is properly constructed.

Consider the tiff binary file format which permits data to be either little- or big-endian. In 
such a case we need to discern the endianness of the data and use that in further specification 
of the template file, or we run the risk of misinterpreting the remainder of the tiff. Within tiff 
there is a marker that allows the reader to deduce the endianness of the values to come:



17

Binspector Documentation & Reference

unsigned 16 big tiff_header; // 0x4949 (little) or 0x4d4d (big) 
invariant valid_tiff_header = tiff_header == 0x4949 || 
                              tiff_header == 0x4d4d;

From here we want to inform whatever atoms follow which endianness should be used in iter-
preting the data found. As such we can construct a solution like so:

const is_big_endian = tiff_header == 0x4D4D; 
unsigned 16 is_big_endian tiff_tag_mark; // 42 
unsigned 32 is_big_endian ifd0_offset;   // usually 8 for IFD 0

(Recall that we can specify an expression to define endianness: a true expression means big-en-
dian while a false one means little-endian.) The problem is that atom definitions quickly become 
hard to read and maintain. The typedef was introduced to allow the user to specify an atom type 
once and reference it whenever that type should be interpreted by Binspector:

typedef unsigned 16 is_big_endian tiff_word_t; 
typedef unsigned 32 is_big_endian tiff_long_t; 
tiff_word_t tiff_tag_mark; // 42 
tiff_long_t ifd0_offset;   // usually 8 for IFD 0

The result is an atom definition that is easier to read and those fields depending on the tiff 
endian marker are easier to maintain.

Typedefs are scoped to the structure in which they are defined and any substructures it may 
have. In addition typedefs can be redefined in substructures and that redefinition will have the 
same lifetime as the sub-structure that provided it. When the substructure falls out of scope, the 
typedef will return to its prior value.

Notifications

Notify is a simple way to get live feedback of Binspector’s progress during analysis. With Bin-
spector any data can be presented in a comma-delimited set of expressions, each of which will be 
evaluated and their results send to stdout.

As an example, consider our Hello World! template file from the beginning of this document:

struct main 
{ 
	 notify “Hello, World!”; 
}

Comma separated values are concatenated and output:

unsigned 32 big relative_offset; 
const absolute_offset = startof(@length) + relative_offset; 
notify “Reading value from offset ”, absolute_offset;



18

Binspector Documentation & Reference

Summaries

Many file formats have complex structures that take some drilling down in order to figure out 
exactly what’s inside. Summaries add user-friendly notes to structures during output to make it 
easier to navigate large and/or complex structures.

Example
struct rect_t 
{ 
	 unsigned 32 big top; 
	 unsigned 32 big left; 
	 unsigned 32 big bottom; 
	 unsigned 32 big right; 
 
	 summary ‘L: ‘, left, ‘, T: ‘, top, 
		   ‘, R: ‘, right, ‘, B: ‘, bottom; 
}

When the above structure is analyzed and output to an interface, the summary might come 
back looking something like this:

(rect_t) bounds (L: 0, T: 0, R: 0, B: 0)

» Note:» The summary construct does not create an ast node; rather it is evaluated and 
stored in an internal field to the structure in which it is defined. Therefore the summary 
value cannot be used in subsequent expressions. Subsequent summary constructs in the same 
structure override whatever was set previously.

Skip Fields

Many times a particular template file will be written to focus on a specific aspect of a binary file 
format. For example a template file may only want to analyze the Exif metadata embedded within 
a jpeg file and avoid the rest. (Other good uses of the skip field are unimplemented substructures 
and remote data passover). The skip field is used to pass over a specified number of bytes in the 
file:

struct pascal_t 
{ 
	 unsigned 8 big length; 
	 skip dont_care[length]; // not interested what’s in the string 
}

In this case then Binspector will pass over length bytes to preserve the correctness of further 
interpretation in the binary file.

» Note:» Unlike other size values in the template language, skip field sizes are specified in 
bytes, not bits.



19

Binspector Documentation & Reference

Slots and Signals

Slots and signals are a means by which ancestral structures can communicate with one another. 
A slot is a variable specified in a structure and given a value- in this way they are very much like 
constant fields. The way in which they differ though is that they can be redefined by a signal de-
fined in a sub-structure, or even later on in the same structure.

