{ "cells": [ { "cell_type": "markdown", "id": "fb4d31c3-0ff5-4d07-9747-609ca7bb54ac", "metadata": {}, "source": [ "# 13. Promiscuous receptor-ligand interactions increase the bandwidth and specificity of cell-cell communication systems\n", "\n", "
" ] }, { "cell_type": "markdown", "id": "77817374-ffa5-4411-8a8f-38fff802507a", "metadata": {}, "source": [ "**Design principles**\n", "\n", "- Promiscuous receptor-ligand interactions enable complex responses to combinations of ligands\n", "- These complex response functions enable a given ligand profile to uniquely address more distinct sets of cell types than they could in a fully orthogonal one-ligand one-receptor system.\n", "\n", "**Techniques**\n", "\n", "- EQTK can rapidly solve large systems of equilbirium binding reactions.\n", "- Low-dimensional representations of complex system behaviors enable large parameter explorations.\n", "\n", "**Key Papers**\n", "\n", "- [Y. Antebi et al, \"Combinatorial Signal Perception in the BMP Pathway,\" Cell, 2017](https://doi.org/10.1016/j.cell.2017.08.015)\n", "- [C. Su et al, \"Ligand-receptor promiscuity enables cellular addressing,\" Cell Systems, 2022](https://doi.org/10.1016/j.cels.2022.03.001)\n", "- [H. Klumpe et al, \"The context-dependent, combinatorial logic of BMP signaling,\" Cell Systems, 2022](https://doi.org/10.1016/j.cels.2022.03.002)\n", "\n", "
" ] }, { "cell_type": "code", "execution_count": 1, "id": "288b0b1e-84ef-458b-81ca-3316d15b7bf7", "metadata": { "tags": [ "hide-input" ] }, "outputs": [ { "data": { "text/html": [ "\n", "
\n", " \n", " Loading BokehJS ...\n", "
\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/javascript": [ "(function(root) {\n", " function now() {\n", " return new Date();\n", " }\n", "\n", " const force = true;\n", "\n", " if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n", " root._bokeh_onload_callbacks = [];\n", " root._bokeh_is_loading = undefined;\n", " }\n", "\n", "const JS_MIME_TYPE = 'application/javascript';\n", " const HTML_MIME_TYPE = 'text/html';\n", " const EXEC_MIME_TYPE = 'application/vnd.bokehjs_exec.v0+json';\n", " const CLASS_NAME = 'output_bokeh rendered_html';\n", "\n", " /**\n", " * Render data to the DOM node\n", " */\n", " function render(props, node) {\n", " const script = document.createElement(\"script\");\n", " node.appendChild(script);\n", " }\n", "\n", " /**\n", " * Handle when an output is cleared or removed\n", " */\n", " function handleClearOutput(event, handle) {\n", " const cell = handle.cell;\n", "\n", " const id = cell.output_area._bokeh_element_id;\n", " const server_id = cell.output_area._bokeh_server_id;\n", " // Clean up Bokeh references\n", " if (id != null && id in Bokeh.index) {\n", " Bokeh.index[id].model.document.clear();\n", " delete Bokeh.index[id];\n", " }\n", "\n", " if (server_id !== undefined) {\n", " // Clean up Bokeh references\n", " const cmd_clean = \"from bokeh.io.state import curstate; print(curstate().uuid_to_server['\" + server_id + \"'].get_sessions()[0].document.roots[0]._id)\";\n", " cell.notebook.kernel.execute(cmd_clean, {\n", " iopub: {\n", " output: function(msg) {\n", " const id = msg.content.text.trim();\n", " if (id in Bokeh.index) {\n", " Bokeh.index[id].model.document.clear();\n", " delete Bokeh.index[id];\n", " }\n", " }\n", " }\n", " });\n", " // Destroy server and session\n", " const cmd_destroy = \"import bokeh.io.notebook as ion; ion.destroy_server('\" + server_id + \"')\";\n", " cell.notebook.kernel.execute(cmd_destroy);\n", " }\n", " }\n", "\n", " /**\n", " * Handle when a new output is added\n", " */\n", " function handleAddOutput(event, handle) {\n", " const output_area = handle.output_area;\n", " const output = handle.output;\n", "\n", " // limit handleAddOutput to display_data with EXEC_MIME_TYPE content only\n", " if ((output.output_type != \"display_data\") || (!Object.prototype.hasOwnProperty.call(output.data, EXEC_MIME_TYPE))) {\n", " return\n", " }\n", "\n", " const toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n", "\n", " if (output.metadata[EXEC_MIME_TYPE][\"id\"] !== undefined) {\n", " toinsert[toinsert.length - 1].firstChild.textContent = output.data[JS_MIME_TYPE];\n", " // store reference to embed id on output_area\n", " output_area._bokeh_element_id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n", " }\n", " if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n", " const bk_div = document.createElement(\"div\");\n", " bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n", " const script_attrs = bk_div.children[0].attributes;\n", " for (let i = 0; i < script_attrs.length; i++) {\n", " toinsert[toinsert.length - 1].firstChild.setAttribute(script_attrs[i].name, script_attrs[i].value);\n", " toinsert[toinsert.length - 1].firstChild.textContent = bk_div.children[0].textContent\n", " }\n", " // store reference to server id on output_area\n", " output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n", " }\n", " }\n", "\n", " function register_renderer(events, OutputArea) {\n", "\n", " function append_mime(data, metadata, element) {\n", " // create a DOM node to render to\n", " const toinsert = this.create_output_subarea(\n", " metadata,\n", " CLASS_NAME,\n", " EXEC_MIME_TYPE\n", " );\n", " this.keyboard_manager.register_events(toinsert);\n", " // Render to node\n", " const props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n", " render(props, toinsert[toinsert.length - 1]);\n", " element.append(toinsert);\n", " return toinsert\n", " }\n", "\n", " /* Handle when an output is cleared or removed */\n", " events.on('clear_output.CodeCell', handleClearOutput);\n", " events.on('delete.Cell', handleClearOutput);\n", "\n", " /* Handle when a new output is added */\n", " events.on('output_added.OutputArea', handleAddOutput);\n", "\n", " /**\n", " * Register the mime type and append_mime function with output_area\n", " */\n", " OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n", " /* Is output safe? */\n", " safe: true,\n", " /* Index of renderer in `output_area.display_order` */\n", " index: 0\n", " });\n", " }\n", "\n", " // register the mime type if in Jupyter Notebook environment and previously unregistered\n", " if (root.Jupyter !== undefined) {\n", " const events = require('base/js/events');\n", " const OutputArea = require('notebook/js/outputarea').OutputArea;\n", "\n", " if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n", " register_renderer(events, OutputArea);\n", " }\n", " }\n", " if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n", " root._bokeh_timeout = Date.now() + 5000;\n", " root._bokeh_failed_load = false;\n", " }\n", "\n", " const NB_LOAD_WARNING = {'data': {'text/html':\n", " \"
\\n\"+\n", " \"

\\n\"+\n", " \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n", " \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n", " \"

\\n\"+\n", " \"\\n\"+\n", " \"\\n\"+\n", " \"from bokeh.resources import INLINE\\n\"+\n", " \"output_notebook(resources=INLINE)\\n\"+\n", " \"\\n\"+\n", " \"
\"}};\n", "\n", " function display_loaded() {\n", " const el = document.getElementById(\"p1001\");\n", " if (el != null) {\n", " el.textContent = \"BokehJS is loading...\";\n", " }\n", " if (root.Bokeh !== undefined) {\n", " if (el != null) {\n", " el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n", " }\n", " } else if (Date.now() < root._bokeh_timeout) {\n", " setTimeout(display_loaded, 100)\n", " }\n", " }\n", "\n", " function run_callbacks() {\n", " try {\n", " root._bokeh_onload_callbacks.forEach(function(callback) {\n", " if (callback != null)\n", " callback();\n", " });\n", " } finally {\n", " delete root._bokeh_onload_callbacks\n", " }\n", " console.debug(\"Bokeh: all callbacks have finished\");\n", " }\n", "\n", " function load_libs(css_urls, js_urls, callback) {\n", " if (css_urls == null) css_urls = [];\n", " if (js_urls == null) js_urls = [];\n", "\n", " root._bokeh_onload_callbacks.push(callback);\n", " if (root._bokeh_is_loading > 0) {\n", " console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n", " return null;\n", " }\n", " if (js_urls == null || js_urls.length === 0) {\n", " run_callbacks();\n", " return null;\n", " }\n", " console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n", " root._bokeh_is_loading = css_urls.length + js_urls.length;\n", "\n", " function on_load() {\n", " root._bokeh_is_loading--;\n", " if (root._bokeh_is_loading === 0) {\n", " console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n", " run_callbacks()\n", " }\n", " }\n", "\n", " function on_error(url) {\n", " console.error(\"failed to load \" + url);\n", " }\n", "\n", " for (let i = 0; i < css_urls.length; i++) {\n", " const url = css_urls[i];\n", " const element = document.createElement(\"link\");\n", " element.onload = on_load;\n", " element.onerror = on_error.bind(null, url);\n", " element.rel = \"stylesheet\";\n", " element.type = \"text/css\";\n", " element.href = url;\n", " console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n", " document.body.appendChild(element);\n", " }\n", "\n", " for (let i = 0; i < js_urls.length; i++) {\n", " const url = js_urls[i];\n", " const element = document.createElement('script');\n", " element.onload = on_load;\n", " element.onerror = on_error.bind(null, url);\n", " element.async = false;\n", " element.src = url;\n", " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", " document.head.appendChild(element);\n", " }\n", " };\n", "\n", " function inject_raw_css(css) {\n", " const element = document.createElement(\"style\");\n", " element.appendChild(document.createTextNode(css));\n", " document.body.appendChild(element);\n", " }\n", "\n", " const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.1.0.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.1.0.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.1.0.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.1.0.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.1.0.min.js\"];\n", " const css_urls = [];\n", "\n", " const inline_js = [ function(Bokeh) {\n", " Bokeh.set_log_level(\"info\");\n", " },\n", "function(Bokeh) {\n", " }\n", " ];\n", "\n", " function run_inline_js() {\n", " if (root.Bokeh !== undefined || force === true) {\n", " for (let i = 0; i < inline_js.length; i++) {\n", " inline_js[i].call(root, root.Bokeh);\n", " }\n", "if (force === true) {\n", " display_loaded();\n", " }} else if (Date.now() < root._bokeh_timeout) {\n", " setTimeout(run_inline_js, 100);\n", " } else if (!root._bokeh_failed_load) {\n", " console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n", " root._bokeh_failed_load = true;\n", " } else if (force !== true) {\n", " const cell = $(document.getElementById(\"p1001\")).parents('.cell').data().cell;\n", " cell.output_area.append_execute_result(NB_LOAD_WARNING)\n", " }\n", " }\n", "\n", " if (root._bokeh_is_loading === 0) {\n", " console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n", " run_inline_js();\n", " } else {\n", " load_libs(css_urls, js_urls, function() {\n", " console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n", " run_inline_js();\n", " });\n", " }\n", "}(window));" ], "application/vnd.bokehjs_load.v0+json": "(function(root) {\n function now() {\n return new Date();\n }\n\n const force = true;\n\n if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n root._bokeh_onload_callbacks = [];\n root._bokeh_is_loading = undefined;\n }\n\n\n if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n const NB_LOAD_WARNING = {'data': {'text/html':\n \"
\\n\"+\n \"

\\n\"+\n \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n \"

\\n\"+\n \"\\n\"+\n \"\\n\"+\n \"from bokeh.resources import INLINE\\n\"+\n \"output_notebook(resources=INLINE)\\n\"+\n \"\\n\"+\n \"
\"}};\n\n function display_loaded() {\n const el = document.getElementById(\"p1001\");\n if (el != null) {\n el.textContent = \"BokehJS is loading...\";\n }\n if (root.Bokeh !== undefined) {\n if (el != null) {\n el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n }\n } else if (Date.now() < root._bokeh_timeout) {\n setTimeout(display_loaded, 100)\n }\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n\n root._bokeh_onload_callbacks.push(callback);\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls == null || js_urls.length === 0) {\n run_callbacks();\n return null;\n }\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n root._bokeh_is_loading = css_urls.length + js_urls.length;\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n\n function on_error(url) {\n console.error(\"failed to load \" + url);\n }\n\n for (let i = 0; i < css_urls.length; i++) {\n const url = css_urls[i];\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n }\n\n for (let i = 0; i < js_urls.length; i++) {\n const url = js_urls[i];\n const element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.1.0.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.1.0.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.1.0.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.1.0.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.1.0.min.js\"];\n const css_urls = [];\n\n const inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {\n }\n ];\n\n function run_inline_js() {\n if (root.Bokeh !== undefined || force === true) {\n for (let i = 0; i < inline_js.length; i++) {\n inline_js[i].call(root, root.Bokeh);\n }\nif (force === true) {\n display_loaded();\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n } else if (force !== true) {\n const cell = $(document.getElementById(\"p1001\")).parents('.cell').data().cell;\n cell.output_area.append_execute_result(NB_LOAD_WARNING)\n }\n }\n\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n run_inline_js();\n } else {\n load_libs(css_urls, js_urls, function() {\n console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n run_inline_js();\n });\n }\n}(window));" }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Colab setup ------------------\n", "import os, sys, subprocess\n", "if \"google.colab\" in sys.modules:\n", " cmd = \"pip install --upgrade eqtk watermark\"\n", " process = subprocess.Popen(cmd.split(), stdout=subprocess.PIPE, stderr=subprocess.PIPE)\n", " stdout, stderr = process.communicate()\n", "# ------------------------------\n", "\n", "import numpy as np\n", "import tqdm\n", "\n", "import biocircuits\n", "# import biocircuits.apps\n", "import eqtk\n", "\n", "import bokeh.io\n", "\n", "import biocircuits.apps\n", "notebook_url = 'localhost:8888'\n", "\n", "bokeh.io.output_notebook()" ] }, { "cell_type": "markdown", "id": "f92282a8-2fcd-4f81-8063-4418e09fb5a7", "metadata": {}, "source": [ "## Cell-cell communication systems use families of partly redundant ligands and receptors\n", "\n", "In a multicellular organism, cells of different types are in constant conversation with one another to ensure correct development and coordinate their many different activities. These conversations are carried out by communication circuits that secrete, sense, and process specific signaling molecules called ligands. \n", "\n", "How would you design the ideal cell-cell communication system? You would start with a secreted ligand, to convey the signal, and a corresponding receptor, to sense it. You would probably want your ligand to be extremely specific for your receptor, to avoid undesired crosstalk with other communication pathways. In fact, most core signaling systems are based on pathway-specific ligands and receptors. Once you created your pathway and saw that it was working well, you might want to expand its bandwidth, by adding additional ligands and receptors that function similarly, but independently. That way one ligand could transmit one kind of information through one receptor and a second could independently transmit different information through a distinct receptor. In this way, you could create many \"orthogonal\" communication channels from a single design. In fact, synthetic biologists have developed precisely this paradigm to create signaling architectures, such as [\"SynNotch\"](https://doi.org/10.1016/j.cell.2016.01.012), that can support multiple independent channels. \n", "\n", "You might expect that evolution would have produced a similarly sensible design. However, when we look at many natural communication pathways we see something quite different. As with our hypothetical ideal system, we find not one, but many, homologous ligands per pathway. We also observe many different receptor variants within a pathway. But instead of a one-to-one relationship between a given ligand variant and a corresponding receptor variants, we observe \"promiscuous\" relationships, in which each ligand interact, to varying extents, with multiple receptors, and each receptor, conversely, interacts with multiple ligands. This occurs in the Wnt, FGF, Notch, Eph-ephrin, and Bone Morphogenetic Protein (BMP) pathways, among many others.\n", "\n", "
\n", "\n", "![promiscuous_pathways](figs/promiscuous_pathways.png)\n", "\n", "
\n", "\n", "The extraordinary promiscuity in these pathways is perplexing. If all of these different ligand-receptor complexes activate the same downstream targets, then it seems like the cell cannot necessarily \"know\" which ligand and receptor were involved in a given signaling interaction. That information appears, at least at first glance, to be \"lost.\" \n", "\n", "So, what could account for the prevalence of promiscuous ligand-receptor interactions? Perhaps they do not offer any direct functional advantage, but rather reflect the process through which biological systems evolve through gene duplication and gradual divergence--an evolutionary artifact. Or, perhaps they allow regulatory flexibility, permitting stronger or weaker expression or activity in one tissue relative to another. A third possibility is that, by acting as partly redundant [\"backups\"](https://doi.org/10.1038/ng1523) for one another, these additional ligand and receptors variants increase the robustness of signaling. A final possibility is that these promiscuous interactions provide some other, more direct, signal processing function. While any or all of these may be true, here we focus on this last case -- a direct role in signal processing.\n", "\n", "Examining different promiscuous ligand-receptor systems a little closer, one notices a few common themes:\n", "\n", "* First, the strengths of interactions between different ligands and receptors typically vary quantitatively. Some interactions are strong, and others are weak or even effectively non-existent. \n", "* Second, different ligand and receptor variants are often similar enough to replace each other in some, but not all, contexts. They are partly, but not fully, interchangeable. \n", "* Third, organisms typically do not use a single ligand and a single receptor in most processes. Rather, they appear to use multiple ligands and receptors together in various overlapping combinations. \n", "\n", "These observations together suggest that ligands and receptors may be working together in a **combinatorial** fashion." ] }, { "cell_type": "markdown", "id": "89c2c7c6-1e69-4f88-a330-34c0d81d82e5", "metadata": {}, "source": [ "## The Bone Morphogenetic Protein (BMP) pathways signals through a set of promiscuously interacting ligands and receptors\n", "\n", "To gain insight into signal processing by promiscuous ligand-receptor interactions, we will focus on the BMP pathway as an example. \n", "\n", "[The BMP pathway](https://doi.org/10.3390/cells8121579) is part of a larger pathway called TGF-β. The first thing to know about it is that, despite its name, it is not at all specific to bone, but rather functions in virtually all tissue contexts in the body. Its ligands are morphogens that can diffuse away from the site at which they are produced to activate cells at a distance, and for this reason it plays key roles in developmental patterning. Also, because of its eponymous bone-inducing properties, it is used clinically in some orthopedic contexts. Finally, BMP, like most of the core communication pathways, is dysregulated in many diseases. \n", "\n", "
\n", "\n", "![bmp_in_the_body](figs/bmp_in_the_body.png)\n", "\n", "
\n", "\n", "*Image taken from [Wagner, et al., Sci. Signaling, 2010](https://doi.org/10.1126/scisignal.3107mr1).*\n", "\n", "At the molecular level, the BMP pathway includes about 20 different ligands (depending on how you count). A complete BMP receptor is a heterotetramer composed of two type I and two type II subunits. There are 4 different type I and 3 different type II receptor variants that can combine to form a large set of potential heterotetrameric combinations. Different cell types express different combinations of these components, typically including multiple type I or type II subunit variants. The different ligands interact, to varying extents, with each of these receptor complexes to form hundreds or even thousands of different ligand-receptor signaling complexes. These complexes in turn phosphorylate effector proteins Smad1, Smad5, and Smad8, which can then transit to the nucleus to activate target genes.\n", "\n", "
\n", "\n", "![BMP_pathway_diagram](figs/BMP_pathway_diagram.png)\n", "\n", "
\n", "\n", "The mystery here is why this pathway has so much apparent combinatorial complexity. Why not keep it simple and just use a family of ligands and a family of cognate receptors, with no promiscuity, no combinations, and no seemingly unecessary complexity? \n", "\n", "If we could answer this question, we might better understand and control the BMP pathway to manipulate a broad range of cellular behaviors. " ] }, { "cell_type": "markdown", "id": "a099892d-5741-4661-a9c1-cce3aa2af45a", "metadata": {}, "source": [ "## Do BMPs \"compute?\"\n", "\n", "The many-to-many relationship between ligands and receptors may remind you of an artificial neural network. Juxtaposing the diagrams, one can intuit a loose analogy between these two very different types of promiscuous systems. In neural networks, inputs are encoded in a set of input nodes, each of which can activate, with different strengths and in a many-to-many fashion, a second layer of 'hidden' nodes. These in turn may activate additional layers of hidden nodes that finally converge to control one or more output nodes. Artificial neural networks are powerful computing architectures that now underlie much of the software we use every day. \n", "\n", "
\n", "\n", "![bmp_neural_network.png](figs/bmp_neural_network.png)\n", "\n", "
\n", "\n", "Do promiscuous ligand-receptor interactions \"compute?\" That is, do they calculate complex, combinatorial functions of their ligand inputs?\n", "\n", "A clue that the pathway might be computing something interesting comes from analyzing the response of the pathway to combinations of two different ligands. One way to do this is by engineering a reporter cell line that expresses a fluorescent protein reporter in response to pathway activation, and then exposing that reporter cell line to a matrix of different concentrations of two ligands. This was performed by Antebi et al. ([2017, *Cell*](http://dx.doi.org/10.1016/j.cell.2017.08.015)), who obtained results that looked like the following.\n", "\n", "
\n", "\n", "![3_BMP_ligand_pairs.png](figs/3_BMP_ligand_pairs.png)\n", "\n", "
\n", "\n", "\n", "\n", "In all of these plots, the x-axis represents the concentration of the same ligand: BMP4. What differs is which second ligand one mixes it with. The example on the left shows that BMP4 and BMP9 combine **additively**, such that the response of the pathway to the two ligands (heat map color) is about what you would expect given their individual effects. \n", "\n", "In the center, we see that GDF5 (another BMP ligand) acts as a dose-dependent inhibitor of activation by BMP4. In this case, the output of the pathway is approximately proportional [BMP4]/[GDF5]. In that sense the pathway \"computes\" the **ratio** of these two ligand concentrations. \n", "\n", "On the right, we see the most interesting case: BMP4 and BMP10 each activate individually, but when one combines them at the \"wrong\" proportions, they can neutralize each other's effects. Because the response is strongest when the ligand concentrations are out of balance, this response can be called an **imbalance detector**. \n", "\n", "Interestingly, these and other functions produced by the pathway often become dependent only on **relative** levels of different ligands, at least when total ligand concentrations are sufficiently high. Sensing relative ligand levels may be more robust than sensing absolute concentrations by normalizing away variations in the accessibility of a cell to the extracellular medium, absolute receptor concentrations, and other variables that are likely to vary unpredictably. (A similar type of ratiometric sensing has also been observed in yeast, which respond to the [ratios of different sugars](https://doi.org/10.1073/pnas.1418058112)). \n" ] }, { "cell_type": "markdown", "id": "afa13ef6-9238-41e8-b1da-bc48d6cab0dc", "metadata": {}, "source": [ "## A simple model of promsiscuous ligand-receptor interactions can explain pathway computations\n", "\n", "How could these functions arise? To think about that, we will focus on a simplified model of promiscuous ligand-receptor interactions described by [Su et al (*Cell Systems*, 2022)](https://doi.org/10.1016/j.cels.2022.03.001). The model considers a family of ligands, denoted $L_j$, as well as sets of type I and II receptors, denoted $A_i$ and $B_k$. \n", "\n", "
\n", "\n", "![Schematic of a simple 1-step BMP model](figs/BMP_1step_schematic.png)\n", "\n", "
\n", "\n", "In this model, we will assume that a ligand $L_j$, a type I receptor $A_i$, and a type II receptor $B_k$ independently bind together in a trimolecular reaction to form an active complex $T_{ijk}$ with an affinity of $K_{ijk}$. Each trimeric singaling complex $T_{ijk}$ has its own specific activity (the rate of phosphorylating Smad effector proteins), denoted $\\varepsilon_{ijk}$. The signaling activity is governed by the concentration of phosphorylated Smad, $s$, given by\n", "\n", "\\begin{align}\n", "s = \\sum_{i,j,k} \\varepsilon_{ijk}\\,t_{ijk},\n", "\\end{align}\n", "\n", "again using our convention that lowercase symbols denote concentrations. Thus, the activity of the pathway as a whole can be computed by summing up the product of each signaling complex times its individual activity parameter.\n", "\n", "This model is a simplification of the natural system, which includes two type I and two type II subunits in each signaling complex, but this simplification will allow us to more easily understand basic principles of combinatorial signaling. Perhaps even more critically, the trimolecular reaction in which three proteins come together simultaneously is explicitly unphysical—in reality, two of the monomers would bind together first to form a dimer, and then the third monomer would bind to this dimer to form the full trimeric complex. These binding events could happen in different sequences. However, for the sake of reducing the complexity of the model and the number of biophysical parameters, we will go ahead and assume this trimolecular form, and later show that relaxing this assumption does not violate the key qualitative conclusions discussed here." ] }, { "cell_type": "markdown", "id": "74441c5f-e7f2-4e70-9f7e-1b258955c0d2", "metadata": {}, "source": [ "### Equations of the one-step promiscuous ligand-receptor model\n", "\n", "To compute the signaling activity we need to find the concentrations of all signaling complexes, $t_{ijk}$. To do so, we assume that the ligand-receptor complexes come to fast equilibrium such that\n", "\n", "\\begin{align}\n", "K_{ijk} = \\frac{a_i\\,l_j\\,b_k}{t_{ijk}}\\;\\;\\forall\\;i,j,k.\n", "\\end{align}\n", "\n", "We also enforce conservation of mass, such that the total amount of each kind of receptor is accounted for,\n", "\n", "\\begin{align}\n", "a_i^0 = a_i + \\sum_{j,k}t_{ijk} \\;\\;\\forall\\;i,\\\\[1em]\n", "b_k^0 = b_i + \\sum_{i,j}t_{ijk} \\;\\;\\forall\\;k.\n", "\\end{align}\n", "\n", "The ligand concentration is considered differently. To mimic the experimental cell culture environment, where the volume of media is large, and ligand concentrations are not significantly perturbed by the binding of ligands to the relatively small absolute number of receptors expressed by cells, the concentration of a ligand may be considered fixed. \n", "\n", "To see what kinds of responses this simplified model can produce, we begin with a minimal instance, containing just two ligand variants, L₁ and L₂, two type A receptors, A₁ and A₂, and two type B receptors, B₁ and B₂. The distribution of ligand-receptor complexes is then controlled by eight equilibrium binding reactions,\n", "\n", "\\begin{align}\n", "\\mathrm{A}_i + \\mathrm{L}_j + \\mathrm{B}_k \\rightleftharpoons \\mathrm{T}_{ijk},\n", "\\end{align}\n", "\n", "for all combinations of $(i, j, k) \\in [1, 2]$." ] }, { "cell_type": "markdown", "id": "3a458b81-37b5-4971-b31f-e192f6336f11", "metadata": {}, "source": [ "## The EQTK python package enables solution of coupled equilibria\n", "\n", "Solving this model requires evaluating the steady-state values of each complex $\\mathrm{T}_{ijk}$. These are uniquely determined by the values of the binding constants $K_{ijk}$ and the total concentrations of $a_i^0$ and $b_k^0$. However, numerically computing these values is nontrivial.\n", "\n", "In this section, we will demonstrate how to use the [EQTK (EQuilbirium ToolKit)](https://eqtk.github.io/) package to rapidly calculate the steady-state concentrations of the species in coupled equilibria as we have here.\n", "\n", "\n", "\n", "We will now define a function that will encode our desired binding reactions into strings with the appropriate formatting for EQTK's parsers. EQTK can take a single multi-line string to specify the system's reactions, where in this case each line is a single binding reaction with the syntax\n", "\n", " A_i + L_j + B_k <=> T_i_j_k\n", " \n", "to indicate the formation of complex $T_{ijk}$." ] }, { "cell_type": "code", "execution_count": 2, "id": "1a74e53e-bbb5-4af2-9a6c-c04f18a7dc68", "metadata": {}, "outputs": [], "source": [ "def make_rxns(nA, nB, nL):\n", " \"\"\"\n", " Generate trimolecular binding reactions for a system with\n", " nA, nB, and nL types of Type A receptors, Type B receptors,\n", " and ligands, respectively. Returns a single string.\n", " \"\"\"\n", " rxns = \"\"\n", " for k in range(nB):\n", " for j in range(nL):\n", " for i in range(nA):\n", " rxns += f\"A_{i+1} + L_{j+1} + B_{k+1} <=> T_{i+1}_{j+1}_{k+1}\\n\"\n", " return rxns" ] }, { "cell_type": "markdown", "id": "fddcb72b-7c83-43ad-8839-f61bca88d493", "metadata": {}, "source": [ "Using this function for the (2, 2, 2) system gives the following result." ] }, { "cell_type": "code", "execution_count": 3, "id": "d14a851a-195b-4b9e-b425-1ac4c451b8f3", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "A_1 + L_1 + B_1 <=> T_1_1_1\n", "A_2 + L_1 + B_1 <=> T_2_1_1\n", "A_1 + L_2 + B_1 <=> T_1_2_1\n", "A_2 + L_2 + B_1 <=> T_2_2_1\n", "A_1 + L_1 + B_2 <=> T_1_1_2\n", "A_2 + L_1 + B_2 <=> T_2_1_2\n", "A_1 + L_2 + B_2 <=> T_1_2_2\n", "A_2 + L_2 + B_2 <=> T_2_2_2\n", "\n" ] } ], "source": [ "nA = nB = nL = 2\n", "\n", "print(make_rxns(nA, nB, nL))" ] }, { "cell_type": "markdown", "id": "55eead00-e53e-4bd6-a376-488a029636ce", "metadata": {}, "source": [ "It may seem notationally cumbersome to have excessive underscores, but they are necessary if we were to have a system with ten or more types of ligands or receptors because we would have double-digit subscripts.\n", "\n", "These reactions are in the appropriate format for EQTK's reaction parser to generate a **stoichiometric matrix** $\\mathsf{N}$ from the reactions. The `eqtk.parse_rxns()` function places the stoichiometric matrix in a data frame with the ordering of the columns given by the order in which the chemical species appear in the string containing the reactions. Because we will be doing thousands and thousands of solves as we explore parameter space, we will be using $\\mathsf{N}$ as a Numpy arrays to save on the computational cost of creating and manipulating data frames in `eqtk.solve()`'s I/O. So, we should make $\\mathsf{N}$ as a Numpy array where the first columns represent receptors of type A, the next columns represent receptors of type B, the next ligands, and finally trimers. We can code this up in a function to make our stoichiometric matrix." ] }, { "cell_type": "code", "execution_count": 4, "id": "32e49bfa-0748-4204-8b64-5e7127267acb", "metadata": {}, "outputs": [], "source": [ "def make_N(nA, nB, nL):\n", " rxns = make_rxns(nA, nB, nL)\n", " N = eqtk.parse_rxns(rxns)\n", "\n", " # Sorted names\n", " names = sorted(N.columns, key=lambda s: (len(s), s))\n", "\n", " # Sorted columns\n", " N = N[names]\n", "\n", " # As a Numpy array\n", " return N.to_numpy(copy=True, dtype=float)" ] }, { "cell_type": "markdown", "id": "c9fc7c84-657c-49ba-ac23-f30fcc67aa78", "metadata": {}, "source": [ "We can now build our stoichiometric matrix." ] }, { "cell_type": "code", "execution_count": 5, "id": "521ba8ae-ef19-4b2f-bfae-875847684f76", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[-1. 0. -1. 0. -1. 0. 1. 0. 0. 0. 0. 0. 0. 0.]\n", " [ 0. -1. -1. 0. -1. 0. 0. 0. 0. 0. 1. 0. 0. 0.]\n", " [-1. 0. -1. 0. 0. -1. 0. 0. 1. 0. 0. 0. 0. 0.]\n", " [ 0. -1. -1. 0. 0. -1. 0. 0. 0. 0. 0. 0. 1. 0.]\n", " [-1. 0. 0. -1. -1. 0. 0. 1. 0. 0. 0. 0. 0. 0.]\n", " [ 0. -1. 0. -1. -1. 0. 0. 0. 0. 0. 0. 1. 0. 0.]\n", " [-1. 0. 0. -1. 0. -1. 0. 0. 0. 1. 0. 0. 0. 0.]\n", " [ 0. -1. 0. -1. 0. -1. 0. 0. 0. 0. 0. 0. 0. 1.]]\n" ] } ], "source": [ "N = make_N(nA, nB, nL)\n", "\n", "# Take a look\n", "print(make_N(2, 2, 2))" ] }, { "cell_type": "markdown", "id": "323cc45c-ea6d-4f1a-89d3-4124b8209e14", "metadata": {}, "source": [ "In the above matrix, each of the 8 rows corresponds to the 8 binding reactions, in the order specified by the input string. Each column corresponds to the 14 species involved in our model ($2+2+2=6$ monomers and $2^3=8$ possible trimeric complexes). The entries of the matrix are integers that represent the stoichiometric change that the species of that column undergoes due to the reaction of that row." ] }, { "cell_type": "markdown", "id": "caa7ac04-ca0e-4e6d-95a7-7c4c89d98f0c", "metadata": {}, "source": [ "### The equilibrium coefficients\n", "\n", "Now that we have defined the binding reactions, we can see how varying the equilibrium constants can affect the resulting signaling. To explore this parameter space efficiently, we use a [Dirichlet distribution](https://distribution-explorer.github.io/multivariate_continuous/dirichlet.html) with all parameters set to one. This is equivalent to choosing a uniform distribution, in dimensionless units such that the sum of all $K_{ijk}$ is equal to $1$. This sum-to-one requirement is equivalent to arbitrarily setting units for the dissociation constants.\n", "\n", "" ] }, { "cell_type": "code", "execution_count": 6, "id": "9d4ab50a-713c-46ea-842a-84c54719a000", "metadata": {}, "outputs": [], "source": [ "def make_K(nA, nB, nL):\n", " Kijk_vals = np.random.dirichlet(np.ones(nA*nB*nL))\n", " return Kijk_vals" ] }, { "cell_type": "markdown", "id": "9d7335c5-80dc-4dc9-9d2a-14eb2167822f", "metadata": {}, "source": [ "Let's compute a set of equilibrium constants so we can see how the array looks." ] }, { "cell_type": "code", "execution_count": 7, "id": "b56b6a42-2cbb-4f2f-a5a7-22a27a973440", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "K_i_j_k values: [ 0.324 0.142 0.129 0.164 0.006 0.085 0.053 0.097]\n", "Sum of all K_i_j_k values = 1.0\n" ] } ], "source": [ "# Seed for reproducibility\n", "seedval = 239486234\n", "np.random.seed(seedval)\n", "\n", "K = make_K(nA, nB, nL)\n", "\n", "with np.printoptions(formatter={'float': '{: 0.3f}'.format}):\n", " print(f\"K_i_j_k values: {K}\")\n", " print(f\"Sum of all K_i_j_k values = {np.sum(K)}\")" ] }, { "cell_type": "markdown", "id": "154d0355-35a2-4b80-b8d4-baba85fb913a", "metadata": {}, "source": [ "## Scanning ligand concentrations and receptor expression levels\n", "\n", "Ligand concentrations: To see what each function looks like, we will scan pathway activity across a two-dimensional space of ligand concentrations. For this, we can select a set of 15 log-uniformly spaced ligand concentrations from $10^{-3}$ to $10^3$ in dimensionless units. \n", "\n", "Receptor expression levels: Different cell types naturally express different combinations of receptor subunits. These receptor expression profiles can strongly impact the function that is computed. To scan a range of receptor expression levels, we will choose random receptor expression levels within a log-uniform range of $[10^{-3}, 10^3]$.\n", "\n", "The following function constructs a set of initial concentrations satisfying these requirements." ] }, { "cell_type": "code", "execution_count": 8, "id": "3a13b8a5-08b1-4f87-9bf7-197d7553d900", "metadata": {}, "outputs": [], "source": [ "def make_c0_grid(nA, nB, nL, n):\n", " # Ligand concentrations\n", " cL0 = np.logspace(-3, 3, n)\n", " cL0 = np.meshgrid(*tuple([cL0]*nL))\n", " \n", " # Initialize c0\n", " c0 = np.zeros((n**nL, nA + nB + nL + nA*nB*nL))\n", "\n", " # Add ligand concentrations\n", " for i in range(nL):\n", " c0[:, i+nA+nB] = cL0[i].flatten()\n", " \n", " # Random concentrations of receptors\n", " for i in range(nA):\n", " c0[:, i] = 10**np.random.uniform(-3, 3)\n", " for i in range(nB):\n", " c0[:, i + nA] = 10**np.random.uniform(-3, 3)\n", " \n", " return c0" ] }, { "cell_type": "markdown", "id": "4782de10-26b5-4023-a5dc-201e2fdfb06d", "metadata": {}, "source": [ "Let's generate a `c0` array and take a look at its shape." ] }, { "cell_type": "code", "execution_count": 9, "id": "48f36f84-1d6e-478a-b9cb-cfdb037ba41d", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(225, 14)" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "n = 15\n", "\n", "c0 = make_c0_grid(nA, nB, nL, n)\n", "\n", "c0.shape" ] }, { "cell_type": "markdown", "id": "8bf248d6-2d34-4573-8ce4-a36f5bbecb98", "metadata": {}, "source": [ "There are 225 different sets of initial concentrations we solve for." ] }, { "cell_type": "markdown", "id": "0d9f3e97-ee59-4af9-a31c-2b543c1cc25b", "metadata": {}, "source": [ "## The readout\n", "\n", "The concentrations of the respective species are \"read out\" by the intensity of the intracellular signaling triggered by the ligand-receptor binding. As we have already defined, the signal strength $s$ is given by\n", "\n", "\\begin{align}\n", "s = \\sum_{ijk} \\varepsilon_{ijk}\\,t_{ijk}.\n", "\\end{align}\n", "\n", "We can write a function to compute this from the parameters $\\varepsilon_{ijk}$ and concentrations returned by `eqtk.solve()`." ] }, { "cell_type": "code", "execution_count": 10, "id": "08f50b18-4c79-4a10-92c0-e86527a1502c", "metadata": {}, "outputs": [], "source": [ "def readout(epsilon, c):\n", " return np.dot(epsilon, c[:, -len(epsilon):].transpose())" ] }, { "cell_type": "markdown", "id": "7f1b9cd7-33f2-4f67-9abe-26b1f93072b2", "metadata": {}, "source": [ "The choice of $\\varepsilon_{ijk}$ is drawn out of a uniform distribution subject to the contraint that $\\sum_{ijk} \\varepsilon_{ijk} = 1$. We can again accomplish this by drawing out of a Dirichlet distribution." ] }, { "cell_type": "code", "execution_count": 11, "id": "63a0502d-beea-47f3-af13-6adf192e2d7e", "metadata": {}, "outputs": [], "source": [ "def make_epsilon(nA, nB, nL):\n", " return np.random.dirichlet(np.ones(nA * nB * nL))\n", "\n", "# Set seed for reproducibility\n", "np.random.seed(seedval)\n", "epsilon = make_epsilon(nA, nB, nL)" ] }, { "cell_type": "markdown", "id": "0ba6bd21-fe3a-4ea3-a4a3-12090591aafe", "metadata": {}, "source": [ "## Solve!\n", "\n", "To solve for set of coupled equilibria, we could use the `eqtk.solve()` function. In that case, it allows all concentrations to vary as it finds the set of concentrations of all species that satisfy equilibrium. In this case, as we mentioned before, we are setting the ligand concentration to be fixed. EQTK enables fixing some concentrations, in which case the `eqtk.fixed_value_solve()` function is used. This function also takes an array `fixed_c` the specifies the fixed concentrations, if any, of any species. This array is the same shape as the `c0` array, and contains negative numbers or NaNs if a given concentration is not fixed.\n", "\n", "Since the ligand concentrations are fixed, and they are in columns 4 and 5 of `c0`, we need to build `fixed_c` with those columns containing the constant ligand concentrations." ] }, { "cell_type": "code", "execution_count": 12, "id": "fc9d7ddc-3870-4f60-aeb0-16e4c67504ae", "metadata": {}, "outputs": [], "source": [ "fixed_c = -np.ones_like(c0)\n", "fixed_c[:, 4:6] = c0[:, 4:6]" ] }, { "cell_type": "markdown", "id": "856c8864-fe7e-41ef-9077-a26fabac2b5f", "metadata": {}, "source": [ "We now have all the ingredients to solve for the concentrations and compute the readout." ] }, { "cell_type": "code", "execution_count": 13, "id": "94228ce9-f873-48d3-a8c2-d4e1ee69556d", "metadata": {}, "outputs": [], "source": [ "c = eqtk.fixed_value_solve(c0=c0, fixed_c=fixed_c, N=N, K=K)\n", "s = readout(epsilon, c)" ] }, { "cell_type": "markdown", "id": "06654d5e-d2f2-42a6-9b11-1054074cb773", "metadata": {}, "source": [ "We can make a heat map of the readout as a function of ligand concentration, bearing in mind that the initial ligand concentrations are in columns 4 and 5 of `c0`." ] }, { "cell_type": "code", "execution_count": 14, "id": "db03e4b6-ecd1-4776-8fbb-8c0f482a916b", "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "
\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/javascript": [ "(function(root) {\n", " function embed_document(root) {\n", " const docs_json = {\"eb77a3dd-12e2-40f4-828b-8e906783923e\":{\"version\":\"3.1.0\",\"title\":\"Bokeh Application\",\"defs\":[],\"roots\":[{\"type\":\"object\",\"name\":\"Figure\",\"id\":\"p1002\",\"attributes\":{\"x_range\":{\"type\":\"object\",\"name\":\"Range1d\",\"id\":\"p1011\",\"attributes\":{\"start\":-0.5,\"end\":14.5}},\"y_range\":{\"type\":\"object\",\"name\":\"Range1d\",\"id\":\"p1013\",\"attributes\":{\"start\":-0.5,\"end\":14.5}},\"x_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1015\"},\"y_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1017\"},\"title\":{\"type\":\"object\",\"name\":\"Title\",\"id\":\"p1009\"},\"renderers\":[{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1062\",\"attributes\":{\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1052\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1054\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1053\"},\"data\":{\"type\":\"map\",\"entries\":[[\"x\",[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14]],[\"y\",[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14]],[\"z\",[3.947620160578155e-06,5.827028423166436e-06,1.086048202796795e-05,2.430342620657125e-05,5.993916700555214e-05,0.00015257750962357689,0.00038178856322564964,0.0008873764977647693,0.0017769663819595148,0.0028854790692419896,0.0038162006319988,0.004368661418130436,0.004627036620066319,0.0047331709834454085,0.004774287996370898,8.704366919258169e-06,1.058097882807871e-05,1.560695678706905e-05,2.902996751654517e-05,6.461310039051934e-05,0.00015711625793831877,0.00038600236155433967,0.0008909188789889945,0.0017794642297468866,0.0028868863232634893,0.0038168493429398126,0.004368931704672661,0.004627136194357274,0.004733209780333419,0.004774302662504991,2.1443831536528488e-05,2.3312974355594586e-05,2.8318959440953527e-05,4.168866309900312e-05,7.71311400903971e-05,0.00016927275695123334,0.0003972897399021996,0.0009004104805483447,0.0017861585492227486,0.002890659479436535,0.0038185942420893774,0.004369641334166308,0.004627411914812101,0.004733314105339025,0.004774341571322999,5.5466536988552136e-05,5.731581048294256e-05,6.226861366608406e-05,7.5496536776738e-05,0.00011056470205258511,0.00020174437029826944,0.00042744783919958256,0.0009257828978214132,0.0018040719911005336,0.002900765577106757,0.003823271833033413,0.004371555411699506,0.0046281518187383614,0.004733593424639071,0.004774446682468529,0.0001456512292700593,0.00014744839148247713,0.00015226171411120308,0.0001651177058655129,0.00019920407010727402,0.00028785925620598103,0.0005074852641087518,0.000993222401233403,0.0018517973045687548,0.002927764704064256,0.0038357934159208226,0.0043766861261036035,0.004630135306513045,0.004734343557192829,0.004774727118656432,0.0003800586552371742,0.0003817241064938425,0.00038618488929297945,0.00039810069844876456,0.0004297041278646491,0.0005119682672749384,0.0007161684441310276,0.0011697493846566226,0.001977513119785007,0.002999387978579729,0.003869197403132959,0.00439041537659182,0.004635452454157156,0.004736353278867931,0.004775481778021706,0.0009598604590148104,0.0009612224977351198,0.000964871435572235,0.0009746214337032438,0.0010004992105731585,0.0010679879269898942,0.001236299526196759,0.0016140299420843761,0.002298994607671799,0.0031859300984628178,0.003957470424810018,0.004427008182137877,0.0046496767260973924,0.004741742416392447,0.004777500645867396,0.0022382214106868585,0.0022390209648358635,0.002241162212839703,0.0022468871848255294,0.0022621032934031947,0.0023019284861156867,0.0024021382369360388,0.0026315532069304606,0.0030628918745940186,0.0036494017207716776,0.004185076313106744,0.00452346970911616,0.004687574171673758,0.0047561547309267795,0.00478291865278544,0.004486787886690079,0.004486906823497551,0.004487226135351644,0.004488077959017923,0.004490341850389595,0.004496257986198254,0.004511075551171004,0.0045445153381966676,0.0046046750087170565,0.0046783178332465095,0.004736522324809846,0.004770615561377775,0.0047873511621492676,0.004794545642967283,0.004797399549513447,0.007284311324967678,0.007284042859008535,0.007283322073524901,0.0072813918977910124,0.0072762241195451815,0.007262461468908098,0.007226236560613868,0.007133830073138297,0.006916166171219813,0.006489332744548326,0.005892924295022202,0.00536009854760241,0.005042208115641213,0.004895581777867779,0.004835976160822887,0.00961701652555277,0.009616746999885194,0.00961602517873711,0.009614087460548197,0.009608900515848444,0.009595030779559295,0.009558208715728099,0.009462087000385139,0.009221980435510369,0.008683402425980197,0.007723252053363869,0.006554531220291853,0.005645525954457805,0.005153315704006815,0.0049374816138200465,0.010985319207651764,0.010985170327121489,0.010984769025312775,0.010983695830176225,0.010980812248572459,0.010973093957901777,0.010952480893295598,0.01089783998913863,0.010755834767336239,0.01040504851324866,0.009638017772131871,0.008334487559934212,0.00684838794204471,0.0057615418681713545,0.005196282143657402,0.011618564595469765,0.011618498779609415,0.011618324922654596,0.011617853146983765,0.011616596087943533,0.011613210110059563,0.011604154181506544,0.011579976311862644,0.01151593663614173,0.011349854200681204,0.010941727980449662,0.010059743251667894,0.00859255643079183,0.006966155127094167,0.0058062799208809385,0.01187715264984988,0.011877128019257489,0.011877057201412482,0.011876874426609263,0.01187637031572311,0.011875028216735667,0.011871430600323628,0.011861796180254205,0.011836077919018721,0.011767979266647768,0.01159152671251264,0.011158849528704617,0.01022831295708054,0.008693682072904847,0.007011311250824326,0.011977063111879122,0.01197705208989938,0.011977028886415343,0.011976954399215794,0.011976763379652425,0.011976251285012675,0.011974877187084176,0.011971194544549257,0.011961331138314884,0.011935005184635436,0.011865302118912594,0.01168475364854491,0.011242416519526632,0.010292875723079405,0.00873210231924757]]]}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1063\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1064\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Rect\",\"id\":\"p1059\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"width\":{\"type\":\"value\",\"value\":1},\"height\":{\"type\":\"value\",\"value\":1},\"line_color\":{\"type\":\"value\",\"value\":null},\"fill_color\":{\"type\":\"field\",\"field\":\"z\",\"transform\":{\"type\":\"object\",\"name\":\"LogColorMapper\",\"id\":\"p1055\",\"attributes\":{\"palette\":[\"#440154\",\"#440255\",\"#440357\",\"#450558\",\"#45065A\",\"#45085B\",\"#46095C\",\"#460B5E\",\"#460C5F\",\"#460E61\",\"#470F62\",\"#471163\",\"#471265\",\"#471466\",\"#471567\",\"#471669\",\"#47186A\",\"#48196B\",\"#481A6C\",\"#481C6E\",\"#481D6F\",\"#481E70\",\"#482071\",\"#482172\",\"#482273\",\"#482374\",\"#472575\",\"#472676\",\"#472777\",\"#472878\",\"#472A79\",\"#472B7A\",\"#472C7B\",\"#462D7C\",\"#462F7C\",\"#46307D\",\"#46317E\",\"#45327F\",\"#45347F\",\"#453580\",\"#453681\",\"#443781\",\"#443982\",\"#433A83\",\"#433B83\",\"#433C84\",\"#423D84\",\"#423E85\",\"#424085\",\"#414186\",\"#414286\",\"#404387\",\"#404487\",\"#3F4587\",\"#3F4788\",\"#3E4888\",\"#3E4989\",\"#3D4A89\",\"#3D4B89\",\"#3D4C89\",\"#3C4D8A\",\"#3C4E8A\",\"#3B508A\",\"#3B518A\",\"#3A528B\",\"#3A538B\",\"#39548B\",\"#39558B\",\"#38568B\",\"#38578C\",\"#37588C\",\"#37598C\",\"#365A8C\",\"#365B8C\",\"#355C8C\",\"#355D8C\",\"#345E8D\",\"#345F8D\",\"#33608D\",\"#33618D\",\"#32628D\",\"#32638D\",\"#31648D\",\"#31658D\",\"#31668D\",\"#30678D\",\"#30688D\",\"#2F698D\",\"#2F6A8D\",\"#2E6B8E\",\"#2E6C8E\",\"#2E6D8E\",\"#2D6E8E\",\"#2D6F8E\",\"#2C708E\",\"#2C718E\",\"#2C728E\",\"#2B738E\",\"#2B748E\",\"#2A758E\",\"#2A768E\",\"#2A778E\",\"#29788E\",\"#29798E\",\"#287A8E\",\"#287A8E\",\"#287B8E\",\"#277C8E\",\"#277D8E\",\"#277E8E\",\"#267F8E\",\"#26808E\",\"#26818E\",\"#25828E\",\"#25838D\",\"#24848D\",\"#24858D\",\"#24868D\",\"#23878D\",\"#23888D\",\"#23898D\",\"#22898D\",\"#228A8D\",\"#228B8D\",\"#218C8D\",\"#218D8C\",\"#218E8C\",\"#208F8C\",\"#20908C\",\"#20918C\",\"#1F928C\",\"#1F938B\",\"#1F948B\",\"#1F958B\",\"#1F968B\",\"#1E978A\",\"#1E988A\",\"#1E998A\",\"#1E998A\",\"#1E9A89\",\"#1E9B89\",\"#1E9C89\",\"#1E9D88\",\"#1E9E88\",\"#1E9F88\",\"#1EA087\",\"#1FA187\",\"#1FA286\",\"#1FA386\",\"#20A485\",\"#20A585\",\"#21A685\",\"#21A784\",\"#22A784\",\"#23A883\",\"#23A982\",\"#24AA82\",\"#25AB81\",\"#26AC81\",\"#27AD80\",\"#28AE7F\",\"#29AF7F\",\"#2AB07E\",\"#2BB17D\",\"#2CB17D\",\"#2EB27C\",\"#2FB37B\",\"#30B47A\",\"#32B57A\",\"#33B679\",\"#35B778\",\"#36B877\",\"#38B976\",\"#39B976\",\"#3BBA75\",\"#3DBB74\",\"#3EBC73\",\"#40BD72\",\"#42BE71\",\"#44BE70\",\"#45BF6F\",\"#47C06E\",\"#49C16D\",\"#4BC26C\",\"#4DC26B\",\"#4FC369\",\"#51C468\",\"#53C567\",\"#55C666\",\"#57C665\",\"#59C764\",\"#5BC862\",\"#5EC961\",\"#60C960\",\"#62CA5F\",\"#64CB5D\",\"#67CC5C\",\"#69CC5B\",\"#6BCD59\",\"#6DCE58\",\"#70CE56\",\"#72CF55\",\"#74D054\",\"#77D052\",\"#79D151\",\"#7CD24F\",\"#7ED24E\",\"#81D34C\",\"#83D34B\",\"#86D449\",\"#88D547\",\"#8BD546\",\"#8DD644\",\"#90D643\",\"#92D741\",\"#95D73F\",\"#97D83E\",\"#9AD83C\",\"#9DD93A\",\"#9FD938\",\"#A2DA37\",\"#A5DA35\",\"#A7DB33\",\"#AADB32\",\"#ADDC30\",\"#AFDC2E\",\"#B2DD2C\",\"#B5DD2B\",\"#B7DD29\",\"#BADE27\",\"#BDDE26\",\"#BFDF24\",\"#C2DF22\",\"#C5DF21\",\"#C7E01F\",\"#CAE01E\",\"#CDE01D\",\"#CFE11C\",\"#D2E11B\",\"#D4E11A\",\"#D7E219\",\"#DAE218\",\"#DCE218\",\"#DFE318\",\"#E1E318\",\"#E4E318\",\"#E7E419\",\"#E9E419\",\"#ECE41A\",\"#EEE51B\",\"#F1E51C\",\"#F3E51E\",\"#F6E61F\",\"#F8E621\",\"#FAE622\",\"#FDE724\"],\"low\":3.947620160578155e-06,\"high\":0.011977063111879122}}}}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Rect\",\"id\":\"p1060\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"width\":{\"type\":\"value\",\"value\":1},\"height\":{\"type\":\"value\",\"value\":1},\"line_color\":{\"type\":\"value\",\"value\":null},\"line_alpha\":{\"type\":\"value\",\"value\":0.1},\"fill_color\":{\"type\":\"field\",\"field\":\"z\",\"transform\":{\"id\":\"p1055\"}},\"fill_alpha\":{\"type\":\"value\",\"value\":0.1},\"hatch_alpha\":{\"type\":\"value\",\"value\":0.1}}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Rect\",\"id\":\"p1061\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"width\":{\"type\":\"value\",\"value\":1},\"height\":{\"type\":\"value\",\"value\":1},\"line_color\":{\"type\":\"value\",\"value\":null},\"line_alpha\":{\"type\":\"value\",\"value\":0.2},\"fill_color\":{\"type\":\"field\",\"field\":\"z\",\"transform\":{\"id\":\"p1055\"}},\"fill_alpha\":{\"type\":\"value\",\"value\":0.2},\"hatch_alpha\":{\"type\":\"value\",\"value\":0.2}}}}}],\"toolbar\":{\"type\":\"object\",\"name\":\"Toolbar\",\"id\":\"p1005\",\"attributes\":{\"tools\":[{\"type\":\"object\",\"name\":\"PanTool\",\"id\":\"p1033\"},{\"type\":\"object\",\"name\":\"WheelZoomTool\",\"id\":\"p1034\"},{\"type\":\"object\",\"name\":\"BoxZoomTool\",\"id\":\"p1035\",\"attributes\":{\"overlay\":{\"type\":\"object\",\"name\":\"BoxAnnotation\",\"id\":\"p1036\",\"attributes\":{\"syncable\":false,\"level\":\"overlay\",\"visible\":false,\"left_units\":\"canvas\",\"right_units\":\"canvas\",\"bottom_units\":\"canvas\",\"top_units\":\"canvas\",\"line_color\":\"black\",\"line_alpha\":1.0,\"line_width\":2,\"line_dash\":[4,4],\"fill_color\":\"lightgrey\",\"fill_alpha\":0.5}}}},{\"type\":\"object\",\"name\":\"SaveTool\",\"id\":\"p1037\"},{\"type\":\"object\",\"name\":\"ResetTool\",\"id\":\"p1038\"},{\"type\":\"object\",\"name\":\"HelpTool\",\"id\":\"p1039\"}]}},\"toolbar_location\":\"above\",\"left\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1026\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"FixedTicker\",\"id\":\"p1050\",\"attributes\":{\"ticks\":{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAEAAAACAAAAAwAAAAQAAAAFAAAABgAAAAcAAAAIAAAACQAAAAoAAAALAAAADAAAAA0AAAAOAAAA\"},\"shape\":[15],\"dtype\":\"int32\",\"order\":\"little\"},\"minor_ticks\":[]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1027\"},\"axis_label\":\"L\\u2082\",\"major_label_overrides\":{\"type\":\"map\",\"entries\":[[0,\"0.001\"],[1,\"\"],[2,\"\"],[3,\"\"],[4,\"\"],[5,\"\"],[6,\"\"],[7,\"1\"],[8,\"\"],[9,\"\"],[10,\"\"],[11,\"\"],[12,\"\"],[13,\"\"],[14,\"1000\"]]},\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1028\"},\"axis_line_color\":null,\"major_tick_line_color\":null}}],\"below\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1019\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"FixedTicker\",\"id\":\"p1048\",\"attributes\":{\"ticks\":{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAEAAAACAAAAAwAAAAQAAAAFAAAABgAAAAcAAAAIAAAACQAAAAoAAAALAAAADAAAAA0AAAAOAAAA\"},\"shape\":[15],\"dtype\":\"int32\",\"order\":\"little\"},\"minor_ticks\":[]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1020\"},\"axis_label\":\"L\\u2081\",\"major_label_overrides\":{\"type\":\"map\",\"entries\":[[0,\"0.001\"],[1,\"\"],[2,\"\"],[3,\"\"],[4,\"\"],[5,\"\"],[6,\"\"],[7,\"1\"],[8,\"\"],[9,\"\"],[10,\"\"],[11,\"\"],[12,\"\"],[13,\"\"],[14,\"1000\"]]},\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1021\"},\"axis_line_color\":null,\"major_tick_line_color\":null}}],\"center\":[{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1025\",\"attributes\":{\"axis\":{\"id\":\"p1019\"},\"grid_line_color\":null}},{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1032\",\"attributes\":{\"dimension\":1,\"axis\":{\"id\":\"p1026\"},\"grid_line_color\":null}}],\"frame_width\":300,\"frame_height\":300}}],\"callbacks\":{\"type\":\"map\"}}};\n", " const render_items = [{\"docid\":\"eb77a3dd-12e2-40f4-828b-8e906783923e\",\"roots\":{\"p1002\":\"5e5a0115-b834-4a5f-ab80-ddb8f8a43db2\"},\"root_ids\":[\"p1002\"]}];\n", " root.Bokeh.embed.embed_items_notebook(docs_json, render_items);\n", " }\n", " if (root.Bokeh !== undefined) {\n", " embed_document(root);\n", " } else {\n", " let attempts = 0;\n", " const timer = setInterval(function(root) {\n", " if (root.Bokeh !== undefined) {\n", " clearInterval(timer);\n", " embed_document(root);\n", " } else {\n", " attempts++;\n", " if (attempts > 100) {\n", " clearInterval(timer);\n", " console.log(\"Bokeh: ERROR: Unable to run BokehJS code because BokehJS library is missing\");\n", " }\n", " }\n", " }, 10, root)\n", " }\n", "})(window);" ], "application/vnd.bokehjs_exec.v0+json": "" }, "metadata": { "application/vnd.bokehjs_exec.v0+json": { "id": "p1002" } }, "output_type": "display_data" } ], "source": [ "def heatmap(c0, s, n):\n", " \"\"\"Make a heatmap of responses.\"\"\"\n", "\n", " # Generate x, y, and z arrays for plot\n", " x = c0[:n, 4]\n", " y = c0[::n, 5]\n", " z = s.reshape((n, n))\n", "\n", " # Clean the plot a bit by overriding the tick labels\n", " xtick_overrides = [\"\" for x_ in x]\n", " xtick_overrides[0] = \"0.001\"\n", " xtick_overrides[len(xtick_overrides) // 2] = \"1\"\n", " xtick_overrides[-1] = \"1000\"\n", " ytick_overrides = xtick_overrides\n", "\n", " # Build heat map\n", " p = biocircuits.viz.heatmap(\n", " x,\n", " y,\n", " z,\n", " xtick_overrides=xtick_overrides,\n", " ytick_overrides=ytick_overrides,\n", " log_color=True,\n", " colorbar=False,\n", " x_axis_label=\"L₁\",\n", " y_axis_label=\"L₂\",\n", " )\n", " \n", " return p\n", "\n", "bokeh.io.show(heatmap(c0, s, n))" ] }, { "cell_type": "markdown", "id": "328c7e3d-aa09-4349-b68b-6c07da7c993c", "metadata": {}, "source": [ "And we are done! The heatmap you see above shows the value of the pathway activation strength,\n", "\n", "\\begin{align}\n", "s = \\sum_{ijk} \\varepsilon_{ijk}\\,t_{ijk},\n", "\\end{align}\n", "\n", "as a function of different concentrations of ligands $\\mathrm{L}_1$ and $\\mathrm{L}_2$ for a single instantiation in parameter space ($\\mathrm{K}_{ijk}$ and $\\varepsilon_{ijk}$ are fixed), where each point in the heatmap has a random concentration profile of the Type A and Type B receptors.\n", "\n", "At first glance this response function looks a bit like an OR gate on its input ligands, with $s$ increasing alongside increasing concentrations of either of its input ligands. But we notice that $\\mathrm{L}_1$'s maximal activation of the pathway is weaker than that of $\\mathrm{L}_2$, and furthermore we see that there is a slight antisynergistic effect where increasing $\\mathrm{L}_1$ can slightly decrease $s$ when the $\\mathrm{L}_2$ concentration is high.\n", "\n", "We can see, then, that this type of promiscuous binding interaction can create nontrivial response functions even in a simple system that only contains 2 types of each component. But is this the only type of behavior that can occur with this system architecture? If we chose different values for the $\\mathrm{K}_{ijk}$ and $\\varepsilon_{ijk}$, would we see a different response profile?\n", "\n", "We would like to search over many different parameter values to try and answer this question, but it would be impractical to print out a heatmap like the one above for every single choice of our thousands of points in parameter space that we would like to sample and look at it by eye to see if we find any interesting behaviors. We must therefore come up with a low-dimensional representation of the response function shown in the heatmap in order to make the results of our parameter search interpretable." ] }, { "cell_type": "markdown", "id": "cdd80193-fc63-415b-9eed-8fb4b5ee4c9d", "metadata": {}, "source": [ "## Rapid characterization of signaling behavior\n", "\n", "In order to obtain a summary measure that captures the relevant information about the response function, Antebi et al. considered only the portions of the response associated with high ligand concentrations (the top row and rightmost column of the heatmap above, marked by a white border). They then defined the following quantities:\n", "\n", "\n", "| variable | description |\n", "| ------------- |:-------------|\n", "| $a$ | Signaling level of weaker ligand in absence of stronger ligand |\n", "| $b$ | Signaling level of stronger ligand in absence of weaker ligand |\n", "| $c$ | Maximum signal in the high-ligand concentration region of the heat map |\n", "| $d$ | Minimum signal in the high-ligand concentration region of the heat map |\n", "\n", "In the heat map above, $\\mathrm{L}_1$ is the weaker ligand because at high ligand concentration, it has a lower activation of the pathway ($S$). \n", "\n", "From these parameters, they defined two summary measures: the relative ligand strength, $\\mathrm{RLS} = a/b$, which ranges from zero to one, and the ligand interference coefficient, $\\mathrm{LIC} = d/a - b/c$.\n", "\n", "We will now randomly select equilibrium constants, receptor concentrations, and readout magnitudes $\\varepsilon_{ijk}$ and compute the RLS and LIC. We can then make a plot of LIC vs. RLS to explore the range of response behaviors this system can exhibit.\n", "\n", "Because we only need to compute equilibria in the high ligand concentration regimes to calculate the LIC and RLS, we will write another function that only generates `c0` at high ligand concentrations in order to save time by removing unnecessary calculations." ] }, { "cell_type": "code", "execution_count": 15, "id": "2654f644-80c3-4af1-a0ec-0c66a154db38", "metadata": {}, "outputs": [], "source": [ "def make_c0_high_ligand(nA, nB, nL, n):\n", " if nL != 2:\n", " raise ValueError(\"Only defined for the two-ligand problem.\")\n", "\n", " # Initialize c0\n", " c0 = np.zeros((2 * n + 1, nA + nB + nL + nA * nB * nL))\n", "\n", " # Ligand concentrations\n", " cL10 = np.concatenate([[0], np.logspace(-3, 3, n), [1e3] * n])\n", " cL20 = np.concatenate([[1e3] * n, np.logspace(3, -3, n), [0]])\n", " c0[:, nA + nB] = cL10\n", " c0[:, nA + nB + 1] = cL20\n", "\n", " # Random concentrations of receptors\n", " for i in range(nA):\n", " c0[:, i] = 10 ** np.random.uniform(-3, 3)\n", " for i in range(nB):\n", " c0[:, i + nA] = 10 ** np.random.uniform(-3, 3)\n", " \n", " # Concentration of fixed ligands\n", " fixed_c = -np.ones_like(c0)\n", " fixed_c[1:-1, 4:6] = c0[1:-1, 4:6]\n", "\n", " return c0, fixed_c" ] }, { "cell_type": "markdown", "id": "63164e47-2fba-408d-b257-c177e3aa5f2f", "metadata": {}, "source": [ "Let's look at how the ligand concentrations are represented in `c0`." ] }, { "cell_type": "code", "execution_count": 16, "id": "a5ce8b03-03a9-481a-b4fb-ca2b8b33b0d1", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[0.00000000e+00, 1.00000000e+03],\n", " [1.00000000e-03, 1.00000000e+03],\n", " [2.68269580e-03, 1.00000000e+03],\n", " [7.19685673e-03, 1.00000000e+03],\n", " [1.93069773e-02, 1.00000000e+03],\n", " [5.17947468e-02, 1.00000000e+03],\n", " [1.38949549e-01, 1.00000000e+03],\n", " [3.72759372e-01, 1.00000000e+03],\n", " [1.00000000e+00, 1.00000000e+03],\n", " [2.68269580e+00, 1.00000000e+03],\n", " [7.19685673e+00, 1.00000000e+03],\n", " [1.93069773e+01, 1.00000000e+03],\n", " [5.17947468e+01, 1.00000000e+03],\n", " [1.38949549e+02, 1.00000000e+03],\n", " [3.72759372e+02, 1.00000000e+03],\n", " [1.00000000e+03, 1.00000000e+03],\n", " [1.00000000e+03, 3.72759372e+02],\n", " [1.00000000e+03, 1.38949549e+02],\n", " [1.00000000e+03, 5.17947468e+01],\n", " [1.00000000e+03, 1.93069773e+01],\n", " [1.00000000e+03, 7.19685673e+00],\n", " [1.00000000e+03, 2.68269580e+00],\n", " [1.00000000e+03, 1.00000000e+00],\n", " [1.00000000e+03, 3.72759372e-01],\n", " [1.00000000e+03, 1.38949549e-01],\n", " [1.00000000e+03, 5.17947468e-02],\n", " [1.00000000e+03, 1.93069773e-02],\n", " [1.00000000e+03, 7.19685673e-03],\n", " [1.00000000e+03, 2.68269580e-03],\n", " [1.00000000e+03, 1.00000000e-03],\n", " [1.00000000e+03, 0.00000000e+00]])" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "c0_high, fixed_c_high = make_c0_high_ligand(nA, nB, nL, n)\n", "\n", "c0_high[:, 4:6]" ] }, { "cell_type": "markdown", "id": "ddc2aba8-42d1-4e0d-af52-90e35076006c", "metadata": {}, "source": [ "The concentration of L1 varies from 0 to 1000 while L2 is held fixed at 1000. Then, L2 varies from 1000 to 0 while L1 is held fixed at 1000.\n", "\n", "Finally, we need a function to compute the LIC and RLS. Knowing the structure of the `c0_high` arrays helps in this task." ] }, { "cell_type": "code", "execution_count": 17, "id": "f67448e5-22df-4f9d-9388-339329b22bbf", "metadata": {}, "outputs": [], "source": [ "def lic_rls(s, n):\n", " a = s[0]\n", " b = s[-1]\n", " c = np.max(s)\n", " d = np.min(s)\n", "\n", " # Ensure a is the low level.\n", " if a > b:\n", " a, b = b, a\n", "\n", " lic = d / a - b / c\n", " rls = a / b\n", " \n", " return lic, rls" ] }, { "cell_type": "markdown", "id": "6b40f3f9-5a9f-4eb9-8fa9-6845e286c735", "metadata": {}, "source": [ "We are now ready to solve for the LIC and RLS for many random parameter sets. Running the cell below will take a couple of minutes." ] }, { "cell_type": "code", "execution_count": 18, "id": "d0e03602-7305-4298-b967-0f4e320b5a43", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "100%|████████████████████████████████████████████████████████████████████████| 10000/10000 [02:15<00:00, 73.94it/s]\n" ] } ], "source": [ "n_sets = 10000\n", "\n", "rls = np.empty(n_sets)\n", "lic = np.empty(n_sets)\n", "\n", "# List to store parameters\n", "parameters = [None for _ in range(n_sets)]\n", "\n", "# Create list of seed values for reproducibility\n", "np.random.seed(1234)\n", "seed_vals = np.random.randint(low=1, high=999999999, size=(2, n_sets))\n", "\n", "for i in tqdm.tqdm(range(n_sets)):\n", " c0_high, fixed_c_high = make_c0_high_ligand(nA, nB, nL, n)\n", " \n", " # Set seed for Ks\n", " np.random.seed(seed_vals[0,i])\n", " K = make_K(nA, nB, nL)\n", " \n", " # Set seed for epsilons\n", " np.random.seed(seed_vals[1,i]) \n", " epsilon = make_epsilon(nA, nB, nL)\n", " parameters[i] = dict(receptor_conc=c0_high[0,:4], K=K, epsilon=epsilon)\n", "\n", " c = eqtk.fixed_value_solve(c0=c0_high, fixed_c=fixed_c_high, N=N, K=K)\n", " s = readout(epsilon, c)\n", " lic[i], rls[i] = lic_rls(s, n)" ] }, { "cell_type": "markdown", "id": "c93e9701-39a8-4596-b5c6-67f5c9cea12e", "metadata": {}, "source": [ "Let's plot the results!" ] }, { "cell_type": "code", "execution_count": 19, "id": "9dc61e50-f06c-4250-863e-cc5400b51307", "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "
\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/javascript": [ "(function(root) {\n", " function embed_document(root) {\n", " const docs_json = {\"944806e9-5908-48cb-84e1-689031ed7380\":{\"version\":\"3.1.0\",\"title\":\"Bokeh Application\",\"defs\":[],\"roots\":[{\"type\":\"object\",\"name\":\"Figure\",\"id\":\"p1139\",\"attributes\":{\"x_range\":{\"type\":\"object\",\"name\":\"Range1d\",\"id\":\"p1148\",\"attributes\":{\"start\":-1}},\"y_range\":{\"type\":\"object\",\"name\":\"Range1d\",\"id\":\"p1150\"},\"x_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1152\"},\"y_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1154\"},\"title\":{\"type\":\"object\",\"name\":\"Title\",\"id\":\"p1146\"},\"renderers\":[{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1194\",\"attributes\":{\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1185\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1187\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1186\"},\"data\":{\"type\":\"map\",\"entries\":[[\"lic\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AHT9P18fST8AAAAAAAAAAAB46DLVeTE/AAAAAAAAAAAAAAAAAAAAAGisfp1ct9G/AAAAdAzPgz4AADnrpALhPgAAOKv1F+m+AAAAAAAAAAAAAP8lpycGPwCAoTJjyBW/AADw8spdpD4AAO7SZCfXvkDqXUPxu6c/sBJX35kIpz8AAMAUcFqivgAASJic298+QLn30Ee8kz8IGCtfw5q1PwAAiJ4kiLy+AAAAAAAAAACAwf5wVZF6PwAAAAAAAAAAAAD1w5Ns4T4AAAAAAAAAAAAA4BPoMro+AADAUFo0zz4ACEglYSc3PwAAAAAAAAAAyI6r7q87vj+AYqhRMw7PP6hGpaQGxrA/AADgEKzIpj4AgIj7QYT0PgBA6TSJnwa/AIA1L61nAT8AAAAAAAAAAACwj/MFaic/AAAAAAAAAAAAEIu7hHstPwAAAAAAAAAAAACPLik//j4AGK9bZCpBPwAAAAAAAAAAgMVdyfdliz8AgPVDiQkPPwBgl2BAtBG/AAAgA0W9nD4AgA0BXj8UPxgjWFbBt7Q/AADAXde9yj4AAAAAAAAAACDc5lQtWKu/AADgmy+Ovz4AAAAAAAAAAACA3IeoXUk/AAAAAAAAAAAAAABseQqePgDgeW+YLxi/AABI0mkL4T4AAAAAAAAAAAAAHoyUQ+W+cIOPEZtFp78AhsvuFDFTPwAAOIYpYco+AARTMY+JU78AgH+ViskDP+zsed7rHsQ/AAAAAAAAAAAAABD56SbTPgBAtoz1CxK/AACAKFR7pj4AAAAnefGdvgAA7P4yOd0+AABFdq0I6T4AAEoA44sMvwAAHj8m1+s+AAAItvDU1D4AACRD1LbGPgCm98fDV8O/AAAAAAAAAAAAALifQAnWPgA4CQtSD0k/AADAw9XozD4AAK5ah1v1PgAA9tG51Qq/AMCcu5flBj8AAAAAAAAAAAAAoHfF8Jw+bJGkM3zAzj8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgMWbS9PgAAAAAAAAAAAAAAAAAAAAAAzyE6cNR9PwAA+3vHJ+o+AADHAviYDz8AAAAAAAAAAAAAAAAAAAAAAKYSNbLpVb8AAEAQbW+JvgAAQHycDag+AAD8QQ3dzD4AAAAAAAAAAAAAqMuZG7o+AFCS8QU5JL9Az3dm/w2BP67PDK0s8uC/AAD84n1gwz4A9CeTFn2UPwDAr/rFYwK/AAAAAAAAAAAAAEZGGuH4PgAAAAAAAAAAAABg9V/vlz4AAEstttzqviBAv3v675A/AADYZpSQuz4AAAAAAAAAAABoejRoxDo/0MrsRN9cp78AAGBxFACSPgDgbk5JG1A/AAD9Teid6D4A0Nkot7kjvwAAAAAAAAAAAABQySGPtD4AAAAAAAAAAAAAeBhE77o+UEbn4RZcrj8AAACyh9NjPgAAAAAAAAAAAACUd7bLxz7Eol4tZqnGvwAAmhCvvNI+AAD/oJYU+j4AgHqb1rP4PmBpemPy/6Q/AED3xX5zAL8AEJH/V+cpPwAAAAAAAAAAAADC974a1T4AAFSKflDCPgAgLOcHnxI/AACA6TICjT4AiUzyefWFPwAAAAAAAAAAAAAAAAAAAAAAgFCtkVP2vgAAcH2Vw8O+AAA9IZBN7z4AlSlBv1iQP8BAHcL9aI8/AAA8juXw8r4AAIDTufuYPgAAgFuRLXw+AACOENm40j4AAGtxyVHlvgAArO7xdug+AAAAAAAAAAAAADCGfTnNPgAAAAAAAAAAgMNWRYoRwr8AAN4tdXXaPrCiLo6Zx7K/AIgiXqFuVj8AQHsr+6ECvwBAEmbXZhS/AABLOGbH6D4AAAAAAAAAAABGbEbK8mI/INvxKzb/tT8AAADAfUsqvgAAAAAAAAAAAAAAAAAAAACAhkA3DA6APwAA8AapP78+AIDgNgho8T4AAExShpTMPgAAAAAAAAAAAADqgAAG1T4AAFDflJ2tPgBQWvM5Bkw/AABFNGYMHL8AOpreRnhVPwAARECIQMW+AACwWmX00L4A4NANGEEVPwAAAAAAAAAAAAAAtE8Tlj4AcLOG0g4gPwCA1DRAjPo+AIDJN48P8z4AAAAAAAAAAAAAF64EYg0/AABsjxY3xz4AAHBqau+oPgCgwdj/OCw/AACs2S7Hy74AQElBDukIvwDQLD/gUyk/AAAAAAAAAAAAAAAAAAAAAAAA0DFpAKc+AACu1Odp7j4AAAAAAAAAAAAA9D1dN+y+AAAA5NJAyD4AANh6zqvFPgAADI2PxyW/APcdu8pIZz8AAAAgI+OgPgAAuNz64bA+AABwhsFf7z4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGBdwaumiZe/AAAAMIY7yz4AAEBVQe+CPkBwphfDGIy/AAAAAAAAAAAAkMUt0U40PwAA8i5GBv4+AIDW/X+ACD+ApaNBh1t/PwAAycdK4AA/AAAA2f+7rT4A+IKVirA+PwBg1seBPRU/8C9yEitZrr8AAMJw9KTkvgAWB4Eqwnw/AJj8GW1SOT8AEM+nnXEyvwAAQNqJiYY+AAAAAAAAAAAAAOAem6uaPgAAjEmCjuM+AAAwFDpR2T4AAGgoFl/1vgAAkHYQebA+Spe/xvYQ3b8AAEDewsqCPgTTJmVwY8U/AAB0Y6v8wD7wDY3MLr2nvwBCfThmuV0/AGAip5u/E78AANBKxLGgvgCAs0bMXfY+AAAAAAAAAAAACOZBws0zv3Tdg5qcQNS/AACgNQCq0D4AAAAAAAAAAAAAUJuUZKM+AAAA1hWU874AAAAAAAAAAACAmC1wNze/AAAaDpve+T4AAAAAAAAAAAAA2tOmdQm/AAjEFjjdMz8A4P0JUkkevwAAICxie5++AAAAAAAAAAAAANZIO3LYPgAAahnBzuM+AADIMQxsvz4A5hvuMSVfvwAAABbY8Z2+AAAAAAAAAAAAAIDTA1FwPqqNMsT3O9U/AAAAAAAAAAAAAAAAAAAAAAAAwFuj54C+AAAAS6GbqT4AAMAWZW6RPgAARMKZrcI+AAAYmIxb1j4AABgNCTS6PuA69UYfspw/wCNN/N+eib8AAAAvhnWVPgAAcDva474+AAAAAAAAAAAAAHhPECC8PjACwgQJOcK/AAAICUyC0j4AePVPJSEzvwCAORFwg/++AAB2KcbA2T4A4AE83nMnPwAApBNxv9c+AAAAAAAAAACoVyzEvmCyvwAAgEabWH4+AADg6XcFuj4AAIBkDoSHvgBgUb53ExK/AIBeSAKEBz8AAGQLkknaPgAA2MwVcds+AACigkmt2T4AAAAAAAAAAAAAQCrZcJs+AAAAAAAAAAAAQEUWaWwPPwCgSm2RjRe/AACRHWfu7D4AAADZpM+5PgBwXm0hHyc/AAAAAAAAAAAAAJbNfU3dPgAAAAAAAAAAAAB0oV5p+T4AACh4SdCzPgAAAAAAAAAAAADjNcqY4j4AAIDS0aZ6PgAAzDruAsM+ADANot7zKz8AAACv2otqvgDAkVXgZQW/AAAAAAAAAAAAAGTPIz7SPgAAAAAAAAAAAAA+hHHO0L4AAIBsdV24PgAAAAAAAAAAAABEtC3ryD4AAAAAAAAAAAAA1/Bu9O0+AABYmsa3wL4AAECUTuaFvsD9030/U6W/AAAAAAAAAAAAAJBvPkPQPgAAAAAAAAAAAAD48ysPyD4AADCUwI3MPgAAOIjHH9E+AAA0b/4M1D4AACtmKisIP8DSRDcbTqk/AAAuD9YV3j4AAC45oYj7PgB+BwizCVy/AABIX9H9wD4AgCAaSh/wPgCAClge2QM/AADg257T674AAAAAAAAAAAAA2CDz1dQ+AADIppiE5j4AAIbaNqjfPgAAzkU3nNU+AADgKWcVqj4AgPgmG+T/vgDg09upRBY/AACYTMgR874g37CBGxqavwAA3MVAe90+AACMpVyTxD4AAMDCgXKgPgCgsxBjXiA/AAAAAAAAAAAAAAAAAAAAAADOTWj9k3G/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcKYp7po/qb8AAOAzuJ+gPgAAwJa0Fa0+wCoeyJSAjb8AAMBM7eKIPgAAAAAAAAAAAAAAAAAAAAAAAMhs8Z/TPgAAo/7cBOW+AAC/D0TcIz9Uf62jzHnBPwAASLzqHrQ+AAAAAAAAAAAAAPzh9VLIPgAAAIy40mM+AAAg+BlKlz4AwBLeabsMvwCQQMzUdiw/AABAOudMzD4AYB4nLG0RP7C9dnPxmqc/AAB3jBzR9r7AhZb6aWe6PwAAAJtDSnk+AIAo9LlsBL8AAGhys9OwPgBgEXWKoBI/AAD3CcsG4D7QIaCXzcmlPwAA0DlYVLw+AAAkz0YlxL4AAAAAAAAAAADgVcOhExU/AAAAAAAAAAAAAFxQVjXSPgCs+fXIHkk/AAAAAAAAAAAAAG7ZG0zTPgAAwLmUqYY+AAAA0dLdij4AQA9o54IJPwAA4BEX77c+AAAAAAAAAAAAACTERE7yPgAAAGxq5X0+AAAAAAAAAAAAAAQL+FHJPgAAAAAAAAAAAACAbXpRfD4AKQkiROBsvwCASBNvhvM+AAAAAAAAAAAAACh3jQ+yPgAAAAAAAAAAAMCO1hbCHT8AIJlGYP4SPwAAAAAAAAAAAIAqqnpm/D4AABA1XMmqvgAAoGt7Xck+wAP2sXV4i78AADY/2mH/PgAoPXEzRE6/oJApAI2ax78AAAhuZ8u7PgAAzugeGNw+AAAAAAAAAAAAAOCAzVHJPgAAIHTuDZo+AIAeHj0t9r4AAAAAAAAAAIC8nmy5GIO/AAARLWL4/74AAAAAAAAAAAAAAAAAAAAAAACAnPeH4T4AAFQvLub+PgAAuhKcadY+AAB8A9xuyD4AoBP7H9VGPwAAgP0Wqag+AACYXcDSwj6APEdVJ+e6vwAAO4JJwuo+AMD/HZ52G78AAAAAAAAAAAAAAAAAAAAAAGBTZ7D8Fr8AAAAASDCAPgAAAAAAAAAAAADA7VLhkz4AAAAAAAAAAAAAMIGNYQe/AJXpxnwUoj8AJ5SES/FoPwBQBi2JHiC/AMBh5t7bEj8AACjk4+DLPgBAMqwJ9he/AAAA+PpTWj4AAP2kqxLyPrC+KrAenKc/AADgnNdynj4AAERB66PEPgAAAAAAAAAAAAAAAAAAAACAIaujjP+hPwAAlyn7RuU+AACoJssDsz4AAJE8cCv6PgAAfPvIMc0+AAAAAAAAAAAAkAdgcegivwAAAAAAAAAAAABsn7HR3j4AAPIMwxfuPgCAiHWDafG+AABovUhpsT4AAAAwBZqTPgAAAAAAAAAAAAAAAAAAAAAAgGSJ8az8vgAgz/wBEj+/AECFcWeQF7+ceGeufGzFvwAAKBmmL7g+AABRJzFg/D5Q6e1gaISrPwAAgFt1X6C+AACAzArQnr4AAPh7YPexvgAAmFQ/Tcw+AADKxzm80j4AgFsWy04HvwAA6kMcAQE/AAAAAAAAAAAAABCqnVfIvgCAh53cyjY/AAAAEL5JRD4AAFadL1HgPtBE8R1QiaK/AAAo0sxXvb4AAKY1OtDQvgBQAR6RdCQ/AADguLMtmL5gvaY8iFmQvwA3ipGImGY/AAB0CJiyyD4AADwmPfXCPgCA1mXZqfy+AABgEatTkj4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAby/qLuI+AAAAAAAAAAAAgKIJ+O4APwCACp2NLgE/AAAAAAAAAAAAAHCikC2hPgAAAAAAAAAAAIDxtxpyBj+AAFXW2kOKP+BSx5cEHsQ/AADWw0OxFT8AIOztOlgZPwAA7u5FBQE/yI9WFhrxyL8AAIBG73+QPgCAAPNbuwO/AABzF4To8T4AAAAAAAAAAADUHVbshVw/AAAAAAAAAAAAAFB/AA6pPgAAAAAAAAAAAAA03EkVyz4AACAOy/CcPgAAaKFGzM0+ACCU+lb2Lj8AAHSYWIrNPuBmusotkbW/AABAIUealD4AQMhEnnchvwCA/VyHGgo/APDh1bedK78AAFIkl6jQPrBO5BMIPKy/AADAtihRjz4AAChfd5G9PgAAjAlhmcY+AAAAAAAAAAAAAGDz0HC8PgAAAAAAAAAAAAAAAAAAAAAAAFpS84XnPkAtAyDedIA/AAAAAAAAAAAAAL0o3vHpPgC6kD8xa1g/AAAAAAAAAAAAALD5MQ7bPsh9X03iAbO/AACAKS2ceT4AAAAAAAAAACCkuK7UNLE/AAAAAAAAAAAAtGxikQbTvwAAQCZanZw+AAAAAAAAAAAAAKCypaTDPgAAIlwxBfA+AAAAAAAAAACgCzFuja61PwAAuA7LUr8+AACwsNS+4j4Ac1dberSQPwAAyoZ2fe0+AADwfV5hrj4AAOyOkHHHPgAAZZN1qCq/AAAAAAAAAAAQQaJ8dICtvwAAAAAAAAAAAADwCXkE3T4AAAAAAAAAAAAAdIY8O/Q+AIAhmpjqGr9gPy+jQLm8PwAAAAAAAAAAAAAAAAAAAADACMbj6zuyvwAAgAMkhrM+AAAAAAAAAAAAACNthkT0PgAAAC0OA2c+AAAAAAAAAABAaFRhWnKGPwCAWcEyE/M+AAD6b2D51D4AAAAAAAAAAAAAAAAAAAAAAAA0KbdHx74AAHzj5cTdvgAQzHSEwiA/AADabyIg9T4AAPG5KlAQPwAAAFtbzGk+APDqt24tQ78AALDJ8PyqPgAAubymmeM+ALCr3cqqMb/AptDl7GOCvwAA3AC2rsg+7AlASNM6w78AACDAl1ivPgAAwGWtWok+AAAAAAAAAAAAAAAAAAAAAAAAhqlYq/M+AAA4wtKBtD4AgPqtLh4DvwAAqN9Yb7I+AAAAAAAAAAAAAHDKOg6oPgAAAAAAAAAAAAAAAAAAAAAAAJBpRCaovgCAAYc1bPm+AADY5Gigwz4AAAAAAAAAAAAALKD3OcM+gJfbZ1zggj8AAJN96kjrPgAAAAAAAAAAAAColyWkwj4AAAAAAAAAAAAAAAAAAAAAAMgfQv/rNT8AANxA8SXovgAAsLEe3K8+AAAYZ/fSuj4AAAAAAAAAAADANQWJTQg/AAAAAAAAAAAAwJ4t5hsCPwAAAAAAAAAAwJIxt+iwgb8AUNkMUAA5vwAAAAAAAAAAcDI3I3ado78AADTky17APgBAZN4QRgQ/AACA1w6qjT4AAIWeHVj5PgBA0Vu9DQg/AAASV6Ft7T4AAED+JL3mvkCa9Y2ipI8/AACpXImU+z4AACa1DIzfPgAAAAAAAAAAADANlyXyIb8AAAAAAAAAAAAAmDe8krA+AABmpSgy1z4AgKrmTVwKvwAAAHB/Y58+AACwHhgg4j4AAHwHHe/EPgAAXK2/VMC+AAAAAAAAAAAAgOVor2T3PgAUfMNy+Gw/AAAAAAAAAAAAABigJUe7PgAAAAAAAAAAAACwmONPoT4g+jmue8uXPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZbJHa5jj8AAETF+ozOPnRloMMoVsU/AAAMaOJM2T4AwCqt+oUYvxDX7FrO37s/AADX3Eru6r4AAAD9tFimPgDYypp3aj2/AADg7VzTnT4AAAAAAAAAAKAE6D+Br54/AAAAAAAAAAAAAAAAAAAAAAAHu2fy62M/wO9DicDviz8AAAAAAAAAAACAa4or7wQ/AKBM1c6ZEz8AAAAAAAAAAACAFYETCgc/AEAqssuZAj8AAPyOPZHhPgB4lGibEZg/gA9HUP8zmT8AAEQSp7cKPwAAALmTmac+AABq6kDD2T4AAERS1EbPPgAAAAAAAAAAAABYlCsq1r4AAAAAAAAAAABAqGpIkwq/DIHN+qowwr9A03lL1EyAPwAANJbgtMK+AAAAAAAAAAAAAICidGZ1PgCAKIt9SvQ+AOAoQ4YlGj8AALoE7x3kPgAAAAAAAAAAAACObZru3T4AAAAAAAAAAIBWZJ/qhXG/AAAAAAAAAAAAAAAAAAAAAAAAwGmo7r6+AADOxsPT0j4AAHCFrMasPgAAoMRMdLg+AADwUzVsqj4AAAAAAAAAAJDazgjrWKw/MNa1kgWitD8AkjApie9QPwAAAAAAAAAAAAAAAAAAAABAS3Z6lPiAPwAAkGo5Kqy+AAAAAAAAAAAAAAAAAAAAAABAM2sBhgM/AAB26bam0T4AANtM80DnvgAAwCAWvIQ+AACy8XE/0D44tmSLwwXNPwAA/glks/Y+AAAAnRGsaz4AADLavV/WPgAAAAAAAAAAAAD0L5R2wT4AAGDtrGKhPgAABBjxscQ+AAAAAAAAAAAAkHNE4kA9vwAAAAAAAAAAAACAxFOxkz4AAAAAAAAAAAAAAKAKPCs+0J0miN8Ht78AGpv94rBePwAA4H/lA6K+AKAX5pw8KD8AAAAAAAAAAAAAAJyLH40+AAAA6F5jkj4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEwjtyPWPgAA4VjDZv2+AAA9enAg/T4AAFA6HPKyPgAAYG/WfZc+AFAfT/+TST8AsNCE6hUvPwAA6G+OJsA+AACU4gLFwD4AABA7QZemPgAAmDXBF7k+AAD9OgK05D4AAAAAAAAAAAAQGW0TsFS/AACAHXBCcT4AXAV3wTNHPwCAwkJ2ePc+kImP1Y4Rqz8A4NVMsPYZvwAA9OFk1MW+AADAE6igpz4AIL9BdBsYPwAAwAzRuaA+AFCQiMwuKD8otabj50nAPwAAAAAAAAAAALyPMEwHUb8AANzfKX3FPgAAdMegedm+ILaxR2/Rl78AAAAAAAAAAAAgAGJB7BA/AAAAAAAAAAAAAEDJnIWiPgAADJu6TMU+AAASGbdO8D4AAAAAAAAAAAAwRjTh5Ck/AAB9bJ6C6j4AAMK3pVHXPgAAkCSRMrU+AAAAAAAAAAAAgDhWV2IvPwAAQD5pDZA+9I0STwkXy78AAAAAAAAAAAAAAAAAAAAAPNVq2rngxb8AAFbwgoPRPgCAAw6zrvS+gLZPkjGsnL8AAICp3T6bvgAAhFwzQsm+AAB4D8Fbsz4AAAAAAAAAAAAAAAAAAAAAAACg9EzAmD4AgCixHzcAvwAA7GOpEtY+AAAg+o/G6j4AAACubw9cPgAAwAEV7KU+AACObfnK1j4AAIYRdWbRPgAAmhXieeU+AADQGVna3D7Iq0ThkGC0PwAAdFneYsE+AACcwh2r2j4A+G7uoos7vwAgoJmO2SI/AABgLuO8rj4AgORHSn/8PgCUdhaCZUm/AAAAAAAAAAAAALyMRmHxPgAAYB+w2bI+AABUB2Kc1T4AAJn1rBrmPgAAAAAAAAAAAABAOSY5qj5ASjU8BAKEPwAAJk6rc9I+AACyweCA7D4A4B9HjFMePwAAAAAAAAAAAAjUhEpAMj+AnJXiCE+UP8hkslGNys2/AAAAAAAAAAAAAAAAAAAAAAAAEKriQ8k+AABuhsZK2r4AAGATcn+YPgDAlpNUww4/AADYQfQdzL4AwMAriZQEPwCAHNVpPAY/AAAAAAAAAAAAADHzLEwDPwAAAAAAAAAAAACwu+Jfpb4AAOudzNbgPgBAAHaj6AA/AAAAAAAAAAAAaMgp8lw6P+Ck7XkUcr8/AIDnfznC+T4AcDotcxctPwAAQOmfoo8+gFpYfnH2eL8AgBlcFmv3PgAAKDvC2rA+AIDceJHPCT8AAAC4J/80vgAAdBj/S8u+AMAe9hzLAT8AAAAAAAAAAAD24/LFbnC/AAAAAAAAAAAAAITmrHTEPiT/AY6ah8W/AJDbmOxUML8AAPBS+qi+PgAAAAAAAAAAqGxK7KkXs7/ARj7hLcemvwAA2hQJeuk+AEBv0PLgGr8AADINXO4HPwAAkIkdpcw+AAAAAAAAAAAAgBu20zjzPgAAYOQI/KY+AGjTt1/+Mj8A2HwqTetLPwAAMIiALr++AAAAAAAAAABA9oBUce+Av8CY7qUItJm/AAAAZsZpxz4AAAdGDuvhvgAAAAAAAAAAAAAg/8HTkr4AAGBwpH26PgAAjKCTMSY/AADoh3N/wz4AQH62j40IPwAAAAAAAAAAAACHszfe8D4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwB7RsaQFPwAAAAAAAAAAAABEu6k0Dj8AgOVqVgP0PgAALBArSdW+AAAAVj/KVL4AAKi1qpTfPgAAAAAAAAAAAABcNATIwz4AgNWVfkMQPwCgYayPYBG/AAAAAAAAAAAAAMAPufGKPgAAG9tR4uC+AAA+eL2/0T4AAE4HSk7aPgAAAAAAAAAAQKUaGR1Shb8AAOA1WQ+pPgBAhd+0fy4/AAAAAAAAAAAAQGdJLj0wPwAAAJfa27M+AICdHJ9PAb8AAAAAAAAAAAAAAIYg6Pw+AGBFKL0mVr8AAAAAAAAAAAAAlMSPBtA+AADgVetCsL4AAGZmhYTXPgAABOsUh9g+AABpit4n6r4AACCGjP22PgAAKPIQodC+AAAAAAAAAAAAYLMCwcscPwAAQV6RXeE+AAAsx9XZ7j4A4P31nxgtPwAAIJwBwZ4+AEAssZByAj8AAJAdam7UPgBAhHPwCgA/oBrfzbCzlb8AsJjUQnwvvwAAAAAAAAAAAAAAAAAAAAAAAHGVJJkXPwCg0nOFaUC/AFi7bo9yMj9wN5olf8ysvwCDe5XRhmG/AABAryymjD4AAAAAAAAAAADA+4rwxhY/AACAEmcHer4AAAAAAAAAAAAAQK437r0+AIBW9l5/+74AIB9DkBU3vwAAAAAAAAAAAAAAAAAAAAAAoIsoMv5GPwCADChuyAY/AICez3bU9r4AAAAAAAAAAGDkZ6HL6Kk/AAAAAAAAAAAAAGgHXzXKPgAACOD5fLA+AABgoCMqnj4AABDpuryuvgAAAAAAAAAAAKC0PuAHKT8AANiSE8C7PgAA9OhHl+O+AADc2vRizr4AgDjFN7vwvgAA/CLSiuI+AABAnvI09j4AgADCh9H4PgAAAAAAAAAAAAD1AdOt5L4AAECXn56rPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEnq/+yj4AIIs/CssZPxA3lrFt/aC/ANBxeWeGIj8AACC41t+bvgAAAAAAAAAAAPCje5/hIr8AAAAAAAAAAAAwkwuujji/AACQO32fuT4gleGS24SRvwAA8AAovPw+AAAMHVwd2T4AAB6PJ5bWPoAlF8uTlIC/4AmHw6v0q78AAEDHAfaovgCAa3EfMvQ+AABOiRYL474AwDfhmI4GvwAAATaD9ew+AHBOPBbYMb8AgNd/WrzzPgAAAAAAAAAAAADAylS2iz4AAAAAAAAAAACARSEZUv0+AAAg9K93rz4AABDPFqyxPgAAAAAAAAAAAIAe5kHm8z4AAAAAAAAAAAAAAKXcC5Q+AADAzP57nz5gc/UJISW+vwAAAAAAAAAAAICI+DE29D4AEJcoQQQ5vwAAjIVLZey+ADD4BH19Kb9Adk+NUmSAPwAAgE3td6g+AAAcEdFPyT4AAAAAAAAAAAAA1rmFRQq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQC5irVavGvwCATaLlRP2+AADgGyX+qT4AQLVlzYoCPwAA1itPuPk+APDVGwu8Nb8AkAuz22M+PwAAZXvKhPM+QEGhPGevgr8AwGVMTzICvwAAxKa5Qeo+AAD5WEao5L4AAKB/cum8PgA0JSe+jmg/AABkAn5Cxj4AANQ/qu7QPgAAPtgTmdA+AABEWWpm2z4AAL51nSXUPgAAAAAAAAAAoI3ALz/Wyj8AAAAAAAAAAAC1AuOK3oG/AABU/D/x2T4AIMM9x60WvwAAMIWdma8+APD8lNPSOD8AoJsMKzVDPwBQt3VYriI/AAAEckWCwz4AANaX4cfjPgAAAAAAAAAAAABnUDWy7j4AAAB3x3thPgAAcHROwLQ+AAAAAAAAAAAAABDOsbqiPgAAQG5Sdow+AADMVTKTzj4AAHc7AuUGP7g+KtyQWrG/AAAAAAAAAAAAANL/Sb3mvgAABTQQSec+AAB0KY8iwD4AAAAAAAAAAACcFwaHbkw/AEDyDaVgDL8AAAD7R8tmPgAAQF6U86A+AAAAAAAAAAAAQuZWIhN6vwAACRSTUvy+AJj1jPczMz8AgBBmpRL8vgCArstUj/O+AAAVT8E+9D4AgJP7bFD9PgDAoqrZwxU/AABMBrTfzT4AAMA3GBeGPgAAAAAAAAAAAPHVvovilD8AAAA0T5VXPjQQq+3sO8+/AAAyZ80A3j4AOePECAuPvwAA8HBGM7M+AOob9oq7Y78AgMWGedP1vgDcNrvzf0Q/AABoDDg9vT4AAEgMvYLFvgAAtLeJp+U+AAAAAAAAAAAAAAAAAAAAAAAAroLvnvS+AACRvat9Gj8AALTkqqLFPgAAAAAAAAAAANidwBpMQT+4c3M1fNG9PwAAsBm4eK8+AABluSmF/r4AANliatcRPwAAAAAAAAAAAKfwjMuicD8AgP7C8qj+vmDfPxV7Qpc/AA7O9lkHWL8AAHCLWJGiPgCAb8WCGgM/AACguwvHoj4AAIKTPpLbPriGj9ypRrc/AADyYc3C2T4AAADUiOqWPgAAAAAAAAAAAAAAAAAAAAAAAKCOpVORPgBeUcCtHly/AICx3DFz8T4AAH7DCU7QPvicuJPdz7Y/4O/jeDDLmD8AADjkq5HMPgAAAAAAAAAAAAAAAAAAAAAAAPizGlrNPmDV8mKGKKo/AH6LNpPSYD/AAtrplk2jPwAAAAAAAAAAAADA0BA0rr4AAPB5eAatPgAAwH97bYg+AAD+kOwpJL8AAGBmMhW4PgAA4M6BIZ4+AAD0B3/a174AAAAAAAAAAKCTIJLRpZQ/ADgoAntGOD8AAAAAAAAAAAAAAAAAAAAAAIBubZAB9D4AEGwhRnI1vwCMuqetYlk/AAAYVe8ivD4AAOwD5gLGPgCAlOZWYfg+AGDdSgxRE78AAABsqqxGPgDoONJ9cze/AAAAYT3uor4AAEjocczqPgAiew0sInG/AADY7zGV6D4AAAAAAAAAAAAAsAaV5K0+uCxt2Rz7sj8AANoy8UbrPgAAYGOZaK4+AKC4dxGUJj8AAAAAAAAAAAAAAAAAAAAAAKAux/BKQj8AAAAAAAAAAACIgaWXujE/AECvTI0hAD8AAAAAAAAAAABgy4n7IxU/AAD/9Yq0Cj8A5rIJj255vwAAAAAAAAAAAAAAAAAAAAAAMAInhvE0PwAAPAhpNNu+AAAAAAAAAAAAta3ZLBB5PwAAAAAAAAAAIOWneFfKlD8AXI3Iet5GPwCA/7Gs8/c+AACgoYJkoD4AAGCSAtCsPuYp00pIwNM/AAAQh3n6vr4AAAAAAAAAAABgML3Gthw/AAAs0pAx0T4AAAAAAAAAAAAAIOY9ndY+AEA3pTabEj8AAAAAAAAAAAAAAAAAAAAAAACAfNmyqj4AwKleAh0LPwAAKG+QPcA+AACWdPwg2j4AAAAAAAAAAAAA2Lrh0MC+4G6NCsmhq78AAEBAS6KXPgAAwBNFH6o+AAALEvaM7j4AAAAAAAAAAAAAAAAAAAAAAIDM6GXRCj8AAOBXZM7DvgAAAmEbJNg+AMjnEd66ND8AAHQwty7NvgAAAAAAAAAAAAAAzBVdbD4AABAY+jCqPgBA3CcwJwq/AABAxxTAhj4AAAAAAAAAAAAAbL3j0cA+AAB436UEtT4AAICemI98PgAAZBBMlsE+AAAAI2fdeD4AAAAAAAAAAAAAgAwrjcM+AAD4Oe0Cur4A4CZR62cRPwAA4JtsGZw+AAAAsl4J4r4AAGoNkLnjPuCJFq3Ye8C/AADA5E5Q2D4AwMeM9mEKvwAAZYIF9/I+AAAAjF9tAb8AAAAAAAAAAIBl4wNUy6M/AIDIdnNsAb8AoqHMBlRVPwAAIDC9fpw+IPlXua6Guj8AAGhHCyzXvgAA6GHyB8M+COPCNvo9sD8AgPAuaHryvgAAAD1WM6I+AODnkO2HOD8AAAAAAAAAAAAAwKAo2IQ+AIAH05A/B78AQFgyUNkJvwCAb6ZGSv0+AOD6c8YsKr8AAAAAAAAAAAAAmum9HNQ+AMBvPlQGC78AAIAhMqSoPgAAAAAAAAAAAAC4DLmDsD4AAItALcLsvpBHQBmmwKw/wPGm/9Iepr8AAEAMCbOJPgAAAAAAAAAAAAAAAAAAAAAAAID1pZ15vgAAAAAAAAAAAABYT3jxxj4AAEQvd6DAPgAAgHDsBak+AAApZblnEj8AAAAAAAAAAAAQ9q4l9FA/AADkcTDY1z4AAAAAAAAAAAAAAPQVdXg+AADfaItN6D4AAA8JX/4dvwAAAAAAAAAAAOhcvsVEQr8AAAAAAAAAAAAAJD1w08U+AEDhzUCMGT8AAJnbsUcLP2QB53XdQcE/AABMINH00z4AAJs4Uj3yPgAA2BHdb74+AKCynHfHWL8AAJymBljoPgAAqCIu0r4+AAB3OA/z+74AAIBGfiLLPgAAuwwhPOY+AAAAAAAAAAAAAJBoqUTXPgAA4LmI65E+AABAul4Yuj4A2BP8X0QxvwAAqfiXigi/AAAAAAAAAAAAhDRRlBuMPwAAynHnluq+AAC0ZZA0zT4AAOAhjmKzvgAAAAAAAAAAAGAeTO/8ij8AAAAAAAAAAAAAAAAAAAAAAACY/X41+74AADgSjpG1PgAAjEEnote+AADgzLSW1j4AALhKisvGPpT7IaVB8MQ/AACAtmKuiL4AgFPXx+MVvwAAAAAAAAAAAABIF5hF0T4AAAAAAAAAAAAAEB2sCM0+AKDTMvBTO78AAAD780NrPgAAAAAAAAAAAADSD1QK0j4AAAAAAAAAAAAAAAAAAAAAADBHecwdMT8AAHKLF5vevgAA+6kelAO/5FbmAFRxxD8AAAAAAAAAAOCobdUwxKQ/AAAAAAAAAAAAgP8RGKELPwAAADb0Amo+AADgO6z9+D4AAAAAAAAAAAD+eabZam0/AGCGPSp4EL/ADyTC5gGNvwAAAAAAAAAAAABEL/hK0T4AACB5ELWtPgCArbiUZAA/AAAkAJwy0D4AAAAAAAAAAAAAAMcJy4o+AADAFukEkD4AAGgKmbjiPgAAgIfdvbc+AHDDpwdnML8AALjPJQ6wvghSzrkocMW/AAANJe925T4AAP4OiCrXvgAAUIg+BKg+AADoSYt+uj4AEAkwem8/vwAAAAAAAAAAAIANU7MU8D4AADYLT33TvgAAoD7GKrW+AABQWmalsj4AAAAAAAAAAADgLAGfsBC/AACgI6SZsD4AgCy8NEMVv7ZBxru+29K/AAC6Zaxc0r4AAJzZU/TAPgAAQAntCoc+AAAjy3U/8T4AOH2zlMM8vwAAAAAAAAAAgM1dJffudD8AAPGnb2PqvgAA2S4zQuE+AACmyxsV6D4AE5OAsZZrPwAAqPffjrw+AAAAAAAAAAAAAAAAAAAAAAAAcGtzbck+AAAAAAAAAAAAAAAAAAAAAADAWNcqhBI/wGq8S5ozwb8AAK5X7F/WPgAAAAAAAAAAAAAAsTnMgj6gp/HoOP2qPwDg2IvCxR4/AAAAAAAAAAAAgIPvQCPwPgA8eRynSEK/AAAp8+yLIb8AgEMSHpjwPgAAVf7AEuA+AAAAAAAAAACAX7gE0Bx0PwAAAELJtWE+AADKUsAM6j4AAICUwiasPgDG5iBg4rI/AADIBmkC9D4AAMIDinfSPgAAUPj+Yss+AAAAAAAAAAAAAMD4O/KxPgAAcCVVSrW+AEBQhUI3Bb8AAO/1/APlvgDAGfUIzwQ/AACU/P8D2j4AAFwSBh3EPgC4YZJ1LDG/AAAAAAAAAAAAwCevwP4FPwAAnsljhtM+AIBsEVpX/j4AAM/jdt71PgAAAAAAAAAAYK4qj1E3nb/E30A4eJ3FPwAAAAAAAAAAAAAAAAAAAAAAlCDRD7xOPwAAet68nAc/AADAMBzDkz4AAAAAAAAAAACAzqCnCvA+AABA077Ux74AALWh2QL8PgBAt8i9TQ+/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAU/1cmD4AAGBmngitPgAA4SFZAOc+AIBO5s828L4AAHDwaxezvgAAgPYdfKc+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAUSQPrT4AAESNAEjyPgAAAAAAAAAAANCdKchHJD8A4I/w6tdBPwAAhCu2N8w+AAAgyp9KlD4A4K5Cjq0ZvwAANPtYhfc+AAAAAAAAAACApYvCfHajPwAA9RI46Oq+AABgZNNTlj4AAAAAAAAAAAAAAAAAAAAAAABgLIP1oj4AADBkjXumPgCA4EHAP/w+AACgX2xIyD4AAHomLhX2PgAAAAAAAAAAAAAAAAAAAAAAADhcT8K1PgCgZauMSCE/AAAAAAAAAAAAAAAAAAAAAAAARQIi+eU+AAAAAAAAAAAAALScIpjQvgAAsOpAVbc+UM2AWO9Dq78AcIB+/uQ7vwAApnLIstM+AFLizFacVb8AgGckRZMKPwAAwJxLK5E+AEDE3YRBED8AAGFkDSfqPgAkK3SGskw/XHvnmQNFxT8As4edPJVzPwAA0El08MA+AAAAAAAAAAAAAAAAAAAAAAAAWMfKsbg+AAC0jsuPyz54k9diW/3DPwAgUwSjhBo/AMCiOSJaCr8AAABQHUA7PgAAgsQEGOo+AADmPbu5CD8AALdzdCDoPgAAAAAAAAAAAAD8hTli0b4AUD2cgwYiPwAAAAAAAAAAABuu8XGhZz8AAAAAAAAAADB3c5u6Usq/AACwDW+3yz4AINHp2q4Yv7itwcy1X8K/ALDOjoBEOj8AAAAAAAAAAAAAGAQNE/4+AMBw5JifBj8AAAAAAAAAAAAAICvoraQ+AED5v6lKAL8ALfqT5JyfPwAAAAAAAAAAAABoDyN30z4AAPR7i2TOPgAAAAAAAAAAMEPG4oQtxz8AALGSeDv3vgDAPz4KjwE/AACxpDNk4D4AAFg8FoLPvgAAgHkP78Q+AADpr9CtEL8AgFyiSC7wPgAARRE+JeC+AAAMp2200b4AAOC+rT6ePiBXqXnWSZc/AG/ZNBSOe78oF3Ea6rO2PwAAAEBciiY+AADk//9jzj4AgO9Pw6vxvgAAOqX3HNi+AOAqHcahI7/gj8dCsbGYv6jXKp7rfbq/oHkRVXpikD8AACxJFv7oPgAASsVuB9o+AAAAAAAAAAAAAEC1nOuQPgAArNifRcw+AAAA/5Bmiz4AgGNZf6n0PuAe3fW3TK6/AACewSb25j4AAGHFw7b+PgAAAAAAAAAAAADaWnNu2j4AAPB8hSW8PgBMt7XOwlk/AAAAAAAAAAAAAAAAAAAAAAAAgB5PaZc+AAAg2X4jrj4AAFpUe6/0PgAAAAAAAAAAAAAwx3v2vz4AEH0OVH4gvwAAYpwLaN4+AADvDcrw4D4AAAAAAAAAAAAAAAAAAAAAAADnjFMZDT8AAJDiOsu8PgB93XpN62Q/AADrgNDR6b4AAJCJ8d+2PgAAXFfJ8Me+KHTSbYVetD/wo4unrnarvyCmfGlvXpG/AAAAAAAAAACA7rY4dH9yPwAABF2K29Q+AAAAkXupiD4AABIjSjntvgAAkHjUfq8+AAAAAAAAAAAAgGKY+HgHPwAAAAAAAAAAAADk1RWr5L4A/O8sNnpWvwAA8L3HQ7I+AKgwUbb1MT8AAAAAAAAAAAAAQIbhKr4+AAAAAAAAAAAAAAAAAAAAAABgsqad2xA/AAAAAAAAAAAAAKDu5F2SPgA5BRca9mE/AChu5WZgRT8ABBeHMzJAvwDALBZZ6gE/SEc4NW66tz8AEK0EO/0ivwAA9J0pz8c+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAwuB0rD5siNmY2gHCvwAA3Guw/cU+AKiqOFliOD8AACj+8qPBPgAAAAAAAAAAAJuQfmdJgD8AALDW732lPhDg2TDxk7k/AACmuGAo4z4AAIDHW5FyPgAAAAAAAAAAAODxYa87Kr8AACCq+26bPgAAQKuOofI+AAAA2PYcez4AAAAAAAAAAAAAAEeCdsc+AGTFkQKnaz8AAAAAAAAAAGCHbTPHM6K/AAGPICb/bT8AwBDYcg8RPwAAANWXcLQ+AAAgepaVoT4AAOTOuX7IPgAAY1BIGOo+AAAAAAAAAAAAgJO1xvLyPgAAuDAEzMU+AHwgaoxEWL8AAHBE5CGzPgAAAAAAAAAAAAAgz52yqD4AAAAAAAAAAADKi7seaV0/AAAR1fTZ8z4AANDuoyzKPgCADSofdhW/ADD4gfOVNj8AAAAAAAAAAAAAK/IFX/c+AAAUKw4c3D4AACn6yS/jPgAAwI87sKQ+AAAAAAAAAAAAAAAAAAAAAAAADKLbxcI+sIO7lfAnsz8AAAAAAAAAAEAfAMMxGZA/wOeAZJmMkr8AAHsuLndmPwAAAAAAAAAAAABcgYp25D4AAIAMrdCBPgAAwlkRrvs+AIBEF6fjTT8AAMAwYmSuPgBgN/nrIhW/AAAAAAAAAAAAAKGabKb0PgBAhqKUuRO/AAAAAAAAAAAAAIAbFR6UPgAA8Im95+A+AABoViw9tj4AAMBL9O+XvgAAv9nRVeI+AIChjEKsIb8AAGS5ukvaPgAAHWWMUAS/cMjt9EaVoT8AAAzAfdrRPgAAAAAAAAAAACo8XcVHUT8AAAAAAAAAAAAAkNOCZbI+AIAKNXxa874AAAAAAAAAAABgVG5U/iy/AAAAAAAAAABASXxKNfSQPwAAAAAAAAAAAADhq4GE9L4AAAAAAAAAAACAzZhBtfC+wE97DgDChb8AAPB2u0GkPgAAAAAAAAAAAOu3Vj+NYr8AIIy4CCIhvwAAAAAAAAAAAAAQgRvI3r4AALzFCWDbPgAAeBz3Pbg+AAAAAAAAAAAA2Iqprug1PwAANOSp588+AAAAAAAAAAAAAKCZEvulPuAUh9aYqJi/AAAAAAAAAAAAAAAAAAAAAAAAuJhElbU+wDj4IiaDxz8AAAAAAAAAAAAgphALDSI/AAAAAAAAAAAAAAAAAAAAAAAAALuFEYs+ANoP/POCXz8AAKAuj32fPoBMrcDEGJS/AAAAAAAAAAAAAFDMqpGrPgBo6gYziTw/AAAAAAAAAAAAAAAAAAAAAAAAUPPnlqg+AAAMhByP0L4AgHBL0qT5PgAXlVyXfnK/QLcadsRpuz8AALjhy7/NPgCQrKJnkjo/AAAAAAAAAAA0r3do25jFPwAAAAAAAAAAAAAAAAAAAAAAACgBFGS2PgAAgM4x1Z0+AOAfJX+WKL8AQLRayWMSPwAAMH01+6w+AADg1bzzqD4gxg/v5Ze1PwAAMHetGcw+AICHlxWC/z4AAK7d7kv9PgAAAAAAAAAAAN7Z5BT9Y78Axv0dzr9nv/jEvnpSw9O/AKCpqWyVHT8AtMgugv9PPwAAAAAAAAAA5KiIJteQwL8AAPzGzPLJPgCAQ1SiCPQ+AAD4FHOqt74ASOx45AdcPwAA0IbjGKM+AAAVlbzl774AAAr/PvEEPwAAAAAAAAAAAAAU/kl49j4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjOf/quq+AAAbthpQ7z4AAFxkJE3MPhAjtB//18A/OieoVcAW378AcASQABJPPwAAALe1xZw+AABAY/mPrj4g1Y7cXPG+PwDgnatjxBS/AACESM/h1T4YZfS+6vzFPwAAJAWhato+IGQLh4cWmD8AoMP2RwgYPwDApHGHPwA/AACswou2xz4AACjCZKa0PgCATv40WAa/AADuvTwB2T4AAKc9ht/nPgAA3BaK1cw+AMBjEzgfBD8AALmY/RbkPgAAvC/fM+0+AIClHGmv9z4AAAAAAAAAAAAA6BO4Cbc+AACVzPqyOj+YYZHhuB7WvwAAbPoqosE+AAAAAAAAAAAAYPhgZYITv1CWiWeVM6U/AAAazNSB1T4AAAAAAAAAAADABnQx1QA/AAB4k5JcuD4AAA3mnkn2vgAAAAAAAAAAAABAwTphmz4AAFD7JRGoPgAAAAAAAAAAAMCI/mSpK78AGIVe79g2vwAAAAAAAAAAAADGQazE8L4AAAAAAAAAAAAAALZFS2o+AEDgYAvRAD8AADbh6xLiPgAAAAAAAAAAAACQOOXbwT4AAAg9rlK9vgAAmd6v7+g+AACAr/oVcD6cJkxmnFXDPwAAQFIIup0+AAAAAAAAAAAAAAAAAAAAAACQHpBjvCg/AAD+cGb64z4AAH19AkMNv5AxPETTJKC/AAB4zSkDzj4AABEqo7gQPwBgb94e3Bq/AADtBdaF4b4AACYj7wvpPgDwu9sk0Uw/AAD4B6ApxD4AAAAAAAAAAADAvAu5cRo/AAAAAAAAAAAAAEaPYKfVPrALIUmeOLY/ACCbaS+pH78AAKgY183JPgAAWJGScsg+AAAAAAAAAAAAAAAAAAAAAAAA8X5sgfw+AAAAAAAAAAAAAAAAAAAAAAAAOApKarc+QD9vv2JMkT8AAAAAAAAAAAAA5BN7/No+AIBRCKB18z4AtKBlA9VzPwAAUjBSkSg/gFkinXUZcT8AAIDsHYvVPgAAHNZjvfg+AACQ6d71wT5AP6AxKneLvwAAEN4fHa0+AAAAAAAAAADwQRBeQX+5PwAAwD2zGag+AACgBBySsL4AABynYf7JPgAAoHfqJ5Y+AAAAAAAAAAAAgMwOu3z0vgAAAAAAAAAAAAAk4UyuwD4AAKuGs/T2PsBEbiNJzZA/AABAIwHehj4AAFQz8a3PvgAAAAAAAAAAsApHpNoEyz8AAPDDqu/EPgBgagXgWBE/AAAAAAAAAAAAAPCENDauPgAAAAAAAAAAAICT+pHm/z4AAOBh5pDYPgCA4+U8OxS/aDwGuJuhuj8AAPByV/KzPgAAaJsBaMs+AABGzKDu1T4AAAAAAAAAAAAAoNNpVao+AADQUS72pz5gdYemo4SpPwAAAAAAAAAAAAAAI09tuT4A4Eqgt84QvyBg8ADMN50/AAAAAAAAAAAAAEOV6K7zPgAALPdMOs8+AAAkfXGF3j4AsAVIpWEmvwAAG2X7mOu+AGA0EbGdEb8AADZoE6TaPgAAAAAAAAAAwDcQaJ2Ilb8AoOOfrtAQv+QBdnx5d9G/AAAAAAAAAAAAAFuKApECPwAAevxc49I+AACA+rCNkz4AAAAAAAAAAAAAvERQdM4+AACxgnYc4b4AAAAAAAAAACR8Ew3JO8A/kN7d5trkuL8AEEb9Ov4iPwAAqiadbuE+AAAAAAAAAAAAAKgimNfDPgAAI1oOUQ+/AAD/udtC6z4AAMmH4UbxvgAAAAAAAAAAABY7MppVab8AAMQEQeDVPgAAkOXXAaI+AABw+Zsbqz4AAAAAAAAAAAAAsKqV+Ks+AAAAAAAAAAAAAMFGYz7lPgBoOdOkK0M/AMAvJ8ebBj8AAEBFdHGqvgAAEP7ewsi+ABFC3C3Lez/QeGprt5CrvwAAAAAAAAAAAABnn7U46j4AAAAAAAAAAACB/yp8Q2q/AACwvtG2sr4AgAebsXAbP4A5wcIFZXY/AACQiwhdrD4AAAAAAAAAAAAgwcEVuyu/AABARO6PhD4AAILWZQXaPgAAAngrpOo+AAAAAAAAAAAAADJ1ZD3XPoBRVG9FF4m/AABgYExTlT4AAAAAAAAAAAAApLpcFtQ+AACgK11dnD4AgJbH/pYFPwAAkD6eGa8+AICFDpCM8D4AAAAAAAAAAAAAUKt3rMU+AAAAAAAAAAAAAFACPXKhvgAAoIwdn7k+AACMTZtY1z4AgAQ4xLvxPgCADXYfoge/AAAAAAAAAAAAACwUw+7HvgAAAAAAAAAAAAAAAAAAAAAAAOCz6ZW6PgBAiVyDmAA/AEwUJgndSr8AAAAAAAAAAAAAOA3oY/s+AABE8t3z0j4AQDoj+60APwCgy6mT2hC/AADSa2oO0L4AAABWqbCAPgAAAAAAAAAAAOk/HBfXnr8AAGC3Bm6fPgAAAAAAAAAAAKC35QkRF78AAGR/g6/cvgAAhPRQYsq+AAC+cdNFAj8AAKgFdve9PgBgAXZbhhq/AAOkEzmNcr8AAAAAAAAAAAAAAAAAAAAAAABkfIfv8r4AAAAYVgqzPgCAv6RnQgU/AICMnk7jA78AALCT/cjGvgAAAAAAAAAAwLq7gPSesL8AAPCPlv6xPgDwJUMhwjm/AOAZyscqUb8AAL4y2+wnvwCgYnl4JhE/AGxkKGDnUD8AAAAAAAAAAAAASLgLors+AABtqqDv+T4AAAAAAAAAAADaAodCfmC/gPWKBWzNdz8AAK1rNkj1vgCA7hT/1vw+AFCWOro0MD8AAOMiILvhPgAAAI0a16k+ABz7ahKHTj8AAMAmkwqIPgAAQCBspow+AAiVggavNj8AwMhz0iQDPwAAAAAAAAAAAEB44hUcEr8AAJRufcTNPgAAAAAAAAAAAABAmvs+ib4AAN6kM1rUPgAAWmy+v/Y+AAAAAAAAAAAAoE23BNUfvwCYANHsgkc/AADACoDHhz4AAKh9nYvMPgCOA9jlYVe/AAAAAAAAAAAAAMAgvuaUPgAA4FkPcZI+AACmCLt11j4AAIC4mBaOvgAARE9nIcA+AAAAAAAAAACACEXWPpy1PwCw/t5MSCC/gKzIlQa1d78AAAAAAAAAAIikhBw3X8C/MLSAqckTrr8AACzRXfj5PgAAiHNrtLo+AADSWH4u5D4AACE5YjHlPgAAAAAAAAAADMSWaagd3b8AAAAAAAAAAAAAGVLLCOQ+AAAAAAAAAAAAAPh9HW6zPsvoytiLp+G/AAAoKLMHxD4AAKRq7oHZvgAAAAAAAAAAAAAs1YOy9r4ABF4gFDtsvwAAkHRwYcC+AAAAAAAAAAAAAICNYsaTPgAAAAAAAAAAAADgVamEmj4AAAAAAAAAAAAAs6pj5QK/AAAMocFX3D50bGAsMVnOvwDMVc/xV0O/AAA8jwJrwj4AAAAAAAAAAAAAAAAAAAAAAABAaj9KpD4AAAAAAAAAAAAAAAAAAAAAAAC8K5KQ2j4AAEiGjj/DvgAA0j4VmdE+AMDgOyNlET8AIM+xHlQTvwAAAAAAAAAAAICmbeO2/r4AAHQDL9jhPgAAKPOjT8i+AIAluRThEj8AAAAAAAAAAAAAAPXdbIg+AAC5xNgs8z4A4FtQ9HQTvwAAAKBSQ2C+PKm0blfd0L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGiC6cH6vgCADIvXq/s+QHaTRBuOij8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKDwy9u+PsBEjmkvv5Y/AEDNvbTSCr/gs8Ff13yWv4AScrjON9e/AACgrH8Qnz4AAHBCXI6/PgCAEw9LRvA+AAAwAAEu0j4AAAAAAAAAAAAASDjxb7Y+AAAAAAAAAAAAoL5e5TkYPwAAAAAAAAAAAABw3ZGL574AgKqlIdQNPwAAbBVMG80+AADolvQF6b4AAAAAAAAAAAAAAAAAAAAA5CQpGO83wb8AAAAAAAAAAAAAXTo21uA+AADPncfn5D4AgHQq0QsCvwAA3tGNHfa+AADQzn3ruz4AXt25kZhoPwCA+veRFQ4/AADa4tXZ3T4AAAAAAAAAAAAAUHUfjrU+AIDJnadK9j4AABAVOpTgPgDAUX1XWwE/AMAigSsUBj9AhND+vzOgP4Bkdyrxr4Y/AAAAAAAAAAAAAGKzFi8EvwAAAAAAAAAAAACouPNbtj4AAMuBPObtPkCIKPnztYC/AADQXqm+sT4AYNgDKCocPwAAoMOCnq4+ADBH1hUyIr8AAJAdX4qmPgAAvqEz69S+AAAAAAAAAAAAAAAAAAAAAKBYMZ9MB7o/AACAYWj4hb4AABZ55PjePqAqF1NuA54/AACAyhW3dL6AlvTtQMyCPwAALYIxOys/AABbR4uT5z4AAIATKSvgPgAASJIlVLg+AIABPcb6LD8AAAAAAAAAAAAAYA4Ip62+AAAAAAAAAAAAALSNYSLrvgCQJIjGITK/AIBUEczXBz8AALASG3P9PgAAYIK/57S+AAAAAAAAAAAAAABSoIxpPgDAyY/QBgm/AADE7QCSzD4AwG784aU3vwAAAAAAAAAAADqnY+vrVz8AEGx/IeAzvwAw3f1UcDg/AAAAAAAAAAAAAAAAAAAAAAAAIH28hsY+AAAAAAAAAAAAAAAAAAAAAJj3bL4P5co/AACquP5VGj8AAAAAAAAAAAAAAAAAAAAAgCfg47wMez8AgOo52Z73PgDArmkPVBO/AABADlZE7r4AAKj8iNjBPgAAAAAAAAAAAABNjsY67b4AAACpQUyIvgCAOSpScA8/AABMF/0VwT4AAHDqmOLAPgAA0AsAYrI+AELPV1Q8UT8AACAgYQekPgAAY0zJwO4+AABwwMGgr74AAAAAAAAAAAAA6q5979U+AMCaOPv2AT+gXjsqlsDBvwAAkhpKfQA/AAAAAAAAAAAAALDme4m4PgAAgOrO7pC+AACE6ZNFwL4AAAAAAAAAACDOF5IufaA/AHjJj+QaNr8AAEDjCG2+PgAAQHINSZI+AACgXThfnz4AAOC+WnCoPgAAAAAAAAAAAAAAAAAAAAAAAABG5Y6uPgAAtBg6u8I+AIDU9/eD8T6Qh/PB30emvwDgpEXHBSE/AAAAAAAAAAAAAMhjJH/TPgAAAAAAAAAAAAAAAAAAAAAAAFg+5FizPgAAAJsTpW0+AAD2fNwb5z4AAFTXg6DbPgAAAAAAAAAAAAAw5RgYpD4AAAAAAAAAAAAAOM+d+tU+AACxNqly4D4AAMIwCAPVPiDvjHBeR5Q/AAA4JIh03T4AAJ2O4TLpvgAA0P+l5qi+AOBlbERJHz8AAEpzcbjUPgAAYOYHS50+AAAAAAAAAAAAwPxePp8OvwDA9iztpx0/AABQA+VVzz4AAJgT5kTZvnDO8VPS4bI/AMCUUhcOBr8AAAAAAAAAAAAAQGg51Kk+AAAaiDW81D4AAAAAAAAAAAAAYRhoLuE+AAAAjtlpYD4AGAl1cyIwPwAAQEqW+aU+AAAAAAAAAAAAAKA2RC2nPgAAAAAAAAAAAAAwaGDdpD4AABeCaBXkvgCAgZ3W8yG/AAAAAAAAAAAAQG1FHisFPwDcPfIAUEq/AAD+aDCT1b4AACBRNEu5PgAAGorpbtc+AAAAAAAAAAAAAJWdHa7vvgAAAAAAAAAAAAAAAAAAAADgwJlcizazPwAAAAAAAAAAAICOFnZ68j4AAOCj8oGVPgAAJFK8Vtc+AACAIntrmj4AgJt9nwD7vgAAAAAAAAAAAADYMMMHvL4AAPgWnxrYPgAAAE1eKZo+AABETkqNyT4AAAAkN2DPPgAAgPy4yHY+AOAT96VXSb8AAGjg2b+yPgAAAAO1XHI+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP0pbvyraL8AANp+nI3cPuBJo83MyJu/AACAQIxnmT4AAG1XemfjPsDnzFJ5l5A/gFfAjrMffz8AAAAAAAAAABD7JTntsLg/AAAAAAAAAAAAALyrQODGPgCAb+ZJnPi+AACARrXfeD4AAAAAAAAAAAAAZKmLFtA+AJ7MqDDccD8AapIdIjNuvwAA/mkMsNC+AAAAAAAAAAAAAAAAAAAAAAAAsKbflaE+4IEPQix1mr8AANudxIzjPgAAAAAAAAAA4F+Ez/6Po78AAEjIf1vRPgAAK93LJgS/gJgKaKj8hL8AAKD59yaZPgAAAAAAAAAAAIC2cJ6pCT8AAAAAAAAAAAAAZCiOu/O+AAAEBhGtBj8AgHJvtO0WP5A+bRwOUaG/AAAAAAAAAAAAgLKYRJYivwAAAAAAAAAAAABg2AKClr4gqme497emPwAA5fYiDQG/AAAAogxYaz4AAAAAAAAAAAAAAAAAAAAAACCblA2lEL8AgNZVFhDxPiDaTexitq2/0JNkQ/9QrD8AAAAAAAAAAAAA6FsGSbw+APIze1kjXb8AAOi65aDBPgAAAFgwyzQ+AABA3EyezL4AAAAAAAAAANChxwJPor8/AAAANU4dij4AAAAAAAAAAKS7PXMNd8