Example
struct main 
{ 
	 slot done = false; // done is now set to false 
	 //... do something! 
	 signal done = true; // done is now set to true 
}

Signals will trigger Binspector to search up the current structure hierarchy to find a slot with 
the same name. Once the slot is found its value expression is set to the value expression of the 
signal. Note that its value is not set: the expression is. This means that one could make reference 
to variables in the value expression of a signal and the slot will then reference those variables 
without having evaluated them yet. The evaluation of those variables will take place when the slot 
is first used.

» Note:» Slots use a caching mechanism to speed them up, so the first time they are evalu-
ated is the only time they are evaluated. This cache is reset when a signal modifies a slot’s 
value expression.

As a real-world use case, the jpeg binary format specifies that the start of stream marker will 
indicate the image data stream will immediately follow. In order to describe such behavior in Bin-
spector we would use a slot to set up a segment-reading while loop and a signal to trigger when 
the start of stream marker is found.

Example
struct segment_t 
{ 
	 unsigned 16 big marker; 
 
	 if (marker == 0xFFD9) 
		  signal sos_found = true; 
 
	 // further jpeg segment processing... 
} 
 
struct main 
{ 
	 slot sos_found = false; 
	 segment_t segment_set[while: !sos_found]; 
	 unsigned 8 big image_stream[delimiter: 0xFFD9]; 
	 segment_t end_of_image_marker; 
}



20

Binspector Documentation & Reference

Special eof Slot

Most file formats are structured such that the end of the file is deduced based on the data in the 
file (markers, length specifiers, etc.) However some formats have no such indication (an example 
is (oftentimes human readable) utf-8 encoded multibyte text) and we need to be notified when 
the end of the input has been reached. Therefore a special-use slot exists to signal when the end of 
the binary file has been reached. Specifically, Binspector will set the slot eof to true in that event.

Example
struct utf8_t 
{ 
	 unsigned 8 big byte; 
	 // further utf-8 processing... 
} 
 
struct main 
{ 
	 slot eof = false; 
 
	 utf8_t string[while: !eof]; 
}

In the above example analysis will end normally when the end of the binary file has been 
reached.

» Note:» You must define the eof slot in your template file explicitly: it will not be defined 
for you. In the event the eof slot is not defined for the template file and the end-of-file is 
reached an analysis exception will be thrown. At that time the binary file’s analysis will halt.

» Note:» It is not always desireable to define the eof slot in a template file. The general rule 
is to define it only when the binary format provides no other means of end-of-file notifica-
tion. That way if you are expecting to know when the end of the file should be and you hit it 
beforehand you will get an error. From that error one can start to discern what went wrong 
(bad template file, bad binary file, pebkac, etc).

Include File Support

Binspector scripts can include others to promote reuse. Currently the only directory used as 
an include file directory is the same one as the template file passed when Binspector is launched. 
When an include file is specified the current document being parsed is put on hold until parsing 
of the include file (and any other which it may include itself).

» Note:» It is possible to specify other include files with relative file paths, but given that this 
will be within a template file it is discouraged.

» To  Do:» Add support for multiple include directories from the command line.



21

Binspector Documentation & Reference

Example

include ‘descriptor.bfft‘ 
 
struct main 
{ 
	 // defined in the descriptor template file 
	 descriptor_t descriptor; 
}

Conditional Evaluation

As hinted in the slots and signals example, Binspector provides support for basic if/else con-
ditionals. This gives template files real flexibility in being able to evaluate the data in a binary file 
and respond accordingly.

The if/else structures are familiar to C/C++ programmers.

Example
struct main 
{ 
	 unsigned 16 big version; 
	  
	 if (version == 1) 
	 { 
		  notify “Version 1 file found”; 
		  version_1_t more_data; 
	 } 
	 else if (version == 2) 
	 { 
		  notify “Version 2 file found”; 
		  version_2_t more_data; 
	 } 
	 else 
		  notify “Unknown version found: ”, version; 
}

» Note:» In the example more_data is the name of two different fields, but since they are 
defined in separate scopes it is acceptable.

Enumerated Evaluation

Many fields within a binary file can be only one of a small set of values. For example the Pho-
toshop descriptor format uses predefined four-character codes to convey the type of a descrip-
tor entry’s value. Another example would be the bmp file format, whose header_size is one of 
a specific set of values based on the version of the bmp spec a given file adheres to. In fact the 
example given in the Conditional Evaluation section might be better written using the enumerate 
construct, as there are only two valid values expected.



22

Binspector Documentation & Reference

The advantage of using enumerate over a cascading lineup of if/else statements is twofold. 
First it is much more readable and the intent of what is being done is more clear. Second (and 
more importantly) the fuzzer uses the enumerate construct to develop intelligent analysis about 
a field and how it might be modified to expose weaknesses in file import code. Knowing the set 
of enumerated options that are technically valid but may not be contextually appropriate lets the 
fuzzer generate ‘better’ corruptions than guesswork alone.

Example
In the jpeg file format the second byte of every segment marker denotes the type of segment 

that is to follow:

enumerate (app_marker2) 
{ 
	 0xC0: nonapp_marker_t xc0; 
	 0xC2: nonapp_marker_t xc2; 
	 0xC4: nonapp_marker_t xc4; 
	 0xDA: sos_marker_t    sos; 
	 0xDB: nonapp_marker_t xdb; 
	 0xE0: app0_marker_t   app0; 
	 0xE1: app1_marker_t   app1; 
	 0xE2: appN_marker_t   app2; 
	 0xE3: appN_marker_t   app3; 
	 0xEC: appN_marker_t   app12; 
	 0xED: appN_marker_t   app13; 
	 0xEE: appN_marker_t   app14; 
	 0xDD: dri_marker_t    dri; 
}

In the example what we see looks very much like a C switch statement: For every possible enu-
merated value there are a collection of field(s) that should be processed for that value.

» Note:» If an identifier’s value cannot be found as an enumerated option, an error will be 
emitted and analysis of the binary file is halted. The exception to this rule is when a default 
case is provided.

» Note:» Currently the enumerate construct only works for atoms. That is to say it won’t 
work with arrays (strings), structs, etc.

Default Enumerate Cases

Enumerate constructs allow for the last item in the scope to be a default case, or the path cho-
sen when no other enumerated options match the found value.

Example
enumerate (appN_marker) 
{ 
	 0xE0:    app0_marker_t   app0; 
	 0xE1:    app1_marker_t   app1; 
	 default: appN_marker_t   appN; 
}



23

Binspector Documentation & Reference

Here only values 0xE0 and 0xE1 are explicitly handled; all others will use the appN_marker_t 
struct.

» Note:» In general one should supply a default case only when needed (e.g., when an 
enumeration is not required to meet a fixed set of values, allowing for alternatives.) In many 
cases it is correct to omit a default case, permitting Binspector to halt analysis when an 
unknown enumerated value is found.

» Note:» The default case (if supplied) must be the last option in an enumerate construct.

Empty Enumerate Constructs

Though they add little for analysis (as they are functionally invariants), “empty” enumerate 
constructs find their real value when fuzzing.

Example
	 The two enumerate constructs below are functionally equivalent (the former being syn-

tactic sugar for the latter.)

unsigned 16 big depth; // supported values are 1, 8, 16 and 32 
 
enumerate (depth) [ 1, 8, 16, 32 ] 
 
enumerate (depth) 
{ 
	 1:  { } 
	 8:  { } 
	 16: { } 
	 32: { } 
}

» Note:» There is no semicolon after the [ ... ]-style enumerate construct, no matter 
how tempting it may be to add one!

» Note:» There is no default case for the empty enumerate construct.

Sentries

Oftentimes file formats contain length-prefixed blocks within them, meaning a block of data is 
preceeded (usually immediately) by its size in the file. Complex structures may exist within that 
block, however, and it can be hard to assert the block being analyzed is still within the bounds set 
by the length prefix.

When length-prefixed blocks are defined in your template file you can use sentries to assert that 
Binspector does not read beyond a specific offset in the file. After all to do so would be a violation 
of the file’s internal structure; with sentries you will catch the range error long before the analy-
sis has gone off into the weeds. In addition the fuzzer can leverage sentry constructs to identify 
which values in the file are used as block length prefixes and can modify its fuzzing accordingly.



24

Binspector Documentation & Reference

There are two types of sentry values: relative and absolute. Relative values are specified with 
integers and are byte-relative to the current position of analysis within the file. Absolute values are 
specified with an address expression and are relative to the beginning of the file.

» Note:» It is technically possible to have sub-byte barriers (that is, sentries at the bit level) 
though specifying them can be tricky.

» Note:» Relative sentries are generally useful when the length field is not included in the 
length value (e.g., a pascal string.) Absolute sentries are generally useful when the length 
field value includes the length field itself (e.g., jpeg APPN segments.)