M/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHof2qzXvgAAehPCP9I+AABM8CUdxz4AAAAAAAAAAAAAUID4b8E+AAD8cR49xz6wAgGSojOpPwAA0OJ50cA+AAAAAAAAAAAAAEBO5tacPgAAVvB47RC/AMDQOSmjJD8AAGCYUH6WPgCAGPlPjvI+AAC4RXm31r4AABKMFwziPihQMgyds7G/AACsXEm37j4AAFsf3wP2PgBoB6nxNDE/AAAAwYH53b4AgAiANd8UPwAAFrOO/BG/AAC3WyWy9z4AgO1zy4n7PgAAoNwvraI+AADoWbPO1L4AyPcQ2YlGPwAAZ/AKGOS+AABA7jRspz4AAAAAAAAAAABA19bshx4/ACC7XVIRHj8AAAAAAAAAAAAAhLRYBME+oEY4DEu0qT8AAOgHqGSyPgDADcS6UBA/AAAOgsfG074AAEBMWReFPgBMtacPjEM/GOUnWczNsT8A4PPiqX4SPwAAAAAAAAAAAABYRnkEwT4AAIhNiku0PgAAmNol28M+AAAAAAAAAAAAABBLrTW2PqCmKd6jA7G/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKv+WCEXT8AAED1XxiGPgAA0DgMCs++AABAQKbbsD4A1ixBaNJYPwAA0FVMqKU+oEdgJlcnrD8AAAAAAAAAAAAAAAAAAAAAAMBrwZsbEz8AACA5ARDJPgAAFJnIe8Y+AADZdPnEEj8AAMCw1XK7PgBg0fF2oxo/AAAAAAAAAABg32vHtxiRPwAACDKe3cq+AIBAq4lDPj8AAAAAAAAAAACACf+fvv2+AAApb5AsAj8AAAAAAAAAAAAAkCjmi7k+AJzdS0gpR78AAAAAAAAAAAATvcZVaHk/AOAng7ROED8AANiLIQ/JPgCAJKRqtQE/AKAOQ9dXFT8AoC+CDk0avwAAAAAAAAAAAADAeYY5lr4AAKCsIXOevgAAAAAAAAAAAIAE0vVdCD8ADM1rZelIPwAA0ADeYrw+AAA4o/oS3L4AsFEiWIIzPwCA80YfgP0+AFBr9llDID8AAAAAAAAAAAAAAAAAAAAAAABYDTsO3T7gVplFofOhvwAATqr3Ie4+AAAAAAAAAAAAAJ7RHHr9vgAAADdU+oo+AKCOmp24Ij8AofodjWNmPwAAcFvFQ6k+AOSsDUd7Vb8AAAAAAAAAAABgSU3c/CC/AACASeU2fT4AoKZLtxYavwAAYN/fIaw+AAAAAAAAAAAAABJWgQHTPgCAsyt5hvw+AAAAAAAAAAAAAIR+jMvGPkCMPRWLS5k/AAAmK00Z3j4AAMgF9M7jPgAAo+5Gze4+AGeXLmU9h78AAAAAAAAAAAAA/uxszd2+AAAAAAAAAAAAAABRHsZtvgAAAAAAAAAAAADQV89vrT4AAJPTQpL7vgAAiIARWrM+AICh5CHTHj8AAHRtzsXuPgBAJCNFiAU/AAAAAAAAAAAAAAAAAAAAAAAAqHkU0vI+AIBnwuZYIz8AAPT2c2fBPgAAgKSLYpU+AABMJ/Va2j4AAOPrxUzgPgAAAAAAAAAAAAAAAAAAAAAAAJAqItWuvgAA9KpjOtk+wAMDaIHbgT8AONM9D382PwCAfCoV4/++AADg6lVw577A7O3sfteCv5C6uou4Pak/AAB4kThUvz4AAAAAAAAAAAAAAFVlXYS+AAD0C2q6zz4AAAAAAAAAAOB/6Bnkvrs/QPwuClADir8AUL5gXpjCPwAAAAAAAAAAAAAAAAAAAAAAAGwLkmrCPgAAFLta2tQ+AACGkk3q0T4AAAAAAAAAAAAAACeBwLk+AAAAAAAAAAAAAAAAAAAAAACAYIxv7vk+AIDzAZXo8D4AAAAAAAAAAAAAsO+f1aY+cIFM5zHppL8AAKCe9syaPgAAhKdSwdS+AAAAAAAAAAAAAAAAAAAAAACA8qfXmvE+AAAAAAAAAAAAADjo+OfsPgAAQuOb6tk+AAAkqbUj4D4AoJUuB10QvwAAAAAAAAAAAAAAAAAAAAAAAIy/JgDUPgAAAAAAAAAAAAAAAAAAAAAAALcwCqjxPgAAXjrf1ec+AABQpo10rb4AgGf4rQ0IvwAAcGQoyKk+AABeSKjA774AUL/xHa0uvwAACMaTOMU+AAAAAAAAAAAAAGC8tUyfPgDo8+32yDS/AJIVaAPBdr8AAAAc9UmkPgAAkBdkLK4+AADGOyOq3j4AAAAAAAAAAAAATHBUi8K+AACw5gAsuT4AAODtLN+sPgAAAAAAAAAAAAAAAAAAAAAAcOY4TKQpvwAAAAAAAAAAAIADAG4M8j4AAHxNej7WPgAAAAAAAAAAcB/URL/Lqz8AAAC+fdJbPgDOOGbHH2E/AAAAAAAAAAAAAAAAAAAAAAAAYiSUeSS/AACO7sp72L4AAAAAAAAAAAAA7MMzzQK/AIOzNomBh78AAADIPcdAPgAAAAAAAAAAAAAwMfWzpj4AAAAAAAAAAAAAkDlJMbO+AAAAAAAAAAAAAEb/YuzQvgAAKCdGlby+AAAeRPoM1z4AAOCLK9XDPgAAP07cpes+AMBSRdOHK78AcBP8DkYovwAAoCXe2dw+AIAJ67wkAL8AALZds9X/PgAAJ9wy/uI+AAAAAAAAAACg2dMnfK2WPwAAAAAAAAAAAEB5Lv0yBj8AAAAAAAAAAACgINpBkRE/AABcIrV82z4AAMBrGI+zPgAAIEjiku8+AAAAT8SDgD4AAAAAAAAAAAAAop/sE+g+gFHx5J3Kq78AAAAAAAAAAAAAAAAAAAAAAABIVQVbyD4AAAAAAAAAAABgpSAZZSE/AAAAAAAAAAAAAOxMlJLYPgAAzv2E4Nc+AADgAunyoj4AAAAAAAAAAADg06CSZy6/AACs/xcc3j7QGsZo35WnvwAAgC4eGnE+AADYpe8g4j4MsZihIsXCPwAA8LwSOOI+AADhR4j6+T4AAAAAAAAAAAAAAAAAAAAAAAD9BYoMBD+AjSv6aex3PwAAqJQvu8E+AAAAAAAAAAAAAOBDhFayPmjsD8rfN7c/AAAAAAAAAAAACHBGw7hrPwAAhUV6Fug+ILOPA+GTmb8AAAAAAAAAAADAaabXLwg/AACAc5uUnj4AAABcpV2FPgCAJgLqAfg+AAAAAAAAAAAAAIQ3xerEPgAAAAAAAAAAAAAwh2jMo74A3z1YznuKPwAACe1kUes+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADuruif0T4AECQwDtw/vwCAtug+Tvi+AACgvFsVyT4AANDIeeC1PgAAAAAAAAAAAAC8Rfxryb4AAAAAAAAAAAAA1HFF3ey+AAAAAAAAAAAA4LPIjC8VvwCgj6vigDw/AAAAxWJtZz4AAAAAAAAAAAAAgUw7d+A+AACE2Enyxj4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEi6Fsm5PgAAAAAAAAAAAABI3PaHsb4AAAAAAAAAAEAeyV3uqp8/AK2KJRMJZj8AAB+a/WrrPgAA4ORjJ5A+AAAAAAAAAAAAAGz/hmnKPgAAzM+PiMA+AAASFyupCr8AoNrUcfAfPwAA6HA+sw0/AAAAAAAAAAAAhDsoBgpBPwDwl+UzzC0/AAAA+RC5hj4AAMkmytPgPgAAAH0+Q20+AABmFh8w0z4AHU3nrr9mPwDAiapYzQE/AAAAAAAAAAAAgNqm2IsFPwAAklrG8AU/AADAqUMUlz4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB+xUySPgBwuxThWCy/AACAgU1bmb4AAERuHnToPgAA/Mv5lRs/AIDwA2R8DT8AKnF5E8ZUPwAAHJjF0cw+AKDpbk3aFb8AAAAAAAAAAACASEbMQAm/AACUgV5a274AACBnJ2aYvgAAAAAAAAAAAAAAAAAAAABYwLyS/H62PwAAAAAAAAAAAAAAAAAAAAAAAJh635bbvgAAsISi1rk+AGM/lFSNa78AYJHAlMoqPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASsr/YNQ+AACucYxU0T4AAOoMdZnuvgAAgBCAKH4+AAAAAAAAAAAAACCs0aqfvgAAwLT8OO2+AAAAAAAAAAAAAAaBBucPPwAAvnn/et0+AJAOWIEVJj8AAAAAAAAAAAAAzNteKgU/AAB5bXefCD8AAEzYUOrfPgCAPVXZEfG+AABo9nfxwD4AAKAqLY6XPgAARieOnOo+AACGTGbm5r4AZ6eZ8AmNPwAApERPeOk+AACQ02x1tD4AACsM8u3hPgAQbsNc1CC/AACgP4mlkj4AWHQx62o9vwAADIkKwdw+AAAAAAAAAAAAAKBLvY+hPgAAAAAAAAAAAACeNJxv9j4AAP+e0uTkvgAA2bpoyOE+AMDOZ/8KGz8AABBTfmKmPgAAAAAAAAAAAIADxh1JKD8AAPKk0FfUPgAAAGo4b2U+gDRztH+OcD8AYKcqKe8mPwDAUGY2qQs/AADwcfh6pz4AACA3VIbbPgAABtnmpPQ+AAAAAAAAAADYDX5kWjW3PwDAW2pTag2/AABWKROK3r4AJA0f9r5uPwAAAAAAAAAAAIAcZ2Ri974AAEDdnLuJPgAAAAAAAAAAAAAAAAAAAAAAAGAwMhWbPgBQCzB8eUS/AADYOCwSwT4AAFXPIqnsPgAASuKOL9e+AAAAAAAAAAAAAAmW/1XuPgAAAAAAAAAAAAAAAAAAAAAAADRynNvHPgDgECPiJx2/AACJ9BFmBD+g4WoKaD2rvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQN6LC5g+AEBjn7JqFj8AACS670vKPoD1Bu2Cm3I/AACeSVlF6T4AAPSab7HKvgAAVDMukQA/AEB+K59aED8AAIB/NEG1PgCAEPL6RfA+AAB26IqL074AAAAAAAAAAAAAAE6FE1o+AACYy+W65z4AAPz9n1XRPgAAAAAAAAAAAABwN83C4j4AAAAAAAAAAAAAAAAAAAAAAACrGpGQ6T4AAAAAAAAAAABs/8LfhFM/eCoCp2uhsr8AANgzLnzUvgAAOuvogOo+AHB1w6WPJL8AAOBJJk+6PgAAAAAAAAAAAACmhczI274AANtDS77+PgAA0MFJDrE+AAAAAAAAAAAAgHpjXr71PgAA9HTOlMA+AKAosdj0HT8AAHBvwfalPgAAqOniIew+AAAAZ5yncj4AALC4tFbhPgCQJRfMPUE/AMsAgL4wYD8AAMaEazbfvgAAAP9uJ78+wHhOr+Uyhj+AaBFny3qKPwCYKXINPDC/AADhcc5MAj8AAAAAAAAAAAAAAFBWWTA+AHBpUxLYIj8AAKAM0VGRPgDAtgDoHRo/AAAAAAAAAAAg36scU5+YPwAAwCUEerU+AADGaTk00z4AAEACgW2LPgAAAHab2mE+/He4Z2gEwb8AANynVf/UPgAAIMLKRJM+AOCvMauFJr8AAGx+IXrxvgAAAAAAAAAAAADc04U61z4AAMDY+giePgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbYzJmOc+AAAxJIBw4r4AAChIwATLPgCAZpcGhRU/AFtKBMMwdT8AAAAAAAAAAAAwyzRLEyI/AAAAAAAAAADgMEsIQEuivwAAoEycYJE+AABonY1S8b4AAAAAAAAAAAAAQHuq2tU+AADYb9Qd3T4AwBfwYX4UPwDgpeoHexY/AHmA4mS6jj8AgH8TzZj3vnBU3Lp6oKk/AACA6/Vyir4AACkakMT5PgAAAAAAAAAAAAAwneeFrD4AAKAuXSCRPgAAAPxOBXU+AAAAAAAAAAAAAIAZnwClPgAAwGGzO5c+WPfaYmNhub+ouhdY9S3LPwAAAAAAAAAAAPCOgkppLL8AAAAAAAAAAAAAAAAAAAAAAFA+x08iJ78AAMBleruWPgBo+VV72zE/AADwg8tUzz4AAOCfm/26PgAAeGw+tcs+AADAZzixjD4AAIC5UxN0PgAA5L3o5NE+AIhLXXXDOb8AAKrOJ1vgvgAAAAAAAAAAAP2F9iSnkL8AAOANez+6PgAA4nI9HNY+AObgOSE6Wj8AABhVX0bBPoz3HgkWX9U/AKA3tigaE78AACCe8byfPgAA0I+EnM8+AADJDERS8b4AAAAAAAAAAABgrOycESg/AAAgc5hKlz4AANuP9Sf/vgAAAAAAAAAAAIDpj+PE/z48kHJ4JG/DPwAAZAlzj8Y+AAAAAAAAAAAAMDjk6aImvwB416VZcTY/AEB2/1oaRL8AwBRSkmQAP6TfDpypXtI/AABwm//UrD4AAHhGW125PgBA5XNw/QI/ANql2pSFUz8AAAAAAAAAAAAAAAAAAAAAgFmkrAc9fb8AwKxR4p8MvwAA0j8fhd4+AAAAAAAAAAAAbMN2DUlDvwAALKc2otw+AMBnnSD/F78AAPB5hPG1PgAAAEVi28I+AABMEHk0FD8AANXeCMvnPmDQhsCbI7Y/AAAANDyiQj4AAPmWUVTkPgAAAAAAAAAAAABArFKNwL4AAGCML1qZPgCAgOpcffk+AE7xUoUKcL8AcMYsHkchvwAAABsuv3Y+AADA234KqT4AAOgKP4G8PlBuCAzeYaq/AABwofPkzD4AoLTtrX0gPwAAAAAAAAAAAACYgSpPuD4AAKD+piqTvgAAxIz24uE+AAAgYk3Elz4AADjN0y3FvgAA5ThivOs+AADAOvo0xD4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJFg61f8+AAAAAAAAAAAAAJbcNcDTPoCkmRJE6XE/AAAAQEPNGz4AAAAAAAAAAAAAAGlzW4g+AAD+aVST0b4AAKCjjfSwPoDluHpn4Xy/AABYailCsj4AAAAAAAAAAACYM5WSQjW/AAD8/udXyz4AAAx/szHAPgAAAAAAAAAAAAAAAAAAAAAAANDcnIS5PgAAqLCW6bc+AIBOu3cr876AEQOuFHLFPwCAZ6e+Ufo+AAAZe0Rs6r4AAI4qXjbuPgAAAAAAAAAAAMCZ8ToUED8AAOhd1om6PkAH+0wzWKK/AAAEfHCxwj4AAAD+PwCjPgDWEbt3VIE/AADMQ5yS4r4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABqtEGP6vgAAAAAAAAAAAABQaHFfrT4AAJhcVQ3JPgAAzhBqn9E+ANryatnzWb8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKf+grnmPgAAOHTqtbg+AADo/UXvs74AAFS7ykLSPgAAzoyjbgI/AAAAAAAAAAAAAAAAAAAAAAAoSScDekA/AAAAAAAAAAAAUOEhfXIhPwAAoIpnOqo+AAC5pI4FBT8AAMQsS6/CvgCA0mkhafY+AACMM4IUzr6AFc4YIDp/vwAA1OExM8G+AADKKE+N0D4AAMGRMrgTPwAAAAAAAAAAAABfBYuh5j4AAAAAAAAAAACSKt6PplO/AABE6z2y174AAAAAAAAAAABwvkGfCiA/AAAAAAAAAAAA4FJ9OOwhvwCkFu30iG8/AOCEocsUED8AAJB+/bvRPgAAAAAAAAAAcJ5g0LDdpL8AAGkbZUzrPgCAD/bonhw/wLLXzkWtj78AAAAAAAAAAAAAmF3eAtQ+QM6XfJ6hnb8AAIJBtPP5PgCwp3+cxUG/AADwjo7jsD4AAHj6zm7oPgAAYK0nO9O+AAAAt/TAhD4AAAAG8plSPgAAH2Ve5fO+ALAyCriEI78AADve49PxPgAAraHGqeQ+AACAiUJElL4AAKSWELz6PnCEv1WzFaA/ALC89FnbQT9wASjxB6q0vwAAoBOiB7A+AAAAAAAAAAAAgOpOW0X+PgBQowf/kCI/AAAnj4bQLr8AAIqj7R3RPgAA0CQDdsw+AAB8YITX5T4g7UGcbs2aP1DVWA237Na/AIDKkPt8E78AIANGNlkZPwCwlr91MzW/AAD75PG5474AAAAAAAAAAAAAQA+ev4k+AAB/BEsB9D4AAIqMqArTPgAgn25VJCi/AAAgPAAvmT4AANRot9vLPgAA2NBLqcg+AKBEkSnSET8AAAAnFVFhPgAAAAAAAAAAAAD0n05TwD4AAADJVySKPgAANNfPGcY+AAAO1ldZF78AAEgSAd25PgAA8yDzWu8+AACkJG0hxj4AALC6anakPgAAAJT4kXg+AAAAAAAAAAAAoDpByQ8nPwAAexfFjQ6/AICJs7D+AD8AAAAAAAAAAACA7maM2fo+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD9NbHD4T4AAAAAAAAAAACMZ7oFwkc/AAAAqx1Ja74AAMiO4aQcPwAAEH8Saa8+AADMO2mcxz4AAG7M8nv4vgAAgAlHN4I+AABgO7EvzL4AAAAAAAAAAACAJIb/4PA+AACAUgkngD4AAMzX0MzBPgCAYvq9RPk+AADTg4lo9j4AAIQgoHjQvgAAAAAAAAAAAACU54Jh4T4AAJXlyW30PgAAxIXLucw+AEC1dV/ODD+Y5DJ6OWKwvwAAn3iZDvu+AAAAAAAAAAAAAACHZtjEPgAA5LiE28E+AHAnbo8zWz8A0ceHYi9yvwAAyGGgbb8+AADglzljsT4AgMP4QWz6PgAAWvSjX9g+YKa7wHJSlT8wEBNzQia2PwAAAAAAAAAAAAAAAAAAAADsu90hq5fIvwD/2ALyIG8/AFB21O7aJT8AQN9WVpkSPwAA9I+xitk+AFAldGMWK78A8Mar35hHvwAAMalak+M+AAAAAAAAAAAAAPBII6DBPgAAQXlqAu0+AACUfkMUyD4AJJy4fItVvwAA8MhhyMg+AAAAAAAAAAAAAAAAAAAAAABggQpxgCM/AAAAAAAAAAAAAISTubkbvwAAGP8Ftb0+zDxbUNTBzT8AAJADTduiPgAAxHNo2eY+AAAAAAAAAADAZzsh3R6VPwAA3/k5vuM+AABgjP46oD4AAC2fzJnqvgAAAAAAAAAAAACyfI4Q0j4AAChtWcbOvgAAAAAAAAAAUIJ5LaDlqL8AAACol1UwPgAAQBBOJIi+AJkZidP2Yr8AsMiCGpE1v7AMmf9WY6E/AABwpBlxpL5AA06DyTqDvwAA5pWameY+AIAm9DhLCb8AALOJTRzkPgAAWGdz9rg+AACgXqhi1T4AAJiJDOTOvgAASqwILfM+AAAAAAAAAAAAAJSWbCfMPgAA0LuVEMU+AAAAAAAAAAAAANBvlFSpPgAAAAAAAAAAAAC2pcvc3z4AAAAAAAAAAABAD9PM/xA/AMClsJ6eIL8AAAAAAAAAAACAK1zqV/M+AIAtMNTg/L4AAIHfFHfnPgAAAAAAAAAAMG71eZ31tL8AAPN8WB/tPgAAhm2gnNQ+AAAFuXK56T6AuSWpcOugPwAA4Bl6iKg+AIDmvTJh/z4AAG52J5PVPgAAqJrxZNc+AAAAAAAAAAAAAKh+DETePgAAWuPRKBI/UNktfvNupz8AsLnWZcJIvwAA0qdb6ee+AHDOKtv0Nb8AAPzlc8LavgAAAAAAAAAAAAAAAAAAAAAAAIi4BSPMPgAAAAAAAAAAAEAv8aJnEz8A2X/OA7l4vwAgSboCTxE/AADAJz8riT7gZ5Q0HRerPwAAAAAAAAAAAAAAAAAAAAAASG9/CRc4v4CqTEkB2Iy/AGALOZHCGz8AAIlkIkHuPgAAAAAAAAAAAAAAAAAAAAAAAADRMP1zvgAAGG8e+dw+AAAaoweU6z4AANxc3i4DPwAA9NB+9tQ+AACwJzRC9L44QiZ30K6/PwAwU26EWzi/AABX+wpd9z4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABsC7yzkPgAAD2J1geA+AOCGdwHPMr8AG3AG0u1+vwBAA0xLZiG/cFlaHnd+tj8AAAAAAAAAAAAAqCvpUtS+AAAAAAAAAAAAAO7ENrvevgAADDDh49A+AAAAAAAAAACwZS+7BhegPwAAoM6vOsY+AABsgr3WzD4AAJAH4+nIvgAAMIMj66E+AAAR4iQ//z4AwBsw4GcOPwAAAAAAAAAAAADgsiF7rL4AgKOR9dIlPwAAAAAAAAAAAAg+P4EPRD8AgNWhjb7/PgAAwDWG8KA+AAAojv/0xz4AANjj6C7iPgAAVAL8zNC+AABIc0Z6xD4AAG7FqUXfvgAAAAAAAAAAAAD23YgU2T4AAHCgQTChPgAAEJ7Vqrs+AAAAAAAAAAAAgEs3ywL4vkCaYlgatJG/AIAIZNJEAT8AACot4/3gvgAARZSwhvk+AAAAAAAAAAAAAODOG96aPgAAei2aS9c+AIA3Lb04LD8AAIBAebOIPgCYhNW7jDo/AACw7kVKsj6AGgEc/S5zvwCAUFqbH/k+AABY2csUwT4AAKBcmbukPgAAAAAAAAAAAAC3usrt5D4AYOSjpUMUPwAAxpzb5tk+AADwcEXS2D4AAAAAAAAAAAAAAAAAAAAAAAAQfL4hob4AAM9GlJXivgAAxtdZYtI+AACc5B2k4T4AAFihh+P8PgBwwCsJHiM/lMHU0paexT8AAKBQBHOaPgCGuFsrAm0/AAjWg/HdTz8AAGL4p0DWvlza5kUWqcE/AOAyc5/wJz8A2todabJSv07mR6G+/tW/APTZPawWUj8ARIM4aP5ZPwAAiHrT5s0+AAB6sHu30z4AAADT72yqPvBupfUm2KI/JN6gtPcB278AoKl81kUiPwAAAAAAAAAAAAAILO8uvj4AALj+30S8PgAA5H6Jkd2+AACwuxKVqT4AqHAKF8M3v9wOlZyLU8u/AAD6Oa+I7j4AAAAAAAAAAAAAAAAAAAAAAIDR7EfmDD8AAIAnS6NwvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwsAHMNu+ACCuPlZgJT8AAAAAAAAAAAAA9mPVAuI+kL6sfD8OsD8AALZ6oCfVvgAAAAAAAAAAAAA6cwQ/4T4AINo0/Ssev4CRgcIG5JG/AAAAqG5qw74AABAjXqXEPgD8Xbkac0K/AAA0ULOEwD4AAADKHc2yvgAApvnrOeM+AABwZdEJxj4AAAQEF8PtvgAAAAAAAAAAAADMsEzewD4AgB7K8lPxvgAAAAAAAAAAAAAAAAAAAAAAAFDdKW6jvgAA2+kgVeU+2KjpjJZZtr8AgL2R+Bf9PgAAAAAAAAAAAAAu9iUS7D4AAIBC96CDPoCp6U1Pv4O/AADA5cSwmT4AAAAAAAAAAABQL+5tSSC/AAAAAAAAAAAAAACgHexzPgDcRsBd0ks/AAB0DoqIwz4AgEFkeegoPwAAEI/6Da4+AAAAAAAAAAAAAIA26qKqPmCdVUpDj7W/AACYKAD/v7740sQ3QQqxP7D23YZCDLM/AOC6VaWLE78AAAAAAAAAAAAAIJdkEsQ+AAAAAAAAAAAAAAwRETfxPgAAAAzbalc+AADg1vQVuj4AAN188orqvgAAAAAAAAAAAADtSELa4T4AAAAAAAAAAADA6wvFAx4/AAAAAAAAAAAAAAAAAAAAAACmxTNe/lA/AABAYu4xjj4AAICwCLiVvgAAWrdOZdU+AAAAAAAAAACAEYX48LJ4PwAACEuTCP8+AAAQE0eBqj4AAPCrWx3TPoBXNNrL1Ia/AFLoeYm1UT/4Q2GftuC0PwAAADscXbi+YCfm1abHoj9stNV9F13PvwCsuxo7dUg/AAAAAAAAAAAAAMYuJQX6vgDy9luHsW8/AAAAAAAAAAAAADgzUg7DvgAAThfvqdY+AADwIplOoT4AAAAAAAAAAAAAQPGPhaW+AABYMKHKDr8AAIBBNrV5PgAAAAAAAAAAAAAAAAAAAAAAAJgmaSW0PgAAQL1wpJ4+AAAeDHtl0D4AANDv4M6iPgAAoB7a+bQ+AABYcydnuz4AsAB2RjlEPwBAWzOxHgO/AAANf1x67j4AAFit4TayPgAAAAAAAAAAAAAkIVcG6j4AwPv1GsgBPwCAWHbq4Q4/AAAAAAAAAAAAABJ0Rk/ZPgCAUxkbovK+AADQ8WN1tj4AAAAAAAAAAICC916tQo0/yF9Mo3ATsz8AAAAAAAAAAAAAAAAAAAAAAADqdsNZ5z4AALB4Rm+9PgAAAAAAAAAAAABAIoYehD4AAAAAAAAAAAAAwAIbXYI+AAAAAAAAAAAAAAAAAAAAAAAAQPcKK5U+AAAA2JFNcb4AAPjMs/fBPgAAAAAAAAAAAAAAAAAAAAAAEJ6neJEjPwAACA2WVc0+AADhcAP54b4AwAlwLJAbPwAA4KWNr64+AABgWk+5pz4AAJiIKVSyPgAAeCe2rLk+AADgvns2lD4AAHg7mTSzPgAAFjX+CdA+AAAAAAAAAAAAAAAAAAAAAAAAuF5JCbU+AAAAAAAAAAAAYCvLlUoXPwAA80iuBeC+AAAAAAAAAAAAAHjUH7m8PgAAAAAAAAAAAAAAAAAAAAAAQDh8rc8aPwBswQbQCkK/AI+LYX7Kij8AAAAAAAAAAAAAAM7VmWc+AAAAAAAAAAAAYEiGCWERvwAABNfUNcI+AIDc9izyK78AABMWaWPgPgCAIseKBPu+AAAAAAAAAAAAAFEib3PsPgAAAAAAAAAAAAAA6MzRYz4AAAAAAAAAAACAlNX740Y/AEABwVbKAL8AAOC/0y+dPohmuLhmTbM/AAAAAAAAAAAAAJLI52PvPgAAQBfojpc+AADtNWaL5L4AAEA3Si6ZvgAAAOdOkpU+AADwhbr87T4AABCHHtWwPgAAUHLDX7k+AAAAAAAAAAAAAIBDvFnzvgAAZINi4MM+AACAXb2Ml74AACBDnIaUPgAAwN8JuKS+AACAE8gUnL4AEAuP+hgkvwAAcBFJ482+AADgG/9rkL4AgHcxXHsBvwAAbsS6HNC+AEDO/YQQEj8AAAAAAAAAAAAAVhv8T9Y+AABAv0ZXoz4AAHBrsoWpvgAAAHtBj3s+AEBxTumeGz8AABBGsI/xPgBFmqh9cqK/AAAg+kEPkz4AANxL+07XvgAAzMpWFMI+AAAAR+tMoj4AAIiibSbzPgAAmAge+8Q+AJD37c3IJr8AkBwGLfswPwAAAAAAAAAAAMhNqHKFOz8AAAAAAAAAAMAC2+f5kKG/AHCpAMS6Kj8AcOrvymw4PwAAQHi4yIS+4KGWd+S3sL8AAAAAAAAAAAAAwPYyu4o+AAAAAAAAAAAAAItx5dnpPgAA2LNcyLk+AAifP3DvQ78AAAAAAAAAAOBouGQ+2qs/AIDNLPrM9j4AAAAAAAAAAAAAoLhEGKq+AAAnwwmu7z4AACgBBijQPgAg/YrjkBa/AIjtRrhDOj8AAGB3h/KcvgAAjIs3SMm+AIiTMOyIRb8AACSzruTQPgAAAAAAAAAAAECixSu1HD8AAA+luJDyPgAALFubduM+AAAAAAAAAAAAALhNniToPgAwNRVOtDm/AMD7lJluCD8AAAAAAAAAAAAAgHIs2Ym+AAAAAAAAAAAAAAAAAAAAANhUY8OYmbo/AAAA/D7D8T4AAAAAAAAAAAAAjKVZX8o+AAAAAAAAAAAAAAAAAAAAAAAAAFDYjkA+AAAAAAAAAADw2pH9BBS0PwAAAAAAAAAAAAB72bAF+b4AAJ8XxYzgPgAAAAAAAAAAAAT8RC6BWr8AACZYq2zdPoCiL92ROXG/AAAACPHHUD4AAIDeIvJ4PgAAyqZPE9E+AAAAE2WzBj8AAJpU7iDjPgBAVLKcyxK/AAA9x/oVEj8AgLK4fcrzPgAAAAAAAAAAAABFoLF6+b4AAAAAAAAAAAAAAAAAAAAAAAAAPmA7kz4AAADSChlYPgCAGp+p0BU/AAAAIXDxZj4AAFhQw6f+PmzJR51WZcK/AAAAkDXnjT7gfRVcOk6WPwAAAAAAAAAAAAAAl0nMdD4AAACQBpwhPgAAgOf0TaU+AADQy6n5tj4AAAAAAAAAAAA4hSOrrDu/AAAAAAAAAABQ3gaMMyS5PwAAAAAAAAAAAIBxwepm+74AgBy3JxQIPwAA4JP0Rp0+ACDyZNLZE78AAAAAAAAAAAAAYO6uxqw+AAAQp6sTtj4AAIAHUuV5vgAAAAAAAAAAAAAAAAAAAABAFFhb/HuJPwAAaFG5UsI+AACAPM4dtD4AgBZAGuEHPwAAlopvHfU+AAAAAAAAAAAAACwc6ibMPgCDVd7qu2E/AIBnc2o0Bj8AANKVT2vRPgAAUGU8hac+AEAjqnB4D78AACQaU1XavgAAZYJ6jOc+wLGca18cjr8AAAAAAAAAAACApKDa4/g+AAAAAAAAAAAAACBbUjeuPgAA0cvCr/I+AADAobJRhD4AwG8O6gIFPwAAwDo2uIY+AAAAAAAAAACAXvIkuc1yvwAAAAAAAAAAkBaRtgtyoz/giqpyYHecvwAMFsvZakA/nlO1DwTp2b8wgqwzxF2sv5BlY6IGzqM/AAAQm34arj4AgILsf+oJvwAAAAAAAAAAAABo8w8lxj4AADpr+4bbPgAAAAAAAAAAAAAAAAAAAAAAABAhDXjcPgAAGLDsmto+AAAAAAAAAAAA4OURmi4ePwCAn+QKR/M+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAT2BTqT4A+JkAx0JAvwAApOHkLMc+AMDwFWKzEL8AALipVyHbPgBM6CfqDWa/AIAs8HXd+z4AgGlnw9HxPgAADKhTTAk/AHaRACbdbr8AAEBtj8mpPgAA0MxxtKk+ANCCZSXAJz8AAL/cahziPgAA9AGxVsU+AACgHxCYvj4AAFCppdOwPgAAWLFbG7K+AAAAmoXuoT4AAAAAAAAAAAAAil6QYOa+AADIafm27T5Ea760ALjAPwAAYJz9P6c+AICojmA4+L4AgLUlOnLxPgANZM2RnHw/sO5H9jAxoD8AAABYX05APgAAUJ9Y37M+AABQ0zk8wT4AgI8fGdb1vnAzYPKzZ62/AAAAAAAAAAAAAPc3bUPqPgAYbLWF+j8/AIBbBM7C8z4AAOKMwaLpPgAAAM7kqK6+AAAAAAAAAAAAAP+osPzrvgAAq51VUua+AAAAAAAAAAAAAAAAAAAAAAAAAJ9gNOc+gPsflxASiL8AAKQY4JQNv4CIKSFZd5M/AAAAAAAAAAAAACj7zVbBvjiucvKTprG/AABIwRQlxT4AANjIIKnPvgDA3rntNiK/AACQzt3Zuj4AAAAAAAAAAAAA+EyY5bs+AAAoRatTtT4AAEgvbyjFvlarrHpMfd2/AACq67fM4T4AACn6Z/UDvwAAKGD4TfC+AABAZelUuj4AViQJDH9Xv5DrVPZIi7C/Itvg5g6k2b8AAACZfjluPjBY6mOwEqw/cAtVay6aoD8AAHlTB0rvPgAAJ8W0Gf6+AABsOGpDyz4AADoTUyLQPgAAmB1mlNw+AACMbH+g9z4AAIBACyzdPuC4699v5JU/AAAAAAAAAAAAAABNwqONPgAAQMeL1bA+AAAAAAAAAABMxeJZ15rPvwAANHQsQ9Q+AICUvBhxAj8AAACAyE02PrKIBVTjQtC/gD9cS+YOeb8AQNG8PJgAvwBgDEAB9Ry/AABcMOXcwz4AAKCxpXulPgAA4HdkhJE+AGC+Z89VGj8AAAAAAAAAAAAAQE85EsQ+AJVKXba8Y78AAAA3c6WkvgAAgH8lJag+AAACBnQL0D4AEBygRmUhPwAAAAAAAAAAAAJKZwW8Zr8AgLkK2RHyPgAAAAAAAAAAAABVq+YJ4j4AAAjZoGKzPgAAAAAAAAAAAAAAS723lT4AADV9aGHxvogbvvu37be/AADAOv3Spb4AAAAAAAAAAODvUveES50/gOGYLnyQkD8AAAAAAAAAAAAoPZf+ZTS/AAAAAAAAAABQsW8mMCygv8C0GenuNo6/AEj646TPMb8AAMAJ6KOAPgAA2Exr1Lk+AAAAtTiGk77Q5TkZ5gvCvwAASE7W9bI+wC5ejtCHhb8AAGBzh52VPgAA26GX6eo+ABA0cEwaLL/822LSjvHWvwDAsge+1Qq/AABYO6ozvL4AwIK+iZYVPwAAwMzVp4Q+AAAAAAAAAAAAAAAAAAAAAADAy1gLfgg/AABgRwvF3j4AAPj0AfW2PgAAAAAAAAAAAAAAAAAAAAAAwM3U4qMNPwAAAAAAAAAAAACU16kE0D4AKc5YUERmv+aQdG4DGNC/AGDLCklMND8AAJIXBY4BPwAAFDbtYcC+AACwTDsb2D4AAGATuTmSvgCtvN4LlGU/AAAoJG+lyT4AwIMz+3AHvwAAhzz+zuw+AAAAAAAAAABQPyrJZrrLPwDAJiNByAY/AAAAAAAAAAAAACwzBy7JPgAAAAAAAAAAAACfQV8/9T4AUJhZQ+lQP0iCmdy3erK/AAAgeQTAqT4AAAAAAAAAAAAAAAAAAAAAAAANjU84+D4AAGBdi0WWPgCAR3xNrvM+AMBDBOZ8EL8AACoGkHrePgAApo85/9Q+AAAAAAAAAAAAACzxhcHevgAAAKQk0EU+AADg11JZmj4AAFfHkBTqvgASbNcru1g/AMBXhu/0Gr8AgPfyugAMPwAAsNlu070+AABm2XYZ0j4AAFBRLvu6PgAAeD+Qmbo+AEhmx960P78AAAAAAAAAAAAAqgbd0dU+AAB1O2kE5D4Akqkd+wpRvwAAAAAAAAAAAABQIVzFzj4AAAAAAAAAAAAAuKL9HbM+AAAAAAAAAAAAALBl/+ygPkDU+jtNtZQ/AAAAAAAAAAAAAADwRhEvPgAAtaJXBvI+ACCv5W5AFb8AwCbOO5QAPwAge8X9IR8/AAAAAAAAAAAAABhlGbOyvszRy3pZAcY/AKDytPBVJT8AAKC5gMCgPgCAUnOmyhS/AAAAAAAAAAAAANAdqorAvgAAADLfXXw+AADwYvxhtj4A4OatOoQfvwBww/YjsCE/AAAkW7Jqzz4AvkHvff5lPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlsDGAtG+2MCwX3Tgsr8ARDqICbFQPwAAx8bdeOm+AAAAAAAAAACAA/8qz4KKv4CJBCS4vHi/AABDYcQR4z4AAAAAAAAAAAA43CXMiUg/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAolXieD4AAAAAAAAAAIh3A1epQLi/AAAAAAAAAAAAAAAAAAAAAAAAsEfH2P4+AAAAAAAAAAAAAOBaWL6kPgAAAAAAAAAAgJuYz96cqT8AAMCiOaiUPgAAAHK2f3U+AGCiCpeHEj8AgM0VsDPwvgAAcDvZCKQ+AAAAAAAAAAAAALJs8k/jPgAA+9kCQOu+WDB9g9EFtL8AgGLYepb0vgAAeM4rltM+AACIV6szxT4AADr2Fz/yPgC4+TC+8lq/AAAAAAAAAAAAAICF34+xPgAAV/j4xes+AGCrgVvRIz8AAAC+2/B8PgAAgA4Zo3M+AAB+BClp2D4AABCTW8GjPgAAAAAAAAAAAAAAAAAAAAAAgAaEhy38PgAARVExVQE/AIBBx28O9z4AION/R6QvvwAAHgRs8tE+AACAgJk/pD4AAKi5blO7PgAAEG2bC7A+AAAA7KjGej4AeHq18v08vwBAKvN8jhI/AAAAAAAAAAAAKCpiIkBIPwAAAAAAAAAAALihWcg6Nz8AOOc8IEcwPwAAoF2tDJI+AAAAAAAAAAAAAFsjuB78PgAAAAAAAAAAAICU+jp9Fr8AAAC7dGCYPgAAAAAAAAAAAHQQq0Z8TT8AgPLGZ2AGPwB4pWS44l4/AIAgx9co8D4AABCnomiyPgAAAAAAAAAAwG0K5HMljz8AAAAAAAAAAAAALyZURg4/AEBbp3zhGz8AAEDxdjCsPgAAUJpb6LY+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADCCJue1PgBwEOsAGi2/AAAAAAAAAAAAACDW61WlPjwx0OASbsw/oAmmSKEymz/AdAD9zaeWvwAAgMUuvrQ+AACqGKX90D6AkCqrnVGUvwCAy6YtOve+AAAIHMOZ+D4AAAAAAAAAAAAAAAAAAAAAAAC0gCiq1j4A3K3cu6xHPwAAAAAAAAAAAADAXJY01D4AAFKQmgviPuDuB1jW4MW/AAB8BIVnwT4AgDqvdALzPgAAAAAAAAAAgLM2gPvscD8AAP1bDkLvPgAAAAAAAAAAAAA0qKJQ0z4AAAAAAAAAAAAAAAAAAAAAAMCi/gzeJb8AAMBvTZSyPgAAv6rqSvE+ABgvbLalMb+AAF5a6vp1PwDANnnh1hG/AHCrd+tXQj8AAFVRuw/uPgAAkNbwDMw+AAAAAAAAAAAAGIVskoMyP+DP//3TGZq/AICfqsjV/D6A7LWOesZ4PwAAQMUbabi+AAAAAAAAAAAAAAAAAAAAAAAoC8RkQTM/AAAYjVWWtT4AABTxM3HnPgBAMylYTiG/AIARtcBy8z4AAPQ8Vs3IPgAAPOdVdeG+AJDYy5V1JT8AALx8RRLAPgAAoHwuh6M+AFzn54KLQb8A5CCzZOtmPwAAAAAAAAAAAADwewx1tL6AU2OB/23CvwAAAAAAAAAAIBSOH965o7/Ark8pBRunvwAAGs5ms9O+AAAAAAAAAAAAAFCcpUquvgCwcMpjWDI/AAAAAAAAAAAAADB4J27NvgAAhMVONss+AAAAAAAAAAAAAAAAAAAAAJzOHarHR9C/sM+Rvn8Er78AAAAAAAAAAAAAwA2mUYg+AABqAheW7L4AAIQ8dO/APgAAwK76eLU+AAAAAAAAAAAAAJQAvnHAPgAAAAAAAAAA7FRxJa+Vxb8AAND+rP6vPgCAzvbqPPI+AACY4rxA+T4AAIBGIkisvgAAPj70lNs+AAAYb8eXtr4AAO6QEg0ZPwAA7nyDD9C+AAAAAAAAAAAAeOWEbztKPwBAvIHXyRU/AAAAAAAAAAAAbNaItuuIvwAAAAAAAAAAAACoO9tiGT8AAN4tS0L3PgAAyMjD4r0+AAAmfFN93L4AgEuVbMXwPgBAqK85CwE/ACDFnJzgFb8AAAAAAAAAALj1zuDxyca/gBZk7SWyiD8AAAAAAAAAAMD198m9FYS/AAAAAAAAAAAAAAAAAAAAAAAAwEGgCbY+AABQkUZcrL6AxGp8tzWhvwAAdo+pV9M+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzLNETMo+AAD8PmCLxj4AAIDaEQjGPgAA4I1PqNS+AAAAAAAAAAAA4Fe6hGUbPwAAeNAOyLU+AACw5PIWq74AAIikT864PgAAoK1/e8g+cIwp2Ox0vr+wuNNHxcG8PwAAAAAAAAAAwP1aJrwVh78AAAAAAAAAAEDUXIjIY4o/AAAAAAAAAAAAAMCVF2XYPgAAivcX3Ru/AACO2IG90z4AAK6afjD0PgAAAAAAAAAAAAAAnQ1JnT4AABx4YbzSPgAAS0S6kec+AAAtbrRU7z4AAAAAAAAAAAAAVNG0Oek+AABUXOkkxj4AACCX/GuePgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgQfQNYB6/AABAQIWWhz4AAAAAAAAAAAAAAAAAAAAAAAAApdMM774AADxkKZrYvoDpT9hfQXG/wLTSK4X3qL8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABIAyrD1T4AwDZ/+f8GPwAAlADQM9S+AACACDP2qb4AAHlRzF0OPwAAyrnKHiU/iB52gLfluz8ApcilL59gPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAapnKyBc/AEAelom2Nz+AMoUoZLl0PwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAw59DlJSw/AACkDsxO5j4AAMs9ppn2vgAAAFu4WJU+AAAOTmi/3z4AAAAAAAAAAABwA2vFGTm/AH8McZS8fz8AAEDQjBDCPnCrCM5J8Ls/wp80kI+X2L8AgLKz7EbwPgAAALNc1KQ+AEB6NuL6Bz8AAHBgkwPNPozgAGau4MU/AABAL5xUnz4AADAr/PWoPgAAAAAAAAAAAFBfQ81bLr8AAAAAAAAAALxzASsaDs2/AADws0NOoj4AgMVQprD8PgAAYEGuCLo+AAD6u7/S0L4AAIYZzFvdPgAAAAAAAAAAAACgf/N8uT4AygRWUrBUvwAAAAAAAAAAAACGl3jlAT8AAAC2PqttPgCAe7ZuZvA+AAAAAAAAAAAAACRAjeXkPgAAZe1oz+s+AAAAAAAAAAAAAP3zUIfxvgAwER8/WCC/AEB10OVIB78AAGBf3jmZPgAAwIIIBLy+AADAX22znD4AsAUbT08gPwAASREjgxu/AAAAAAAAAAAAAAAAAAAAAAAAAOpXpZc+AABCDECk2z7AKrOqhZ2yPwAAAAAAAAAAAAAAAAAAAAAAwAMv690SvwAAAEY+A1I+AAAAAAAAAAAAALAEVAG5PgAAgLYFYI4+AAAAAAAAAAAAQJT6du8aPwAAAAAAAAAAAACYdhzesT4AAJDAA7GiPgAAAAAAAAAAAJZpGrjcYz8AAIDIxeqBvgCAq1pMLBg/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD3376tMZ78AIN4AHb8QPwAA+hq+J+Q+AACArfOgrz4AAICdc35/PgAA0EGTa7w+AEC7oPVlCz8obkoAO/PAvwBgZXmFRhQ/AAAAAAAAAAAADL1JYFtPvwAA5rJ6v9o+AAAAAAAAAAAAAFQCjz7HPgAAcDB8XrA+AADYCFxxuj4A4KW5uGIpPwAA32W7U+Y+gESGeZ9/dT8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADMmRp9E+AAB+fwMR7D4AAFg8PM+0PgAAAAAAAAAAAABLMjju8T4AAABS7ia9PgAAnvlquPK+AAAorcNAsz4AoNyra7EcvwCIWvj8EDO/AACAqaEorb5A9q0z86ugPwAAAGKXLoU+AAAAAAAAAAAAoGzX0GkjPwAAAAAAAAAAAIBRjvOe+D4AALZR84gOPwAujedXFo6/AAAXYj4jKz8AAAAAAAAAAADk3ijk00q/AACs85aE9z4AAAAAAAAAAAAA4WCPbe4+AAAAAAAAAAAAXsgo8ItmvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeGlVF7W+AACUOnPN4r4AIEMiNKUsvwBA1aRk6gQ/AAAAAAAAAAAAgL/JFW4VPwAAAAAAAAAAAKDPXfP1Hz8AoFMzbRk4vwAAlFEMD8k+AAAA+1Aipz4AAJAzhgPJPgAAAAAAAAAAAAAAqkBVgz4AAAAAAAAAAAAAAAAAAAAAAABsBab0wT6Q9jX8rw2yPwAA9M66/QQ/AAAAIWjZeD4AANAXVxqqvgAAlmz8Dt6+AACMNqrVy74AAJDXt2ejPgCA1jplmQI/IK16BOoVsz8AYGONCh8gvwBhA/Gr3pi/AACCtOAM3b4AAGC+Rm2XvgAAgugaWt4+AICXFi36/z4AANBaDGHivgAA0D9Wwry+sGBFKz7/s78AgMYyWzwAPwCA6aYX4Pk+AKCvLAc/Gr8AgXWccEt4vwAAAAAAAAAAAAAAAAAAAAAAgFkSt5LwPgAAWJOJwLE+AAAILGL3ub4A5lZauw9WPwAALPxLjsU+gK8l1Y64gr8AALMkiMLzPgAAAAAAAAAAAHqwd/x3Uj8AQAqVSuQHvwAAWBpEjrA+AAC4J9pEFz8AIMbk5g8Yv9Du2nGzA9A/AADAk5fOzr4AAAAAAAAAAAAAAAAAAAAAAIAyXXtY/b6Y/gbD9ujMPwAAAAAAAAAAACBQ84njJb8AAAj0h9nFPgAAAAAAAAAAAKAean6yK78AAAAAAAAAAAAAAAAAAAAAAOARIoyyFz8A8H9F15JHPwBAn3dkdhg/QNWPUmqEiD8AABy62HPOPgAA6Eygh9c+AACyIykA2j4AAP8xUqsGvwAAgI0bFXI+AADLqlVA5T4AAAAAAAAAAAAAZTc9Leg+AAAAAAAAAAAACBn3fm8xvwAAbkfrl9U+AAAAAAAAAAAAQHp5zYEEPwAAgFtLXo8+AACfl7eM9z4Y+N09aVa9vwAA/jXpA9U+AGCqVZwgET8AAAAAAAAAAAAAAAAAAAAAAAAE8Cj63z4AAAAAAAAAAADAEvxZQgE/AADX7U+k7D4AAAAAAAAAAAAAxt3/wOE+AADgJcDUxz4AAP2P9dnyvgAAAAAAAAAAAACgP6oMk74AABzUh4XSPgAAgKAUprY+AAAcheSU0z6gsFChznSsPwAAAAAAAAAAAAAAvQH6l74AAAAAAAAAAAAADBiEMcc+AEB5EYSgEz8AANaUEFHVPgAA5g2lE+s+AABUuhNPz74AAEBOurm1vgAAAAAAAAAAAAAAAAAAAAAArH+kovBwvwAAiqtJow+/4H0N/H6RoD8AAJDza6+qPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBipOz8Aj8AAKAv6diaPgAA4vKGHNM+AAAAAAAAAADo8rI8ip65PwAAyIvWsvO+AAAAAAAAAAAAAKArbUmbPgAA4+suLuc+bCaD141Tzz8AAAAAAAAAAAAAALfIgXk+AACo+v6v9D4AoO8VlJgQPwAAAAAAAAAAAP7CH8D3hr8AAGBFjKaTPgAA0AcdjrE+AAAWKt2R0D4A+hp5gW1UvwAAAAAAAAAAAAAQa4CJuj4ADAmPZlBDPwAIReJPdEM/AOTDoLehab8AAIsBjUbkPgAASB7y4ba+AAAAAAAAAAAAAN1ikMbtvgAAAAAAAAAAANBgDaJAIz8AABzDRwDFPgAAAAAAAAAAAKCdhdoXJb8AAIFe65/8PgAALh+8KOg+AACvMpIm7T4AAEBCGJOGPgAAAAAAAAAAAADwfarFpz4AAFq4B/DcPgDwyWREZig/lDCH9q6QwD8AAOBa8d6hPoCXYOV7Nnm/AAAAaQzmZr4AAAAAAAAAAACADDGylA6/AHA5924+iT8AAAAAAAAAACCeHk0Pw5a/ALAT3sviIT8AADxuGCfMPgAAAAAAAAAAAAAAfrGFpT4AAKL3F7HbPqQY7BSlr9y/AAAwcHGPwj4AADDpOJavvhBKeQc9DKy/AABgv+rJlj4AANh3vB+5PgAAZ+LQcOo+AAAAAAAAAAAAAIjXwbu+PgAAsGiU7Kk+AKDk0cVUE78AAAAAAAAAAODxE39GJpy/AICMoTPmKz8AACDezfWmPgBAe25jFwc/AKD4BeNPFT9AiLH5M8KEPwAAMHYWqMw+AAAAP+gBgD6ALL8D2kSavwAAGc2GPem+IKjbP0vAoT8AAFAFXBCuPgAAfpfnn/w+AAAA75CLmT4AAAAs6/+GvgAAAAAAAAAAAAAmGteo+z4AAAC+rcyoPgAAIOb+Tp4+AECpxURdBz9gzQAj70iyvwAQh71eUS0/AKBnSG3WGD8AwFO4Ey0RPwAAeBXel7k+AAAAAAAAAADGMv3a/XnQvwAAQHTOlZM+wDf0Vft3gr8AAOzNezTGPgAAAAAAAAAAAADs2q2b5T6gC14B03uRvwAA6Lv28bI+AAD0IbykzT4AAADhAMeEPgDwsRmCryw/AADQ4hg9oD4AAAAAAAAAAAAUbA6URFI/AABIAj/duz4AAFiqKQXYPgAAl4K9uvg+AAASFEvM2b6QQ8qMcpm+vwCAGGmsUPC+AAB4sIzWsj4AAOr58MEivzDzyi+wgLA/AAAASRDXdT4AaJ7JqqU3PwAA8O+Jbbc+AACw9ByX0z4AAFj3O8nXPgAAY1r7TuS+0Epfmogkrj8AAAAAAAAAAAAAAAAAAAAAAEAmF8OEAD8AALbLcr7fPgAAgIB3VII+AAAAAAAAAAAAAICiBHaJPgAAAAAAAAAAAACYRi9lvj4AoOnsi7wSPwAAAAAAAAAAAAAAAAAAAAAAAOD85wqwPgAAbtBhSu2+AADQBr+qvz4AAFDDFzLAPgAAAsILxOe+AAD2hF6U0j4AAAAAAAAAAAAAMCWM6LA+AAAAAAAAAAAAAAAAAAAAAAAA4A/s96c+AOA2XleGHr8AAJQZYrTIPgAAicMhB+A+ACCv8l/0Lr8AACD40ZuwPgAARA+DKcY+AABUqSa7+z4AAAAAAAAAAAAAeFIw8tE+AAAAAAAAAADAqK/yha6gvwAAAAAAAAAAAABEf4C87b4wetYJ6ZyjvwDAqoU8lQC/AADvI00U5D4AAAAAAAAAAAAAAnLW39U+ADSUidtNSr8AAELGMxPQPqg6eoo1+82/AAD09cbi2T4AAAAAAAAAAAAAAAAAAAAAAMBgzFBzED8AAAAAAAAAAAAAAAAAAAAAAIAEhjet9T4AAOzcHkvPPgDAw9K2ExE/AAAAAAAAAAAA4IZMBTEaPwAAoqBOC9c+AIBJloJVBb8AYCCAgY4uvwAAULKFPvw+gEbNpz3YcL8AAAAAAAAAAAAAEK3RnbU+AAB0idaJ0D4AMLbuaOIsvwAA4Jqxwa4+AAA1Au2LBD8AAIDf7Ip4PgCQWfDpjy2/AAAAAAAAAAAAACh6J4a0PgAAzXqfwOw+AADR9aCI8L4AAMBFEXnPPgAA7qKRKPk+AAAuN0Q63j4AAEBcIIyzPgCIUvfVvE8/AAAAAAAAAAAAAKf+2WoSPwAAAAAAAAAAABC6SgeVRr8AAOBw1IWpvnaB/58qGOO/AAAAAAAAAADAYODZx6Ccv8Cref0rSok/AAD2dAzW3L4AADhKHorqPgCAy8Pp6/g+AABsBtvyzD4AAAAAAAAAAAAAJKNgAd4+AABInb1F2j4AAAAAAAAAAAAI8DEDJjc/AEDKdnf6CT8AAAgJGBrPPgAAAAAAAAAAiOBvcG95sT8AAJBVaMPLPgAAAAAAAAAAAAAAAAAAAAAAAPTqLCPcvkCtiDpoe4C/yIFuGFxyvb8AAHZB4L/kPgAAAAAAAAAAAADgKqmGlb4AAAAAAAAAAAAAIbFdZOA+AAAAAAAAAAAAgBX9rqX1PgAAAAAAAAAAAAD8KKZM7j4AAAAAAAAAAAAAUPp1Zak+AP05b8oziD8AACzC9dfYPgAAwDkVi4Q+AAAAJw++wL4AAMAVkPyePgAAhVK45gk/AGJkRrv1bj8AANyQK+PVPgAA6A7kndU+AAAAAAAAAAAAgBVup7UIPwAAIEaD96M+AIAK9CW4/T4AgBwrh54LPwAAAAAAAAAAAAA4x/OGtj4AAICxIOtyvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkG2DStQ+AACqtufY3D4AALpkQgHQPgAAwVdy8/s+AADO5X+O0j4AMLMBiDc3PwBA/61KxgE/AKBARqX4LT8A8HXfYMInvwAAAAAAAAAAAAAiw/VC0L4AgHYcSITxPgB8v9BO6kU/AACxiv676D4AwMnX5+IPPwAAeO7bbb6+AAAgZBVGor4AAEsDw8MSv/AQ+hE9S7S/AHEipij+jT8AAKAad7aYPgAA4Ed9PrU+AABASdB47D4AAEyPOFXNPgCAFpL1Ufc+AAAAAAAAAAAAAGgiIC3RPgAAgO72Qs4+AAAAAAAAAAAAgEVNSVX8PiCoszd6XZm/AAAAAAAAAAAAAKhUrJfDPhQ30Wumucq/AACpt5DRPD+gA+wp8BukPwAAegHiBvk+ACDUodV/Lz8AjCUNvOpbPwAAKBfyOrs+AACoYdx93D4A/mOjP/KVPwAA7DcnwcA+AEhG7AI8Mj8AALCNMJPNvkh0S/77kdW/AAC2JsGX3r4AAFXF80TpvgAAAAAAAAAAAAD0q0No2T4QNc3EVBCoPwAo7u7jH1k/AACOUpHI074AAHRUu1TEPgAAAAAAAAAAAADo6+3s7z4AAIAkOiKUPgAAgO/fqsY+AAAAl6qFnz4AAAAAAAAAAGC4s8VUDqu/AAAAAAAAAAAAgDheDOfzPgDADXWTXwy/AKzh4WgSYr8g7ZOjFjavPwCAcQCmExY/wGMpSy5liT8AAAAAAAAAAAAA2ryXZ/w+AAC4rnfj0L7sUf4phAPBPwAAWLIbX7q+AH/cVbvGbb8AAAAAAAAAAAAAwDEMGaA+AAAAAAAAAAAAuQtCHCKMPwAAvMQ/Dcg+gG5eypLNjD8AAJQQ/inFPgBsUqAxdV+/AAAAAAAAAAAAQNuikCgDPwCAIbSBRPg+AAAAAAAAAAAAAG7QKdfePgAAAPTupFc+AIDDK7wL8T4AAESLyzLXPgAwY+xq6S8/AEBNMO/iqL8AAL7V6hP8PgDQv7rZPy6/AAAAAAAAAAAAANTqGXvVPuCLMGGZ0aq/AAB6lPUi1D4AHi7j36pjvwAAAAAAAAAAAACg6yA3mz4AoJ+UvXwVPwAAAAAAAAAAAAAYp0N9uz4AAKDgsjGePsBNbioPy6C/AACPkgKx6z4AAIB8/ZCsPl5RQRyAqdW/AADYkpi56D7goiAFyZi7vwAAvA7g+8w+AAAAAAAAAAAAAAAAAAAAAAAA3JlLleo+AAAgPXiyoD4AeQlhQF1kPwCgg1Ck+Ck/AFAT1KiHOT8AAGDtzgXXPgAAFu7nttG+AAAA1i4RtT4A4Cazu2wfPwAAAAAAAAAAAAAAAAAAAADo6+VUmubSvwAAAMhk/1A+AAAo2/P80j4AAEDocSbOPgAAG2iem+E+AADguJIkyD4AAAAAAAAAAAAAHpRAIOc+AMSGxdhUQD8AAAAAAAAAAADgb19MNiM/AAAc6eUb5T4AACDBnjLPPgAAbv6tet0+AAAgqtfPxD4AAL7pbN/XvgDgo4HX2Rq/AADOZn6SB78AAADlPuaXvgAAyLzENLA+AMACkfG+Bz8AAGVC49ECvwCAXYvM1/W+AAAgZdIkkT5Af2eLLkWdPwAgEBKJwRM/AIB/1fAA+T4AAFPxJQ/gPoA+XQs28Io/QHaSGolHrL+A4fyJr3V2PwAQR01FbSU/AAAAAAAAAABoLyAIfK7BPwAA0VziJOc+ACB8hDxNKz8AAAAAAAAAAABA/RtVaB+/QAGopFNXgL8AAFckskkNPwDAogSHZAY/AABAjwemgT4AAAAAAAAAAAAAthQ5eB6/AB5a/gx2dL8AAAAAAAAAAAAg/NVwbB2/AADAR3/Bhj4A1W343iVuvwAAQc4XUOy+AAAaFfeI2T4DSZN24IjjvwAA6BsTPsc+AAAAAAAAAAAAANCvZ1y1vgAACGMNDby+AEjOKrPdOL8AAAAAAAAAAAAAAIqprnM+AAAAAAAAAAAAi5w2JrhmPwAAsgH3n9q+AADaY0pc2z4AAEkctunhPgAAXkko1NM+AAAAtdKbiz4AQHC4bBgtvwAAAAAAAAAAAACmAec00T4AABktSVDlPgAA4GgSeZw+ANTKtLvMSj8AAHoBbwnqvoSpH7J9Usm/AAAAAAAAAAAAAAAAAAAAAABg3B5kRRc/AAAAAAAAAAAAAAAAAAAAAABAFTlMZUK/AAAAAAAAAAAAAAAAAAAAAAAAdj+bcd4+AAAAAAAAAAAAAAAAAAAAAAAAAPsLLGQ+AAAOvMZT4z4AAGA6d/KsvlrnHUHYwNe/AABAMrxThT4AYMNc5x8nvwCAFUJy1fc+AACoUtIdtj4AAAAAAAAAAAAAWRWhheA+AAAg+OmHw74AAAAAAAAAAAAA2K4rcbE+AAAAAAAAAAAAQISOhVAXvwAAAAAAAAAAAAAAAAAAAAAAAKDDQSCZPgAAUFvg4ce+AIuCVImUgr8A8KD7Z9UwPwAAAEDtFoM+yJ2YjyMZxb8AANzeFuzJPgBAU12Xnh8/AAAAAAAAAAAAAAAAAAAAAAAA8oyYoOi+AACw1fFo1z4AADSUrtfKvgAAAAAAAAAAAAB4X7ek5j4AAMAtHHGfPgBAlMKI1hG/AACqzLjU1z4AAMEkoZMMPwAAzfFhBvc+AODl6oSCEr8AAAAAAAAAAMD/xhTUnI4/ALxScEl+X78AADR9wFvqPrCH/OKanqO/AACmbh+J9T4AAAAAAAAAAAAAwIjPlrs+AAD+147A4T6wgxdzKWjTv7AhD8zCbcE/AAAKM4y5074AwJoH2QAFvwAAAAAAAAAAAAAAAAAAAAAA0Wo0u75sPwAAYCAYq5U+AABaHc1P1j4AAO6hqPLsPgAA3NxoXcA+AIwDrOpxT78AIO56NSoYPwAAAAAAAAAAAIDj/bfmBz8AAMDD85CfPgAAwPJzip4+AAAAAAAAAAAAABy5ZGLVPgAAQH0Ta8i+AAAAAAAAAAAAADDgpiCqPgAAAAAAAAAAAACAiLRwuD4AAL6pJtI9PwAAgG2woYo+AAAgNo82nT4AAAAAAAAAAAAAcGjUH6A+ENjbla4/pD8A6qpF9JxSP1hDG8klp7c/ACVzdo7Za78AgJdEQ0jwPgAAAAAAAAAAAAAAAAAAAAAAAE1mLg7nPgAAAAAAAAAAAMCvZj+kPz8AAAAAAAAAAAAAWAe0mPk+AADA8DkFxT4AEFlpZ04vPwAAAAAAAAAAAAAAAAAAAAAAoKXVphoVPwAAAAAAAAAAAAC00jpp0D4AAID9VBCBPiBcsj5vdaM/AAA4SWNRxL4AAAAAAAAAAAAAAAAAAAAAKPHFHjHCtL8AAAAAAAAAAAAApv6Chds+AFzmNM43Rz8AAAAAAAAAALyoC93Oi9A/AAAA4agQgD4AAPKSSuD1PgAAsjt0Jdu+AAPztzCDab8AAPrK+PHrPoR76m5VEMW/eJLjkHY7ur8AALD+wQLIvgAAAAAAAAAAAABbhDx65D4AAFiKPn3NPgAAqCWvvMk+AAAApKaskT4AgNcYjf8EPwAAsC+TntI+AAAAAAAAAAAAAKDKdb+9PgAA36TTM+E+AABCY12X3D4AwB5M6uUCvwAAxIvzWdI+AACg6fKnmj4AAKbMrDjmPgAA1yHpVfQ+AAAAAAAAAAAAAPBj2/e4vgAwDOzRhVC/AABqSQBE1D4AgI4tE9vxPgAA8IUGDq6+AAAAAAAAAAAAAI7CYgv7PgAAAAAAAAAAAAAgBHOxpz4AAApaAsfhPgAAsNdAd8k+AAAAAAAAAAAAAAAAAAAAAAAALoby3+g+AAAAAAAAAAAAAMifDvvdPgAAQKA4cqU+AAAAAAAAAAAAsl44XvVivwAACEFplOE+AOi8L14hPD8AQC1I47kAvwAAkt/dvuq+AAAAAAAAAAAAAAAAAAAAAAAgEyaM9xQ/AABwFEUlwj4AAAAAAAAAAABIyt5OiTm/AADkQE0C5D4AAAAAAAAAAFi1bp/iqLK/AADooNoNvT4AAAAILrLAPgBVLsXIt2a/AAAQccM6zz5A7MbhLa2RvwAAAAAAAAAAAAAAAAAAAAAAAFyU8JHHPgAAADKz8W8+AACAecNS6T4AAFk9Oa7jPgAAAAAAAAAAAC2ehZqgjr8AAAAAAAAAAAAAAAAAAAAAAB93RbKnob8AAML0djDZPgAAAFQzsqa+AMB2sJiZAj8wce2vXUa0PwAAuU/aQuw+AAAQagO/pD4AAAAAAAAAADTQ7PaqRsQ/AABSra7E1j4AAGBoAT6wPgAAEBTXGqW+AAAAzkfdbT4AAMla+i/wPgAAMAgvsdc+AABAxQTKrD4AACA4N97aPgAACurw6NQ+AMALwvcNHD8AAJgmZKe/PgAAAAAAAAAAAAAAAAAAAAAAADxH/SDvPgBA2xgu4Ss/xNLBOMeowj8AAAAAAAAAAAAftJrQ62C/AACAiutIlj4AAAAAAAAAAAAAoFGfLqM+AABMC5KL2b4AAMAWwT+GPgAAoBEwepQ+AAByxGJX2j4AALbd04vnPgAAiDdvVby+ACz3L/ZCU78AAAAAAAAAAAAA1Bv65Mw+AABUjbkRw74AAGq1JqUKPwAAAAAAAAAAAADIl5ajtT4AAAAAAAAAAAAAAAAAAAAAAABAqy0spT4AAEA7EW2NPgBAjMmP0CG/AAAAAAAAAADwDVt2s+6uPwAAAAAAAAAAAACAFEHZfT6ABdGByFF1PwAAMPNJpNc+AAAI7r5Lwj4AAGzXdsTQPgBYkERYL2u/AABwkm6bsb4AAKDJY4msPgDIwLZ0CkG/AAAAivjaeT5gRxwMxzqSvwAAXbnm+e4+AABa7GJz1b4AAAAAAAAAAAAAHpBav9M+AOdkEC68aD8AAAAAAAAAAADQM2McyzU/AACwXibgvj4AABDgGw+/PgAAkIbXyaY+AEC4OuEfIb8AAMDYar2APgAAAAAAAAAAAADg632dob4AAJZXDrfavgDo1+V0HEU/AADyj9Y28D4AyBLAJkI3PwAAXzEOsfy+AAAIQmC3y74AALErwRzvPgAAGMzuX7o+AMB5G4w1Kz8AAI/X14nwvgAAXGV9+8M+AAAAAAAAAAAAAAAAAAAAAAAAcHKKSNq+ALDD5YIUQD8AAMYAezPfPgAAAPwAqnk+AACHNH8nDT8AAAAAAAAAAABga48IbxA/AADIsaxV2D4AAAIwp3/qPgAAbuvAiNE+AHQXX6yEdz8AAEqg/mfSPoDUdcG1JIa/eGnrUmk4wb8AVJbTtzBBPwAAzuwvt+M+ACALR4gnGT8gNx3rkyKnPwASNH4M44W/AAAAAAAAAAAAwM/X4xALPwDA3Gl0mSY/AAAwrAjZ7T4AAFCqXPegPhCCC6/6CLm/AAAEDB8H0j7AcsgJ9fyjPwCAzvkx7vy+AAAAAAAAAAAAAK5j3TzYPgAsLxz6X0K/AAAAAAAAAAAAAMCLXCqyPgAAABRLM4U+AKCnEX/5Hb8AAKDivQKRPgAAAM6myXM+ANDj29qFh78AiD9DyC9LvwAABhql2dY+AABpRSs3DL8AAAD1YR+APgAA/Hkwo/Y+OB2yUICFsj8AgKxvYfn4PgDD1Nbk2nM/AADJJhjQ9L4AAAD2uMKIPgA1lxVvw3U/AFic3788TL8AAKCncBKRvgDwR2unCyG/AADAbRv92j4AAGZaSTHQPgAAU75FXDA/AABEJSGTxD6ArlT2svdyPwAAAAAAAAAAAMA04eluCb8AAIFHJer1vgBA1dDDMAc/AAAAAAAAAAAAAMCxU0u9PgAA2ssJ0wY/AAAAAAAAAAAAACVptfL9PgAAAAAAAAAAAIAHIpio874AAHAqAUrePgDALX1S2AC/AAAAAAAAAAAA/PwA7UZJvwAAsMnBoLc+AADIGFEouL4AANjIQjLFvjRCY2lPl8U/AAAAAAAAAAAAACyZ2EnUPgAAAEAUDCm+AABAVrkfjD5oz1qNYTa2vwAAwGrhm6e+AABA5eOwpD4AuK3jryqLv0DbMc1saIE/cJuUeq4FoT8AANw+5SHUPgAAAAAAAAAAAOGjzACMdT8AAAAAAAAAAOC8GywDJZA/AHYA/TOrYz/AREfyCGe1vwDsDNQwhkY/AADg3i1xpj4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIHF8Fg8UPwAAmGswLug+AAD3CBAh4b7ArA8i4liVPwAAmO5I+L8+ALAzp4EmIz8AYOO2tjY8P1CTDU1P+M0/AACc4js41D4AAAAAAAAAAAAAoHn1PsQ+AAAAAAAAAAAAYEE4Z5s0vwAAp8syM+o+AAAAAAAAAAAAAEAnvYvMPgBgu2U5Qx8/AAClkx2X6T4AALiivXnHPmAVEeIJBZY/AAAAAAAAAAAAEuEutotXvwAAAAAAAAAAAABmke/u/D4AQOHJEyALvwAA8FoISKA+AMB8sK3RAz8AAGgZQELNPgDABJwhDyw/ABzV4s/NRT8AgMP3G9n+PgAAAAAAAAAAAHzsD8ZVQT8AABjD8uizPgDAIFFYSA2/AAD41yb6Az8AAPg+43fIPgAAjBy7X+Y+AAAAAAAAAAAAAC/CPCfmPgAAAAAAAAAAABG1G5mvZb8AAID6VoCBvgAAL+CCO+4+AABlGLPL6L4AADAimdu5PgAAAAAAAAAAAABSIa+x4b4AAGDu3jarPgAAzl+W0Oc+AAAa3B4W3D4AAECGCAGAvgAAWNwS4sI+AACKhAOy0z4AsGgETWglP4CnEc+UxII/AC5zUTJkiz8AAAAAAAAAAAAArrsJ6+w+AECZUIWGBT8AACA5PZOQPgAAyGAPzuA+AAAAAAAAAAAAAAAAAAAAAAApaQTtYbm/AAAAAAAAAAAAAJwDfWzKPgAAUD7/aqw+ADA3Twl7KD8AABDUEPqrPgAAsOYp7MU+AIA6snSc8z4AAAAAAAAAAAAAQA985Ic+AAD8WOwN5j4AgN6aqWwPvwAAWcVfZO0+AAAAAAAAAAAAAKDgk3+fvgAA7KBw7tA+AAAAAAAAAAAAAAAAAAAAAAAAAFJ9Unk+AADc50nF1T4AAPDev33VPgDA4GvlDQe/AAAAAAAAAAAAAAAAAAAAAABAgnowKwG/AADgAd/Otj4AgLPsP0UIPwAAAAAAAAAAAAAAAAAAAAAAqJrBWn0yPwAAAAAAAAAAAGCDa+YdGT8AAAAAAAAAAAAAgL9IWp8+AAAAAAAAAAAAAECvOb+pPgAAAAAAAAAAAIAOcPnSCb/ALw1lwsePPwAAWtt/NdE+ADwqIQ0Ycz8AIJDhbZ0UvwAAXG4w7Qk/AABHYcXq5r4AAAAAAAAAAAAA0JNmMsM+AACIf7UOsD4AgEGDmz4TPwAAAAAAAAAAAAB9fnyI6z4AAJLtxAfWPgAAAAAAAAAAAJi07CfhMb8AAED1WaTWPgDgaIRvnFE/AADIfrZjAj8AAAAJBUmNvgAA/nSXTdk+AIDUd9do8D4AAAAAAAAAAAAA4NDVkLA+AIADONNB974AAMBbdMqNvgAAfLpNTus+AAB4BH8dvj4AAAAAAAAAAAAA6BfEdcU+AAAFpwqyCL8AANQqi7TMvgDAomwE/RW/AAAAAAAAAAAAAKCCeJ6aPgAA2HRH3bA+AAAAAAAAAAAAgMcLokP5PgAAwZyuRO6+eOPcR0S6xr8AAEH9MrHovgDQzgt5mSw/AAC/NhJjBT8IqNbOD3axPwAAhAYocuc+AADg1dk4nT4AOLo5Qgw8PwAAgF73c3e+AAAAAAAAAAAAgMaKbJT3vgCyvgUT5FI/AABIly2uwz4AAAAAAAAAAAAA6Tnvc+k+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICmEjuK9L6ALp5seDl4vwAA0LJWWKU+AAAAAAAAAAAAwPhjzQ0CPwAA+nygPtG+ANDhWxV4Ir8A0HlWOSwhvwAAAAAAAAAAAAAcnBfTwj4AAIDYFlN3vgAAwCQe+tA+AAAAAAAAAACINDVx+3XNvwAAAAAAAAAAAAAAAAAAAAAAAGDBqZmUvgAqN+wGllg/AAB+WOUz3T4AoFZczcoWPwAAoN/stdg+AAAAAAAAAAAAAPwfx5jCPgAAAAAAAAAAAACNErHh+74AAAAAAAAAAIB7Fn+Dspo/4LMnmVeBsT8AwKYpCmQCPwAAJ3p25gs/AACAUtVpgT4AAAAAAAAAAAAA5jttn98+AACxsgLK974AIKgf5sMhvwCAipEeQDI/AAAg5GXtkr4AALj4Tyu8PgAAAAAAAAAAAAA4R/UyDr8AAAAAAAAAAACQba3cMSE/AAAASwLOgz4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAw97tlvgAAgE+F4oY+AAAg5E5slz4AAAAAAAAAAAAAAAAAAAAAAADjCZuu4D4AAKCK5/C5vgAAAAAAAAAAQCe6jzZ5hT8AAKDTsau/PqS74L0iQ+e/AADgRRfh9j4AAAAAAAAAAAAVXLrpArU/AADej6P+2r4AAICjieZxPgAAGLEAp9U+AADIHwMZuD4AAAAAAAAAAACAUJFzQ/Q+AACA1k+zmz7AsGJ1JPGDPwBAcpq3fQS/AAAAAAAAAAAAALBNW9WhPgAAYFlkZ5Y+AIBq6LDE8L4AQCYwQ5kGPwAqYTfOdVU/AAAAAAAAAAAAAFh+axjHPtBhdNEmAKa/AAA6f3qV5z4AACwFLqDSPgDA6/tjeQw/AIgJe6PsVT8AnDgVqThKvwAAwMebXIO+AMCXia8OA78AAED9aG2IPgAAAAAAAAAAAADAH5GcgD4AAAAAAAAAAAAA7BvqnMU+AAC77VGaCz8AAJCAIXugPgDIRDv9JDo/CFQ6oE1psD8AAEBrRuScPgBQdRJH+yU/AAB7efeu7z4AANDq9yW9PgAA5LkEBN0+AABstU7HwD4AAABAdO+bPgDGqkqxiF0/AAAAAAAAAAAAAADynZRTPgAAUNrp0dc+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgGwQ2oz4AgjkFOj9RPwCoRFPcGzK/AAAAAAAAAAAAAKXU9CjwPgAAAAAAAAAAAOCvuXWwGT8AAIDK4vN0PgAAAAAAAAAAAMAEPVHPCT8AAAAAAAAAAAAAlbqxXvc+AACFMupR5j4AgGLawCUPPwAAmX35GuI+wP9VpiWqgz8AAFAhJQavPgCAOCutH1Q/AABAW5q1lj4AAAAAAAAAAECE5A4R7Iy/AAAAAAAAAAAAADQve33JPgAAAAAAAAAAAAA7QjnT7T4AAOD5AsyUPgCAnCWoSwA/ABy64+SCXD84V+FpXwixPwAAAAAAAAAAAABcXnuAzD4AAAAAAAAAAAAAAAAAAAAAAAAQ85Gqsz7QVH41nM6lPwAA2DmjRbo+AADUwoAS5D4AAAAAAAAAAACgAFbxRCc/QB1++ha8nD8AAAAAAAAAAAAAkdWZWuw+AABcRrS+wb4A8IODEedbPwAAAAAAAAAAAAA01LhHwj4AgNZQ/VXyPgAMoKlSB0U/AAAQcyqYxL4AoETiE0kSv3hSE5mfOLu/AABMi/YQ0D4AAGBKyc6WvgAApsa36N8+AAAgB3UCkz4AAJ+smsHgPgC8O/w2rkw/AAA7a7OM5L4AAOh4LlLHPgAAjN5OXQg/AACB/bQf+j4AAKL1Hobwvg5CsXxWZOK/AAAyGgNI0j4A/JrWCSVHvwAAAAAAAAAASOrXqXW4sz8AAAByLsBfPgAAAAAAAAAAAAAt1xIa4T4AAIxZ1WrIvgAAAAAAAAAAAAAAAAAAAAAAAFBYFwu3vgAAwCayDYc+AABYOBNDtD4A4Anigl8cvwAAyHHX6re+AAAAAAAAAAAAYCuxqFktvwAA8B7AP6k+AAAqZTlN0b7Mjj4wxhLAPwAAAAAAAAAAAIAMnJ0o/z4AAAAAAAAAAACAyWygEvE+ANBOXoxIIr8AAJAplDShPgCADsG4JAI/AADgmvcklD4AAAAAAAAAAGzciufGzdE/AABAtmtbhD4AAJtb6fL6PgAA/Kbk+c0+AADWYqyn7j4AAKBJsWDDPgAAAAAAAAAAAAAAAAAAAAAAkMJnEOhCvwAAAAAAAAAAAAAAAAAAAAAAACQbn8fJvgAAwMZtNau+AAAAAAAAAAAAAAAAAAAAAACe1fMqA1I/AAC8AKnSwz4AgGEksYkJPwAg9LrvqRI/AAAAAAAAAAAAAFR46dzJPgAAEP5mU6G+AITRpQVRRT8AANBzRWaqPgAADM5RDM4+AAAkADbwwj4AAABMXCRGvmBOkRDOpcu/AFEGVCb4hT8AAKhM8k+3vgAA4AIgo6e+ZB2g1yFZzb8AAAAAAAAAAAAAAAAAAAAAAGCbxqb/H78AAAAAAAAAAABA5sK/FT+/AADZEQaYCz8AAMtaFmPpPgAAIF2bzp0+AAA3nmXO5z4AAKCn34eRPgAAaJbiGrE+AF7pyJsdZr8AAAAAAAAAAAAAQAXTi4U+AAAAAAAAAAAAkAeiNlcsPwAAAAAAAAAAAAAMJMLZwb4ATOhKMbh5PwBoOdZilzA/AEDR4FZnBL8AAAAAAAAAAAAATYloQOs+AACAyKJ3rT5YLkIAf4zIPwCA0JTE2Qc/AAAAAAAAAADgCXX3NtfHvwAAAAAAAAAAAABopsBK2j4AAAAAAAAAANxFTgghzc+/AGBDoj7jHr8AAAAAAAAAAEBzOtrpjos/AMBjJPB2DD8AgEWajyvxPgAAAAAAAAAAWKgpJMynvL8AgNQBzJkNP1B7X8nRuMS/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACqHtwL774AAAAAAAAAAFCsSfQwl6s/AABAxD9Dsz4AAGJFwATjvgAAgH7yLJy+AEAUHxMRND8AAAAAAAAAAAAAQIXT+bA+AAAAAAAAAAAAAABMxJpYPgCAuZlaWwY/AMDtb/3nCr8AALxQNITWvgAAAPmnY4g+AAAAAAAAAAAAAABxn8ZpPoD7usEdNqQ/AAC3Az4h674AAEgfsWXKvgAAAAAAAAAAAAAAAAAAAAAA6N5LbO8wPwAAF37D8vQ+AADgCQv6kb4AAOjWZ7bPvgAAAAAAAAAAABiyqDh7QD8AAIhzgrnrvgAIbXE73jk/AADQnDpLqj4AoGEF/JwhPwBAO9aMqQ0/AABku6dMxD5AhRpyyf6EvwBANjC4ygw/AAAi4RZX9b4AAAAAAAAAAAAAUCX22ME+AAAAAAAAAAAAAAAAAAAAAACA1nKhF/2+AAAAAAAAAAAAABgNWk29vgAAAEXJ13I+AADgm9Jr7T4AAFSVJU7MvgAAtA/cux6/AAB4XQrhxD4AAJlcMHIPP2D6h9DdOqO/AAB0afAl/b4AAABJGoKUvgCgQiV9vRC/AMDEsntVKz8AAAAAAAAAAADwcojNuCg/AABsyhoFwL4AAAAMsD5YPgAA7Vgwzua+AAAwnwb7pz4AAAAAAAAAAAAASG3hJuY+AAAAAAAAAAAQ4ze5uGS5PwAAAAAAAAAAAAAAAAAAAADAZuiUBb+KvwAABKfCF+0+AACIVF30vD4AhBGwNDtBPwAALlHbItQ+AAAAAAAAAAAAAAAAAAAAAAAArki8wwy/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICx/i4N+T4AAEAZ6FPBPmiFw/x6mbc/AKzvUCLTU78AAABqT4Z+PgAAQ5zJDeU+AACA9AA7jz4AALwUGx/LPgAAAAAAAAAAAAB4Uzsowb4AAAAAAAAAAAAAAL/NXHY+AAAAVNRwSz4AAJgHow6zPgAAAAAAAAAAAAAkkz/+1z4AAAAAAAAAAMArmscbB4U/wOTbwgdXlT8AUBBuEmAgPwDANxqxaAM/AAA6WdkR5z4AAOidFlWxPgAApCdo+8s+ANEW71DlZz8AAAbwub3dvgAAb1Tpi/O+AAAAAAAAAAA2cNyCTwfTvwAA9hnYC9M+AADwKcwOtj4AANB2en2lPgDWbrjUbmg/AAAAyDCPRj4AACiYBOzOvgCAyhxNTPg+AAAGyJ4/1j4AAAAAAAAAAACgOJUv4hU/AAB4/Tnq1T4AAAAAAAAAAAAAgMxGUcO+AABwtrfh6D4A4KYh7iMQvwBZypA61XY/AIACjf5/9j4AcAXu+EIxvwDAO3/dWBg/AOgHF/HucL8AAAAAAAAAAACuLEHscng/AAAAAAAAAABocQWf0xbLPwAAAAAAAAAAAAAVcKMCIb8AAJR2eNHpPgAAAAAAAAAAAABA7G6pqr4AAIiFX1HFPgAAAAAAAAAAAPo4cNP/WD8AAIDJgVuUPgAAAOH7Nn6+ADwCIDOcRT8AAFOT5RDhPgAAQEbxJ9e+AAAoKwwi0T4A8N++WopSPwAAAAAAAAAAAAAAAAAAAADcy52OLXzGvwAAgA2thXG+AAAAAAAAAAAAAAAAAAAAAAD03vg8RlM/AABsZiATyD4AAAD1ZsZhvgAA/djOLes+APNR0/B4b78AAIjqOEG8vgCgu2ouwxM/AACYmOjosj4AJh5ynQVnPwAAAAAAAAAAAAAAAAAAAAAAAE40nxTcPgDAFvxMKQc/AABgcIHUzz4AAAAAAAAAAAAAgM/HRHw+AID6rS0p+L4AAAiST2zjPjrfabnWrNO/AACg0l5Skj4AgJLd+CbzvgDA1y4tHQE/AABKWAKt3z4AAAAAAAAAAAAAbBBO69o+AAAAAAAAAABQDx/d18SrPwAAwOgbk4O+AADg5yyosD4AwEn/SBkEPwAAfEpiZ9c+AABiZccU1T4A6Nx7BZ4xPwAAcGLknsQ+AHDRoK6sNT8AAAAApOTVvQAgOHXhZT+/3GaHzQzywr8AIGZwW/hXvwBH0Hcit2s/APhzSYHGTT8AAIC6scNyPgDA05muGxA/AAAAAAAAAAAAdAtBhj5LPwAAcGdBvN8+CPqKLg9JtL8AAAAAAAAAAABA071CWgg/AAAAs/jomj4AAHmv0kz0PgAAWE+1gcO+AAAAAAAAAAAAAIh8nXbAPgAAQdzZl+g+AHB4S6c5Pj8ANqPZQy5zPwAQJXkuHiG/AADoEOirvz4AYKjQFEIdPwAAAAAAAAAAAAAAAAAAAAAAAFTvXIbsPgDgZzbE3Ss/AAAYJH5AAL8AALQPgDvYPgAACooo2e2+AAAAAAAAAAAAACQMk4HAvgAAAAAAAAAAAAAAgf40Yj4AgBWhjEsAPwAAAAAAAAAAAAAjJNNg4D4AAAAAAAAAAAAAIJKceJc+AACAI18XlL4AAAAAAAAAAAAAAAAAAAAAAABYHMxlxD4AANJ/VAL0PgAQDb+gayU/AMAjp0ZrBT+AIPk1xW+qPwAADQiOSO4+AAAgizv2mL4AAEhO0m3QPgAAAAGPI5c+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgti5x/K+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACijeJM674AAAAAAAAAAAAAmAvWIb8+AECJyYQpQz8A6BWQevJmPwBAHFIxrgy/AAAAAAAAAAAAAAAAAAAAAAAA3n8z7O0+AAAAAAAAAAAAAAAAAAAAAAAAFyGTHe0+ALSu67E/VD8AAIDB3cKyPgAAAAAAAAAAAAAAAAAAAAAAAEX9UykHPwAAe5GzIC6/ALDUsunKKz8AANB2G3/CPgBYXaMkuky/ACjZ0NHfND8AAAAAAAAAAAAAAAAAAAAAAAB1VMS34T4AMKeOKztTvwAAAAAAAAAAAAAitSKz2D4AuFeEOrI4vwAACEPmn7k+AAAAAAAAAAAAAAAAAAAAAAAA/lwhyO0+AABgE4rDnj5AO5eh5ViyvwAAbGuI8MS+zBWQT9eix78AAAAAAAAAAAAAJpsDCNI+AABbwDTvDT8AAAAAAAAAAACASOJ7WfM+AAAAAAAAAAAAAEAxK2S7PgAAA7vlB+g+AABeFCWm7z4AAMCCx8OzPgCAK5C6nPC+ACBWruwHHD/W5fwJr+rTPwC6d0kl+1K/AABQD/bDvz4AAAAAAAAAAAAAYPHe7p0+AADEqY6ZyT4AABrdSTjQPgAAAAAAAAAAAGCc/HawGj8M5rqFr6TCPwAAAAAAAAAAAAAAAAAAAAAAwMbmQ0oXvwAAKFEIRfI+AAAAAAAAAAAAAAAAAAAAAICRvGSjTnc/wG9JbDp4gL8AAAAAAAAAAAAAAFSs8F0+2DtIuwsozL/gWvll1vKqvwCABnkMQwO/ANTuo5vWQz8AYFTjTb0WPwAAOid+4Og+AAAAlWiJgj4AIAlcyawfvwCE1t+sRkc/AADH4AFQ4j4AAAAAAAAAAABApPOw+gq/ALBGaCDRIj8AAAAAAAAAAAAAAAAAAAAAMH4zXkUopj8AAAAAAAAAAAAAzVVHVOQ+AACm6QImBD8AYKLcRHsdvwDAOzMtkBI/AABSHXNb9z7gBfO+jhvAPwAAAAAAAAAAAAAAAAAAAAAAAPveuefwPgAA9+h0z+4+AADk2ZgbET8AAAAAAAAAAAAQXplWcyQ/AAAAAAAAAAAAACgmi7uzPgAAGG4S/cK+AIBL4FTmCL8AAFTaSZjQPgDALAHnJBM/AKjlec3rPL8AAEmgeAHqPgAAQK+THpq+AICyKByrBD8AAIygUqnnvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAfqUGhRk/AEDKxk25Qr+A9vMRlqC4v8jgsOZRhLe/AAAI4peXsL4AkDSioO0jvwA2GWEqtIY/0BKEEa8O4b8AAINbyaLkvgAAAAAAAAAAAABlnlSu5j7gSfqFUjGpPwAsieE+BZK/AAD03rYZ7D4AAAAAAAAAAAAAADEjP24+AACkRcFs0j4AAILOFJHqvgAAYubKT+m+AADwhxDfoj4AAAAAAAAAAAAAsIxvOLG+AAAAAAAAAAAAcJjRx8A/PwAAyHfc68w+AADs6TWNwj4AAEAfyMmZvgBA1HrLUBQ/AAAAZNE4VT4AAAAAAAAAAAAAQPOmmIY+AAAAAAAAAAAAACq4oonsPgAAbnvQf/E+AAAAAAAAAAAAgKzgs0//PgAAIHOKCrm+AAB432Q/wD4AAH5htnHVvgCgWskgDiA/AACdfudH4j4AAAAAAAAAAAAAOD5Rmrc+ACS1S4oPVj8AANyZuA7gPgAAAAAAAAAAAAAAAAAAAAAAABhlXYa1PgAAqCJe/8g+ABhXZGwwNz8AAAD+a31iPgAAQEGBN4M+AACArNH5d74AAAAWqtVfPgCAIUPdAPE+AAC8sg+p1D4AAAAAAAAAAAAALx3yp/0+AAAAAAAAAAAAgBiY9twPPwCwjknRqTq/QCgsq/lmlb8AAAi6haa0vgAAAAAAAAAAaMuWAn/QwT8AAAAAAAAAAAAAAAAAAAAAYJNlIQe0pj8AAMAbh0S3vgAABGiPBv++AACINIJzyL4AAEC0WXGavgAg5X5Clko/AMBHelSvCD8AAAAAAAAAAAAAAAAAAAAAANDn1Cc6TL8AuSeA3LaivwAAYPmJFK8+AADAeTt0xD4AAG+Bxyz6PgAAsG/WnqU+AACQqeC4qj4AAAAAAAAAAAAAJW8+kek+AAAAAAAAAAAAAPzixKLDvgAAgFnEVns+AABw/yL9rz4AAGAlbSqjPgAAoGRdB8A+AAAZwyPK6z4AABRq7IPRPgAA+NvS0rI+AAAAAAAAAAAAwKL0+cchPwAA8Gh0rdS+AADVJWP+BD8AAKajjcTUvnAeh1belLc/AAAAAAAAAAAAYBvHtI8wPwAAAAAAAAAAAAAAAAAAAABAWDS3002/PwCAtdGMy/o+AEAuCFCvET8AAIteInHhPgBAyc+B6Bs/AIB+DsUu/b4AAICAIkJ9PgAAQHZEBbM+EOMlcMAAv78AQJ+xzfgAvwAAAAAAAAAAAABQr7/4xz4gB1imuPDBv4CoySx1U5K/AABcRXIZ0z4AAOi+f2LUvgAAuA0crrA+AAAAAAAAAAAAQJ/VMCIDPwBSS4qHH3c/AADgLSGIwj4AAMvpBnXmPgDghRp5wxU/AAAAAAAAAAAAADCW7DG3PgAAkXJ2vOQ+AAAAAAAAAAAAAIJrdDPdPgB+/rW1OlO/AAAAAAAAAACAkvFFlRl3PwAAQIQI+t8+AAAAAAAAAAAAAAAAAAAAAAAAkC15wb8+AF5HrN/nXb8AAAAAAAAAAAAAoIYaAZQ+QMmUyU16tz/QYBUpdNi1vziSuQtwer6/AAAiJja33D4AAG7wSkrZPgAAAHn9ELA+AADASx8rhj4AEF8GIIc1vwCAzrAMaiO/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEnj78yD4AAATRWFPzPgAAQAaX3aE+AAAAAAAAAAAAAGbcT3/SvgCAKz38sfy+AADk2ouj0j4AAAC4SN+YPgAAyqpk/NW+AEA4cKdoKb+QhRteEomgvwAAAAAAAAAAAAAvx4eb8j4AAAAAAAAAAAAAyGp++8I+AAAAAAAAAAAAAJJ495fqPgAAAAAAAAAAAMC4iJMVGj8Aok1tveqQPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAtWzY1+4+ANBaApFXKT8ABvtn0B1cvwBQwyPzHla/AAAAAAAAAADE8+eFRdjGPwAAAAAAAAAAAACs1J+Vyz6AxhJ+HDOsPwAAGE6eI8Y+AAAAAAAAAAA0TJrKBczFPwAAsE1KXcu+AAAAAAAAAAAAAJAX8hCwPgAA2IRnfLQ+AAAAAAAAAACUsrM7aMDJPwAAAAAAAAAAAADeESw13z4AAAAAAAAAAADg6dbF9jy/AAAAAAAAAAAAgKhjj04DvwAAAAAAAAAAgKNUdC7FeD8AAAAAAAAAAAAAAAAAAAAAAMArP4WPCb8AAOAwmDm2PgAAAAAAAAAAAAAAAAAAAAAAQMuFNEACPwAAAAAAAAAAAABT+jixCz+siOfFC0XAPwAA5J98TuU+AAAA8G+FKj4AAAAAAAAAAAAAQFCAHos+ANDMrkCQK78AlBu+A3lKPwAAAAAAAAAAAAAAI1uvoT68K3SD09jTvxCJNx+H7qM/AAAg01JHrT4A5FkYeAJBPwAAYLruGa0+AACAWSYKlz4AAAAAAAAAAAAAMm9T1/O+AFB/+73RJz8AIOD3exMWPwAA8HqDVKc+AAAAp889lz4AILga3ekRPwAA4N+4+7M+AIRPRUukVj8AAJDxU+CkvgAvTg32oGG/AAB2ZJTp274AAOxWH+TIPrC9rro9J6Y/AADAPuPTqj4AAEjoWCKyPgBlO/VZOGk/AAAAAAAAAAAAAIBKYQuNPkANKdcB4Mk/AAAw4Mcp2L4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDsFYqgPoBTXotJD32/AICauUK6+j4A4DYMbR4ZPwAAKPwmY86+ULsGCNXwoj8AAAAAAAAAAAAAcBHk+qI+AAAAAAAAAAAAAAiPkrqzPgAAsKaTgcg+ACAIZlGVFb8AAPylLpUFPwAAstquYNY+AADw03CF0D4AACjNeP3JPgTxhC893cQ/AMDiu6rGGr8AAEiPSD75vgAA0MCUZqI+AAAAAAAAAAAAIMINJEgpPwAw0R3J+i4/AJBXAeg1YT8AAAAAAAAAAAAAQK1NcMw+AAAA7GYknr4AMCGFS3shPwAAcIJnPN6+AAAw+ytAyT4AANhz1kOxvgAAgHej0K4+gPYt7i9Imj8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4EpXkRIaPwAAmF2DOcY+AAAAAAAAAAAAAIDPrTF8PgAASJaKLdC+AKBptEnPHT8AAOAstyTEvgDHGI89NKO/AOD/ou1cEr8AgMPWBOIgPwAAAAAAAAAAAAC4LGNluD4AOmPkUjJWPwAAY2d3l/Q+AACOwcaG0D4AAAAAAAAAAADAyoFQLAe/AACYvxOgBj8AAAAAAAAAAAAAAAAAAAAAAAAh1Oqb4j4AAAAAM3TjPQCILurJo0Y/ABDQ9kLlIr8gZBzmT16UP8C1PrqNwJE/AAAAHbw/pz4AAAAAAAAAAGin69nKN7K/AAB3Qx9h7j4AIJjyefMZPwAAcNYFV7A+AAD41jEB9z4AAEgs5aDiPgAAAAAAAAAAAJyM08OtQb8AAMAwf32BPgAAAAAAAAAAAAAAAAAAAAAAAP32+a7jPkA7lq5fhpM/4JLg/rUNnj8AAAAAAAAAAAAAKAjpNs8+AEARtLLMGz8AoEk/4NIqPwAAAAAAAAAAAACYJAuNvD4AAADzSfRtPgAAAAAAAAAAYEqJ2T9ql78AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgyUy8TkW3P6CMDDV+4ZM/AADAONWMmb4AAIAzQWx4PgAAMOG7s6C+AChat7UqOT8AAIlfC+btPgAAAAAAAAAAAADIIaMjtD4AAADYi+5iPgAAEBID67y+AAC+OfhP/74AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgGwQEI/2PgAAgOR3L3g+AAAg+dD9lT4AAGsGmIz2PgAA2h8LtOE+AAAAAAAAAAAAABr4278MPwAAAAAAAAAAAAAAYF11Nz4AAMD9h+2fPgAAvAbfh/2+AAAAAAAAAAAAAGAKQQu5vgAAABQJ+Uk+APzzRrz7RD8AAAAAAAAAAAAAAAAAAAAAAAAACnqbdj4AADyif6XAPgAAwKA0oY0+AAAAAAAAAABw5nd8dte5vwAAvMr+Rsg+AOBcfhpbF78AwCtx48snPwCAiJneIPo+AABzu3+zBz8AAATUSwDQPgAAL+xeR+Y+ACC+8k/zFj8AAIAJCOyHPgAAAAAAAAAAAECigGmRFD8AAAAAAAAAAAAA0CdSqNg+AAAAAAAAAAAAQJ0mk6sXPwAAYOgdvKw+8EeNC9hyvb8AAIR9G0rDPsDykF31nak/AADAH73dlD4AAEhJare3PgAAAAAAAAAAAABAfmYr3D4AAACxutKNPgAAAAAAAAAAAADwFcFaoD4AAEB2nuOAPgAAeD0f39K+AADAVOjAuD4AAGpD8KMZP0BUjRF3/I4/AIAU+Pai9b4AAIDSkPd4PgCo1n321Em/ABAIE3cfgD8AABCyCaXNvgAA8HsPIaU+AAAAF7KKfj4AAFxJRkTgPgAAAAAAAAAAUOvHWw6poT8AAHoeQZjwPuTGygsqc9S/AAAAAAAAAACA7qB5nNh0PwAAAAAAAAAAIGFxfG7nrT8A8JI1CcM6vwAAnMrIq8G+AAAAAAAAAAAAgCg5/ZYQvwAAAIilnEE+AAAAAAAAAAAAAJh64DjAPgAAxnd8kNk+AAAAAAAAAAAAAAAAAAAAAAAAwDHMIoI+AICkmN9O8L4AAAAAAAAAAAAAAAAAAAAAAO9mFg81Z78AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANBWlxC1PgAAoKRjXpi+AACkko+7wz4AfEOXUHNEvwAAAIQJymo+AADA6FCArT4AQCaYYKsKP0BnqVUGq4s/AAAAAAAAAAAAAFIC32z+PgAACKQYEMu+MGLOMKaMpr8AgInd7hP3PgCIYE4hFkW/AACQ24bfuz4AAASWlAjAPgAA/RyeU+G+AN04kBuXeD8AwIxEJ6wavwBQIm6hQ0k/yJLNFKWJsD8AAAAAAAAAAAAAjYhu5/4+AACgkTmzoz4AAFJx7zHbPgAAUDyAirk+AAAAAAAAAAAAAOi4UM+8PgAAAAAAAAAAAADcX6Ljwz4AkNi41EItvwAAAAAAAAAAAADQa+D0oz4AAEo2i6vWPgAAIKwg4qU+AADgy9bGkj4Axywy4UdvPwAAAAAAAAAAAAD6ziur6j4AAKR3cCjOPgAAjT0VU/W+ANDxYT0zJj94Cr8o8+jKPwAAAAAAAAAAAAAkNmFhwD4AAAAAAAAAACBhUCBXMrQ/AEAi/GblAL8AAAA8gBBrPgBgC5Ky7iY/AAAAAAAAAACAo88P/myKvwCA+zTgLfA+AABoARFawD4AADC61jWnPgAAOjW9dQk/AED2WdLUBj8AAACLTAt+PgAAAAAAAAAAKJavyCTPsb8AwEHv+coCPwAAAAAAAAAAAAAAAAAAAAAAwF0E0KUSPwCAC77Wohg/AAAAAAAAAAAAAOCE5CqjvgAArAEHhNI+AAAKx0tx+T4AACD/sWaXPgAYF7F0TkU/AAC/ng3E4T4AAPjlSHG4PujAh5hWZ9q/AFuRTw0ZYj8A4IrPQ6sbPwAAAAAAAAAAAIAty1nJCj8AQP18upEOPwAAio4SoNw+AACRbRNZ4j4AAAdphwbrPgAAoFzq8JI+AABwbEsurD4AAAAAAAAAAAAAPIq/Z8S+AADgqgOezj4AAAAAAAAAAAAA3B+d2NU+AAAgUcccoD4AADzsK7vPvgAAElOj2+++AAAAAAAAAAAAYPVA9fcuPwAAAAAAAAAAAADbh5P24T4AoDW+WrEXvwAANHbA3uI+AMDbZk2dCT8AAAAAAAAAAAAAsElHmLc+AAAAAAAAAAAAAAA0lBduvgDAgMGQhAM/gEw/zBRWdj8AAMCoa16ZPgAAAAAAAAAAAACAm9vkpT4AAECtU6GRPgAAYePNgP6+ZF5mUk9NyD8A/bGTgZByPwAAAAAAAAAAAAAAAAAAAAAAAAwAr9/GPgBAlzPMig6/AAYGpQ/jXj8AAM+lSED/PgAAAAAAAAAAAMCtArMrEz8AAIt6fsDhPgAQ7iE+iSS/AABEAyNoxL4AACDQilOfPgAAAAAAAAAAAGDBRFbGab8AAH5YNrPRPgAAkE5gYaA+AEDII3jaDb8AAJwkUwHTPgAAlszQaOg+ABCUcwiKLL8AAAAAAAAAAAAApALVdsA+4P48uHbcrD8AAAAAAAAAAAAAwOJK16E+AACAbhyOi74AAHBcPiTnPgAAAAAAAAAAAIBx20sz8j4A4NgaB5gUPwBAD8HjDxc/AACClYVQ1D4AAIAdK6SEPgAAsG+IPq8+AAAAAAAAAAAAAFAsQTeiPgCAsK1+sfA+AADgCwIKzj4AgMaUMG/+PgBhuZMxFm4/AAAAAAAAAAAAAAAAAAAAAOyzpafjxsG/AACAVaErm74AAAAAAAAAAABtQFg+IHy/2NvFz5/GuL8AAACMv99tPgAAAAAAAAAAgDEmP+sLhL8AAGS7XbPHvgAAAAAAAAAAAIA/HfzeBz/gcGB97NaZPwAwgAXbkUA/AABMqDHdyj4AMH570e9ZPwAAgPlGLI0+AADUSchhzD4AAJB2k4etPgAA4DpXQaE+AOCZ7wdkJL8AAAjETY+8PgAAAAAAAAAAAAAAAAAAAAAAFE0mYHZCvwAAAAAAAAAAAACk83UByb4AQMbvp7kDvwDwQruJPSm/ADgVnWAsUD8A5J2CtsdCPwAAECra+Ow+AAAAAAAAAAAAAG9MKW/tPgAAxHJgccC+AADAnjP8hD4AAAAAAAAAAAAAaM/3Es2+AAAnamRCAj8AACDMhLqYPgAAUWvBQRO/AABwFpZeqT4AAEAwRDKBPgAAdP4nVNM+wF43a3CHq78AAMjhJvuxPgAAAEIQ0o6+AACApwhJkz4AAAAAAAAAAAAAwPg2Jpu+AAAAAAAAAAAAAEAbiGmwPgAAAAAAAAAAAAAArHJClD4AAMCmkyasPgAA0WLX5eI+4GhFknfcpj8AoLtf8GEVvyDfbo2SdpQ/AAAAAAAAAAAALLb4C7dEPwAAbKjiyME+AAAAAAAAAAAAAGk7o4EHv1CJE9LnNLm/AACIzkYe2j4Amp4CVBNkPwCUFNga7UO/AAAAAAAAAAAAAAAAAAAAAADA1b1TnAo/AAAAAAAAAAAAAFSWjpPaPgAAAAAAAAAAAABI9tKYxj4AwPEP16wTvwCAqNgfWfG+AAAAAAAAAAAAAAAAAAAAAAAAfaOxGOM+AAAAAAAAAAAARujOMENUPwAAAKLrhGM+AAAASR22qr4AwOPQ2nEzPwAAAAAAAAAAANjzoJSoPr8AAOjdQ2+2PgAA/mC0+gq/AAAAAAAAAAAAAGAqGhu5PgCgmBUivB6/AAAAB+a2Ez8AAE++DJbgPgAAWFYdmrE+AHDyQG3lLb8AAAAAAAAAAODL93fiJai/AABoQN8dtz4AAAAAAAAAAFCbG3HENLC/AAAAAAAAAAAAAPB3oeSivgAAgLsEXaY+AABLS2Cr4z4I5WTHnnS7PwAAQAS7A8E+AARVpGbxbL9gcpNFoLCePwAAAAAAAAAAAAB/xwZw5j4AABiDPmG0PgAAAAAAAAAAAAAgiBnskz4AAJBoBw/OvgAAAAAAAAAAAACQ56AHoj4AQJkr2YoWPwAAYCD99qW+AAAmf4fD6T4AAAGBSfjgPgCAj7dWMP4+AABoXtc6uj4AAJB5NsmnPmBJaJ7vC6q/AAAAAAAAAAAAgMHP0xPyPvCNQRM+Pru/AIBYdwuvHD8AAAAO6EFgPgAAIK7A25c+AAAAAAAAAAAA4HSLxYgoPwAA4Hoeo6Y+AAAInT++sz7ADTgGyweNPwDAHYs36gA/ACBsp+TbID8AANDkViuzPgAAQDbKq78+ACA+68b+ED8AAOAEFXqoPgAA8H6JU7s+AADwuShhvz4AAAAAAAAAAAAAAAAAAAAAADgihsw7ST8AAAv62jjvPgAAAAAAAAAAAAAAAAAAAAAAAKxf6VHDPgAA/LSLm84+AAC+hMXN7T4IjtaKerPPvwCALmF2Ifg+AKC8UUrtGD+QYLN/oUyyPwAAwMZoQZs+AAAAAAAAAAAAICeCsFcSvwBwygdr0SS/wF5wynFqiT8AqukVDhNYPwAAAAAAAAAAAABzxfw+5j4AAOwdmYvBPgAAAAAAAAAAAAAAAAAAAADQ1zaUTHitvwAAAAAAAAAAQBXu+a/Gtb/EmP9WGXTAP9jVLHXb1LS/AAAAAAAAAAAAAAAAAAAAAAAAACP9rqo+AACSozKG8L4AALT189TbvgAAsDMll7U+AADw0CrOoL4AUMRjbIonPwCAVrLcOP0+AABAPSKGxj4A4JVoz3USPwAADM1zzfU+RHbvx+oIxb8AAJyRqrDYPgAAiFZd1QA/AIxxNNWIZr8AAAAAAAAAAAAAAAAAAAAAAACGV3Dy0T4AAIA1HKe9PgAABBEOo80+AAAAI3hlfT4AgLgIYaAAPwAAwCtlJ4C+AMB0HF6aDT8AAAAAAAAAAAAAAAAAAAAAAAAd1nYH/r4AAHjIFtG8vgAAbFkp8AU/AAAAAAAAAAAA8Nx94JomPwCA5xQznvW+AAAAAAAAAAAAAFjSL0G5PgAAmLhdlsM+AAAAAAAAAAAAALCLc0mkvgAAAAAAAAAAAAB/LAMg7T54GUjVVBW6PwAAICpmNp4+AAA8q1oG0z4AABLfE1rkPgAAeInCjt8+AABtVLvZ7D4AANAtfivHvgAADjK8q+U+AAAAAAAAAAAAAAAAAAAAAABooV0+yzs/RHtdmuV6yb8AAJCesbSnPgAAgB3+Ap8+AACAvz4eoz4AAAAAAAAAAAAAKCxwg9s+AABkyBf+FT8AgJPg/4n2PgAAGKFBvLE+AD1KxoM6Yb8AANozBh0IPwAAAAAAAAAAAAAAAAAAAAAAAKC+/vOePgAAQLYENrI+AAAAAAAAAAAAAKh2lcYdPwAwAzfJvCG/AIBe2u5g+T4AAAAAAAAAAAAAzwlFXfA+AAAijMIvCr8AwAcEshUWPwAAAAAAAAAAAIAdH3pw/D4AIPshoJsRPwAA0Knk9qM+AABNpyUY/r4AAAAAAAAAAAAc+Guy5ke/AACAdmFKcT4AUO5oTAQ8v4DkGOaO6IM/AAAAAAAAAAAAAAAAAAAAAABAesCZewk/AAAko6fK174AEBXaqMkzvwCQQI/DIym/wArkDzcdiD8AwE4CpbMRvwAAYK6x6JO+uPV0vxA2wr8AAOxPWtbMPgAAAAAAAAAAAADwdWhMoz4AAGBft7uyPgCQ2s7ZJis/AACYj11rsj4A4Du7JhspvwDAzP1LPAe/AADMDUXXyD4AAFzSn8LcPgAAdMHCZ+o+AIATxVUf9D4AgHb6oVwPPwAAKIUojNg+AAAAAAAAAAAAwIYz1LIMPwAA9PBtYtY+AAAAAAAAAAAAgfAXNA97PwAAtvIruvI+AIBbXqj//T4AAAAAAAAAAABIdgJph0M/AAAAAAAAAAAAAATj1WPKPgAgpAskaia/AAAAAAAAAAAAAOCb2Xa5PgAAxClpGdk+AAAQaZUKoj4AAAAozrc9PgAA4AaFxvQ+AADD0bPG9T4A5PXkYPtLPwAA6jHgvNq+AAByqQ61CD8AwJWnxQQbvwAAAO67SuI+AABCGn/F9L4AAAAAAAAAAAAAyEU56LE+AADAZgtEnz6A/0eU9oNwPwAAGXxc50U/AOIhD3sigL8AAJwkqsnJPnjhCTRE48G/AAAArJAeuD6A09CVfxKYPwCARXMS/QO/sAp/p+LdrD8AAAAAAAAAAAAAWAPmfdI+AAAgg3+moD4AAAAAAAAAAAAAAAAAAAAA2Mq7BEKLub8AACCj8NLCPjr0E+pnLtM/AAD3Ilg4776Arv1tXvGVPwBA7cWs6gU/AABAwsbxnj4AAGjTqoW5PgCAt0awdgw/AAAURFlQ1j52nkmJwKTRvwAAKBwcK+w+AAAAAAAAAAAAROCOA/FCvwBQCQlrACy/AADjKiuP4D4AgI1H9Pn5PgAAAAAAAAAAAACz8eRr4L4AALAxVSGpPojTqcTYKrg/AACAofnpdz4AAAAAAAAAAOivNkg9E8E/AACC/iM77D4AAAAAAAAAAAAAgaq/yuM+AAC4ewc50D4AAAAAAAAAAAAAAAAAAAAAAJj3Jhu7ZT8AAHgMXB/nvgAAlkwqdtQ+AABWwxAV3j4AwOaU6gwIvwAAAAAAAAAAYCFJHEEakT8AAAAvUit9vgAAAIsFsK0+AAAAAAAAAAAAAAAAAAAAAACAIJKhUQk/AEAS2RwPFr8AAEhSer3OPgAAAAFrsKY+AAAAAAAAAAAAAAAAAAAAAAAATll7tAo/AAjUDlNiVT8AgP1Yiz70vgAAlC7Stsu+gMJuulffdz8AACA5QjCgPgAAAAAAAAAAAAAAHIknXL4AAJQdJYnJPgAAAAAAAAAAAAAAAAAAAAAAABq/u4jUvgCUxEiVAkk/AABAJDpizz4AAAAAAAAAAAAAAAAAAAAAAADBlzR66D4AAABhx6HBPgAAncT4ggW/AAAAAAAAAAAAAABcWGS+vgAwf9FFc5M/AACAUUaslD4AAKAXv6GgPgAAwJ5TztM+UFUAdX5VrL8A4B03ifUWPwAAKGDP+7W+AAA213LY6r4AAADzunx3PgAA/Gp4y9G+AAAAAAAAAABABOCS95CLvwAAAAAAAAAAAAC/aHNS4z4AAQZn/RxwPwAA7JrXv8E+AICcgmgkEj8AAGBnAKzBPgBAsHls0hC/AAAAAAAAAAAAAJjwF8i2PgAA4I2mtJ8+AIDUNLzwBr8AgCx4XZL+PgAAAAAAAAAAAAD4kUcfxz4AADq4SELQvgCAjRLmI/k+AAC28nJA0j4AIFk3vYwWPwAAAAAAAAAAAAAAAAAAAAAAgALX6o8tPwAAAAAAAAAABGUAGM3Wxr8AAKBAYEmdPgAAVN641Ng+AHsDxRDLcz8AAKCQowynPhgJgxvIndO/AADYo3W7wD4AAAAAAAAAAAAAAPl2RIc+AAAAAAAAAAAAAMB9ZWGLPgAACJ+hUOc+AOwKXIq3S78AAPgSFkbIPgAAsDpW7bk+AACgZyY6uD4AAAAAAAAAAABtZFwPymS/AJjOm4b9OD8AAAAWM/90PgAAEKFD9rY+AFZH6m88ZT+QNIKhxPCsPwAAgFVN4n8+AADWxzMx5D4AAGACyfHaPkAE8wXjdog/AMBIxppmCz8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALdZ1vDL9FecZgk6TovwAAsOjWCbk+AABQTtflpT4AgNg3OCr7PgBAoERnLwo/AADsilUT0T4AAIB7NzySPgCYoVvs4VW/AADYvsRv0j4AcAwy5s0jPwAAzB6sj86+AAAAAAAAAAAAsOSBXs4rvwAAYEUw4Jg+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGVO0K7KbT8AAHSX5InEPgAAAAAAAAAAAABAyM3KnT4AAGATQn+VPgAAsPJAKvA+AACQd9Kzsj4AYPtWFCMYv4AZAHWWa3K/wMe37ZqAtr8AAAAAAAAAAABAXomNdgA/tDmtkvIGwz8AAMADruGhPgDAcnPSyQ8/AACwUT57sD4gXQPIBzadvwAAAAAAAAAAAAAAEdu4YT4AAHiijhnHPgAAsCXGyaQ+AAAAAAAAAAAAAAAAAAAAAABQiLd3ZSw/AABOJUZx6z6gQF/2qMKhvwAAQBMYH4g+AABQxfvnzr4AQHrf0c4SPwBAoPleGgg/ABDulsz6O78AAICUxB1yPgCAmtTm7Po+ALCcn0TdIL8AAAAzxIy7PgAAQwDWbOK+AAAA58tQoj4AUBEjIGQgPwAAAJq7f1Q+AJYN0MiEqj8Ars8rLvdhPwAASFl97do+AIBn7Rhk974AQNoZ9ccJvwAAiMJk4uM+AAAAAAAAAABc5xOEn2bKvwAAYKxxSLA+AAAAAAAAAAAAnGcprAtIvwAAxN5Z9NY+AAAAAAAAAABQxq8uy4+uPwAA8yIWUfE+AAAoXm93wT4AACDhLBfKPjCAjRyq8a6/AAAAAAAAAAAAAPCUeQSwPgAAgLojDJ8+AABAwF9Emj4AAAAAAAAAAAAA5JrHecA+AAAAAAAAAAAAAAAAgSb+PQAAymreoe++AAAAAAAAAAAAAOz41InAvgDAim8L5gM/AACCrN50874AANCAwp2pPkCnpWZSfoi/ANy3i9kzTT8AACrmxLrqPhCXxs5HWas/ANVAsrtskr8AACRy0LvEPgAA2BoqntA+AB05OWGBcD8AAEybGHDbPgAANEzJ29I+AAAg3FI4tj4AAPCLdQPKPgAAAOB3wBy+AAAAAAAAAAAAAHDynU2rPgAAYDSQyLs+MJrumRHRvL8AAJHxSx4ZPwAAiLjbAt4+AAAAAAAAAABw8KoU6KW8vwCAhWhg7Ps+AABKnCWk9D4AAAgn6uSxPrBsEvGq2sY/AAAAAAAAAAAAAG189VkFPwCU+8Vv1UE/AACA4m3ic74AADCmONytPgBQG2ulsi0/AAAAAAAAAAAAAHiKdqnKPgAAgMYbQeU+AAAAAAAAAAAAAAAAAAAAAAAAANA8dCS+AADsMPmH1D4AAFjLxou3PgAATMoMkMM+AAAAAAAAAACAP9RYzMx3PwAA6Ecaibo+AIAy3rBQ8b4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZGY+OMA+AAAlSuVP4j4AAIDoue2/vgAAUMQsLKc+AAAAAAAAAAAA4CJcBk8tPwAAX9+DTQG/AAAAAAAAAAAAYAY40jUQv4jHoVfAdMa/AAAAI1lnxj4AAOB0UC2YPqB5WhHRLJC/AADwBkXspj4AAJAPQw/UvoCsOeizoXI/AAAAskP0cz4AYFQrpWoRPwA2vgBBJVM/AADYXI+YvD4AAAAAAAAAAAAAAAAAAAAAAABJRZIq+z4AAIg5SjS5PgAgGxeUFCM/AACOqnN61z4AwjRVBdhWvwCAaujtZvI+AOjC3KAeND8AAB55jDbVvgAAQHB+aoy+ALMAKgh+pD8AAOCMHounPgAAAAAAAAAAAABAjwOlgz4AAODsDrGUPgAAAAAAAAAAIPZW6zEYnD/AcQaRtyqSvwAANslZW9I+AACUuQ9tyT4AAAAAAAAAAAAA84t2gPc+AJ68ibL4Ur8AADD5snO9PgAAeFIFprc+gIo6i1/SeD8AADHAxl37PgAAAAAAAAAAAAAAAAAAAAAAgF6FMEb5vgCw77XFADA/AACpCKoL+74AAAAAAAAAAGClkjCo6b0/0FzKrDuNpL8AAABC8PxUvgAArk0Xgw8/AAAACG4nrD4AAPz96N3JPgAAWYmZ9+q+AADgF9Ktqz4AAAAAAAAAAAAA2Db2brI+AABobxWcDb8AAM7u/2jVPgAAAAAAAAAAAPCzFe3ALT8AAEA6SP7IPgCAMNoBY/M+AACMtcGV3b4AAEA9ouKDvgAArCTYfdM+AAAAAAAAAAAAqEYRjB4wvwAAQJUS0te+AICitkI6Hr8AQA9S2VkBPwCA5L9pKQi/AAAYhIO2sT4AAGoJguPcPgAAtDXTAc4+AAB6PAQw0D4AAIrlVtrTPgAAAAAAAAAAAADAv3wEsj4AAAhEpQO3PgAAII1gQt8+AAAAAAAAAAAAANY8JL/cPgAAmITJWOo+AAAAAAAAAAAAAADNkCeoPgAAAAAAAAAAAADwE/t8/T4AACpTrFjYPgAAAAAAAAAAAADgpVlblz4AAAQMw3XXPgAAAAAAAAAAkOoEaVxLwL8AADS45YXBvgAAAAAAAAAAAABy852Y0j6AhthvSZ91PwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkFpuM1nXtr8AAETxOHnwPgCACTz2qvC+AAAAAAAAAAAAAGg2NlXEPgAAAAAAAAAAAACk7tb1xD4AAHCzOti3PgAAuAVQlOG+AABAyiQGij4ACNqzGaI8PwAAuEuYDrA+wLBgZvx1kD8AAM4JRZvTPgAA2IzCas0+AAAmu05P2r4AAAAAAAAAAADgFxCezSa/AKAX7k2zKD8AYOgNnaMZPwAA2MmYp9O+ABhjWJQtML8AAAAAAAAAAACUD5SooE6/AIC4jnPK+j4AAODJYhbCPshEepcehL+/AABAbwSnkz4AEB5eZDInvwAADAXCUeY+AAAAAAAAAAAAAMDMmLO2PgDA0OiGSwA/AAA3QfaN4T4AAAA6HXKDvgAAbNQGmsM+AABAuK/ipL4AADD2Y1eoPgAyBlxmhFc/AAAAAAAAAAAAAAAAAAAAAAAAuOLpwss+AAA4ba92uD4AQGLewREivwCAa3E2qgu/AAAAAAAAAAAAAKywo0PDPgAsziKaz0K/AAAlimFe4D4AAAgoMLKxPgA09HIrgHK/AFYax1I6WD8AAHcWYVrnvgAAMzMstlW/AABqCE4h8j7g+QfcoaCivwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsB4fbWTQpr8A+M2pRXxCvwCgqvM58Bm/AADoNCQ6sT4AAMCZjkGcPgAA9BUNs8M+AAD4S49OvT4AAPzDwfLZPgAAFIIejtQ+AABysLnt3D4AAAAAAAAAAAAA72q84+Y+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADWcg/51j4AgNKq+ssVvwAXRQZaNGI/APCl38XkNL8AgO+dzbT/PgAAkLrO+rA+AEQ8pFtdUT8AEMNi5SU9vwAAMFUGo8g+AHCLZSWqOr/AHFPo1IKWvwCBOMU8jn0/hIZyj6jzwr8AAAAAAAAAAAAA4HuZ9Jk+AKwa+ZpYTb8AQD2OaxAev6gRCmWr2LG/AAAAAAAAAAAAAN5lpxnzPgAABCsDGcQ+AAAAAAAAAAAAAHR4l/7KPgAAAAAAAAAAioF2Pksy0b8AAAAAAAAAAAAA1yt7vuq+gJ2yfASwjj8AAMCp3WvGPgAAWH/5TAg/AAAAAAAAAAAAAAAAAAAAAAAAeD5JPOe+0JQrlShjqL9wTjeI9MynPwBkrSjnakq/AABwq9MhpT4AQEE+gJIEPwAAAAAAAAAAAEjwM9kGMD8AACCXxAe2vgAAAAAAAAAAAACAGCfrij4AAAAAAAAAAAAAAAAAAAAAAACaui8G9D4AAAAAAAAAAAAgj26kYiW/AHyginjeUj8AADn6zCv1Pnzipd8sNcQ/AAAAAAAAAAAAAMDxjTydvgAAZrA76+e+AAAAAAAAAAAAAAAAAAAAAAAA0CuvN6U+YtV4+ZME3b8AAJDDB5mlPgCAC4+oJvK+AIDgL4KN8j4AABA1jvi6PgAAgEUuqJU+AAAeO1j/0j4AALAo62ijPgCArX9+2fc+EMjWAElhor8AMIncEf8qPwAAaGHtXrc+AAAAAAAAAAAAABcyUF/5PgAAAAAAAAAAAADAAHRHgL4AAOD3K5jYvgBwnyH34Sk/AADqy6TP7r4AAKCWReWsPgAAAAAAAAAAAOp6xzYcoD8A1OiCyxBCvwAAgKKO85A+AAB4mjCexD4AAAwJb3zPvvQmYVIFa8C/AAAAAAAAAAAAAM2Auzr5PgCASpvM0vw+AMDzIjc4H78AANAefVCiPgAAqNy8guC+AAANoqH+5z4AAAAAAAAAAADAgGHLKB4/AOAp7Rz/G78AAEAyjC+BPjAGuvIXIcQ/AACw9ZFIuD4AAKNMYxHhvqDFELAYxZW/uBC3SgyhsD8AAKbaMzzaPlhz5DfzurS/AAC+8kXx4T4AN5U655NovwBAn4og7Ra/wOhih3fhlr8AQEq+QH4Gv/BAHYb1L60/CBzBOEmys78AAIh6jefLPgAAID0A7Kg+AABQyKG0ub4AnN/48gtAvwCAnE7h8wO/AGB317zPL78AALgBs7PAPgAAAAAAAAAAAAAAgH50oT4g1FzPwi2rPwAAAAAAAAAAAACuIPgH9D4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACYem9mTtnGPwAAUDt807U+AAAKIpLk4T4AAAAAAAAAAABcEQATbmM/AMClAqBZDD8AQPWjLg0HPwAAmpVMIdy+AADA762Usj44649hNbjCPwBUF5Gg+0A/AACADKis5r4AAAAD+/1wPgAAoA4elpc+AAAA8oPqYD4AOUAqrp5mvwAAkMEwUbI+AACx5fVA6j4AAGQFQP3OvgAAAAAAAAAAAAAgF+FZpD4AAIDw+UmLPgAAAAAAAAAAAIAgX/rCHD8AAEjzjnXtvgAbjosWpX8/ANDqzyJfVj8AAKyKwb/EvoCokaD4Z32/AAAAcz1IZj4AADA+Q1GpPgAAAAAAAAAAAACA2zkGhj4AADkQzevqPgAAAAAAAAAAAAAM7P5X4T4AKEpnnuI6PwAAAAAAAAAAAACgoJFmoz4AAAAAAAAAAAAAeTJbjOQ+sK9Npr6wqT8AaAA4mWwxPwAAFHvpvsQ+AABg8p3kpD4AALhDpZ20vgAAKB0/krI+AAAQ5a4Wqj4AAAD25PFYvvg48RUzWce/AAAOdW5n7D4AAAAAAAAAAAAA4AO8mqO+gO9aQ3F2cD8AQFRFrssDPwAAAAAAAAAAAD4EEFgRib8AcJDguptDPwAA0C7PIao+AAANhyXJ6j4AAH82O/jjPgAAKOaG8tE+AADjObus4j4AAAAAAAAAAABAVwr5UA8/gGQkwVol3L8AAEBeFcOKvgAA4FwvKLo+AIAJAeKTHD8AAHC8oG7RPgBMih4RIUi/AABYOxAlyT4AAFf6geLjPgAAAAAAAAAAAAAAAAAAAAAAAF6RmuTQPgAAsJHmP6g+AJiuQ7UGRT8AAGDhfRSaPgAA4DT2uZQ+hD+1gthWyr8AwIPS4C4IPwAAFT/IHPE+AAO3yhD7er8A0Gn08Pw2PwAAQPdwOpw+AABoK0TmuD7gkLNFWW2Rv7z1I+Opgd6/AACAXNg8nD4AAJwvMYzcPgAAAOOKY2I+AAAAAAAAAAAAwvivnsR4vwAAYtwp+xc/AAAAAAAAAAAAAGxfEoHuPgAARGOF4MQ+AAAYgPP3uT4AAAAAAAAAAAAAAAAAAAAAgBIMIb7rdL/sUYlMBdDNPwAAAAAAAAAAAAADUqy44z4AAJDxT8KlvgAAAAAAAAAAAAAeDeOL0z4A+Lt1qzdHvwAAsfW5muo+AAAAAAAAAAAAAAAAAAAAACCzQfxA5pE/AAAAAAAAAAAA0Bl4Gy0svwAA0MfBpqM+4MD7t0rrsz8AAAAAAAAAAAAAAAAAAAAAkH7swuqsob8AAPgb56O5PgAAAAAAAAAAWBQ5Sa81vD8AAMxunoXGPgAA1cS6/OA+AACyFO2Z0z4AALRkMbnqvsjdOLfAjrK/AMhnfMAtP78AwrkzuSaKPwAAJgvMEQA/wLfNpbVHiz8AAGzvz97BPgAAP1qdu/q+AAAAAAAAAAAAAIJadSfYPgAAPOOJ68c+AAAAAAAAAAAAADic+3PEvgCA7slWayS/AABIMYv4wz6gZYdtXm6wPwDrigooAH6/AIC9WPn3/b4AACj8dh+7PgAASIjRELc+AAByz3D60z4AAAAAAAAAAAAg1BEfURQ/AACaP2650D4AgG3qQUkCPwAAAAAAAAAAUGKwisuptD8AMOIBPA4jPwAAUHLrpqg+AABCy4q37j4AAAC/0fKaPgAA+BLZbe0+6Cwi7ZyazL9gsBcTroiRPwAAAAAAAAAAAK0psziQZj8AQOWO1GUbvwAAZKB4+cs+AADAgUY8lz5o48PX9vnBvwAAxI588Mg+AACg9irfmj4AAAAAAAAAAAAAbEodjtE+AAAAJhWLgj4AAAAAAAAAAAAAAO3Hhn8+AAD2lkuZ5T5AnG6DBlySPwAAEEztSdC+MEbbOdV3sD8AADDsukyiPgAAAAAAAAAAAACg++p3+L4AAOMyPwroPgAAIoHWIt4+AAAAAAAAAAAAAAAAAAAAAAAAQNUmNJA+AACFHCXCBz8AMGlnbZhPPwAAoEKstZY+AAB+lNm82D4AAAAAAAAAAIBh/RXly3I/AACEoV8HyD4AAGrUM1H1PgAAkDu34qc+AABKEyG6Aj8AAKAZomSWvgAAAAAAAAAAAACq8qiUAb8AAMR4GCzNPgAAQP6Il9o+AABI3oPuBb/Qpe7zjD+kPwAAAKDpuss+AAAAAAAAAAAAAEidhi+zPgDAMD8B+2c/AOBUCYCmLT8AAOJJpsnhPgAAUCCPe7Q+AAAAAAAAAAAAAAAAAAAAAAAwFtnt2De/AABIfDW3uL4AgFLXASX+PgAAEP4lSqa+AADs3kKc4r4AAACIwwKRPgAA/CNDkeM+AAAE3L8Txb4wS0UhluSpvwAAYJvOwqM+AACAH/q+3r4AAAAAAAAAAAAA4CPwgpo+AAAAAAAAAAAAABaFaZHiPgAAANXsFG0+AHt0ZZoYwz8AAAAAAAAAAACAZV0MQQ6/AACAkYpYjj4AAAAAAAAAAAAA8FcpyLM+PsiX7L6n2r8AvF0eDAlivwBQLUhvLyA/AAAAAAAAAAAAAAAAAAAAAAAAQJLfJ60+AAAAAAAAAAAAGETnCmN8PwAAQJu70aq+AACVLY9R4j4AeLCvn+dKPwAAUE9rgK8+AABUQQ9OyD4AABh+J0/UPgBA58H9qAu/AACQLr9Eqj4AANBoXHGmPgAAUCnDpbE+AAAAAAAAAAAAAFSGYYfcPgAAAAAAAAAAAMC8j3IUG78AAAAAAAAAAAAAsKUoabk+AAAAAAAAAAAAAAAAAAAAAAAAsD3DUbk+AAAAAAAAAAAguH4P7ICZPwCAuykHBvM+AAAAAAAAAAAAgCEDCxcVP7jXJy2e2LE/AHgLa3goPz8AAL6wLR7sPgAAdD3HVcE+AAAAAAAAAAAAAAAAAAAAAAC8RCBoUUY/AHjYi6VUQD/4B1AUG+W2vwAAgJaKh4o+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB3C8/Z6T4AAEBjX1KqPgAAYFNFI5A+ACCpBrvQSr8AwB/MISoYP5Cu2xbpNbY/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD+8Rus7r4AAMDu1XKXPgDAP0Q2eDo/iKYa7b73wb8AAJAf/+nBPgBw5MTybDm/AAAAAAAAAAAAAAAAAAAAAACAIThf0Qk/AADQgofttj4AAAAAAAAAAAAAQNeDG6Q+AAB4Yomauj4AAEhyfGXWPgAAkD/+bds+AIBjOG6YAj8AAAAAAAAAAAAAhlWv8u8+gMS3e1wWsj8AADCtsvWlPgAA4EBxNJW+AADgDMKumj4AAPA3zy+uPgAAAAAAAAAAAOCjBqCUEj8AAAAAAAAAAAAA7LjT9c8+AACgNT1Yoz4AAAAAAAAAAAAAAHxB86q+AAAAAAAAAAAAAIAdVJh+PgAAAAAAAAAAAEBkBDc8Hz8gnoHuaHugvwCA3UJPJAi/oLFEuB2Ml78AALI81hMCvwAAAEjcjIO+AEDMQUk0ET8AAKQ6DM/GPgCAQ7G3T/O+AAAQTkDDvz6A8szd8Ht4PwAAAAAAAAAAALgXtGb+Pj8AABx55fPFPgAAAAAAAAAAAAAAAAAAAAAAAFBidYQCP6ipEE6WGbq/AAAAAAAAAAAAADgOaI65PgAAkLBzZ7E+AAAAiCHMNT4AAAAAAAAAAAAAAAAAAAAAAMAzSiMfNz8AAAAAAAAAAAD59gG8w2Q/AAAAAAAAAAAAAOjZYbvSPgAA6JJOfcm+gIYf0cd/g78AgHP51tL5PtCErpToWbC/AADwUH4s4D4ACFM4yno9PwAQQllBIIk/AOB0x2pyIb8AAAAAAAAAAAAA0J8WGqA+sFVVrW8hqb8AAFBkvYWrPgBhHY9ENWU/gHEKP8oRmj8AAPBIfTq2PoCOonFW0Hq/4BCdmwkcsj8AALiFnujHPgCAgrU01/Q+AIA1mJlGLz8AgKqbySgHP4AWOKLl2nu/AACiDVlE0T4AAAAAAAAAAAAAl1SrWeI+AAAAAAAAAAAAAMCF9SGlPgDQ94aKhCG/AICu0X7g8z4AAKhV7Ry2PgAAvgBXXdg+AAAAAAAAAAAAwOza5ZIBvwAAgD3twH6+AAAwdljTpj4AALJTB/4cPwDseYriQV+/AEBbf+CLB78AANCbw1vFPgAAAAAAAAAAAM7YnFTyeT+Ifius+Uq3vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKPoyYL0+QJPuBv6DhT8AAAAAAAAAAAAwQZcQWjO/AAAAAAAAAAAAAAAAAAAAAAAAQKeIEpU+AADVJxOz4T4AoGJ9Nr8VPwAAQMcxg5I+AJRgM3FaQr8AAAAAAAAAAAAYoEDGfzg/AABl/2yH6D4AANbpXdLRPgAAAAAAAAAAAACcK22Z1z4AAAwUTZDSvgDQrJc0+Cc/oMYesYuDlj+gXp2IPN7Ov0AMg2Lgx44/wIrIeFnCqL8AAAAAAAAAAAA2SLvBNZ4/AAAAAAAAAAAAACCOWdiaPgAAAAAAAAAAAAAIMc6Xuj4AgOB/2oP4PgAAAIOIJIE+AADgRArEkj4AAND7a1GvvgCgYZJ3lBE/4FnoUMk+mj8AgD/7sGP3PgAAkUnJ0eY+AGA15RY2GD8AACDx53LJPgAAAAAAAAAAAMCZXjHFCb8AADDNUq7FvgAAQOHd8aE+AABIQUXmyT4AABD6RaXFvgAAwDKeSoA+gFs9SedXor8AABBNVs+gPgAAdaOfmgS/cIp00eS2oz8AUKQSZEUjPwAAAAAAAAAAAACg42Lhkz4AAAAAAAAAAAAAAPkg3b6+AAAAAAAAAAAAANBj0uusPgCAw6sP8Bs/0PsGHyQ5sD8AAB8P6fXgPgAAAAAAAAAAAAA4I5I03z4AAAAAAAAAAAAAJvhL6dE+AACm42lj9j4AADqSb7T6vgCAQYUJFfA+MONxfWxUor8AAAAAAAAAAACAe5poRBU/AGiteRDzO78AAAAAAAAAAAAAAAAAAAAAAADOMx+5BD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwpWK3Ccy0vwAAYLmggKY+OGoFRD0TtL/wORZ1kme8P3COpdj8ENc/AFwbTYOcYD8AgC+lw8EcPwCA24UCghO/AAAAAAAAAAAAAN9VRAzgPkBUfEXgkoQ/AACAQvSYjD4AAAAAAAAAAAAAElLmI+w+nKcVH1zWyL8AgOxd3xj5vgAAAAAAAAAAAAAALAZWVD6Y+Aiq8iy8vwAA5vMWAOa+AACo+iIbvT4AABDx/rbGPgCAL5Hs7f++AABWSIYMAL8AAND+K/WkvgCAO7FUW/s+AACbkc8AFD8AAAAAAAAAAAAyyZPXG2K/AACoiW2Avj4AgKW5VjD5PgAAAAAAAAAAAAAAAAAAAAAAAEqxA/TkPnD8RZU8sMe/AAAAAAAAAAAAgDOHmEL2vgAQQ0r3fDo/AABcNg/P2D4ALGlMK+FNPwBAHTNdxQ6/AAAyburB0j4AgP/6SynzPgAAEwI7CeQ+AACwZ4aNoz4AaOj7AGRovwAAAAAAAAAAAAAg6Xe8lj4AAAAAAAAAAIAfArZ3vHK/AAAAAAAAAAAAAAAAAAAAAEDM88WjwKo/AAA4BaU3uT4AAAAAAAAAAADgEgjmjyC/AAAAAAAAAAAAAMBUqEixPgAAAAAAAAAAeN6ufmiduD8AAAAAAAAAAADgF9z1CEs/AABjxt3L8T4AACkUdd7xPgAAAAAAAAAA4LYRK54cp78AAJCG0ezDvgBAkRV6eQO/AACAePJJiT4AAAAAAAAAAAAAkDTxm94+YIMQbPB5vj8A+8JzesFmvwCA0lnutvY+YIPdlqpzlz8AwMkfO1AVPwAAoIg/nMo+AAAAAAAAAABAwEG8UMiKv7g4wntC/8K/AAAgLOujoT4AAKhxZuvAPgAANeu1auE+gMk+Tubzsb8AEMd//apVvwAAAAAAAAAAAAAwdSYZxz6Am0q5lhhzPwAAwQIb/PA+AAA2jq6l1z4AeA9ypelCvwDQRKt/kCK/AAAAAAAAAAAAAI93moQCvwAAAAAAAAAAAABUijaexD4AAADiGrKqPgAAnDCEVNQ+AAAqc+312D4ACimCU/tjPwAAMIKSEKS+AAAAAAAAAAAAAHUOIgnyPgAAwO9bcZ0+AAA8hRqTGD8AADpk/TfWPgDIJy2WuVM/MKW9StWsqz8AAIgcFkbHPgAA8NcLzaY+AAAAAAAAAAAAAGucBCHjPgAAAAAAAAAAvM8zpz3awb8AAAAAAAAAAAAAa5f9seu+gPoaiM4QgL8AALgWbALKPgAAuNogM7A+AADaIHUR1T4AgELFxivwPgAA4NXgXpQ+gHALJMF+ij8AANhkWbrSPgAAL8EJ6vq+AAAAAAAAAAAAAOqEbmbxPgAAwGhhG4y+AAA8nEtmwT4AAICiEmzgPqDeF/hO35E/AIw9ehE+aj8AAAAAAAAAAGiEsdwXzLK/AOjpgtXJMb8AAIBpQYvKvgAAAAAAAAAAAABMUoVH0z4AAAAAAAAAAACwOUNMpjC/AAAAZDjzWj4AAA21bRHlPgAA5NYYsMs+AMyCe3z9Vz8AAAAAAAAAAAAAfB4wCs0+AAAAAAAAAAAAALTaJUDJPgAAQPIi/qE+AIC9cFTm8r5Q704pw1+kPwCAuL58uAi/HmgP2Bjl1j8AADlTUNPxPkgsrrjcPMa/AABgcR1ozT4AAAAAAAAAAAAAAGCgNXM+AI9YiKk/cr8A0LuiJWQgv+RyxcoJVcC/AMA2CzUeDj8AAFXlZXXgPgAAAGDUs3Q+AACiKLIc8D4AAAAAAAAAAAAAhCRjXcK+AABAmDwKgT4AAHDQleunPgAAAAAAAAAAAACQCIeatT4gsPDwlpOzvwBA3Vj4jgw/AADgvZK5nz4AABynGdbVPgD0Pt8mSFi/AACAzUOfjr4AAAAAAAAAAAAA/9wT1OU+AAA4oJc+wj4AAGvTtaPjvgAAIGChkJ0+AEAs5JP5Kz8AAGAfMHOxPgAAcKMu8aI+AABEkKWR0T4AAAAAAAAAAAAAAAAAAAAAAACSUqfHDD8AABLPsGvQvgC4d+cuHj2/AAD8Lqr4/b4AAAAAAAAAAADgTYewKhG/tDsNFXSL07/gK3iHwJ2TPwAApP1hmsg+AAAAAAAAAAAAgM+tbH35PgAA2NcCKdG+iBqUNxq0tT8AEPfULYs5PwCAhhNNph6/AEC+kcZuCz8AAIAcZBSOPgARPS9l4n4/AADSroQT374AbNc9v05GPwDwKPTLjDK/AABg3Snmkj4AAH5HTAzVPgAATd7X+fQ+AIDF/eULGj8AAAAAAAAAAABA+vJ8iw0/AAAAAAAAAAAAACh5Dou4PgAAXttF4t4+AABgP7IQvz4AAIC/0Q6dPgAAIB2bOMw+AAAZJKw05T4wbZB4qFuxvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAfs9LaPA+AAAQomHesD4AAEgnprjAPgAAwOSJYp8+7OhZXlzE0L8AAACiWMFdPgAAAAAAAAAAAABnkkiBAz8AAHRrBx7DPgAAwuLUCOM+AAAAAAAAAAAAAP9AIYnovgAAwEmYb6A+AAAAAAAAAADA5vkYTHaQPwAAEMsqwKE+AAAAAAAAAAAAwGXLkMQJPwCpy4L1KGW/ADlAFZGTfz+Aso1cwiWKPwAAxnPYvNW+AACApRrc7z4AAEwVhx/FPgBg1DGTDh6/AADojFVOtj4AACjeJ7jLPgAAAAAAAAAAAACnOIJG/D4AAADYx9BWPgCAG3Vtv/w+cEQH9n0vp78AAAAAAAAAAAAAAAAAAAAAcMd2VbJSo78AAKD2mMOnPihJ3TweA7q/AABDlCnVDb/YVKXCMoK+PwAAWNsuu/a+AIBNnJlC+z4AAAAAAAAAAAAAoV2+t+g+AABAvfV0oj4AAAAAAAAAAAAASWTrwAG/AABIT6GZuT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAFHlNUgCHvwBPLNDqaGC/ABTMiOpYTL8AAAAAAAAAAADNVFpTW42/AABwY7gdxD4AAJ1sG6zsPgAAkZ50suc+SJ8WshI1078AgPMszeArvwAQ9PtTgDK/AACogryzuD5AwGkje7WyPwAAAAAAAAAA4lPPnGY60D8AAAAAAAAAAAAA2CUsrMW+AAAw8ApCvb4AgKkfMOfyvgAAcw/Nvuw+AAAAAAAAAAAAAADUhp5+PgAACJ5xD9G+AAAW8k+W4j4AAAAAAAAAALC9/X1qh7w/AACwiDdyvj4AAAAAAAAAAAAAwKdz8rU+ALM9XIRjZ78AAMCm+zzCPgAAPpkqMug+AAA2kC7r5D4AAI2irjwbPwAATwjJPOM+AAAABoSMsD4AAIeYk7v/vgAAeNMPdbY+AIDfANfu8j4AAPY+Ew7wvgAA4OYcrqE+AEAxLPK5ET/AWPNw1ieGvwAAsKBUTsE+AAAEyll99z4AAF2+OA/pPgAAwGauHqk+AIAtWqFF8L4AYFbtThMdvwCAFgP0E/I+AFYKdDAxUT8AAAAAAAAAAAAAAAAAAAAAFLxGmjkwwb8AQLYyyF0DvwAAAAAAAAAAAAAAAAAAAADYaJMLzR68vwBKnAX0flg/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgfjBnnj4AAABUWiyuPgAAAAAAAAAAAAAkaQK9yT4AgBOW1Er5vgAAYJSOeZY+AICTe5gc9z4AAAAAAAAAAAAAXh5Uiw0/AABMz6zy5T4AAIDnB/vCPsA5laoGcJc/AADMbloSz764e8LhJyC1PwAAADU6+WA+AM51NOD6VD8AALQ9Pq3SPgAA4LBcQMk+AADHtuTdQr8AAEg07KnCPgAAAAAAAAAAAECV0BgjED8AAAAAAAAAAAAAAK8Qx4E+AJBRjEb7Iz8Al9e3qn1oPwCwQVdNGjy/AKDjOPEYJz8AAAAAAAAAAAAAAAAAAAAAAAAobyJQsj4AAI7ZuUjePgBQ9xy6qys/AAAAAAAAAAAAAAAAAAAAAACA2CSmUPS+AAATuPhoE78AgKSPw6v5PgAAAAAAAAAAAAAAAAAAAAAAAGBjZZ/UPjjfiePotbE/AACM1L7hxz4AAAAAAAAAAAAAEA4cFMs+AADAvdhaoT4AAAAAAAAAAACAc+ahofA+AHBYL9oML78AI8d/tR7hvwAAmgu8Ydc+AAAAAAAAAAAAAHub2/rivgAAfOV9McY+AAAAncA4cD4AAKZvRFLdPgAAoP259LM+cDFCEhkMtj8AAIQSGvLlPgCQBQaWYSq/AAAAAAAAAAAAAABfmfSrPgAA6BHBM7M+AIClala+9j4AFFR7zMZBvwAAAaJecOK+AACYXBhRuj4ATM8OkpNLPwAAAAAAAAAAuAu2myMuxT8AAABjiTx3PgAATNzUAyE/AIBndRyy8j4AAAAAAAAAAAAABlbBrNW+AAAAAAAAAAAAAAATKfiPPgAAePRWgrI+qLYau/6SvT8AAKTutdDIvgAARJvat8U+AAAgJEnYsT4AJ/JV+wOVv0CtAfSGAIG/AAAI45CLsD5w+W0jhuvOPwAAAAAAAAAAAAAAAAAAAAAAdudVMldcvwDAtxFOhAo/AADAAiCjnD4AQEfweFQQPwAAsd6Qbeq+AKc9Ez1roL8AAFtEQwDlPgAAcJWvSbU+AEgPKhZ7Oz8AADpQDEXYPgAAJEMmAtU+AEDEXBV3DT8AAAAAAAAAACBRFYt0MKM/AACgiqFApT4AgPLFgD/8PgAAAAjypaQ+AEkl6ke/cb8AwFFaSq4VPwAAAAAAAAAAAABgMKeJqb4AILQHE50gPwAAAAAAAAAAAADOnOoN5z6w4nWD0MSnPwAAAEzgLGY+AMBKyNP3Bz8AAAAAAAAAAACAmh8OjPG+yDmoTTUmwD8AAAAAAAAAAACwPJwg9Vg/AACSrgtD2z4AAAAAAAAAAAAAuKTKQbk+AAAAAAAAAAAAAAAAAAAAAAAAQHW9gIU+AAANZ7mC5D4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8PIdNcq+AABQdbDCoT4AAJD2iUe0PsBRJ+Jrd4+/oGyQeg+HmT8AALeI1f/nPgAA7YqfYOk+AAA82vS6xz4AAAAAAAAAAADzKLr9zXk/AAAAAAAAAAAAALQT8+/QPqC06H42maE/AEA2sP2YAj8AAGPHf0rhvgAAAAAAAAAAAAAeSAAz3D4AgCrpZgQNP2B4QcIkQ5M/AAAAAAAAAAAAwLjk8VcuPwAAqEUY2Mi+AADg5vdQsL4AAAAAAAAAAAAABH/Beuo+AACuP1y11D4AAMBAYreavgAgZWgiyBs/AEB+UVgbGD8AAAAwMDGGPgAAAAAAAAAAAAAEL4ecwD4AoJzVcXgfPwAAsjmqdNo+AAA2bunW0z6AtjQqf1KwvwAAgFNeoo8+AAAAAAAAAAAAbW/NMCSkvwCAsOXGvAC/AMDk0TI2EL8AAAAAAAAAAACwlqjufyY/AACAItwudj4AAPmDVbrkPgAAQPEVENM+AECKxgyeAj8AAAAAAAAAAAAABJvTQd4+AABYM9Ew4b4AAI+uloAFvwAAAAAAAAAAAJFbRWVhZ78AAAAAAAAAAABQB030MD0/AAA8k4Di0L4AAAAAAAAAAAAAAAAAAAAAAADkAgZ59z7wgz47j/inPwBmYQGU96C/AIDkCH7WBj8AAAAAAAAAAKLwWvaCNdQ/AAAlAp775b4AQHDOWsEFvwAAN/wMGuo+AACgZUZpkT4AAAAAAAAAAAAAAAAAAAAAAPAXvHsNI78AQLDiQp4GvwAAQGoID5Y+AAAAAAAAAAAAAAAAAAAAAAAACGQf9M2+AABSuuXlAL8AAAAAAAAAAAAAAAAAAAAAAAAk5K51zT4AAAAAAAAAAAAASH1oV98+eKN8mggoyb8AAI7mLIzRPgAAyWKUbCu/gPRs3oHfir8AAAAAAAAAADwRLBKigcG/AACIaHhxyb6ATmDEiMe4vwAAHKmwcuY+AIA8AVKSKz8AAAAAAAAAAAAAWhu1A+c+AADYQGhywj4AAODa8LnYPgDAodGqpgc/AAA6Qy6H7b4AgCVb1hL8vgAAACNYN20+AAAgr2hC8j4AAEqVK6TzvgAAAAAAAAAAAAA2VooD0D4AbVoQrW9iPyDyfQYN9ZC/AAAAAAAAAAAAAOTGmxjCPgAAgK/8Htw+ACe2Hn9nsL8AADxEr2jfPgCAhrebg3m/AAAAAAAAAAAAAHmtp6/jPgBAsZTEYAO/AADEXaLr2j4AAAAAAAAAAAAARBEWUcU+AAAAAAAAAAAAAJC05ZS2PgAAAAAAAAAAAAAEHRlV0T4AADCEhoa5PgBc3l1TmEg/AABnAvYz874AABi5UkzEPgAAyCHVUrE+AABAlWRbjz4AgPhMB9MVP3ha/H+RHrc/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkF7KlRrepb8AAIBGam+EPgAAAAAAAAAAAAAAAAAAAAAAIJey1mYbv8C1hOnEsrG/AAAAAAAAAAAAAHC/1C2kPgAAAAAAAAAAIB55PN2UkD8AIHeriqQqPwCAjqd2hA2/AAD6+w2P974AAEj+uEPDvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwN4hRL8+AAAYBA/HwT7wg0WRswnIvwAAbVnEOOI+AIDuQQiU8z4AAGglPj+9vgAA2ER328A+AACweipKoD4AAMzMKfnLPgAASDJRurO+AAAAAAAAAAAAAL2RQNjyPgAAQMNNWJg+gEoE/54Ydr8AADulbVkBvwCAdeXkzfq+AEDD3JvcTj8AAHAZxrevPgAAMBSfn7g+AADA9ySwij4AAAAAAAAAAEx+Zh0AJ8I/AAAAAAAAAAAAAPRMnKPFvnSXMh+Qpcy/AAAg7eZonb4Is7cx0ce0PwAAGK31n7o+AAAAAAAAAAAAyG9KS21HP2CYCsQWT6m/6DzQ+g0FsT8AAJTRjYbdPgAAeLokS/I+AAAA3uki2z4AAOCulJibPgBsAfj6iGQ/AICG4snn874AAJyUG9HnvgAAPLDFuME+AAAAAAAAAAAAAAAAAAAAAAAAwKC9Ko0+AABuNd/m1z4AAELLbHDsPgAA8BxqXKI+AIAYO84uAL8AAGAorzWaPoCKIsGlY7Q/AAAAAAAAAAA4zR7+zJq9PwDAc92iOwG/AAAAc2x4iD4AAAAAAAAAAAAAAAAAAAAAANDnQAMNKz9wgqFzcfihPwAAiCP0e8M+AAAAAAAAAACAdRbKZx+GPwAAAAAAAAAAAHtoDIcYYL8A07kirXXDPwAAgEw/dII+AACA+JL/dD4AAAAAAAAAAAAAAAAAAAAAAABsN9WHyD4AHNaRg7hLPwAAAAAAAAAAAABSe+8b3T4AAAADGFqePgDA+VC3vRE/AADIXm/vsj7wRrjbQVaqvwAAAEtKx4g+ACCNs4gKH78AAGBTFsylvgAAAAAAAAAAACB77I8AFz8AgH45uyIGPwAAyMcsVsw+AIAvygex9T4AAECXWySFPgAAAAAAAAAAAABsKF8OyT4AAAeV4k3mPgAAmKhjbrC+AAAAAAAAAAAAQArFwWwlPwAwprbYrTI/AABoRptLwT4AAEAKo4KAPgAAZJEWh+q+AABWwnq+6b4AANgr2C7DPgBwyh020z2/AAAknC9WwD4AACinpG/CPgDAa2WcfS4/AMC82WKWLL8AAOxwuLHYPgAAQPxznaU+AIDEiecBAL8AAAAAAAAAADLPQLYpC9G/AAAmCNfq5z4AAKjWhp7IPgAAyEkg378+AACAwiNnnz4AgHhyC5AevwAAAAAAAAAAAJityyZWNL8AAAAAAAAAAAAARCWJndA+AABQQZEZor4AACCCby+iPgAAoPbUNK0+AABRxxbKFz8ox2H3gT62Pzh6khyV+r0/AAAAAAAAAAAAAMgJSRu5PoCiOAXKX3M/ADS5jdx3Yr8AAAAAAAAAAAAA/Gxc3sA+AADAQBZzgT4AAPAs72ukPgAAAAArGyo+AAAAAAAAAAAAAG7rO53svgAA6MFrusc+AACAIqt5nz4AAPE42BkRvwAArv4d5tc+AIC1pUMuAj8AAJ4asNDpvgAgGQcnjhA/rolizFLm3D9AVFLd/ieMPwBWrAi2xlK/AAA+BlQt1D4AAAAAAAAAAACAajBo9vs+AADwgzJZpj4AANzc4BLsPgAAbWF5ZOU+AADQqjdfq74APqb6yKlrvwAAILN9ZpW+AAAiGZ+5774AwMPdTZcIPwAAAAAAAAAAAABKvaZ/0j4AAACkK6qVPgAAAAAAAAAAAACs+/9H1D4AAAAAAAAAAACgU1ByQCG/AAAxNAj27j4AAAAAAAAAAAAA/E4kA9I+AAAAAAAAAAAAAAAAAAAAAAAAPjewQ/o+AIR8LegCQz/AGT8hNkSqvyDw8YzFxNg/AAAQRpm9tz4AANSSVmjnPgAAMGp7jLQ+KHk5DwXGtb8AoeXnR6ejPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE5bTzgs/AAAAAAAAAAAAMGhBJ4RCPwAg1yc4XDm/AIAnBEmM974AAAyKgPjJPgAAljkFKdU+AHztUUrTQb8ActyIeehlPwBQzkkWhEI/AAC826ocxr4AACiHViexPgDR5o7QyWQ/AAAAAAAAAAAAABBfPXipvgAAyPKcQ9q+AADW3yw34r4AAEDecZuSPgAAjEQYptc+sHan8SBWpj8AQFbZ2bUiPwAAAAAAAAAAAIAtBxjn8j4AAAAAAAAAAAAAAAAAAAAAANA56kTsIb8AAFA3Y7agvgAAGJDuwLK+AIC8Kwc19j4AAADQeIhRPgAAxBQw/8o+AACJ6Onh+j4AAKynPuHVPgBwtQWAzSo/AAAQyljYqj4AIJFR85IevwAA4qZw79S+AAAAAAAAAAAAQBkpNisDPwC6p9kFtVg/AABS4fsa6D4AAB5+ZHHfvgAQX1TnviC/lLacJv8ozL8AAIBp3i9yvgAAAAAAAAAAAACu2jSu0z4AAGRRSNbmvtAW8Xz/Va4/kOzGdYeLpz8AAOip2tTXvgAAoHZYoJY+AAAAAAAAAAAAgOn3CqvyPgAAAAAAAAAAAHBgY0L7LL8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA9fnk+mMBEm1ODyL8AAADXMUmUvgAAtPOmlsu+AACbI+Px8z4AAAAAAAAAAAAAnrDbp9W+AAAAAAAAAAAAAORTMv7JPgAAAAAAAAAAgEurRytujz8A4HlMnA8WvwAAgJTpZK0+hBvxAVRo0b8A8IF4PUU6PwD4tDl4GkI/AAC7JR7dDD8AAFuD4bPrvgAAAAAAAAAAAAAAAAAAAAAAAPRtvdvNvgAAALni9IW+FNk4DrQewD8AYPcbVC0RP0CFx5qyjJ4/uCOxADEsx78AAICIAFmDPgAAJOnzQcA+AAAAAAAAAACAdPIjJuifvwAAeKym9sY+AAAAAAAAAAAAsILlJYYzPwAAAAAAAAAAAADewmhQAD8AAMm9crPhPkBG+JcIC4E/AABQe+s+pT4AAJxpYqnOvgAAAAAAAAAAAHy99BHYRz8AAAAAAAAAAKBO207SZb+/AAB451aswL7g8L6Us1SvPwAAaJKqcLW+AAAAAAAAAAAAAIAQXXlxPgAAYCWZieQ+AAAAAAAAAAAAYEo798IWPwAAAAAAAAAAAABFxGpk4T4AAIdDGCDjvgAAwKkbq4q+AADhFZXiAj8AAMjdWzrAPgAAAAAAAAAAAAAAAAAAAAAAADA9jDvLPgAAIFMIbK8+AABg/nDH0D4AAAAAAAAAAAAAAAAAAAAAAIDrDX+T+D4AAAAAAAAAAAAAFPAdkuU+0KkzyeGopz8AAAAAAAAAABDDUUzQ0Km/AAAAAAAAAAAAAOAP5xOVPqwNjcaYx8A/dq9SqrNu1T8AgLqBzGYoP8DLVA0vtZW/AAAAAAAAAAAAAAAAAAAAAACAlfWAw/8+AACkPFqmyT4AABrAgVjevgAAIEblHLG+AAAG7n5h0L4A0Am+YfY9vwAAQPrGTKs+AAAi4sWi3D4AAAAAAAAAAAAA0KYhTK++wAxIdkmAqL8AAAAAAAAAAADAzR5FyAM/AADANdFbtD4AAAAAAAAAAAAAAAAAAAAAAAAA9u9AWD6WBG2RKPbQvwAAZo1BVOg+AAAlANdR6j4AAGy3gErEPgAAoI0vXqE+AADMesrIwD4AAAAAAAAAAAAA4O7DccQ+AACMi8HUyT4AgD5PCmD0PgAAAAAAAAAAAABaRzPp174AAMhQpwW7PgCcH4udj0W/AAAIhk927b4AIFXMeEYfvwC0Id3mN0S/ALAU+MwjIz8IuMTVvnPFvwAAAAAAAAAAAIiyxHUiN78AENYexIQgv2AvXN0vM7O/AACfbqlJAT8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKxR7J/APgCADyzuCv4+AAAAAAAAAAAYONz2xuXAPwDAjqM+RSE/AADaEnYR2T4AAHioKN68PoCiRfrE8Xa/AACT/eHe5z4AQB2bYqIKvwAARHBMydY+AAAAAAAAAAAAAAAAAAAAAAAAADoLSXQ+AACY56t3sz4AAAAk2tRwvgA48as4TTC/oG7HlFeimT8AAJxkwLvLPgCgYEbFxBE/wDVzKXSalj8AAHDaDeTvPgAAAAAAAAAAAMC1g0HiCD8AAHAQ4eClPgAAIoBTZ9A+AKDSfFHwEb8AAASADcPNPgAAoJTsopk+ULG8MIiLq78AAE75BfnRPgAAAAAAAAAAAPwSf8pzSr8AAJgL5//GPgDgztXvKBm/AEBe3go6D78AAFYWbZD3PkA4YESrTIo/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB6oEZTUVj8AADLVmOzSPgAAztlTrNy+AMA+JOhOEb8AAOaBce3QPgAAAAAAAAAAALD+reTMLT8AQAwF2UMBPwAA2EuT4s2+AACcai4I+D4AAOICkx3VvgAAAAAAAAAAAAAIR+Omxz4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgeYtDgdjvwAAAAAAAAAAAEC3Wuo5Gz8AQDHwKMwPPwAAAAAAAAAAAACfB5up6z4AAMDkD3iCPgAAP3Oi//W+ADjz6qb+S78AAAAAAAAAAAAAMC/Fouu+AAAW/LS41L4AAIBA7urCPgAAeCPlpLo+AL6tRb9Tbz8AAC6eUALbvgAA2NNHuLO+AAAAAAAAAAAAgNQgBWPxvgAAkLhUSMY+AMD69KiqDD8AUGfrG/IhPwAAvoRUzN6+AKAOZOitH78AALA9/oKrPgAABMwGNcE+AAAAAAAAAAAAgIuqnPwGPwAA0mA/f+c+AAAAAAAAAAAAAAAAAAAAAAAA+L1HuMg+AAAAAAAAAAAAAAA6FMW0PgAAcuFwZ9Q+AACsJMfK6j4AACXAFnhjPwCASkx8ZvI+AACAcuFkpT4AAAAAAAAAAAAAlv2s3ts+AMAQtHe5Cr8AAAAAAAAAAAAAe4ixRA8/AIAZqNkF9D4AAEcKhjblPgAAADN7sWu+AEBJ3JQUFT8AAGAi7ZSyPgAAMNsdc70+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgXdpkwb4AADLGUB7fPgAAahNgXuu+AOMx7ahYhz8AkAaduac+PwAActgantA+AACWFwm11z4AAAAAAAAAAAAAtBjC+N8+AFBWg1xDJL8AAIahjZjevgAAAAAAAAAAAFTBAe+pQT8AAAAAAAAAAAAAAAAAAAAAKCbzOwjRt78AAAi3BQWzPgAAAAAAAAAAAABHb/JpHb8AAABqinCVPgAAAAAAAAAAAAAAAAAAAAAAAOB47NqbPgAAfGbgRAE/AABw6H1GoT4AAHiZxxi1PgAAAAAAAAAAAIDa+qUYAT8AzMAGFOBzvwAAAAAAAAAAAMCKnH+dB7/2IE/P2iPovwAAm9o/re4+AACgr10dyj4AIwmimjh1PwAAAAAAAAAAAADNNaOX974AAAAAAAAAAAAAcOD8oqQ+AAAAAAAAAAAAgEPOx/EgvwDAgkKljgU/QMNbHi0oiT8AAAAZu+OMPgAAAAAAAAAAAAAAAAAAAAAAACCOAjK5PgAAAAAAAAAAAAAAAAAAAAAAwJlB6ak7vwAAAAAAAAAAAAAAAAAAAAAAgF2GleD1PgAAqzT+O+G+AAAAAAAAAAAAAAAAAAAAAAAAnDu8V+K+AAAAAAAAAADAjER2cG6avwBANMOBlAE/AAAAAAAAAAAAANAE66CkvgD4bErhNDi/AAAAAAAAAAAAAAAAAAAAAACAA05VOSy/AIBtMYxTAz8AIE78A0YSvzDghyXD/6E/AJCpFZTfRD8AAAAAAAAAAACAhpEgsS0/AAAAAAAAAAAAoBqRuWoQvwCAivrah/E+gLG3FELYcD8AAHq0ZR/jPgAAkUgAggU/AAC0GiG32j44Okf0IGfCvwAAAAAAAAAAAABQLnvw7j4AYMZov60wvwAAYPlCXqA+AAAAAAAAAAAAgD71POIavwAAAAAAAAAAAAC1dzp//j4AwCQECjAOPwBAT4pYxgs/AJ/5mwX6Yz8AAAAAAAAAAABwUZJSlCI/AADw5dRDyD4AAEBKvHuJvkBe8xoC0Ja/AAAAAAAAAAAAALKlvljcPgAAQOrBT4W+AAA2Xldo1D4AwA+SJRwOPwAAAAAAAAAAAACyyDgT+D4AAMCohdejPgAAAMwWwEU+AAAs89B7wj4AAJ+1AQvzvgAhWra/OGE/AADgPgSnlz4AAAAAAAAAAAAAACAwmSk+AAAAAAAAAABAqMp06rCBPwCAYqhfBSE/AAAAkIaflb4AAAAAAAAAAAAAwFEGNPk+AABgSalnnT4AAKMEPPnnPmB9Pr2awKC/AACNBFAf8T4AAAAAAAAAAAAA+4KG9OW+AAAAAAAAAAAAIKvWSMF/PwAgvFogo0C/tG6+4Ivzx78AALtl7VMKPwDorb6OQkC/AACccB86wT4AAGgsnSfiPoBOJulpyY4/AAAAAAAAAAAAANg5RBjFvgAAAAAAAAAAQEIesQMUkz8AAIwqO8fcPsC5zNG4Nog/AAAgpS/VtD4AAAkkWrDhPgDg338hBBI/KOhBymIRtz8AAIBhkoupPgAAymfAvtI+AAAAAAAAAAAAADDW3ImsPgCgkoIkiDi/AADAtgoQjj4AAEjMT+bPPgAwWFJPaj8/AIBKjeBq+D4AAFJoLQ35vgAAAAAAAAAAABxJTv5xRD8AAFq7KMfQPgCg+gbzSxC/AAAAAAAAAAAAAAAAAAAAAAAEsoEekky/AFB3YiUtWb8AAJAa50fkPgAA4PdWFcM+AAAAAAAAAAAAAEqz0OP8PgAAoKmrpao+AB4eguGxWr8AAAAAAAAAAAAAAAAAAAAAAJB9ls07Ib8AYFhHHhQbvwAA4MVwIpE+AABg9uwlkz4AACj1Ha26PgAAUByNv6s+AAA4x/fKsb4AADDOWxXNPgAAAGK6Sn0+AECTtNsRBT8AAHDz8GCqvgAAt4USV+8+AAAAAAAAAAAAAEJJY6bgPgAAAAAAAAAAAEAHXicoHD8AALtau8wXP7CEWHttAbC/AAAAAAAAAAAAAAAAAAAAAABJoIY+J4S/AAAAAAAAAAAAAIAevi2MPgCARtnupSY/AFzFq13ebb8AAAAAAAAAAAAtb2yjSYq/AAA4SabXxD4AAICWArN6PgAAAAAAAAAAACe5Z/u4bD8AAHQQPjYdPwAA8MAN9bY+AAAKLNn+2j6g+50fwUydPwCgw03/xSE/AAAA1S1Rcz4AAAAAAAAAAAAAed32n/Q+AJgFt30ERT8AAKA7dPihPgDg5EBOgDE/AAAaDOMD874AAOhdG1PBPiAdIaypfLG/AABgJaJXvT5AjnRSynqDPwAAfiG6hdO+AAAAAAAAAAAAAM+MyvMFPwAAKC3D7L0+AADepUjr6T4AAAAAAAAAAACAyExTKfc+AABgJ4f1rT4AANp6L7PhPgAAp50Ge+g+AIhGF8CeMj9A9lSXQrKOPwAA8JvWscs+AADugyau5D4AAJDlIpKgvgBs1UwPMEa/AAAAAAAAAAAgWwfkPOXJvwAAQESB660+AADwVIPfp74AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwJi93Jk+AAAAGN7arD4AgND2dUH+PgAA+taooQO/AAgUTLeSN7/wirlj25WyPwAAAAAAAAAAAACkeKn4yj4AAAAAAAAAAACAZ3B4P/2+AAAAAAAAAAAAADi2yJq2vgAAAIavnau+AID9I4Tp9j4AAKwgsUzAPgBA9qbsEgi/AEAJn4NbBT8AAAAAAAAAAAAAeNeBz8w+IHyHWXrXkj8AAHc+me7/PgAAAAAAAAAAAPwEsAtdSL8gyhtCId6ZvwAAsAQwjOy+AADAiUxllz4AAABgN64pPgAAVfFyZfu+AGwRZDy9Qz8AAAAAAAAAAAAA96qw+es+AAD4DcglxT4AAEjvrfbevgAA0LfYHqY+AABMi2Q96b4AAAgS0OMRPwAAO/tfYuA+AAAAAAAAAAAAABBKlITAPgAw2w6lfSo/ADCKe/fCID8AAGDqRseavgAAyqzDRt4+AEAhNcxLJz8AqCQMZ5QxPwAANOxqfsA+AACk9TSQ2r4AAKQVEqrBPgAAnV3Pw/G+AAAAAAAAAAAAdAC9DB9JPwAAKPGCjbk+AACufvNJ+D4AAAAAAAAAAAAAEJi0DMY+AAAAAAAAAAAAAErAavPTvgAAGIpGM8s+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABI/Bu+3z4AAAAAAAAAAAAAwK6X0Ig+AAC6Ce943T4AAKBNmzuZPgAA4Jh7hqm+AAAAAAAAAAAAgAmnJIMAPwAAAAAAAAAAANJFYv3BaL8AAAAAAAAAAAAAAAAAAAAAAABECBDP6b4AYCUSwG8WPwAA2Q49WeQ+AMCUEZ+RBb8AAAAAAAAAAACAHmb2EfI+AAAYSdqItj4AAAAAAAAAAAAAAAAAAAAAIMCzcNzjlr8AALQCJDHIPgCAX4nPzPI+AAAAAAAAAAAAAAAAAAAAAAAA8KQo+au+AAAAAAAAAAAAANoH2uPePgDgVQOFCCm/AEDSNdaFJ78AANCSMzOgPliDt76jlsM/AAA+hoI71r4AAIBBElGKPgAA8PFdKKu+AAAAAAAAAAAAADHXi3cAvwAAAAAAAAAAAIDr/aM9Bj8AAFtaUyTrPgAAAAAAAAAAAABArr4snj4AaBiMUza5vwAAgKVJQYm+AACgWngt7j4AABD05oK4PgAAAAAAAAAAAHrwEv4usD8AgCO+vHLwPgAAAAAAAAAAAIDF922l8L4AAAh05fK8vgAA8F7EB6++AABA9EZ2qz7QhLV4cLnAPwAAAGbObqQ+AAAAAAAAAAAAAMweRsfLPgCI2kXuhjY/AAAAAAAAAAAAAH4xhpHePgAAAAAAAAAAAIDtald0KD8AYGOLJ+oTvwAAQDde2ZG+AKLW/b6GUb8AAAAAAAAAAAAAAAAAAAAAAIDXSuZW+T4AAIARAwxzPgAAso6vku8+AAA0K2gn8T6AGCNOab98vwAAAAAAAAAAABhSfDRVMr8AAAAAAAAAAKD6+Hhamag/AJDn+f22ML8AAAAAAAAAAC7gku4OuNq/AAAAAAAAAAAAAAAAAAAAAAB8nT8dGVE/AADANujjhz4AAPperufgPgAA+K8fQ9U+AAAAAAAAAAAAAEPFJTXsPoDZ+EgLM76/rhhjZe/I078AAGoSQ3zhPgBlpx87aJo/AOIdrk5fVT8AAAAAAAAAAADAlGmt1A4/AACQ0cFqtD4AAMBz6NyBPgDAiyhq+QA/AACLnRCH/L4AQIPzgugDPwAAWj4tQNw+AAAAAAAAAAAAwDyzP2IOPwAAAAAAAAAAdORDM8hiyD8AAAAAAAAAAJiVp8qrwLU/AAAAsoSFlj4AAMjqkw7APgAAuLGbQbW+AACABp6hcr4AnIlTg6WLPwAA2CYJeri+AAARdhO44T4gg9WDF96+PwAAAAAAAAAAAAAAAAAAAAAAwFTY3TYTvwAAAAAAAAAAAABY42gUtz4AAAAAAAAAAAAAhDn0vss+AAAAAAAAAAAAAAAAAAAAAADQrJCSZCa/AADoJ9qwuj4AAHQRFcPLPgCAi0Dg8PI+AAAfPT4i874AAAAAAAAAAAAAwLv2ZM0+AAAAAAAAAABQbD5ZVtOnvwAA8KaGjsG+AEB7ZiOCHL8AAODSOhSuPgAAGobp9/I+AACwriErvT4AAOetSkzgPgAA1LeyWNY+AAAAAAAAAAAAABqD6pDePgCAxCvc+gk/AAAokYzAtD4AAPxt1D3bPgAAWDAftb4+AIAnU2rV+T7Am/QU64WxPxDDWCLbgLC/QLtxB7yxpD8AAM0xQffovgCgKpYlZBW/gP9xP1Q6rb8Ayy8aFxhhPwAgqZ77Vzk/AABw0a9Tpj4AAAAAAAAAAAAAfOdENsi+AAB4jtLIuT4A8GuCrc8hvwAAAAAAAAAAAABWeVCE+b4AACgUSE/RPgDAaYnf5SK/AAAAAAAAAAAAAAAAAAAAAABAoCd7mwE/AAAAAAAAAAAAgBXq9/v0PgAAN0Iojfs+AAAAAAAAAAAANmMF4sRXPwCARS6Ay/A+AAAQM1qN0T4AAAzrUOHEPgAA/EdELcc+AKCrgybXNL8AAAAAAAAAAAAAAAAAAAAAAADh+lha9j4AAHQzxhrPvgAA4KcnlZY+AAC9wol+5r4AAAAAAAAAAAAAY6U3BPM+AAAAUJLGoz4AAAAAAAAAAADQShWdhzU/AABz72v74D4AgjQ3eiJ1PwAAfmVI+ds+AMDpHXV1QL8AAOAAe2avPgAA5PqAB8k+AACcOnGCzT4AAAAAAAAAAAAAQC7zGqE+AACJUIOlDb8A1EAz+vdHvwAAQOqR+ow+AAA439/8zT4AABBup0SvPgAA0I2zuPa+AACOqUs15j4AAACHtW2WPgCA9LCgmPc+AAAAAAAAAAAAAAAAAAAAAADoByWgUzi/oGS6blcGnD8AAIjP7/PcvgAANkJESe2+AMB0Alf6GL8AAAAAAAAAAACA/QA1KA8/AAA4S7xusz4AALzct3TlvgAAAAAAAAAAAAAAAAAAAAAAgFfPHZjwPgAAAAAAAAAAAIBTbeHzHr8AAAAAAAAAAAAAAAAAAAAAAACI3kc3sL4AAIAE71a+PgAAkDSSr8w+AAAAAAAAAAAAAAAAAAAAAAAAuMC6dcM+AAAAAAAAAAAAAFhY5++3vgAAAAAAAAAAAACgNeBRlb4AAMBum/a3PuizictAbLE/AABAaSg/iT4AAAAAAAAAAACAltNM4P8+AEAy3EdYNb8AAAAAAAAAAAAAAJsKk3A+gFi0mOoFkD8AgNJDJr3yPsCWTYJTS4O/ANK3KVZjdL8AADhCuym0PgAAxC45V/2+AACmWCF55z4AAMBKU07APgAAAAAAAAAAAOBE5iANNj8AAPCrMHvUvgAApsxsqtM+AACgOIKJuD4AAGYL/wXYPgDAKvy5gw8/AADJ71nADj8AAEYvjYjRvgAAgIej2NE+AADLfnyV5z4AAAAAAAAAAAAADn4wJAQ/AAAUkMnf0L4AAAC6m9BwPgAEkWAES0Q/AAACLrvy4z4AAHgpStzHPgAAAAAAAAAAAAAAAAAAAAAAAIAyXOfAPgAAQEGLFoQ+AACEFe1J1j4AAL9sz+AMPwAAAJTLJrQ+QD+QX1R9n78AEME/9xgjvwCA6UvHH/U+AICY6Ss7+L4AADTjRDLsPgAAAAAAAAAAAABM+aC6zz4AAAAAAAAAAAAANtpeofQ+AACNcal54j4AgBNjwGD4vgAAsEltY7E+AAAAAAAAAAAAAPj/kfPNPgAAAAAAAAAAAACQH38Msz4AAAAAAAAAAADAWwUG+x0/AACAk8eTdj4A8u/nDnBVvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAd9qVyxA/gPkqjNeFhb8AANht6WuxPgAA7PyyJNu+gJFPWoBejz8AAOjLJxKzPgAAgL2BrOS+AAAAAAAAAAAAAAAAAAAAAPAi9XTFVaA/AAAAAAAAAAAAAAAAAAAAAAAAjS0NyPw+AAAgJavZnz4AAOxoXwvtvgAAAAAAAAAAAABgcIookD4AAPT67RXSPgAA4Fn+u5e+AADwSGuXzz4AAFU5f27mvgAAvKua2NG+AAAAAAAAAAAAAAAAAAAAAAAAiFJ8p7E+AMDR1zmRMD8AAAAAAAAAALAnE3ByEr2/oCu7buY7kL8AvI8nMetNvwDYtgMkRTg/gKzXRLQ2cL8AALD5sxiwvgAAWvIKatM+AAAAAAAAAAAAAAgHuVu7PgAAAJb2xXM+AGDMffxnQr8AoNA0vV0WPwAAiDYROdC+AADApGiKnj4AAAAAAAAAAAD4DaGwTkA/AAA+8hGk1j4AAPByhbOkPgAAXEhYmMs+AAAAAAAAAAAAYI3lLK8uPwAAa+ShZuI+AIA3t7vGWD8AAGibZ2PkPgAYlYHyAjo/AADgYn6ipD4AAAAAAAAAAAAAEihuVNw+ALCuEpWWIj8AABKMSdPgPgAAAAAAAAAAAADo7dxS1T4AAHRHFPTLPgAAwNSyK+A+AAAAAAAAAAAApGdbLS5WvwAAAAAAAAAAAOdJwfNVvb8AAAAAAAAAAACc024TBlK/AEBLT10jDL8AAACCAgSPPgCwVMAJyj+/AAAAAAAAAAAAAAAAAAAAAAAAYH3j6ZA+AOCmsWADIT8AgC8y8dkMPwAAAAAAAAAAAEBUPdYVAT8AAACQHmtPvgAAAAAAAAAAAABJhzWbBb8AAAAAAAAAAAAAfJckSsk+ACBMRR0yFj8AAPYpc+fbPgAAAAAAAAAAAAAAAAAAAAAA7si/xlKxPwAAAAAAAAAAAPjlurrHMD8AAFCeJRrHPgAAECByrMo+ILDUeCB0nj8AwAqNzu0CPwAAAMN24Hg+AAAlFOTi4z4AAEje2/O/PgDQ7U/RUEm/AABAlKkjlD4AAGidhSojPwAAAAAAAAAAAACC2ysX1r4AAAAAAAAAAAAAAAAAAAAAAAB8RHg74D4AALT/aEnyPjLzSPJNzdc/AODeIOp7GD8AAAAAAAAAAAAAAAAAAAAAAABw0BhKpD4AAAAAAAAAAAAANpKGtNG+APDkTxXNJb8AACwaPZjIPgAApAu6t9s+AAAAAAAAAAAAAPd8EKMFvwAo+TLdpGW/AABsBgOmwT4AALSGra7GPgAAAAAAAAAAAAC+ZMwU4b4AAAD5e4KkPgAAAAAAAAAAAAC2623l4L4AAMg0fu/EPgDQRNTg9iC/AIQSEXEeTL/Asrflll+UvwAAMb24yeI+AAAAYmVHoD4AAAAAAAAAAMgeOML8bbE/ADL3Kqs9jT8AAEArvAeYPgAAav7y0tA+ICmyUMX+w78AYla5p1+QvwBA4mTm6Qs/AAAAAAAAAADAG9Rm31SovwAAAH50YVI+AAAAAAAAAAAAAFAlDw6lPgAAJ+xNeeE+AAAKsIKA7T4AAKVSe6HlvgAAOA3cn8E+AAAw17CcqT4AAOoZXlXSvgAAzK7EOsI+AABQgJ97uT4AAA4qqnLmPjD58dKAtrm/QCSGErCzmr8AAJiBZta7PgDgO2DIYj2/AABAo+4Doj4AAMAeWjOhPgAAAAAAAAAAAADUE8ebxj4AgEn0LnwIPwDg9sZIkhM/AEBokLvzQT8=\"},\"shape\":[10000],\"dtype\":\"float64\",\"order\":\"little\"}],[\"rls\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"CduieYD95z/jMjKSkbfUPzVGSfC9JeM/si/Pi5byuD8r58HCmmmWPxCWSlSsouI/KA3fB4SS4z97vTk/T3jkP9VbB0kOsdE/27sJNGywyj8d2VI47mbvP+GvcLI5duc/O5nVXPhaxz/N4yyFv5HRPwA7bztt/dQ/JuseWy+L7j+kYHeSeHTsP0opljyVI+A/qptSOR2E5D9Tq8qohU3TP863ZhIXUdI/mLGUWWPa5z/cnGP4dDTlPwHJYW75e+s/hQRY62ZBxj8a2PyKWWbJP/USarjNl+s//g9yDPyR1z/YzUYVNI/tP64d5wvIH7o/+gE9pSeB5T9ZccOGNcTvPwZYY5l8jO4/RsdAr+UE7z+t1dwUG9DRPwoY8ibLyNg/s1Ep6vxdwz8XiHasMdLVP29w3Id6GuE/TNI5yju71z87wbOVP7bcPzSLM5eWJuE/ZjNMR/si4j925Z3/29TXP1W6IUV5AO0/Sxn/DJkL6z/PiXrvbmnbPxad52SUl+0/iyQ4gr7a5j+DnnYXwD3KP0GpvmDZtOo/TffsuJ4I7T8sPKZlMY3YP+YYhGMOaN8/EHN5A6tg3j/aA24sAx3bPynh+AXOVrY/AoIKqd1f4j/CTwunmf7nP238KRYjqLI/dK4CmF7hyj9otGxTtMnpP76qyBHZe9Q/gACoE8Il7D86LXoC9ajmP5552SWh8q0/JyMdYhea5z/RTLlyvg7SP3TuhHD5Wes/+rC+W4b75z8ns9IxsaLlPzGo9Yvx8Mg/kgFLOi7A3z8jeF+8T3/HPyDcfltMubU/TaBLbyIK4T8Bi/LWfjXOPyR+cOxsit4/+DyIJG3O0z9lDMbbMOnWPw53jYLxp+0/lHKuETEC3j8t8mFzjOXYP5ZDVD4RGuY//4fOQ9oqij9fW4hhVpXuP+AM9L30DOQ/sdEUehin5D+Cid3mz0TBP+AmEslz38E/uCWojxJz6D+82FO5adPkP00+MfgwE7Y/Xbc0U2nlqj+MAn1ucG7pP13bfCrDn8M/l8eKlP0A1D97+OxGUuPmP5XK/0ka+t8/KIohhl0ztj/BN7ijhrfBPx+RGGq6994/PTQDrO+e0T8KQHHZCBTfP/QvAIpxWts/9gSPLGVa1T8ZCGFiOvjRPx7eWINzwbk/IIwiXdkn5T8ECwDQyLTjP0PITNLPyug/8ohITonBxj//Ie1LhtfvP42h+7o+F+o/1BMHRsqs6j/8eT7Jbd3kP7GkryZjib8/fQzmJBJhwz+unM/hVxDpP0FA6G3hDdw/uPazqNZe4j+B301ScTXePy458HMiu+g/aXehPpng7z88agFTuoTtPztnQAGiV9I/mPIojy9O1T/NHyUHH3HgPxGpK88ia+g/6LWT2p+h5z8Hft/tZ8XBP/xvqp1jhMg/TyD38BZ65z/ZiYRkzwHIP2xagTgZMd0/+jtSA+QyoT/uYam8wyvGP2rHorUqctE/fiE9R8rb7D8eYFCwgVWwP6L8k+SO0u8/nIjSxlwC0D/ULynyOWLQP0kLjbzMpt0/5APBWi4f7z9TuF2joJK/P8aVRTGfitY/y/BG5kPj4T/fK5LMxzjhP/Qaw/6Mrco/1tUQ0BBE1D+i8VZmZY3NP7pQQefn6Ns/SH3bHbUT2T/hzTwjgtnkP/BgDCD2uM8/efl9nlQkyj/yW9kPOF3XP/fd2//09dI/5nz72v1H2T+V6U56yJzfP6aV50dpUL4/ueuOMGwDzj8pj5hDqdmkP2T5AMyQM+Q/EzS+dSYb5z+Xau4LSVjZPzpXfDg1l+0/YDxzb82t5j9w/I+1R/h6P1dpPgqDSLY/sGowmHAZzz9Kw234VBraP8rLPsOlueQ/eeztxXfh1z/7J4yLmtTJP5jGgxYhFto/uB3/mEulsj8W+Iid0ujkP7Up0i85ncg/8kIxyYqE4T8kymkXXxTjPzYyQyj9Jts/Wds1AjfYkD+BkrxA8hDhP1nIUFSrs+c//P992lrU6D+HpCCQwOnoPySfMqb57ec/ZEcPzdSl6j+3sOUNHaDaP1xsSp+11cs/HPVZuoJk6D+VJfR3xuLUP+Oc0gBHcNc//9sKvpLi0z+hQi69XPXnP2phXbLK4+k/alLfMb4G7T9iRgt1GvGpPx48FjzNHOo/UHvToWIL6j92DaOYVGOPP8NRbZ4fFeo/hrIdKUAxwj+4vnNx+ia7P8Uc02vuReE/xvnfxZGm2D/VdX7j0by5P7VQVnLh+ds/mpFkPLryyz8LnmGSkr20P8Hfs12A7ec/Lh+aYtTUzT8kqzuUz8HjP3cAu5/6ytk/6EHWNpls7T8vHMU0/gvWP3jde4+QQcc/vgREMTXquD95lbkUGN3VP1IVrOPyjeo/4XkDIIey5z80zoIJsXTHP6VP5IfX7ug/W5ePjY/KvD83EAcJ/CTSP1nJ8axuLu4/wpQ0TtAy6D/5fFIfSMnRP6VYk/U6qOQ/DGG6DAfw0T+pdgM3Jc3bPxo+vwe9p70/LtnkZm3j5D9vdZPHtXvDP3J+0F09h+M/08/ZO/Ci5z8zDSbWWPvJPzJPIrHND+E/KE2MWp502D/NvEHorivuP+h+61aczdM/IhL/tKzR6z9XWXq8dfzEP460WC7wf+k/ortMwAjv0j+m0NDeHELtP8dZrSs+Ftc/bqaNQwAazD9PsM/RRMbsP09HEpQJAMo/rVWzGmOSsz8cl8TqtercP/pUp3pBW+E/6L8HU8S05j9seQuzPLbpPwbIk2SU2eQ/VRls30Qc4T8AYw2vwV/TPzZ/tEUucp0/V5Zel1OV1j/7+1X9yHfVP0YaCGSlXsg/GDLasblUrz+XQGi5G2PLP+MnICBeidY/ZTbhXDp6wT9mp+s/YQjAPwhqq0Q0190/gJATPNw05T9AjaEZJXjUPygMhhsho74/t1cWK6uT0D+aLOc/5+DfP8C/KwnNIOs/3arZtoSK4j+fvgNO6gjVP8dC75tXpO4/vZ2bQ1c11T+H37OVXHTIP1q7MWpyxt8/bm0JwFo+xj+UnunuPJbhP9sOYpWHBeQ/Ja3quOfA6T8NqMgxObLIP+NnngQUKNI/82aQhd005z8m/0fgttHmPxnbzf/FSOg/a5rXChzCwT+NWcFaZ7rLP+2lNyEOhOA/QQlXnveL0j+kDelx66HFP0vUfoo/buU/j2CeRV2T7z+X+WOxO1HCP+VYGRdHRN8/WFs2FJmIvD9fDvuu0njtPxdgHjA3Odk/VIKDaNrU7z99mi0FocLjPzvD48Em9OU/8FlCMFxdvz/g4yW3D9PpP/SHPklTseE/vgxkmmbR1j8Y5xR7FZW8P2CPPrDYP+g/EbflSmDDyj+GNH6KdynCP8aUQTYBebA/fAyqFBiunj9o/7+L5azoP6+y1buezOg/LQIZmPJMzD9MpryxpPjiP1e3f7gfm+I/wFHHXLhj3j/vcD8WnX7mPxmO7a9i+8g/8hJ9zXvgzD9MMMGOS9zAP3RcTaf0g78/ThNOUIs9tj8w7nvRzoThP1YLs8HE/NU/Kr4ZVGhK0z/y73v8yH/MP6AqQzf0kMc/DLtUKRHUyj8YCAodSWPhP1DNJLg85ds/sF9mfw0m5z9qQiO5lPHrPzkNiyhhrco/TeMuNV5D5T/FXxL22+bcP6W17evymuU/aToweN9V4z9fEDYcH7XXPyYjwCAVdMY/T2yiZC9G3T/rY76tdaLMP3K8fcKWu+I/WhAPLGXj2T9lHzePpKbnPwYHBe46LeQ/k7A9aQczyD/jTAmLWlveP9bSpzzRzOU/OUf2xTdY0T8+/VYyg3TYP60vnGLOueU/tlGGdwA61T81TNxwefjJP0QvN5Ydmd8/UBUibHUy6D+9ojS9Hr7XP5oGx4K4WsQ/IebPpfvCsj9zejr1kQPJP8VppZ/I48Q/agmohpur6D/u28BwdKTrP8cCBVBtZ5U//Bpx1iHSnD/DsK59fh3kPxKei2YB8Ok/83zUZk7ZwT/qmB/8IrLRPzqXiO5mk+E/gkrhmP2w6j+DosmjkQPZP7Z4VypBjtU/QkGaiZ+97z+zoSUu6OztPxBs812IIdQ/ESGKK73v6j/0M6uK8MyuP0KOURiqdMg/rhfeAqhqzD9xAyGZJkngP7kUiwkBGOI/YiWs7nXZwD8K1GZ/GvftP7xAfh+Wre4/oz4WhuW84T9ocFr/l63fP4N3CX5wAOI/ZpDjDUjs5T/JQ76hnhvdP/58/anLuJU/uXVgClA6vz+gGIkAM7/nP2D0OUd14cY/1rljK9dN1z/BFyzoeqDsPyGZ1kKrV8M/zuFBN/0jyz8r6jHAClPRPxmWB6PaNd0/czhPX7Hsyz/xhq3uKLjmPxJj30vE9O0/Jes8J5bj4D84YoJK0O/jP/regyN2heQ/d1XbJEOH3j8VQ3yVX7rPP/Wqbv8j6ek/+yge+2PA6D+rLTLpTRGyPx30m6OLrsw/Zpdavoc04D9dH3muqKrUP2pSeyXwct4/eyaI6pMc3j94jQWce6HnP0V5z0dzQOM/rNbe19jvvT9iXu47RAfpP9ghiFq+6tk/4I2tjuPV7D86X/+IVCbtPyQ34NtA0Nc/h16BQ29Y4z8/qAlYXtHRPwbrYJqXE78/DK8uuihB3T/yev/bid7eP95lZ0oTa9Q/kEH3YwB33D/lmGUdEhbcP+7yawYIZ7c/zAEb/DoF6D8keWzxECayPwApCyhypdw/UpONxV+g6D8VpVTkRkHXPySal5NB59Y/MpnfP9tZ4D+z8Japm/PIP2bs2EdRQ+w/TtNwG5XN2z8jf2oySJ62P0pT21Odqe0/BlqUxrYQ4D/xGy9SEX3qP95GdFg4pOI/Dy7lGhMQvD8Zel21UMjjP6IAtV5wrOA/airg1koh3z+HdkBzcijjP3+FQRmQOt0/72g0nkY47T9mIOKOblnrPwIoDoOTJ+g/UOUdVgK66D/ir65/NOLUP6BUpg9NKtE/x6qEWuMSyj/5L2qFnszEP0XD0Nxuft8/PvvWU7O64D8n9hGjgTviP5oZto8bhOA/iLnKQrD17j/DP9an3h7BP6okH5DSvtE/urnGgvDG3D8OZzwg8LnpP8dJbH8Fjsc/aUEasPr+2z8QbZvpV6rRP3ZHqY7PtO8/9D22gj91wT8QObTBO+7iP0PW38rSW9A/+sVh3gZ91T8FenbrzDboP7owZjS/hcc/mmIGe3r7zT8misAXBhXdPw8qxFl1OdQ/8uW93x/l3T/Vhgnce8/GP5wfHVxUusU/LmTEbLTC5T+OHz04fb6sPwD4RX7kJpw/a+JYC+HV2j/rP86sW1DnP9w2nujqStM/rHzZH8Tx4j+0Eb50Us/aP41E1/t9auw/bKGQIvzx4T8vKxnoA4noPwOLob1TBOU/7as7cT1U4j9GUow6mEPoP9PRmPZG+d0/hxle/29+7T+WV/+E2JPUPyPOenp8e+k/pVQI2kx+xT/ZKLAdgLLpPynytPFCJtI/8tfPPVpH0z+N0yMUjI6/P6Pieja6f9E/zNDUZY2BxT/8i9iwCTbSP1Pno/ddWdA/qESepOUw3T8VbBdJ6Y/fP0xWV8PShec/K23k9lzy4D8VtBj+iirpP2Npprzfr9I/Hx89NlxI2j/ZPTY/x0riP7ySOPMmcLo/dHYj9+V4xT91f5ztAl/gP5Vg3nvTL7Y/U3PJVRZt0T8O2o4egDXGP6d3UVXh6to/cwq5Ab+I3j9kSbxyn2LEP6XEDII4dME/+pw5h/Pe6D+f8nod6xrTP2+BP7LXduc/L0HM4xlu1D+Tb6OPQ0ngP8NmLNLl1eg/YWanyDTzuj+GEeqNDgXQPwXIg/j7Dek/PqO+Y/Xv5z/Lhk4KcyjnPymWVaE5DMk/h31ONpp1yT9dpClySVvTP40DWs486p4/S3i5kZ+h3D/a/lHgfdzoP+7KA5X/AuI/VNjTh1E84j983fh4c9yvP7TUlcIXheQ/jPtsal9J4T96MIU/9X7cP81TQiB2DuE/ir45czA63T8haaGMQqPUP0Vc31jbsek/1GRjvlnF5z+bXxJHevHaP8JyZeW1quM/WSMb7+wb6j/ffyLvp03BP+zEgK+Hit8/3QwY7p4zyD9FhLKCiMbEP5IU7dPik9s/EJANh6Fg0T9FBkmKxoPeP4Duov9TFuI/xKqjOBI61T/en66ojt3NPwQdB7Z/xOg//grKT/tQwj/ECCe0nSPYP3GMWvMChe8/EooV68K80j+pXvhlAdTGP5GO8DVNFus/b++NHUcJwj+eKIy86EbIP34QLgmtRdY/7Lw7+5Cd0j/IONKF2qbrP+DIWe/xtLc/72gV5FK55T8kINL1Q/XhPz+zRnZyD9Q/Pbr1AWun0D+VKi85fj7TP+BaK+CiOcg/TYOpjDjmzz/yTCoqS9PhP6hJs239Od8/1miginL3zz8fwYTc5KziPzBe2eJmkNY/PV6C7a4F1T+/Og2zINjUP7TX3yEgC8U/dZhWJpyX6z9hLYzw+wjaP7bBu4TRsuU/zjm3/bMA5z97E2mbqBvpP9Qqanm7SN4/7eSkoAEg5z9U6B5HmBfEP8Pkm1kKktg/vM+fRUiHrz+8uneIwtHuPy0xUe/zr9w/UtamOTdX1z+h4xOycknSP3zDD95Qvtw/B/sKNlM62T8qc84Ze/PjP57RhE/SJtQ/uCozSpH52j9T4dAKmiHCP8NS1E5BFdY/TW877Hd47z/xYhU8i3PPP7fKrk5NPuU/zubPKLVp6z/++QH27jDVP1cElLmP1sQ/Lhby52Zz5z9Xv9Tet4bfP2T3MmRNodU/ybRr95L33T8rv98RaBDBP73NkD4KoOM/ZnBvc+Y/4j93rqop5a/pP2dmdyQ1FJA/lTfKhvht0D/ud1llh/fhP3rPPrxtjuk/RJb/LU/O6D97OimX4PDmP9y6veIy97s/gIcf2HSc7T9gNXN1TX3MP46/zLI+4eY/WRWNq8Hb6j/ZOYbD/1fsP1CqfLjPp9I/kQIrraa93z8LmHbWDYDZP62SZMboxNc/SJCh6fIfoD+7fzMYmvbvP3LGi6+RMdI/CIHxNO6X2j+X+4Ba+jmzPzGu3etDJuw/iKWtUTnQ3D86fedsshSUP+zhvQ6H6ts/PYzDovCZ7z8F3DRVOq/CPy46V0dbScc/WYK5mxyt7T8T9v0kP/rSPxthL+r+6Ow/Y3ISPsf53T/U0tisxBnaP6VtnO0ho+M/rwwlANVI5T+IvYhZpp3YPzAxOgY0keI/aLk0Vv2G4T+UFNYxchnIPxrGg+/xtNU/DkQdbH8O3T9l8PUvjoayP1/LkJb+190/nJ8yMFztvj8671bCG6ziPzTZOqT618o/o3l5n9Gt4D9BjvaLKwXmP8/IKjJyn7k/9GunFV335D9Zp6i9TGHTP67pV50ILNQ/ZQa3vhJr4z/Nm3vaH9fNP8fv1/oEMaI/C6KX8Y4FwT81YTF0rC7oPzaiDwKuGJo/WWO8qqs72T+cLgP3tZPRPxOFsEXYdOs/zJJ5MUN07z8naKb2LXTEP3xJmGxei+8/BSjxF6hmyz98A9U+RBzoP626igl5f9M/w0W1xzBZ1z9vvnJxXzzXP4SMQmgHtNo/2dD89d2J4T/pbNoaXmfWP1Ft9A+bZuk/0kGXDDN/yz/5B2QCjqTAPwRn8vsWgOM/WSmQ+gu36j+pmuruLR3mP+F3JOG30+A/Q5MCIpQiyj8tniEztKPWP2NobxdEVLw/pM0oYiiz4T/L8xMRBeTkP1+0Wo4u5t8/p4IExrl63T/d06M5OZjiP+wNq4A3fOM/wpVE2gMO3j8CWtE0PN3IP8X2sNPMVt4/jI7RNxTyzT+xUbPIB2LbPzQy6fWPmNs/J9iabJ7v3T/9VmxGP4zVP9dIm5c3qOs/qEREsf7k4D+9E4nRG2GQPxVJuZ5eHe0/4kxwDVah4z+QT1IA4izrPyp4OaS0et4/dF948LBM6D/n4iXYDaOlP58aHjVK8t4/FTYfMeiUyT/SoOOQUMnkP+7tDfnI6tQ/qMIB0enm4j8kdXN61mfSP+2aVYLYrNw/VDsYd0dP5j+I1u/5bfTRP0a2/noOVes/2kh3fwfN7z/jQCD3meu7P78m8Oqpk+U/itQvKnxK3D8rknnMoDHIP5R0Qb3Q2+w/85t3oDmy0D95XulKBAK4PyS58UWDFOs/Sr5Bxyq4wT/ziJC7ZGTqP0LrR6ufe80/+ar4I6hC7j/rBwvguNrvPx84ium+u9I/iyX9Fs+8vT/jFVNfFzviP6PxXGhHX8Q/O0xdiaQR1T9Jx4ncziLLP+IbWN88rcY/kccC5umb4D9iGRwxFGruP68Rk+PMLMk/L5UUAEaTwz+/ZUyvqUzFP9FNnqqrl+s/B18IZHAm6z+gytQMT8XaP6xNcVcTasg/LqiWVTWD6T/E/sosq1PZP8Pz42biXOA/2QgYHiTx4T9eVXiZPsTDP1qwwx++u8M/S+iLB2yCoj+IcaKHyobWP2YB5UuqTtw/uuj40xk42D8QbdhnEwS6P3xrdlDn7NI/bDGaWG4jkj9h0KR2FozUPwJwR5MhRdY/VmTH5fpKyD97Z1tnz2mmP+LMapyNwuk/OT24y0oqyD99wO0XFMHHP/5BDf/Pl98/4G7EiwXq4z+TNx0MCVrjP1pS0XfXI7Y/OyByiqqq5D93ZYGsgUayP+Fb9VaLXew/hBoFo2cpzj+RGF04LsujP1ZkzZlfveY/gy5DLEG1gT/NDzcFfDjvP6EgnsuKFcA/vFG9kz/Pxj8/K85Mze/SP0EAGL36s+o/SCbrSpeN4T8fGyU6PnXdPwMgn8MpkcQ/AqO+Ds3u1T9u6d15sGHUP0UdXtTRjdQ/6beWcx094j8o2SWLivTgP4asWIMHvdg/6BR52xGQ3z/6n2Fl4/jMP8Nq7wJSeOM/WOFfHpL05D9Kz2qp0dfhPwf9IsUrA+Y/9hr99BX+7T80bPCB5rHJP+qmnCDuetg/byL23lBzrD8MXvqkaJ/XP2pEgLRP7Ns/e0Evr9++1j8UbEZ7sArgPz2hxVNdRrY/tGUPexom1D+5o0p2Z0mqP5amVBrBL5Q/vTyV7VYF3T+hxrTLW5vjP4atuAF2XtY/XxjdMEjdsz918N1j7E/pP7aPjVl039Y/VIttkg1I2z9ODjWCu8XrP/E7OSUew+I/mB7pDjBaij+74CPEjMfsP5D8Rgm5l+o/SVhBeF6Jyj8Go3JLdgC1P6noBJVPgdA/pa65WBz1sT8An0EGCzHWPyFrHkaU/88/WRt9qra02T+VbC3yvabcPxTFXWN13N4/Q2XsVb054D/GbqeB7bTQPxKWhvs3Dt0/IAAUcidI1j+Qg00cg7i4P0xxItrqRdI/ul6YeVdzxz/AlRt0FsraP5CSkQ4syuY/tw1ctEIctT9GQqHWa6nbPwpjw5J0bug/8811t4WB7j/0D+dl4aPWP9sUchAs3tg/bXmLrN5g4z9ZPIPRn0DJP33ZT7WKhNo/65HXMlEW5D+SXwl2eXvQP+I5F7wErO4/dKBAoBJzpD/vVuhqwc/nPzIvcNwI0q4/9Ie/VenQzT8+k/KJyc3oPzBtCqyh9L0/VfFDFNhluj+7sM/Fd+7TP/mwTmvRT+0/RWnw9ul6lD/rCvJAyHPVP7IwsXfe9+w/FbArtzv1zT9yQQxlbozqP9rqILutzd4/4hUpHr2W7D/Y7ua88d7VP5QO7g6GHNE/AQP33TE85D8bpBuIko/VPzXm9tfv0eE/2koRqbvJ0T/7sMgnGGbCPxoIlW6Tg8Q/nW1uA5lm4T8mQ+dOMjm8PyHemxV4Wcg/lx4sDCbn5T8zgZNarzjsPzBuvha8/eI/lXTQsz0F5z+2yUY1auLXP1ioWwOYxNA/z8kjKSiavT/zhC8CPM7UPwboH0XE1dc/C+V1RLeT1z81+snk7DbgPzqzAeH5etQ/IM9n3GHEsz9qp4br+1TvPyKmWLT6rdY/iS2MkVb/xD9fqGjfCl67P4UoW3wQ4tg/I6Quda514D9iowt1JUHuP/G/v3ZEP+k/3SH4KD5E3z+ZRLnRpIapPxEeAssN17c/T9hOkEYUxD9PQz/uPHrCP2RuACGx0rI/Uy8H0v652T+OCbHDj7vrP7JUSdbcoLo/TYiovbaq7T/E2Dzj2WbhP2xMS5Ly7ec/nOLdJFFZ6T+twjSiKrLQP8EJVzx3UrM/deXWgfjo5z8ifyCU13PjPzsf0ygs8O8//TU3c5+W2T94NrtC7+XlP0Spixfcauw/bufju0Nrzj+Xc/g62YfiPwNfEc4gy9s/69dbcXwz7j9Y3mahP3zSPzwOMy8J1dU/b4W6Gc9y4j93E1Z9Z3fZP0D+dz/UL7E/C51synO23j9SDRClwVrAPxsnY9U7aeE/5WtliFb84T95mOQxNzvZP2dwfzGfg40/l1mqswbX5T/uzW7PsNTjP1Zii0/Ko+Q/AQ5osmPRxT+JbfIktarnPzfIuJ/KwsU/nsR8f8mz0T+SHOI0kAOiPzyCor7hu+c/6EHPRllO0z/ORvuL9KuuP0YVdf82NMk/gVCUbvgB5T9VoCGfqP3EP7rXMOPWP+8/p4uBar/gzD/ryZtNP1fiP++cAGbL080/fcq/LnsYnD+MTklRtBLcP+4w/h+Tvuo/pxatVBtu5z+vXqGG/dfnP0kFQs2+2Ow/v3ILIuwS6T9UUAvHVhTgP7RqXoXY3LU/FH2FzjD77D/t3/LCllzaP+T/Y5SkzMU/VA7sVmVn7D82iLaZZ+TgP6AbhUKDcM0/UAtTMfJXsD+0IRe3NQHePzWHigIAFuM/053OCgdC2j/jfM3UpVHQP9A6PIonrt4/Agby6WzU1j90r4quQ4TJP1ycCTqDVbg/aVP0TtcO4D+BG3kOSIzXP8UAZ7ofFOE/yJ0WmTJC0z/VfF2faZDUP3w6bEmH8dg/0tfZhxoA3T+Jzi8TTjDqPx8avNiHiMI/8wHn0Jdi4j+/BuXSj8/AP/uqnF0gXtE/F+ntmY1i4z8mG4CC8wysP/QNeSY639k/DsNIuFoT0T9rJUAt5QHQP36D6v9bkMA/IyYLoLvq5T8r6w5CveW4PxbPM3IjFOc/0uP3YtaJzD+3aulJKk3nPyKIJy7Kld4/FjweIKeY3j+8NTZX5NXKPz/bXu6kKek/g/ydJlKl6D+fZyL+kCHkP+UPVF11Vds/wiuFLfygzT+dweDAVVzdPyctaKVd3O8/lrOPnnAQ2D8zHFqgeJXIP6O9ELAda+E/9Air505b1D83b/3QCJHqP1lKcXwjM+A/PG1zzodU6T+A5CY1r4zcP4IJA5xGS9U/HoroCsWx0T+fXsEIgkXlP5pZNhrPCLU/P2TOznwr0z+hz36fmnTmP2/opo6Wv68/waow3CTm6D+vRzBVnQvaP0lwVI7YHMc/ht9OKkkv0z87pbQQXzDnPyu2vP8I8NE/zIKB+3a9xT+cFJK32lakP5Z967G80uc/X05cgEmM4T9Oo8wghH/pP0d2iP8Td7M/2IffIa6S6z9sMBH/4TLhPwD4V8Y/GMo/pg0PrqWx1j84drJgZY3TP7x5dHSqkt0/tOSanTdh6D9d+o1DOvDuPy+bkWVUdN8/NhB0KhEf4D9UoyIZEoHcP5Esv3APH9U/Df8fgFXGzj9pNr+qxiHmP7VodHFA5Nk/8ISkh9Ri1z+ayvyUBU/bP5Cs/8eyj4U/bTTLs+twzT+BJXYWHF/kP6afuY3KENo/HqddVjHZ5D9Vo7yCXQLoP1FdpoSjzdY/L+5fbiWh7T/Phvdurl/QP6eNaWeDrc4/+a3k3Hgr5T8IMwCSB/XhP4+fXb0KtO4/x8ReOyTQ7j/JBdphlr+/P01uCkJkuOo/KSfhAlYbhT9XbprqwoPePyiUpGX65OM/otRAMR0D5T+SzhTDLNyrP8Ypy5pwqdU/FKAAcu0t4j9iA/hzoCLXP58x1Hyfz9w/66sh0iL6xD9DGJdefJXdPz7uMvrLRt8/bM5l9dxzzj/goQxPe5PUP1ZW/TOAhdU/tK8jq80jyT9JMypL4lnNP8lOLJj03dM/yUlSmtuB6D/IU9ojMCDoP/bJ4o32tsQ/qBDBXPDG3z/5bQ+M9QLiP25ex3ebF9g/9dBg8SzewT9mT9NiEtroP8SAqaoQlto/wVDhgYEA3D/cIEi0+JhZP6aSPlaRUeE/nQ9saEJ75z+30c5jbujAPzGORTY7/uU/NDXfmRtT4D8xtIvdSxPiP28qgLLrvuc/NfH1aAKn5z+JpVD5sTHhP5f+Z/8OTuo/ie4Vn2lJ1D/9A78yC1rKP/ahSfC01O8/oodYtFm2rj8n1vcuQ/faPxbG2JJM/cA/XexSxKuwwz9r2LqxqI3YPxfoXr4vRbE/Y0VtkYwxtz902FIycaLVP2Rx8o5z4+A/XAv0ZeNG1j+MdKUQ1GPtP1SIGj9NobY/jpV67+B42T/GT3M+j1LlP1ZfYDpE95A/DBWKoiic5T+79WoX4S/gP1XxLr18FKk/5WG2+gLa5T+a2ex47o3OP2OaT4iT3e8/XkDpETl+5D8pP+oGqtHhP9242d4rjMQ/Togh4ysl1j9YGyFydmfJP9yErjtq8Os/WmVRD3kj5D9s7RUsCFvWPwGlkMEQr9k/7ExVSsMssD+HpHsY5rmfPyJqjBWUjd4/P0Y/fLXv2T8l5eqYwwmoP3a6xHOl+e0/12iqDNj96z+YihP8Vh7hP4U8Csila9M/glM9Jnk96z+89xHFy3PpP9q6xXpV7+E/nHJDgqBP3T8hua6+iZPuP26A1J/gk+I/OeE4X6VR4T9cd4W86h+3P9MoZIp4cOM/ENUA4OqCxT+zz4WdOZzpP3shv9qxhaQ/89n+pnNg4z8pfp5kf3DRPzG0IsHN/d4/PmPjNCGIxz+/nrHLpZbLP0vT2F6mx78/f3Rb1WVSxT9/tNi5dDPWP8ZK/8WLTe8/oK27psKjuj/l/2JDBErAPzQMAHfwm8Q/niitBxBHtT/VrKtbgnzJP8ON9WipCLw/VNmTQ+ib2j+dZU3u9+SdPzt+1kB5se0/j8xT6keDwz8w8YyNJMXPP9JD9XyJk9c/sTib9Yip7D8jx31QYbDsP0zC5j7Z8sw/ug+ZVFwCxD/RaMoAyfvcP0aNTu7cs+Q/h6wumGDU5T90gaUwwmLRPx8ey9cnUOQ/Wkv7mn0h1D8OPe619XrtPwo5Z52XFco/9TaKJsQ01j/vrYYDj2LuPzVotuugKMk/EN/9lie+3j9z/ptAGdjtP0UxuxUfz7Q/EDM+iS3Wuj8Ktf1nVWHsP52kQnCh7ak/aXk2F1+I2z/BOtrcOFWzP57t4AfdtuE/m8T+iSB45T+SoScmf0bgP8JuZzj4R+s/o8sCCtN+1j8PhRbS59yyP9aRr4Htxds/h11tIGXN4D+GetC0RCDKP+YBzyKyu98/SF/WX2vI2T9Fa3jhrOvhPxtyaPQiOso/fRLoO1oy3D9CSaF9YNfiP8pSkizWya8/EqEbOyYq4z/lvKU99P/KP8hiQlsEzp0/mtakP2T36j9L4ahtqezRP4mmgv0Pqus/97Fo9lD70z8HUvswgYzoP77HN9hFodM/KZBsusnn4T9ZHnnLA2brP3kUalZpl8I/iAHBeumU0D/LkVMX+AvIP+6bfysJOOk/nTK8fsLW0z9q/SawD7jjP69t3QPaCek/IjuFvkC+1T+r/qZiwKznP4WBgJ/tcMM/gmcDHYs+3D9ULjyRG+DiP9iAcfDAk+E/6sMnfyym3D8fKU3/KBfMP9XF3GbNRO0/qmM0iyw86j99n3NYLInQP+wLE3YrIeU/I7iNr1dw4z+lpFPxWU/iP6+pQA1wjd8/XfGJcoD63j/N1vLb/2PkP5WRs8lK1e0/Y6UUEfCh3D+hCOOe1nDoPxHZwk+GF+0/zNqNMHcxyz8M8a6rkWHmP82zHBYB1Ow/j+1Dih7c1D9cM62CdbXqPxFUapr5rrs/Ae8GlEuy5T+Cp2VE1l/tP4Mn3PNLl+I/KAht5SBM0z8fQPJ9ck7KPxwUSAaxXuI/BJkHynJJ4z+9Gx2UWnDGP/q+ibZcB9k/icttvqxGpT9Ef+TrsNXkP+FoFU2SmbU//qqiOobQ2j9kpv669fPQP9U2ycY64OI//H/O5qYx4T/B/JfripLhP5GE7IiYduE/UoC+KFmC7T8Wwb0uVyLQP5s7y/USk+0/1mqGaZbB3T+bAI+mtI+3P6l6rTyINdM/fRaWbYv24z9+x9N0JJnmP7QY2tB43OE/Fc4H8NV1uT+hpm7LxHHOP4o7fnS9B90/5qnyrX/1wz+YT6gXK0jCP3UyeEzuoeU/GmwaXFFM4T91Qgvx3bTrPyFNLw1kmc0/jC7vz8CAgj+Taxl+eTGmP00biv94heg/IPqR8/EI6j/w3F0/9RnYP6Smhtgg9NQ/a7oBzMd47j9lW2w1cPXNP9Po6ORSYNQ/UJ+eVNRR7j9rmqUdx2TmP05ydI6yI+k/wFQPSLk03j8sw99VrYHfPxbMyjq2wNo/8oIzf/E6wT/41ISJZsrZP9wKA5yaSuc/G7t/GYY9yT9DvQZObsXQPx22ezsGTrY/NkANi7QPrT/wkb5i3EXlP/HYaJ+auOU/opMbHVAlwT9T14g5cMLjP8dewLqaYsY/97LhBiVs7z9OZuX5y63bP6e2+x6bZrQ/aihOAWVNxz9G+VbGjOrlP25FYZ6eYcU/T+dvuM3N2T8RO0+KC1XPP3cDwXGOY+U/NH2ecwW74D95M1gtAzPjP2eaUemGbtQ/GSr8Hh1Kwj+RDsiUVa7AP+quwX01+dE/GuKcqckkkz9QcRY7j0DPP/9lU6nkvNY/tVCTebIZpj/LYPagDTDRP0+PJYqO6ss/vPaRLwr91D9SUsQTWdvoPyvG/VEUduM/KEzH3KQn6T/wgXvYWlitP4b+2qtUse4/yRKL8vas5j+eoIlleQDuPybvXYyantY/RbrUnKC+6T+2zcjmEcnZP2rbB7IZONk/Rg2CyCGV6j9n0794QVHqP9PH8sog9qc/1XxWnN9nvz9SsbG21e3aP1sE4xnb2OQ/8EntymiQzj+WBqt6vQTYP0iSoN2xgtI/D3ogHjv40D+gslSaFZjLP3mm9usU9tA/dwUkthIBtD81L1NQTafoP0EoLm7z2+A/a0s5mmQx3D+rG3cyq/7JPywvX4xdoe0/F8JL3FhG4z/EUPRebmvDPyjsTqegc9U/a7mojVV90D9L8YB51XvrPwBV6IwXrtY/9m8AXDlazz9K8D8GAIXCP4qWQb3rsOo/+Fcuv4Jn0j9kMQnVfE/SP//P2eRqy+g/ckSjWuk35D91mQ30hn7WP0GoJu5+AuI/Lgf5pSLX7T8Q6AcuqaHcP741ljuYa9I/eC9TFobF6T9ffxr8sw/oPxs9grbJt9E/NFvd/UiylT/K2ZGIYIzVPzijJwT9AME/9U9pEzedpj/2ifcOD9HfP/IO9ld/2aY/72kwDPKqwz8JVAqhQiO4P5iPK9lvgMM/utA0wR+/7j+nVqwctEngP5PbsqIIItU/r6gm8LUx0T+f8fI0HqrqP43oOyV2N9s/Y0rTCEcP0z/ce4SePoThP1+kYWOvrcE/n5lyvADSzT/HKAyyW5DMP7wY3PJuV88/CHOogC8K3D8zkTjeaALaP6aqxBIqMr8/lvdV95PS3D/YEqPDPO/HP94ZrYQNTeo/rjygyKoeyj9f5PlkVyDnP7oHdHXF5sE/VfIxCsXM3T+Io5fBGzroPymdvPk68+0/HNLXFYso4z99aOlOXR7bP1kuuV7okqk/prevWIC46z+74R3tvdGzP60ir+Yjbuc/Z20KsqdP3D9JfTm58Z7dP4gVVW/6MOU/gSAUwRzX4D+lvR6mUhvnP2J0QHJ2GMM/RohXxiD06D8n5fxck87sPxZZmE6YleU/w2fs5B/6wT/9xT1sWenfP0gArlXPG80/v3xrrBJ96D8/ff3SKfi4P/87vUQJecw/FsJYKoDO3j/XkVP6S5/kP3KUwdp0zsk/dmk2qJAm5z+Brkg3qNSxPxaDLi6+A9I/IwR/kiG21z+fWXkPljDcP/Q4Rigk9N4/7OJtOiD15T+saPybUIPCP3KqrHbI5eY/3ybespnR3T8UaKCL4u3gPzhPd1BCa+Q/I32lcfX84D8EjTfVy5/JP5p1ciq1TsI/Xb8azDBB5D+3pv+sDKytP5DHqzZwm+E/hfdo245Z4D+s4f6ds17uP0+7V/Jhhr0/M6U2B+IG4T/R0UdDFYrjP67TSy6hDtk/aEOX3sOG2z/PN7Lg14fQPzmTI9Sb260/EOuA4Zgn1D/nA/579Fe+P2ACzvuOt9I/M0hSth7Cyj8d8d97kLfAPwMMmjaVEd0/ZdHmQ2y/tT9Kj5FmA7jkPzecrfg+wck/iuOLcbMa4D/pFAKNnuXiP7fOztv7K+g/pAr1QJkR3T9VpYE1sevrPxvTnapoDLc/LvhTAxvh4D/rm0FTDLLpP/2M2H+Rg+E/XlQ7VZex5j9SWwzMCFK+P0PWNAhwQec/cLERMJ6K6T92HTDU9sTgP6dcnPd6Aus/dF+MsYPm4T9OepxrUtLoP0lywpMoYNc/RttibujX3j+qD0+Ryy/dP5Z5ADw6cdk/c2l1CkGA0z+9dehsVWXmP5ZvOncWkuM/k0F7lHmK5D/4fBqvmQTnP2SICBOrguU/7hbxDZEL3j+Kh1qBFpLKP1ZeAiq+rMk/CLtzlObq6D/I/Dt22S/JP0wLxTnNEdk/9r75rI6f2z+JmcHOdB3lP57lZkGX2Nc/staoemcK5j8Jr4kWKkfQPyA8XNmHIu4/E8+SJlVC4T8x9KTng1bCP6EAbZJatLM/ENJR2Gnk5j859xcrY07RP+13W7gYLq8/qh7Z5OwGoj8EPV2/un/vPyBQFJuDw+k/wN2XUWry2T+N2OzePFreP9BzJCm4X9k/Kp+bcvlW3z/jw6aq8qbUP7MpzVgaqMI/R3k+Vh1Gzj9/uBlZg0TgP09XcvIaIuM/LFc6cDSMvD9rgRvWg2rsP8PNS5TZ++E/MypftgzM4j9tCuVqp0LpP3gLwo7o4+Y/oSzNWQ524T+CjV3BCxDtPyJvxbb2d88/hp5DDQvDzz8Bta6bLfbBP4FIXS7U0uM/MtPlUxw/4z9D8YTO2o7tP1/Xp2+7SOM/bAd6kOAb4j9MPOT0MpznPw2WDokYvM8/a6fgX4St1j82fjsgL5PfPwI7HB/lEKk/bqdeNlwu0D8dFFL/sCqrP0odApQgteg/AgzskEqG6T/XU5Eoj+fAPwUyC7ntFtE/FoOd1IH84z/Ur308sxPTP0ZESzJuDeY/Yi7cju211T802hZxVeHEP1cicIL1mtg/THGOSiWn6j/q0JEx0lalP9Y6pJhpqrg/QwZJ90sc2T/kdV1zHg7ePwXDdxpj1bQ/6XM8ckz3wj9n8wT4BmCTPx/yrOouAeo/V6F/Xquf3j9V9iGt7+fsP3yrRcLWOuc/9xyT3mghwT/xVqrkXVLnP8xo27Q8hrI/UpFFO0yo7T8WDKOZRZ7rP6mloIN5ou8/ejjXdj4e4T84L3NfUOTUP1jha14OYc4/M/Sy8mMryj9znXn8UGLmP3gSQ2YTduE/SfZQUoFD0z8jUP83oZ3ePz3EiZ75i8M/RyGeQZ+XvD9smr1AdwDuP9izuTb5NNY/9LmzudAr5z+j/GpsS1DEP1cltbIR0d8/CnUDgE8S4j+I9SbxSB9wP2q9fznnFsE/kINg797xuT8816eJM3XVP9Oo85V8xtA/wISnTuR23D8qJCGKIjntP2EkLYTL8OM//TpGFmru7D8Yd4jCwBnDP8RYcOXoW+w/TRd2KkJO0z+BWW9i3CnVP67LdxxKLZw/HokLDsY/3j+4GBp7TFPgP74dUOXkvs8/w/wHwKSg6T9r3vmuQ27oP2hLbMiuCtM/8/q+tzhg6D9yvzS9KubbP3e1i6FM5dk/LfTSBtxX6D9ObuZxPFraPwUYUniGWs8/Lov6DCzF5z8fTccIAHDeP8pJi1ZsIeg/E2h/OIBAlz9TxTV68/3fP8vDea/g89Y/tkLvV6bl5z/a4gRz+BvnPyNV8ITSbNo/7GrUdPb1zT+qFCwLVfTiPxs6BC50hJk/B90xzZ7+5j82kyglbTPWP7Ldg7hD3OA/1++usPhz6T+d6pnyFtrZP+s3E1fRusI/H8aXA6w+lT+kuqFUMLHQPwY7+2hCA84/mfjaBga7wD8R9B+cpP/eP02CTTTNkOQ/rZy47jFL5j/1pC9ue8LnPyHCMdfVEdI/naXTTtzrxT9FsX1jeBvhP72mb7Ass+s/cCPx8aNqyj+nkHL6VULWPzBhE49DVNM/80l5HZE61T9c1kzsBle8P1YAxeOFVeE/zNBK1e4w6T+8g8eJ4/bKP17j/Q3UJ+0/13CsqEN86D+8zcM6infoP3WOT92jtuI/M9foyc2OwT8UivVyU+PBP6RfKsB318M/QwDIvIr8zz+J66jfr9bhP4J3qDG6tdk/P5lWMpIK5T8mGm3abRjJPxHPTTNuAdg/mBrlsuk04j9c7ATyIoLsPyzqhHF/c+A/6yvctmnK4D9ubieZwp7jP3taQUdpsOM/eFvSJDXg7T9ECtpDufrcP9cQALao7dc/1nU7uGup3D9pIG+STkHdPzd+J9phZ80/4yxx3rCw0D9wlx2RFkuhP/C1ACZ0KLc/hRJC46Remz8NtpThc5jQP/dMGjld0sM/UH42qEZE3D9w+jUyjmDsPz0duhGHW9M/bQZE4oyb1j/LW+rAmE7iP7mYrE/7L+s/xbnEo0Ke5D/wrywGXo3mP8VP8pE18uA/1XtgZSly7D+T6SIuHc3oP7Z4kcoEVtI/TdARRwyVxj+eyrmjvr7XPybGXd99zqk/ljgnGskj1D935XXQ/mnDP8nXfe9yMeU/5yGypvt37j+uVtbH+/a6P2enaIg4P+g/GZBySBdbwz+XIY1BuravP5Vtme7Ykdk/DDqHnKb16T+E9ciBcbDEP+pYc1Fm994/XeknBp/Nvj/I/w3QQGHlPwscZLmNsNg/l7bWqXdp3z8NAJhKvo7VP62RdSisOtI/8GLrXFIG0z+vpoy5be2vPzmy3ZxbNuc/9sV8YScBwz9VJgdpcfPmP4qi3UBJdJ8/Hws/npOb4j/aqgG4RLPAP9PKI9pBPOw/u6/tXapA7z+KxI6iYffIP+cMz20CcMY/YBaAW32v4j8MVEXYu4jqP/Zsz+iY/uk/w1BgMnq44z82D3KOBwzsP+iq1g4tEr4/dK+dCuz6wD9d5lXdDNjlP5rwSsPNFeA/EYC6dLbb5z8HMgQH0tTsP2TmjuHjCsM/LPKOo0RE5j80B4JDVj+dPzcbYlC5P8M/sPEH1SP47z9EIzOTPcPpP9qIukpIOuU/mRhp/uOlyj/Ao/W4DkzjP0ILmkmEEMA/BA9KC9/I7T89T5zM8qbLPwuAhapDLuU/fUuUL+Hl5D9hhxyALPrhP+qq5PmuleM/VuJrndcW4j/ed/SX+DXYP7RwA1KwweA/YHrbEWMR0T+GNjScNKG6P8hdOOfO4Oo/v/cZsAHjzz+P/2cfHbbYP9C6QwKAD5k/FgNhT55n3z9Vco2zAvLnP8x3GDy+Qe4/X7+G+QyH7j/DOOfjfdLWPx4+NchOp+M/yvYKery12D8/xsCxcOXuP/lzAZjwP7c/4mGhkEU+3D+JhLpMnQPhPxUqjAueHdw/evW/rmcz3j8GD8D6rFzNP0tbgJ19i64/XllH6iF/4D89mBS8IgzrP66d78DdZ+A/Am76YQMG0T/bFeA0ThPmP08vbZ1mX7g/P8IEBPlH0j9/sglniWjgPywzrETWQec/X1HXXVaJ2T+9tn7D63LYP+xbfGT2PuQ/unYbcz3U2z+rMHnOLFbvP5WuKoWHtNc/4zBkgpMG5z+6kiOPPSTNP7hCZtbGbu0/1sgaHxRL0T84tvcWf1viPzsjCFZqh9I/ktsi4ZAbvT/palIcguvuP/pgSgfUddo/juRE5wLU1z9mGTFaykmuP/CUcqdEjLI//dgE6bPq7j9j+hWjGaLaP5M+PGT8aag/Vh9k4zNnxD8i8zCr5+/mP2cGknmsYOg/rlAqpfchvj+PIbNH1EviP0s0CSkcytM/BW9OkvgF4j/dl1XKlRHXP7pmlaxV0p0/NL3csAy4wj/7BavXepPvP9GUyyFtj+c/g8hq7Er1yD9qKY7LC/DmP1yXF3Vmg+M/1/k19VXI3z8OEq840o3cPwEYpYtoIe8/YZ3Ub7MHvT81lwE0FESUPxf1jA9CLuU/DKWXA2Uh6z/RQoD6dr7rPx7pmiPdfuw/IgMq1Jl/7z/wCvq6JHzpP8Gy6aRC9sA/w6DJu1pO2D/xwXZUcI50P7SYpmk/Re4/K+3hkvFzpj8xdKirg8vhP+Lv+NCqqug/DNO7NsO20z+ZGTrJk3jiP62V+T0ym9c/qJepw0FAzz+/1Mg6e7XfP3IvPvWEHtk/NY9iI+F94z/aBg6IkLHcP+tgZPYx5tk/w8n/Ghi5qz9oGf0BjAbpP+4rlVcGMqE/US3zYSE81T/An9KWNFDhP+glvem/LMs/Pib/lcyP0D+B/xjFWO/vP9jM6EOIV98/aa0nXhj7wj8rPiBntsLrP1j9yEzdL+E/K2ZV5al86z8wOpvIgL7lPwuhMBmUhtQ/mL6LaYAj2j/C7KDRpjLiP32Ts6k0ua8/g6Fq6FfM3T8Q0A95GUrZP3uol6FnVOs/WQN/9IY2jj9H6qv0YfDEPwiB71MRUdY/RQvVPeSm5T+FJTmDZ1fJPyk08MkZI8A/bwWaLTwa2z/nUYr5/iThP6r3mG/LItA/spwoTL7Vzj+OCdeq7n7tP1vc1x/9BOE/3Fl+04827D+c0OHnPl3SP6QCpwPT26w/kdffyhCs5D+2xb2MTre6P3/RmglEKeM/r866cjIU4D9JUDYBTYjsP3NNc4fTXNI/ONwi2N531j/KJa3JJJroP+YZPhCrruQ/HJKWtEXb0T9lXiNuOfTpPwv0XODmdtE/BDS2tWuX5T8DcdfoipLYP4IJQCSMxr0/lEcdJEHr3D/aUD26IEvRP07CNerXWeM/kU4+Lv0m7j9fRxX6MszNP+/G6T3wBuM/6RFbeq8A4D8MjPAy9gnHPy95mLcOH9U/2eRAodTk2z9qHrW6zEyZP9gVSrXsB9s/d69lnnlNsT8XTgjOTHjbP+CQZwH9rO8/yuXZrISE7z/glXML7MC5P2g9AlH9uNM/g3skrL0myT8iXnC0lfjnPygmwEdqZtA/clXg+BD+0z+xYd6sk1jQP2sP381yCeE/EmuvPT+M6j//alldZ2zhPz0jH1dYkus/Z/vwqE/Y6z/2pcIPcoDkPxd7YoY23MQ/t88seopjsz94GwdSO0PaPyqZ8SAi/9E/VtDe61jssz+SPSvbO4voP1sJPbcAxNA/Zj59bOM/7z/FhTJmqtHfP7ljRpzdhaM/jte6dNIq0j/bE2f/NazkPxs6EimGxq0/XG1mRNAu5T+Qu2tVlSDkP8nh/GeMzOg/t5Q09KXv0z8tECgCTzHmP44sqIkckro/LLDwWlV86j+tyX5EqCTtP1aVZQ37dt8/t934Oc81lz+cU78DhqO+Pw75aYgy3uM/e6mOPR6+6T8AN+oKxn7lP8CzUFlbfGY/qTo17U0B5z+GRpOYgtLgPxKiDU80PeI/5ZRYSiOd4D9d5IpEMV7WP42K4IYHM7U/71Q2Sbz06T99bs2TRvHiP1YxXz53hLE/V54lINovyD8TpK3U6A3NP6wQL2qRtdY/SZdn8zYb0z/5Uxy8q+DCP0qiYNGetOI/KViKAWAHxD+B6GpGQcHnP09u5Jpqtt0/y3S7I1r65D9NfArMztnZP+uEC8LUx90/G/QnThVewj++JNPjYeXMP+zHsAxmg8c/uhwfTymt4z8U4mHlGPPcP2NleDfDwtU/8Puyq5737T+3ywiDXHPpP/ZtHYWutLo/IQzkX+oKsz+B5syLFGblPzjRLma/n70/Lu2U7mIu5z9vt1qe+djmP/KAiGndmdk/EIqm2p5Jqj/lr8E1mxKjP1PMkWkXzsA/L6xLw5Et3j8VXhC5XZPNP5kQIlWcedY/1VyGHpBY0T/O2F5780PZP4iq0nq1qsk/af1BIDF77D9W2oIPVralP8jx5mnZo8I/8IFecHNA1z9WCvgWwELFP9CY4zvyftE/Y+tEced4wT9KJHByDYbWPx2PFaPiVso/Av7rzL3hwz/utZPqwZW+P5dzp3tx4ec/X3MtgMzy4j9CZ4yQP7HoP9dyNYXx9eM/yy/8OfIC6j+GdEAyOBvsP2I3H2k0VuU/mTHIl9G80z+bHTa+P6TjP4FX0mUNidM/QqDDvVwP4j+bKddROo3uP+VdLzaN/tI/5GYxpjyA1T9rlQUN3OvlP7aqFuw+7OQ/rsbGwDbc6z8Ugh792Y7SPwIZCtX2itc/k8F/GUtFoT9uLO25LtDKP23s/SCpYuM/JUF77Sxq0j8iEWs8297TP8WdGKcK9t0/frxkfTkr0j+W0LhUE6LSP73cG0t8pug/XiDneXuJ5z+tX2losBbuPxYzaQCuEtk/MiXvkdFB0j/XqF849CjTP4KD2d/LAKo/LoA70fwP6D/be+gtOISxP4Q83HLJedw/cm7aNfEL7T9SZ4YcBTvmP/tfFB3k7+w/HVzi1KS/2z/tHGMJXKfnPyyxAS2/Nbk/YFYCIJ5B6D8vKjuhfSTpPx5lGNH1Qbs/6R2sFUDw1D8FP7GwkuzUP4EIgmtknO0//2bvLvBw2j8i3vJ82t6nP4d3T1RMypI/FzNbNpDF5D8hbDqpX6TlP84B2CZwYa4/FtBVdE35wD9U23IuZb3SP9u27HzPp9I/vKmBwQHk5j+iYP78kf7kP3iVHgIGJsk/91iXAeTV1z8S+FtPJIfrP2dkimB8Ldo/X23hi8XE5T8gUpFxRiLSPwTlocMfPuU/yL1EF7sc1D9CS+XMpuDjP813Qi3C7sI/9tFhLdMP0j9kY15FClnpP+yK910ksb4/O6CtdYVq3D+MdZMY8d+1PwuiRG7O03g/nNyVusnT0T8m+ZF5OVLVP0fdl2D5Ie4/hNPi5f0fwj+Gx94b8knEP5xRElTH2MA/2y7h0moT1T9Rv+nQbxniP774AOY5EeA/2dl22Br64z/pnje3CKfaPw1B6EL1Sc0/ru7d/uDh0T+Lfz9a7GrPP23YwypNFrU/I+ADYkKo6j9xD2lRw8PZPw/Dr7LpueE/pTFqykD46D87fMtVzRXbP6RTTjJviOQ/jCn2dAr53z8NXyL+a2biP6i902boZu0/8zSLvgJ87D/s/AjXaqnuP5sxTXGPP8s/4sa6Hjr75z8X5MpnQCvoP/VXarn0Qes/ATsB5xx25z9l4uHYu6zoP0+Z1ouXB2E/cGGXZCcB4j8BijojvQPKP8LDiH/Nt+c/Dk1aAQqV1j+77Rq+TjLZP+VdeFCX86I/M2XivcOo7z8or+m5C8fSPxjavzeXs9A/dXmSkFTt6j/W2B19YDSWPzLtIOjFeMw/euO5MdQLzz/irIrO/KPTP/ggjTUkhMY/167HL+AU2D/Z5GgqHRHbPyr0qVJFxL8/wAWKymcU0z8sjJ/Nl73jP23YEwJB58E/tMfLWa8PyD/XxPKBW7npP03CW4VzWe0//B+Z48fl2z9X+ce7y4KzP/7els8Nn9A/9EkN5tcOzz/3EN9qrLnZP24Ml5eL49Q/qqnMz5tg2z+lwieyX2vnP5tiTLNR3es/KguMyQyFsT8YuitSTVvhP9j1vLyAGME/3aosyLju5D/hNnEi1rfLP3+bdY4px+4/8RmG5PbW7D9jrGuown7RP69AlS358NE/q88KLYCC6T9zvEIgO+LvPwEpNmlVasY/sp09P/hGuz8c6+iRy3jkPzQujC5JHM4/4BbFIUk9zj+2zOnTTGLKP2OkNXYDcdc/tsezndMt0D+P/J2rNBPbPwbMpCeLSuQ/yCJMb5RpsT/bqWUHAITdPwxWj/9XIes/QuxuppNU3z92DxCFq6HRP3jwAM1PdL4/+VwxkIMU6j+UXJQuJVfQP7mNqYnhZN8/c99TQ/lv0z/FVf6YL/XOP6Xi9qyrM8E/sTJMfbfhsz9PxweAOEe1PxzYrPzx+9Q/nU6uHk+awz/UT7QW7EvHP263+1GfPOo/VwGGwLeMqz+CY7h/S1LEPwC9gvyXwOI/PJzKp6sm6j9TJggWoSzOPxCPcb4IyN4/JZ8fzMjssT/y3KxM51fgP+9CoQT58dQ/dMJlsh7F7j9aYtgiYw3gPzUOSk34qek/QGqLOLs2mz86LXYYlw3cP62oFQeMiug/ySjFaHyWxD8ETYUwbabmPyyks732pdw/OnRHIHiNxT8OyBXupTzHP/+O16I1FeQ/ov+hTWw02T8JGpAZOZfhP/Evu420fdM/QO13UAIx2z9KjxGYqyjdPw7tX4xGysQ/ndfn16ux0D+k/Zh3wHnkP74NJcOcNe0/slI0BpJWrz+YuOTtp/LgPwvbzd/2Euc/XDut6OEj3D+oIXFxfEPAP+zMpcgXl88/kxLeSUDP3D/f6a59QFvcP+/gP50oftI/OJjk/BKLxD/oTF4U5XzoP/eT2C9Ujts/IgLvEhqr4j/9/aSmjWSjPyf2vKrwDeE/uhs+AvH70T+DQR2CKgHcP9xky4fiGdE/aPtZuSgMzz9IozDtJdHYP93KHJ85QNk/fM72xFxk0z+l8PCtYNajP4T+CFzZWOo/qH1t1kvkwz9pc0wHeR7XP0WDfxZiJOw/4iqnXxb/1j/LXCiY5n3qP+EaLR3RVt0/GoGlK4onxD/8GR2goJ7lP30FJQgGl94/LaIf5mDN4D9nSsj5dBzAP7OnoZHfK78/qpeZi1hk6D/kqdFHnx3IP51OlFZ+Hu4/eNQL72TzwT9L7QZORLyqPyybOv1q/NU/U5NKe1Iq5j+n/pw9cTnSP23M7ay/VuE/1IarwJlk6j/zk8sdTjGuPx7ZwR72Jsc/HJGCTmgT7D+AoqT0j/WlP9Ik3sos2ts/idXrgvw94j/Zr3Pt5dXTP03i+XSjPug/Y+puZ0AO0D9cGw39d03QP2CEHfPYte0/l9ZJCKBl4j+4hBgDUwrXPwo85vCRx9o/W/NUjl5rzD+wirvblwbiP8eu7e8SbuM/4NYOB1vQ3T+6L/b2ADHVP3VOd/b0os4/4PTnnX1Q7T8GWb+Xac/ZP+jwkFvb6do/tTpJEPYy2T8ygxFb3HzAPxVqafK+2uE/mMIhzOwP1z8USZQVhPrlP3R/QghYLOw/Oak5CBLpxT9XfG1qYtjWPxsvXmqJ7cA/FNDxN0NN1z8HK+amojvnP03lO3d+N9Y/2eBVTsIosD+o2tyWp3TQP8a2pTQY29s/0omqE3Ue5D+HQJaxBFnpP5SkUGBvJ+c/QkArnKZx5j/7XW5XjQy8P3Z0JoMZ3+M/qRpM6XSvxT/WvnjGP1qvP6nksFlQKeo/6H3b+TYQ0z/2RxZmFLDKP0ZXge/o2uU/KMk5U3vk4j873CVze8HMP72tRsYpgc4/PZlYx/ur7z+AS79fzJbtP1D7t5SfkeQ/Mdijjycb6D9FwLGxKhuvPy34tm4Si80/MHvdlYb87z/OJxojZiLDPz5Kz84ST+I/5KHlcIkw6T+JmcFoUk3SP0xnXsIWkd0/SUTB5QKy5T9piZC/3W3VPxEOJ/kGRNk/Moui3V3M0T/VHq95qybhP6pXJL6NOdo/Ir3+A2sQ6D/Ic2DQxq/gP/OiO1Q6m+s/5uqQNO3X2T9gX+IMsDHTP+SkUhw0FuE/f2Nd2RoG7D91YbpvQcTrP4fbTqJe0dg/19yCSKF50j+MiUuDwpCtP2lNfGQRLtE/u+MgSdaV6T9cu70PbPfDP+B5Hn/a+e4/Cbt9Xto63D9LuwlVJbu2Pz6SySQCo8M/YqXVQ5lw6z8HQkPXL9HjPx1kgfmz++k/uCBBSKbXzD/ZUWUN2lzcPzJYudhOCus/SgwtN/5U4j+q+Lsr0drpP8ME2jviYdw/fb5dZ+k03D8C2YRiRhXsPwcHgf3Ly+o/4oogVOqx6D8iJ1FNQevaP3IFaoKJlOU/2PQD9CECyj/aeXv8cHLSP7WSP5q3Y7s/SmhajRGkwT+gv5+CIDnVP13ZhDiwTdg/6mnb8YRGzD9qj5YhZeLoP/HsNervbN4/n+acQOANvD/8CzYtfBXJP+ikD8yFcrs/07jw9Aq/6D9xBjMcw+jCPx/0NQYPne4/vflfkFeRwj+JOUTkyFDgP5jvMtcWfug/5/jbQqvLzT+uXUpgX7ayPzZQ5wLF38k/mOeWwzGP2z8zkdbyF6rvPyYBcjAKRs8/Gt2ukQ942D8m0QRgqQLDP5qi0M1MGuM/fk4mqHUc2j+22pr8h+/DPzi9msGAfas/zlQ7Mveq4z/d5pW7Vp7bP3OSh2ZV2tM/VR2sY3NP7z884WfdgluIP1BuZgPoaN8/bcpCBvZ02D+jx6ZsuOLcP7gQYF819OA/p6Wmj0Fq5j+Ojdp4Q3ihP8WFKJV+Fc0/kUASzRX95D8VVEos6Z7XP6FdNbUq/bA/CrzDfkIM5D8s3SMnlwDrP8isvz27Y+s/Ny0zIoPooz8qJk9l7UfnPwMqhRQjmu0/EYjPdu7J0j9wgR898UC3P0fIJbQJgtk/N8CK2DiD4j80VMFQ/hPtPyUQ0wg3me4/QZYgAD1a5z+M4Yg9IHnBP9pRGjh2p6k/fhCHE5IFxj+LWZGfHI/vPz4qrqqjgus/C4liM3h62z/xiSVFtwfZPy2lCa/2gOU/1WeGU4Ljvj9dn/UylI7IPyWObbiXges/qqEV0dc04j/bcdj+/AaxPyH+58YHHrA/ywAlNxnV3T+TnrKDOHrNP/TCuhLU/e0/t3TzQvHI3D+ytqybuxzUP7zXuH8nkLY/7EiJJGCK3j9HvJ3mqpTXP5a0VQO2NNw/f/aT52Y82j9AA3XOKIPdPydG+gXXuZY/U1HbBIPX6j+19CDXdgPkP0EOAfPaUsw/8QU+9P4+zz9VxrvxsrfUP46ALhjuye0/KUXiOIzZ1D/wEAiwY+naP1WV6at6iOw/3zCnTWgG5T8xh3iHi4GiP7O8pd55ArM/NHWq9SEV1z9mVxg5PpruP2yKnS6FHeQ/GxJ3BZLCxj8DW9z40qPGP5ICo9MsP7k/DUb2476p7D/Cy4/7KBXdPyJ4gbTKUOM/u4ji68TuyT+EzWI5WumjP9RiXafakec/WPsQpFMk3T91pj9aYZnKP7Fv7wQn1eQ/Nk5t19S/yz9VvlEN4H/dP8JM3f4v3uk/loJIV/Lbqz/ngVE13WLkP+3meLLBu+Y/HFmWuI4C3j+Z2vymvK3hP0WSkEopMcc/FBRu528d6z9UGOJivoXUP+DcfGAh86w/vig3qW3x0j+tV1ITcurtP6xrh8bww9s/REAq9EfJ2D9pDc94WzzJP13yrCvvYMM/WC23Mga33z/FbCHk7dLsPzY7vDerI7o/VMysb1w+3T908cRVZonUP45y1E6R1Og/qF4XvjAR0z+Q/IchCp3kP/nn2JgLnKg/YI97sZ9D6j9UqAyAYBPtP4++LwiwTbw/YaGQmp/E2j+OdR2Oi/ycP0B4l00UmOQ/XHlSJEuS7T8JpN9TF9znPz3D5GH118c/0cR2/ike6D/qE64MrnPvP/tTUwPs6uo/zv8MOnQU5z/eNURVBHLkP6rLkF3VO9U/9OA7uG+n6D+20pteOt7gP8+7lnGypco/6Pqa6t2v1z8EI3xBoUvkP3PcYz5VFdA/XI3or4G03D+xyIgg7szMP9ehDRneD+o/Jr++NgPnwz/Hvkx/ys/nP/HAx7Dg3qM/QT5vjf1Wxz/rsXMl5U3JP3tnV8B2heE/m/ay2yEi6D9sNKFS8iDAPy4nfe4eu+Y/jjJPlVFg1T8N380sWc3mPwyQ0PBiOeA/dD/ugx1Bvz9MAjcDxsvaP+OM+izzcN4/UpWVUEVk2j/fqObFtfbbPzeBZIUT9uI/kr7yDpxA4z+8JrwCUBDqPzSzVkv+0rI/1Dw27J/Dgz/cGzP1AarZP4HG4I4DvuI/MFE4jbZx0j/Cz8ix/mbWP3TpVXip6eM/6fniz+Mj2z+L/0xhfyrTP2UNyDMcd+s/pY5LIG09wT+WKMfnSJKdP2DwkVeALc8/OtVUrk/G0D9HL3hRojPpP5ID5Q41BtI/IqwFN9PZ7j+CSwT16F7kP8vjSVJlXdc/2Uj1+fMYyT/qe27FAgnYP2+lL0Ujbbw/K421xB556z84je6tVV7lP6ghyIrd6c8/WGNYIm7w1j+aIuR6xm7XP869FOIopL8/JNNHWY83xj9H+N40w0vYP+69unKCQr0/a6bsBf4W6T9pC+XSX6HhP9ywXanTGdc/9Scxz65Kyj/MOKUQob+4PyWzZpYpOsw/oxaUtj3v6z90oWhHsCC2P5wj9YSbsaU/lo4pXkcv7T/xufC2PBfBP58TH0PxB9g/T60Q0zWyyj/6gGQ4dNbbPyjjOJjS7tY/YBDhAGEOwT9FCG9mk6vOP8weX2RZX+0/Ucr0PAyY1T/qO4uGVwPtP54kt59ZLN4/ULlKgZ2X6D+oqCAFWL/eP7dLdMvrEeA/qcrEmRbh4z+malmbqP3RP0V9KOXaTOE/83lJER870D8rW7aNQAXfP6ZR0oDlQsU/9Zyg2LYgjD85bt6WsT6gP6tlI0JRwts/Ls5qkR6z6j/wT6Ix3IazPwtgdSb4ueQ/Y1RkJ30Atz8f+Gi70V3fP9jOqhm/s9Y/jDfIfQzr4j/1jSfrl2vVP6+t4CUKHtw/XaeweIlm7D8TTyp3uM/PP7/9yW1mB90/sHf9YRYG1D+neZMc1LenP+7HdWJF+es/SqXvvPcq7j/dH7sBe/vdP1orCO8FFNI/nT0CUMbayT8UTloPXOfnP3AEM5itac8/z1wQ0gVO4z/vIOT5LNznP3lrPYmIftA/U6FGGTv52D9mu67NDwLKP9QznbSYO9Y/JrA9cLag1D//3pn5a3TJP1goKwlQSOU/EAV0WUWn4D8967foWZvvPy8GKZtSlO8/JucT8/s2zD/oL8sWKZXRP+tQS4vuaOg/UCEcG1MV4T8XW+GeFensPzKn/fWDyN4/gk85v2Gb7D/jIaeRJbvMP+V/x0lE9Mw/M0+fsxlGyD+kXxKKwX/eP6/JytZLxNE/60xoCxVf0T+UxrBHGEPqPwzYLQs6w8g/uZpMCyd53T+0tjsMJEDVP4VmbDupNd0/BfYkNZyf4j/ZpsgkHEPLP1rrmwqbQ9g/ROQhbmh27T9Wosn34nfbP7ZwO326AtI/N0rhMMxgyz8J/FoJAenKP2FYi87tkcQ/IyC/vqT71z+luJW7CZvUP5jHOS21ye8/kiuUgmG55D/aH/EtZ0LHPxdnpK/0guI/I84lPCU54D8fiO+0fnjXP6Kk6yStY+A/E4cDaN3gyj9F9aQdjejZPx8uuIWWvII/bJNJIZnw6D+0Njg8ccvaP5jXSLerXts/b1mrUobp5T8XqTaVaszmPzOROszhfcE/qCakUUkl2D/b3yaD0ll+P86PZ5Hsdag/8O1sAJUN0D9eZJwN9Rm0Pw4olbVfSOE/a2NNqzQ33j+l0nJ2MxznPywjhbDxRuY/QFRkbr3q5T/Ckg4zRb3mP4e+eM+b164/TGxFnpol7T8ohCZoqzXpP7wPgUCtFcI//uzUcW3Jtz/qLZ0rDJ66P1wXvLv8iNw/3NT6maJUwz8ATNrzN4ziP6MAS1R3INk/B7oUjQq74T/NIX+UZYThP7RLiAjUCLs/0OcFu1MZyD90kmoWFSTgPzQ9Unp6uuI/bxfCFDGPzj+dAksumlTHP/btSEVKz9U/1n7hU/Kmxj9YQZxpNnS5P29xl3yx4ek/WY7pBY9D5D/DVqpQfe7dPwUt1UuJA8c/9/JFoXgf1T9HDIX2lLjjP5MPRZSwLNs/LGWZmpSL6z8zsWEZp2mpP92V5PQhbOY/xdBaAuh+7z9W5bfcrKvePy1ehaau0Ng/bORk8RnkuD9lMbRbs4DCPy5zX2fzmsI/VL1TQ4ck5z963Btk7gXVPwvCTI+Rtcc/BFs5RaRWkz++k2m6dK3hP/jsJaHNXeI/J/9FxwrRuD818B0BqxPoP2rv0UZ+lLg/t5iySZbGwz/AsdJiLNjaP/EE9f/VaOg/ItNmV56u4j8TB6w4/LfpPxyhco5Z99M/LiM4hY9o5z9mqfarjLS5P5dgu8ZHHrQ/krbMffZM4T+HmGRqfsDvP3iRw94FqeU/YfETdXqN5D+t9u3WEnXHP+HeftBQl8U/GPwmYQwG4z9wT8DvJFPsP4BSXeW30+Y/hdwLZkBj1D9MtsK0IxHZPybbSgQP4qM/DAlMRX2RyD8GQMXHDnjqP+wvvFRTW7w/9jNVilUt5j+enRB/RtOuPzSTGTsdm+s/5VkWV/cKzD+PRne/g7XRP2j5Q/LpP7U/dYnQ/r+F1z8QumkTYmvqP4K7s5uRU+s/obKbqXHR2T9EbpZdOXncPxyRMbAjWcQ/DZxvpyPG4D+BZlU/CS3oP2/0tihUkeM/hdmxo4jP4D86/6kdtPbtP8g/MuTfV+E/0uxQak2W7z+SbFwTxVG1PyBmPlWd0tM/8jjIfCm70z8E9zciS6PYP+uXx9XpCLI/9WpxovVL0j9FlAaYgV3TP/mBvEcT4dQ/u1sANwlE5z8E5qi4eFzdP4Uj+FbZ7qY/T7v76x5h6j9VB8SBaYzpPxBcgGEtBOE/KpCMf0du4D8FeI9wmJjZP4fCd4A63ek/5jNAa6FvoD9scdZkHNnSP0V7v1l1Y7k/3isvTm0u1T8ypui7TFXaP4G9hb/+0+o/ENcyzw2JzT9ltaiAbrvhP7tMwj5ZLdM/86eo2rikwj/IpzzztGbgPz6C4wVct9Y/JIQHlIBE0D+gAKGT7Ma6P/0XHd7pIO0/2unlF3bO6z+UnyIlX4PpP1j4DKlFM9Q/JnwVQRfcyj/2oM1mH8/QP+eU0XjaW9s/yUQSqj/s5j+rTfd2gvCyP0/fWcbJz+Q/XNN2XLIr4j8dVUCCR8nnP/9HmjKuutQ/25Q2RiDFzz9bJ3SzuOrfP3eIcqUDBuM/C3u6fZoH1j+zIP27cIPoP/7NVhUcBb8/57++bOag2D8w/UfHbtjmP654R2RAc9Y/bYJNw8goyz8x1a/MHKzaP1+rhxLW+80/hdPXymz4sD/r9w3Fun7FP4qcvpwfCOM/eoN6VcyGwD8BBejyPxDiP5x1H1udcNs/7CWqclCV0T/zMn1/NHHGP3RHdTVd0d8/8wVjbtNN6z8DHU/FWf/eP2JsNfiKjNY/MgMEBLjd3D9fPHzf8LDWP3+dEf3H6Oc/TJ8vdxUy0T9PzckjAYHDP6MnS7Jt9tM/k6e6/+rvuD+eUSX4ZpTKPy3A8aZw1rM/5yOe7SA96T+Fkz9z6fLcPxoOU9ueqOk//XmmaNqu2D+nAVCjVrTiP4jTh6dLm9I/AYZP25bx0z/9Fq6a0fbiP0WSh8Ju8Nw/o/s/SgPu4z+8W5hU9I7dP8XgGSSDBMI/lFf8e+k72z8hEqZwkJfvP63pz2usaL4/UbCrWzxl5D8sEHd6rdzqP7fUvibbGtg/Y3SUtYq/4z+R09QgYrfnPx2sarNMle0/699XAWT0uT8G/cisuCnEP0h3YlQdu84/CNA+/y8t6j9bdUZ5NnfDP9zLjIhBaeQ/h2To+y5CyT/mRVTnjtfUP0m68RII4tY/XxFoOkGgzj/kly2aoiPlPzFB5rJpMbw/HY2Ao3an4z9OWJsfCSzaP2kKYATXcOI/p0Ngq+hD1z8qXqpH9o7AP26KCcMvqNs/4MSKoWB/6j+4chYJ+2PjPwk8wzb1FuE/fEku3rt2zD9U0SNbyhajP2dp5155Z9U/+vaHmJDNyj8P5qYNLjbXPzhKZXcEpeM/tLGA5AXT7T85m5dn2LjiP51QTUoc6Mo/MlFaH0dn1j8phUDFyk7oP9/vciONTdI/PHl/gT2N4T/y9R6DCjXkP89YxLDDpOY/k5Ii4hHG6T8j+nbyT63XP/36axuyaec/jzuRWCYM7T8yOgVHYwTgP8TXhzhgw+w/N+l/8vnehD/EXXr/oBTKPyIlGTeGaeI/R2a0pzbn4j80tSiYLIGpPwdFKoofwuU/wIDD2wYD0j8JZA0fa9SyP3UESMRXJNw/qm33EB9psT9yqzmXPrjvP15aMbBY4OA/JXFI4QUR5T/cHvYOZe3nP5dsa1XsueA/XnJT2uEx6D8QLCGjczHmPwVIZuzoJ+o//WwYlOj/sT/bqd418hW8P+fdFByo3e0/yQH/Q2R2vT/XCTZ8AyDVP55cZWIHd+A/qFZTa5yK7T+fbW3RAorNPyJy39a7bN0/DUbsD10n5T/rByCdFH/XPxUr/9BZKOo/t/dRjoXM3z9l8OePtgXmPyvzseYHL9g/Czk99Mam2D+STbAwKUbgP4ArScfumOw/JnKLDAsX0j/mHFXbPK3QP62BkK8Z/tA/h+tDzXrZ3j8yBHIkk4qnP43JZMHVvcU/YLadUMeW2T/WlyvOy6DdPxaGa5MsVrI/qXkKwTSy6D8oG264eJnZP/ApbZBafOU/0wP2bWXAyT/63jvwlxPlPzBr5lxRUuA/wMPTPEPo0z+HIp3tsUnpP0I1OtcS1s0/eU8ILU/ztj9L4fwOMbvIP1WbsPGdKcM/i4DpOoBc4j+B8qs3VvPbP7JLhe4J4cs/kS4YxygA3D9hx+W9f0XSP3ukKQmopt8/aLsFPQ7KtT/7xUTe64LkP2pgVt/Ki8w/weVuJR4U6z8K4Qlf2hfWP8jm6U+8XK4/pd2U2/u2sj+itsBss6WhP8TyADkeg+k/d97WBXpZqD888007sbHUP4RMKMwP1OA/+iJML0kt3T9Y3AwbOEnlP49T4boJVuA/+Os/LGdYqz/5xHDXcRekPwYwuqexS+w/1lD39kSNtT8zeEs3lI7qP+Q3l4Nj6eA/q0rI+79e5D/7Jhn8iffTPwt6UXCDvMI/3C2gcWQU4j+UA9xfBOPLP0DoO9ZakNQ/MuuUVotb5D/V3Rqa1GLtP0wxsTjmHac/sCTP6kpi4j/SALnkcVCpPwb8GESv+bo/cVSNK2ZWxD9yeYKTrmznP+B2cqqILuk/JZBxPzTB5j9UdzGlg23QP9HzUFJFb9k/pc/jkzMG6T8ycEORqAC8P7vkh8T4VeA/bo5HWSS2qT+ahCSvtzi5P6a2wgvxA8o/1KKZ9x2n0T8Q2fPVE1a4P4l26OTMdL8/mKQqZf3+3z+tmI9yxm7aP/Aath7tDto/czkIGbBR0D9DtrOhhEfNP6qE4X3GzN4/eBqm87x74T8YyE5xXAnpP+jfdNvn/cM/QHUWPkfA2D8XWVd/PD7nP+tpxJHpe9w/5PFUjQS74z8LQXcLvhXYP4ULlSQr3tY/XEMoPaKs1T8g0C0bKQehPz8jM+biG+g/6c09N84v5D9t1hbN1zG4PzCzKiMHj9c//q5cS6EXfD+4xys5gXzVPzkLk5FexeQ/X8GbSTfRzz8xfjuJ7FC4P2/nEhe9dtA/ln+CqG+H7D/ZIFNCiCneP3I55lt32e8/07SjZFbpyT9QYPfaRTvgP1HeRETpedA/6J/pQGmY7z8KBUV1N9PpP9zSnNkNruI/MbKzRswQ1D9jLEFeY/e8P0MIHtUXnuI/olabHHnXij/ObeaW3M7gP6+wQm2S830/FdMQzuRXzT+6Rklkt9PKPwO4ZFdB9sg/konFFiFV6z9eqDoUxczmPyQn1u3OIew/zbB9nmUJvz8RY5lKYMPiP/FHl1J2OcY/WKP+Zi072j9cFO2/Vf/HP9YITfQSEtQ/eVqUWKrPyT98Y1yoIhjoPx/1G7FS39M/Xe/mXiUFrT8FwhJe+XjQP3YmJBa5UNw/YFe/cH5TwD/HH5eVUgqjP65Sx1IuStY/6mEozdLV5j8Ws8bXTkJeP3q70N4yErY/mCU0d2Fc5z/OYu/DyNDnP5O2Dj8KEe0/oiGq2wlz1j9V/KA1pmDkP3X9rKH6NtY/P7Zu6k8ryz86pVYPW9i/P+rvaidsgbc/n9DFJeO9zD/ooqe1z6fKP4Kt5ILDQ+A/y2u/7ohI0z+Fuqb5r3PbP3zqSWlEgu8/pAvr9jOC3T8NEsi/BfbiP22BwRFESOg/eny827jj2T+3/xndD/npPyHraoMPR9A/vxmYSkHR7D+LMdxqgUvkP4zfh6j4Z+w/y+CvUP1L2D+hrdXFGSLIPyJDSoGXxt4/iWxkyno41j+fluPncSvCP/vBwV5ie+o/UaNOqkeb4z9Kei/yOnCoP1fRx7qkfeI/FZ7SKMt36D8bxhZS09fZP8EL0QWBdtQ/np8IcXC35j8pOCDYBZTHP5N0BeBwXdg/f2jE6cdy4z+8qVnJcDHQPxV/Q2BMkeM/LF8FznTa0z+KyHbzv6/WP0Bsr4dxIMU/1h2i7TZp4D+ASsD1iF7BP5zl+HxEEcw/iEGHAkNNqz9RcOsMERboP2RMEi45Ydo/Uj/Dagi4nz8YPa2Y0pPRP5radvyhn6Y/LTDpTzEL7D/68k1p3KjFPzSZ++P62tI/YmhcHEQ84D/Lq1lzaL7dP50vy2+ZPqU/rpDs1sFD3j/dbVqPY7XMP9qbpN2asMU/Tf5hBWcB4z/wlSTMIpnhP9O4+td1Wt0/O9suLuYK2j+GO1yUZ/fvP4/6tOWc2tc/MVu8yWDJzD+O5bHNBIzAP5AY1jpQVOM/wtMGH+A4rT/2f0yaQZrKPz1rm0wNrdQ/40+NyVMKvT/97HeS6TLfP2HUqu+umMs/AKuqiVfR5D9adaejiKrSP2lcZcbHv8k/8TucAXhv3z+V11FJz1vUP5nw96fNo90/KHadllvI1z+ekQTv+oHgP5OD8oRAy+o/ovAfEGvE7T8Hw/JloRDcP5GYGDPFL98/kLwy5DbMqj+SsG12PlDpP/yJDy5uZ+A/oqshJ6gVuT8ErGWQERnvP9Pu/LAvrag/SkKkEVxO4T82M8os8yzTP2rVZhc0ycc/lagZ24S25D+Pap78l4HtPz3QvLFyoew/JCPUYS2O0z/4roBcRjfjPwu0QX0zyec/IBxKxPfi2z8EQXdXCVPsP28JKEAIAdo/oJdtu5U17T9smX2aIK/vP1FBe8ET6eo/nQyJp6Vy5T88ftTq0WDYP26LY2udW5k/VjOdYGZAuz8PfgaLxdflP5OYKgh02tc/vuPoiu0T6z8rLXb/jO3iPyXhBJKUbNw/MOmVurUQ6T/yWv7dLifQP2clPCC21N4/sPENCajr7T+UIRLYptHHP+0UTYLK4bQ/ZKs6KtYw5j/lD5rFUwbqPzl2an4pseM/wbqAJnpt3z9d5s4bVBviP16FoG4aHN4/kIT5Q2Kfuj+Kv5QRAI/pP85Ga8oYvdU/WwOWpLPGyD9ndCmu0fbTP/EfPYSEwuo/SKzHWBbF4D/TbC0Q5Ce4PxDNBK8YlsU/fZS6JPvA7T8BSxqbIpCcPwggR/DXbd8/VkoAtOKJ0z8+tTjmvGbiP5n1LCDkSLI/VrzdtEsv3D9wifbHTR7BP2q8Iap/scc/Px6K3w1D2z+y7Pcg043qP6KxyPNnzMY/kzINq1PpwD+xcFoSlW/mP31B0wgN0dY/6DDsjqYB0T9k+LpsHdjTP4kwnERe+Nc/OYkothkX0j/985i5RHvbP1qcrZ58x8g/THU7aV/30T+2/gl95nG7P7ViQFbVics/kt0Gftt1xT85jzGu9ITtPwpsX2ve3+Q/eBjGKGqU6T/AHW8xqjPuPzhKtIs0Nsg/UGtkODbo5z88F2dvCKPkPytYiORTkrc/eisbaKVm1j8M72Yx1YHgP5nIeMvcGdY/x79wlWxMzT8H2Y5+kvbUPwbBxhDUlss/CaLRrdT87z8pXCgjkIXQP5PQ1ZTZ3K4/up5kz0k+zT+NvFrnPJ/oPzGhIGQVm+g/HA04J7xt5z/cmftbxoLuP6WqCv67/d0/cW6f9dRD4D/AEspkuSfsP3n/4vvO6Ok/RVioMjcn0T8KGf8Yn87oPwvfY6/ydeE/2VpZb2iiyT/XTZ6L6H3IPzdC1VvffOE/oeoDZH8Eqj9VHfIcXdqnP8C3s/8xBrY/Z9RJgpS35j9qRukPGm7mP2vD+R6WZtc/bomX9e9z6T/aN/EtBn6zPwVGFyVuIeA/G8GMIIiJxD/Bv6lUfsnjP2PMXEuHU9o/RJ2sRXR6xT8nxDLkfHLZP2BNiUeuQe0/RAcRdyqcxT9unxD32bnjP3gaxqe/euU/PQDcu37+tj+FESsINb/TP1HZZxmk5eU/omordLEf3T9iZVxvwnqoP6KIK3lf3rQ/Bd+DFeOB4T+w5T/r5/PiP8jvNYg6ILk/+Hm0mwq61j9uUfme6KTYP+4BtTzThOg/bjrWmIQ20T+3NWE9mKbAP/5XDViYQeA/xXHQJmdVyT/nP8V6NcLMP3sBihPb5+c/SNPawGvk6T+QjMocHuTiP4xRdiRDj+A/Q9AOf01Qvz9MKicHeHblPw4hRfw4BuU/ftvX8hu44j+9J3Fnex3nP4n0NoP9y+0/z7zLu1BN5j9X+nmfeVHhP7uOGhKX4eU/SWRZGe1u5z8A6gaxSQfhP6BuSfZdbuk/xs63kRX34z8TobfnYJG9P2SNjzN/eOw/WhyQzYgxiz8esBPNWvWzP8hTGrjv/tc/MQFH+6gp3z/zghz3njTsP6HkCNAiW9g/Vu6C1jKwvj+zG7GO/abXP8AMQrSDOZs/IwmLwZUR4D9GOrtYB2LEP12Spzb4VO8/35InUtUU2T8YSWrXsi3iP587AuJhads/qST8zk4x1T8jGQYDQJ/hP+NTSnCLBdA//q1kmjm52D+2s7jAz1LYP6nGdjScXrE/dJg5HYebpD81gD2LO47bP5jlZiWGrN4/2w8kpKIq4T8BXJIrXHWoP9J2F02F8r8/yZ9fPu5YwT8cF6WLr0jSPyDqW7JcPeY/8RAwl9Ltzz/Gntp0+y7cP38FfPk8AdU/QyuIMtNDpT8pwEtdFTHkPyAQu6qE0us/GK64j+x94j/YBiU7vzDoP6uRAYj2At0/RX/eUlY3qj9if9FdQozfP5BTN/Qlltw/0AA/Iybm3T/GD6PTJG7mP+GGgCFe+9g/p42ecT0O1j9FPqomCBXkPyULYmqUUr8/PCa9sd2U3T8aVUb0VRTaP/qHxugb5e0/QL6Z5TBB6T+PKYWbHxHYP9n21+1MsLc/OVECmVl1wD/HVLy8aTbTPwhhoaru/+A/3UtdiR5DtD8g2EWPq0rfP14sTP+flNs/wBruBz2I4z95Avo/bYnFP261tEEXz9U/WG9gN5wZ5D+iC7T1qNvlP6LpTtoGpe8/Y+Nh8wO10j83s6DFVh/XP289q0VkK9I/TBKB7uj26D+xLCDOMAfEP1H2NJMNg9c/H120Soia4T+zn9UP1U/eP6cyJ/u7FcQ/U21Tz6aZ0z/9gZWRwGnmP8Tk9LtzHuw/DwnVyYAs1z+UCigMDGPoPxCNEIxJD9A/+RyV1I+97j9Kp2O5bl/qPw5VhcNZF70/qGN/o4uS5z9ksLqvEALqP3TgUJtnQM0/zhSJH74CoT8/ru81DVDuPx3S+iOrhNQ/dKOFYabE0D9vewNMluzvP9i5EaFuMeM/Tz5/Y1R25T8Ytb/qPmXTP3QRkZZls9E/+1WS9G9y3z8/375vvS7nP5y76aPVHuQ/aSTHtvRJ5T+Aj3gQCG/iP1aNIN89u74/HjzF6xk14z//cLkjS3bkP57G3A4qj+E/DVEj2I4cxz/ZD/QpDH/mP2GudOs31b0/HiMBhvc5vT+rnTq+VYTWP38ULuG56OE/Ts3OSla83D8LWSO2zmPmPzQgGondWOU/fNHsBrk11z/TVgdo9VDkP74jaJkKH+I/PqaMr/wGtj9qbFK1rc3XP3S8pgC4dOA/a8EQsFNA5z8b4QfVvuToP4E5BBilWcg/Y2zjSSWT1j/QJUkDo67eP8dA3Q+uT9Y/DOeHcAJp6T/b8duNO8W3P4iE1FuKuO8/31WlSeJZ7T9naD2V6brLP3bv/rKNPN8/p/xq1d8Hsj9nq70C4yPoP5uj7Bajj+s/7vuVNmgk6z99mdb8mUHIPxdGvX0XUbk/fSVuB9Bi4z+UbTkJdTvHP4pI9Bk2R90/uisOKGm/7T+HN3eqanquPzFhU/OUI8k/uK82ax1p5T8EHMrRmtafP6K2LqhTUsI/NJsQhBKt0z/6teDGrAnjPyxflYQFVcI/PAEmm8CH4j8yro9IUiXlPywT4pReYsc/BN4mydFg5D8vNBJSOIfvP//Jd4iZKtA/GAOclm+H0z/eBMi6yI29P9FbafKgmNY/ZnZhNCOBtD/YlKASsXLmP2aIUmShitw/LPYwINY15T9uwBacpnniP184mqRwue0/qODls6TPzj+c2iMwqsfuP+6YMKkc97M/ZF9u9bCQ3D/jEHk/mrTfP+UA8Mjgmuc/b3uOseaZtT9SywvxJdfsP92IWxPZ6+E/FoIbxI1z6T8SmQCfA9S5P6GMvxQd3eY/p7FEKe5F0D9K/XZ172nkP3T2hvcAd8w/oT8+Y06o7D/T6APFdfTjP6oJ1xY2oq0/aXcCHpNfwz9FvmWskSLoP2Rq5U1hN+w/weEUkXDx0T8XFuKOtEu0PyncKxwtzew/VLMRExITxT8Blt9HUKvWP3igtxVdyMc/b/hc02hqyz858tcnbyW4P2XWUfHbiuU/xo9zfVM1zj+yQ3bBHNfjP/+rqLHczMQ/cXdukQJhyD+1iCuB+IjsP67xWP52X+U/e8H7z3Q4tj/wyxejIzznP2/5bw0Cbeg/K2MPM2ZQ1T+NlmIn167PP2nAxgS3PuI/Cy6GyU7x4j+Oeepj0ji2PzxB0aODNOo/HLAxTruV1T8EIKZGeIPsP7EvCfWoctk/IRFsHeZy7T97sELDXY7eP72ot2C47u4/lIgfP5D7sj8LCmH+8d/oP/rbNze0++U//e9IY1OG0D+C4W7/Ia/eP6D5susNjOs/3tcfx6DT1j9pxeSJS/rXP/aprtaEU9E/4JwSuOiD6j+9Esvm7XTKPy9whDANldc/KRt26LJcqz+taKY36RqqP8D/xlDJAO0/gS8EQbv36D/HsQele7WwP8Y9hNiehc4/4sgGrgkQ4z8r2ZL6D8LcP5notVuGuOQ/H8aEoTMf0D/oTeD5knHQP+t7elzXp+M/81lj54Bvyj/gcW5Zcw2fP9I7Hi/bpLQ/ySWBBTli1j+YRHNimRrrP0QBU9uSluw/EMNhKO9n4z+j9As9rjzIPwUsS22M5tU/h+/6IwDi2D8ThMZG8h/nP/mlmist9MM/a5DKbXmnuz/I/9NX8RHeP0/6qP/0MeI/rEnMl7i90j/wXA12ilLhP4FL7W+Mh8Y/SHUakW8p1T8lisg+l2vmP9sRnq1DDOE/v047nN+U0z+k8kZjV1NjPwdn3AQXT+Y/wENDvnHt2j9KRlXeDtXFP2+YI3sWHMc/cReAA3tMtT9ALLRJM0/bP02BCTAYhus/XLcBloh60D8Y5OFBoQzuP8qdvl7lxdA/ln6bgI9O7T+DXajuPg3nPx33DIeJy8s/P5WsL2BhtT+xcrfIpLW3P3qbqm8rh9Q/IRAm2bUtxD/BfJhfmnvGP4FksoJRo54/41LsVIvB2D9v2xq9gqDjP3ozvc0OJdk/RygXZiPP0j+eUztL+efgP2OxjoBAaLI/dYrtKFqNjz92cR8g6sHHPy6Xd/pGabs/5pTPN16Y0D/Rt7Jw6N/YP7zSU/4N5eI/I+x7GhKM2z+9ifOUFTOYPw3ZO2QdFu8/GXmp3VPO3D8d85GabjHsPwoZ3e2gisc/Jd8ehYnn0D+vMA7zIAbgP880DjiBtdI/cwnb8pXp1T8LI8k0+LW3Py4XTfoRM+U/36jEixBHtT+TfPe+URTkP1ViqhsaH90/Opgfn1lp2z9fuwAyod/qP6e+BM/vUuM/wXu2nb0D3D9gbwRYt0PIP+eTFv9kEts/2I2/4RdVqT8Og50gN//gPylNeiz/FrY/TFLDKnad7T9+rWmtTiXbP+z+tccXFOg/nqM0z84s4z/cEGkE4VPGP7ze881ew9A//MxzlBM0uz/0qz8/ZqmbPxcdEn009KA/3xrdwWXcvz/+e3QLEBLAP2JL2XrQltY/mM59gE964T9oxD0fL8njP8ZDNJNnF8k/0PGZMBNp4j8U0Bj2UjTnP18P1tJeZN8/ZRWDOgFiwz/Hd8BCB6fLP8i+aB6s2Nk/FFUbzMTs1T8wokvkoUvlP9WtrEdfSto/BOoWv2so4z+eWMSdkkLWP0lcn6BgsOE/1dHWY3EK6T/7ZzyjmTPqP4TM6LSVZdA/VOFunriV5j+R6w4m9cfvP/SO+u4vMdc/4oP+zCGf2j9KvKZyDPThPz7YF9Ycr+U/9LS4LGW2wD/EN+SVdhLuPySdTDvNxeg/YADv7yPJ1j87W0TVsN3WP+9QCl6s27c/7BaZidoA5z+iPeowsZbFPybcSlJmu9Q/67IRJGWRxT97gxlzYUjVP2wampQkeNg/fL4ZGnl97j/T8x5qd5elP2T04V19Ku4/29DTui856D+qmYrI/mzkP+F2YcCeZOQ/6lMp9Vwnzj/AqMdBQpHQPwOgG7s0iec/j3uzMz836T9b+PsklrbXP+hlCehBYdQ/Qa9DyE7p6z94hnCfJJTMP5zGz7dhSdo/xrwsLR0l4j8scSDt/Eq3P3TPZvzoAuo/NTQ6uxWE6j9h4DaG/9nhP6xoeB7XCuE/pss7JJpq5T8ekzLyp6noP4548khNB+s/IieJfdfgyT+c0vHUFoLIPySqXSr9HOk/T8kkiclk0T8u2GsfKIzeP6MQu26FQOY/XyymQm1Z5j/0AwYH74XTP9TZGivoFd0/f+4BqWq62z/yv3ASZcHUP8NvZZjLSLk/TyDSiaks4j9DYplujfyzP/ay0P2wC88/u+ijczaW3j9jpYiVMQDXP32GTiI2feg/bSpANSYPyT9zFIL33q/lP2af09u38ec/Qccz6EwP6j+9NnxcBY+fP3eV1mvyX+8/PLte+B4Q5T898EatERPQP5fGcfhAzOo/CSqP7Qac0D/HpQaVEA7tP9znoemLIsE/WeiyOAD45D8StatgUt7GP5WUmFWBWeQ/v6Ayt2FM4T9WM6VfB8HfPxnTPaGQP98/Xb+GEk5QsT+KjrjX3QbgP2rSBSh4Z+Y/tsZWlQJI3D/ujPTaMyTnP84Bm6+r99o/8slXVxwY6z9NpmmOMzHVPxYxYSng5us/HbuA8jVs5z/HeNQkY6bGP+aJUJswsuA/RCWuK+0q5z+VaSbzh3PaP0tef9n7NOY/tcMgpHAy1j+Un2eBqse7Pxg80XFlYOg/+Vlgdmwp1j941IoSDUDYP0X+ymgATuc/g1wgfd6oyT+/YHxI5cbrP39IMce34bo/yg/QRk3yzD8cj0GAd6vQP1VRBKu0xu8/GUquSjmL6z+uEUwMS1/SP++vsUd34+w/0A3JQ6U03j9630lPCynYPyLDzx5iKe0/dOBaDzRM0z8bWFr3zVTjP4sj3PzzN9M/tc1RQY+S7z/k9IuzcyLNP7oipnqtBOY/V1t4OwAB5D9ARlUi8/nuP2dYysYhWdQ/istD6Qb37j+dSAbPpVnnP7eEfpOeteU/G9A4i5DkqD/yMdgnm13XP8g4LJk09Ow/tpQfZWJ20z/nspH/wCCmP1vHQztbU+Y/AeEZSwEE6T/6CE3r3/HTP7l7eVVo3uk/SPJd5NGw7D/rHykvjlrUPxuJE9AI47I/mtefYVDT3z8s7Ix3+BfoP1Jd9jhUwu8/Ptd1Bhx+uz+/UtEPR77jP1U7dN3sWdQ/TVVDenSD5j/Xs2kC4IfvP4qnqIKFa8E/iUUrH1mq6z/dCMxnceHiP2z3k/Cz29Q/ZvvsGZ1wuD+cSmZy6KfsPwFpGuNhj+Y/hBe1KSc21j/UasAixSDmPwDBEVq9OtU/Ml5Vl5++1D/fyGT4lvXnP8C8PByNhtI/9duZXvF84D9cklSs8uSqP18+cwa4pcI/8pmZ6vQa6z/z22Kt8vvWPwApKyJfYJs/2tnPNQ5W7j8rgCk/x47vP2vOvGx+eOo/khQBr27byj+hHwou36jpP4GuKrbJ8uk/5bbRCcL0uT/YDHwJfr/XPwwp+hEJJNw//hkkLVLb4z99lgVabkPHPwAYGYosWtU/uLjwIwAr4D9RcwlXi7DvP3l/h43Z5sk/RIPc1PSH3z9j/UYv7JXdPwHqvexNnuw/OlOZlHU/wz+hYcUF1uLlP1niOofIv+0/9ZoJp5vc6j8vfAtwA6CYP9j2drAdZ9I/d2GLE1WH4T9Duwc/TV7AP3jZAdQ90+M/aJp1/ycW6D+AEprzX/rpP9mLvYWxP9A/9s8E/xpk0j+nTeILMvTjP3aOYnO8+OU/BHj2FzILxT+von9fKuLnP+gn5qQsut4/Jrou8Ity4D8yN4bC6kvpPx5Mi9htI8Y/vrUXpJv6fz9jF5VZp0HgP+zCfdHTNOc/wb8Lnye+xT+wK7ke1P/EP848XY9HB+M/SzYPooefzD923GGMSILSP+rvYwj7vNE/q9LaUMghwj9pPM9ZAACbP3aL5GaPsNY/QZmrTIL7wz/7eCamuyXhP8nE/NFJfew/m1sdNBxp4z/wHkoWoSTHP3ZlYhilkdE/q7RpjxN81D91YoA1dQ2NP50EORG0oeo/irWVVHvI2j9gAyOFqSbWPyX3aNnQeOg/QvDip4bwwT/AXbvqHQ7IP3pjn09OeN0/66FOqiUq2j9IBvkIYNTRP+B5RE3cA+0//wptu9mD3j82ClOV23CdP4kTWkUNUr4/2G17iCGQ1z/4s/C+oWLhP+YcWB15hMA/RXbkZze71z+otoAb16erP+btkxEhQuc/RToyUO0h6T8JpanEJ+/gPx6gyHxl4Ms//hErMohL5j+99d7G0QbbP0dpXY6Hodk/ZX0WLlkY7T8ACPnt4PDrP5KUrM5ydaQ/qLS1wLHi1z+tCxydoay7PxNV04Mcltk/Gywb2Wze4j9h9tm1Y2/jPwmo9eVvne4/eca44YKJ1D85ilxAWhXCPwW6AMaVxag/N5B9z+dryz9BrcxhnFvTP8+ezIP78tg/NFnwKxeOzj+UAAbGWcbmP20Wuz5SAew/16jwp/Xipz8TkDn1ojKrPwwSU75LU8w/R+tC9H3JwD/VeP31jHDfPyLkVFkbisE/A18IKdU55z/5CrI3YpPPP9DMNpKrV9w/7AwfQDRN4z88m9JoLUPYPxQM5rVCCOA/DRtfGd0l1j8l80IlwlfGP+dnGEtZw7U/BF1FGPcS0D+xmGiPrFLkPzZA74voP9A/XFouOvNG5j/0+2NM183bP3uUy6Nqw9g/FeIDi01j3j/M1amJGUziP0VTMsoEK+0/nF8RhLJK4z8u4X1Bu0DQP+C5k2n2bcg/SXdZvLa63j+zwu+C4qq8P/83JFFn2ME/D2EWF2we4z/BXLyyhMCiP4z59yryetk/703ObzXj0z+/9OPeTkLqPzxsy3OFv84/l4S7qb7L2z+NHS2JykvBP2G4ySpXWd0/upW95+pK4D+BwQzpBVXEP2tYWsnAfdo/70QdRCeK1D8jaMGOB5DAP3sL/hm7hMA/CfySh0HvvT/UtVCeFV7aP+MvA5zmZe0/5o4XjdQ+2j/qyHi5rkTmPyoDi/cWT8s/HfQvEooW7j84KQH4E/WkP87pJu43d+Y/3p+Ze3tf5T8jJ2kc+b/ePyzJEvwCscM/1gBxy6bR4T9uNhOETNtzP4m3CewG0M4/ORf9V5KH1D/ek/QL9E/jPzIf9qIRetE/s5jY3OYctD88TW86ljLqP9m6sQt7FuM/KU1UEvVN1D+QapPbHiXVP9scpmw7Wdw/WoUIXMXZ3z8vLBPBelTqPy3tOq+agME/sh1x+YegrD9xd5E+3t/cPxHy1D201tk/fx27GsrrwD9MqEyOnV/ZP2x5m8Ruxdg/jEyA0WdCzz+t9o1Ig1vNPzgmtEfpVc4/Wt9pBki26j/E06kaCo/dPwj5E8r0I9Y/rYRQ2bHR7j/F6R1g1hyzPzjOC8FhHew/rRgXj6blzj+EzdIk+2/mPyTK9taVYsk/wjSvt85f2D9DPc1o1jLlP24WPFwObtg/fwjkJA0l5z/Vh0yC4DvNP5lsckKJW9Y/14z2Y44O2j/jTzP25q3UP8hHi5P23cM/56UJpzaPxT+LV8aPqprjP1FcKm6INew/Rr2Zp3QWlT+s+J/I22rYP91Afqg/Hss/Pyqbqv583z+8vxZJMTW7P4zDP1KUU+U/f8kNfqG9yD/8+X9q7ynpP/iAMqbJltc/En72FPZI6j9qJ//JH3zNPzRT575Hx8Y/YVOw2iOr4j/Yhy6NH8veP2PIhShziOs/xVrP5Avc2j8Mt71PkyjOP3Fq/Ok12NQ/DGxfNPpT3D/H7P97aRDvP7t46Veb8+A/7uCE6kN36j+xY5ebT7DfP9yiWgtT2+Y/X54v42Rp3j+NTJR4eqbaP3m0WggpoMI/ikOCvDbz1j9JpJTarpnjP+OtlKy8HrY/4lThdMuyuT9h7kXE5DXhP0JAghw0peo/NQ0OLCyX4T/+IyD9cr/aP2a7Sv8/jNc/rcsFcyoz0z8UghL6jXrsPzFu69G/z9U/WMn8xo3EsD9Nbaob6NPQPxDMcB2LadM/u1dm6NmE3z8vs29eoEvVP6wIrBoj66M/BZIfwk/qyz/ozfUODRzqP4liiAqsBNY//hxMOgFB4j9hFZgk0rewP8NlEHlSUcs/o2/zMv5H1j/WjqGERuHLPyCGR4vJ1eU/X1JaKD6myD9sIjfnOfPTP/hnRmffwJQ/4rYj5GTasj9TQ08E/W7EP9pKEYmk1eE/i4pL2GqD5z+kGNzzIdfoP565J4IXLdg/Y7+oPsDKuj8S6GDpupLhP/J/MC8JUe8/OJ4f+WTN0D/KVhuzZArePyQEmVmwzO8/xWTIhf+p2z/nOfIPE1rMPxBdlm6apes/kGZ+VH1M2D9etUTS4dzbPzi7lS3jldQ/qx+VAh0evj+HJzrOg7foP0eHrZ/CEdg/7Uk2nZbZuT8vKveQjFbYP0nSg+9u3LQ/7mYQ+UK05T+Cmin87hLhP39/i6Zovd8/v0zJIITi0j9lp8wCmFThPzGfKyBOr+U/jjoEcEiJ3j+feny3Wc7cP5A2tkLAJOc/2s3NakAA4z8VgSYaCPftPz7nP3sdquc/b+nuXLfQ1D+9Jqe8GK/QP/M5ySY/Eu8/ctdex0Fxvj9QxDkEblLcP0111+8MDcI/In8nX7Q+zj/iRYsV9zfiP932435P7c4/N/9fFtda6D+zThaMHKTqP9l51yeLI9Y/jN3kY2ev1T+f2SskyhDKP0Yag2O9z7c/9PcD1AbZuj9pnPtg7DjgP1VPkjwoptE/BhQ5jZj81T9OldLM/lPtP2LGuUQh/O0/RzG5ECWQ0z8SUVOxRW+aP0+HV9gmgtk/1ae067Qd1j9l69PjMK3SPyRkgQ14kOY/v3knWgTN4j8ysD/BjR/hP46Pc86E8tU/e9MdSesVwz/WDHIdj7PHP4KOGw5Fpt0/jMpHGvOMuD/7WI5FTBGzP9SpSRCA8e4/iTb71Qg22D+oQuqC+lXkP4x/aBCceN4/UKcXF3zL6j/XB5rVjCrLPwwoz/MR5+0/0G0RXGdm7j/szhHliATpPycMc4kFd9o/0HT83p52wD9HZ2W99ebfP8WSqfHvKcI/l9zR2PViwj/bnD5qIPffP3Ubc0DobeA/Gm5iCux24j/QjA0mk4fUPznBFI5NgO0/vWeLkPLHvT9FM6W12vvjPwfBdSnQetA/mdUzLV7Q5z/abHVwN8bkPzgGiuJNbO0/XdqtLiPe4z8vIJrsplzKP7nOHa9PL+w/0IgPmNTX3T91nr69gbTgPzAPxBh9z+Q/CfpJHif51j9WY+u98TfPP3w0gIG/Uu8/pN/SvJ7N0j+m3a1cRwvJPy9y9o8oUeM/APefhgOK4j86Teh7ScufP/5MMMGCae4/YnbGpirh3T9O2CkBhn66P9UqhN057OY/rMD603J96D+K4934ufLmP1fUUF+PXbA/nSrJPMjx2z8iv4RFoyvmP0+BWUgr0LY/SVFrwzqL3T/AtKjZCP/cP3DCN4kQ2+A/qFiPbydD1T/hlTCpNlztP3m9NyUzIeY/BAQI9PxH4z+dbazLRQa6P3b7FRffXeQ/QBP+95s0wT8A9WtQTVDmPx3dGuMvVeI/MXa7pTsUzz8wDHFfQqCoP6ms1crWYd0/1GEJRcwN0T96erw0pRPRP7NEO7H928s/3Wi9litW5z8WVRIT9DXtP2faEWjWn+U/nFNBreNl2T//Z51Ql/rPP5a30/e2xe0/4Tmnh9nWvD+xj6G1zqvfP7xnjfdlOuE/iO+ydgDA4j+De8dPNN3jP1RlXcBqgNE/oN6smG9u4z9VcSBIcBHTP4NJZDn3DdQ/6el7BIR04D/yZ+l846jlP1V8c3U8R9c/u1dmDbAZxz/tXOYVJRPMPyHnPBnJw9c/c/DFXn85yD94fLp4MMzRPyhMYPrSG+Y/7CLwYTpH5D8cJ/6dOZztP3QEbi4Dq+0/4L62aScawD+MSWE+u3HRPxicjyxSXOA/uPLBzM/j5T9a6cU2Ir3pP0iSPbIAl+I/8wZ+zjfM1j9L/J2f3TC0PwoT0/XtENk/2v6ee7Ea6D+9nMek5DirP6OINuc0aO4/cM5LXm8k7D9rJdpVZP3SP+YkFpn1EsM/m3pI12VM0j+gVObabovaPybR6AvrVNE/ok+UZ/926D/zKriMYIfoP6wxi7We9bE/OuU7mUUj2z96plQ6+i/uPz1BD3xw28k/XpdcpNhYtD/E91Xe1bHeP2fHeHDjTOE/ll/q6tJb2z/0DaaAVMLsP1cia/fPo+g/BX/UVxIW4T8f+CpLPzTQP2AP6L+S5+w/aB8wRc7Q7j/5CiEey7PEP4YkZNHFwuM/zg0Hl5zDyT8ipiEG2iytPwqTalrtzuE/wzW7bdlO2z+WmbYDs67SPxmrJYcoF94/JM9b3yIw4T/jt1ERAeDYP1jbRMAumrU/4ts0CgDF1D/Z2WGxsW2YP6GA2Imp+uM/HrenD7yE6T9LgkFZJ26wP5s1EuSMp9Y/tdRkVQ8Ctz+jquTsf27fP1dpIK4XJeY/wv1KTeI+1j+wpiesHxbpP9c6fMxZLtw/P+KEHVoj4T+e/T6HxAnVP4SZDNFsENg/g3XNhR7j4T8ggim1d2LGPyjTD0zUyr4/W93LKcS27T9MUx4wxtLuP7nnhmiojuI/6qEBWAVI1j8GpGEnrC3jPyKCqigqC8Q/IuKOGrpj0D9TXSOW99nBPwzkyfR+SsA/aC8KRFzi5T80hVSMEXPTP18Cb2jHIOY/xvUlEl+qyD9yvFv5jPq1Pz2Zixg+C7c/b21u2XnX4j9wgkmy9JbQPzwVjRzc5OI/I+3B+eoCyD9Y6qASgDLnPzpCbKaIcdw/2oi6FtVQ4D+MP5cOCYjsPxFJEqMKzOg/VN7sZdgLrz80ePBBkybmP9BaR0d0muA/pkJQnxng0D/f5GkWnIbuP5clRWmm2OM/4gpOq0PV7z8QS7KDooXXP0ZnpE/Q3MI/3p1nGyTr3j+FFdNUGqLWP2ZuLCPidNo/gAr+YVbm5D8xo1Mc4QHfP6yq+8wVpug/Q5hTU46quT9eNTpsMw+VP5UjAm41e84/6Ulw1LZpxz89/nP74PDoP1G1AbMc+OA/vVVua2kr0T9fZ9PN0xzpP1Uxot6xNs4/PtFvsGVDyD9mmNOEA3zVP/NJYf0o4tk/tY6Ki4HJ4D+KKB5aLLzOP80PXR/fSMU/6QLqVgrG7j9LBL7pII7UP4xnYu4Nc9w/eGoUey3I0T+LvLJjurvGP7rMr54queA/B1Ox3tuZuD+esa1xTG20P4maCObVc7g/TY8n7hV44T+jEkvr29jEP7qbQ5Bwldo/flqHvYWAsD+suGwdM5SmP+QpT2Fm6e8//0a2Z1TE2z/0oW+fCyHmP8vqn6VQO9Q/jEYmH2vfzj/ldto+s1XaPwvjUEEIBMk/gCJ08taN0D/H1t8QRznXP+Aau0pV78Y/z/LP8Oh32z9DObOzkpSyP0xvZrac3ek/Gyb2j2NZ5z8X8WPf0m3EP4af7U3fMtA/jMBaljpp6T8/8HZ1Kkm7P+TAHyJxNNg/aWpjp1T91T/VT6OPPdbtPycSeMwutLs/dOCOxuam5T9eD7NaRIzIP+zd92+CMuQ/bNvuYbcS5D/hVbFhY3fDP85x8lnEbYo/BQQhznLY1j+Q/CIQJ3HiP2cdTZEfKqU/1iVcESBW3j/hSnVn3cfpP46Z4wcgcNw/LAplLk2J5D+9NzhXbqPbP6y8NGyeL1Y/y1IcPnfu5j914S9j3h3gPxor1hd1D6M/bgSzjpyw5z92JsLsMEPjP6SYpOswPuM/paBm+cMF1z/6jGp9hPvhP8X+rFFt7tU/agpS1x26pD/PrMLP/GTTPzn8GXAcutU/Z0JxsoCZ5D+WUvXgBn3aPyPaD2AmQdA/X61YHLI61D/Nj/uot/DgP6jh/+KNuM0/rRJ4lzSr7D8L0M81z/vQPxZPFtBXP98/TK/hg7qnzj8GJC2xTdXiP/iTo92m5eQ/CfeXoxmP1D/eZvS2NfzQP67YoTCgVdQ/vBx3aTm05D9e+YiCVcXsP2UyCHynSdg/DU1222zW3T+hNPKpFTKoP60BqWsP1sw/fgT7xPsw4j/JR/AMJ+2pP9wyS8Emt9Q/AnmAXinW2D9aKr2YlonbP/aSDrlN0tk/iROW7Xu06D/69t8Ncnu7P1nGX74M1us/IkrNxuz+vT8ant2NzAfiP0T3orJpCeo/cSUnLr1i4j+2K7KjpKjvP6SJWD+lw9M/ZHRN3Les6T8V8VmB8wTTP23KlTaEA9c/YMGBlkWs0T94Q78RsDzFP2cdo7DRh+0/y5ad4NoY3z+5OKTcMdDNP/7J+oLeXe4/lso/m/185z+5qXHCvqDmP5JHovnH6O4/jezNhOke2z+GbUJdiAfrP2WMoLU09dI/S+9FfxmHyT9qL46BLbbTP4DNm7QCfrU/EPjNYt8N4D8UpDHatUzGP7CgFUlZ+9c/jSngavuZ3T8PSSI0U//QP9p6zOhi0dQ/mXaG6eNS6T9IUDglVa65P/607Z/iv94/HHJPTjr54D9Ed3XG8/7oPx8cMdEZE+w/utysKEJRuT8RH0M84XHgP86AaZns9Yg/rLhks3Kz2z/3wK1jaOPdPyPe2jytIOM/Kpd249jOsT9ydK6bY67uPyrMpWv0y+A/5IqHB7rOmD8ZXBg7gPXlP1DRczsAL+M/vXb6qI/l4j/rJiWXCczhP9z0GkFwksQ/5WGYtHHP0j/5pFFq3/izP3fBceOFa8M/fnmfePZTxz8xtLJR2mTvP2i3TaLastQ//eLf1+yO7D8aTpM0NcbQP/fBZmJXyeg/OH18/TiE4D+4ZOJETnvmP2f+mDft+r4/HnNISGUezj+6d8p+gYLGP42w+J0Pi8M/s32EKlnx4D/GmS8k71LDP43fyhkOJeY/bCWlCj4q6j/S5T9UjG/NP3Bh9wUfdMs/o5DvFCbw3j+55MtKVgHmPwBV7DKuzeE/y+kOW8Lb3z+Fur9EWk7bP7Kw9eZ+g+I/ZMD7hMIo4D9zK/5cPG7BP0UVKTobnsE/qFyhD8Y6yD/u0wEDQ4B2P19Ia3V9aNU/ssKWlyMy2z+oPuwnYn/GPw79tdIU9ts/CbA8L8iTbD8bVELEFwbRP/qkmbfnE+A/Tujm3brN0z/zNW3UN7/nPxGwNgX7Mcc/KkCaTTIGjz/z54zhE2PXPySexOkIF3o/7pmUpjIi0j/z0MYCM7TnP6JjB0m8veE/VmWusxat2z8cQYyw4lu0P4+yVgc9Vc8/gJsmbGm71z8ZdGKAYYzFPze3QXpTMec/82HvGvC5wD9XmN5WqVHWP8D0MrJhT9o/pM58WD0/2D9n/LppxsfiP+7Kzvanm98/0dXKOFCwwj94lwRuqm/TP83w3UUc5MI/i2kq6pBy1T9M8dEVWtGyP163EtvwU9M/KxnYTkBTqD/1jBf8udHqP0lw397KNuM/0YsGP2cp4T+VGzRdHAbvP0bJECwyTuA/44hBm9980T9qUvAoj5XXP2uQP9v3Z9A/8cce/NWixj+1BbqvCYvhPxQai5C7Vuo/E8PI0Jouwj/WcZVpUfzbP+d69F4GS+s/lYnqCinr2j+acuPQtJXDPw4scTpI794/Bs/PZABQ6D+AMFv88+7iP+9D/tZaxuM/yPTupAn01j/pq+eNqojHPyy0kmlIWrA/4OV/LYYa3D/CXDfnwsnVP0oZJ+5eA8s/rgbdAmzcyD9lZjIkVNXOP+ZKv1+RwNo/rau1z34c5D8Cbr/vxL7EP68ldWlUZd0/1Ocp7awp6T9FY/EiZzXXP788qsGWz9Y/iufzE4Lv1j+yyE0Wu9fVP+kRxHemjOU/L87mstrYvD/Sq+qplJC+P4reQimmH+w/X1BnL2/LmT/jJb7CMmHAPwpNoLe62tA//rnyQMdX1T9BlMI8pAvfPz6eRCtQpto/UcjGLopd6j8tNWaSySPkP0WZofbk1eY/2P+li9VK1j9SHt6BnJjvP5Ap/xqge+E/8Nn9mYhr4j8G2ZWqslnUP+mPLT/+OtA/zIjw0OEw3z/HyWwbzIjWP39m+WoXOuc/KDtyoyhd4j8fHOH5iOHRPwH06fjWfdw/94dRZiwv7j+9SSSUwYK4P3fsC7vrtNQ/jyLI5hiV7z93inTU+r3jP9eVzVFvSrc/g4rVRZrcnT+NEiEc4KbAPzpjJH4fSd0/+4+prB6p6D8LC5XW1g3sP3LeD1W8MMU/sHzZS5lf2D/hEsQZssmpP1Q8RGKrebY/Xk8xINCG1z/LO4IFPiTnPzat4FBnkdw/4GVxJ8DB5z8wfotEyHGZP7sBruxso+c/4bQjrTOM6j8BGsvsJgTgP1+hTGyLM9I/MpZ+APUm3j+xHB4zn8zlPw6iCtvIt+c//TMPbnsv0D+pbQEgD+vQP22jg5lOhMo/8eU5BsgkyT+fMufsf1eHP6dZ2zllG84/LMF/4FtgkD9mll7Iq/3GP2FhKXWmWcM/XjOFbWcU3D+6+lQvCH/uP9znBg0dSbI/r4vcQU/muj/r1NhoIX3LP/2xn7zf284/A23hkiW31j9UBBdLROO4PyvtDOUoCqo/8AeCSsa9jT+I3Q70bSTJPysdSf7Qhug/lALkVa0zxT9yXNxK8AbHP4Zmxnq3KdQ/fFCZtgZ05D8i4M6QeOCyP3mhEOl3TsY/M/gugh7E6z82mW1qjoHnPxtxBJ/OoNY/WihwTVs84j+fPB+xsBTMP7T/yufEw+8/KNyloTyx3D88a3A6a0DqP0I/4zBT28k/CQyCZsev5z8sl773opS8P+ZiXRHpDcM/6fJhKSlE1z+u5uPAd8fZP4CyJOSpEu0/XUSQI4MUwz8zw+vo4PDjP2tyKblXXOE/9LUJdPdy0D/LZGnNByDTP1i1Ujcq/tA/7Tw1at4TzT9cRmS0LE3oPxntUQhKI98/UPMW09XJ2z+XiOKTZxDsP7q4tRC6udY/K1IV9+VFyD+iy2Fc6OjjP88nJOH27OE/gwqmbzEf4T8XIL451ULNPy6+mSwhkO4/gHUZaBr94j+Q5h37BNTvP4eeQW6kadY/dnuWpPT26j+BaUA6XQnqPzTyimcxSuY/Uu5TgG043j91KZ7eO+vDPyAXIF/FzeY/wXNAL9jZ6j8lkFu/KdbjP9YUYjolj6s/BTosq89f1D+OXPQFY1ffP1dKIo6UVu8/H1hblsll2T81aMGBY0DrP9k3ITn6iOI/j8veaMcY6j+Pvs0sijXoP2c15+jT4OM/cM/lbJ3C6z8ThsjJC7zgPwRyAL78xJ4/wgEjD/sJ0T+YbTkrLO7bP2B8JV40mec/lo2RVdU83z9CDie0fmnWP6fmOJw9V9U/3N+YwVB8tz8JimA4ht7nP1awgDceSeI/qVWBC+ae6j8p31HBRiHSP/YnMQ5fE7U/ezB2WN3zyj+WsUXTSWPXP+XAMCSREus/kfl8QAWa2D8ZCDr7m12zP4kXeTD44+Q/IV2zoI0Wwz/ReJ4yLwLAP4phNPLWs+k/ym7Vmj4l7z9xxzv04SXjPzOlN1uYzbE/IwpAdZExyD990UBNbWvZP+TkCCU66Ok/8M1qJvnSyz9meB9uaDSsPyoDVvpb5ME/9isFDRaW7z/7z0Cx5wnhP4o/V4UTwdg/l/oOArF94D8WJyiJewbXPxzR0RQzp+k/np+qUOtcuj8ZRkKjgfrkP/Lbp/MxLOA/bUB/9+73tT9PPuke+/7rPykYSQB78Mw/7x/ZuGbPuD/nqXuAO83eP/ahzLlqbbk/hMptJxnpxD9K7sC0UOvUP+n6OetUEu0/UyWOQMUP1T8ccfPDEYvjPwR8IMoad+M/XPdie0s16j+LJzy+vbfCP2RuYDoMb+M/oBpMYq2W6D9CqrXhO+PnP4/B7n/+9+k/RxS37KrK1T9uvVbpf73NP2FB1D0XV8o/URj8iPiizT8uRd7YdJjiPyzQiYcIccU/Viskw+YH0D9X+zEb+y3dP9z5Ew9xV+E/MbWd5xU32j+sTtOuhxnqP7hhaV5UL9I/hW2ZRMJH1D/zhqnWH7bHP/CJxS5XeMo/RfrQQeWruj/e2IPD4RPVP/jFL9gPVd4/M8759O60zz/SwVZ1w5vjP4Q8P02+xso/6dTVEg08vD/b8GsTzTDuPwbvUMR/TNY/Lvju/iK33T+Ml5MdnyraP3SDoWU11c0/Yswgz6+j4D8+OOTAAXjjPxEImfIX6c0/PIa4kSivmz+emt5j6rzmPypwhxj5Psk/6s5geAIg6j+NHUi4VNjiP+oOXbXJfok/e31HC+9b6D/5XxMPNmPlP9SMxj0nCNg/o7djb+Xz4z/e557m5WrEP8we6Z18qsY/RE4/oMdi3D+aDAVDF0alP1KGBcUVmdU/rtqvmXSY4z85YOBvSx7mP8OtSp14dOE/EK9kcZw47D9T6GKx/pnvP5MrwNHtarE/1twx0Xiuxz8BkR2DscfNP/tx9oSSKe4/enkz65vRxj8OG5kkFsfWP+sB+WBtteU/bTO5kS60uz+1we3ujdDkP3srJq37l7c/h3dXxcly5j95YodyKhfmP5mybVrOzew/ZtBqm7sZ4T+7qM6gwsLeP5KXlJEsD9w/1X6l1Ldb0D/xIvEhPUnRP8WkUonrN9E/YXGAVrq/1T/WPq5WwVniP6EAz9SuM+k/2AqQ9FgC0D8KFAkM7ADRP5kxV2D4uMw/OM8Mf87Y4j8SdMdbHPPZPzWQuO6cm+8/yP84RAAiyT9zH8JOrh7aPzgQk/T5+8A/dZjSi7+l0D+/RP2M86fAPw1nUxCxQ9Y/ZF8xYihk4z//O3BGxdftP8ipQQtiyO8/fdKJREEXrj+b5Ocf2iztP5OUpaOLucg/AZKT2DHwqj+neCgepkDfP5W8gzqpH9g/3o3w1FYV5D/WSvyIbEDFPxHVzUs5/uo/uWVQcOCwtD/7oNJoBKDLP42guNzRpcc/N7wgMICe4D/kfM47+E7oPwCbRsVHbOU/d+hPUE1o4D8PmsO3RjvmP/pVwgA+ZIY/YdsG0Okc7z89pg6t9iSVP+otYoAsKuc/iOcBaKjf6D+d1csaorXOPycGn9e6+bA/Pms7mqqmxj/f3mENLQzoP+PnW3z5aeI/aQJ57QJL6z/PsACwTcvnPzdee+02PLc/8wiexQ+t5D95yUY4aNnLP65kSu3YY74/DKKVQTPrrT8c346sBS3rP4+9ld4RH+0/X6CpuDrk7D9Kp5ltpenHP90yURDM0ss/MGiw+b023D/rDRchxs2zP3svGUVtUcc/4yTFcXl04D8WBgM3UrnvP1DqQvCod+0//DIcXeLT3D8/PJjT1GDWP1XOcB0AbrY/Nvggt6F85z/TbvcbX/jSP4Dz9X40uNo//MsQBjYNvz99K+As9vrnPwEYr9KeHOw/IQzNnW4E6j/qv/gIuJrfP8F6IOnIYeo/yUKKMVmUzz9uWb0+z2DNP+ojbYsyvts/JZvpQ/La5z/SAm5ssv3VP67Upoigod0/IFrwXTWX7D/irn898r3uP+o/eqZutak/zlPSi/Lo5z9mnarmS/jZP3/nBSRIVOc//eBRUbOS6D8/d7yUJJXCP6xDvwic0rU/V0JKuZcy5j9ZaYnqVyvgP6NFVSgo4+M/iMfNHo7Rwj+5DTU9PK3XP7hXIxOa7q0/AFPRrReJ5j9YMULgnI7PP5EuLevJU9E/pm3Xxe924j//xP1r0c6uP/wSJzbkQMk/Mje4c4aGwj/APdmhlsC3P3el9TtnCM8/Jgtpny144D+ZHesUEbfpPyk1DpmxqJ0/ZZUdXUw7uj8uvub30//dPyAzbITtyeI/988I/SZy1j+Qal/VhcTPP5GOLa59pdA/4W+BHfjn7T8AepDOa+jlPz6LM9Wsy9c/rfKDnXQvxj/Nwy+owzLNPzNERW99oes//WWTPTOCrT9XUUKG96neP4ZAlsEcMuo/lbt1Y5FA4j9PAvEsyo/LP3RlVQpSAuU/y14VjHj37T/deqLGm9ftP/fASjsoo84/mEyMvwbb5D8gWRws+Ai3P6RsNthDAdw//b/of8F+5T99U/zCfazdPwPNryePhOE/71uxcc/Pyj+41eq3JPHIP23wzeexGN4/iENhrIDM5T+cyjhtawThP67iQhp+hpg/2L5hw+FPwD+CNnOolBTqP+FedZ7o08c/9sdJRkUNwj+Nfxw4M/TAPxPyzsm2J8w/YTNQKraQ6j8zGdpzmHTHP9TH+TUzb+g/gpV5N84Y3T/FCkpvj2eXPwd3foWRCcQ/L1V1KMKA2j+iTp3UeDnWP3mtLLwNPOc/z9SaD4za4D8Qtqkx+lirP0BVPAuBgus/Mzwcjq+ZxD9EkO+XnhTgP7A5AgTR4+s/VWZR/qKP3D8XEeZfi/XrPyruzdzDKcA/ZuZ8b0sd3z/Hm1loA0LlPwo35wBT6ec/WNvs66gKyj964Iw23fjUP7XvK/lW/8s/62Z0k5iu4z/T5WCUOcXfP7UOMcRz8cU/mR9P7sLj0D/i8xkwFMjGP1L/KLoAee8/+x3+ERFy5T9bsHoCWJblP3l7fxzgFO4/GQ47LT0N4z/v1wemiTjoP4CpFplSKNA/9xT6e9os6T+3C9Y1ZL7gP23cuicPeNM/fpwVnhn13j8BkN58rEnOP6BXv+J028g/8ykKkHdN7j/XF8+0OfPKP3NlbYd13Ns/RWxN7e0g7z9Wmwa+BBLTP+JtdrZGAtU/1/wDeyJrxz8WYyDrlRvZPyHNimPisNY/4DXihtvU1T8ZniANdUemPzSCv7vl1ug/ljFPjpfR7D+i+R+15ObpPxl4vu5dJt0/3zSQQ2VO2T/WKJfXwY7OP3sCN4aBfs0/dHCUSRxK1T+a/T3byRrWPxjHgLkrn7M/kjgGbv9b6D9LO5Wq3IzWP9q/MzHKhNI/akckH+8T0z+B7J4nid/jP2/KE1wCD8k/IyVy9RnC6j9O/ndcNeCyPzof+COmH9U/Ud744aSOtz+6B9rZdmrZPxNkC93xh6k/egLj3tjv7z9VG/J0+3foP5gcDvFTw9I/8fzmpwP93j+1PbmmrprSP2EpQHkTIu0/H6OVGtgQ0D+PyM+hvVXnP21gnRk7B+Y/JPWdrl83vj/wBKcO1qTMP5VAm0ypDO4/qguaQ0es2z/ED0PaqCjCP8hjbRXk5cs/QXxT6+ve4j94NoB8BxDiPy4ZPdpSM9s/hHHapSPh3T8WzCCb/9PkP3J9Keko/NQ/aiy6FNQg6z9Uhf1fQXPfP+Ru6xSAjOw/uLyOxJej7z8eINEDPSXSP0z3qYEHius/3YrJ3L7a6z/p7SZda/jmP4a8OR/ZOeg/IgmBMPINxj+lOhGyZQrsP+mMgUFF0do/YSY46ClD2D95VU3Kz1vnPzrdxA5K19E/xsz2+yhm6D86BNuf+83YP0Wnc/pGtto/uO+vSXRM5j/DW7lgJD2iP2qFCVYef7Q/9UzTt7b13T+c7zMbuMPhPzG3tkN5Qa8/0f97SUyFzT+r/qijxRvoP3tGY+U9Zt0/1Dtypm+50j+X2aaGTi3HP6aFgHJNMdA/9CMsvtrR7D9nfyfBOcbSPxtPfnc8cOQ/BeLMDocd0j8+dlgp5IbTP9x3CrjWtOA/hrQ/U5+x4j8f69lTgMLjP3Emvrl1A8M/NJCpb89K3j8PsDivrNvZP1xVQZGmNOg/DqyIEUbB7j+ua9kNPgmDP1BWkzbM2to/vFkyt1Duij/fC/jBHvfsP4WFgkbpMMs/l05EcYEE7j9f+GegXJfaP+ICsT6LF+s/MznrN/ic4T8mZk/JMETFPzVA18mPN94/xAe6Vvhi7D/a49TNonPrP5uif8JAuO8/OmmEE9Gy7j9xNnNYXDbgP8FSABfl9eQ/EwSRDs0h5T/QZ6+0z4rNP/4eAgeYxuw/M2z1l6ghxj8rrg1MNMzqP+S+s8eIOpc/zdvPJr2K0z/HBO5UQX+yP0uAqMsVRe0/sgN/bAHl7j9RZmA2p1jNP/ufXL3PZug/JH0TBpXQ2z8PhsHT94blP3lk7umIwtg/MEHM0z707z/2abBC2SThP2+4zEFEI8c//TXisJ1fuD8UvJTLRQ7lPxgeS+Hqxr4/LWne1PkR7j//+N1u1yfSP3vxBXW12dg/73aVYdhVoz8B8bUgL+DXP/dK45701OM/SqEkPHvLkT99fLgq0aHYP/W9dA/b79g/qouF1NKMzj8eJ+eHsSzUPxMqvpfxiOQ/cKUR4rWg7D8xUAZkydjnP/6O1t207ew/mGmY05r85T+piLG3L4e7PzMgkOkA/9U/eXJXGz5QzD9vW4884qjSP+DJZlBGZeQ/QqnFTLZilT/IPRhw/7zsP6s6CoI/59E/oMn1gctd4T+LBqIswQN3PwRzBCQEK9w/ICPHynpTjj+3Y8JEKv7CPzlIemDSEuE/K2EAeFCnxD+XHW03MEqyP3Xrl9iuae8/YiKp27tk1D9pDCO9GFfnPyTnhKORKOQ/wqr3rf8e5D/pVO0a7h+zP9E4YxWUMuo/+Exco9jz7j+YPeNu5hfvP3TweRjBTNA/46vbaebizT9pSaI4nYvQP/qyFHp+yt0/EaBSlOoK5T9uc5mmL33jP/zLdLRqueQ/ZWBBQFO/7j8DCEhkiA7qP2l+eYSnOcE/g6Sy7m1RvD/QJZvyi7XZP/oOZuN5C9Y/4NRYDoiT6T9cE1UO2+PJPxnkrZzl49g/+965EbaX6j9PfpQKJW/uP2Es1zGcZas/pNfhcN3G0T8KJWzTyWvIPxMFghWKqOI/8K5Q9ZABoD95FpAU2M3XP42ZM6NWXd8/ZkSbcUx4tz/Nn7LnTWnnP9s2R0PTS+U/6U2SXRQC3D8NYt+lEFLfP2GYYX68984/NB0aTjhTtz9UpXtUnwvRP3UkBivPpOw/YuCURbcD3T/ndeEYafzkP3TCCfvttdQ/ez7Rf3or6j/JK7COBwKyP4G7kijKNu0/FvlLnRkD5D85EtGbrte3PylRJq2o1Oc/tpdyGOuSyD9/W8f/88PSP9QdLbEiRt0/EDnjNLZZxT9W73zJlmvQP9qFa0Gr8uA/Zm6/pKp21j9BxUk/98nQP7L+aciCW64/fyikrGaK7D9QBcmeHVzbP1+WdJo6f9M/LLYwRMvk2z/fXj4TqxvkP7ZZvW912OM/nZu/tco1wj8+/R7ZZ9K5P2eV5ZN2Ts8/6ckiojQe7D+vSM/KNQrrP7xiyPE9R9Y/cXCmgVjl1j84TLyroR3lP7CIcQ7Xd+E/lBMUKU2D4j9NdXWCpc/sP1UvQrwBme8/M6Dt9uno5D9ZZbKABOjiP1Y2wMsyIMY/FQd+MG417z/2bhsIsU2IP2ORjIY1gug/BVVROIZM4D9mFUcasuvrP20FbQoBJes/Y0hD7MIC7z93GBI3jxK6Pw9niFK5Y+k/reO9DrmZrT/teiZ1GZrgP0tX6qM+684/+45OWlBZxj9WTb90V0m6P2tU1910HeU/lh+CmD8T5z9Rnb3lsajdP1cO+F84fb4/+jUkEb3vlj//GV0y06rhPw5KLTuzjuk/UFB0K+46rz+kvoM3vkjkPwBu+j9//Oc/w0yMjTQ01D8gHePsjkXnP5y+4hnkJrQ/PdX8+WLi0D8KN60H4Cu2P5v10+kE/Os/0L5Cv7no0z9YlaFmH1HVP4sw+y61tMk/N1MLun1W3D+SgMCmtFHkP7lVk/bsjuQ/1Yua1wXryz/rVYW6EIrMP0+Hd2lKBYc/z/2FMpsb4D+DoxFGo4HVP0e09jsGeeI/+TMdp+ji3T+jXkEn12rvP92PyoKv0uY/s6GIr36s6D+gHKpYA3HjP57TjCGHMcw/jyLNJEXuzT9K2rk2PrHVP00aR3eVE9M/Uy8ffhAC5D+RCq2x5sDKPyOM2CMT49U/uU8ewnZmyj8fjnQpa0fgP9W86lmoMMw/j+xDo04h3j/DcHSi/auuP5GME9BdMdk/GJNE7pJnvD8/OYtcY+riP9MmYbbh79E/Wbx/hyaj0z8h8GoZUG7OP7g/Y9iMRNs/gfscAFzS4z9eIAe/usjiP5OXEYZ0U+U/pLg+xeF76j94qpr2VsTkPw15ybVZVuU/Uz7rfei16j+8Gxdnhr7gP0r3R1qIjsc/VRUKJcOMuD/G5YlRAHPfPxKqJ6101N0/xeT2+HtU3j+Yyo/JJfndP5+KcreeNs4/yB+jFnYb6j8y5xWlI5XkP3loojZG3d4/dKFC9WU96j95YcBAWOrsP5QaJHAymso/R0JFb9Or1D+VmwBhRQriP9+T66BhROk/WySArTKx5D8Yo3wuwq3CP2TIvGj9yMM/ksdaSMq91T8wdM3AStTPP4qc54tb8tw/3kEHqa72yz8gMFaMYXXmP/6xHefo5+E/eCSBNZVcuD9hOoiZfgXePwFrpfMkK+E/Vm6G3wus0z/VpwokqjO3P7T8JnCE6ss/4nGbwKv0oz8RKJ7DeZrbPw2wO8Z6J+s/mCxXsciI5j+Ppfg6JiflP+QbkPRm8Ow/olo8kyX63T9vQkKK7UHRP0ShvX02xc0/WPScpvEXyz8tSVXo9zrhP7snSocXhdA/AxOyC9gukD+YPbB9VJDjP8rdTaq+hNI/xLTbL+5C4T8UcZUV7xPTP1zUzscx1ek/FmT8WunU2z8FUyZKGYTjP5kHV5aFHOs/B9kGexDn5z9IhDqlsA7DP+H45lFFJNE/FWfnwQzg4T+0ZQpZ7su2P3cnt7W+Ic0/LQFMPM6R7D+HdLQ3X7HSPwhtFqC/F+0/9+jUf/jh6D/WqiZd7hbcP/PEDRZJLd4/Ys8C+9g47D8bhPkl2KzqP0l9PXlrJtY/bBNFkoUj3D8dTeAl1jDnP9IyAqOCj+Y/mNn0vzMWyj+V2ZRewZ7kPyT8kPa3a+k/KkbHMNJT3D9N7+3hBEnRP8YtMBq4Zrw/FuQHvJbO4D+TlxXoD93lP+Hj9W7gYeI/VUEG1+nA4z9gNrX5TOvjP1x4P4H5OuA/krCMDNah1j/qXn2jj7zTP0tJm4Glq+U/ZiQOLxFM2z96UuZzwPPKP5BqkKvjt+M/TIHPKndXwz8ypfd4M0DXPw9LE+DfJqI/rxqbjl0j1z/kIrwaRFDoP0NZvHhRy8c/SMlSuyOY3D+dXDHHe3/ZPyJlXJ7A8O4/w6QUi+2N1T9lqP/ZNhDWP8hqF/wia+0/F38QQv6m0T/hfhQUfibGPxvGPqDAmOM/szHrPx1wxz8nMSYVsCLmP3BtFcDJt8I/VwKkTTze6j++b5oOrLLnP2lzSFYyTs0/6JjbAAgf6T9OdyLqTJ7SPw8Cof42XeI/vnpXNjQd4D93y0ol1CjQP9ro9qBUBc0/b7eYqcrW5D8zp/lemevfPw2PVuw5PuQ/kPX8qDS24j/103ZMnvnQPzznkOXsgOE/EMfEhPMd2D/zu7yfufTWP2GRYuEjNOk/h5DwryZr5z9v7rkTVHfeP5Cjve7W8rQ/FY3tAiEupT/XMAxLihfAP3BXosB8kOU/BFTLzcqJ0T/CWKLzy9XgPy2FzhJ6TNI/0mv1lrhjrT+F8VtOdwfGP5aKLhN5SeU/r2O/ksSG4T9W9DimkebMP69N/ucKneA/r0v9t4f82z+hO0XB+O3rP/qKWPVel8c/Srt+CsuVxz/uhvY+0ybkPzTKUyHTV9E/xe/3/GOysz9+xD/5hE7pP38p3O2JOtU/DEH7CXg75z89hz+qgffHPypygPui4Oc/YeLjVCKnxT8/6+hHmnDIP9u7csZf9OY/R3Ki+OfE5j+04o49dObiPxi5Uz2PkaE/vXZvZqg5xz/0KHkhW5SVP9Rxmd5hC+4/jFF1pGQq2T9GJo1tonbZP2W0kdn9XuQ/2exul1rU3z/DeB4ETC7HPyRoBf7Y5bU/Gr0RQI+3wT/OJHOS8BPtP0WfyyRCINo/tSJJHH6umT9uHFwmcuPRP4M86TeIgNA/E5EhZcsN2z/L6mihhzvYPzmmk0GN/YY/C8REGHob6j9HbBUbOn3iPxIwPVO6Z+Q/2CgN8qcx4T+4+QvOUw3oP5eRjkCTXdA/iXKH1O5L4z+8ZN4NGrniP6fOnJxvSO8/hw1gIuhz1j+mlDNGpzjUPw/EZa1l/+I/jVvJfwIc6T/VRGm39MHZP41jRiezk+8/1OQYTvda7z+a7kCBFdLDP0FnXfbwC8I/3b7jzcM26D9GWtZshiHWP2f6gxyKwOM/o1MWeer4iz/Iwv9zHhXtP6mXtfMkLbw/jZx2Co/e7z9SesqKvfvgP/Y5Eq/ioMg/qxxGp5r35D+dO3RvMQzoP+2IeSDlT9A/StMQDcsj2T+DYSrIUo/jP7txHeyQLc8/XKVBbZ4t7T98a/VTPiGlP0224WxXL9U/WBrtL8+n5z/m+0KkPeLDP6lGRIdt8us/DNlUfnIqxD9zntQO/a/uP9ly3eIfDLw/ChP1+uV9xD/SN6fVLfHhP1T3joRtLek/1DSZUIc7zj9qeUemZZrvP52Bimh9g9w/rt6MX7vExT/JJxq1QZzJP1O4Q40+ne0/cnbSH6sQ2z9p+SCBdPHUP80SU2mgRdk/1RtKQDTe4D89ULLZ063cP43SU6aoZ+s/GRPb95FWxj83uVJtR93YPxqkLuwoGOA/Gzm/lHgDvT9aJ3fjo8jLP4PwcCioJNU/x2sXkJKL2j+GS2oiI7O+P1f7ydfcp+g/tfmThrWc7z/crQLOXrPDP3o6OK2FE+c/ZP58RezmwT8namteOEnFP2Q3L6pH9+s/AJTSeGKb6z8TOETybhziPz5S6dMvBMc/oPq5S9d0tD8svjdVo0vrP1Pody/M2tY/b/qtgfKI7D9daOmYmAPrP3uj5qIdCuY/+eOS/PHU7T/YL7jkOcqxPz+pJDcPHeU/kK5kqJMkyz+Vb8Vix6vEP2hTokiWqdk/BsIqZpolvT/HpLugRavWPyzwmoaT9Nk/0g5ezBEh0T+58R44DxPbP+eKPJVercw/GtTndv2E6T88cvR+2N+4P1yQEo2Zn84/f1MoBDMd3D+2LrlGYjHjP6ycOADUtOQ/eqGT9yXw0z/4RdRqFNDlP5GPuo9oN+Y/NuSndYf9uT/rQaVrZwjAP4MnuaYkWeg/92fEpbVS0T8qis8S1wfoPyjjML81XOw/9XgPUoWb2j/yruiVigTnP0SmfIW1Dso/pseBWVb9wD8VKQtH+KvdP7PryQJAtuE/0wmA4Wy0xT+59+fjsGfdP41Yj7cRqeU/7b+GgZA61z9E5y5QGqLVP897GTfu4OA/+i/uudjM4z+HKZFIiP7oP2BUPz+GD+Y/Mqi+Km94pj/xxeiITZu2Px9Sq6uNYuU/LBo2EUVb6D/8h9O1f2vUP9hf6iiNn+8/7aiL6JGw1z+Cfis3D+LZP0R+ODXh18k/r69SVB4j4D8fgAZiW0XbP+P908/TgNs/gN9l0kyzyj+gG38dQouhPx5aPKTTG+Q/KzH12yZnuj90R2eOz8/qP9hlpo0jn9o/RbtDD2cN0D/Om6+AoizOPw+tEq/7TOk/M12lVvt85j96xstOzVjnP/HsHmsQidk/5kKvPIeltz8heXlyz4CrPzyLE4o5iuY/Lpk6Na+Qzz9497CXf4XYP+XxoPYYqOA/JarjRvDt7j8dijmMwIbgP0FGc/Bm7uU/QiYy8bqPsz+eoc6+1VPWP8W1vMBQauY/YiedI0sy5z8dQr11wvjWP5hEGIBw9N4/cENuAaaO4j/u0I01svHTP6eZc1Heito/Gbul47A36z9ey9w1DE/hP9QbR5GEhOk/cySKIW2g0z/tNUQ4mSO1P9QbIs4+tNs/9zapmSYH5T845gntYLPmP34aQk8bLd4/PewWv28Z0D8h3t/8ifXPP23B/0d6tu8/O9rkSCQ45j+zVLSDxa/mPx/zBnI4lNA/btXJXd4VzT9xSPkaLlfNP1Z25cfIdNI/mC9syHhrvD/7TATj26fmP/RC3s/AMdw//dJQA44Muj9O7OAESp/BP9pc/gl3Tck/XeMjfa8rxz+fA5LbxiLfP7UcQ4MZIbQ/m/ZA1kYj0D/A5r6TOC7uPx5yRb0PrtI/L7oZQm294D9HAmvTYyvnP5QHpYU9hsk/pJS6G0OSrz+3p0OnDuXdPzo5U99B1Ng/a8bkQJRJ1z8lD0uVscu4P/rbThFQgqs/on0onQ0R2j+kJOIt9nDbP7TB2vN/Ve8/rH21JVxl0j8iNQXqfm3hP5HPA2bOg9o/YLDaaNYCwj+wIq0WxmzQP+Q6OoMk+tc/i/B1qgEw6T/KfUzTB1fYP5r965eRC7c/M0oNv0n0rT+cg25YFr/gP+w91DRaVrI/cccX7WGT0j8J4oeQ+KfDPzFcJw7hXuM/hNJ5WI2T5z/MiarNswrFPxXfigQ++7c/C/rK5wq32T9rFBC1A9LtP/KOimVAA6k/cLTZWf4gsj91Pfd60T7tP9L/vZWe39Y/+grGJn2psT8RFJh4GlrsP22kPuWp1cM/2SBL7x0a7D+dH1lfv0fjP6nsbv8fz9I/nDWgBXCe0z+c4/EsUOTkP5aYTbBDhdc/tY1GBH0L7j+n+MzP6XusP5j1av3x0ps/xqT0cTpV5z8PmjTQ2jHcPzYjtarJX9k/8WTu8P0IxT+m20HwutjTP8MnT6FARZw/jvr4JQg0gT+MXVZsmG7dP1+sXOrm288/mseZ+7Mr4T/as2wtQxnSP/fpYHlMOrk/F7emMvnIwT/tDw/i8/TvPzADyhkIzLE/Wfosekve3T+IXH7XyJrdP0np0RowUc8/l4uBy1eO3z+ynHhM+3TpP97JbxZ3p+I/sbx6YBez2T//xYwObkjTP4lo93DFTew/eSEj6Ud6xT8wB1pbjCjlPxrtpWaVKrM/fDHdUw3OxT8PWzz2pr7uP7s0ygFVAbk/kY3DA3BN2j/JMX2ycv/oPxcgbZcN/tA/BH6d9h1f2j8E69SWC9rSP3p+4n+Y2+o/Rzbwrl5Iyz+rODQ0xC7YPwJypjqcjeA/X9iBBbqi7j94xFheDyjKP+R/0XCKRN4/Jnt7QDFa2D8egoEB4WHuPx2/+jR/YNA/w5muCH/emj95W8Jvo26uPybhuV1xYtM/jmKrkyyh1D8kqUHV7TvGP01Fcqgz77w/fCWgvXQCyj9ZdfA1FT/cPwMucR2JEuc/MywiFkSzrz88GA3oA8jbP+rdi6jelLg/jVlyObjz5T/gMpCJ8bzcP/qtMB7Lp8Q/1h3v40jemj9+16XdDJbtP+wqkgd8hdk/yAErLj94nj/klh0O1gzBP/rZ8fyPUOk/CzkMI0R86D/7qO7nlVvOP0y34mcVX8E/DaJDZYDu5T/c6oZozATcP6zFz/NKIOA/fnLAmMhF5z/ls4Sm5BPXP1ETIc8cuu8/S5FptU/I5j/s8GkpqgnpP07e3bqWz9Y/NNYFCL3G4D9+A+THlw/rP8mcFX+S5s8/klY4WZGB7T/h/1/n8AnCP0hR7Qjvydg/ADeXKcP64D9ZdR6DvcDnP7M7K0+ZWOM/QtHKvEgl1j8+5pjGChTdP8J2fcGnveI/rpLB9+v77z9qd8itzfjnP3O+wjXztNc/VZnridY6uD9lwTZIiBXVP9yve9LfnNQ/TqCQgTkf6D93gwPRi9HFP6e0kIgKLuA/NUI86xFd4D/ez6w40UTSP1K9Z+cHUuA/dujqgcxBxD8qXP6cLpTWP4zJDy+LgNQ/k9cK2GyI1D+3QmG2myvlP/Co+7wsw9M/dwarf8Oy5z+nPknr7lrlP0iGf0SY3+4/7d6iJekQ3D99yQfEoyzpP7GBJLpo7uE/E3ANKddlxz9VauGgsSzZP7BFNkox2dI/hWMDeFUq3j8ofQIJEBPlP/VO9EV9lcA/M4/VBLvw0T88Xu0a2mjrP8Eux4qT1b0/erFs2kq2zT+vPcoq8CPhPyqfBVX2cq4/WvlZZLxYzj+pEERCPKDTP6RQm1oaDeI/mAIE1073yT+mGcsIxNjGP097cqkXIdM/hFJrM5fv0z8XCMo42VjQP1cHkmlpys8/eUwQgpXRzj81u2vetK3vP0F1CMvYs+Y/6zlJA7XU2z/6bXfpPufKP8oheL60O9M/jbM3O7x0wj9ih+py2bDEP+OfuNwB5+M/s6SCLfuozz/lJsLDGZ/VP/JxqvtM+uQ/J/tK5DJu6T+zqSXg9EPZP0UpxiEm1O8/frlB8JiDsz9yMoSOMYzVPxgxc3qSark/NKkOO8qE1z9/dG16Jw6ZP+h2fM9Qq8M/9VqKw7WY0D8ru7lyB1frPzoqOoRTmNw/+Xnx4LfW0T9ltChI37rEP5Q76EkdsOM/7dtGNFFu0z/U8NXMzgnYP53pTynHh8A/j1G7Uq/90j8RB6RzL8zkP2n4a52wdOw/bTRON7fk2D94YOEoDrjWP3It109JDOU/d5u82ndf3j9tQvsZBRPvP/wlTSPSxu0/xdcumSch1D/Gl5D8cWTDP4tccjfZPs0/FQfPq8IT1T/8mjUpkADbP9u2FHJuEts/vlPopOWs4z9r15Ay/1vtP2YJli/5e+o/PfjR3gYx5D/P6eMyiwzeP7gNQKLS+Mg/CiOghAP85z/aCtbPV07tP+wvQDmGoNM/eGYwwESU3z/PAD7w0cnqPx2plgtuat8/FKo8BPoG0D+x3UoYstrHP7hukuEefds/gd5Z46fQkD+tA/txasPZP/eKKsN7Jes/Zu6VGUkV7j9q/S0IkRTiP1mi3WB8g98/ewirfvw26z+eEK4bWxTbPyf3UjEvaN4/R7LLIjwRsj+oX3HvLrLcPyEZAREXq9E/Fax4rlFC7D8Jnkz/4gzePzz2TdE/1ME/e1m+bMk47T+x4Z4a5FjqP+SjAyWFqtU/aaNwy10N5T+AFk16QKfWP6IN11JUBuA/bcQVMrn94z+be2KsofjjPys/JQN7pOk/qz+ZuEZU5D+ZZBJ+MZzhP8oZHs8Mk+8/tvHpwwhj2D8AgO64Wo/nP4Kvz/TF57s/EfJLTgk81z/uWfilLh/oP0K+Su+MRs4/pLs8l0Py2z9h14B64BHBPzDtpohNWdY/mC3395EY1D/+eupF7FPnPziIc6Hv6s0/I/ZzaPbmxz80rJJHy+jhP90SrdoSHcc/d9Cs7zNo2T8haU8YXsbiPz+aPJ6vw+0/nilIQCbUtD80Bd8HkY3hP6C+46JMEuE/rc97eVN31D8TbQcIt1K6PwFp4t2Y2Ng/SbPBFLZm1D8gBhmagADuP3KhdLQwTdI/KY2Uz2Hg4T+4TW5IFEzaP0JeWbgEgus/jkSgRvMi0D/Rqv60K1LkP02BFanetto/+3DaQImz0z+58/HhD+XoPzDuqVpWj+U/bVdpC2Ri2T8bGWlES0jjP9zdNWMmC8A/0NtfiQVm4z8F5mWpRJHlP8Z0vKeGNdg/fVzmKPWZuD/50dOHtOjWP7Oczs9CkeM/yXIczoZd3D/dwLf71xrqP5C+t/qW2uc/w1fuVo7jsD9Y5PI7cILAP5nlpyAENuU/EoZS/Qai6D8Du5cIrO/gP/ixYblWUuc/7lvi6SXV0T/Z3Z+On7npP0YaO3NJ2eI/MK/3tfMS6z+hvm+SSKLnP67V8TklFt0/lX1WsmCcgj8723KePwXiPzDaVZu428Q/cDyGU6wN0j/JQMXHo7boP2AqMGu9etI/zSC7g9N62D+dPp0VQMnLPwR4GlZA7tE/eeiA/Mn24D/mJ/wnmZnlP01HeLYwbdc/0pPTNU4a7D9cXZNzwc7mP49/PXdRSKg/5n7KN1RN0z+xh2EJJYLvP+D24e1QNNQ/TAiXLTvHvz8Rh0L8MubVP7A4HHbhAMA/R6J2cOE22z9lTH0aRePZP02mgwuwta8/iqkCTSDZ4T9OyMD8Tn3uP4MKOVbDDOI/29/mPMLD7T9AgqsEweXFPwbirbsECLE/7p4kC6/H6j9N49wsua7sP3Cko5Z1390/Z2tJQ9Yzvj/MvuVb0GftP59YuH+wP+c/Mip59gpx5D+yJyD+/mi5P02Rydc2xOI/ymdPjC665D9FgOwyfOvpP89irNY52NY/Y5QUxN2q4D8dmfQR5cCKPxpMk2W8bcQ/ySWFWgpA3D8Nd8MHityrP9toDEy0oeI/xykNu3uY5j+x1kGjHHDjPzBkWXP4QeQ/xI+EtdDixz/VKIqhF8G3P8B2v+jPCNE/RyEm3tx/tD/uAHaS5B69P/OjWLvhgsA/ZwcpG0j02j/y5kFjbRa0P4nfBVR9+tc//fA03c3uoD+rzGWYv8HbP3smIRYXBeo/yaGlu8XAuD/eYwNlNsLRPw3ZnO0EteQ/FjVZCzF73z/cZTjitpPvP4ap3nZm/sA/6b08YT+V4D+Ao/JlRXPZP/IEMIEhYK8/SSZyuaqwzj+VM5slVOm6P55KxC6BWck/UpqdNRT02D8az7TfZxjYPxnNl3/vJt0/pH5c7CWX1D/905QTT67lP2gTaQOSGOs/YJiEbVJN3z9LYgu0smreP9kZ/Zuc3+I/iDvyhdKN4z+pTEwpTkfnP5DOZ71Vme4/FDVQHJef2j+B8OsK5ePtP00cVzCXsOE/FrEfekspyT//O3bBBHqLP8wESekZeso/5btY3FOyxz+fnKHBIOusP8RtrB+ibN0/jM4vHEwJ5T+El9wuj/vXPxwFVt5Fr8g/VXLJG3IGyz9OwTHBtgrbP3678dGVK9I/6yVqRxGm5z+gbedsyjbcP5ng8BTDo9E/xMSk56x/7D+lbqMlKlLqP63ih54UXe8/uB57egR10D/n2kHdXs7YPz16cjlDOds/HJIi12w05j8Tx37L40uzPxCOgNtC5OA/0Xtsj1Iu2j/HHl6f1zq/P4exPs1CM+I/0KCQnlzB4z8u04Jyqw+xP0Y0HCgH4Nk/nWXpYKONkT/n1dd8NyDgPy07D/rEFuk/m4ThUBIg1D9pXQrzuknkP/qKSF5DT+0/Hw/DyJi04D96XYCCIBrYP433WGYWK80/fzjWrCqUsT+/5gYeRdLeP3JWzh/1BeQ/riIEcBSV5j/RTNaLOoDTP6Qk2aAuNdA/6vx30+f50z+TSBASWrjuP0w79pfr5sU/kzGurOo4vj+Pn3BOC1TAPxHDkTfB9NA/KqwIlqSP4T//+RoDhKPCP9lvvsnlk84/jtNqLInC6T9ZtDwnO4juP/hokQ14qd4/cG0d3E/7zT9SqGsItB7nP15znUSFFeg/ReTUeVH/5D9o72WTOETqPybZ7Jx1ouM/mMjN8ryN5T+a+/W1eGzrPzmXTyU+wL4/6jis2VW94z8Rx55Tz2riP5RoJ++wksQ/Czrbh6d+0D+eK/kGjJXcPwTfQteTuus/4rxL2AoW3D/hcxH6+wHrP8yWYatFiMw/53klJQHY6j+3E18FyDe/P1QEFY4aM7M/m7PIj5WTvz8Tqf2A5J/hP6H2UkK6m9k/aHh9dJ7wvj81pExE6XjoP2DsmXZ1/No/6smoo9m5yD8A2iTJxfLoP7ofBbOf59k/NKHRzGDR5T9BhU/3hZraPwuAPzJ2Y+A/EP0iZVk50T9Wnyju8jbWPwdUlW4yhJM/KHqNPkVj4D8bqWmS/GnlP5jlKYYUfOw/FckjXsQb0T8goFIuLd7eP8N3JpvaD88/yVXyNH6Azj/MHkok4o7IP74UhOv0uNs/NLK6WCRh3z/OaTlEI17pP+iLo7zRpOw/wT/Bbt5qtj+FkJm0EoXBP9uRzDeK8+0/ounsYvkuyj8MtLw02EPfP794JnSp/tA/Pb+O+v3s6j8TYFz+XUSSP5zUJvYW9e4/wifWa4ROxz+muaxCWTjeP4F/RNBvN+Q/yK5pCrgO0z/wOJlzrcDuP986oSuKBOU/FLpp24cr2D+vvdGwUz7KPxY8q+3aPoE/844AV+Dj5z87btAbYP7TP/AdfvdeHOg/pOZge3br4T9qplCzGEPYP96OE955I9I/CpzEmxQn4j/IlpVsjhetP5rrlhAgwNk/GrbQCQCfxD+5lky5rxePP6afQIAgwbY/I6s1t2IY3T+gTIpCMWO0P4XAh0fjuMo/OdTP8AGn4D8/SjNq+2jHP0h6bMpNlOY/8AQtfdsPwz+tvV4KoVjJPxDx+GgVJL4/gaF/T6fIvT9APBnKuKrcP3kGeJqczJc/nAKZK4Rv6T8A0n7xVwmFP1yIzVbDzK0/j6VeVFE04T8wEG3pTZDAP5XxHjZLUdA/5Ei/c52cwz/z+R31VbzoP1TuY/7cEuo/yjsBZvvm5D8FnMQyJJPYP4j+GkX4g9E/CtoTVbhR2T+sUutgQvXtP+Nqe2AWcdM/k8meGHIhyT8G9c8zz1LkP4NI63FQVOE/Whz/UBJI5z/J0hqy4SjgP2u5RUhFUOU/xS3b8NOb1j8xMiOyvJjqP2v1oojsSN4/ncNotvCH5z9H1kpnwcfhP1H8SpBMD+Q/yAE8qCGnzz+medNbuvXTP0QlXQbUC+U/55XVuTAi4z8UYkevw1yrP+1gxtZ2jtE/dsqzqfl+2z+vZ+MZ1PXIP/KwnCC2Eeo/EwEyL6gs1z9cEoMCKBffP9aohpd6u+I/8UePj1Ix3D9ytcVRJsvFPxEEQMg57eY//ABm0bqtyj/oTlHWefHhP2e73CkdoOU/S+48Lg544T82K08IEAviP8Z62lTUt8A/1NT//NJOvD/agOQtIhjaP0GPYwhE3b8/Ipkh6jlpxD8a0zE9A/3hP5V2+QQ6kuU/NXRxCIS44j/RPyCfPhTWPyG3pKGyoec/9FyK++MTwD+MoXEA647qP/MQM7+nT8k/ZFu6e7Qs0j/z8QA1fibLPy6PUIRML9Y/AAPh7iPUuT+PsLSS/T/EP3Tvw1YTGdM/df+t4WRi4j+JCr48vwDnP3gQmkD0zro/Z+qOtOKC4T9gQnAtTneTP35dVOcF5OQ/5L+Oy0wu3z+CCE6J7ATfP4rjdQ+iVuw/6WOZT4JdtT+5XhaANNfkPzbhomvPU+I/uLWcFuVG2j+vN7jt4ELmP2RWfDCK6eI/81bCnNx61T/8DnMmfv7qP7iHLqqfENI/f7aYM4j56j8KQ535qBigPw4QYsgrAOQ/4O04OAnF0D/nS8KvmurNPyaHAD9XvtQ/MN9OjoVX3D9k9htLZYfGPzC49/bYn8Y/3PMPOkg/5D/9UUlJxTLqPxieSYwqteA/PIWrqnm02T9t95WcwYXGP/97r1iMM9s/2EWFUdPw6T+0yqWv4vbiP3QFcJcfStI/3O/C9Cgc2j++jkpPTAjqP4h1fBE7keQ/9wEe8qSU3j8B46KFGdbgP3IpG6DUkcM/9alqIsNU4z9imCJZp57CP65ke0XO+ts/yRCc04rLtD9UG/E9JqDgPzn5U+WarMk/pSZsR9K74T9Ztwjy6/jTP+ZJZg0kH88/pSuJlP216z8t+Fn+Wq6mPwRl6+qLDKM/wYNUHzdN4T/pb4iS1rDXP+mVBuSiH+4/qyBNlNzv4D+SaXnxxB7qP7X+EoRtW9Y/hc9fnskO5D9ULbIeNIXjP0UWyi4BwbE/yi3em0SDxj/QES/I15KrP4svfDvEuOc/r26FykaA4j8epcOChnLtPwb/zHzVMeU/7F8S3LZtyz/xqR7epGThP1sDl2vJw9Q/CJN7gKhA7T+1NxfiXiPpPxJemqnsM+M/H4G2a8atyz89cJWgVUjYP824j9guwdw/Eor2O9DK5z9Iuw0wjiLHP5UT6Wo5dO0/wdGkS+uooj8vxjJy1wPiP0iPP4ucUOE/0ZmhFImg7D+6+vz2/4vKP7REOT05GOw/F3HruHnf3T+kTslOe1nQP1iACAtRzO4/t8znEMd44T/tjc3dDQnhP8VDyv/W7MA/eD4fXwskvj85YoWXFq2uP6pO2pZMGMc/v5m2oVd43D8KREmarFXAP6sIpnvDhOU/B9loQKVP4j8Riwhy6eGnPzcrrgwW8uE/7mI6oKHd4z8kzcHImEntP005K7zQBOk/RiulXFe95z+dwC9Ni+GdP4dKaihxV8g/7+QxuMCa5z8q7u/9LkXRPybwjXsT7OI/VJPsLJID5z8EprmyQLfbP+0II8eSyuE/mgUVCFCG7T//AUD1VnSYPzizO9SgFeo/0IDV3STT3T9K8z6SQkPmP18wQwzjoN4/u190Ichd1T+p3e7k/dioP52XVa2lTs8/E4ti4X3v6z8Xy2wg/BixP9QoC1P0I+0/706DdODKoz9l4AkgFc/lPyyjXs9i8dY/9i4qWazsrz9MMKNVBVvmP3Zxob5B2dw/8yGw8IBt4j8ET8BO2p3lP17k/ulqE9Q/5Rzv41Hk1T+B7SElQlDhP76n5EXNbtQ/Wckw/tUeuz+QOwt6o3nfPxmEUgY4ptA/xt0k2J/73T+EaWLZQGjZP914Xo/uBMY/IYEBYEXuxj9+lOUkfvDtP84V2Tj2frs/efdYJK5zvD/bLOLuWG7FPyhWQMGpcu4/o+91aU756z+tMaYvXHPkPxn985knPs4/mEPGlT3prz/dSXitVf3tP1EkELzPkOY/Cld/SxSgqz+xeGM7h/rRP3D1oS4WIuA/64CH6vVe4D8okd//0X7YP7hjYnCVqqQ/dPQeTpX84T9yR0seOUTqPwHIpAGqvMk/axtypgoKtT+wNk8i6ATgP3AT+75vIeI/e31CLqSB3j+5Hq1bVIHQP3M5PQM4Mt8/B3x7GhE16D+aAKX/tN/kP/bVmnNAI78/CK6CzEvTwj8dYmrav1bVP6RAvsp7Qes/gxQAef+awD9q7sXr21LqPy06mlFkxsI/Mr/GGiVXzz/3MhfVb87TPyxNPEaHeb4/sntCU2it5T8Bvmk3cbHhP5p7wyC3deU/I9LJKKOduD9PArtife3QP1iRBI6wwNk/VUUt4OsD4T89DirJal/cP8s+wnOGB9c/piA1U+Zr2z9XDZiNwULGP470LkhKh9U/aUpaw1g34T9kmSXmFU7hP5QDNYM8c9s/66W1PKVezT9WeoenkcfSPyTYpUtVl8E/i3NJMXTz4z+rxJnxo7XbP4Yja5if8tQ/6U5QCZViwD/5tCtC5GjnP/eJ0EwBFbw/aMwyf1Ev7D/PSsEWprfsPwlSMOPqhcw/EE8SY2bb3D+QJ2jxBnvlP2GrjbICIs8/OZWQ2FKF5j8C9bLegc3bP0HyzJAc+eI/kPbbrfYTpD8HqLt5jkvoP4vXb+XwgN0/iBHY2k/o5D8HajRQKmuvP5AiVyjM7NA/SIKmcz/j1z+12Ei0A9XDP4JLF2NyaO0/+1JJssk71j809LwsB3jmP+UncitvEtA/8lFgCb+11D9rvUNoNdjXPzF1Abc1q9s/qEmhf+Am5D91reNOsxTmP6ighsSSbsA/jTAUx8cewD9oGz6b0ubpP7q3k/6Eruo/1+ndoEHW5z+mmejHLMjYP4y00VgxU68/M113vB9m4D9jQB9c+4zLP/d2doMIhd4/K7OS9aS/4j+vlKv0HaXkP/8hsSSW+OI/zxytN0DhwD9i3pv0xALhP+zuYufGmNE/pYZKH5o6zT8Oh0yBFYibPzmNCdtew9Y/o29gVu770T86Kb2pMHPXP/PKL3spQ9c/unNCb50Hwz9ssJ4J9snLP5Ibhf0B9tY/gSLepjLs0j8T6TH2aCrtP1D8hLFebe0/ksOyemNv7z9bZF+JW7LpPyMYsl9f6rE/XHeY0pC76D/98ObgTDLrPyp4IAY2qbk/TUHIgmLwnD9uz8WnGtbuP4fK1W81kN8/WGatTl+mxz8RWc0mkt7SP/SjwLbc1+E/SeGQwuEv6T8Eawek6SjnP6YTO6z9+9U/JdCMC5HB7D+WaLuI2WzMP4NQntfmQNQ/fay75ZMz4j/0F7PEE4nqP0xzQyFFLeM/fh587Nfp5T/LFzCAGcrTP9P9rttolco/SSVeEhhzuj+57QcPSYq8P2ZkSFJfnuA/JDYxQR7wzj/2K3KxDE/LP0wmP2/Q3r4/zrsY9DdN6z9nifRVfGXsP1LfTFaXFL4/MZz5jw5izT8zRSeWj+7sP7upOnxSu+E/QiGxRXQw7z9Wl3S5giPnP//JS6ReT+A/JN8p57T97D+yeUSSIxPePwcfR6imjO0/dpubiyiG7T/1EZKpC+jqP2fq3XlOY+I/6Xvj7U525T9AAWl1GaviP0HDLJcPU9M/iAUNOHQ05j+Znda0qDfCP6hPStcbcrs/Ajygs8Xl1T9yo6W4bDzUP+Zam4EFWNY/ZXbiO7RB0j/QwwF9VYfAP6n99dPnE+0/rr5hRsMB4z+3bPR7snXuP5UdktPoLOQ/Kbp4HkI25T+r3nrWTlnuP+Fmq9W3Wck/6qyToTSN1z9uNJym7Z/BP5pGaxZEI+E/ktfwQKru3j9fP97LHmHiP/V3EhVS+7I/2jD1c5sI4T8aDvF9aCTCP1nkvIx28cM/DovaCnfM0D8UahctMNnFP91Vuk65v8I/w2d7uZSXpz+6LXo97PTNP2HAftv4BtE/V9Q6uxx57T87OIrDUF/qPzMNGpXnGM4/7tJm5lo7nT/OpqRZQSjlP51caGJQvuI/6NShk/Db1D/MfqYF6jDXP2zIAduEbOI/eegQjmwH4j/6amtJQYPhP/UiDzNNfsU/p+sbQMMhqz9ojVqIkAXCPyQfaK6Lo+8/XdTDb2UQ4T8hoIHoON3mP/hxHwrp9+g/NMEb2XQyvz+wL8advH3XP4/f1LXCidM/P0BLeZTp0T9EieFJ05LtP/G9Kzpxwd4/Keo5J3sS3D9JR+faWs/cP/ibVvg709Q/k+CAZWXW3T/zIjpVK6/dP/Aklg/JQ8Y/QLG6WFVu3D8lXglHZb7oP0E2PjIB9uM/CG2yU5Ti5z+z9bJWdr/kPzQ0q4AFy9s/Mtu8WvtW6D+UIc1i1kO5PxhH09+8Jtc/KrYPNpvB4T8qrTt+RSbfP+2oxJY80u0/hLgQwKOY0D/a6QuWPEGaP6/NK5yEDe4/PLqmbfZX4j9dkFfYb4O8P3MHJOLjfd8/GlbhpYzVuz8d4bKnFsPmP9sppHqE05E/i0yXPuYU6j+Y7M7mb9XQP1sGSCQcfOs/YbLMajpr5z/sMhnQCGfkP0sO0P6CfcI/qnFFpR2IxD+ejHM9+f7dPyO/1jk1FeA/NhGHOXW12j91IzqazRvGPwN0PPJx6Mc/TK01/E3A4D/AezozFK+IP3/527OyLsA/XIQEIKZtyT/uMnODzIzpP83WVdwjHOA/O74N3nLYyD9N10LqRZHlPyIfXLEbmeo/32JvBEFP5D/Svdn62KDpP1ADuTTygMI/f5HPrNgH4D8iENFNHAG3Pyfq/PeJo9Q/jNluU6qJyT9XElDwWG7aP7jbfxb6xdw/UzSVXEjw0j9I5qP/qr7bPxiV6eHS4s0/VMRK6sOQyD/AvkVsEKPtP9wQYSZGzOY//FlDJ6He6D/0xwT98bLnP/UBwY5tyeE/MUNZrkHG7j8BoVHHsOjoP/D9cii8n+w/ivtrMT2qyz82n81gFPDiP5URlIBPgJM/uMD+RUvr5z/wEL9PMLviP1VCAjA6QOE/XFN676DU2z+jy1QGtofaP1HX8A8HCOs/TWPVhztl7D8qR4VK2ejrP6WyIy/HYuw/SEH4AD9Z5z91BebSFDPfP//jwDUrSug/zgUhyiKMxj/8kzMJrufVP9eCM6RSFd8/uZTK8t0h4z8Hn5iM8FrcP9AlPIDku8w/jxsG6hWS3D/CX16xo47KP13nrsdhiuQ/5gxP+stu4D8oLl2rXmDvP0R7rKqged0/P8/IVWM40j/v/sUjtEWhPzwpfeBVNOA/ZiAW2Jyq5T/DTnwQsUXRP8nOhYzyKeI/iAMdsDaz5z/gsTMh3KfjP3Jo145mu84/3e4UBiqA5j+UYltjm5LkP8liLptJN98/YxTKQeFT7z+o5h8WDEtjP+UCGnbe4dw/qNIj1ehF4D/oPzsGUBjfP7+BKWsLaNY/zRjwqGCy0D9kHLEVCIvjPzsfKiPN/Oo/DlEA2xiZ6z9/lMwQvmnSPy/mPenXPN4/2BguFhjQ4j9JKGwPK7/XPwKxzBgohOM/CugyJaFd2T/sWD30cR3mP9gZFNA/Z9w/WShloihaUD8VRppljTHDP+ba9uRjKeE/bDNqStQF5T8U/MRjSza5P4GvZeCVT9Q/Kj+BvlGJyj8P8Xb4HFfjP1Gkh1TWrOQ/ajrJXUV55T+auqp3S7/SP5b6J3Z7eOI/QrzLabPP0T9jCGAG25HOP9hsDJ0+YOM/yQHFCTwa1D9o3/4D5AztPzfBPpsMNeU/gbLuAgwypD/h2SKWRSPTP1C9/oHjSuY/5XuAuevj7D8bjjMD3zS6PyRDfTapZu8/Oqcj7XUqxT98BpHcXH7OP/MjCNxFrqQ/3qJvc7eL1D8YMuLy8t/pP12ZlldN4Nk/KJjs1/Hk7j/Kb6o7BcPlPxVAT/pjQOQ/2kNeMwoT1D9yXoM/fcTQP/i0uq/kg9M/22EiYZBP3T8VGVCS3rmWPzRxmKN5Wsg/hHRoD3ZpyD8/A9yNMGLCP02tC7M3w+s/qBSKnA8Jzj/P0cLvqe7oPwbHV+j1+sQ/gWdIRq1G0z/Re+La+ZnlPzstVZs6AN0/4zSNXXNHvz9MNhJmcNnKP0ORYYbMxNE/X5hnYG3M0T+Zq9Vdkf3tPwEyqieZyOU/QTjxPWYx5z8SzBhU+DjFP38qIwvPF+Y/kXE8mj/E0j+1dAf8pKnkPz5yBzvEypI/6i4Fz4Fk3z/05NaWO+fpP3BvvsGkBKw//ZYo3uNL0D+OnMNj31nuP8BmcrajPNs/tJMSIleb4D/3V3dFV57oP89ZEFAqysY/xn0iEbGk4z/P6+eAdnzFPyHBs8CAOuA/1aQca5DO0z/3gVKx3HWJP3nVwCu7RLA/NFC9xWFU0j8SVrK3BwDnP6StKYjMndk/tl+IPNuh6D+XZA4QW8vVP+QXedVn0Ow/yXOx5aHQ1T+/NUgZC2jnP79+m6QIl+g/00ltJBwX6T9e7skXYmXYP228XJrTrLI/2D41uBaW1z/DRIfj4GbhPzJ6V1WsE8U/eP07KVvk3D/CtJLpi+TAP8asSYvBY+4/Err0XZqL6D+Y8CAkxWzPPz0KkC2mROE/QW3uUx+Z0j8bC6bG4QvkPwMSkzXsM+E/FCaluG420j++1FC0A7rlP/t76FvYgbs/GRmJHLoLvT/PyyNZvG/bP64ZpYgdLuw/TdVId3AO4j89mT+YKNLVP0OEjOrEu+E/h9klX6Q/4j9LtCJh12i6P2hOgKBwzOA/7vNFU+6NwD+eXcDblSrVPybsPVWlwug/tx8+32ZR3z+SOSgibWjUP9ViKkCyPOo/Cu16RzTr3D+o+AKXjHG9P5KeVy9iacE/wsBeXud+rz9n3rliGzHNP+bQVNqsM+E/yS6gpmPetD9lVJvzUCLpP2sMg5VLgN4/U1BgNq+y4D/lKAMTYfLRP6snjopjwtA/tuJ8w49ptT+dr4BQalW8PzbyPyhs9t4/D0/XkBBt4j/UZKTkRLOyP12dxudZ9sA/4TjtaDjzvz+dFOKCGmnrP1CVr9EQLMI/2VVQ8Xir7T/oUGXRBGbiP1neWBKpJNg/l9+UoYv47T+ZsdCHTn3qP7DpcaQaNOQ/Q50A0GUl5D8/mWagAyfYP0HaXRmmqMM/QCLgTHRywD9CgHlLCdLjP+HL/dAUb+k/HBBEgg2x4z9R96Lw7A3fPzBgWtycdrY/5TT8r43B0T+iEtjdhFW0P8CAXfQxuNA/VPtDDzLX0T8gaGVw3bPZP00DM44T6+k/Zi/Wn0Ba1j8I3DD+CXTVPwosUsIMT+U/vZxDCEtl5z/FTLn+Kq7mP/7Dx9QUZdg/EgBhElEgwD/CfHZQpaO/P9iDc3cI9OE/YFc/bb246T8oY3i0nAflP2qg0vgWY9Y/dRjhnmQN2T+he3zfZRfeP4/2xnaK59U/BCUO4pwn5T9cE2sW+8PRP7Z5hlG74dg/WQ410THCvT8N/O6uhlrvPy47QZk+ZcY/7sQSpQoN4j/PeFb6WZLoP+gSqL+Hwdk/HiS5K1ld0D8r3xxR1vDXP80gvkTMAOo/H5YMrb3Y1D/3JBW7Ko/tPwVVtGSUkNA/3nETjezO3T+QmwLRIYviP6eAkQ2T5tE/BXpHocY97z/11tyjeuagP1zP+E4pF+k/167yOLmj0D+/yDOXDO/KP6wL1msWPOs/wj3y4buU4j9Q8luAE/zXPwKInHgmPtY/4qrmDSqgyz+v/caVX+7qP+AOAczc1Ow/MGuM20d4uD9G0zKxzUmzP70bl1IjV7s/GQfVjQ8U7z9vR/4hNr3XP1cKfCa3cOI/YyJGo/zd2D/JrOuNv/rtP/piuTQYqdA/WggUTQDO5j/vbLPbO9bSP6xQ+ZmJ1Oc/rfJuLJpi4T+/YT/z3VjMP2I/qYp9L68/7Gk8vF444z/xQV0+1CDTP5uzhbKWIaE/sVb7OHTeuT9ui/f3p1TYP06YXvcW8OA/t+BYCRmazz9XjtlNSz/nP/P47AeFpts/BC1hXjPy2D+wQD/AzmPZP7uOCbRxG+o/SrJUpPNqjT+EhwSY1Mu+P7TMhCQihMA/FVSnc+rB4T/6I2v9poDCP9QLaLIm6KQ/xNJBVa/54D+1/5IKAD3nP0OvHotT+NY/xHLsuX3o5D+wO/WX2zfRPyzUoOQqNrs/RDZhBJaR4j91U+4AhsLFPw23VTQiKtc/I0rj98Ym4D88XGxV3jDWP4J5iGgm0to/U/IPTBI10D9m02rQ/qTTPxFMKgoqSeM/hp8Ik9kR7z+prQT+M3/pP35rIluLzus/Nm4IGKuT5z/V68RLr7LbP4MCJlvMjOk/c7mb63ic6z80YAmK2OXnP6KqeWKyONM/iXR4CM5x4D/xLos1j1nPP+4MdKbeSuQ/GUStMDKv4T91iOSi+2jXP194re3glMA/02DUx5Cj2z8P+Xwy9KfSPyfDM6ZO79Q/3vXh2JCixT9TQAfvr+3nP3Zif0Gt7dA/A3n2z7Yo6j+K6rIok03HP80j25Xxssk/onKnYdQRoz9ta7DzEGfAPwDQj9QC7do/CcHf1iX55D/4aE5e3yCkP5boFCYEvuQ/uIjy4uc97T8NmhmeBoThP0ADk5MPAIs/sOCk0endwj+As++o8r2tP0Ft0KwXBNw/HZuUqqAsyT93IOL38pTeP+0DVVeAO8A/Y8ubpSghrT/ahPZ/4U/WPwkVwU3igu8/Mc6w9PoQ4T9rNPMsvmTWP4s0SSL7Teo/cnQT01C30D93Ti56JwO5P8uR5SDOwuA/y7N4iD6ryD/e4jooxUntPw5yIM6TH+Q/kDStND2r5T9nmSHOyhXrPxBSuFVbReA/Vrey5GDG3T/3VbdzmY7kP1jxp57TO+c/gth8B5uF1D9vtuBj/vHQP8rFuehE7cA/pKABHk0/4z/OxR/GZUa6Pwgdc7OtT+0/VTlrtOzLzz9oLllDHc7bP/RubUPBLe8/NHXCkVCg7D/tCbsdxZfNP2PM/2qjrOU/KUnmzebI7j9MHY2OjdPhP5Pn/q5EJ8w/xwtWWNJj4T+SjwHYMJjIPw+MLBXjaNo/a9JkcGdvsz8F349dmeiwP08+CdhDtMo/AFkiHXmd5z9FMinvojfiPw8kLK7m6sM/AoWP282u2j/OGxuFsyDuP0dURhLVius/YAmWJmKHvj+2yjzM3u7mP17kky+oLOg/zHX4pc8b6z9UG2l3EE3gP0Qrq+hP+OY/u10eeZVpqj+1HNsbbmjnPz678FXuU8k/adoXmJB30T9CvywtwVrQP6ZWq52gndk/1pegdlQUsD/61ZvwFiHWP/jPi/2cnd8/ccaGfHB87j9ic6OETP3gP0opqLknsOU/yOPH0fImwj+UnMT6MS3kP1N1/Q0btss/SGORj3LK5z+9Flq56LTCP5FMAQ5Gyt8/3BR2T9452z9z0CmysCLiP6tU4/2B2+A/DUfT2f4J4T9aNMIEs/HqP4yYKGwtsOg/Dwf5lDzH6j/6dsVp7eXSP81VLFjJFeg/fUMCKKz5vT+3sxykYKTRPxWG+dW2r+s/XVqaUjFPsD+yncHU7xLhP3qEteH3mdY/fuck5C1I5T8MQxJUDQHkP8kEygmL6dI/DBSsO/u4bT99X1k1g2bfP8AdoqQfWeA/RMpS8n3o2T9VqW4V4PbbP7Jk9FoFH1w/rkegynxq6z+w3Z0v7ZzkP138772qFeQ/fVsSqLn7xj/wWGRcdMzZP/bT0251mNE/+upDfIvs1T9LOlt0Ay/eP3D/wuPNDN4/iwPcKk7R2T+P2ivdFf3lP6F2dR8xCtY/vLrTQJaryj+PBuicyTPMP0GjPHkrQdY/3bZbvUNv7z94p8WL5CzUPxy8CFq0Kuk/sjDkqysvyT+Rd03OMWHgP9zKVk0K8rE/xnYX2hKL7T8EqBZge4LfP7zuGeGM3uc/GKO7ITBg5j+mWpDzB/a3P8MXiJYnc9U/je7gYl60yD+nb7zagn/bP2XF4PQGZ7w/s4BvwInwtj8o3uVasL6+P5DcJ6+ONO8/V+6M40kW7T+aEAiUZajePwsyxxdV6s0/XhaRMkWkuz/0tiOXK5bQP3ySynaBGOM/A+og04D+wj/aWqNoIMvHP/2/Fcdseb0/WW8/g7MVwz+c1W+RzwdpP8v0DLiUZtE/Wk6v0QzooT/YRvmBelTfP3eXEstsGOI/YenDUP9YxD+rJxJArrroPw4k4dfxSO4/XiIDoJDA2z8Xmsj3z+PSP60tVid7rOc/KsmMJGS+0T/+3gU57ofNPy4mwM0fp7o/YrPQc6ON5j9p7GxIVR6xP5JFwVEMyO4/V95gc/wcyz/7B/KhOFvgP3PgjyR+6eE/lDONiJcj0T/jOjrdyvvtP83VaoxGKOI/aA1eZIdU1T8wfQvtWovoP9aeXHyE1qA/00m+nPdssj9cEwwLkG/UPysjN5EfJOE/DlSKy8+Wqz8SUXfsXhDSPwhOx1/KuNU/U+Mg7+x/4z8e6+mn/MnoP02XfXnBK94/0K3oJUat4z8jirVqwMPnP5g9JMAolr8/d8VPsh3KtD+x0ncNgybrP6mYJTAhf4U/V3JYwxSgkz9nUJXVSZDEPxhk8YPEMMA//M/U6Gk61z/hTp/E/DPYP3k1cEpJ49U/N+yKuF+uzT942hPQ0ojbP0eCqo68vdo/AHpbMUGF3z/SgC90dl3hP6iOHIJ8fOg/MuTv0s2NrT+R+yf5WHTSP6ovieLC1+U/DtYVdt2t5j/wx2LMuqjZP3GBbRFpINY/JH/2v0+X1j9OGIvQD2fXP8HSkTp2teU/X1EJd7qM1j/+JaeGlejYP7ZgaUdxZdk/M0ZEuE452z+LwNxD53eiP9QTXojtTtg/g7RYipdI1j8K5N29zt3XPyuJ7Y0O6uk/fPPlqiIC0D/cnp/opfnJP9+IAl8zT8A/iHARW3Vu4j9GlxiYNDLrPwHs82lUId0/bETh/Jg65z8ene6mJ9rhP7F/jILhju4/KVq6Pc4+6T+uT/Hj2brlP3gNDMkuYcQ/NUARDAUWzD9tbju32ATRP52RrRfjuLc/zoO4STWBej9HLNZc9ijhPz1eL1UgCuo/aZvcPMsO3j+ToAq0IEfgP7E2v1JTN9Y/0cCvhbJF3j82uic23znGP8ZCj0EyTeI/yp0qrins0j+IkO8LAlXhP4AdGSCJaN0/DZARseQiyz/JzNptzsHtP3gLC2F6K94/h8s4LjS9uz9qHAP3flvOP3MIO9pyBKY/ga8xr+io7T8R/EPDrFXlP4/Jy/D7Bts/BEDg+r7U7T/VVvy87SvTPxOf2iMQ3eI/nyFNjcBQ6z+AiQCHWtfuPzPPEJtdVeo/aIlTlMXR6D9QWxVbaqHdP2MKaOzH5eI/V4WcNLRsuT8Fh7xOrYvXPz1UcTCf07M/chRCMRC20z+wLS7cMvbZP9+8YQZcxeQ/yheY7eGUzD+SZEMwRY7kP4wXImdJe+Y/80oeumw56T+NuqiazbzEP1g28qMqHuU/X75jDNWysT/Opu4jEF3gP19GwIlYqe8/IBwjjq+G4T/b3Xt6sCrkP8zXYnbJC88/wd07QNcbxj+QHCqHZNvCP2lnk6Q96eY/uRgHVLXAwT9RvXknAaLfPz2j+O9Oc8o/ztL+RMvewD9blh7dRrnoP4AGYnCO2Nc/BVqbt7Hn5T91RD2/B0S9P8s9EmYhYsg/PuyZZ0MWvT9ppsLGomnuP8SWVhbIPsg/rq/bQL0hwT8E+dWW+tbSP1iJg0cUKto/OtwcmvNn7z+EGBQxmOfBP6RVTUEYyOU/qxklOO1Axz8BRen7hwDJP1Hfr6fpB+E/BEAHUTGDzz+Z3c4bq5HHP6SP+S7MRpI/viqns2cf6T/SJmbtMua7P2YQoLLUtuU/Iv2mAy8W3T9y/cTKf/bGPziRR3tqAeA/OEf/XCfG5j/jp5KL4G3JPxpibkk3dOQ/VKi8FVApvD9VPt7QZKTuP/yHerhNaMY//ZgJwe7P0j+Z39lOZoHOPzbnGKutauM/I6tVNP612j8Zomn5nqnQP8dz0JwzP8A/nw8k7Fow6j/m5dlhlhTUP00ew3yB98Y/POAydXDT1D+eS5WamfvoP0URrpntZdg/QbWF9Yqj5D8RBHOmdBPFP8hP3XJA4e0/l8IAxk2Hzj9vYpN5ym7iPw2QTCTLRK4/sR+T2ZSQzj+QogRDeuLTP7yQGSjRu9M/A230AHa65T+gDqjl0ljBP3z4ZoBautg/BGppr41Q5z+YEadu0+PqPyKL+8jqL90/OJBKjnoyxz9Nvvud1sPPP0D9LpWhL+4/UWLlG8Q/vj+Nl5LyFM3jP9E4RVe9J+E/hb0jXEoU6j+b/pobYEDbP6O9CB8HRuM/vZFSzfow4z8DeLHM8TncPxaaNlMhw+k/hejfXWL74D8iD9q6Q1ujPxlZmeI9iew/AGUhSUPRzT+CQwF0JMfgP6sYgN7kku4/88+SWe5F7T9MB5ANjmTQP9mGY6wSuOA/SJGCYi1N4D/0qCbpOKvvP9VZcyq5q9k/dowIhbWR5z8/csUNGtS7PwqRQ/dbfus/e3/vmIBMxT/2nrvVs2jbP9jeKsZyAeo/BBMLOlX/5D8xRO7GMaHkP6QyMxwUoeE/VR8jxedx4D9q6KhCr/TpP6Cz7yKKutg/lPintuJV0D+EhHIdb0bvP2yLC53f5pE/lA46gsw57z+TVnaNI47bPymlR5TcE+k/NXSwp2jc5z+DCBePiffuPwsuNgtzOeE/F0ehpyp6yj8So+EdSN2hPxLmDwEWf90/cO0JXak61T/dctfWGovXP66Co3aKYL0/ELoTVGQtmD9jlHZ9JNDuPyE6rhvUEeE/fU9MsuDn7D96rxPyWmTkP2rD9M97teI/QmIu4/5j4T9tqZ1+/3LNP0oKXA787t8/yE72SZm83D9X67krnxnQP1gz4C4BwNA/Zkl9NaCN5j9Ds/JButfiP3klr+GT1No/OzgfIsG44T8ilzgcHCPqP0+wMUm0/98/VAxPwO/a4D/BXrQoN5HPPzX6ScdFh+g/17IAsNYfvj8WReUnMfXiP3AR+DMo/tY/lnLYN/aj1j+2RtabpenrP6ENdB0GUNY/AkSnVjlWwD9/cuqUVw7YP8IpdNhhppA/XINPqpFvzj/dRcmVhM/CP+EOauH7iNQ/AMSvKiE/1D9ZnVPBoFrrP62QBSaLZco/fYTPPdnb6T/P4Ll+GpPSP3oKJFYLBt0/QDRO0pPW6D8h5fKekdXpP9VCz/Bkj+0/3fNl3NdV4z+kvWgCpELIP70BjkS7fuE/5mZSwuGQ4D8jWn6aksnKP9kASjbSUrg/lkzi7v8y6j+UcTvnit/QP4bnE+Qn5u4/BhKyOEk+4T8I/eeNs4O9P1xgycCL4bM/bhKfZxyc0z/tHBIVmPnfP57wtBUHBuE/pgU+bWfY0T9y4C3IZJrvP5S6EgiVltc/LMRg77Z+mj+B/9CJ5TXUP8YW94t3r9k/ziF11b7/3z8fuausP2rFP9qm24XpQtM/ikMJdgAizD/W/iEpqv/ZP8ivpEqoFeU/WzyhLLsm2T+z6NIX8F7uP3l9lhZCQd8/W7S8OGzm4T9K1Dr95GKzP5blJtLskNo/e8yPjqyD2j+YvN8zesvgP9AI+s4KMts/3OWEk2Lm3D+AW20GDvbOP9L/zF5guOU/1XFLaZ4Cxj+larRMHLWzP6joF+6CAZI/waNA8CIx0T923l7ExyvZPzVy0zU+lOc/dYpaQXzS4z/8YxsDzU3SP667UruxiMw/w5fy2SE90j+LwuKg0rHUP8U/4TZk5d0/hDuZalE07T8oRYlBOkTiPwxC4DPfGto/kigSZTJj5j80e86a8U7jP5JfZVPCaMs/gVRKWAWe2T+3ZVBZRACwPy2YkEqDyq8/DNbblbYY5D+i/08JEn3TP2XxSA5aEes/bJOIPSgI5T/fqNWvzurFP2AEuQHO/q8/53ey8WW66j8Yu2G23bSVPyME1LyIEuA/FJH0dWDjyT9q/iYYZ1TYPw6DxBK63dY/QVhJn5nC7T8jVIr8doTqPxi9TOXc094/AaS9J4i46j8CtPnn7LPPP4kvmbD/Leo/DdFkGpn/3j+DMzb7HM3uP8LlBymt2t0/DwF2BsNS1T+SvRAeCtLoPxdPYsWR7eQ/9rOcwI8u1j8EfAguv+vWPwSUNlISero//UrjXEtTdz8V9ifxaqrsP+Rd0mI9TNg/nnHebE+F1j/UyeCNO03kPzBUt6Qcnuw/CmTHTXd60j8iWv3lL//mPyfd04e1h9A/I9EcnaeL2T/GSNYWGsy8PzAWW7k7P+E/zTPZPw0fkj+ugije2dbpP6Jx1kfxIKU/pxNJbLnT7T9yu7pfe5HbP91VbY0eHtE/Oz1W6qoC2z9+wO+n8WvqP+BoFFvx/uY/9MQEGfk46j+Q5AoocVTWP7GolMnnVtI/+7jtk3P62j9gJxMxjxXOPwrdU5v2ktQ/8r8tR89Nvj/pr7IBLSXvP9IJmt+iHOk/P6HW8/bcwD8aT3LTNmvGPwhywd3P/Ns/qA4tR4fd4T9wynOYp03BP/d6e0YtIdQ/ZF8pmZFP5D+eBg33T+3oP135Knsw4Mg/0m7pnkEM7z+KNS4aRRHjP4T+OURYK60/AErwECtoyz8D8YR28fDrP0nyca1YHtI/VR2jcCa+zD+ed6uStqDOP7s27I7sTtI/er7KX7yewT+hmc+ZyDDDP1mWAUzUoOs/yFcMU24Q1j9oA+z/GBrhP+xuGP2Kjt0/XaWwoW8J2j8BhnHmlHPsP9MhYIlsco4/V84TiMxC1D+OAjB+OpnfP6G9Bx4HZ7Q/zFhbbX061T+CUQmcl/ypPx1in+4oM84/uUpTc9ey0z+54jSQWdXtP7Z2ujoiZeQ/gqgeNF+e7D89iX1qHMDUP+GYx2uKTuE/x6Zg8nWR4j+WwknV+BbTPyugyrBbTog/VrUVv/RAvT+OdMrEYgXiPz1Adh+DhdU/uHeoXHddzj/ff+853i3eP69ksE0/FMg/cgQJwEAmwj/enl31gMrgP0CsV6Woo+Q/WM04zFBdxD9oAEee7ubEP3qNNckz2LQ/ujc4hErV4j8JqOqKzDjGPzOBVEvioqA/wQ1KmNYkzz8n4WQx72rTP7DjTo7DkeQ/H4djKbZ77z/FNPTnsIHCP8I+6GJcpOA/T/M+RSTK3z9HDIhIxE3iP182L7cdqes/jLJVFbsl7z/yJNaDwjrbP8Ouxx7cNag/QcvSS2eayz/oFAVNqPDdPyDOZIZFOKQ/vM8hpAKv1z9Kk1GBx4y1P83bxz9YHOY/50SC7+943j84FuvvdxrvP5K6I5SBQuA/JU1WUiHg5z8Y+2h0+szlP5Wrrgw1qes/dQaXFoGJzz8aeIr3LibqP50u9uRw3OQ/0nSwrYbavT8+DnUtm17rPzUkLW8xRMM/PIV0ysjA1z//5HfQ9bXNP+39p9XDU9c/K7py1Nulwj8b96Qp40bMPwuimbDyssc/nj0/gbYowT9BoD3v/+PlP0MlJk4QzOQ/7mwnwwCh0T9g8CvmR3HVPxlPHSh96+U/tQCe8ta90D+D9kUf+V7iP2okJdCM0uc/dDqcmYmo3T/3XR9+mvK8P/gUtvWd5OI/fiAq0d1ckT/tTa5yHrXePxESXOqKy6w/kNYbo/ob0z9jzzfgYGLbP5uoDVWs584/f7WxFkBrwz/3RYL4DKe4P/6ToLAg+dg/XurP8zNG4D9IVAMcESvbP6rmMstMY+s/Hm4w5IaTvz+r9n8AP2XZPyNEz+08QtQ/x8X3cb/x4D8gQsDLf2m7P8zIVVkt+eQ/nho1J5qf6z+SvuY5Nj/nPz0L7iqee9E/L2WqzXEOzD8JFhpIzB/YPzzXFd9u39E/ZbjYdVPM4z+4c4z9cnXVPwRq7DWTpcQ/dcw4zmIL3T+kmrpToGa7P3XnwJJGFNs/6J7jkokkpD9P6bB1eXrcPy+LXgPPdME/NnABaoqu7z+YXZFWYMyoP6ChIPeGmt0/RFxMUqSsdz+WXq1N/2nrP5S+oGwYzsg/ihvVBjOqtz/iOQYRWL7PP4uWLxFhP84/X/lrnSyC5T+Ehxw1XM3RP35A0RpPB9g/EGs1WZnzrD+Tm7zbFQbhP6r9Srl9HOc/j+cMBUzx5z+15lk1VurbPxZVYphfm+E/RmasvSJV7T/n8523GQ3AP4jVtjiLA+Y/FMt90YVJ2T/9FywgWenkPxlqnNQV/9U/olqoTElRvj8P5KTvsAXjPxez8WymbuU/FxCb0horwz+4tCbKRkPvP8SM1z1sOc4/eZcRICkH2j9xOuQB4tvQPwV4hC5k7uk/IXtzlu+k2z81GgV4/WnPP1s2Zrs70+4/S6AtKvOI6j9SrpMke1HmPyYlfVMyINA/OaqgAwBw6z9aEsv3gLHTP3r+QUw34ug/97IUK8KQ1D/M6EzI0hbRP5L9/tX+L7A/chID+Ep54T8zVoNAqUPnP3qCxT4noN4/Gj9OqkXT0j/e4wGO2zLEP+G1WOkWNdI/ZEzBZcO11T8pMwo63RfRPxoGMKDG3OI/bZyXJ8DR2j8Wbpm5VSHCP/61NAWacO0/9cyvzDSr6z/3oC4/F13hPwXweirbL+E/Q2+1LaYE6j8vBSay2jHHP9OIHX5AXMs/cu6pKToK4D+nWNf466HDP+XpVETH0eU/WkMGTic13T/xggXaquXWP568fHIJpLQ/Wrl9qD2X4D99gzY/HV3lP+vJrq8zzeM/nPVS5pUq6z/lmuPYyQnAP7Ac0E+8nsM/qNNRD/qt1j/YMBaTJbniP1JrFtZCCus/VL561s805D9pDw8cVczoP01hQrKT368/Rb+nVauv3D+J0/vgoN/pP/O/BjcC2MA/UpHx/WBw5j/b6vPa21PpP8tPHIfwusg/w6SAQZlEyz+1TUm2ld3eP8Il/GjlYO8/BvGEZz1vxz8en584hN6yPztxrL2oR9Y/6Gu6h6Sk7z/BIaKZCNPRP+VDw66kSpM/ylNP6/WkpD+76paGLlTEP7pcsNNx7+o/9WMX2U0V4z9sMGZ/QsSrP/ncyYiscMY/8m6gp9w0yT/VXIFB09vAP7MJvdJUIdA/TeGPDki77D9pIuoycP7iP6qVTkmfd9c/eXLEBo187z8UD1ZleA/pP5TBaqRnlN0/D/foJIlL4z/QxgZUacbBP5eyayM2dus/g7ZsAQmWpD9jvaVorDrhPzH3swuEs38/icjRYY6M7D/N2g9PP1/cP24cKROyZ98/5cCSLe8OwD/62No7RRPWP4MXNQYvldk/x7t5RcLY3T8t5JqFuUrsP2+CLkO2erc/007vRoaP4z/lKhkY1OO+P8lcg3OpntM/bGh3Lho1zT9lHsNtod3nP4mlifGavMI/w0tGjX4d4z/zyKofJwjnP4Q6dKLbgtY/hD6D1o0j6z9Lnqa1ckHYP1sWX+d2eN4/MY8Sww1t3T+Srwn/7TfbP8Wx0KXjDMQ/Ys6NHJCPrD+F7jtlwJ7ZP14QUu0RDuI/QDzHRPLQ7T+nmEHJ+qDbP11efnkFAeQ/QucS79xR7j9SonLnCT3pP7JDegK6pZo/bWXFZozx0D/UIb3PGVqgP1FDZ7bvv80/czTb2HCQvz+3uYakZhayPzo2TqLbB+M/k7yfVlXl7z/XqpsJ+ljuP7hBvE90k+Q/KSt5QE+b7D8YIe0vpMjcP7LoJHE4IZo/HvwqhVFG7D+jgC2dCzvQP/pUOk20CNk/Nhftx6ME3j+Vt9Qkc1jpP1Yayla0v8A/sfx24TtM5T+A4ejndFrhPyv0XCL1ke8/ZjXDufKD4j9/aFvZ8rrbP9KwTg9ZbeI/sdD0XC8N2j+foLBcnAnrP7P7WcfFwek/xDbAYZRQmz8L0i00r7+WP5h3AQN56cs/QG0H9Hgh5z9uyNInNWLeP9F1/Zi2d8Y/LKb/2rfE5j/hPMZYOfzuPzT/qSJy3NE/5HuyjU6V0j/kv0gpcODbP4NbKSrO9do/5KH7TILczz+owa9mzJPhP5jyvOo52+k/WMUc2ppY0T/CieIhVRvbP6RZu8B7DNM/0hzL7nvB3T++mF2YVCPhP8bHWuYzKeo/bbK2kN1g2j+XbGExA33ZPyBT9/kXx+8/6t8NFzZZuj/yhuTN64+iP80UM/uklOU/lKXppS22wD9h+QeIKxTLPxD9af0Z/oE/kGgxAvBMqz/HHbM0Wd7tP9eHricx7tc/+oERqku06z8JJRUtJJLnP6o00R2umNM/MZuRWskB6j++qq2rOZbfP7TDCjqTGOM/Xk+bM/422D/30frIQznbPyyWLZxKyuc/k5wFutUcxT/tnLHbEDOwPyjyAcrYZOk/e8K5Pwle0j/cQcyq8wzcP1t2vnjs+MA/egcDB/Yr3j9nd6eUE9zYPyMoa0Bm6eg/zqIKjESlyD/s//t/BEjvP5BFqP56meY/VpxLfVgi3z/yw4Lpqk/pP2tB3zGtOtM/1ZCzVo2nxj9X+otuJ8rPP9gNrGp9bt4/BJlOv1ee7D9jlMxgBIrtPwrN53jafuo/R6g86q296T/wE88CBz3XP/pXGbsHxuE/h4KvkWI+vT958oOOJePgP0a3GwYBKdk/vDagk0uD0T8XiEy7CeDrP73xEslM27Y/zj704g+X5D9e89pGNCndP2t94Sz9gdA/oMl2DdDA1D9X479xTEfoP8mQk9k96OM/h5zN/k+Y3D+k3R7kKvDlP+TY/ZCU550/t8EgV73oyj/h8SStAOrWP0SAQCUXxbA/yXFgimVO6z8uQeRjmHvHPxT6DsNXf+M/EtHQx4356z+8e2VZLc/uP5DSaQP5Kec/CBtP6gLf0z/tsj8rB/XvP1w9KsXWnOo/Az6QCtnu1D9qlngSuG/IP5tjIuhAMc0/zaU6RMGu2T8m/1PBw3bFP8Pehca+BcA/Qw0lgFa80D/Og8iwFA/CP5vZAFxDctg/M6L+xomQ6T90M5K5O4LRP3OuWHKZ3+0/Ou7JWvuA7D/3WoYtNaHhP0BOmCtU0us/TqD9faH+3j9cMYoW+sLiP1M0nb45RoQ/ERHNvN2z1T9hcUX7RCLSP4ghG4QX2dY/LEpqphs/5D87kvVkL3vUP/B1fVooi+A/6Ybw5jtb4j8knAxGEC/YPz3CPDWJE9Q/DQT8mnMG7z84RopmPVbhP5nggZpjX+g/GuPCsG6D1T9qVEcsUHDPPzMZ2EB5euo/6MPIRp+H0z+pIr1Jme3DP1jssf5hMOA/AuYtl8tmzz/m5Rty28DrP4rvMUb81tA/ho9kBpr31T+Z7q30QazPP955BAkHGc0/J7EpXpsu4T/Cs1c5McfRP1vUhiZjuNE/KVSlkuTqyz/Lt5s1EavsP99V1IvKgN8/YPbatYOz7D9DKptOWUDmP+NCu9VoDe8/255gOxz5zD/9gwQTk0PUP1XdEKafkcY/zDA/46cu7z/tYEDTXB/IPzhk0mpVcus/+8GyHajB6D+Ui1hGlJPTP43AD9+aRdI/cHNWa8t76j8KXqCnyNLiP6pRx9nY5eE/LPCPicGxxz/aopGp/bDPP84bDFfPGsM/T0RRmPTQ4T+5JET8yEDlP00Ln4dIUd8/VrmO6tis5z8KjHSgRwfoP7mPKoSUlN4/+9HJ/uGl7z8YO+vVDPa0P1h+IhmGxt0//KGDc3Kn5T/gv+pwoAG+P3yVkYOGoNo/Fo7nhoxT1D80ixKPlIrbP9KHIR+aNqQ/w5wJM+K8xj8nIuIo8afhP41pobS4+sQ/7AV5InW+xD+BgFooMCvqP27AFhlu498/tVZnykvc5j/IbtG9/YrdPx2RvvOmBOk/pR5zK4tf6z+V8QH7ognXP837nYt95d0/3ITvJ0Wmsj9O3DKhVDLIP261VRHEDuE/m6e5VmtZ5D/TpBexHfjgP6ccjpjD0tg/dNZGxmMG2z+GfRp23y7fPx37xU34j+c/lpLXId0r4D+8RUs6AOfGP0pkQF2EFNc/5/CTXQ3v1D83PNhya9nWP1nhowaWdMc/sz/65npA4D96XoO+kAHkP8LwXxUa/d0/WR4m5cTr4D9hnV1d2jXkP6neMvDxB8E/vjRYvZ25sz/OCTdGdznnP9ZiXQBT2ew/lG1w+hJ7zT/4Vf8rHv3TPxT+b0YfeOU/EAe2RXC1pD8D/XEG7CjgPxrRuFuwV+o/bPWE7onk7z+FpAcMCAbZP6piMEDsuOc/YiUG0KV/7j9HUiy9ETLsP11XQEi9cZk/PcSAFbFC4D+DI1HQFbbNP8tSKzp92ck/gNhhjbqN4T8QW1qrOcuHPyqqWHOwTu8/UjnaImb/3T+8mZ9kIPTmP/+09PPV7rA/2fhNOhg4oz+a9th6rhDRP7u1tte9X+8/lJOFh2+L5D9hfUAdK/ziP5kuibX/Ou0/s02VIDnKxT+eavLeQiPGP22Q3+gHeLU/SR2JuH4V7z8Tsgt8BpvqP5lGGo3WC+k/81mHCDavwz9o+rqig6TXP0ZTzkz3TLU/poT1/4iR5T+SmUZnDEPlPw0cw2rrpNs/HD0nbI5U4j8VrKT1qFLtP7FxEwvN7O4/tKPJB4pDoz+x/Iz1S93nP3x9+JHcZbE/+YYPk5CM1z+xB1KfnHjWP5U56ZE7DL0/vOTgAFaNzz+f0u1K0da8P4KiCxTnxqI/T5Wh/2jL0D/Ykrb/Ov7UP05u3y/m2eA/UZmiWmhk6T9J/5SBu/vrP42CpLGTSe0/em+AtRWO6D9e8G7yg5jVPzXDiQ985OI/L0JwJqw9lj+zLngcMtHRP/FdHilP+pQ/j1SIfehz5T953ctvQMPrP9dCf0L/ncw/npS6ohE9tT/aAaqZiV7sP8sNiJWoKtQ/bzMhOStp7z/2uo91zUDQP6BHqZzZcOc/eqDBxCTk5T9fJkD9oErlP+jsSR9mqdE/lHNVAOyrsD/dlyryb9/kP3glP1sLSug/Aam7oH1z5j+aQ2t7rc29P7iR0BEM9O4/BfvpzyDp6z86jdxCv/m4P+mIz/ThH+M/ngmZ8N2Q6D+O4fTywH/JP4+1eU01j+k/POqrSEet4T9wLPBDiNXWP62NQhJMhco/GllFkq/b3j/St2bCUcCvP36VMSHGEOU/Z47nWgun5j95UnBcrpjfP7PFXMOcw9I/r/g5lkHwxT+tzDgu7/vrP7EkD9ADJ+8/XnnXFHMt1D9auiJT+RexP6NGB3izUOg/CiFns4GT2j9LkgRffQreP0aBtH6qELA/wuzjnLZR2z/8NW8AVh3LP75i8/KrSOo/NySA7zP35D8Fi+5872bhPzYLYVfjHes/UCSfYPNb2z8qAk5kXhTrP+rUUAzAu+8/e4dbzmoS3z8bfAHybVTkP2IHZANeqN0/P3jQmTN81T8YpP4MMnLLP0YnVF5s/OI/oCXfMnVv4T+KEGHR3MjQP4+nx7yw+OY/lgoSEoscwj90XTNPAwTaP7GAqnIT1Ng/WuII/cCJwj+JLfaQ9prIP+VtbMt51u4/iEZ+YLUt6j/Q+SCbkqruPwLekDgvnOM/tzuLQ2oQ7D9SW75jqazYPzJDbTaXxrc/MYuXjtKK3T/aunsXRHSmPyd7d0CuKcw/Yypg7qsg6D9XCF7vRU3gP90WLTkAVt4/D3rgDGhJ1T/Oy3bt+sbiP1Kuixxkbpg/tf/ejFiC6j+E3+2ZRAnhP5KJe0OcztQ/QoB3c+o/0D9c0pGE7gypP6/ah9A8P+A/fhMShJrhtz9VCbiSjQTVP+4G+eJKROo/2y4IotSu6D8DYcCcdT3nPyYQKwXkxdY/RJ7LBOHczz/GNPmN2d7KP+ifY5plGuk/hGVVAi2uxD8WXMwCyWTEPxLGFi12/+E/sqb8jhVMvD/1xjR2rSyMPzVS2dTv2OA/0xuPs4+izj/j2bFLByjXPyld05YHuL0/VPTzyuQ15z+SIwrEQ8DUP9opUPuCVLE/6zkHUOHv6j9fYJx3rW/dP84UHraOr88/0wbut+sG4D86vzdqVgzYPzy3buWSk9Q/oeEBdN802z/LCHRXTmbQP2cWPFrksbk/T/N/ajE1xj+C+ChhjtjtP+hV7Hz/u+E/7bLXDWgL6j+sHLm4q6PsP2KFkhkzZ9g/P8kHE0/U7T/TNYNPBp7DP+TJsdN8zuY/B5WQnDrLxz8/3hll6cnRP5dmJLPKCd4/a9iU8Rpm7D+eMiDoi9rpP4gV7Y5l1OM/TEkRl/JC6D+ewzU54sDPPwISFLyC+8I/M+QoKGcd2D/wwlr+jdjrP3cXct4/5Oc/xhS/eKYe6T8Nf1HIyM7kPwT0jhbCgN4/k726U6HJ5j9YgFEVzpbmPzKQ//lk+Lg/59Vznrlk2T9Mytysr8vSP2UDvcg5D+c/SqxLPjXA4j8U5NUnU/jOP1b+bi4uz+I/Qoh7ImMn2D/a1kSx3uTkP2lxyNdkVeg/MZpnqq2Exj9i9WPsHXPBP2RhgZ3hyu4/R3EODIROwj+GQkR1+cvGP3aDmrAxx+s/8fsc/7z62j9q2fo21hfWPzawYnYW28w/qFjrX2An7D/FfeceQe2+P2abQj9mwek/R+mBfMVMvj8Uyh4KV3HoP1VP75Nt0cI/sYw4jeAM5z+K0u/mShHSPwnk36yNntE/GpjKUWFN5z/FamBvfyHUP/RdfY1+W+E/HNNLhlZA4D/mPskn8BbhP5erT9lDxso/BYd7wbDyyT/06kqPrHDUPzhKYXHztdA/9lrPMZCB1z8mfKCsxPXiPwre5XO4C9k/Zqgz28ZuwD9+LzEK25jEPxk93RrBBtQ/nM6lq1vQ5z/FNuNE1XLoPzDg3AmHNug/Pyp9/x8d1D/ltPXWgBzfPxS22g7SFdI/qD4yp3TV4D90aQiqAjjTP3+zVb9HD+Q/BGmqIxeRsD9YtCA4jzXqP5WVGIVxa9g/dEni33wfmj9got0pt+rgP2sLvbE+lNw/ElG0esif3T+js/2BlQnsP0CLnbpz4uQ/drGsyp2Kpz8wcbKSG8LDP0Na2K5aB+g//K0IeziH3j+MQWeqZe7kPyrcjNMWz9A/O7cfAVF65T8PMQIHdhnsPx07RiSoF+o/6YxRix/p5j+9NZD7kMXbPzEVL/+maew/6XqrUt/LzD9lOut2U2vgP0o62Gh2p9A/gAaDJJuH4z82oXiIVOHmP/kiaFeHe9o/1IqYMzITxT8HQOP6KQvlP5Fekrv2XOg/SmMMW6tf2z+2KZJ9kFC5P13YV6gcNdM/AUzJi/wkyT+gka0hAJ7hP5M/1gA+ZuI/u4Yb+6PE4T9GGTlwFZnOP3694eePA+E/yqSV977n2j9bje8BBRDXP0PllczxYoE/Km5uH4F16D/wOXG6vtPVPwtg6R4n1ec/UoXPZTze7D8aoNCwNJ2yP07ax5cjocw/K9wJN6qatj8DxGiixlDrP7kgp7pw5OA/gLGn+nrC0T/tbZqTWSfgP4nSQK0kh+0/4I2yydxk4z9g3Ss4GoLMP5+v75I7dbU/VGKqQ0034z/ayj+hjebaP9EakjHOT+Y/I6lu6Aci2T94Q3wI1jLJPy4vcMdypNs/Vawk7f840T/0eQWJ4cfrPyGws5IKHt8/4P00VoMtmT+5Kn8iobndPzgZClhZIuc/Tv5JlY4YwT9bWmSOadG4P1HzwH9gAOc/DnZ+apEt7z+3AwlnkbTTP+RCCmLSLt8/kTrrA1qP4j/ynMhq59LCP/HHDBa+Lu0/2DZys+E90D+OhiAh4dvpP2Ia1Z2Xe9Q/4wZMjB3x1D8w4x80JMDdPwOGnNwyx+4/1vW0hpcoyz8lZRepF6nRP5zqD6qEBJw/G3gFrI/e1z+xolSGKtTHPz0Vathfr8k/rArXkSF/5j9ehZocUmriP2DjNwaI1eU/Lkka/wWx6j9t8PrEi0jVP8Y5b7fLbOM/quTlnAQn6z+Xw9NcjVTgPxEsBAqoV6s/crZhp6go4j+g2Ow+0PblP+fGB22m++c/rtRAD+MN5T/00OEw1rG9P7L+avR8AtU/BM+I6tmVjT9lSsb9vefePxmVIdqbrrk/Zryy/IVR3z+WAvWRynHXP5OowECPj+k/31jdsCds1z+jfCWkNR/fP9kAIaifl90/sS/8DQUbrz83Fibmvg7nP0vX4u0Ar8M/ZDbvC0WM4z/GrsR0BzbgP++OLsXDYeg/bfQrgiP7rz8KFunVXMHDPzoFXErbnqM/UEIsxT4V7j9u3LarlAHTP9HbeBTc97E/i0bhp2Vi6z+HkwDo8VHqPwPze71ALuk/Hv/Eyb+sxD+kexBbNX7MP7Vw07HAauw/ntVAtM2n6D8uP1jJOHDWP+c72Y4DSuE/BSN0rGSesD/xCqkR0RXZP96FOYc+rKA/nhtoX/XL5D/ifoh5GCDpP6Tx0vy6cuY/O+O/S2AQzj9PBC1T2eDWP55gPBhaFtE/7Z4Z3I7r5z8hAhxy93DjP6KWl6Wfbuc/EOhgCugr3z9uksMkOCzHP0xA9aLc29Q/4BtdBuQnyT81eXRTb+PLP+aZ2L2Fnuc/y4SMdS2M4j81MV07aU3rP2kF2x2x89Y/ewSNoTDX0D+Gr7HECSLQP5W7fPvpF9I//AIJKwFEzz+CcDZ12RuzP/zhtcoO4+Y/+QCxMjLMtz8Dtlq+QpDHP6PwHt9HotI/6T5BoqUW4D/Om0vBtU3hPz0K4ngFhe4/wQKy2r0x5D9wrHezm4vhP8QhGT15/Ok/z5JZKXMo7j/jyTY2ayniP9Zu1TDEZcA/bFw6jUtJ5D/QTSzwjKnkP8jg9aLPIuw/PmKZRftU5j/11CMo3dTrP1ZD9wieQM0/0YfOQ8U94D8PZ0+xrrWwP8TCpSAx6es/axRGew655D9AOoeyZlbcP3UIENMFcsQ/HSh9q3BGmj8gKTjs9Pm7P+5tmJOm0uk/cW0y2XetyD9NxmKGVyrjPyGRpQE4qtQ/4Cp3IUS90j8ehdQ1SGHEP35IqLnonNg/NOdMc414rD+/JFb4h3TtPxfKTUzvtds/gUOlztd00T9gq22VMK7dP8U+T18TSNE/yCETvt9QuT+kgfoTCOLhP9g3QPSKMOg/NcQ/m2vr1z/Alb40ZSy2P4QKUXHYfdU/5h4SkrVF3D8W0V6rgaLbP+LOiULJvdk/dGVBCBb04z8kql36u/3FPzz8bZTrH9s/cnuCcZy20j9n4kvp7e/vP8oHNkHhQcI/DJycThioxj9NKE668OHfPx9HuS22pNM/HIfQAitM6j/qVKxmIXTAP2IkPQj3pMI/BlOLmjPs5j+5/MaOjgbsP1UdwEozEdI/rS5r3+5YwT8/ZtyJisTbPzFSTA7C6eI/BFIIUQCQ2D/Gz3t3ltjYPx+4eFbr2tE//VssnhPGrT9S46IMfhy0P6AKEohfCsk/GF8w3he55j/z+lq4656UP+JxIa06Ddo/5c3yMBMO4D9OuIFEiRzZP39klm6nMLc/ZnED50NdjD+Jv+L9QxmzP/JuMIP2Jd0/qhaUP+5a3z/7pnh9h27jP2nLGWXnee8/ua9luvEJ2z813Hpyz/3mP/yVQOV7Sa0/1gbXtWCn2T9eYXJkjObMP5FMneghUtA/4Pd/aw9kyD+g7+maiAOrP0CsiaobleU/y0gqPFlKyD8X9SQ6AnbgP5VtGljzud0/W/BW6Vur5D9/2ceNNVrsP4DwqtiVyuo/1i87PssU1D/NCUIKgqTnP7XFZOhCFO8/948PiHKw4T92DQBpzk65Pws9P98Disk/x4zJIb6T5D8yDWiT0XvgPz/B2RYD4tU/Dzj8YiHAtj+ABe5wPafOPyme9Rv7h+o/RrM6L7py6T95OZk8XGuhP7USlH3SQ9M/wM4z121K2D+S79M4P8DNP9lutqqtsdI/IH7Py7dA1T/Gve3h3rPmPxpYOEyFGO8/7yjlEhrk3T+Ugw8ao0LaP33bzIhuTOI/70MtqPB81j97hoSSl0PGP39u2gv9ieU/6VuQgpEb7j9z0pUyuMHjPxgbc/2oieY/WZS/atgC1D8SErcrj5a7P43FbfgTx8Q/vlXc4hDJwj+whniUwwDlP/nC296+xaE/zWdoQfuL5T9QtzuOhCHLPyYeT0ZrMN8/PWZSXUd+2T+8+PlkDOjVP0CdwT6mSdM/pRh1G0ku3T8uF/0yZ1PGPwdoYHI5+tU/BmKcOt7PyT/tc3kSqsjvP2KtBe4A0e4/Pd20iLQHtD8Es8EnPD3fP6I/YPodceE/37WvSdFN5T+Z3PvCVurvPyZaLkQct9M/dulnVzFTtz/n+hrRLWS2P1dDrb9oBuk/lB7UfFCk4T9O6t6zWtHhP/vDiqjdi6I/fExTIy+/2D+vUY85uTLrP6CPhXVxsOM/5ggHKSts7T/w8tjKHJbtP5hlD5/qS+I/eGl/hJ13zD8PM3BJqOjrP9YQtCD3vcU/KIsDAQHi1T/bZnLFa3LTPxy0COans8c/Cix1v5vE4z+Bgx+EnxC+PyviDswzC9c/SFTqfx1+6j9IFRodDIDBP/GdC2n0occ/+/YmVDcVxj+fXrZoRvHRP24eHY4nVZk/qwMfl3Wi0T/EME5r5/3nP6hB+dyb79o/bzG4iCWa0D8THdUr2qPIPxCjEQIeRec/wnjjWo4P3z/97c//o1DuP7TKH9tXM9U/ETsXBEzW5j+IB9+iBAThPzN7acr4ZuI/pIAS5egx5D8h1fJn1RTXP7YFG4NXaLo/W1NSHLum5T9vfEK9EurmP4FdbNq7m74/Ac+d83Fa7T9F9jxTU13ZPwXSfIlhS9M/4e3B7uxu4T8Ls/T4s3HhP8tntLHO8es/IwoxQtx74z8snjupLzTjP7QN+Jyyotw/XqW7K71TxD+QJ/NU0HPlP2NPfQy4n+M/teUoE7ot2T8DXdLEz9rZP8NWjOjEOs8/DvxjHakb0z9ldEsndfOjP2NdaMksKdo/JagJFO6u5j9gWvZ4xKToP25ro6cQqsE/5vbZJXCE3j/QYhxQPfnTP15EnOv3AeI/tMbhq82i5T8ECUlbOJXkP0LM5jilJNA/nNN93w8S6D/8NfGpSy3EPzvwOSUy6co/1K0qXeioyD9pVwHRN73vPwJhjjgHTOA//Br30ed+0j8gp4oNGdPWP0Ueal9t79U/PdWsyQVt0D9d0sRRM6jfPw0YB93KFtc/Tcihp55k3T/f8+LiMh6KP4COyXfBT+0/fz1XSTy27z+y9jtitsPNPxyYgf5FM68/uVpR0asM3j8oXSV+1SfhP9674t5JX8Y/JCwJOUZrxD/vt985wr6uP6xD2Ir/JIA/uk+2nz+W5D+gEEguYKbXP4NPx+iD4aQ/QOV9nVh45D80+5B703bNPx88xHNt/cI/Oeh/gt2t2D9mTGcTTKfOP3EXFU4UQN8/sTW6fClfzz8gcL6wSP3tP3Nbe9cVf8M/D7ThhADD5T87W7X9AYLmP/aTiMR2CYE/0sFZXM9efz8cTtoMa77YP2LGtRvkI+o/Zoepxm+o0T9WawefGsnoPyGQV2yn6+I/c9ZcnDxD5T/uRUBitVbiP63nUEMo0oE/BOp4c5ha0T/mYcx19oKyPx/MsMaDm+U/114QZowN1D+flwwWaSbTP9C6/I0pjN8/zYJVS9tb2z/Of7GoaAnPP4vBa0a5M8M/3ZW0uLI94z9Lm4pmFYHIPxQS6fBeEOY/WYZzlowV1T9FvKvceBbtP+2ghQ5EO+w/IuVgynGS7D+gKnfGJS3ZPxn0uW9rOO8/GSVtDxRmuj8mBNfx5qjCP+4PE/5ofdo/JddLP5hOyj9Iyw3YyzjJPzbzV3lVmN4/uIFkw4K13j+AaR7GVSm8P/AZGMczGNk/X7vuapfn0D9qnj7r7qXQP1p6f6mn/tw/t8L9RXnP7T/rTlbtgyrYP9uADRl88aI/oKEuWTCe6T81tDiirdzlPyK7TCg6a8c/yx5tOIvCzT/lDc5GfZrhP03dn/YmQeI/wNrcz9XK7D9akDiSJl21P7YTRurVIeg/zBy4TqCTsj96a7zuYATnP4h39h83qqg/msXejToa1z8oCnCfbrrjP64KlvV4qeM/lfPGamA4oj+Qa6MUVb/qP2wW5Jwpe+E/wQRwLmoH7T/EO7c8WGHpPy5la7RJ/uY/LpHM2cds7T+Cmgl9RpLWPx2mvGfefLw/7ReKXCNFtz9vxwFQIkrVP0vBtgAGNe4/8+hefApF4D/UP3QjmWToP0UeqfeHYrU/R5LtXSQq1z/O/STlTZvfP/n4pD1+F+E/F5AUTwkAwz/4BhEyc0btP3kpj+/uAuI/NYz0K1pY0j87ZFwV1ojgP9k9jKe0neE/EsJtXnmX6z81XPO6hWroP0atcd8/Xro/4LC9O+ZR6D/5WdTmHELLPxhrOeI2itI/xb22/TQB4D86Xsaubn3pP0u/fzhIgMs/CKVQuMpB1T/riDdthkrmPy0i1vSq6eM/6ZtTOMcZ6z/Tvuk/lSvQP8hOj0+xpes/HtQrIUMa0z+zamMkwGfnP7BWr5BCos4/Ky6xSfYgyT8GZW58woDSP2Onzsnq19I/O/Q3CFXH6D+c4eVqvgPbP/DU3VBcRKM/md93EXbx7D+Bb68cTy3pP/cBWxyTPdo/tICMccIC0j8NUEENswOkP3XYC6zJpug/gkjm0sY94j91naJPrVu4P5xLgP+fA+U/OxsAbnNW4D9+6YdQ/VHTPzPBNioXSZw/JZVE3fAU2T+hApRPlhbCP0zbdREGruE/dhiV5I61tT///ETOa8OCPxZk9E14w94//s9CImBDwD+Mri3HquycP8m2r2qrEps/MQVRHIrg7T/Ic07GCMzfP8tCz2Ljvdc/RUMkIWPU1z8qRfUofCXWP3PHDuG/m9M/0Y2N1U/m4j9/cfdS01DlP9rc4IcMH9I/WN5FVCN81z8CUbElFbzEP6eMLUbFlOM/zBrEN45Iqj+HROm1+7XKP0HKoMrxo7c/haIZgruOwz+nlgGn/svLP5tgiIZEdMY/cpXteXIe6T/F/f3BO8/lP+GLgSciat0/JhTUh9Oyzj9XiQoxQPrjPxzzlXZQGNQ/g203ak6l5z/jRSScwA/LP+Oke+kHltU/IN1sc+PVmz9rYEYuZh3HP0kOPj8o5OQ/KLZgrIjrmD+n0h3DZbXAP6l2em8kuKE/Bw6XyjNlzj/HuYENnq3BP81bHO9WkM4/hUSOZcB20T9cUfjGyRLaP7DtQE4Ty80/9rIjTogc4j/s2c5TGoHjPyFBa/fhNN0/2I7QJ7Zs1j9tM0G7Fa2WP7r5+MbLudw/gq54TvC3tj8U9emn7aS4PyohIY23ztQ/9UJYxi8J3j+v/blA1WrCPymwK/S2Quk/6LYEsCUf7D9imKYf4tflP4uIrbM5hcA/xkxfAQLysz8Tme/Z4xTNP8jJlaux68w/9S0+XH3Y2z9kM+UpkqLqP4M3NNRvZtM/j+6gzxkT6j+IOr6b6hDZPwaNg3+0l+8//wK+u5ts6D+61VjbwCjYP+d9nmDkysA/EynzMn44wz/qf/JdDjrTPzHIgqSGY9Y/e4dhjYcV3z/GZqFcqmnIP6LmQ0ocu9U/edE1diRN1j/uFS9lJnLWP3nUOapK5ew/H7vIKlI/oj83Tfk4n6ThPyyNV5OJzto/ooC9Se6k0D/onuId1uO8P7CG+8oi2cM/J800yJ8J6T/j361QaGzNP6Agezlr0MM/FHZNBve60T8CIpS1HCzsPxZMIGK6S70/7h7TnZzPxT95PljFWvzdP7d32LGfee8/W1sX/QJ37D+wYKBKGbfWPwsBG7ZXddc/zQHTJ6y94z+UU513RVzaPzuG2uAo3eU/QOL+s0cj2j9W3HJ/OFu6P2PrwtURWdY//dDwauSV5D8DBan/Hb52P2Qkf6FIeb8/XeAjhIh/1T/tlwQdDD/nPyaDWjyoxbA/qLeAK+uJ2T8X5pQH07C6P890bD/uQNg/7nUjh6aDkj8Xd1in8gfCP91v1NAaStE/yZGzxvkB1T/qrFwo6BvFP7gZkg/8mNg/+XUV1burwT/8LP8TXAfdP6/mv2bsx+I/eoebkhQ91z8G1mGtagLnP6Qebf9qk9Q/91rfPUTnuT+pLVCK+2KnP11r4+CvOe4/LARsHxVw4D+YOpbe+h7iP8Y4/Hug8dc/TlO3g4Ex2D8nZ1nPbLviP2j6LXQvHOY/esi7iB/j4D/NjWLEr5uWP7shNxovsuk/1XAJ1ewT4z8bb8vN1HzZPx5xLma+Ws0/t/OXy/SxkT90R7D0AzfvPyxE6pHl0dA/WskjSvmO7D91m4wZg2jePxiOPG/8juI/iYNh0IC35D/ZssCYutHZPwDf5srpsM4/ozaZSlL+7D9bgQdo7HHRP+uqxWi9++g/lDr3de1W5z9qry6KzbvZP7ZAgBNp5Nc/ySf7erqR4D9XTh0GWH/ZP/NEuksa+Oc/h+/nqVWooz9tfNAOk0flPy3zX2HOksU/w4uzZ6Vp6D/k76m/tWbvP08+Xc7UrNI/HyQkO3DReT+w7qFrSZfZPxw1aaenW+I/191Nqq5m2D995tR8dCHYP5pe8h9bIOM/OOgLf13M2j+BKKwU8tvmP0hM8A24Cd0/yUkCPP7O3D+xQmfQn7HvP0+Bki7CVN0/1oakeHZz1z+3QSl2te6pP4Ij/yp5uq4/fhk2R/0wwT/zce6jYnm8P61jvMHiaus/ZXV8i7tj4T9PBTlUPQzDP/1cOj00St4/vNm8VApt2D+IxXdKCsLvPyv/J5ZjStw/z2awqgtE5z/k5nRyo87BP0e8Vj0Rues/B1OyAIFZxD+D3+qVszLcP+/Jwd+iH+8/82DTvVAL2j/2/nlCHDDkPwSHBN1kbeU/rWYyULHs5j96qHG6MPecP5+5OFg6Ae0/c3+jkDqb5z/F1XgdzeTEP1EXCaD+kuI/A8iIFZq36T9hQBsn3nzVP25BdWHBa+I/VnNkeWp41T99kasTJVrVP/bBqBWTM9s/wFLuw4zq6T+2P/pKcw7fP6eqiQ6xCdY/InN1GpZnuD9rGWupkX20P6+O7wEwbMg/VTtPPGh11T/dLXUWRcjcP+i00bMROuk/H7JPMXwDvz/7cuLRUQauP6q6w10+DO0/f/cXVg22xD+Dt0bXnwHUP0AHY2JAE8g/BN/ndbKk5D9liuSrvL/WP+WiI3AazuM/tEWHvkxN4T8k20lq6Jy0P8VB/sJ67OI/6k5aLqB2yT9OaQrrNxrBP3mBCi+X6bQ/pqusrrXMxT+yQLuSNtW+P0ysC8dkDdw/rYRt8FsG1D/GsuBM3vXmP5tA2BHzNHc/CeQhEvBGtz8fpP1gbQrfP1DeVdLY5s8/kMQyBLwa1z+2hoA/Ly3lP+AcaR1Y4bs/MRJX+WD/0z+9K4Ub3LXhP3Kxb1xlzeU/owhOsvU/2j9jBhDoXjmtP3qaUf/oUeE/O2BMF8PJ2j/viuzDizzRP1pxpRcJuOA/ugN+Y5ZO4T/MsZNRO1fXPyTVlgoqv+E/5jp5EfVhxj+mQllPMhG6PzQDR59fns0/30XGw30d4z9jackYklDUP10Gel0Ls9c/PEuUKeTcxD+pWEg1wXjvPxRemph9UeE/8qVUknww3T8AJThZu83CP6h3y1ObDOQ/65O1LV3G2T8O3mw15X/tPzUR2H6A8ss/M91rEru+2z/HHmC3lWLkP/9xvK44gOg/wbMtiXy65z/WheoVOuDXP7AaidpfBtY/tRgYvUC82D9AJwlRNvfLP7sk0++bxNc/p8L+1wrX3z+ZNVR26mjXP4IazHzXh7w/zTmRzSVR4T972ZcfP1bMP5Jub9virsA//0ztlgaf1D/AWWcmIjzqP4FLsrcgH9M/HC0zqh3n7D+bo/+MFnPUP03POdzQjdo/QbV9wHhJ0j/cBZLJ63/pPwZpbGn4coM/CUfXVzRF6D/6VGtVWlLgP3RqwWhBw9I/aIgNvjmL3j8TT9fg2uHnP/b5ikRGfc8/7AOhdbzL4j9HiW+y/U/hP1tfvhz4aqM/jPFPm+RC6z8TanHFjhLsP3fxsR2YRug/NIYzjGBbwz/lXf57MwiRP1O3pt2N4uc/8eKECLeb2T+IKyrBogDoP1zEFDozlOE/Xicnz0V+3T+DSkxcXdLnP/zDEpMiwLw/7TJ1Eet+xT/D+vg4hB28P2G+V546bOo/Ea+I8emJ0z/LxxDd4APrP8p3piAx7dk/3ksfWylO7T8/J+R8hFLoPxSf0EEzscA/9dFATyk94j/dARaoJiraP4aCfWnL18M/9iS0QHwg4j//xzPCPlTcP7foww+bAOI/KGelAlAyzT8z9urZO3zMP1vnq6AZ6eE/yEXu33GV0D+e87Gjn/DlPyPalW9k59g/2Ov4MCY72D99fBGPg1rfP35exWmri+4/banQmUty0D8OBvxmmrftP4OEm9dZitc/looV5Plh6j9kTLE0B5vXP+7bENEOSsw//KGhcxOevz+Yysg560LKP096mW3jeMQ/Mt4GtSV53z+8hBVgh/igP2S5d9uoX8Y/Q7s6oRcA5T+jzzlQB6vKP2Q9AMQ1ieg/RdbCXgaxlD8gn/S6nYTqP4Gx44C+Ydc/ryqhJ9XVgD8nTA10KxbZPxdjpibXDc4/4U11ctXRzD8hGX+zpGJTPwadrlW1LNU/V67ewtaV5T+KyL0SmCzaPwHxAa3WD7w/pODAsRb1xz/iWfO/e97XPxkS6rRshOE/9tWI5Mno5D/uzBK730PhP3YxtDb9vec/bQ9HYQvo1T+xOnzGeHrbPyQzG2FfLt4/gsIDb5GIrz8XH93nyWjvP+5LrbNmfOU/qrbrDKWR1z/Bwt0J9EmcP8MjwkQF+sk/AEQ5XGAO5D957346+8reP01KVsPitd4/PuKJxKxx3T9kt96DZUrgP0MC1M+9DbA/erBo2Gmzxz9lUPwI2m/gP12rEDy109k//1GnTovO5D/FzmJCcrbTP2u1chfxBuk/vjC2cKFa3z931WUxZ3bXP2hBFGzBLNQ/+UXRkXQ3pT/we/Kk93HZPyCRVJlm094/wEwYe2N1wj+uXoE8c9DpPwDDN+lJv9I/JydizWVQuD9H8taDUjbpPzp0Rvv51es/F69NJQPzxD/KpfeOZPXmP4FkbTljy7Q/fDMiPR1z7j9wKNp03NvbP2jhgOc+fdc/teqlN4Wu6j9tG5MUrBPpPzTsiMLjLt8/BbYCh19Syj8EVC1sLobtPz9cfUF5+8c/6WQcvwzuwj+qO45FaWjJP4DZcVygDO0/wwkSf/e22z/35A2YbU3gP8jDenysa90/fER9eT34xj+RGNJQ5QHUPy0gGXRaXsM/xz74oE02uj/VZSZn3NbXP/X5IdY6AM4/q59SMSfK4T9yp2f3EKfbP1Q5L0GlXK4/B85S/gmV1T+RCti+TPraP4W2uHrcY8E/N4ScjtFY0z+POah9JYviP6I6ymdRHOg/5ykhjteMjT8SmU/Ft2PIP6MD9TFgy+k/q93Wb3SVnz9V/eBXBUbbP+Orb+ACdOg/V2B7mEHHyD8BBnrWDqqwP4+/1IZws8M/xP4ik+0m4D/39HqQUL7RP/0Fo8gKqec/KkYeOpoN4D/5E90g++LUP7+HQaHdku0/cvMk4SBa2T8xzG83sbPaP/AUtizUVLk/uQu6SlFd6z/1pMS5HoPlP+gDotu9PKE/NNFA9CSU5z8inCZ3/tKwPxCB3UQGj8k/xgkI5wo+4j+YBDMUo0LSP/Rwc0VTDeE/Ord0s4Xg5z8Yy0uPlGftP1VzXtmkyu0/8TeCdCkVwj9pOrIDwabkPz4BayeaDrk/DlC4ECYE4T+UuQ97tP3vP583szjOmtY/RsvvPaFH7j+pDDdfE4TaP7DQbJzNx+A/5oV9bQMC5T9hNzYsC3/WP+VYRsZr2LA/mxIUs2Rg6j+DZnSDkX3oPwwPcx6tINY/G7VGZHkC0T9is5wYhvrbPwZI1hk7eOg/5lkXl2ETvz/WdAAR9tPVPxXBXG3qgOw/q/P7mVVRuj/6E1hw7/XXPwscioT60Os/E7eGmjl22z85jKug18nkPx7dJmCHReY/+sDyot8d0j+gt0C+u2rgPy/IGmuSu9Y//+o8HLFd7z9V0MCJ5vTjP2fNKR4v7+w/Soe7R6QYsT9AGFZoM/zeP+5I9vMBXas/8TdvxbZTyT8LxQDHtD/vPxw/ppepHd0/lisuRMzT7D9UessnfO/pP/z3tVh14dc/r8sivrYx4j89Fp700yHSP26YL9hzY+E/GtpfjR8Y5z+Z+nnp9ITTP/OXAKalYN0/dqZhXaj87D8yypD3+RfeP6FbHIYsQ8E/fqGsHD+B1z/jliKd1VPkP5LoxjzD9dc/kOMXygws7j8VzTZGRijiP1QAkcDtc+Y/yOanAYjusz+v1gTjyrrQP9idJGKsde8/uTaNPt3+4z/22yMh2rPhPxQXa9DCE+w/cRNT7vAC6z+t7D9EOJbpP1hhhRVKSNc/lPPuoRWErj+BDaGTJYWxP86byCbo580/ZkKMqX7p0D89FuVHIrLjP9G7gwnBa6Q/IiwLuytXyD+L2fb4Wru2P0Xx6ZqK3sU/FA+m12io4z/eCUPc+IrbP2snJQKKyeE/TcLlumBF4T97IAjXIanZP+PKvZ9VseQ/xSEKaJ3l4D/EBZmEeDLuP7r4Mf/3B+o/jwR08+SV1T+uBYGG2L3AP4PIcWtl3eI/wKVkJlKq5z++1CE5/uHgP9kGQj9xcus/VILTSuLB6j+1cIuPBYbAP8yu2ZE3qNM/tQGSRqgb2j/slz5ikQjePySA457KHd8/y/pGTFPUuz8dDJi73xzQPwc++N5+fMo/GR3LviHkyD960FT6Xee6P3xowyonZ+I/qiukuIo70T+8m7/yRD/PP+o73htesuk/QHFYztYV3T9/pJb2iFOzPyIquEHfS+4/rRao7V+a3j+MH4HXmpvjPx7EBH7vWng/qn4qjxFCxz9MhkxMXhzdP+e+Es6O/NI/3VQCgijy3z9ZISxgPmfKP6Brx1fRGto/G98Kcqhk5D9ntFrv0nPTPxRJDUjbQLo/8L5zvCGB2j9B7oZNMpzcPxTxwAIp1uk/SdlG6iNKwD8+L722RfbbPxtgkKWFiNU/5VH1llR34T88zlWXGA7mP+MOmRL58+U/hiZsiecJ3j+IJgpSIIqyPwpskjz93e4/Z1kcX1Me0j83NbKYuYapP9h6mJw3lM0/qgr8LmLC2D80hkRqHvTjP4G/kcf/HOE/uArWvf567j/hoTzUcRGnPwP+rUMAZ9Q/J9ZoNl102D8IVmFGDlfbP9Iy0gMTSdg/AVC6LG577T9vtiCfzPWoP1+x6sUX2tw/gqqeQxXsrT9GjsmgTmHkPxE7bfZud98/bmiR7c887z+ld5gkNOjZP3DsUKSX0+s/TG8pe2TR1T/VXQk0dy/VP7KO0qTRF+Q/U1N/Dme46T8pfLprgrqkP//ZAxTDmd4/qCQHr24J7j+xA6+76erjPyAP6S6pKK4/9C5dTzW9vT8hijWY4Z/eP2uVaWnuGqA/GPKz5Zni7T9zxkpWNBPlPxY5f2SBltA/va7/I0Ik4T8wtpr3oavDP7Uf5DRLgNA/hl3H/mF35D8QPIke/NzBPyYoulMF+sg/xmBatDkJsz92IwdsXQDYP2qXnCgTQuc/Gpl2Nn9e5T8pz6eMFlrTP1CduyMWQts/7eL9BLRm4j/lNwc2pOm8P8STDre9iMM/Il5WyQQu7z9emV3362LDP420oZA42sc/ndz7VCAT2j9xE8XJDCjVPwqYLDXroN4/74Bsjp8Qwj/Z+xwEOujjP+jU3nZqTm4/P3pTGubp2j+ryRDbmy2oPxMawvxBteY/+Jl79Sr74j+6x1h/ahnbP9EO4dVZwes/5eN6Vvih0z9WYb+DM6XtP2fe1MIW2uA/Jhm7Jqik4T+LIJdfJ6zHP4kDGF2GVNM/UWVMh37j4T9g0mOCQVbjPy3fiXcdGMg/3vRkx/Ks1D+LowNwGvraPw1hyHIRgOQ/IWGYaC8u5T/T9HN9CKToP