Example
The following is an example of a relative sentry, in that the value passed to the sentry is an inte-

ger value.

struct pascal_t 
{ 
	 unsigned 8 big length; 
 
	 sentry (length) 
		  if (length != 0) 
			   unsigned 8 big string[length]; 
}

The following is an example of a relative offset, as the expression used to define the sentry re-
sults in a position within the file instead of an integer.

struct jpeg_appn_segment 
{ 
	 unsigned 16 big length; 
 
	 sentry (startof(@length) + length) 
	 { 
		  // Rest of APPN segment... 
	 } 
}

Path Deduction

Path deduction in a template file or by the Binspector leverages the notion that a forest of data 
is being built up about the file. As such there are two fixed-name nodes: main which always refers 
to the topmost node the tree and this which always refers to the current structure being ana-
lyzed.

To specify an absolute path one should always start from main. To specify a relative path from 
the current node to any child nodes, one should always start the path from this:

unsigned 16 big absolute_remote_data @ main.foo.bar.offset; 
unsigned 16 big other_remote @ startof(this.foo.bar.offset);



25

Binspector Documentation & Reference

Paths that begin with neither main nor this go through a lookup process. Starting at the cur-
rent node a child field with the specified name is searched for. If it is found it is returned, and the 
path is further deduced from that node. If it is not found the same search is conducted on parent 
node. This lookup process repeats until it fails at main, at which point an error is emitted to the 
user.

Using this deduction method it is possible to reach up the tree and across to siblings that have 
already been analyzed to leverage the information they posses. As an example we look at a por-
tion of the bmpv1 template definition from the end of this file:

struct pixel_row_t 
{ 
	 struct pixel_t pixel_set[dib_header.width]; 
	 unsigned 8 big padding[dib_header.width % 4]; 
} 
 
struct main 
{ 
	 struct header_t    header; 
	 struct dib_t       dib_header; 
	 struct pixel_row_t pixel_row_set[dib_header.height]; 
}

Note how the pixel_row_set_t’s pixel_set declaration sets its fixed size to dib_header.
width. Because that path begins with neither main nor this path deduction is invoked. The first 
parent of pixel_row_t in this description is main, which does have a dib_header field. From 
there the width subfield of dib_header is traversed and its value used for the size of the pixel_
set array.

» Note:» Any path specification is only valid for nodes that have already been analyzed by 
the time the path is evaluated. It is not possible, then, to “look ahead” into an unanalyzed 
portion of the binary file to use a value. The proper way to fetch such a value would be to use 
a remote data specification to fetch it prior to requiring its use.

Builtin Expression Commands

There are several commands one can use within template file expressions. Note that many of 
these commands take “addresses” of fields in the analysis instead of the fields themselves. In the 
event a template file is ill-formed and a field is used instead of an address you will see an error 
like:

bad_cast: adobe::implementation::forest_iterator<node_t>* -> 
name_t:version_1:adobe

» Note:» We’ll try to clean up error reporting in future versions of Binspector.

The following is a list of commands available to template file developers along with basic syntax 
as to how they are invoked.



26

Binspector Documentation & Reference

The position type

Most of the types inherent in these routines are straightforward (integer, string, etc.) That be-
ing said there is a custom Binspector type used in some of these routines that should be kept in 
mind. A position is an offset (or address) into the file being analyzed. In one sense it behaves 
much like an integer (in fact there are operations to covert between them) however it is worth 
noting that positions can specify bit-level offsets, not just byte-level offsets. As such it is important 
to note most of the operations to convert between positions and integers are bytes, not bits. The 
documentation tries to be clear about when positions are expected or returned.

Template File Command Reference

integer sizeof(@field)

Returns the size of the field specified in bytes.

integer sizeof(@field1, @field2)

Returns the number of bytes used from the start of field1 to the end of field2.

position startof(@field)

Returns the offset to the first byte of field.

position endof(@field)

Returns the offset to the last byte of field.

» Note:» In stl parlance we’re talking about the offset to back(), not end().

integer byte(integer)

Returns the value of the byte found at the specified offset as an unsigned integer.

integer peek()

Returns the next byte in the binary file without advancing the read pointer.

» Note:» It might be worthwhile to extend this at some point to be able to peek a certain 
number of bits up to 64. Currently you’ll always get the next byte.

integer card(@field)

Returns the cardinality of field if it is an array root. Example:

unsigned 8 big string[terminator: 0]; 
const string_length = card(@string); // set to string array size



27

Binspector Documentation & Reference

string str(@field)

Returns a character string representation of field.

» Note:» In the event str is used to convert an array that terminates with a zero-value to 
a string the null will be omitted from the string. This gives template file writers the ability 
to interpret zero-terminated character arrays as C strings (i.e., not counting the terminator 
towards the string.)

string path(@field)

Returns the absolute path to field as a string. If field is omitted, this is implied.

integer indexof(@field)

Returns the array element index of the specified field. If field is not an element in an array an 
error is emitted. Typically this is used as indexof(@this) to get the array element index of the 
current structure being analyzed. This can be useful for cross-hierarchy access when two arrays 
are related and are the same size.

Example
struct main 
{ 
	 unsigned 8 big length; 
	 foo_t foo[length]; 
	 baz_t something_else; // is not an array, preventing foo 
	                       // and bar from being wrapped into 
	                       // a structure of their own. 
	 bar_t bar[length]; 
}

Above, if an element in bar wanted to access data in its corresponding element in foo, it could 
fetch its own index with indexof(@this) and pass that to an expression index into foo.

» Note:» This command promotes strangely-defined template files, and may be removed in 
the future. Its use is not encouraged.

integer fcc(string)

Returns an unsigned integer equivalent of the string passed. The most common use case for 
this would be to convert four character codes to integer values for comparison (hence the name, 
fcc.)

» Note:» Though its name implies otherwise, fcc will convert any string up to four charac-
ters in length.)

Example
unsigned 32 big signature; 
 
invariant ok_signature = signature == fcc(‘8BIM’);



28

Binspector Documentation & Reference

position gtell()

Returns the current read head position.

Example
const my_offset = gtell();

integer ptoi(position)

Returns the byte portion of the position as an integer, which is useful for performing math 
operations on the value.

Example
const padding_amount = 4 - (ptob(gtell()) & 3);

» Note:» Although byte positions are 64 bit values they are truncated to 32 bits by this op-
eration.

position itop(integer)

Takes an integer as a byte position and returns that position.

Example
const padding_amount = 4 - (ptob(gtell()) & 3);

position padd(...)

Takes one or more positions or doubles and returns their sum as a position.

Example
const sentry_end = padd(@startof(length), length, -1);

position psub(arg1, arg2)

Takes two of either positions or doubles and returns the subtraction of the second from the first 
as a position.

Example
const prior_byte = psub(startof(@index), 1);

Command Line Interface

After the binary file is analyzed a command line is presented to the user that allows them to 
explore the results of the analysis. We’ll use a 50x50 bmpv1 file as a running example throughout 
this section to highlight the features of the command line interface. A template file for bmpv1 can 
be found in the section following.

The first command line presented to the user looks like this:



29

Binspector Documentation & Reference

$main$

The value between the $ is the current path. main is always the first structure used to interpret 
the binary file and as such will always be at the beginning of any path. As the user moves in an out 
of substructures and arrays the path will tell the user where they are in the binary file interpreta-
tion.

Binspector uses a directory structure metaphor for navigating a file’s analysis. Under the meta-
phor atoms would be considered files and structures would be considered directories. Therefore, 
many of the commands below that deal with navigation have a very posix-like syntax about them 
(e.g., ls and cd).

Command Line Commands

The following is a list of commands available to the user while interacting with Binspector’s 
command line interface. Alternate shortcuts to each command are described in parentheses after 
the command itself.

quit (q)

Terminates Binspector

help (?)

Prints Binspector help

print_struct (ps) (ls) (ll)

Displays a synopsis of the structure at the current path. For example:

$main$ ll 
(main) main 
{ 
	 (header_t) header 
	 (dib_t) dib_header 
	 (pixel_row_t) pixel_row_set[50] 
}

print_branch (pb)

Displays a complete synopsis of the current structure at the current path. Executing print_
branch at $main$ will output the entire contents of the analysis. For leaf structures this command 
is equivalent to print_struct.

print_string <path> (str)

Displays the field specified by the path as a string. Values that have no graphical representation 
(i.e., std::isgraph(c) == false) are output as their ascii value in hex prepended with an \x. 
For example:



30

Binspector Documentation & Reference

$main.dib_header$ str bpp 
\x18\x0

An equivalent command is (note the difference in current path):

$main$ str dib_header.bpp 
\x18\x0

» Note:» The example isn’t very useful as there are no strings in a BMPv1 file, but you get 
the idea.

step_in <path> (si) (cd)

Sets the path to the structure defined by the path. This can be done both relative to the current 
path and absolutely from $main$. For example:

$main$ cd header 
$main.header$

or

$main$ cd pixel_row_set[5].pixel_set[5] 
$main.pixel_row_set[5].pixel_set[5]$

You can also specify an absolute path from $main$

$main.pixel_row_set[5].pixel_set[5]$ cd main.header 
$main.header$

For arrays it is possible to step into the array without stepping into an element of that array. It is 
known as the array root:

$main$ cd pixel_row_set 
$main.pixel_row_set$

You can also refer to the current structure with the keyword this:

$main.pixel_row_set$ cd this[4] 
$main.pixel_row_set[4]$

step_out (so) (cd ..)

Sets the path to be the parent structure of the current path. 

You can also step out to the parent structure with .., akin to cd on a *nix command line. For 
example:

$main.header$ cd .. 
$main$

» Note:» In the case of an array element the parent structure is the array root and not the 
structure that contains the array.



31

Binspector Documentation & Reference

top (t)

Sets the current path to $main$

detail_field <path> (df)

Prints out detailed information about the path specified. For example:

$main$ df this 
	 path: main 
	 type: struct 
	 struct: main 
	 bytes: [ 0 .. 7625 ] 
	 size: 7626 bytes (7.44727 KB)

Note that the information displayed differs on the field type:

$main.header$ df file_size 
	 path: main.header.file_size 
	 format: 32-bit unsigned little 
	 offset: 2 
	 raw: 0xca 0x1d 0x00 0x00  
	 value: 7626 (0x1dca)

or

$main$ df pixel_row_set[1].pixel_set 
	 path: main.pixel_row_set[1].pixel_set 
	 type: array 
	 struct: pixel_t 
	 elements: 50 
	 bytes: [ 178 .. 327 ] 
	 size: 150 bytes

For fields that start within a byte their offset will be represented using an X.Y notation, where X 
is the byte and Y is a number from 1-7 denoting the bit at which the field starts:

$main.string[7]$ df b1p2 
	 path: main.string[7].b1p2 
	 format: 4-bit unsigned  
	 offset: 8.2 
	 raw: 0x0e 
	 value: 14 (0xe)

In the above example the field begin’s at bit 2 of byte 8 and extends for 4 bits.

detail_offset <offset> (do)

Searches the binary file analysis for the atom that interprets the byte at the provided offset. Cur-
rently only local data is included in the search (not remote data) though its inclusion is planned 
for a future release. For example:



32

Binspector Documentation & Reference

$main$ do 1234 
	 path: main.pixel_row_set[7].pixel_set[48].blue 
	 format: 8-bit unsigned 
	 offset: 1234 
	 raw: 0xff 
	 value: 255 (0xff)

Sometimes the result will be in the middle of an atom, in which case the whole atom will be 
detailed. For example:

$main$ do 16 
	 path: main.dib_header.header_size 
	 format: 32-bit unsigned little 
	 offset: 14 
	 raw: 0x0c 0x00 0x00 0x00  
	 value: 12 (0xc)

evaluate_expression <expression> (eval) (ee)

Allows for the evaluation of an expression whose result is immediately output. For example the 
following prints the starting offset of the main.dib_header.bpp field:

$main.dib_header$ ee startof(@bpp) 
24

dump_field <field1> <field2> (duf)

Dumps the on-disk bytes interpreted by the field (in the case one field is supplied) or range 
of fields (in the case two fields are supplied). The dump format is in five columns: the first four 
columns are the hexidecimal representation of 4 bytes each. The fifth column is the ascii repre-
sentation of the first four columns. If a byte fails std::isgraph a . is subsituted as the glyph in 
the fifth column.

dump_offset <start_offset> <end_offset> (duo)

Same behavior as dump_field() but takes a starting and ending offset into the file instead of 
field(s). The byte at the end offset is included in the dump.

find_field <name> (ff)

find_field will start from the current node and search down the analysis tree to find any 
nodes with the name passed. If any are found their complete path will be printed out. This makes 
it easy to find fields that are optional to the file format or may be in one of several locations (e.g., 
locating the exif metadata within a jpeg.)



33

Binspector Documentation & Reference

bmp Template File Example

The following is a specification for version 1 of the bmp image file format in a template file. 
Note how expressions inside some of the structures leverage path deduction heuristics in their 
specifications (dib_header.width within pixel_row_t).

struct header_t 
{ 
	 unsigned 8  big    magic_number[2]; 
	 unsigned 32 little file_size; 
	 unsigned 16 little creator1; 
	 unsigned 16 little creator2; 
	 unsigned 32 little bmp_offset; 
 
	 invariant ok_magic_number str(@magic_number) == ‘BM’; 
} 
 
struct dib_t 
{ 
	 unsigned 32 little header_size; 
 
	 invariant ok_header = header_size == 12; 
 
	 unsigned 16 little width; 
	 unsigned 16 little height; 
	 unsigned 16 little color_plane_count; 
	 unsigned 16 little bpp; 
} 
 
struct pixel_t 
{ 
	 unsigned 8 big blue; 
	 unsigned 8 big green; 
	 unsigned 8 big red; 
} 
 
struct pixel_row_t 
{ 
	 pixel_t        pixel_set[dib_header.width]; 
	 unsigned 8 big padding[dib_header.width % 4]; 
} 
 
struct main 
{ 
	 header_t    header; 
	 dib_t       dib_header; 
	 pixel_row_t pixel_row_set[dib_header.height]; 
}



34

Binspector Documentation & Reference

utf-8 Template File Example

The following is a snippet from a utf-8 template file specification. The following will correctly 
analyze 3-byte utf-8 sequences (the most common when working with multibyte characters). 
Though not a complete template file for all possible utf-8 characters it serves as an example of 
sub-byte field specifications.

struct utf8_t 
{ 
	 const byte = peek() noprint; 
 
	 if ((byte & 0x80) == 0x80) 
	 { 
		  if ((byte & 0xE0) == 0xE0) 
		  { 
			   // first byte 
			   unsigned 4 big header;     // should be 1110b 
			   unsigned 4 big b1p1;       // byte 1, part 1 
 
			   // second byte 
			   unsigned 2 big utf8_cont1; // should be 10b 
			   unsigned 4 big b1p2;       // byte 1, part 2 
			   unsigned 2 big b2p1;       // byte 2, part 1 
 
			   // third byte 
			   unsigned 2 big utf8_cont2; // should be 10b 
			   unsigned 6 big b2p2;       // byte 2, part 2 
 
			   invariant valid_header = header == 0xE; 
			   invariant valid_cont1 = utf8_cont1 == 2; 
			   invariant valid_cont2 = utf8_cont2 == 2; 
 
			   const byte1 = (b1p1 << 4) | b1p2 noprint; 
			   const byte2 = (b2p1 << 6) | b2p2 noprint; 
 
			   // Finally we compose the utf-16 code point 
			   const utf16 = byte1 << 8 | byte2; 
		  } 
		  else 
			   invariant unhandled_utf8 = false; 
	 } 
	 else 
	 { 
		  unsigned 8 big char; // 7-bit ASCII character 
	 } 
} 
 
struct main 
{ 
	 slot eof = false; 
 
	 utf8_t string[while: !eof]; 
}



35

Binspector Documentation & Reference

Intelligent File Fuzzing

Fuzzing is an application hardening technique where corrupted files are opened by an applica-
tion to see how well it handles unaniticipated data. Fuzzing specifically takes known good docu-
ments and changes them either deterministically or randomly in the hopes of exposing weak-
nesses in file import code.

The Binspector fuzzing engine attempts the former of these two fuzzing approaches. By le-
veraging template files and a source (known good) binary file, the fuzzing engine will produce a 
series of documents fuzzed at locations in the file where the import code might be most weak:

JPEG
Template

File

Binspector
Fuzzer

The purpose of this section is to give the user a high level overview of the fuzzing engine and 
what to expect from its use.

Fuzzing Engine Usage

To run the fuzzer from the command line the following argument structure should be used

binspector template_file binary_file fuzz

The resulting output from Binspector will be in a folder called fuzzed and be placed as a sib-
ling to binary_file. Within that folder you will find a set of fuzzed binary files and a summary 
document.

Fuzzed File Details

Each fuzzed file written by the fuzzing engine will generally follow this pattern



36

Binspector Documentation & Reference

basename_offset_type{_extra}.extension

basename

The basename of the file matches the input file specified. So if your input file was ducky.jpg, 
your basename will be ducky.

offset

Each fuzzed document attacks a single possible weakness within the file format. As such the 
offset specified is the number of bytes into the binary file where the fuzzing began.

type

There are several types of fuzzing attacks. Currently Binspector has four:

Zeroes
The field will be filled with all zeroes. The type identifier for these files is ‘z’.

Ones
The field will be filled with all ones. The type identifier for these files is ‘o’.

Enumerated
Enumerated values are those specified with the enumerated construct within the binary file 

template. When one of these is found by the fuzzer the value will be given each possible enumer-
ated value in lieu of whatever is currently there. The type identifier for these files is ‘e’.

» Note:» Assuming the enumerated value in the source input file was valid one of the files 
output by this method will be identical with the source file. (Broken clocks being right twice 
a day, and all that.)

Shuffle
Many file types (png, tiff, Exif) use a block-based structure in whole or in part. When de-

scribed appropriately in a template file these blocks can be reordered arbitrarily by the fuzzing 
engine. The type identifier for these files is ‘s’.

» Note:» This type of attack can generate many files quickly. It is advised to reserve block 
shuffling to larger-scale constructs (e.g., png chunks) and avoid it for smaller ones (e.g., 
null-terminated 8-bit strings.)

» Note:» Currently the shuffling algorithm simply shifts the array elements once to the left 
at every iteration. Far more complex shuffling attacks are planned, however.



37

Binspector Documentation & Reference

extra

In some cases more information is provided about the value used in the fuzzing attack. Cur-
rently the only type of fuzzing that provides this information is the enumerated fuzz; what is sup-
plied is the enumerated option used in lieu of the original input value.

extension

This is the same as the extension of the original input source file.

Examples

The following are examples and descriptions of how the engine has fuzzed the document:

ducky_12_e_19789.jpg

ducky.jpg had whatever value lies at offset 12 modified to the enumerated option 19789.

» Note:» The enumerated option is output in decimal though the value in the binary file 
template may not be. The extra information is more about making the filename unique than 
being perfectly descriptive.

ducky_1986_o.jpg

ducky.jpg had whatever value lies at offset 1986 modified to be all ones.

sliced_34_s_5.psd

sliced.psd had whatever contiguous array beginning at offset 34 block-shuffled. This file was 
produced on the fifth iteration of the block shuffling algorithm.

Summary Document

During the fuzzing process the engine will keep track of all the work it is doing with a sum-
mary document output in the fuzzed directory. The name of the file will be basename_fuzzed_
summary.txt, where basename is the same value as found in the Fuzzed File Details section 
above.

The contents of this document are a series of fuzz attack summaries like the example below:

main.segment[0].app1.exif.tiff_header 
    ? use_count : 8 
    ? bits : 16 
    ? type : unsigned 
    ? big_endian : true 
    ? enumerated_option_size : 2 
    > ducky_12_z.jpg 
    > ducky_12_o.jpg 
    > ducky_12_e_19789.jpg 
    > ducky_12_e_18761.jpg



38

Binspector Documentation & Reference

Path

The start of each summary is the path to the location in the file where the fuzzing is taking 
place. This path is constructed during the source binary file’s analysis.

Informative Lines

Lines prefixed with the ‘?’ symbol are informative in nature, describing details about the field 
that is being fuzzed in subsequent files. Most of the informative lines are self explanatory.

attack_type
Currently there are two basic attacks: atom fuzzing and block shuffling. Both attacks are in-situ 

and will not alter the overall size of the document.

usage: Atom fuzzing takes a single value and changes it in a random or meaningful way. This 
is the most common type of attack and is triggered for an atom when it is used in the template to 
drive futher binary file interpretation.

shuffle: Block shuffling takes a contiguous block of data spread over two or more array ele-
ments and rearranges them in place. This is triggered by the shuffle keyword appended to an 
array-type field.

use_count
use_count is a rough metric used by the fuzzing engine during analysis to find possible weak-

nesses in the binary file. Higher use_count values imply the field is depended upon more heavily 
within the file’s internal structure (and thus using a corrupt value unchecked could do more dam-
age.)

All fuzzing locations will have a use_count of at least 1. If a location is never used in the 
binary file template it is assumed to be a value that does not affect document parsing, and is not 
fuzzed.

» Note:» use_count is derived from the binary file template description, and is not neces-
sarily an accurate reflection of how a value is actually depended upon in the file import code.

enumerated_option_size
When a field is an enumerated value the enumerated_option_size tells the reader the total 

number of options available for that enumeration. As such subsequent files will be written, one 
for each possible enumeration option.

array_size
When a field is specified for shuffling, this value will report the number of elements the shuf-

fling algorithm will be dealing with.



39

Binspector Documentation & Reference

Fuzzed File Lines

Lines prefixed with the ‘>’ symbol denote the names of fuzzed files written to the output direc-
tory. These will be named in the format specified earlier in this document.

Fuzzing Engine Errors and Warnings

Lines prefixed with the ‘!’ symbol denote issues that may prevent the fuzzing engine from fuzz-
ing a file completely.