2QDViI9v+U/2mecms2HxD+jaMJYd/PgP3N9siwjecc/qBJ98hqbtD8dfmPPM/6nPyzOfYRhwe8/MG0Q22XS7j/xTI/u5EvuP91ohD+CpOE/5hjoxdwP7z9jEvjF+NHoP+jZBemXJNc/6ZWXxAptzD/eZhepmc/SP0yOgc9LUtY/++G8SM0Iyz/JNZ1KATvVPwNMfWr5p+s/1uBcKYHSxj80xLyxKeHVP0nokInEpe8/Qx//95ka4T9AlPJYbFuvP8W+h5y3tt4/ixogC22G2D+N3mDGgPLWP8EWUbcFLO4/JEaoKInf7z+c2C58AB/BP9JDVusUmtY/QecDsOYY6z8MDd2KyWDjP8f4YJyP37M/pzagox4Kuz8WZySSAA3MPzzWxs/pVqI/0ZSoy7744z9MqeoyEnPQPy5DOtIJXco/t6mP3qjT4D/kLb5OitDSP/8D3lv8GcE/HTj5sJdF2D/3L0s88EbPP7dZEEWhjtI/8xSN4Djd7D8wKlKJMvLgP0fnLDMlSL0/ceAgxfDW0T++rgVbLOzEP4YkXpwdy8w/Nu8HJIMUyT9Ac1VOOTnmPzZS/88iZ80/M9c1oYNzsz/09RpQpAzvP19PsQU3h6o/9hpJb6NS1D8wn3vBiLTNP/rQXR95vNE/Jm3lAkjD5j8tNQJOj4DpP6WsXX5UD9Q/J5RCTeE34j8EG6SjCIjYP/4czHPVGYk/K5bzFn6h7D/HNu6nhmPeP8yNBqDg8OE/5QFk+kk/6T8k8jMlA6rMPwnUPRfFiuc/UqqlsplNxD+fbyMqWWTiP3xlvbjV8OA/56acWDSs1z+1XbkWCA/NPxo+fofnueA/W++v65XSyj9fr+zuZeK6P9vIlE5zmNQ/J5v8fobJ6T+MNKJnDCbTP1tfJ9l9ees/qbhioGhSwD9QkViRMonHP3MpNSARvsg/V7WRjOvC5z+3bt7qM+jZP9NWnkQ/S8k/IuY5giqd5T8F0RA0iULCP0rP6srbx+g/xdA6VYCY5T/GMdBWBDPUP3wpPBiwKe8/MZ5Qu/uf2T9Yep/JVr+nP4T1+oaUAcA/BOxCYQHDvz+z2fJVw5PpP/30yhKqEN8/FGfqUzCzuz9ZYudTNOznP1puLOWrM9Y/AHdEA80q3z9XR/xuNhTcPzmEkrwcq8o/Mr+oKRes2T9E+eA4PL/nP/zvxJ//WOA/0gVsf0Gq3z9IUHr1/33cP/oMVvL7Zqo/PKZJKa5b0T/GJcTo4jrpPzco+sAQwug/YAdb73xV3z/TU3bkeVXtP9nBTSfln7U/4p74AWEjuD+i5Xn1bk7oP4w2JpCGSsQ/DdPRoGIuyD8gNC1Azi+/P87gmeUdQuI/HPcKcQXVxj/lJilabrjPP9bk6DQF89k/jP/x0C4UsT9CVXeZ+WHiPyI/x550iO8/cq6XhpBs3D9Zi2CX7CjtP91FLAKMwdg/zHnAMo6iyz/Y3NtC06zYPyn7RXsEx8Y/Grt7TmXCzT9c/sbKlEXuPyQ8wJcIe+0/jICKe03L5j8=\"},\"shape\":[10000],\"dtype\":\"float64\",\"order\":\"little\"}],[\"index\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAEAAAACAAAAAwAAAAQAAAAFAAAABgAAAAcAAAAIAAAACQAAAAoAAAALAAAADAAAAA0AAAAOAAAADwAAABAAAAARAAAAEgAAABMAAAAUAAAAFQAAABYAAAAXAAAAGAAAABkAAAAaAAAAGwAAABwAAAAdAAAAHgAAAB8AAAAgAAAAIQAAACIAAAAjAAAAJAAAACUAAAAmAAAAJwAAACgAAAApAAAAKgAAACsAAAAsAAAALQAAAC4AAAAvAAAAMAAAADEAAAAyAAAAMwAAADQAAAA1AAAANgAAADcAAAA4AAAAOQAAADoAAAA7AAAAPAAAAD0AAAA+AAAAPwAAAEAAAABBAAAAQgAAAEMAAABEAAAARQAAAEYAAABHAAAASAAAAEkAAABKAAAASwAAAEwAAABNAAAATgAAAE8AAABQAAAAUQAAAFIAAABTAAAAVAAAAFUAAABWAAAAVwAAAFgAAABZAAAAWgAAAFsAAABcAAAAXQAAAF4AAABfAAAAYAAAAGEAAABiAAAAYwAAAGQAAABlAAAAZgAAAGcAAABoAAAAaQAAAGoAAABrAAAAbAAAAG0AAABuAAAAbwAAAHAAAABxAAAAcgAAAHMAAAB0AAAAdQAAAHYAAAB3AAAAeAAAAHkAAAB6AAAAewAAAHwAAAB9AAAAfgAAAH8AAACAAAAAgQAAAIIAAACDAAAAhAAAAIUAAACGAAAAhwAAAIgAAACJAAAAigAAAIsAAACMAAAAjQAAAI4AAACPAAAAkAAAAJEAAACSAAAAkwAAAJQAAACVAAAAlgAAAJcAAACYAAAAmQAAAJoAAACbAAAAnAAAAJ0AAACeAAAAnwAAAKAAAAChAAAAogAAAKMAAACkAAAApQAAAKYAAACnAAAAqAAAAKkAAACqAAAAqwAAAKwAAACtAAAArgAAAK8AAACwAAAAsQAAALIAAACzAAAAtAAAALUAAAC2AAAAtwAAALgAAAC5AAAAugAAALsAAAC8AAAAvQAAAL4AAAC/AAAAwAAAAMEAAADCAAAAwwAAAMQAAADFAAAAxgAAAMcAAADIAAAAyQAAAMoAAADLAAAAzAAAAM0AAADOAAAAzwAAANAAAADRAAAA0gAAANMAAADUAAAA1QAAANYAAADXAAAA2AAAANkAAADaAAAA2wAAANwAAADdAAAA3gAAAN8AAADgAAAA4QAAAOIAAADjAAAA5AAAAOUAAADmAAAA5wAAAOgAAADpAAAA6gAAAOsAAADsAAAA7QAAAO4AAADvAAAA8AAAAPEAAADyAAAA8wAAAPQAAAD1AAAA9gAAAPcAAAD4AAAA+QAAAPoAAAD7AAAA/AAAAP0AAAD+AAAA/wAAAAABAAABAQAAAgEAAAMBAAAEAQAABQEAAAYBAAAHAQAACAEAAAkBAAAKAQAACwEAAAwBAAANAQAADgEAAA8BAAAQAQAAEQEAABIBAAATAQAAFAEAABUBAAAWAQAAFwEAABgBAAAZAQAAGgEAABsBAAAcAQAAHQEAAB4BAAAfAQAAIAEAACEBAAAiAQAAIwEAACQBAAAlAQAAJgEAACcBAAAoAQAAKQEAACoBAAArAQAALAEAAC0BAAAuAQAALwEAADABAAAxAQAAMgEAADMBAAA0AQAANQEAADYBAAA3AQAAOAEAADkBAAA6AQAAOwEAADwBAAA9AQAAPgEAAD8BAABAAQAAQQEAAEIBAABDAQAARAEAAEUBAABGAQAARwEAAEgBAABJAQAASgEAAEsBAABMAQAATQEAAE4BAABPAQAAUAEAAFEBAABSAQAAUwEAAFQBAABVAQAAVgEAAFcBAABYAQAAWQEAAFoBAABbAQAAXAEAAF0BAABeAQAAXwEAAGABAABhAQAAYgEAAGMBAABkAQAAZQEAAGYBAABnAQAAaAEAAGkBAABqAQAAawEAAGwBAABtAQAAbgEAAG8BAABwAQAAcQEAAHIBAABzAQAAdAEAAHUBAAB2AQAAdwEAAHgBAAB5AQAAegEAAHsBAAB8AQAAfQEAAH4BAAB/AQAAgAEAAIEBAACCAQAAgwEAAIQBAACFAQAAhgEAAIcBAACIAQAAiQEAAIoBAACLAQAAjAEAAI0BAACOAQAAjwEAAJABAACRAQAAkgEAAJMBAACUAQAAlQEAAJYBAACXAQAAmAEAAJkBAACaAQAAmwEAAJwBAACdAQAAngEAAJ8BAACgAQAAoQEAAKIBAACjAQAApAEAAKUBAACmAQAApwEAAKgBAACpAQAAqgEAAKsBAACsAQAArQEAAK4BAACvAQAAsAEAALEBAACyAQAAswEAALQBAAC1AQAAtgEAALcBAAC4AQAAuQEAALoBAAC7AQAAvAEAAL0BAAC+AQAAvwEAAMABAADBAQAAwgEAAMMBAADEAQAAxQEAAMYBAADHAQAAyAEAAMkBAADKAQAAywEAAMwBAADNAQAAzgEAAM8BAADQAQAA0QEAANIBAADTAQAA1AEAANUBAADWAQAA1wEAANgBAADZAQAA2gEAANsBAADcAQAA3QEAAN4BAADfAQAA4AEAAOEBAADiAQAA4wEAAOQBAADlAQAA5gEAAOcBAADoAQAA6QEAAOoBAADrAQAA7AEAAO0BAADuAQAA7wEAAPABAADxAQAA8gEAAPMBAAD0AQAA9QEAAPYBAAD3AQAA+AEAAPkBAAD6AQAA+wEAAPwBAAD9AQAA/gEAAP8BAAAAAgAAAQIAAAICAAADAgAABAIAAAUCAAAGAgAABwIAAAgCAAAJAgAACgIAAAsCAAAMAgAADQIAAA4CAAAPAgAAEAIAABECAAASAgAAEwIAABQCAAAVAgAAFgIAABcCAAAYAgAAGQIAABoCAAAbAgAAHAIAAB0CAAAeAgAAHwIAACACAAAhAgAAIgIAACMCAAAkAgAAJQIAACYCAAAnAgAAKAIAACkCAAAqAgAAKwIAACwCAAAtAgAALgIAAC8CAAAwAgAAMQIAADICAAAzAgAANAIAADUCAAA2AgAANwIAADgCAAA5AgAAOgIAADsCAAA8AgAAPQIAAD4CAAA/AgAAQAIAAEECAABCAgAAQwIAAEQCAABFAgAARgIAAEcCAABIAgAASQIAAEoCAABLAgAATAIAAE0CAABOAgAATwIAAFACAABRAgAAUgIAAFMCAABUAgAAVQIAAFYCAABXAgAAWAIAAFkCAABaAgAAWwIAAFwCAABdAgAAXgIAAF8CAABgAgAAYQIAAGICAABjAgAAZAIAAGUCAABmAgAAZwIAAGgCAABpAgAAagIAAGsCAABsAgAAbQIAAG4CAABvAgAAcAIAAHECAAByAgAAcwIAAHQCAAB1AgAAdgIAAHcCAAB4AgAAeQIAAHoCAAB7AgAAfAIAAH0CAAB+AgAAfwIAAIACAACBAgAAggIAAIMCAACEAgAAhQIAAIYCAACHAgAAiAIAAIkCAACKAgAAiwIAAIwCAACNAgAAjgIAAI8CAACQAgAAkQIAAJICAACTAgAAlAIAAJUCAACWAgAAlwIAAJgCAACZAgAAmgIAAJsCAACcAgAAnQIAAJ4CAACfAgAAoAIAAKECAACiAgAAowIAAKQCAAClAgAApgIAAKcCAACoAgAAqQIAAKoCAACrAgAArAIAAK0CAACuAgAArwIAALACAACxAgAAsgIAALMCAAC0AgAAtQIAALYCAAC3AgAAuAIAALkCAAC6AgAAuwIAALwCAAC9AgAAvgIAAL8CAADAAgAAwQIAAMICAADDAgAAxAIAAMUCAADGAgAAxwIAAMgCAADJAgAAygIAAMsCAADMAgAAzQIAAM4CAADPAgAA0AIAANECAADSAgAA0wIAANQCAADVAgAA1gIAANcCAADYAgAA2QIAANoCAADbAgAA3AIAAN0CAADeAgAA3wIAAOACAADhAgAA4gIAAOMCAADkAgAA5QIAAOYCAADnAgAA6AIAAOkCAADqAgAA6wIAAOwCAADtAgAA7gIAAO8CAADwAgAA8QIAAPICAADzAgAA9AIAAPUCAAD2AgAA9wIAAPgCAAD5AgAA+gIAAPsCAAD8AgAA/QIAAP4CAAD/AgAAAAMAAAEDAAACAwAAAwMAAAQDAAAFAwAABgMAAAcDAAAIAwAACQMAAAoDAAALAwAADAMAAA0DAAAOAwAADwMAABADAAARAwAAEgMAABMDAAAUAwAAFQMAABYDAAAXAwAAGAMAABkDAAAaAwAAGwMAABwDAAAdAwAAHgMAAB8DAAAgAwAAIQMAACIDAAAjAwAAJAMAACUDAAAmAwAAJwMAACgDAAApAwAAKgMAACsDAAAsAwAALQMAAC4DAAAvAwAAMAMAADEDAAAyAwAAMwMAADQDAAA1AwAANgMAADcDAAA4AwAAOQMAADoDAAA7AwAAPAMAAD0DAAA+AwAAPwMAAEADAABBAwAAQgMAAEMDAABEAwAARQMAAEYDAABHAwAASAMAAEkDAABKAwAASwMAAEwDAABNAwAATgMAAE8DAABQAwAAUQMAAFIDAABTAwAAVAMAAFUDAABWAwAAVwMAAFgDAABZAwAAWgMAAFsDAABcAwAAXQMAAF4DAABfAwAAYAMAAGEDAABiAwAAYwMAAGQDAABlAwAAZgMAAGcDAABoAwAAaQMAAGoDAABrAwAAbAMAAG0DAABuAwAAbwMAAHADAABxAwAAcgMAAHMDAAB0AwAAdQMAAHYDAAB3AwAAeAMAAHkDAAB6AwAAewMAAHwDAAB9AwAAfgMAAH8DAACAAwAAgQMAAIIDAACDAwAAhAMAAIUDAACGAwAAhwMAAIgDAACJAwAAigMAAIsDAACMAwAAjQMAAI4DAACPAwAAkAMAAJEDAACSAwAAkwMAAJQDAACVAwAAlgMAAJcDAACYAwAAmQMAAJoDAACbAwAAnAMAAJ0DAACeAwAAnwMAAKADAAChAwAAogMAAKMDAACkAwAApQMAAKYDAACnAwAAqAMAAKkDAACqAwAAqwMAAKwDAACtAwAArgMAAK8DAACwAwAAsQMAALIDAACzAwAAtAMAALUDAAC2AwAAtwMAALgDAAC5AwAAugMAALsDAAC8AwAAvQMAAL4DAAC/AwAAwAMAAMEDAADCAwAAwwMAAMQDAADFAwAAxgMAAMcDAADIAwAAyQMAAMoDAADLAwAAzAMAAM0DAADOAwAAzwMAANADAADRAwAA0gMAANMDAADUAwAA1QMAANYDAADXAwAA2AMAANkDAADaAwAA2wMAANwDAADdAwAA3gMAAN8DAADgAwAA4QMAAOIDAADjAwAA5AMAAOUDAADmAwAA5wMAAOgDAADpAwAA6gMAAOsDAADsAwAA7QMAAO4DAADvAwAA8AMAAPEDAADyAwAA8wMAAPQDAAD1AwAA9gMAAPcDAAD4AwAA+QMAAPoDAAD7AwAA/AMAAP0DAAD+AwAA/wMAAAAEAAABBAAAAgQAAAMEAAAEBAAABQQAAAYEAAAHBAAACAQAAAkEAAAKBAAACwQAAAwEAAANBAAADgQAAA8EAAAQBAAAEQQAABIEAAATBAAAFAQAABUEAAAWBAAAFwQAABgEAAAZBAAAGgQAABsEAAAcBAAAHQQAAB4EAAAfBAAAIAQAACEEAAAiBAAAIwQAACQEAAAlBAAAJgQAACcEAAAoBAAAKQQAACoEAAArBAAALAQAAC0EAAAuBAAALwQAADAEAAAxBAAAMgQAADMEAAA0BAAANQQAADYEAAA3BAAAOAQAADkEAAA6BAAAOwQAADwEAAA9BAAAPgQAAD8EAABABAAAQQQAAEIEAABDBAAARAQAAEUEAABGBAAARwQAAEgEAABJBAAASgQAAEsEAABMBAAATQQAAE4EAABPBAAAUAQAAFEEAABSBAAAUwQAAFQEAABVBAAAVgQAAFcEAABYBAAAWQQAAFoEAABbBAAAXAQAAF0EAABeBAAAXwQAAGAEAABhBAAAYgQAAGMEAABkBAAAZQQAAGYEAABnBAAAaAQAAGkEAABqBAAAawQAAGwEAABtBAAAbgQAAG8EAABwBAAAcQQAAHIEAABzBAAAdAQAAHUEAAB2BAAAdwQAAHgEAAB5BAAAegQAAHsEAAB8BAAAfQQAAH4EAAB/BAAAgAQAAIEEAACCBAAAgwQAAIQEAACFBAAAhgQAAIcEAACIBAAAiQQAAIoEAACLBAAAjAQAAI0EAACOBAAAjwQAAJAEAACRBAAAkgQAAJMEAACUBAAAlQQAAJYEAACXBAAAmAQAAJkEAACaBAAAmwQAAJwEAACdBAAAngQAAJ8EAACgBAAAoQQAAKIEAACjBAAApAQAAKUEAACmBAAApwQAAKgEAACpBAAAqgQAAKsEAACsBAAArQQAAK4EAACvBAAAsAQAALEEAACyBAAAswQAALQEAAC1BAAAtgQAALcEAAC4BAAAuQQAALoEAAC7BAAAvAQAAL0EAAC+BAAAvwQAAMAEAADBBAAAwgQAAMMEAADEBAAAxQQAAMYEAADHBAAAyAQAAMkEAADKBAAAywQAAMwEAADNBAAAzgQAAM8EAADQBAAA0QQAANIEAADTBAAA1AQAANUEAADWBAAA1wQAANgEAADZBAAA2gQAANsEAADcBAAA3QQAAN4EAADfBAAA4AQAAOEEAADiBAAA4wQAAOQEAADlBAAA5gQAAOcEAADoBAAA6QQAAOoEAADrBAAA7AQAAO0EAADuBAAA7wQAAPAEAADxBAAA8gQAAPMEAAD0BAAA9QQAAPYEAAD3BAAA+AQAAPkEAAD6BAAA+wQAAPwEAAD9BAAA/gQAAP8EAAAABQAAAQUAAAIFAAADBQAABAUAAAUFAAAGBQAABwUAAAgFAAAJBQAACgUAAAsFAAAMBQAADQUAAA4FAAAPBQAAEAUAABEFAAASBQAAEwUAABQFAAAVBQAAFgUAABcFAAAYBQAAGQUAABoFAAAbBQAAHAUAAB0FAAAeBQAAHwUAACAFAAAhBQAAIgUAACMFAAAkBQAAJQUAACYFAAAnBQAAKAUAACkFAAAqBQAAKwUAACwFAAAtBQAALgUAAC8FAAAwBQAAMQUAADIFAAAzBQAANAUAADUFAAA2BQAANwUAADgFAAA5BQAAOgUAADsFAAA8BQAAPQUAAD4FAAA/BQAAQAUAAEEFAABCBQAAQwUAAEQFAABFBQAARgUAAEcFAABIBQAASQUAAEoFAABLBQAATAUAAE0FAABOBQAATwUAAFAFAABRBQAAUgUAAFMFAABUBQAAVQUAAFYFAABXBQAAWAUAAFkFAABaBQAAWwUAAFwFAABdBQAAXgUAAF8FAABgBQAAYQUAAGIFAABjBQAAZAUAAGUFAABmBQAAZwUAAGgFAABpBQAAagUAAGsFAABsBQAAbQUAAG4FAABvBQAAcAUAAHEFAAByBQAAcwUAAHQFAAB1BQAAdgUAAHcFAAB4BQAAeQUAAHoFAAB7BQAAfAUAAH0FAAB+BQAAfwUAAIAFAACBBQAAggUAAIMFAACEBQAAhQUAAIYFAACHBQAAiAUAAIkFAACKBQAAiwUAAIwFAACNBQAAjgUAAI8FAACQBQAAkQUAAJIFAACTBQAAlAUAAJUFAACWBQAAlwUAAJgFAACZBQAAmgUAAJsFAACcBQAAnQUAAJ4FAACfBQAAoAUAAKEFAACiBQAAowUAAKQFAAClBQAApgUAAKcFAACoBQAAqQUAAKoFAACrBQAArAUAAK0FAACuBQAArwUAALAFAACxBQAAsgUAALMFAAC0BQAAtQUAALYFAAC3BQAAuAUAALkFAAC6BQAAuwUAALwFAAC9BQAAvgUAAL8FAADABQAAwQUAAMIFAADDBQAAxAUAAMUFAADGBQAAxwUAAMgFAADJBQAAygUAAMsFAADMBQAAzQUAAM4FAADPBQAA0AUAANEFAADSBQAA0wUAANQFAADVBQAA1gUAANcFAADYBQAA2QUAANoFAADbBQAA3AUAAN0FAADeBQAA3wUAAOAFAADhBQAA4gUAAOMFAADkBQAA5QUAAOYFAADnBQAA6AUAAOkFAADqBQAA6wUAAOwFAADtBQAA7gUAAO8FAADwBQAA8QUAAPIFAADzBQAA9AUAAPUFAAD2BQAA9wUAAPgFAAD5BQAA+gUAAPsFAAD8BQAA/QUAAP4FAAD/BQAAAAYAAAEGAAACBgAAAwYAAAQGAAAFBgAABgYAAAcGAAAIBgAACQYAAAoGAAALBgAADAYAAA0GAAAOBgAADwYAABAGAAARBgAAEgYAABMGAAAUBgAAFQYAABYGAAAXBgAAGAYAABkGAAAaBgAAGwYAABwGAAAdBgAAHgYAAB8GAAAgBgAAIQYAACIGAAAjBgAAJAYAACUGAAAmBgAAJwYAACgGAAApBgAAKgYAACsGAAAsBgAALQYAAC4GAAAvBgAAMAYAADEGAAAyBgAAMwYAADQGAAA1BgAANgYAADcGAAA4BgAAOQYAADoGAAA7BgAAPAYAAD0GAAA+BgAAPwYAAEAGAABBBgAAQgYAAEMGAABEBgAARQYAAEYGAABHBgAASAYAAEkGAABKBgAASwYAAEwGAABNBgAATgYAAE8GAABQBgAAUQYAAFIGAABTBgAAVAYAAFUGAABWBgAAVwYAAFgGAABZBgAAWgYAAFsGAABcBgAAXQYAAF4GAABfBgAAYAYAAGEGAABiBgAAYwYAAGQGAABlBgAAZgYAAGcGAABoBgAAaQYAAGoGAABrBgAAbAYAAG0GAABuBgAAbwYAAHAGAABxBgAAcgYAAHMGAAB0BgAAdQYAAHYGAAB3BgAAeAYAAHkGAAB6BgAAewYAAHwGAAB9BgAAfgYAAH8GAACABgAAgQYAAIIGAACDBgAAhAYAAIUGAACGBgAAhwYAAIgGAACJBgAAigYAAIsGAACMBgAAjQYAAI4GAACPBgAAkAYAAJEGAACSBgAAkwYAAJQGAACVBgAAlgYAAJcGAACYBgAAmQYAAJoGAACbBgAAnAYAAJ0GAACeBgAAnwYAAKAGAAChBgAAogYAAKMGAACkBgAApQYAAKYGAACnBgAAqAYAAKkGAACqBgAAqwYAAKwGAACtBgAArgYAAK8GAACwBgAAsQYAALIGAACzBgAAtAYAALUGAAC2BgAAtwYAALgGAAC5BgAAugYAALsGAAC8BgAAvQYAAL4GAAC/BgAAwAYAAMEGAADCBgAAwwYAAMQGAADFBgAAxgYAAMcGAADIBgAAyQYAAMoGAADLBgAAzAYAAM0GAADOBgAAzwYAANAGAADRBgAA0gYAANMGAADUBgAA1QYAANYGAADXBgAA2AYAANkGAADaBgAA2wYAANwGAADdBgAA3gYAAN8GAADgBgAA4QYAAOIGAADjBgAA5AYAAOUGAADmBgAA5wYAAOgGAADpBgAA6gYAAOsGAADsBgAA7QYAAO4GAADvBgAA8AYAAPEGAADyBgAA8wYAAPQGAAD1BgAA9gYAAPcGAAD4BgAA+QYAAPoGAAD7BgAA/AYAAP0GAAD+BgAA/wYAAAAHAAABBwAAAgcAAAMHAAAEBwAABQcAAAYHAAAHBwAACAcAAAkHAAAKBwAACwcAAAwHAAANBwAADgcAAA8HAAAQBwAAEQcAABIHAAATBwAAFAcAABUHAAAWBwAAFwcAABgHAAAZBwAAGgcAABsHAAAcBwAAHQcAAB4HAAAfBwAAIAcAACEHAAAiBwAAIwcAACQHAAAlBwAAJgcAACcHAAAoBwAAKQcAACoHAAArBwAALAcAAC0HAAAuBwAALwcAADAHAAAxBwAAMgcAADMHAAA0BwAANQcAADYHAAA3BwAAOAcAADkHAAA6BwAAOwcAADwHAAA9BwAAPgcAAD8HAABABwAAQQcAAEIHAABDBwAARAcAAEUHAABGBwAARwcAAEgHAABJBwAASgcAAEsHAABMBwAATQcAAE4HAABPBwAAUAcAAFEHAABSBwAAUwcAAFQHAABVBwAAVgcAAFcHAABYBwAAWQcAAFoHAABbBwAAXAcAAF0HAABeBwAAXwcAAGAHAABhBwAAYgcAAGMHAABkBwAAZQcAAGYHAABnBwAAaAcAAGkHAABqBwAAawcAAGwHAABtBwAAbgcAAG8HAABwBwAAcQcAAHIHAABzBwAAdAcAAHUHAAB2BwAAdwcAAHgHAAB5BwAAegcAAHsHAAB8BwAAfQcAAH4HAAB/BwAAgAcAAIEHAACCBwAAgwcAAIQHAACFBwAAhgcAAIcHAACIBwAAiQcAAIoHAACLBwAAjAcAAI0HAACOBwAAjwcAAJAHAACRBwAAkgcAAJMHAACUBwAAlQcAAJYHAACXBwAAmAcAAJkHAACaBwAAmwcAAJwHAACdBwAAngcAAJ8HAACgBwAAoQcAAKIHAACjBwAApAcAAKUHAACmBwAApwcAAKgHAACpBwAAqgcAAKsHAACsBwAArQcAAK4HAACvBwAAsAcAALEHAACyBwAAswcAALQHAAC1BwAAtgcAALcHAAC4BwAAuQcAALoHAAC7BwAAvAcAAL0HAAC+BwAAvwcAAMAHAADBBwAAwgcAAMMHAADEBwAAxQcAAMYHAADHBwAAyAcAAMkHAADKBwAAywcAAMwHAADNBwAAzgcAAM8HAADQBwAA0QcAANIHAADTBwAA1AcAANUHAADWBwAA1wcAANgHAADZBwAA2gcAANsHAADcBwAA3QcAAN4HAADfBwAA4AcAAOEHAADiBwAA4wcAAOQHAADlBwAA5gcAAOcHAADoBwAA6QcAAOoHAADrBwAA7AcAAO0HAADuBwAA7wcAAPAHAADxBwAA8gcAAPMHAAD0BwAA9QcAAPYHAAD3BwAA+AcAAPkHAAD6BwAA+wcAAPwHAAD9BwAA/gcAAP8HAAAACAAAAQgAAAIIAAADCAAABAgAAAUIAAAGCAAABwgAAAgIAAAJCAAACggAAAsIAAAMCAAADQgAAA4IAAAPCAAAEAgAABEIAAASCAAAEwgAABQIAAAVCAAAFggAABcIAAAYCAAAGQgAABoIAAAbCAAAHAgAAB0IAAAeCAAAHwgAACAIAAAhCAAAIggAACMIAAAkCAAAJQgAACYIAAAnCAAAKAgAACkIAAAqCAAAKwgAACwIAAAtCAAALggAAC8IAAAwCAAAMQgAADIIAAAzCAAANAgAADUIAAA2CAAANwgAADgIAAA5CAAAOggAADsIAAA8CAAAPQgAAD4IAAA/CAAAQAgAAEEIAABCCAAAQwgAAEQIAABFCAAARggAAEcIAABICAAASQgAAEoIAABLCAAATAgAAE0IAABOCAAATwgAAFAIAABRCAAAUggAAFMIAABUCAAAVQgAAFYIAABXCAAAWAgAAFkIAABaCAAAWwgAAFwIAABdCAAAXggAAF8IAABgCAAAYQgAAGIIAABjCAAAZAgAAGUIAABmCAAAZwgAAGgIAABpCAAAaggAAGsIAABsCAAAbQgAAG4IAABvCAAAcAgAAHEIAAByCAAAcwgAAHQIAAB1CAAAdggAAHcIAAB4CAAAeQgAAHoIAAB7CAAAfAgAAH0IAAB+CAAAfwgAAIAIAACBCAAAgggAAIMIAACECAAAhQgAAIYIAACHCAAAiAgAAIkIAACKCAAAiwgAAIwIAACNCAAAjggAAI8IAACQCAAAkQgAAJIIAACTCAAAlAgAAJUIAACWCAAAlwgAAJgIAACZCAAAmggAAJsIAACcCAAAnQgAAJ4IAACfCAAAoAgAAKEIAACiCAAAowgAAKQIAAClCAAApggAAKcIAACoCAAAqQgAAKoIAACrCAAArAgAAK0IAACuCAAArwgAALAIAACxCAAAsggAALMIAAC0CAAAtQgAALYIAAC3CAAAuAgAALkIAAC6CAAAuwgAALwIAAC9CAAAvggAAL8IAADACAAAwQgAAMIIAADDCAAAxAgAAMUIAADGCAAAxwgAAMgIAADJCAAAyggAAMsIAADMCAAAzQgAAM4IAADPCAAA0AgAANEIAADSCAAA0wgAANQIAADVCAAA1ggAANcIAADYCAAA2QgAANoIAADbCAAA3AgAAN0IAADeCAAA3wgAAOAIAADhCAAA4ggAAOMIAADkCAAA5QgAAOYIAADnCAAA6AgAAOkIAADqCAAA6wgAAOwIAADtCAAA7ggAAO8IAADwCAAA8QgAAPIIAADzCAAA9AgAAPUIAAD2CAAA9wgAAPgIAAD5CAAA+ggAAPsIAAD8CAAA/QgAAP4IAAD/CAAAAAkAAAEJAAACCQAAAwkAAAQJAAAFCQAABgkAAAcJAAAICQAACQkAAAoJAAALCQAADAkAAA0JAAAOCQAADwkAABAJAAARCQAAEgkAABMJAAAUCQAAFQkAABYJAAAXCQAAGAkAABkJAAAaCQAAGwkAABwJAAAdCQAAHgkAAB8JAAAgCQAAIQkAACIJAAAjCQAAJAkAACUJAAAmCQAAJwkAACgJAAApCQAAKgkAACsJAAAsCQAALQkAAC4JAAAvCQAAMAkAADEJAAAyCQAAMwkAADQJAAA1CQAANgkAADcJAAA4CQAAOQkAADoJAAA7CQAAPAkAAD0JAAA+CQAAPwkAAEAJAABBCQAAQgkAAEMJAABECQAARQkAAEYJAABHCQAASAkAAEkJAABKCQAASwkAAEwJAABNCQAATgkAAE8JAABQCQAAUQkAAFIJAABTCQAAVAkAAFUJAABWCQAAVwkAAFgJAABZCQAAWgkAAFsJAABcCQAAXQkAAF4JAABfCQAAYAkAAGEJAABiCQAAYwkAAGQJAABlCQAAZgkAAGcJAABoCQAAaQkAAGoJAABrCQAAbAkAAG0JAABuCQAAbwkAAHAJAABxCQAAcgkAAHMJAAB0CQAAdQkAAHYJAAB3CQAAeAkAAHkJAAB6CQAAewkAAHwJAAB9CQAAfgkAAH8JAACACQAAgQkAAIIJAACDCQAAhAkAAIUJAACGCQAAhwkAAIgJAACJCQAAigkAAIsJAACMCQAAjQkAAI4JAACPCQAAkAkAAJEJAACSCQAAkwkAAJQJAACVCQAAlgkAAJcJAACYCQAAmQkAAJoJAACbCQAAnAkAAJ0JAACeCQAAnwkAAKAJAAChCQAAogkAAKMJAACkCQAApQkAAKYJAACnCQAAqAkAAKkJAACqCQAAqwkAAKwJAACtCQAArgkAAK8JAACwCQAAsQkAALIJAACzCQAAtAkAALUJAAC2CQAAtwkAALgJAAC5CQAAugkAALsJAAC8CQAAvQkAAL4JAAC/CQAAwAkAAMEJAADCCQAAwwkAAMQJAADFCQAAxgkAAMcJAADICQAAyQkAAMoJAADLCQAAzAkAAM0JAADOCQAAzwkAANAJAADRCQAA0gkAANMJAADUCQAA1QkAANYJAADXCQAA2AkAANkJAADaCQAA2wkAANwJAADdCQAA3gkAAN8JAADgCQAA4QkAAOIJAADjCQAA5AkAAOUJAADmCQAA5wkAAOgJAADpCQAA6gkAAOsJAADsCQAA7QkAAO4JAADvCQAA8AkAAPEJAADyCQAA8wkAAPQJAAD1CQAA9gkAAPcJAAD4CQAA+QkAAPoJAAD7CQAA/AkAAP0JAAD+CQAA/wkAAAAKAAABCgAAAgoAAAMKAAAECgAABQoAAAYKAAAHCgAACAoAAAkKAAAKCgAACwoAAAwKAAANCgAADgoAAA8KAAAQCgAAEQoAABIKAAATCgAAFAoAABUKAAAWCgAAFwoAABgKAAAZCgAAGgoAABsKAAAcCgAAHQoAAB4KAAAfCgAAIAoAACEKAAAiCgAAIwoAACQKAAAlCgAAJgoAACcKAAAoCgAAKQoAACoKAAArCgAALAoAAC0KAAAuCgAALwoAADAKAAAxCgAAMgoAADMKAAA0CgAANQoAADYKAAA3CgAAOAoAADkKAAA6CgAAOwoAADwKAAA9CgAAPgoAAD8KAABACgAAQQoAAEIKAABDCgAARAoAAEUKAABGCgAARwoAAEgKAABJCgAASgoAAEsKAABMCgAATQoAAE4KAABPCgAAUAoAAFEKAABSCgAAUwoAAFQKAABVCgAAVgoAAFcKAABYCgAAWQoAAFoKAABbCgAAXAoAAF0KAABeCgAAXwoAAGAKAABhCgAAYgoAAGMKAABkCgAAZQoAAGYKAABnCgAAaAoAAGkKAABqCgAAawoAAGwKAABtCgAAbgoAAG8KAABwCgAAcQoAAHIKAABzCgAAdAoAAHUKAAB2CgAAdwoAAHgKAAB5CgAAegoAAHsKAAB8CgAAfQoAAH4KAAB/CgAAgAoAAIEKAACCCgAAgwoAAIQKAACFCgAAhgoAAIcKAACICgAAiQoAAIoKAACLCgAAjAoAAI0KAACOCgAAjwoAAJAKAACRCgAAkgoAAJMKAACUCgAAlQoAAJYKAACXCgAAmAoAAJkKAACaCgAAmwoAAJwKAACdCgAAngoAAJ8KAACgCgAAoQoAAKIKAACjCgAApAoAAKUKAACmCgAApwoAAKgKAACpCgAAqgoAAKsKAACsCgAArQoAAK4KAACvCgAAsAoAALEKAACyCgAAswoAALQKAAC1CgAAtgoAALcKAAC4CgAAuQoAALoKAAC7CgAAvAoAAL0KAAC+CgAAvwoAAMAKAADBCgAAwgoAAMMKAADECgAAxQoAAMYKAADHCgAAyAoAAMkKAADKCgAAywoAAMwKAADNCgAAzgoAAM8KAADQCgAA0QoAANIKAADTCgAA1AoAANUKAADWCgAA1woAANgKAADZCgAA2goAANsKAADcCgAA3QoAAN4KAADfCgAA4AoAAOEKAADiCgAA4woAAOQKAADlCgAA5goAAOcKAADoCgAA6QoAAOoKAADrCgAA7AoAAO0KAADuCgAA7woAAPAKAADxCgAA8goAAPMKAAD0CgAA9QoAAPYKAAD3CgAA+AoAAPkKAAD6CgAA+woAAPwKAAD9CgAA/goAAP8KAAAACwAAAQsAAAILAAADCwAABAsAAAULAAAGCwAABwsAAAgLAAAJCwAACgsAAAsLAAAMCwAADQsAAA4LAAAPCwAAEAsAABELAAASCwAAEwsAABQLAAAVCwAAFgsAABcLAAAYCwAAGQsAABoLAAAbCwAAHAsAAB0LAAAeCwAAHwsAACALAAAhCwAAIgsAACMLAAAkCwAAJQsAACYLAAAnCwAAKAsAACkLAAAqCwAAKwsAACwLAAAtCwAALgsAAC8LAAAwCwAAMQsAADILAAAzCwAANAsAADULAAA2CwAANwsAADgLAAA5CwAAOgsAADsLAAA8CwAAPQsAAD4LAAA/CwAAQAsAAEELAABCCwAAQwsAAEQLAABFCwAARgsAAEcLAABICwAASQsAAEoLAABLCwAATAsAAE0LAABOCwAATwsAAFALAABRCwAAUgsAAFMLAABUCwAAVQsAAFYLAABXCwAAWAsAAFkLAABaCwAAWwsAAFwLAABdCwAAXgsAAF8LAABgCwAAYQsAAGILAABjCwAAZAsAAGULAABmCwAAZwsAAGgLAABpCwAAagsAAGsLAABsCwAAbQsAAG4LAABvCwAAcAsAAHELAAByCwAAcwsAAHQLAAB1CwAAdgsAAHcLAAB4CwAAeQsAAHoLAAB7CwAAfAsAAH0LAAB+CwAAfwsAAIALAACBCwAAggsAAIMLAACECwAAhQsAAIYLAACHCwAAiAsAAIkLAACKCwAAiwsAAIwLAACNCwAAjgsAAI8LAACQCwAAkQsAAJILAACTCwAAlAsAAJULAACWCwAAlwsAAJgLAACZCwAAmgsAAJsLAACcCwAAnQsAAJ4LAACfCwAAoAsAAKELAACiCwAAowsAAKQLAAClCwAApgsAAKcLAACoCwAAqQsAAKoLAACrCwAArAsAAK0LAACuCwAArwsAALALAACxCwAAsgsAALMLAAC0CwAAtQsAALYLAAC3CwAAuAsAALkLAAC6CwAAuwsAALwLAAC9CwAAvgsAAL8LAADACwAAwQsAAMILAADDCwAAxAsAAMULAADGCwAAxwsAAMgLAADJCwAAygsAAMsLAADMCwAAzQsAAM4LAADPCwAA0AsAANELAADSCwAA0wsAANQLAADVCwAA1gsAANcLAADYCwAA2QsAANoLAADbCwAA3AsAAN0LAADeCwAA3wsAAOALAADhCwAA4gsAAOMLAADkCwAA5QsAAOYLAADnCwAA6AsAAOkLAADqCwAA6wsAAOwLAADtCwAA7gsAAO8LAADwCwAA8QsAAPILAADzCwAA9AsAAPULAAD2CwAA9wsAAPgLAAD5CwAA+gsAAPsLAAD8CwAA/QsAAP4LAAD/CwAAAAwAAAEMAAACDAAAAwwAAAQMAAAFDAAABgwAAAcMAAAIDAAACQwAAAoMAAALDAAADAwAAA0MAAAODAAADwwAABAMAAARDAAAEgwAABMMAAAUDAAAFQwAABYMAAAXDAAAGAwAABkMAAAaDAAAGwwAABwMAAAdDAAAHgwAAB8MAAAgDAAAIQwAACIMAAAjDAAAJAwAACUMAAAmDAAAJwwAACgMAAApDAAAKgwAACsMAAAsDAAALQwAAC4MAAAvDAAAMAwAADEMAAAyDAAAMwwAADQMAAA1DAAANgwAADcMAAA4DAAAOQwAADoMAAA7DAAAPAwAAD0MAAA+DAAAPwwAAEAMAABBDAAAQgwAAEMMAABEDAAARQwAAEYMAABHDAAASAwAAEkMAABKDAAASwwAAEwMAABNDAAATgwAAE8MAABQDAAAUQwAAFIMAABTDAAAVAwAAFUMAABWDAAAVwwAAFgMAABZDAAAWgwAAFsMAABcDAAAXQwAAF4MAABfDAAAYAwAAGEMAABiDAAAYwwAAGQMAABlDAAAZgwAAGcMAABoDAAAaQwAAGoMAABrDAAAbAwAAG0MAABuDAAAbwwAAHAMAABxDAAAcgwAAHMMAAB0DAAAdQwAAHYMAAB3DAAAeAwAAHkMAAB6DAAAewwAAHwMAAB9DAAAfgwAAH8MAACADAAAgQwAAIIMAACDDAAAhAwAAIUMAACGDAAAhwwAAIgMAACJDAAAigwAAIsMAACMDAAAjQwAAI4MAACPDAAAkAwAAJEMAACSDAAAkwwAAJQMAACVDAAAlgwAAJcMAACYDAAAmQwAAJoMAACbDAAAnAwAAJ0MAACeDAAAnwwAAKAMAAChDAAAogwAAKMMAACkDAAApQwAAKYMAACnDAAAqAwAAKkMAACqDAAAqwwAAKwMAACtDAAArgwAAK8MAACwDAAAsQwAALIMAACzDAAAtAwAALUMAAC2DAAAtwwAALgMAAC5DAAAugwAALsMAAC8DAAAvQwAAL4MAAC/DAAAwAwAAMEMAADCDAAAwwwAAMQMAADFDAAAxgwAAMcMAADIDAAAyQwAAMoMAADLDAAAzAwAAM0MAADODAAAzwwAANAMAADRDAAA0gwAANMMAADUDAAA1QwAANYMAADXDAAA2AwAANkMAADaDAAA2wwAANwMAADdDAAA3gwAAN8MAADgDAAA4QwAAOIMAADjDAAA5AwAAOUMAADmDAAA5wwAAOgMAADpDAAA6gwAAOsMAADsDAAA7QwAAO4MAADvDAAA8AwAAPEMAADyDAAA8wwAAPQMAAD1DAAA9gwAAPcMAAD4DAAA+QwAAPoMAAD7DAAA/AwAAP0MAAD+DAAA/wwAAAANAAABDQAAAg0AAAMNAAAEDQAABQ0AAAYNAAAHDQAACA0AAAkNAAAKDQAACw0AAAwNAAANDQAADg0AAA8NAAAQDQAAEQ0AABINAAATDQAAFA0AABUNAAAWDQAAFw0AABgNAAAZDQAAGg0AABsNAAAcDQAAHQ0AAB4NAAAfDQAAIA0AACENAAAiDQAAIw0AACQNAAAlDQAAJg0AACcNAAAoDQAAKQ0AACoNAAArDQAALA0AAC0NAAAuDQAALw0AADANAAAxDQAAMg0AADMNAAA0DQAANQ0AADYNAAA3DQAAOA0AADkNAAA6DQAAOw0AADwNAAA9DQAAPg0AAD8NAABADQAAQQ0AAEINAABDDQAARA0AAEUNAABGDQAARw0AAEgNAABJDQAASg0AAEsNAABMDQAATQ0AAE4NAABPDQAAUA0AAFENAABSDQAAUw0AAFQNAABVDQAAVg0AAFcNAABYDQAAWQ0AAFoNAABbDQAAXA0AAF0NAABeDQAAXw0AAGANAABhDQAAYg0AAGMNAABkDQAAZQ0AAGYNAABnDQAAaA0AAGkNAABqDQAAaw0AAGwNAABtDQAAbg0AAG8NAABwDQAAcQ0AAHINAABzDQAAdA0AAHUNAAB2DQAAdw0AAHgNAAB5DQAAeg0AAHsNAAB8DQAAfQ0AAH4NAAB/DQAAgA0AAIENAACCDQAAgw0AAIQNAACFDQAAhg0AAIcNAACIDQAAiQ0AAIoNAACLDQAAjA0AAI0NAACODQAAjw0AAJANAACRDQAAkg0AAJMNAACUDQAAlQ0AAJYNAACXDQAAmA0AAJkNAACaDQAAmw0AAJwNAACdDQAAng0AAJ8NAACgDQAAoQ0AAKINAACjDQAApA0AAKUNAACmDQAApw0AAKgNAACpDQAAqg0AAKsNAACsDQAArQ0AAK4NAACvDQAAsA0AALENAACyDQAAsw0AALQNAAC1DQAAtg0AALcNAAC4DQAAuQ0AALoNAAC7DQAAvA0AAL0NAAC+DQAAvw0AAMANAADBDQAAwg0AAMMNAADEDQAAxQ0AAMYNAADHDQAAyA0AAMkNAADKDQAAyw0AAMwNAADNDQAAzg0AAM8NAADQDQAA0Q0AANINAADTDQAA1A0AANUNAADWDQAA1w0AANgNAADZDQAA2g0AANsNAADcDQAA3Q0AAN4NAADfDQAA4A0AAOENAADiDQAA4w0AAOQNAADlDQAA5g0AAOcNAADoDQAA6Q0AAOoNAADrDQAA7A0AAO0NAADuDQAA7w0AAPANAADxDQAA8g0AAPMNAAD0DQAA9Q0AAPYNAAD3DQAA+A0AAPkNAAD6DQAA+w0AAPwNAAD9DQAA/g0AAP8NAAAADgAAAQ4AAAIOAAADDgAABA4AAAUOAAAGDgAABw4AAAgOAAAJDgAACg4AAAsOAAAMDgAADQ4AAA4OAAAPDgAAEA4AABEOAAASDgAAEw4AABQOAAAVDgAAFg4AABcOAAAYDgAAGQ4AABoOAAAbDgAAHA4AAB0OAAAeDgAAHw4AACAOAAAhDgAAIg4AACMOAAAkDgAAJQ4AACYOAAAnDgAAKA4AACkOAAAqDgAAKw4AACwOAAAtDgAALg4AAC8OAAAwDgAAMQ4AADIOAAAzDgAANA4AADUOAAA2DgAANw4AADgOAAA5DgAAOg4AADsOAAA8DgAAPQ4AAD4OAAA/DgAAQA4AAEEOAABCDgAAQw4AAEQOAABFDgAARg4AAEcOAABIDgAASQ4AAEoOAABLDgAATA4AAE0OAABODgAATw4AAFAOAABRDgAAUg4AAFMOAABUDgAAVQ4AAFYOAABXDgAAWA4AAFkOAABaDgAAWw4AAFwOAABdDgAAXg4AAF8OAABgDgAAYQ4AAGIOAABjDgAAZA4AAGUOAABmDgAAZw4AAGgOAABpDgAAag4AAGsOAABsDgAAbQ4AAG4OAABvDgAAcA4AAHEOAAByDgAAcw4AAHQOAAB1DgAAdg4AAHcOAAB4DgAAeQ4AAHoOAAB7DgAAfA4AAH0OAAB+DgAAfw4AAIAOAACBDgAAgg4AAIMOAACEDgAAhQ4AAIYOAACHDgAAiA4AAIkOAACKDgAAiw4AAIwOAACNDgAAjg4AAI8OAACQDgAAkQ4AAJIOAACTDgAAlA4AAJUOAACWDgAAlw4AAJgOAACZDgAAmg4AAJsOAACcDgAAnQ4AAJ4OAACfDgAAoA4AAKEOAACiDgAAow4AAKQOAAClDgAApg4AAKcOAACoDgAAqQ4AAKoOAACrDgAArA4AAK0OAACuDgAArw4AALAOAACxDgAAsg4AALMOAAC0DgAAtQ4AALYOAAC3DgAAuA4AALkOAAC6DgAAuw4AALwOAAC9DgAAvg4AAL8OAADADgAAwQ4AAMIOAADDDgAAxA4AAMUOAADGDgAAxw4AAMgOAADJDgAAyg4AAMsOAADMDgAAzQ4AAM4OAADPDgAA0A4AANEOAADSDgAA0w4AANQOAADVDgAA1g4AANcOAADYDgAA2Q4AANoOAADbDgAA3A4AAN0OAADeDgAA3w4AAOAOAADhDgAA4g4AAOMOAADkDgAA5Q4AAOYOAADnDgAA6A4AAOkOAADqDgAA6w4AAOwOAADtDgAA7g4AAO8OAADwDgAA8Q4AAPIOAADzDgAA9A4AAPUOAAD2DgAA9w4AAPgOAAD5DgAA+g4AAPsOAAD8DgAA/Q4AAP4OAAD/DgAAAA8AAAEPAAACDwAAAw8AAAQPAAAFDwAABg8AAAcPAAAIDwAACQ8AAAoPAAALDwAADA8AAA0PAAAODwAADw8AABAPAAARDwAAEg8AABMPAAAUDwAAFQ8AABYPAAAXDwAAGA8AABkPAAAaDwAAGw8AABwPAAAdDwAAHg8AAB8PAAAgDwAAIQ8AACIPAAAjDwAAJA8AACUPAAAmDwAAJw8AACgPAAApDwAAKg8AACsPAAAsDwAALQ8AAC4PAAAvDwAAMA8AADEPAAAyDwAAMw8AADQPAAA1DwAANg8AADcPAAA4DwAAOQ8AADoPAAA7DwAAPA8AAD0PAAA+DwAAPw8AAEAPAABBDwAAQg8AAEMPAABEDwAARQ8AAEYPAABHDwAASA8AAEkPAABKDwAASw8AAEwPAABNDwAATg8AAE8PAABQDwAAUQ8AAFIPAABTDwAAVA8AAFUPAABWDwAAVw8AAFgPAABZDwAAWg8AAFsPAABcDwAAXQ8AAF4PAABfDwAAYA8AAGEPAABiDwAAYw8AAGQPAABlDwAAZg8AAGcPAABoDwAAaQ8AAGoPAABrDwAAbA8AAG0PAABuDwAAbw8AAHAPAABxDwAAcg8AAHMPAAB0DwAAdQ8AAHYPAAB3DwAAeA8AAHkPAAB6DwAAew8AAHwPAAB9DwAAfg8AAH8PAACADwAAgQ8AAIIPAACDDwAAhA8AAIUPAACGDwAAhw8AAIgPAACJDwAAig8AAIsPAACMDwAAjQ8AAI4PAACPDwAAkA8AAJEPAACSDwAAkw8AAJQPAACVDwAAlg8AAJcPAACYDwAAmQ8AAJoPAACbDwAAnA8AAJ0PAACeDwAAnw8AAKAPAAChDwAAog8AAKMPAACkDwAApQ8AAKYPAACnDwAAqA8AAKkPAACqDwAAqw8AAKwPAACtDwAArg8AAK8PAACwDwAAsQ8AALIPAACzDwAAtA8AALUPAAC2DwAAtw8AALgPAAC5DwAAug8AALsPAAC8DwAAvQ8AAL4PAAC/DwAAwA8AAMEPAADCDwAAww8AAMQPAADFDwAAxg8AAMcPAADIDwAAyQ8AAMoPAADLDwAAzA8AAM0PAADODwAAzw8AANAPAADRDwAA0g8AANMPAADUDwAA1Q8AANYPAADXDwAA2A8AANkPAADaDwAA2w8AANwPAADdDwAA3g8AAN8PAADgDwAA4Q8AAOIPAADjDwAA5A8AAOUPAADmDwAA5w8AAOgPAADpDwAA6g8AAOsPAADsDwAA7Q8AAO4PAADvDwAA8A8AAPEPAADyDwAA8w8AAPQPAAD1DwAA9g8AAPcPAAD4DwAA+Q8AAPoPAAD7DwAA/A8AAP0PAAD+DwAA/w8AAAAQAAABEAAAAhAAAAMQAAAEEAAABRAAAAYQAAAHEAAACBAAAAkQAAAKEAAACxAAAAwQAAANEAAADhAAAA8QAAAQEAAAERAAABIQAAATEAAAFBAAABUQAAAWEAAAFxAAABgQAAAZEAAAGhAAABsQAAAcEAAAHRAAAB4QAAAfEAAAIBAAACEQAAAiEAAAIxAAACQQAAAlEAAAJhAAACcQAAAoEAAAKRAAACoQAAArEAAALBAAAC0QAAAuEAAALxAAADAQAAAxEAAAMhAAADMQAAA0EAAANRAAADYQAAA3EAAAOBAAADkQAAA6EAAAOxAAADwQAAA9EAAAPhAAAD8QAABAEAAAQRAAAEIQAABDEAAARBAAAEUQAABGEAAARxAAAEgQAABJEAAAShAAAEsQAABMEAAATRAAAE4QAABPEAAAUBAAAFEQAABSEAAAUxAAAFQQAABVEAAAVhAAAFcQAABYEAAAWRAAAFoQAABbEAAAXBAAAF0QAABeEAAAXxAAAGAQAABhEAAAYhAAAGMQAABkEAAAZRAAAGYQAABnEAAAaBAAAGkQAABqEAAAaxAAAGwQAABtEAAAbhAAAG8QAABwEAAAcRAAAHIQAABzEAAAdBAAAHUQAAB2EAAAdxAAAHgQAAB5EAAAehAAAHsQAAB8EAAAfRAAAH4QAAB/EAAAgBAAAIEQAACCEAAAgxAAAIQQAACFEAAAhhAAAIcQAACIEAAAiRAAAIoQAACLEAAAjBAAAI0QAACOEAAAjxAAAJAQAACREAAAkhAAAJMQAACUEAAAlRAAAJYQAACXEAAAmBAAAJkQAACaEAAAmxAAAJwQAACdEAAAnhAAAJ8QAACgEAAAoRAAAKIQAACjEAAApBAAAKUQAACmEAAApxAAAKgQAACpEAAAqhAAAKsQAACsEAAArRAAAK4QAACvEAAAsBAAALEQAACyEAAAsxAAALQQAAC1EAAAthAAALcQAAC4EAAAuRAAALoQAAC7EAAAvBAAAL0QAAC+EAAAvxAAAMAQAADBEAAAwhAAAMMQAADEEAAAxRAAAMYQAADHEAAAyBAAAMkQAADKEAAAyxAAAMwQAADNEAAAzhAAAM8QAADQEAAA0RAAANIQAADTEAAA1BAAANUQAADWEAAA1xAAANgQAADZEAAA2hAAANsQAADcEAAA3RAAAN4QAADfEAAA4BAAAOEQAADiEAAA4xAAAOQQAADlEAAA5hAAAOcQAADoEAAA6RAAAOoQAADrEAAA7BAAAO0QAADuEAAA7xAAAPAQAADxEAAA8hAAAPMQAAD0EAAA9RAAAPYQAAD3EAAA+BAAAPkQAAD6EAAA+xAAAPwQAAD9EAAA/hAAAP8QAAAAEQAAAREAAAIRAAADEQAABBEAAAURAAAGEQAABxEAAAgRAAAJEQAAChEAAAsRAAAMEQAADREAAA4RAAAPEQAAEBEAABERAAASEQAAExEAABQRAAAVEQAAFhEAABcRAAAYEQAAGREAABoRAAAbEQAAHBEAAB0RAAAeEQAAHxEAACARAAAhEQAAIhEAACMRAAAkEQAAJREAACYRAAAnEQAAKBEAACkRAAAqEQAAKxEAACwRAAAtEQAALhEAAC8RAAAwEQAAMREAADIRAAAzEQAANBEAADURAAA2EQAANxEAADgRAAA5EQAAOhEAADsRAAA8EQAAPREAAD4RAAA/EQAAQBEAAEERAABCEQAAQxEAAEQRAABFEQAARhEAAEcRAABIEQAASREAAEoRAABLEQAATBEAAE0RAABOEQAATxEAAFARAABREQAAUhEAAFMRAABUEQAAVREAAFYRAABXEQAAWBEAAFkRAABaEQAAWxEAAFwRAABdEQAAXhEAAF8RAABgEQAAYREAAGIRAABjEQAAZBEAAGURAABmEQAAZxEAAGgRAABpEQAAahEAAGsRAABsEQAAbREAAG4RAABvEQAAcBEAAHERAAByEQAAcxEAAHQRAAB1EQAAdhEAAHcRAAB4EQAAeREAAHoRAAB7EQAAfBEAAH0RAAB+EQAAfxEAAIARAACBEQAAghEAAIMRAACEEQAAhREAAIYRAACHEQAAiBEAAIkRAACKEQAAixEAAIwRAACNEQAAjhEAAI8RAACQEQAAkREAAJIRAACTEQAAlBEAAJURAACWEQAAlxEAAJgRAACZEQAAmhEAAJsRAACcEQAAnREAAJ4RAACfEQAAoBEAAKERAACiEQAAoxEAAKQRAAClEQAAphEAAKcRAACoEQAAqREAAKoRAACrEQAArBEAAK0RAACuEQAArxEAALARAACxEQAAshEAALMRAAC0EQAAtREAALYRAAC3EQAAuBEAALkRAAC6EQAAuxEAALwRAAC9EQAAvhEAAL8RAADAEQAAwREAAMIRAADDEQAAxBEAAMURAADGEQAAxxEAAMgRAADJEQAAyhEAAMsRAADMEQAAzREAAM4RAADPEQAA0BEAANERAADSEQAA0xEAANQRAADVEQAA1hEAANcRAADYEQAA2REAANoRAADbEQAA3BEAAN0RAADeEQAA3xEAAOARAADhEQAA4hEAAOMRAADkEQAA5REAAOYRAADnEQAA6BEAAOkRAADqEQAA6xEAAOwRAADtEQAA7hEAAO8RAADwEQAA8REAAPIRAADzEQAA9BEAAPURAAD2EQAA9xEAAPgRAAD5EQAA+hEAAPsRAAD8EQAA/REAAP4RAAD/EQAAABIAAAESAAACEgAAAxIAAAQSAAAFEgAABhIAAAcSAAAIEgAACRIAAAoSAAALEgAADBIAAA0SAAAOEgAADxIAABASAAAREgAAEhIAABMSAAAUEgAAFRIAABYSAAAXEgAAGBIAABkSAAAaEgAAGxIAABwSAAAdEgAAHhIAAB8SAAAgEgAAIRIAACISAAAjEgAAJBIAACUSAAAmEgAAJxIAACgSAAApEgAAKhIAACsSAAAsEgAALRIAAC4SAAAvEgAAMBIAADESAAAyEgAAMxIAADQSAAA1EgAANhIAADcSAAA4EgAAORIAADoSAAA7EgAAPBIAAD0SAAA+EgAAPxIAAEASAABBEgAAQhIAAEMSAABEEgAARRIAAEYSAABHEgAASBIAAEkSAABKEgAASxIAAEwSAABNEgAAThIAAE8SAABQEgAAURIAAFISAABTEgAAVBIAAFUSAABWEgAAVxIAAFgSAABZEgAAWhIAAFsSAABcEgAAXRIAAF4SAABfEgAAYBIAAGESAABiEgAAYxIAAGQSAABlEgAAZhIAAGcSAABoEgAAaRIAAGoSAABrEgAAbBIAAG0SAABuEgAAbxIAAHASAABxEgAAchIAAHMSAAB0EgAAdRIAAHYSAAB3EgAAeBIAAHkSAAB6EgAAexIAAHwSAAB9EgAAfhIAAH8SAACAEgAAgRIAAIISAACDEgAAhBIAAIUSAACGEgAAhxIAAIgSAACJEgAAihIAAIsSAACMEgAAjRIAAI4SAACPEgAAkBIAAJESAACSEgAAkxIAAJQSAACVEgAAlhIAAJcSAACYEgAAmRIAAJoSAACbEgAAnBIAAJ0SAACeEgAAnxIAAKASAAChEgAAohIAAKMSAACkEgAApRIAAKYSAACnEgAAqBIAAKkSAACqEgAAqxIAAKwSAACtEgAArhIAAK8SAACwEgAAsRIAALISAACzEgAAtBIAALUSAAC2EgAAtxIAALgSAAC5EgAAuhIAALsSAAC8EgAAvRIAAL4SAAC/EgAAwBIAAMESAADCEgAAwxIAAMQSAADFEgAAxhIAAMcSAADIEgAAyRIAAMoSAADLEgAAzBIAAM0SAADOEgAAzxIAANASAADREgAA0hIAANMSAADUEgAA1RIAANYSAADXEgAA2BIAANkSAADaEgAA2xIAANwSAADdEgAA3hIAAN8SAADgEgAA4RIAAOISAADjEgAA5BIAAOUSAADmEgAA5xIAAOgSAADpEgAA6hIAAOsSAADsEgAA7RIAAO4SAADvEgAA8BIAAPESAADyEgAA8xIAAPQSAAD1EgAA9hIAAPcSAAD4EgAA+RIAAPoSAAD7EgAA/BIAAP0SAAD+EgAA/xIAAAATAAABEwAAAhMAAAMTAAAEEwAABRMAAAYTAAAHEwAACBMAAAkTAAAKEwAACxMAAAwTAAANEwAADhMAAA8TAAAQEwAAERMAABITAAATEwAAFBMAABUTAAAWEwAAFxMAABgTAAAZEwAAGhMAABsTAAAcEwAAHRMAAB4TAAAfEwAAIBMAACETAAAiEwAAIxMAACQTAAAlEwAAJhMAACcTAAAoEwAAKRMAACoTAAArEwAALBMAAC0TAAAuEwAALxMAADATAAAxEwAAMhMAADMTAAA0EwAANRMAADYTAAA3EwAAOBMAADkTAAA6EwAAOxMAADwTAAA9EwAAPhMAAD8TAABAEwAAQRMAAEITAABDEwAARBMAAEUTAABGEwAARxMAAEgTAABJEwAAShMAAEsTAABMEwAATRMAAE4TAABPEwAAUBMAAFETAABSEwAAUxMAAFQTAABVEwAAVhMAAFcTAABYEwAAWRMAAFoTAABbEwAAXBMAAF0TAABeEwAAXxMAAGATAABhEwAAYhMAAGMTAABkEwAAZRMAAGYTAABnEwAAaBMAAGkTAABqEwAAaxMAAGwTAABtEwAAbhMAAG8TAABwEwAAcRMAAHITAABzEwAAdBMAAHUTAAB2EwAAdxMAAHgTAAB5EwAAehMAAHsTAAB8EwAAfRMAAH4TAAB/EwAAgBMAAIETAACCEwAAgxMAAIQTAACFEwAAhhMAAIcTAACIEwAAiRMAAIoTAACLEwAAjBMAAI0TAACOEwAAjxMAAJATAACREwAAkhMAAJMTAACUEwAAlRMAAJYTAACXEwAAmBMAAJkTAACaEwAAmxMAAJwTAACdEwAAnhMAAJ8TAACgEwAAoRMAAKITAACjEwAApBMAAKUTAACmEwAApxMAAKgTAACpEwAAqhMAAKsTAACsEwAArRMAAK4TAACvEwAAsBMAALETAACyEwAAsxMAALQTAAC1EwAAthMAALcTAAC4EwAAuRMAALoTAAC7EwAAvBMAAL0TAAC+EwAAvxMAAMATAADBEwAAwhMAAMMTAADEEwAAxRMAAMYTAADHEwAAyBMAAMkTAADKEwAAyxMAAMwTAADNEwAAzhMAAM8TAADQEwAA0RMAANITAADTEwAA1BMAANUTAADWEwAA1xMAANgTAADZEwAA2hMAANsTAADcEwAA3RMAAN4TAADfEwAA4BMAAOETAADiEwAA4xMAAOQTAADlEwAA5hMAAOcTAADoEwAA6RMAAOoTAADrEwAA7BMAAO0TAADuEwAA7xMAAPATAADxEwAA8hMAAPMTAAD0EwAA9RMAAPYTAAD3EwAA+BMAAPkTAAD6EwAA+xMAAPwTAAD9EwAA/hMAAP8TAAAAFAAAARQAAAIUAAADFAAABBQAAAUUAAAGFAAABxQAAAgUAAAJFAAAChQAAAsUAAAMFAAADRQAAA4UAAAPFAAAEBQAABEUAAASFAAAExQAABQUAAAVFAAAFhQAABcUAAAYFAAAGRQAABoUAAAbFAAAHBQAAB0UAAAeFAAAHxQAACAUAAAhFAAAIhQAACMUAAAkFAAAJRQAACYUAAAnFAAAKBQAACkUAAAqFAAAKxQAACwUAAAtFAAALhQAAC8UAAAwFAAAMRQAADIUAAAzFAAANBQAADUUAAA2FAAANxQAADgUAAA5FAAAOhQAADsUAAA8FAAAPRQAAD4UAAA/FAAAQBQAAEEUAABCFAAAQxQAAEQUAABFFAAARhQAAEcUAABIFAAASRQAAEoUAABLFAAATBQAAE0UAABOFAAATxQAAFAUAABRFAAAUhQAAFMUAABUFAAAVRQAAFYUAABXFAAAWBQAAFkUAABaFAAAWxQAAFwUAABdFAAAXhQAAF8UAABgFAAAYRQAAGIUAABjFAAAZBQAAGUUAABmFAAAZxQAAGgUAABpFAAAahQAAGsUAABsFAAAbRQAAG4UAABvFAAAcBQAAHEUAAByFAAAcxQAAHQUAAB1FAAAdhQAAHcUAAB4FAAAeRQAAHoUAAB7FAAAfBQAAH0UAAB+FAAAfxQAAIAUAACBFAAAghQAAIMUAACEFAAAhRQAAIYUAACHFAAAiBQAAIkUAACKFAAAixQAAIwUAACNFAAAjhQAAI8UAACQFAAAkRQAAJIUAACTFAAAlBQAAJUUAACWFAAAlxQAAJgUAACZFAAAmhQAAJsUAACcFAAAnRQAAJ4UAACfFAAAoBQAAKEUAACiFAAAoxQAAKQUAAClFAAAphQAAKcUAACoFAAAqRQAAKoUAACrFAAArBQAAK0UAACuFAAArxQAALAUAACxFAAAshQAALMUAAC0FAAAtRQAALYUAAC3FAAAuBQAALkUAAC6FAAAuxQAALwUAAC9FAAAvhQAAL8UAADAFAAAwRQAAMIUAADDFAAAxBQAAMUUAADGFAAAxxQAAMgUAADJFAAAyhQAAMsUAADMFAAAzRQAAM4UAADPFAAA0BQAANEUAADSFAAA0xQAANQUAADVFAAA1hQAANcUAADYFAAA2RQAANoUAADbFAAA3BQAAN0UAADeFAAA3xQAAOAUAADhFAAA4hQAAOMUAADkFAAA5RQAAOYUAADnFAAA6BQAAOkUAADqFAAA6xQAAOwUAADtFAAA7hQAAO8UAADwFAAA8RQAAPIUAADzFAAA9BQAAPUUAAD2FAAA9xQAAPgUAAD5FAAA+hQAAPsUAAD8FAAA/RQAAP4UAAD/FAAAABUAAAEVAAACFQAAAxUAAAQVAAAFFQAABhUAAAcVAAAIFQAACRUAAAoVAAALFQAADBUAAA0VAAAOFQAADxUAABAVAAARFQAAEhUAABMVAAAUFQAAFRUAABYVAAAXFQAAGBUAABkVAAAaFQAAGxUAABwVAAAdFQAAHhUAAB8VAAAgFQAAIRUAACIVAAAjFQAAJBUAACUVAAAmFQAAJxUAACgVAAApFQAAKhUAACsVAAAsFQAALRUAAC4VAAAvFQAAMBUAADEVAAAyFQAAMxUAADQVAAA1FQAANhUAADcVAAA4FQAAORUAADoVAAA7FQAAPBUAAD0VAAA+FQAAPxUAAEAVAABBFQAAQhUAAEMVAABEFQAARRUAAEYVAABHFQAASBUAAEkVAABKFQAASxUAAEwVAABNFQAAThUAAE8VAABQFQAAURUAAFIVAABTFQAAVBUAAFUVAABWFQAAVxUAAFgVAABZFQAAWhUAAFsVAABcFQAAXRUAAF4VAABfFQAAYBUAAGEVAABiFQAAYxUAAGQVAABlFQAAZhUAAGcVAABoFQAAaRUAAGoVAABrFQAAbBUAAG0VAABuFQAAbxUAAHAVAABxFQAAchUAAHMVAAB0FQAAdRUAAHYVAAB3FQAAeBUAAHkVAAB6FQAAexUAAHwVAAB9FQAAfhUAAH8VAACAFQAAgRUAAIIVAACDFQAAhBUAAIUVAACGFQAAhxUAAIgVAACJFQAAihUAAIsVAACMFQAAjRUAAI4VAACPFQAAkBUAAJEVAACSFQAAkxUAAJQVAACVFQAAlhUAAJcVAACYFQAAmRUAAJoVAACbFQAAnBUAAJ0VAACeFQAAnxUAAKAVAAChFQAAohUAAKMVAACkFQAApRUAAKYVAACnFQAAqBUAAKkVAACqFQAAqxUAAKwVAACtFQAArhUAAK8VAACwFQAAsRUAALIVAACzFQAAtBUAALUVAAC2FQAAtxUAALgVAAC5FQAAuhUAALsVAAC8FQAAvRUAAL4VAAC/FQAAwBUAAMEVAADCFQAAwxUAAMQVAADFFQAAxhUAAMcVAADIFQAAyRUAAMoVAADLFQAAzBUAAM0VAADOFQAAzxUAANAVAADRFQAA0hUAANMVAADUFQAA1RUAANYVAADXFQAA2BUAANkVAADaFQAA2xUAANwVAADdFQAA3hUAAN8VAADgFQAA4RUAAOIVAADjFQAA5BUAAOUVAADmFQAA5xUAAOgVAADpFQAA6hUAAOsVAADsFQAA7RUAAO4VAADvFQAA8BUAAPEVAADyFQAA8xUAAPQVAAD1FQAA9hUAAPcVAAD4FQAA+RUAAPoVAAD7FQAA/BUAAP0VAAD+FQAA/xUAAAAWAAABFgAAAhYAAAMWAAAEFgAABRYAAAYWAAAHFgAACBYAAAkWAAAKFgAACxYAAAwWAAANFgAADhYAAA8WAAAQFgAAERYAABIWAAATFgAAFBYAABUWAAAWFgAAFxYAABgWAAAZFgAAGhYAABsWAAAcFgAAHRYAAB4WAAAfFgAAIBYAACEWAAAiFgAAIxYAACQWAAAlFgAAJhYAACcWAAAoFgAAKRYAACoWAAArFgAALBYAAC0WAAAuFgAALxYAADAWAAAxFgAAMhYAADMWAAA0FgAANRYAADYWAAA3FgAAOBYAADkWAAA6FgAAOxYAADwWAAA9FgAAPhYAAD8WAABAFgAAQRYAAEIWAABDFgAARBYAAEUWAABGFgAARxYAAEgWAABJFgAAShYAAEsWAABMFgAATRYAAE4WAABPFgAAUBYAAFEWAABSFgAAUxYAAFQWAABVFgAAVhYAAFcWAABYFgAAWRYAAFoWAABbFgAAXBYAAF0WAABeFgAAXxYAAGAWAABhFgAAYhYAAGMWAABkFgAAZRYAAGYWAABnFgAAaBYAAGkWAABqFgAAaxYAAGwWAABtFgAAbhYAAG8WAABwFgAAcRYAAHIWAABzFgAAdBYAAHUWAAB2FgAAdxYAAHgWAAB5FgAAehYAAHsWAAB8FgAAfRYAAH4WAAB/FgAAgBYAAIEWAACCFgAAgxYAAIQWAACFFgAAhhYAAIcWAACIFgAAiRYAAIoWAACLFgAAjBYAAI0WAACOFgAAjxYAAJAWAACRFgAAkhYAAJMWAACUFgAAlRYAAJYWAACXFgAAmBYAAJkWAACaFgAAmxYAAJwWAACdFgAAnhYAAJ8WAACgFgAAoRYAAKIWAACjFgAApBYAAKUWAACmFgAApxYAAKgWAACpFgAAqhYAAKsWAACsFgAArRYAAK4WAACvFgAAsBYAALEWAACyFgAAsxYAALQWAAC1FgAAthYAALcWAAC4FgAAuRYAALoWAAC7FgAAvBYAAL0WAAC+FgAAvxYAAMAWAADBFgAAwhYAAMMWAADEFgAAxRYAAMYWAADHFgAAyBYAAMkWAADKFgAAyxYAAMwWAADNFgAAzhYAAM8WAADQFgAA0RYAANIWAADTFgAA1BYAANUWAADWFgAA1xYAANgWAADZFgAA2hYAANsWAADcFgAA3RYAAN4WAADfFgAA4BYAAOEWAADiFgAA4xYAAOQWAADlFgAA5hYAAOcWAADoFgAA6RYAAOoWAADrFgAA7BYAAO0WAADuFgAA7xYAAPAWAADxFgAA8hYAAPMWAAD0FgAA9RYAAPYWAAD3FgAA+BYAAPkWAAD6FgAA+xYAAPwWAAD9FgAA/hYAAP8WAAAAFwAAARcAAAIXAAADFwAABBcAAAUXAAAGFwAABxcAAAgXAAAJFwAAChcAAAsXAAAMFwAADRcAAA4XAAAPFwAAEBcAABEXAAASFwAAExcAABQXAAAVFwAAFhcAABcXAAAYFwAAGRcAABoXAAAbFwAAHBcAAB0XAAAeFwAAHxcAACAXAAAhFwAAIhcAACMXAAAkFwAAJRcAACYXAAAnFwAAKBcAACkXAAAqFwAAKxcAACwXAAAtFwAALhcAAC8XAAAwFwAAMRcAADIXAAAzFwAANBcAADUXAAA2FwAANxcAADgXAAA5FwAAOhcAADsXAAA8FwAAPRcAAD4XAAA/FwAAQBcAAEEXAABCFwAAQxcAAEQXAABFFwAARhcAAEcXAABIFwAASRcAAEoXAABLFwAATBcAAE0XAABOFwAATxcAAFAXAABRFwAAUhcAAFMXAABUFwAAVRcAAFYXAABXFwAAWBcAAFkXAABaFwAAWxcAAFwXAABdFwAAXhcAAF8XAABgFwAAYRcAAGIXAABjFwAAZBcAAGUXAABmFwAAZxcAAGgXAABpFwAAahcAAGsXAABsFwAAbRcAAG4XAABvFwAAcBcAAHEXAAByFwAAcxcAAHQXAAB1FwAAdhcAAHcXAAB4FwAAeRcAAHoXAAB7FwAAfBcAAH0XAAB+FwAAfxcAAIAXAACBFwAAghcAAIMXAACEFwAAhRcAAIYXAACHFwAAiBcAAIkXAACKFwAAixcAAIwXAACNFwAAjhcAAI8XAACQFwAAkRcAAJIXAACTFwAAlBcAAJUXAACWFwAAlxcAAJgXAACZFwAAmhcAAJsXAACcFwAAnRcAAJ4XAACfFwAAoBcAAKEXAACiFwAAoxcAAKQXAAClFwAAphcAAKcXAACoFwAAqRcAAKoXAACrFwAArBcAAK0XAACuFwAArxcAALAXAACxFwAAshcAALMXAAC0FwAAtRcAALYXAAC3FwAAuBcAALkXAAC6FwAAuxcAALwXAAC9FwAAvhcAAL8XAADAFwAAwRcAAMIXAADDFwAAxBcAAMUXAADGFwAAxxcAAMgXAADJFwAAyhcAAMsXAADMFwAAzRcAAM4XAADPFwAA0BcAANEXAADSFwAA0xcAANQXAADVFwAA1hcAANcXAADYFwAA2RcAANoXAADbFwAA3BcAAN0XAADeFwAA3xcAAOAXAADhFwAA4hcAAOMXAADkFwAA5RcAAOYXAADnFwAA6BcAAOkXAADqFwAA6xcAAOwXAADtFwAA7hcAAO8XAADwFwAA8RcAAPIXAADzFwAA9BcAAPUXAAD2FwAA9xcAAPgXAAD5FwAA+hcAAPsXAAD8FwAA/RcAAP4XAAD/FwAAABgAAAEYAAACGAAAAxgAAAQYAAAFGAAABhgAAAcYAAAIGAAACRgAAAoYAAALGAAADBgAAA0YAAAOGAAADxgAABAYAAARGAAAEhgAABMYAAAUGAAAFRgAABYYAAAXGAAAGBgAABkYAAAaGAAAGxgAABwYAAAdGAAAHhgAAB8YAAAgGAAAIRgAACIYAAAjGAAAJBgAACUYAAAmGAAAJxgAACgYAAApGAAAKhgAACsYAAAsGAAALRgAAC4YAAAvGAAAMBgAADEYAAAyGAAAMxgAADQYAAA1GAAANhgAADcYAAA4GAAAORgAADoYAAA7GAAAPBgAAD0YAAA+GAAAPxgAAEAYAABBGAAAQhgAAEMYAABEGAAARRgAAEYYAABHGAAASBgAAEkYAABKGAAASxgAAEwYAABNGAAAThgAAE8YAABQGAAAURgAAFIYAABTGAAAVBgAAFUYAABWGAAAVxgAAFgYAABZGAAAWhgAAFsYAABcGAAAXRgAAF4YAABfGAAAYBgAAGEYAABiGAAAYxgAAGQYAABlGAAAZhgAAGcYAABoGAAAaRgAAGoYAABrGAAAbBgAAG0YAABuGAAAbxgAAHAYAABxGAAAchgAAHMYAAB0GAAAdRgAAHYYAAB3GAAAeBgAAHkYAAB6GAAAexgAAHwYAAB9GAAAfhgAAH8YAACAGAAAgRgAAIIYAACDGAAAhBgAAIUYAACGGAAAhxgAAIgYAACJGAAAihgAAIsYAACMGAAAjRgAAI4YAACPGAAAkBgAAJEYAACSGAAAkxgAAJQYAACVGAAAlhgAAJcYAACYGAAAmRgAAJoYAACbGAAAnBgAAJ0YAACeGAAAnxgAAKAYAAChGAAAohgAAKMYAACkGAAApRgAAKYYAACnGAAAqBgAAKkYAACqGAAAqxgAAKwYAACtGAAArhgAAK8YAACwGAAAsRgAALIYAACzGAAAtBgAALUYAAC2GAAAtxgAALgYAAC5GAAAuhgAALsYAAC8GAAAvRgAAL4YAAC/GAAAwBgAAMEYAADCGAAAwxgAAMQYAADFGAAAxhgAAMcYAADIGAAAyRgAAMoYAADLGAAAzBgAAM0YAADOGAAAzxgAANAYAADRGAAA0hgAANMYAADUGAAA1RgAANYYAADXGAAA2BgAANkYAADaGAAA2xgAANwYAADdGAAA3hgAAN8YAADgGAAA4RgAAOIYAADjGAAA5BgAAOUYAADmGAAA5xgAAOgYAADpGAAA6hgAAOsYAADsGAAA7RgAAO4YAADvGAAA8BgAAPEYAADyGAAA8xgAAPQYAAD1GAAA9hgAAPcYAAD4GAAA+RgAAPoYAAD7GAAA/BgAAP0YAAD+GAAA/xgAAAAZAAABGQAAAhkAAAMZAAAEGQAABRkAAAYZAAAHGQAACBkAAAkZAAAKGQAACxkAAAwZAAANGQAADhkAAA8ZAAAQGQAAERkAABIZAAATGQAAFBkAABUZAAAWGQAAFxkAABgZAAAZGQAAGhkAABsZAAAcGQAAHRkAAB4ZAAAfGQAAIBkAACEZAAAiGQAAIxkAACQZAAAlGQAAJhkAACcZAAAoGQAAKRkAACoZAAArGQAALBkAAC0ZAAAuGQAALxkAADAZAAAxGQAAMhkAADMZAAA0GQAANRkAADYZAAA3GQAAOBkAADkZAAA6GQAAOxkAADwZAAA9GQAAPhkAAD8ZAABAGQAAQRkAAEIZAABDGQAARBkAAEUZAABGGQAARxkAAEgZAABJGQAAShkAAEsZAABMGQAATRkAAE4ZAABPGQAAUBkAAFEZAABSGQAAUxkAAFQZAABVGQAAVhkAAFcZAABYGQAAWRkAAFoZAABbGQAAXBkAAF0ZAABeGQAAXxkAAGAZAABhGQAAYhkAAGMZAABkGQAAZRkAAGYZAABnGQAAaBkAAGkZAABqGQAAaxkAAGwZAABtGQAAbhkAAG8ZAABwGQAAcRkAAHIZAABzGQAAdBkAAHUZAAB2GQAAdxkAAHgZAAB5GQAAehkAAHsZAAB8GQAAfRkAAH4ZAAB/GQAAgBkAAIEZAACCGQAAgxkAAIQZAACFGQAAhhkAAIcZAACIGQAAiRkAAIoZAACLGQAAjBkAAI0ZAACOGQAAjxkAAJAZAACRGQAAkhkAAJMZAACUGQAAlRkAAJYZAACXGQAAmBkAAJkZAACaGQAAmxkAAJwZAACdGQAAnhkAAJ8ZAACgGQAAoRkAAKIZAACjGQAApBkAAKUZAACmGQAApxkAAKgZAACpGQAAqhkAAKsZAACsGQAArRkAAK4ZAACvGQAAsBkAALEZAACyGQAAsxkAALQZAAC1GQAAthkAALcZAAC4GQAAuRkAALoZAAC7GQAAvBkAAL0ZAAC+GQAAvxkAAMAZAADBGQAAwhkAAMMZAADEGQAAxRkAAMYZAADHGQAAyBkAAMkZAADKGQAAyxkAAMwZAADNGQAAzhkAAM8ZAADQGQAA0RkAANIZAADTGQAA1BkAANUZAADWGQAA1xkAANgZAADZGQAA2hkAANsZAADcGQAA3RkAAN4ZAADfGQAA4BkAAOEZAADiGQAA4xkAAOQZAADlGQAA5hkAAOcZAADoGQAA6RkAAOoZAADrGQAA7BkAAO0ZAADuGQAA7xkAAPAZAADxGQAA8hkAAPMZAAD0GQAA9RkAAPYZAAD3GQAA+BkAAPkZAAD6GQAA+xkAAPwZAAD9GQAA/hkAAP8ZAAAAGgAAARoAAAIaAAADGgAABBoAAAUaAAAGGgAABxoAAAgaAAAJGgAAChoAAAsaAAAMGgAADRoAAA4aAAAPGgAAEBoAABEaAAASGgAAExoAABQaAAAVGgAAFhoAABcaAAAYGgAAGRoAABoaAAAbGgAAHBoAAB0aAAAeGgAAHxoAACAaAAAhGgAAIhoAACMaAAAkGgAAJRoAACYaAAAnGgAAKBoAACkaAAAqGgAAKxoAACwaAAAtGgAALhoAAC8aAAAwGgAAMRoAADIaAAAzGgAANBoAADUaAAA2GgAANxoAADgaAAA5GgAAOhoAADsaAAA8GgAAPRoAAD4aAAA/GgAAQBoAAEEaAABCGgAAQxoAAEQaAABFGgAARhoAAEcaAABIGgAASRoAAEoaAABLGgAATBoAAE0aAABOGgAATxoAAFAaAABRGgAAUhoAAFMaAABUGgAAVRoAAFYaAABXGgAAWBoAAFkaAABaGgAAWxoAAFwaAABdGgAAXhoAAF8aAABgGgAAYRoAAGIaAABjGgAAZBoAAGUaAABmGgAAZxoAAGgaAABpGgAAahoAAGsaAABsGgAAbRoAAG4aAABvGgAAcBoAAHEaAAByGgAAcxoAAHQaAAB1GgAAdhoAAHcaAAB4GgAAeRoAAHoaAAB7GgAAfBoAAH0aAAB+GgAAfxoAAIAaAACBGgAAghoAAIMaAACEGgAAhRoAAIYaAACHGgAAiBoAAIkaAACKGgAAixoAAIwaAACNGgAAjhoAAI8aAACQGgAAkRoAAJIaAACTGgAAlBoAAJUaAACWGgAAlxoAAJgaAACZGgAAmhoAAJsaAACcGgAAnRoAAJ4aAACfGgAAoBoAAKEaAACiGgAAoxoAAKQaAAClGgAAphoAAKcaAACoGgAAqRoAAKoaAACrGgAArBoAAK0aAACuGgAArxoAALAaAACxGgAAshoAALMaAAC0GgAAtRoAALYaAAC3GgAAuBoAALkaAAC6GgAAuxoAALwaAAC9GgAAvhoAAL8aAADAGgAAwRoAAMIaAADDGgAAxBoAAMUaAADGGgAAxxoAAMgaAADJGgAAyhoAAMsaAADMGgAAzRoAAM4aAADPGgAA0BoAANEaAADSGgAA0xoAANQaAADVGgAA1hoAANcaAADYGgAA2RoAANoaAADbGgAA3BoAAN0aAADeGgAA3xoAAOAaAADhGgAA4hoAAOMaAADkGgAA5RoAAOYaAADnGgAA6BoAAOkaAADqGgAA6xoAAOwaAADtGgAA7hoAAO8aAADwGgAA8RoAAPIaAADzGgAA9BoAAPUaAAD2GgAA9xoAAPgaAAD5GgAA+hoAAPsaAAD8GgAA/RoAAP4aAAD/GgAAABsAAAEbAAACGwAAAxsAAAQbAAAFGwAABhsAAAcbAAAIGwAACRsAAAobAAALGwAADBsAAA0bAAAOGwAADxsAABAbAAARGwAAEhsAABMbAAAUGwAAFRsAABYbAAAXGwAAGBsAABkbAAAaGwAAGxsAABwbAAAdGwAAHhsAAB8bAAAgGwAAIRsAACIbAAAjGwAAJBsAACUbAAAmGwAAJxsAACgbAAApGwAAKhsAACsbAAAsGwAALRsAAC4bAAAvGwAAMBsAADEbAAAyGwAAMxsAADQbAAA1GwAANhsAADcbAAA4GwAAORsAADobAAA7GwAAPBsAAD0bAAA+GwAAPxsAAEAbAABBGwAAQhsAAEMbAABEGwAARRsAAEYbAABHGwAASBsAAEkbAABKGwAASxsAAEwbAABNGwAAThsAAE8bAABQGwAAURsAAFIbAABTGwAAVBsAAFUbAABWGwAAVxsAAFgbAABZGwAAWhsAAFsbAABcGwAAXRsAAF4bAABfGwAAYBsAAGEbAABiGwAAYxsAAGQbAABlGwAAZhsAAGcbAABoGwAAaRsAAGobAABrGwAAbBsAAG0bAABuGwAAbxsAAHAbAABxGwAAchsAAHMbAAB0GwAAdRsAAHYbAAB3GwAAeBsAAHkbAAB6GwAAexsAAHwbAAB9GwAAfhsAAH8bAACAGwAAgRsAAIIbAACDGwAAhBsAAIUbAACGGwAAhxsAAIgbAACJGwAAihsAAIsbAACMGwAAjRsAAI4bAACPGwAAkBsAAJEbAACSGwAAkxsAAJQbAACVGwAAlhsAAJcbAACYGwAAmRsAAJobAACbGwAAnBsAAJ0bAACeGwAAnxsAAKAbAAChGwAAohsAAKMbAACkGwAApRsAAKYbAACnGwAAqBsAAKkbAACqGwAAqxsAAKwbAACtGwAArhsAAK8bAACwGwAAsRsAALIbAACzGwAAtBsAALUbAAC2GwAAtxsAALgbAAC5GwAAuhsAALsbAAC8GwAAvRsAAL4bAAC/GwAAwBsAAMEbAADCGwAAwxsAAMQbAADFGwAAxhsAAMcbAADIGwAAyRsAAMobAADLGwAAzBsAAM0bAADOGwAAzxsAANAbAADRGwAA0hsAANMbAADUGwAA1RsAANYbAADXGwAA2BsAANkbAADaGwAA2xsAANwbAADdGwAA3hsAAN8bAADgGwAA4RsAAOIbAADjGwAA5BsAAOUbAADmGwAA5xsAAOgbAADpGwAA6hsAAOsbAADsGwAA7RsAAO4bAADvGwAA8BsAAPEbAADyGwAA8xsAAPQbAAD1GwAA9hsAAPcbAAD4GwAA+RsAAPobAAD7GwAA/BsAAP0bAAD+GwAA/xsAAAAcAAABHAAAAhwAAAMcAAAEHAAABRwAAAYcAAAHHAAACBwAAAkcAAAKHAAACxwAAAwcAAANHAAADhwAAA8cAAAQHAAAERwAABIcAAATHAAAFBwAABUcAAAWHAAAFxwAABgcAAAZHAAAGhwAABscAAAcHAAAHRwAAB4cAAAfHAAAIBwAACEcAAAiHAAAIxwAACQcAAAlHAAAJhwAACccAAAoHAAAKRwAACocAAArHAAALBwAAC0cAAAuHAAALxwAADAcAAAxHAAAMhwAADMcAAA0HAAANRwAADYcAAA3HAAAOBwAADkcAAA6HAAAOxwAADwcAAA9HAAAPhwAAD8cAABAHAAAQRwAAEIcAABDHAAARBwAAEUcAABGHAAARxwAAEgcAABJHAAAShwAAEscAABMHAAATRwAAE4cAABPHAAAUBwAAFEcAABSHAAAUxwAAFQcAABVHAAAVhwAAFccAABYHAAAWRwAAFocAABbHAAAXBwAAF0cAABeHAAAXxwAAGAcAABhHAAAYhwAAGMcAABkHAAAZRwAAGYcAABnHAAAaBwAAGkcAABqHAAAaxwAAGwcAABtHAAAbhwAAG8cAABwHAAAcRwAAHIcAABzHAAAdBwAAHUcAAB2HAAAdxwAAHgcAAB5HAAAehwAAHscAAB8HAAAfRwAAH4cAAB/HAAAgBwAAIEcAACCHAAAgxwAAIQcAACFHAAAhhwAAIccAACIHAAAiRwAAIocAACLHAAAjBwAAI0cAACOHAAAjxwAAJAcAACRHAAAkhwAAJMcAACUHAAAlRwAAJYcAACXHAAAmBwAAJkcAACaHAAAmxwAAJwcAACdHAAAnhwAAJ8cAACgHAAAoRwAAKIcAACjHAAApBwAAKUcAACmHAAApxwAAKgcAACpHAAAqhwAAKscAACsHAAArRwAAK4cAACvHAAAsBwAALEcAACyHAAAsxwAALQcAAC1HAAAthwAALccAAC4HAAAuRwAALocAAC7HAAAvBwAAL0cAAC+HAAAvxwAAMAcAADBHAAAwhwAAMMcAADEHAAAxRwAAMYcAADHHAAAyBwAAMkcAADKHAAAyxwAAMwcAADNHAAAzhwAAM8cAADQHAAA0RwAANIcAADTHAAA1BwAANUcAADWHAAA1xwAANgcAADZHAAA2hwAANscAADcHAAA3RwAAN4cAADfHAAA4BwAAOEcAADiHAAA4xwAAOQcAADlHAAA5hwAAOccAADoHAAA6RwAAOocAADrHAAA7BwAAO0cAADuHAAA7xwAAPAcAADxHAAA8hwAAPMcAAD0HAAA9RwAAPYcAAD3HAAA+BwAAPkcAAD6HAAA+xwAAPwcAAD9HAAA/hwAAP8cAAAAHQAAAR0AAAIdAAADHQAABB0AAAUdAAAGHQAABx0AAAgdAAAJHQAACh0AAAsdAAAMHQAADR0AAA4dAAAPHQAAEB0AABEdAAASHQAAEx0AABQdAAAVHQAAFh0AABcdAAAYHQAAGR0AABodAAAbHQAAHB0AAB0dAAAeHQAAHx0AACAdAAAhHQAAIh0AACMdAAAkHQAAJR0AACYdAAAnHQAAKB0AACkdAAAqHQAAKx0AACwdAAAtHQAALh0AAC8dAAAwHQAAMR0AADIdAAAzHQAANB0AADUdAAA2HQAANx0AADgdAAA5HQAAOh0AADsdAAA8HQAAPR0AAD4dAAA/HQAAQB0AAEEdAABCHQAAQx0AAEQdAABFHQAARh0AAEcdAABIHQAASR0AAEodAABLHQAATB0AAE0dAABOHQAATx0AAFAdAABRHQAAUh0AAFMdAABUHQAAVR0AAFYdAABXHQAAWB0AAFkdAABaHQAAWx0AAFwdAABdHQAAXh0AAF8dAABgHQAAYR0AAGIdAABjHQAAZB0AAGUdAABmHQAAZx0AAGgdAABpHQAAah0AAGsdAABsHQAAbR0AAG4dAABvHQAAcB0AAHEdAAByHQAAcx0AAHQdAAB1HQAAdh0AAHcdAAB4HQAAeR0AAHodAAB7HQAAfB0AAH0dAAB+HQAAfx0AAIAdAACBHQAAgh0AAIMdAACEHQAAhR0AAIYdAACHHQAAiB0AAIkdAACKHQAAix0AAIwdAACNHQAAjh0AAI8dAACQHQAAkR0AAJIdAACTHQAAlB0AAJUdAACWHQAAlx0AAJgdAACZHQAAmh0AAJsdAACcHQAAnR0AAJ4dAACfHQAAoB0AAKEdAACiHQAAox0AAKQdAAClHQAAph0AAKcdAACoHQAAqR0AAKodAACrHQAArB0AAK0dAACuHQAArx0AALAdAACxHQAAsh0AALMdAAC0HQAAtR0AALYdAAC3HQAAuB0AALkdAAC6HQAAux0AALwdAAC9HQAAvh0AAL8dAADAHQAAwR0AAMIdAADDHQAAxB0AAMUdAADGHQAAxx0AAMgdAADJHQAAyh0AAMsdAADMHQAAzR0AAM4dAADPHQAA0B0AANEdAADSHQAA0x0AANQdAADVHQAA1h0AANcdAADYHQAA2R0AANodAADbHQAA3B0AAN0dAADeHQAA3x0AAOAdAADhHQAA4h0AAOMdAADkHQAA5R0AAOYdAADnHQAA6B0AAOkdAADqHQAA6x0AAOwdAADtHQAA7h0AAO8dAADwHQAA8R0AAPIdAADzHQAA9B0AAPUdAAD2HQAA9x0AAPgdAAD5HQAA+h0AAPsdAAD8HQAA/R0AAP4dAAD/HQAAAB4AAAEeAAACHgAAAx4AAAQeAAAFHgAABh4AAAceAAAIHgAACR4AAAoeAAALHgAADB4AAA0eAAAOHgAADx4AABAeAAARHgAAEh4AABMeAAAUHgAAFR4AABYeAAAXHgAAGB4AABkeAAAaHgAAGx4AABweAAAdHgAAHh4AAB8eAAAgHgAAIR4AACIeAAAjHgAAJB4AACUeAAAmHgAAJx4AACgeAAApHgAAKh4AACseAAAsHgAALR4AAC4eAAAvHgAAMB4AADEeAAAyHgAAMx4AADQeAAA1HgAANh4AADceAAA4HgAAOR4AADoeAAA7HgAAPB4AAD0eAAA+HgAAPx4AAEAeAABBHgAAQh4AAEMeAABEHgAARR4AAEYeAABHHgAASB4AAEkeAABKHgAASx4AAEweAABNHgAATh4AAE8eAABQHgAAUR4AAFIeAABTHgAAVB4AAFUeAABWHgAAVx4AAFgeAABZHgAAWh4AAFseAABcHgAAXR4AAF4eAABfHgAAYB4AAGEeAABiHgAAYx4AAGQeAABlHgAAZh4AAGceAABoHgAAaR4AAGoeAABrHgAAbB4AAG0eAABuHgAAbx4AAHAeAABxHgAAch4AAHMeAAB0HgAAdR4AAHYeAAB3HgAAeB4AAHkeAAB6HgAAex4AAHweAAB9HgAAfh4AAH8eAACAHgAAgR4AAIIeAACDHgAAhB4AAIUeAACGHgAAhx4AAIgeAACJHgAAih4AAIseAACMHgAAjR4AAI4eAACPHgAAkB4AAJEeAACSHgAAkx4AAJQeAACVHgAAlh4AAJceAACYHgAAmR4AAJoeAACbHgAAnB4AAJ0eAACeHgAAnx4AAKAeAAChHgAAoh4AAKMeAACkHgAApR4AAKYeAACnHgAAqB4AAKkeAACqHgAAqx4AAKweAACtHgAArh4AAK8eAACwHgAAsR4AALIeAACzHgAAtB4AALUeAAC2HgAAtx4AALgeAAC5HgAAuh4AALseAAC8HgAAvR4AAL4eAAC/HgAAwB4AAMEeAADCHgAAwx4AAMQeAADFHgAAxh4AAMceAADIHgAAyR4AAMoeAADLHgAAzB4AAM0eAADOHgAAzx4AANAeAADRHgAA0h4AANMeAADUHgAA1R4AANYeAADXHgAA2B4AANkeAADaHgAA2x4AANweAADdHgAA3h4AAN8eAADgHgAA4R4AAOIeAADjHgAA5B4AAOUeAADmHgAA5x4AAOgeAADpHgAA6h4AAOseAADsHgAA7R4AAO4eAADvHgAA8B4AAPEeAADyHgAA8x4AAPQeAAD1HgAA9h4AAPceAAD4HgAA+R4AAPoeAAD7HgAA/B4AAP0eAAD+HgAA/x4AAAAfAAABHwAAAh8AAAMfAAAEHwAABR8AAAYfAAAHHwAACB8AAAkfAAAKHwAACx8AAAwfAAANHwAADh8AAA8fAAAQHwAAER8AABIfAAATHwAAFB8AABUfAAAWHwAAFx8AABgfAAAZHwAAGh8AABsfAAAcHwAAHR8AAB4fAAAfHwAAIB8AACEfAAAiHwAAIx8AACQfAAAlHwAAJh8AACcfAAAoHwAAKR8AACofAAArHwAALB8AAC0fAAAuHwAALx8AADAfAAAxHwAAMh8AADMfAAA0HwAANR8AADYfAAA3HwAAOB8AADkfAAA6HwAAOx8AADwfAAA9HwAAPh8AAD8fAABAHwAAQR8AAEIfAABDHwAARB8AAEUfAABGHwAARx8AAEgfAABJHwAASh8AAEsfAABMHwAATR8AAE4fAABPHwAAUB8AAFEfAABSHwAAUx8AAFQfAABVHwAAVh8AAFcfAABYHwAAWR8AAFofAABbHwAAXB8AAF0fAABeHwAAXx8AAGAfAABhHwAAYh8AAGMfAABkHwAAZR8AAGYfAABnHwAAaB8AAGkfAABqHwAAax8AAGwfAABtHwAAbh8AAG8fAABwHwAAcR8AAHIfAABzHwAAdB8AAHUfAAB2HwAAdx8AAHgfAAB5HwAAeh8AAHsfAAB8HwAAfR8AAH4fAAB/HwAAgB8AAIEfAACCHwAAgx8AAIQfAACFHwAAhh8AAIcfAACIHwAAiR8AAIofAACLHwAAjB8AAI0fAACOHwAAjx8AAJAfAACRHwAAkh8AAJMfAACUHwAAlR8AAJYfAACXHwAAmB8AAJkfAACaHwAAmx8AAJwfAACdHwAAnh8AAJ8fAACgHwAAoR8AAKIfAACjHwAApB8AAKUfAACmHwAApx8AAKgfAACpHwAAqh8AAKsfAACsHwAArR8AAK4fAACvHwAAsB8AALEfAACyHwAAsx8AALQfAAC1HwAAth8AALcfAAC4HwAAuR8AALofAAC7HwAAvB8AAL0fAAC+HwAAvx8AAMAfAADBHwAAwh8AAMMfAADEHwAAxR8AAMYfAADHHwAAyB8AAMkfAADKHwAAyx8AAMwfAADNHwAAzh8AAM8fAADQHwAA0R8AANIfAADTHwAA1B8AANUfAADWHwAA1x8AANgfAADZHwAA2h8AANsfAADcHwAA3R8AAN4fAADfHwAA4B8AAOEfAADiHwAA4x8AAOQfAADlHwAA5h8AAOcfAADoHwAA6R8AAOofAADrHwAA7B8AAO0fAADuHwAA7x8AAPAfAADxHwAA8h8AAPMfAAD0HwAA9R8AAPYfAAD3HwAA+B8AAPkfAAD6HwAA+x8AAPwfAAD9HwAA/h8AAP8fAAAAIAAAASAAAAIgAAADIAAABCAAAAUgAAAGIAAAByAAAAggAAAJIAAACiAAAAsgAAAMIAAADSAAAA4gAAAPIAAAECAAABEgAAASIAAAEyAAABQgAAAVIAAAFiAAABcgAAAYIAAAGSAAABogAAAbIAAAHCAAAB0gAAAeIAAAHyAAACAgAAAhIAAAIiAAACMgAAAkIAAAJSAAACYgAAAnIAAAKCAAACkgAAAqIAAAKyAAACwgAAAtIAAALiAAAC8gAAAwIAAAMSAAADIgAAAzIAAANCAAADUgAAA2IAAANyAAADggAAA5IAAAOiAAADsgAAA8IAAAPSAAAD4gAAA/IAAAQCAAAEEgAABCIAAAQyAAAEQgAABFIAAARiAAAEcgAABIIAAASSAAAEogAABLIAAATCAAAE0gAABOIAAATyAAAFAgAABRIAAAUiAAAFMgAABUIAAAVSAAAFYgAABXIAAAWCAAAFkgAABaIAAAWyAAAFwgAABdIAAAXiAAAF8gAABgIAAAYSAAAGIgAABjIAAAZCAAAGUgAABmIAAAZyAAAGggAABpIAAAaiAAAGsgAABsIAAAbSAAAG4gAABvIAAAcCAAAHEgAAByIAAAcyAAAHQgAAB1IAAAdiAAAHcgAAB4IAAAeSAAAHogAAB7IAAAfCAAAH0gAAB+IAAAfyAAAIAgAACBIAAAgiAAAIMgAACEIAAAhSAAAIYgAACHIAAAiCAAAIkgAACKIAAAiyAAAIwgAACNIAAAjiAAAI8gAACQIAAAkSAAAJIgAACTIAAAlCAAAJUgAACWIAAAlyAAAJggAACZIAAAmiAAAJsgAACcIAAAnSAAAJ4gAACfIAAAoCAAAKEgAACiIAAAoyAAAKQgAAClIAAApiAAAKcgAACoIAAAqSAAAKogAACrIAAArCAAAK0gAACuIAAAryAAALAgAACxIAAAsiAAALMgAAC0IAAAtSAAALYgAAC3IAAAuCAAALkgAAC6IAAAuyAAALwgAAC9IAAAviAAAL8gAADAIAAAwSAAAMIgAADDIAAAxCAAAMUgAADGIAAAxyAAAMggAADJIAAAyiAAAMsgAADMIAAAzSAAAM4gAADPIAAA0CAAANEgAADSIAAA0yAAANQgAADVIAAA1iAAANcgAADYIAAA2SAAANogAADbIAAA3CAAAN0gAADeIAAA3yAAAOAgAADhIAAA4iAAAOMgAADkIAAA5SAAAOYgAADnIAAA6CAAAOkgAADqIAAA6yAAAOwgAADtIAAA7iAAAO8gAADwIAAA8SAAAPIgAADzIAAA9CAAAPUgAAD2IAAA9yAAAPggAAD5IAAA+iAAAPsgAAD8IAAA/SAAAP4gAAD/IAAAACEAAAEhAAACIQAAAyEAAAQhAAAFIQAABiEAAAchAAAIIQAACSEAAAohAAALIQAADCEAAA0hAAAOIQAADyEAABAhAAARIQAAEiEAABMhAAAUIQAAFSEAABYhAAAXIQAAGCEAABkhAAAaIQAAGyEAABwhAAAdIQAAHiEAAB8hAAAgIQAAISEAACIhAAAjIQAAJCEAACUhAAAmIQAAJyEAACghAAApIQAAKiEAACshAAAsIQAALSEAAC4hAAAvIQAAMCEAADEhAAAyIQAAMyEAADQhAAA1IQAANiEAADchAAA4IQAAOSEAADohAAA7IQAAPCEAAD0hAAA+IQAAPyEAAEAhAABBIQAAQiEAAEMhAABEIQAARSEAAEYhAABHIQAASCEAAEkhAABKIQAASyEAAEwhAABNIQAATiEAAE8hAABQIQAAUSEAAFIhAABTIQAAVCEAAFUhAABWIQAAVyEAAFghAABZIQAAWiEAAFshAABcIQAAXSEAAF4hAABfIQAAYCEAAGEhAABiIQAAYyEAAGQhAABlIQAAZiEAAGchAABoIQAAaSEAAGohAABrIQAAbCEAAG0hAABuIQAAbyEAAHAhAABxIQAAciEAAHMhAAB0IQAAdSEAAHYhAAB3IQAAeCEAAHkhAAB6IQAAeyEAAHwhAAB9IQAAfiEAAH8hAACAIQAAgSEAAIIhAACDIQAAhCEAAIUhAACGIQAAhyEAAIghAACJIQAAiiEAAIshAACMIQAAjSEAAI4hAACPIQAAkCEAAJEhAACSIQAAkyEAAJQhAACVIQAAliEAAJchAACYIQAAmSEAAJohAACbIQAAnCEAAJ0hAACeIQAAnyEAAKAhAAChIQAAoiEAAKMhAACkIQAApSEAAKYhAACnIQAAqCEAAKkhAACqIQAAqyEAAKwhAACtIQAAriEAAK8hAACwIQAAsSEAALIhAACzIQAAtCEAALUhAAC2IQAAtyEAALghAAC5IQAAuiEAALshAAC8IQAAvSEAAL4hAAC/IQAAwCEAAMEhAADCIQAAwyEAAMQhAADFIQAAxiEAAMchAADIIQAAySEAAMohAADLIQAAzCEAAM0hAADOIQAAzyEAANAhAADRIQAA0iEAANMhAADUIQAA1SEAANYhAADXIQAA2CEAANkhAADaIQAA2yEAANwhAADdIQAA3iEAAN8hAADgIQAA4SEAAOIhAADjIQAA5CEAAOUhAADmIQAA5yEAAOghAADpIQAA6iEAAOshAADsIQAA7SEAAO4hAADvIQAA8CEAAPEhAADyIQAA8yEAAPQhAAD1IQAA9iEAAPchAAD4IQAA+SEAAPohAAD7IQAA/CEAAP0hAAD+IQAA/yEAAAAiAAABIgAAAiIAAAMiAAAEIgAABSIAAAYiAAAHIgAACCIAAAkiAAAKIgAACyIAAAwiAAANIgAADiIAAA8iAAAQIgAAESIAABIiAAATIgAAFCIAABUiAAAWIgAAFyIAABgiAAAZIgAAGiIAABsiAAAcIgAAHSIAAB4iAAAfIgAAICIAACEiAAAiIgAAIyIAACQiAAAlIgAAJiIAACciAAAoIgAAKSIAACoiAAArIgAALCIAAC0iAAAuIgAALyIAADAiAAAxIgAAMiIAADMiAAA0IgAANSIAADYiAAA3IgAAOCIAADkiAAA6IgAAOyIAADwiAAA9IgAAPiIAAD8iAABAIgAAQSIAAEIiAABDIgAARCIAAEUiAABGIgAARyIAAEgiAABJIgAASiIAAEsiAABMIgAATSIAAE4iAABPIgAAUCIAAFEiAABSIgAAUyIAAFQiAABVIgAAViIAAFciAABYIgAAWSIAAFoiAABbIgAAXCIAAF0iAABeIgAAXyIAAGAiAABhIgAAYiIAAGMiAABkIgAAZSIAAGYiAABnIgAAaCIAAGkiAABqIgAAayIAAGwiAABtIgAAbiIAAG8iAABwIgAAcSIAAHIiAABzIgAAdCIAAHUiAAB2IgAAdyIAAHgiAAB5IgAAeiIAAHsiAAB8IgAAfSIAAH4iAAB/IgAAgCIAAIEiAACCIgAAgyIAAIQiAACFIgAAhiIAAIciAACIIgAAiSIAAIoiAACLIgAAjCIAAI0iAACOIgAAjyIAAJAiAACRIgAAkiIAAJMiAACUIgAAlSIAAJYiAACXIgAAmCIAAJkiAACaIgAAmyIAAJwiAACdIgAAniIAAJ8iAACgIgAAoSIAAKIiAACjIgAApCIAAKUiAACmIgAApyIAAKgiAACpIgAAqiIAAKsiAACsIgAArSIAAK4iAACvIgAAsCIAALEiAACyIgAAsyIAALQiAAC1IgAAtiIAALciAAC4IgAAuSIAALoiAAC7IgAAvCIAAL0iAAC+IgAAvyIAAMAiAADBIgAAwiIAAMMiAADEIgAAxSIAAMYiAADHIgAAyCIAAMkiAADKIgAAyyIAAMwiAADNIgAAziIAAM8iAADQIgAA0SIAANIiAADTIgAA1CIAANUiAADWIgAA1yIAANgiAADZIgAA2iIAANsiAADcIgAA3SIAAN4iAADfIgAA4CIAAOEiAADiIgAA4yIAAOQiAADlIgAA5iIAAOciAADoIgAA6SIAAOoiAADrIgAA7CIAAO0iAADuIgAA7yIAAPAiAADxIgAA8iIAAPMiAAD0IgAA9SIAAPYiAAD3IgAA+CIAAPkiAAD6IgAA+yIAAPwiAAD9IgAA/iIAAP8iAAAAIwAAASMAAAIjAAADIwAABCMAAAUjAAAGIwAAByMAAAgjAAAJIwAACiMAAAsjAAAMIwAADSMAAA4jAAAPIwAAECMAABEjAAASIwAAEyMAABQjAAAVIwAAFiMAABcjAAAYIwAAGSMAABojAAAbIwAAHCMAAB0jAAAeIwAAHyMAACAjAAAhIwAAIiMAACMjAAAkIwAAJSMAACYjAAAnIwAAKCMAACkjAAAqIwAAKyMAACwjAAAtIwAALiMAAC8jAAAwIwAAMSMAADIjAAAzIwAANCMAADUjAAA2IwAANyMAADgjAAA5IwAAOiMAADsjAAA8IwAAPSMAAD4jAAA/IwAAQCMAAEEjAABCIwAAQyMAAEQjAABFIwAARiMAAEcjAABIIwAASSMAAEojAABLIwAATCMAAE0jAABOIwAATyMAAFAjAABRIwAAUiMAAFMjAABUIwAAVSMAAFYjAABXIwAAWCMAAFkjAABaIwAAWyMAAFwjAABdIwAAXiMAAF8jAABgIwAAYSMAAGIjAABjIwAAZCMAAGUjAABmIwAAZyMAAGgjAABpIwAAaiMAAGsjAABsIwAAbSMAAG4jAABvIwAAcCMAAHEjAAByIwAAcyMAAHQjAAB1IwAAdiMAAHcjAAB4IwAAeSMAAHojAAB7IwAAfCMAAH0jAAB+IwAAfyMAAIAjAACBIwAAgiMAAIMjAACEIwAAhSMAAIYjAACHIwAAiCMAAIkjAACKIwAAiyMAAIwjAACNIwAAjiMAAI8jAACQIwAAkSMAAJIjAACTIwAAlCMAAJUjAACWIwAAlyMAAJgjAACZIwAAmiMAAJsjAACcIwAAnSMAAJ4jAACfIwAAoCMAAKEjAACiIwAAoyMAAKQjAAClIwAApiMAAKcjAACoIwAAqSMAAKojAACrIwAArCMAAK0jAACuIwAAryMAALAjAACxIwAAsiMAALMjAAC0IwAAtSMAALYjAAC3IwAAuCMAALkjAAC6IwAAuyMAALwjAAC9IwAAviMAAL8jAADAIwAAwSMAAMIjAADDIwAAxCMAAMUjAADGIwAAxyMAAMgjAADJIwAAyiMAAMsjAADMIwAAzSMAAM4jAADPIwAA0CMAANEjAADSIwAA0yMAANQjAADVIwAA1iMAANcjAADYIwAA2SMAANojAADbIwAA3CMAAN0jAADeIwAA3yMAAOAjAADhIwAA4iMAAOMjAADkIwAA5SMAAOYjAADnIwAA6CMAAOkjAADqIwAA6yMAAOwjAADtIwAA7iMAAO8jAADwIwAA8SMAAPIjAADzIwAA9CMAAPUjAAD2IwAA9yMAAPgjAAD5IwAA+iMAAPsjAAD8IwAA/SMAAP4jAAD/IwAAACQAAAEkAAACJAAAAyQAAAQkAAAFJAAABiQAAAckAAAIJAAACSQAAAokAAALJAAADCQAAA0kAAAOJAAADyQAABAkAAARJAAAEiQAABMkAAAUJAAAFSQAABYkAAAXJAAAGCQAABkkAAAaJAAAGyQAABwkAAAdJAAAHiQAAB8kAAAgJAAAISQAACIkAAAjJAAAJCQAACUkAAAmJAAAJyQAACgkAAApJAAAKiQAACskAAAsJAAALSQAAC4kAAAvJAAAMCQAADEkAAAyJAAAMyQAADQkAAA1JAAANiQAADckAAA4JAAAOSQAADokAAA7JAAAPCQAAD0kAAA+JAAAPyQAAEAkAABBJAAAQiQAAEMkAABEJAAARSQAAEYkAABHJAAASCQAAEkkAABKJAAASyQAAEwkAABNJAAATiQAAE8kAABQJAAAUSQAAFIkAABTJAAAVCQAAFUkAABWJAAAVyQAAFgkAABZJAAAWiQAAFskAABcJAAAXSQAAF4kAABfJAAAYCQAAGEkAABiJAAAYyQAAGQkAABlJAAAZiQAAGckAABoJAAAaSQAAGokAABrJAAAbCQAAG0kAABuJAAAbyQAAHAkAABxJAAAciQAAHMkAAB0JAAAdSQAAHYkAAB3JAAAeCQAAHkkAAB6JAAAeyQAAHwkAAB9JAAAfiQAAH8kAACAJAAAgSQAAIIkAACDJAAAhCQAAIUkAACGJAAAhyQAAIgkAACJJAAAiiQAAIskAACMJAAAjSQAAI4kAACPJAAAkCQAAJEkAACSJAAAkyQAAJQkAACVJAAAliQAAJckAACYJAAAmSQAAJokAACbJAAAnCQAAJ0kAACeJAAAnyQAAKAkAAChJAAAoiQAAKMkAACkJAAApSQAAKYkAACnJAAAqCQAAKkkAACqJAAAqyQAAKwkAACtJAAAriQAAK8kAACwJAAAsSQAALIkAACzJAAAtCQAALUkAAC2JAAAtyQAALgkAAC5JAAAuiQAALskAAC8JAAAvSQAAL4kAAC/JAAAwCQAAMEkAADCJAAAwyQAAMQkAADFJAAAxiQAAMckAADIJAAAySQAAMokAADLJAAAzCQAAM0kAADOJAAAzyQAANAkAADRJAAA0iQAANMkAADUJAAA1SQAANYkAADXJAAA2CQAANkkAADaJAAA2yQAANwkAADdJAAA3iQAAN8kAADgJAAA4SQAAOIkAADjJAAA5CQAAOUkAADmJAAA5yQAAOgkAADpJAAA6iQAAOskAADsJAAA7SQAAO4kAADvJAAA8CQAAPEkAADyJAAA8yQAAPQkAAD1JAAA9iQAAPckAAD4JAAA+SQAAPokAAD7JAAA/CQAAP0kAAD+JAAA/yQAAAAlAAABJQAAAiUAAAMlAAAEJQAABSUAAAYlAAAHJQAACCUAAAklAAAKJQAACyUAAAwlAAANJQAADiUAAA8lAAAQJQAAESUAABIlAAATJQAAFCUAABUlAAAWJQAAFyUAABglAAAZJQAAGiUAABslAAAcJQAAHSUAAB4lAAAfJQAAICUAACElAAAiJQAAIyUAACQlAAAlJQAAJiUAACclAAAoJQAAKSUAAColAAArJQAALCUAAC0lAAAuJQAALyUAADAlAAAxJQAAMiUAADMlAAA0JQAANSUAADYlAAA3JQAAOCUAADklAAA6JQAAOyUAADwlAAA9JQAAPiUAAD8lAABAJQAAQSUAAEIlAABDJQAARCUAAEUlAABGJQAARyUAAEglAABJJQAASiUAAEslAABMJQAATSUAAE4lAABPJQAAUCUAAFElAABSJQAAUyUAAFQlAABVJQAAViUAAFclAABYJQAAWSUAAFolAABbJQAAXCUAAF0lAABeJQAAXyUAAGAlAABhJQAAYiUAAGMlAABkJQAAZSUAAGYlAABnJQAAaCUAAGklAABqJQAAayUAAGwlAABtJQAAbiUAAG8lAABwJQAAcSUAAHIlAABzJQAAdCUAAHUlAAB2JQAAdyUAAHglAAB5JQAAeiUAAHslAAB8JQAAfSUAAH4lAAB/JQAAgCUAAIElAACCJQAAgyUAAIQlAACFJQAAhiUAAIclAACIJQAAiSUAAIolAACLJQAAjCUAAI0lAACOJQAAjyUAAJAlAACRJQAAkiUAAJMlAACUJQAAlSUAAJYlAACXJQAAmCUAAJklAACaJQAAmyUAAJwlAACdJQAAniUAAJ8lAACgJQAAoSUAAKIlAACjJQAApCUAAKUlAACmJQAApyUAAKglAACpJQAAqiUAAKslAACsJQAArSUAAK4lAACvJQAAsCUAALElAACyJQAAsyUAALQlAAC1JQAAtiUAALclAAC4JQAAuSUAALolAAC7JQAAvCUAAL0lAAC+JQAAvyUAAMAlAADBJQAAwiUAAMMlAADEJQAAxSUAAMYlAADHJQAAyCUAAMklAADKJQAAyyUAAMwlAADNJQAAziUAAM8lAADQJQAA0SUAANIlAADTJQAA1CUAANUlAADWJQAA1yUAANglAADZJQAA2iUAANslAADcJQAA3SUAAN4lAADfJQAA4CUAAOElAADiJQAA4yUAAOQlAADlJQAA5iUAAOclAADoJQAA6SUAAOolAADrJQAA7CUAAO0lAADuJQAA7yUAAPAlAADxJQAA8iUAAPMlAAD0JQAA9SUAAPYlAAD3JQAA+CUAAPklAAD6JQAA+yUAAPwlAAD9JQAA/iUAAP8lAAAAJgAAASYAAAImAAADJgAABCYAAAUmAAAGJgAAByYAAAgmAAAJJgAACiYAAAsmAAAMJgAADSYAAA4mAAAPJgAAECYAABEmAAASJgAAEyYAABQmAAAVJgAAFiYAABcmAAAYJgAAGSYAABomAAAbJgAAHCYAAB0mAAAeJgAAHyYAACAmAAAhJgAAIiYAACMmAAAkJgAAJSYAACYmAAAnJgAAKCYAACkmAAAqJgAAKyYAACwmAAAtJgAALiYAAC8mAAAwJgAAMSYAADImAAAzJgAANCYAADUmAAA2JgAANyYAADgmAAA5JgAAOiYAADsmAAA8JgAAPSYAAD4mAAA/JgAAQCYAAEEmAABCJgAAQyYAAEQmAABFJgAARiYAAEcmAABIJgAASSYAAEomAABLJgAATCYAAE0mAABOJgAATyYAAFAmAABRJgAAUiYAAFMmAABUJgAAVSYAAFYmAABXJgAAWCYAAFkmAABaJgAAWyYAAFwmAABdJgAAXiYAAF8mAABgJgAAYSYAAGImAABjJgAAZCYAAGUmAABmJgAAZyYAAGgmAABpJgAAaiYAAGsmAABsJgAAbSYAAG4mAABvJgAAcCYAAHEmAAByJgAAcyYAAHQmAAB1JgAAdiYAAHcmAAB4JgAAeSYAAHomAAB7JgAAfCYAAH0mAAB+JgAAfyYAAIAmAACBJgAAgiYAAIMmAACEJgAAhSYAAIYmAACHJgAAiCYAAIkmAACKJgAAiyYAAIwmAACNJgAAjiYAAI8mAACQJgAAkSYAAJImAACTJgAAlCYAAJUmAACWJgAAlyYAAJgmAACZJgAAmiYAAJsmAACcJgAAnSYAAJ4mAACfJgAAoCYAAKEmAACiJgAAoyYAAKQmAAClJgAApiYAAKcmAACoJgAAqSYAAKomAACrJgAArCYAAK0mAACuJgAAryYAALAmAACxJgAAsiYAALMmAAC0JgAAtSYAALYmAAC3JgAAuCYAALkmAAC6JgAAuyYAALwmAAC9JgAAviYAAL8mAADAJgAAwSYAAMImAADDJgAAxCYAAMUmAADGJgAAxyYAAMgmAADJJgAAyiYAAMsmAADMJgAAzSYAAM4mAADPJgAA0CYAANEmAADSJgAA0yYAANQmAADVJgAA1iYAANcmAADYJgAA2SYAANomAADbJgAA3CYAAN0mAADeJgAA3yYAAOAmAADhJgAA4iYAAOMmAADkJgAA5SYAAOYmAADnJgAA6CYAAOkmAADqJgAA6yYAAOwmAADtJgAA7iYAAO8mAADwJgAA8SYAAPImAADzJgAA9CYAAPUmAAD2JgAA9yYAAPgmAAD5JgAA+iYAAPsmAAD8JgAA/SYAAP4mAAD/JgAAACcAAAEnAAACJwAAAycAAAQnAAAFJwAABicAAAcnAAAIJwAACScAAAonAAALJwAADCcAAA0nAAAOJwAADycAAA==\"},\"shape\":[10000],\"dtype\":\"int32\",\"order\":\"little\"}]]}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1195\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1196\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Circle\",\"id\":\"p1191\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"lic\"},\"y\":{\"type\":\"field\",\"field\":\"rls\"},\"size\":{\"type\":\"value\",\"value\":3},\"line_alpha\":{\"type\":\"value\",\"value\":0.3},\"fill_color\":{\"type\":\"value\",\"value\":\"#1f77b4\"},\"fill_alpha\":{\"type\":\"value\",\"value\":0}}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Circle\",\"id\":\"p1192\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"lic\"},\"y\":{\"type\":\"field\",\"field\":\"rls\"},\"size\":{\"type\":\"value\",\"value\":3},\"line_alpha\":{\"type\":\"value\",\"value\":0.1},\"fill_color\":{\"type\":\"value\",\"value\":\"#1f77b4\"},\"fill_alpha\":{\"type\":\"value\",\"value\":0.1},\"hatch_alpha\":{\"type\":\"value\",\"value\":0.1}}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Circle\",\"id\":\"p1193\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"lic\"},\"y\":{\"type\":\"field\",\"field\":\"rls\"},\"size\":{\"type\":\"value\",\"value\":3},\"line_alpha\":{\"type\":\"value\",\"value\":0.2},\"fill_color\":{\"type\":\"value\",\"value\":\"#1f77b4\"},\"fill_alpha\":{\"type\":\"value\",\"value\":0.2},\"hatch_alpha\":{\"type\":\"value\",\"value\":0.2}}}}}],\"toolbar\":{\"type\":\"object\",\"name\":\"Toolbar\",\"id\":\"p1142\",\"attributes\":{\"tools\":[{\"type\":\"object\",\"name\":\"PanTool\",\"id\":\"p1170\"},{\"type\":\"object\",\"name\":\"BoxZoomTool\",\"id\":\"p1171\",\"attributes\":{\"overlay\":{\"type\":\"object\",\"name\":\"BoxAnnotation\",\"id\":\"p1172\",\"attributes\":{\"syncable\":false,\"level\":\"overlay\",\"visible\":false,\"left_units\":\"canvas\",\"right_units\":\"canvas\",\"bottom_units\":\"canvas\",\"top_units\":\"canvas\",\"line_color\":\"black\",\"line_alpha\":1.0,\"line_width\":2,\"line_dash\":[4,4],\"fill_color\":\"lightgrey\",\"fill_alpha\":0.5}}}},{\"type\":\"object\",\"name\":\"WheelZoomTool\",\"id\":\"p1173\"},{\"type\":\"object\",\"name\":\"HoverTool\",\"id\":\"p1174\",\"attributes\":{\"renderers\":\"auto\",\"tooltips\":[[\"index\",\"@index\"]]}},{\"type\":\"object\",\"name\":\"SaveTool\",\"id\":\"p1175\"},{\"type\":\"object\",\"name\":\"ResetTool\",\"id\":\"p1176\"}]}},\"left\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1163\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1166\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1164\"},\"axis_label\":\"relative ligand strength\",\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1165\"}}}],\"below\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1156\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1159\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1157\"},\"axis_label\":\"ligand interference coefficient\",\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1158\"}}}],\"center\":[{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1162\",\"attributes\":{\"axis\":{\"id\":\"p1156\"}}},{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1169\",\"attributes\":{\"dimension\":1,\"axis\":{\"id\":\"p1163\"}}}],\"frame_width\":400,\"frame_height\":200}}],\"callbacks\":{\"type\":\"map\"}}};\n", " const render_items = [{\"docid\":\"944806e9-5908-48cb-84e1-689031ed7380\",\"roots\":{\"p1139\":\"38cc7c25-6a66-4f9f-a5b1-199419d9933a\"},\"root_ids\":[\"p1139\"]}];\n", " root.Bokeh.embed.embed_items_notebook(docs_json, render_items);\n", " }\n", " if (root.Bokeh !== undefined) {\n", " embed_document(root);\n", " } else {\n", " let attempts = 0;\n", " const timer = setInterval(function(root) {\n", " if (root.Bokeh !== undefined) {\n", " clearInterval(timer);\n", " embed_document(root);\n", " } else {\n", " attempts++;\n", " if (attempts > 100) {\n", " clearInterval(timer);\n", " console.log(\"Bokeh: ERROR: Unable to run BokehJS code because BokehJS library is missing\");\n", " }\n", " }\n", " }, 10, root)\n", " }\n", "})(window);" ], "application/vnd.bokehjs_exec.v0+json": "" }, "metadata": { "application/vnd.bokehjs_exec.v0+json": { "id": "p1139" } }, "output_type": "display_data" } ], "source": [ "p = bokeh.plotting.figure(\n", " frame_height=200,\n", " frame_width=400,\n", " x_range=[-1, 1],\n", " y_range=[0, 1],\n", " x_axis_label=\"ligand interference coefficient\", \n", " y_axis_label=\"relative ligand strength\",\n", " tools=[\"pan,box_zoom,wheel_zoom,hover,save,reset\"],\n", " tooltips=[(\"index\", \"@index\")]\n", ")\n", "\n", "source = bokeh.models.ColumnDataSource(dict(lic=lic, rls=rls, index=np.arange(n_sets)))\n", "\n", "p.circle(source=source, x=\"lic\", y=\"rls\", size=3, fill_alpha=0, line_alpha=0.3, line_color=\"black\")\n", "\n", "bokeh.io.show(p)" ] }, { "cell_type": "markdown", "id": "9af1ccf5-53ef-4059-9571-fbd50cd2167f", "metadata": {}, "source": [ "We see that most of the points have a LIC value of 0, but that there is some low-density spread of LIC values in both the positive and negative directions. Perhaps these points might exhibit some interesting response behavior?\n", "\n", "Since we stored the parameters in a list of dictionaries, we can easily hover over a specific point on the RLS vs. LIC plot to view its index, and then make a full heatmap with those parameters. \n", "\n", "For example, index 7234 (one of the upper-left points) might be interesting." ] }, { "cell_type": "code", "execution_count": 20, "id": "e9e0a5dd-45f5-4f09-8d43-63aa2344f664", "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "
\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/javascript": [ "(function(root) {\n", " function embed_document(root) {\n", " const docs_json = {\"6f117dff-2426-4162-b4c9-70e62f336488\":{\"version\":\"3.1.0\",\"title\":\"Bokeh Application\",\"defs\":[],\"roots\":[{\"type\":\"object\",\"name\":\"Figure\",\"id\":\"p1296\",\"attributes\":{\"x_range\":{\"type\":\"object\",\"name\":\"Range1d\",\"id\":\"p1305\",\"attributes\":{\"start\":-0.5,\"end\":14.5}},\"y_range\":{\"type\":\"object\",\"name\":\"Range1d\",\"id\":\"p1307\",\"attributes\":{\"start\":-0.5,\"end\":14.5}},\"x_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1309\"},\"y_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1311\"},\"title\":{\"type\":\"object\",\"name\":\"Title\",\"id\":\"p1303\"},\"renderers\":[{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1356\",\"attributes\":{\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1346\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1348\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1347\"},\"data\":{\"type\":\"map\",\"entries\":[[\"x\",[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14]],[\"y\",[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14]],[\"z\",[0.019210152638661365,0.038492027496580226,0.08309059692403835,0.16866592025848093,0.2867339879940817,0.39231665066274024,0.45570622173293024,0.48508280490108846,0.4970523376583583,0.5016704297183224,0.5034144352212303,0.5040677110644084,0.5043116702107951,0.5044026804799174,0.5044365998388769,0.02453335969666552,0.03975869493090083,0.07599658966015657,0.14972588422338046,0.26145948630122656,0.37265761108713596,0.4452767460801767,0.4805744032273418,0.49527144469873824,0.5009917916873837,0.50315936466587,0.503972336597451,0.5042760774342185,0.5043893969159602,0.5044316513158505,0.03302396276421452,0.042562720772181276,0.06635647822295075,0.11956618871802363,0.21415328271102999,0.3294849685950879,0.4197507348769372,0.46892430587611383,0.49056248452401735,0.4991811538897468,0.5024764945402563,0.5037166718299059,0.5041806204245772,0.5043537929025518,0.5044183766315805,0.04480914086410078,0.04879738539286701,0.05987943717320882,0.08878147846811053,0.15226405008947355,0.2553427635326844,0.3650311534650873,0.4405466688756987,0.47840353911285005,0.49439407931224255,0.5006545663224182,0.50303221254838,0.5039247333506907,0.5042583043385128,0.5043827746308435,0.06412118961456051,0.06334143166778625,0.06385953934997467,0.07214108817701069,0.10183457661915629,0.1696252086377018,0.2751340787837292,0.38035639254764153,0.44884304469710895,0.482037106897542,0.4958378989438405,0.5012060547774443,0.5032396779647368,0.5040023346721718,0.5042872680854474,0.10170490688555239,0.09591826392979967,0.0860380704794277,0.07651335947727698,0.07898800090336149,0.1078249152063661,0.1771721637495642,0.28333256563728343,0.38640832093449756,0.45201719402336993,0.48340589978667226,0.4963782860395243,0.5014119422040736,0.5033170553288173,0.5040312679656779,0.16660862804123464,0.15622151789624839,0.1358147502621813,0.10739395448435068,0.08464152682587439,0.08215049884433887,0.11026027242666704,0.18016306607385682,0.2865170173036943,0.3887145098102049,0.45321205871736764,0.483918147045763,0.49658002349197927,0.5014887324477967,0.5033459044993635,0.24561410572634276,0.23478803920485686,0.21086296976373287,0.1693558597059002,0.12119862152089282,0.08865408184857562,0.08344788074523017,0.1111994484277613,0.18130440243636547,0.2877227267437266,0.3895813176091861,0.45365909514684105,0.4841093734939129,0.49665526304889684,0.5015173633957852,0.30780724546183597,0.30071652080988454,0.2834701525218184,0.24701758198430174,0.1887126654679434,0.12790785184537937,0.0903441387143679,0.08395054080317567,0.11155408641513684,0.1817336196030085,0.28817480765349784,0.38990544352404527,0.4538259619901914,0.48418069429752203,0.49668331764462237,0.3418961428774515,0.33847537264495364,0.32967837729658,0.30850386953749515,0.26475737823979667,0.19750315533627097,0.13070393934210894,0.0910054777308048,0.08414071975414564,0.1116869239323312,0.1818941452200678,0.2883436981079732,0.39002639135069506,0.4538881936226552,0.4842072849755854,0.35695235828391203,0.35553576529549147,0.3517980545743362,0.34220390147676477,0.31921462142852963,0.27217895790649316,0.20105358837369225,0.1317927914687229,0.09125661885767347,0.08421201205258581,0.11173653110934838,0.18195406001551676,0.2884067011635502,0.390071502002299,0.4539113957050935,0.36295969583662585,0.362409623965114,0.36094347688497586,0.3570763494802009,0.34715698582516724,0.32343092624851705,0.27507338667628234,0.20241866863696673,0.13220547420896644,0.09135089077829814,0.08423862981193,0.11175504264857997,0.18197639694137366,0.28843019289206334,0.39008831926012194,0.3652581822569925,0.3650500163811891,0.3644927055396002,0.36300746426303104,0.35909029055725916,0.34904547119297713,0.32503564469887997,0.276171016498558,0.20293350165959892,0.13236026927258346,0.09138612306560581,0.0842485835290935,0.11176193366402791,0.18198472632202875,0.2884389606279827,0.366123440474642,0.3660454907489231,0.365836135897156,0.36527619918331583,0.3637835759034649,0.3598475969299984,0.3497555720793331,0.3256385188185982,0.27658289706830425,0.203126283712696,0.13241810468175128,0.09139926927406224,0.08425226889265072,0.1117645052444378,0.18198783154246065,0.3664474216798032,0.3664180107381679,0.36633979205394385,0.3661301738444751,0.3655691870081805,0.3640739256911398,0.36013095325230343,0.35002092765869125,0.32586404281259257,0.2767367282445429,0.2031982345449559,0.13243968240931359,0.09140417132440039,0.08425364904452076,0.11176546881241033]]]}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1357\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1358\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Rect\",\"id\":\"p1353\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"width\":{\"type\":\"value\",\"value\":1},\"height\":{\"type\":\"value\",\"value\":1},\"line_color\":{\"type\":\"value\",\"value\":null},\"fill_color\":{\"type\":\"field\",\"field\":\"z\",\"transform\":{\"type\":\"object\",\"name\":\"LogColorMapper\",\"id\":\"p1349\",\"attributes\":{\"palette\":[\"#440154\",\"#440255\",\"#440357\",\"#450558\",\"#45065A\",\"#45085B\",\"#46095C\",\"#460B5E\",\"#460C5F\",\"#460E61\",\"#470F62\",\"#471163\",\"#471265\",\"#471466\",\"#471567\",\"#471669\",\"#47186A\",\"#48196B\",\"#481A6C\",\"#481C6E\",\"#481D6F\",\"#481E70\",\"#482071\",\"#482172\",\"#482273\",\"#482374\",\"#472575\",\"#472676\",\"#472777\",\"#472878\",\"#472A79\",\"#472B7A\",\"#472C7B\",\"#462D7C\",\"#462F7C\",\"#46307D\",\"#46317E\",\"#45327F\",\"#45347F\",\"#453580\",\"#453681\",\"#443781\",\"#443982\",\"#433A83\",\"#433B83\",\"#433C84\",\"#423D84\",\"#423E85\",\"#424085\",\"#414186\",\"#414286\",\"#404387\",\"#404487\",\"#3F4587\",\"#3F4788\",\"#3E4888\",\"#3E4989\",\"#3D4A89\",\"#3D4B89\",\"#3D4C89\",\"#3C4D8A\",\"#3C4E8A\",\"#3B508A\",\"#3B518A\",\"#3A528B\",\"#3A538B\",\"#39548B\",\"#39558B\",\"#38568B\",\"#38578C\",\"#37588C\",\"#37598C\",\"#365A8C\",\"#365B8C\",\"#355C8C\",\"#355D8C\",\"#345E8D\",\"#345F8D\",\"#33608D\",\"#33618D\",\"#32628D\",\"#32638D\",\"#31648D\",\"#31658D\",\"#31668D\",\"#30678D\",\"#30688D\",\"#2F698D\",\"#2F6A8D\",\"#2E6B8E\",\"#2E6C8E\",\"#2E6D8E\",\"#2D6E8E\",\"#2D6F8E\",\"#2C708E\",\"#2C718E\",\"#2C728E\",\"#2B738E\",\"#2B748E\",\"#2A758E\",\"#2A768E\",\"#2A778E\",\"#29788E\",\"#29798E\",\"#287A8E\",\"#287A8E\",\"#287B8E\",\"#277C8E\",\"#277D8E\",\"#277E8E\",\"#267F8E\",\"#26808E\",\"#26818E\",\"#25828E\",\"#25838D\",\"#24848D\",\"#24858D\",\"#24868D\",\"#23878D\",\"#23888D\",\"#23898D\",\"#22898D\",\"#228A8D\",\"#228B8D\",\"#218C8D\",\"#218D8C\",\"#218E8C\",\"#208F8C\",\"#20908C\",\"#20918C\",\"#1F928C\",\"#1F938B\",\"#1F948B\",\"#1F958B\",\"#1F968B\",\"#1E978A\",\"#1E988A\",\"#1E998A\",\"#1E998A\",\"#1E9A89\",\"#1E9B89\",\"#1E9C89\",\"#1E9D88\",\"#1E9E88\",\"#1E9F88\",\"#1EA087\",\"#1FA187\",\"#1FA286\",\"#1FA386\",\"#20A485\",\"#20A585\",\"#21A685\",\"#21A784\",\"#22A784\",\"#23A883\",\"#23A982\",\"#24AA82\",\"#25AB81\",\"#26AC81\",\"#27AD80\",\"#28AE7F\",\"#29AF7F\",\"#2AB07E\",\"#2BB17D\",\"#2CB17D\",\"#2EB27C\",\"#2FB37B\",\"#30B47A\",\"#32B57A\",\"#33B679\",\"#35B778\",\"#36B877\",\"#38B976\",\"#39B976\",\"#3BBA75\",\"#3DBB74\",\"#3EBC73\",\"#40BD72\",\"#42BE71\",\"#44BE70\",\"#45BF6F\",\"#47C06E\",\"#49C16D\",\"#4BC26C\",\"#4DC26B\",\"#4FC369\",\"#51C468\",\"#53C567\",\"#55C666\",\"#57C665\",\"#59C764\",\"#5BC862\",\"#5EC961\",\"#60C960\",\"#62CA5F\",\"#64CB5D\",\"#67CC5C\",\"#69CC5B\",\"#6BCD59\",\"#6DCE58\",\"#70CE56\",\"#72CF55\",\"#74D054\",\"#77D052\",\"#79D151\",\"#7CD24F\",\"#7ED24E\",\"#81D34C\",\"#83D34B\",\"#86D449\",\"#88D547\",\"#8BD546\",\"#8DD644\",\"#90D643\",\"#92D741\",\"#95D73F\",\"#97D83E\",\"#9AD83C\",\"#9DD93A\",\"#9FD938\",\"#A2DA37\",\"#A5DA35\",\"#A7DB33\",\"#AADB32\",\"#ADDC30\",\"#AFDC2E\",\"#B2DD2C\",\"#B5DD2B\",\"#B7DD29\",\"#BADE27\",\"#BDDE26\",\"#BFDF24\",\"#C2DF22\",\"#C5DF21\",\"#C7E01F\",\"#CAE01E\",\"#CDE01D\",\"#CFE11C\",\"#D2E11B\",\"#D4E11A\",\"#D7E219\",\"#DAE218\",\"#DCE218\",\"#DFE318\",\"#E1E318\",\"#E4E318\",\"#E7E419\",\"#E9E419\",\"#ECE41A\",\"#EEE51B\",\"#F1E51C\",\"#F3E51E\",\"#F6E61F\",\"#F8E621\",\"#FAE622\",\"#FDE724\"],\"low\":0.019210152638661365,\"high\":0.5044365998388769}}}}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Rect\",\"id\":\"p1354\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"width\":{\"type\":\"value\",\"value\":1},\"height\":{\"type\":\"value\",\"value\":1},\"line_color\":{\"type\":\"value\",\"value\":null},\"line_alpha\":{\"type\":\"value\",\"value\":0.1},\"fill_color\":{\"type\":\"field\",\"field\":\"z\",\"transform\":{\"id\":\"p1349\"}},\"fill_alpha\":{\"type\":\"value\",\"value\":0.1},\"hatch_alpha\":{\"type\":\"value\",\"value\":0.1}}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Rect\",\"id\":\"p1355\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"width\":{\"type\":\"value\",\"value\":1},\"height\":{\"type\":\"value\",\"value\":1},\"line_color\":{\"type\":\"value\",\"value\":null},\"line_alpha\":{\"type\":\"value\",\"value\":0.2},\"fill_color\":{\"type\":\"field\",\"field\":\"z\",\"transform\":{\"id\":\"p1349\"}},\"fill_alpha\":{\"type\":\"value\",\"value\":0.2},\"hatch_alpha\":{\"type\":\"value\",\"value\":0.2}}}}}],\"toolbar\":{\"type\":\"object\",\"name\":\"Toolbar\",\"id\":\"p1299\",\"attributes\":{\"tools\":[{\"type\":\"object\",\"name\":\"PanTool\",\"id\":\"p1327\"},{\"type\":\"object\",\"name\":\"WheelZoomTool\",\"id\":\"p1328\"},{\"type\":\"object\",\"name\":\"BoxZoomTool\",\"id\":\"p1329\",\"attributes\":{\"overlay\":{\"type\":\"object\",\"name\":\"BoxAnnotation\",\"id\":\"p1330\",\"attributes\":{\"syncable\":false,\"level\":\"overlay\",\"visible\":false,\"left_units\":\"canvas\",\"right_units\":\"canvas\",\"bottom_units\":\"canvas\",\"top_units\":\"canvas\",\"line_color\":\"black\",\"line_alpha\":1.0,\"line_width\":2,\"line_dash\":[4,4],\"fill_color\":\"lightgrey\",\"fill_alpha\":0.5}}}},{\"type\":\"object\",\"name\":\"SaveTool\",\"id\":\"p1331\"},{\"type\":\"object\",\"name\":\"ResetTool\",\"id\":\"p1332\"},{\"type\":\"object\",\"name\":\"HelpTool\",\"id\":\"p1333\"}]}},\"toolbar_location\":\"above\",\"left\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1320\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"FixedTicker\",\"id\":\"p1344\",\"attributes\":{\"ticks\":{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAEAAAACAAAAAwAAAAQAAAAFAAAABgAAAAcAAAAIAAAACQAAAAoAAAALAAAADAAAAA0AAAAOAAAA\"},\"shape\":[15],\"dtype\":\"int32\",\"order\":\"little\"},\"minor_ticks\":[]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1321\"},\"axis_label\":\"L\\u2082\",\"major_label_overrides\":{\"type\":\"map\",\"entries\":[[0,\"0.001\"],[1,\"\"],[2,\"\"],[3,\"\"],[4,\"\"],[5,\"\"],[6,\"\"],[7,\"1\"],[8,\"\"],[9,\"\"],[10,\"\"],[11,\"\"],[12,\"\"],[13,\"\"],[14,\"1000\"]]},\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1322\"},\"axis_line_color\":null,\"major_tick_line_color\":null}}],\"below\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1313\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"FixedTicker\",\"id\":\"p1342\",\"attributes\":{\"ticks\":{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAEAAAACAAAAAwAAAAQAAAAFAAAABgAAAAcAAAAIAAAACQAAAAoAAAALAAAADAAAAA0AAAAOAAAA\"},\"shape\":[15],\"dtype\":\"int32\",\"order\":\"little\"},\"minor_ticks\":[]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1314\"},\"axis_label\":\"L\\u2081\",\"major_label_overrides\":{\"type\":\"map\",\"entries\":[[0,\"0.001\"],[1,\"\"],[2,\"\"],[3,\"\"],[4,\"\"],[5,\"\"],[6,\"\"],[7,\"1\"],[8,\"\"],[9,\"\"],[10,\"\"],[11,\"\"],[12,\"\"],[13,\"\"],[14,\"1000\"]]},\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1315\"},\"axis_line_color\":null,\"major_tick_line_color\":null}}],\"center\":[{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1319\",\"attributes\":{\"axis\":{\"id\":\"p1313\"},\"grid_line_color\":null}},{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1326\",\"attributes\":{\"dimension\":1,\"axis\":{\"id\":\"p1320\"},\"grid_line_color\":null}}],\"frame_width\":300,\"frame_height\":300}}],\"callbacks\":{\"type\":\"map\"}}};\n", " const render_items = [{\"docid\":\"6f117dff-2426-4162-b4c9-70e62f336488\",\"roots\":{\"p1296\":\"2c283a7b-ef00-4821-ba3f-b8b66d0f2921\"},\"root_ids\":[\"p1296\"]}];\n", " root.Bokeh.embed.embed_items_notebook(docs_json, render_items);\n", " }\n", " if (root.Bokeh !== undefined) {\n", " embed_document(root);\n", " } else {\n", " let attempts = 0;\n", " const timer = setInterval(function(root) {\n", " if (root.Bokeh !== undefined) {\n", " clearInterval(timer);\n", " embed_document(root);\n", " } else {\n", " attempts++;\n", " if (attempts > 100) {\n", " clearInterval(timer);\n", " console.log(\"Bokeh: ERROR: Unable to run BokehJS code because BokehJS library is missing\");\n", " }\n", " }\n", " }, 10, root)\n", " }\n", "})(window);" ], "application/vnd.bokehjs_exec.v0+json": "" }, "metadata": { "application/vnd.bokehjs_exec.v0+json": { "id": "p1296" } }, "output_type": "display_data" } ], "source": [ "i = 7234\n", "\n", "K = parameters[i][\"K\"]\n", "c0 = make_c0_grid(nA, nB, nL, n)\n", "c0[:,:4] = parameters[i][\"receptor_conc\"]\n", "epsilon = parameters[i][\"epsilon\"]\n", "\n", "c = eqtk.fixed_value_solve(c0=c0, fixed_c=fixed_c, N=N, K=K)\n", "s = readout(epsilon, c)\n", "\n", "bokeh.io.show(heatmap(c0, s, n))" ] }, { "cell_type": "markdown", "id": "fba3a119-8151-4ce8-b156-e1503421cd87", "metadata": {}, "source": [ "This is an \"imbalance\" condition, where high signaling occurs when either $\\mathrm{L}_1$ or $\\mathrm{L}_2$ have high concentration, but not when they the concentrations are similar to each other. It therefore acts similar to an XOR gate, but instead of acting purely on the concentrations of the inputs, it also acts on the ratio of these concentrations.\n", "\n", "What about another point? Let's consider index 5312, which is one of the points with a LIC and RLS are both close to 0." ] }, { "cell_type": "code", "execution_count": 21, "id": "1a38d7d5-1262-4798-805d-2ad9866166ae", "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "
\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/javascript": [ "(function(root) {\n", " function embed_document(root) {\n", " const docs_json = {\"7930d76c-7de3-48bc-94f7-40984fd7e9dc\":{\"version\":\"3.1.0\",\"title\":\"Bokeh Application\",\"defs\":[],\"roots\":[{\"type\":\"object\",\"name\":\"Figure\",\"id\":\"p1459\",\"attributes\":{\"x_range\":{\"type\":\"object\",\"name\":\"Range1d\",\"id\":\"p1468\",\"attributes\":{\"start\":-0.5,\"end\":14.5}},\"y_range\":{\"type\":\"object\",\"name\":\"Range1d\",\"id\":\"p1470\",\"attributes\":{\"start\":-0.5,\"end\":14.5}},\"x_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1472\"},\"y_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1474\"},\"title\":{\"type\":\"object\",\"name\":\"Title\",\"id\":\"p1466\"},\"renderers\":[{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1519\",\"attributes\":{\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1509\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1511\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1510\"},\"data\":{\"type\":\"map\",\"entries\":[[\"x\",[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14]],[\"y\",[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14]],[\"z\",[0.00014600823406617266,0.0003669814555776339,0.0008561983620010159,0.0017255106858318089,0.0028520717515647335,0.003910279860492615,0.004651264024987378,0.005048016468652607,0.005222514688817518,0.005292662720047071,0.005319441376536354,0.005329596066209863,0.005333339932172584,0.0053348131610394985,0.00533528009602479,0.00014595127068572396,0.00036244759739336753,0.000843633851514216,0.00170296536715447,0.0028249709472220287,0.0038871205291459736,0.004636328420948989,0.005040471562367747,0.005219558272191872,0.00529208887823536,0.005319069099671007,0.005329391780897311,0.005333358264314066,0.005334730610770617,0.005335413221184708,0.00014569564006652077,0.0003511553477164372,0.0008112164842855381,0.0016460886523005389,0.0027556661838974085,0.0038260863260720854,0.004597595874838153,0.005021455363611312,0.005212886145302672,0.005288400260825502,0.005317836605361151,0.005329033416694152,0.005333115808479494,0.005334847533324529,0.005335251080347978,0.00014458000990237173,0.0003251349950253917,0.0007376573720959729,0.001512666532599702,0.0025907052195066164,0.0036763775424748088,0.0044997030974849505,0.004971896641181635,0.005191250064276873,0.005280122152437808,0.005315329900417463,0.005327777573649831,0.005332832979461629,0.005334508144862887,0.005335596518336145,0.00014100343206407536,0.00027759407431744194,0.0006011038753370073,0.001252332580183649,0.0022475390787107794,0.0033481824788384527,0.004264871909062757,0.004846713801308867,0.005136109548274453,0.005258227681874127,0.005306418102327923,0.0053246294042812135,0.005331498187298656,0.005334425216443185,0.00533503420519855,0.00013442983949845874,0.00021724792846795676,0.00042281091615164687,0.0008793326634984581,0.0016943932214426916,0.0027591604824042638,0.0037884423166843536,0.004558038427341378,0.004997771445907045,0.005201003737382994,0.0052841115684608775,0.005317434730533687,0.0053283402879991445,0.005332889679070866,0.005334582741938427,0.00012796027859933437,0.00016828941020447148,0.00027244633856046956,0.0005254830643297973,0.0010627016436580608,0.0019520635972789836,0.0030209013398103586,0.003992536541675506,0.004681089313982678,0.005058395466171543,0.005225987174946358,0.005294207166287545,0.005319900607545802,0.005329984475793996,0.005333418296922134,0.00012402802424450694,0.00014100930524890028,0.00018583848667118997,0.000300970395151771,0.0005778441040419835,0.0011523139470677208,0.0020696460449574185,0.0031330611553223053,0.004075868915982031,0.004730007716010802,0.005080260074087989,0.005235554815482629,0.005298130886995959,0.005321283118283386,0.005330242677274645,0.0001222197556756862,0.00012887421861305855,0.00014660061035600747,0.0001933516424970384,0.00031330212200731853,0.0006001635026491049,0.0011896489020588672,0.0021175447561143246,0.0031777469138701974,0.004108172071202158,0.004748324753011247,0.005088888779099929,0.005238906015776764,0.005299365355573012,0.005321802793888659,0.00012149221203584947,0.00012401430826950328,0.00013077717405202282,0.0001488102055076664,0.00019632209876521304,0.00031808027639849273,0.0006089246803638135,0.0012042494097261576,0.0021355171247961634,0.0031940418997347874,0.004120349163191301,0.0047552879592272475,0.005092980519122841,0.005240223322296727,0.005299347171686081,0.00012120422951605186,0.0001221535254906337,0.0001247120738575084,0.0001315028235276498,0.00014964074780952268,0.00019749127746342018,0.0003199553266232466,0.0006123010624935453,0.0012097299516553106,0.0021424215815753797,0.00320036977244343,0.004126007958833934,0.004757941395944109,0.005093272103494563,0.005240761674974481,0.00012110301155516035,0.00012145259670658218,0.00012242429244059105,0.00012495300590115193,0.00013178163652648653,0.00014995603546116745,0.00019787521283554002,0.0003206133761008126,0.0006135178903061134,0.0012117997424040342,0.0021453331541840116,0.003202727396989246,0.004126644617877929,0.004758881165448146,0.00509394660654251,0.00012105793252604213,0.00012120036265325875,0.00012154566376690372,0.00012249721615231426,0.00012504892033722502,0.0001318980921283275,0.00015007378336246916,0.00019804470356777043,0.00032087244898449437,0.0006140228931819428,0.0012125806530545525,0.00214597640672238,0.0032036272391348674,0.004127512707544306,0.004759221289988833,0.00012104972590347708,0.00012109251690510758,0.0001212247018514813,0.00012158089109555432,0.0001225321832241169,0.00012508457720993122,0.00013192398011567177,0.00015011759075017942,0.0001981025709242337,0.00032100696779401613,0.0006141542757877247,0.0012128622121416232,0.002146332393593881,0.0032039392865662285,0.004127928128289046,0.00012103753993092709,0.00012106987519924962,0.00012110568676431386,0.00012123757558047626,0.00012159508986866124,0.00012254519567692898,0.00012510091155114092,0.00013193114763701265,0.00015013423059520337,0.0001981258963449518,0.0003210049700231824,0.0006142223437154604,0.001213124483631064,0.0021465282224290695,0.0032043902147203696]]]}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1520\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1521\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Rect\",\"id\":\"p1516\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"width\":{\"type\":\"value\",\"value\":1},\"height\":{\"type\":\"value\",\"value\":1},\"line_color\":{\"type\":\"value\",\"value\":null},\"fill_color\":{\"type\":\"field\",\"field\":\"z\",\"transform\":{\"type\":\"object\",\"name\":\"LogColorMapper\",\"id\":\"p1512\",\"attributes\":{\"palette\":[\"#440154\",\"#440255\",\"#440357\",\"#450558\",\"#45065A\",\"#45085B\",\"#46095C\",\"#460B5E\",\"#460C5F\",\"#460E61\",\"#470F62\",\"#471163\",\"#471265\",\"#471466\",\"#471567\",\"#471669\",\"#47186A\",\"#48196B\",\"#481A6C\",\"#481C6E\",\"#481D6F\",\"#481E70\",\"#482071\",\"#482172\",\"#482273\",\"#482374\",\"#472575\",\"#472676\",\"#472777\",\"#472878\",\"#472A79\",\"#472B7A\",\"#472C7B\",\"#462D7C\",\"#462F7C\",\"#46307D\",\"#46317E\",\"#45327F\",\"#45347F\",\"#453580\",\"#453681\",\"#443781\",\"#443982\",\"#433A83\",\"#433B83\",\"#433C84\",\"#423D84\",\"#423E85\",\"#424085\",\"#414186\",\"#414286\",\"#404387\",\"#404487\",\"#3F4587\",\"#3F4788\",\"#3E4888\",\"#3E4989\",\"#3D4A89\",\"#3D4B89\",\"#3D4C89\",\"#3C4D8A\",\"#3C4E8A\",\"#3B508A\",\"#3B518A\",\"#3A528B\",\"#3A538B\",\"#39548B\",\"#39558B\",\"#38568B\",\"#38578C\",\"#37588C\",\"#37598C\",\"#365A8C\",\"#365B8C\",\"#355C8C\",\"#355D8C\",\"#345E8D\",\"#345F8D\",\"#33608D\",\"#33618D\",\"#32628D\",\"#32638D\",\"#31648D\",\"#31658D\",\"#31668D\",\"#30678D\",\"#30688D\",\"#2F698D\",\"#2F6A8D\",\"#2E6B8E\",\"#2E6C8E\",\"#2E6D8E\",\"#2D6E8E\",\"#2D6F8E\",\"#2C708E\",\"#2C718E\",\"#2C728E\",\"#2B738E\",\"#2B748E\",\"#2A758E\",\"#2A768E\",\"#2A778E\",\"#29788E\",\"#29798E\",\"#287A8E\",\"#287A8E\",\"#287B8E\",\"#277C8E\",\"#277D8E\",\"#277E8E\",\"#267F8E\",\"#26808E\",\"#26818E\",\"#25828E\",\"#25838D\",\"#24848D\",\"#24858D\",\"#24868D\",\"#23878D\",\"#23888D\",\"#23898D\",\"#22898D\",\"#228A8D\",\"#228B8D\",\"#218C8D\",\"#218D8C\",\"#218E8C\",\"#208F8C\",\"#20908C\",\"#20918C\",\"#1F928C\",\"#1F938B\",\"#1F948B\",\"#1F958B\",\"#1F968B\",\"#1E978A\",\"#1E988A\",\"#1E998A\",\"#1E998A\",\"#1E9A89\",\"#1E9B89\",\"#1E9C89\",\"#1E9D88\",\"#1E9E88\",\"#1E9F88\",\"#1EA087\",\"#1FA187\",\"#1FA286\",\"#1FA386\",\"#20A485\",\"#20A585\",\"#21A685\",\"#21A784\",\"#22A784\",\"#23A883\",\"#23A982\",\"#24AA82\",\"#25AB81\",\"#26AC81\",\"#27AD80\",\"#28AE7F\",\"#29AF7F\",\"#2AB07E\",\"#2BB17D\",\"#2CB17D\",\"#2EB27C\",\"#2FB37B\",\"#30B47A\",\"#32B57A\",\"#33B679\",\"#35B778\",\"#36B877\",\"#38B976\",\"#39B976\",\"#3BBA75\",\"#3DBB74\",\"#3EBC73\",\"#40BD72\",\"#42BE71\",\"#44BE70\",\"#45BF6F\",\"#47C06E\",\"#49C16D\",\"#4BC26C\",\"#4DC26B\",\"#4FC369\",\"#51C468\",\"#53C567\",\"#55C666\",\"#57C665\",\"#59C764\",\"#5BC862\",\"#5EC961\",\"#60C960\",\"#62CA5F\",\"#64CB5D\",\"#67CC5C\",\"#69CC5B\",\"#6BCD59\",\"#6DCE58\",\"#70CE56\",\"#72CF55\",\"#74D054\",\"#77D052\",\"#79D151\",\"#7CD24F\",\"#7ED24E\",\"#81D34C\",\"#83D34B\",\"#86D449\",\"#88D547\",\"#8BD546\",\"#8DD644\",\"#90D643\",\"#92D741\",\"#95D73F\",\"#97D83E\",\"#9AD83C\",\"#9DD93A\",\"#9FD938\",\"#A2DA37\",\"#A5DA35\",\"#A7DB33\",\"#AADB32\",\"#ADDC30\",\"#AFDC2E\",\"#B2DD2C\",\"#B5DD2B\",\"#B7DD29\",\"#BADE27\",\"#BDDE26\",\"#BFDF24\",\"#C2DF22\",\"#C5DF21\",\"#C7E01F\",\"#CAE01E\",\"#CDE01D\",\"#CFE11C\",\"#D2E11B\",\"#D4E11A\",\"#D7E219\",\"#DAE218\",\"#DCE218\",\"#DFE318\",\"#E1E318\",\"#E4E318\",\"#E7E419\",\"#E9E419\",\"#ECE41A\",\"#EEE51B\",\"#F1E51C\",\"#F3E51E\",\"#F6E61F\",\"#F8E621\",\"#FAE622\",\"#FDE724\"],\"low\":0.00012103753993092709,\"high\":0.005335596518336145}}}}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Rect\",\"id\":\"p1517\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"width\":{\"type\":\"value\",\"value\":1},\"height\":{\"type\":\"value\",\"value\":1},\"line_color\":{\"type\":\"value\",\"value\":null},\"line_alpha\":{\"type\":\"value\",\"value\":0.1},\"fill_color\":{\"type\":\"field\",\"field\":\"z\",\"transform\":{\"id\":\"p1512\"}},\"fill_alpha\":{\"type\":\"value\",\"value\":0.1},\"hatch_alpha\":{\"type\":\"value\",\"value\":0.1}}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Rect\",\"id\":\"p1518\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"width\":{\"type\":\"value\",\"value\":1},\"height\":{\"type\":\"value\",\"value\":1},\"line_color\":{\"type\":\"value\",\"value\":null},\"line_alpha\":{\"type\":\"value\",\"value\":0.2},\"fill_color\":{\"type\":\"field\",\"field\":\"z\",\"transform\":{\"id\":\"p1512\"}},\"fill_alpha\":{\"type\":\"value\",\"value\":0.2},\"hatch_alpha\":{\"type\":\"value\",\"value\":0.2}}}}}],\"toolbar\":{\"type\":\"object\",\"name\":\"Toolbar\",\"id\":\"p1462\",\"attributes\":{\"tools\":[{\"type\":\"object\",\"name\":\"PanTool\",\"id\":\"p1490\"},{\"type\":\"object\",\"name\":\"WheelZoomTool\",\"id\":\"p1491\"},{\"type\":\"object\",\"name\":\"BoxZoomTool\",\"id\":\"p1492\",\"attributes\":{\"overlay\":{\"type\":\"object\",\"name\":\"BoxAnnotation\",\"id\":\"p1493\",\"attributes\":{\"syncable\":false,\"level\":\"overlay\",\"visible\":false,\"left_units\":\"canvas\",\"right_units\":\"canvas\",\"bottom_units\":\"canvas\",\"top_units\":\"canvas\",\"line_color\":\"black\",\"line_alpha\":1.0,\"line_width\":2,\"line_dash\":[4,4],\"fill_color\":\"lightgrey\",\"fill_alpha\":0.5}}}},{\"type\":\"object\",\"name\":\"SaveTool\",\"id\":\"p1494\"},{\"type\":\"object\",\"name\":\"ResetTool\",\"id\":\"p1495\"},{\"type\":\"object\",\"name\":\"HelpTool\",\"id\":\"p1496\"}]}},\"toolbar_location\":\"above\",\"left\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1483\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"FixedTicker\",\"id\":\"p1507\",\"attributes\":{\"ticks\":{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAEAAAACAAAAAwAAAAQAAAAFAAAABgAAAAcAAAAIAAAACQAAAAoAAAALAAAADAAAAA0AAAAOAAAA\"},\"shape\":[15],\"dtype\":\"int32\",\"order\":\"little\"},\"minor_ticks\":[]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1484\"},\"axis_label\":\"L\\u2082\",\"major_label_overrides\":{\"type\":\"map\",\"entries\":[[0,\"0.001\"],[1,\"\"],[2,\"\"],[3,\"\"],[4,\"\"],[5,\"\"],[6,\"\"],[7,\"1\"],[8,\"\"],[9,\"\"],[10,\"\"],[11,\"\"],[12,\"\"],[13,\"\"],[14,\"1000\"]]},\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1485\"},\"axis_line_color\":null,\"major_tick_line_color\":null}}],\"below\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1476\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"FixedTicker\",\"id\":\"p1505\",\"attributes\":{\"ticks\":{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAEAAAACAAAAAwAAAAQAAAAFAAAABgAAAAcAAAAIAAAACQAAAAoAAAALAAAADAAAAA0AAAAOAAAA\"},\"shape\":[15],\"dtype\":\"int32\",\"order\":\"little\"},\"minor_ticks\":[]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1477\"},\"axis_label\":\"L\\u2081\",\"major_label_overrides\":{\"type\":\"map\",\"entries\":[[0,\"0.001\"],[1,\"\"],[2,\"\"],[3,\"\"],[4,\"\"],[5,\"\"],[6,\"\"],[7,\"1\"],[8,\"\"],[9,\"\"],[10,\"\"],[11,\"\"],[12,\"\"],[13,\"\"],[14,\"1000\"]]},\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1478\"},\"axis_line_color\":null,\"major_tick_line_color\":null}}],\"center\":[{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1482\",\"attributes\":{\"axis\":{\"id\":\"p1476\"},\"grid_line_color\":null}},{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1489\",\"attributes\":{\"dimension\":1,\"axis\":{\"id\":\"p1483\"},\"grid_line_color\":null}}],\"frame_width\":300,\"frame_height\":300}}],\"callbacks\":{\"type\":\"map\"}}};\n", " const render_items = [{\"docid\":\"7930d76c-7de3-48bc-94f7-40984fd7e9dc\",\"roots\":{\"p1459\":\"97accc08-5fd0-46e6-8a97-85c7627d9099\"},\"root_ids\":[\"p1459\"]}];\n", " root.Bokeh.embed.embed_items_notebook(docs_json, render_items);\n", " }\n", " if (root.Bokeh !== undefined) {\n", " embed_document(root);\n", " } else {\n", " let attempts = 0;\n", " const timer = setInterval(function(root) {\n", " if (root.Bokeh !== undefined) {\n", " clearInterval(timer);\n", " embed_document(root);\n", " } else {\n", " attempts++;\n", " if (attempts > 100) {\n", " clearInterval(timer);\n", " console.log(\"Bokeh: ERROR: Unable to run BokehJS code because BokehJS library is missing\");\n", " }\n", " }\n", " }, 10, root)\n", " }\n", "})(window);" ], "application/vnd.bokehjs_exec.v0+json": "" }, "metadata": { "application/vnd.bokehjs_exec.v0+json": { "id": "p1459" } }, "output_type": "display_data" } ], "source": [ "i = 5312\n", "\n", "K = parameters[i][\"K\"]\n", "c0 = make_c0_grid(nA, nB, nL, n)\n", "c0[:,:4] = parameters[i][\"receptor_conc\"]\n", "epsilon = parameters[i][\"epsilon\"]\n", "\n", "c = eqtk.fixed_value_solve(c0=c0, fixed_c=fixed_c, N=N, K=K)\n", "s = readout(epsilon, c)\n", "\n", "bokeh.io.show(heatmap(c0, s, n))" ] }, { "cell_type": "markdown", "id": "afe2ed14-d889-4b74-848c-04bccc7b4210", "metadata": {}, "source": [ "This point in parameter space gives a ratiometric repsonse, where the pathway activates when the ratio $l_1 / l_2$ is high. Let's look at one more point, this time index 8936 on the upper right." ] }, { "cell_type": "code", "execution_count": 22, "id": "5e98125a-2fd7-4982-8a7c-f1c6f7dc4633", "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "
\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/javascript": [ "(function(root) {\n", " function embed_document(root) {\n", " const docs_json = {\"976f65bd-5946-4cb0-a443-d8f897971b4f\":{\"version\":\"3.1.0\",\"title\":\"Bokeh Application\",\"defs\":[],\"roots\":[{\"type\":\"object\",\"name\":\"Figure\",\"id\":\"p1634\",\"attributes\":{\"x_range\":{\"type\":\"object\",\"name\":\"Range1d\",\"id\":\"p1643\",\"attributes\":{\"start\":-0.5,\"end\":14.5}},\"y_range\":{\"type\":\"object\",\"name\":\"Range1d\",\"id\":\"p1645\",\"attributes\":{\"start\":-0.5,\"end\":14.5}},\"x_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1647\"},\"y_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1649\"},\"title\":{\"type\":\"object\",\"name\":\"Title\",\"id\":\"p1641\"},\"renderers\":[{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1694\",\"attributes\":{\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1684\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1686\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1685\"},\"data\":{\"type\":\"map\",\"entries\":[[\"x\",[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14]],[\"y\",[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14]],[\"z\",[0.009668746172601338,0.018082684960742914,0.03164994233439971,0.04618318642203558,0.056336056927903756,0.06163054104362523,0.0641758872859522,0.06548666530040777,0.06616017132531177,0.0664680532954688,0.0665945115097377,0.06664357222196768,0.06666214527903067,0.06666910951730863,0.06667171126186636,0.013963309439427769,0.022182068745046035,0.03554721487879951,0.04998631224563706,0.060023244226223765,0.06491813616664488,0.06665739204984543,0.06697208420396361,0.06687439237307294,0.06676648419351439,0.0667110033409289,0.06668777631565254,0.06667873350493639,0.06667531174022394,0.06667402769575241,0.02264364798497138,0.03039251685565389,0.043276034588929056,0.057554103767806244,0.06751768459953736,0.07185693512248716,0.07221421352038036,0.07054267336023218,0.0686903789938883,0.06754917612704898,0.06702075677416852,0.06680595080522425,0.0667231734246983,0.06669192834380114,0.06668022668030184,0.03559450448164142,0.042338583673480375,0.0541562524530919,0.06819685871616302,0.07854816991142925,0.08286912282694972,0.0821005328857892,0.07789617569685141,0.07294231703217172,0.0695281428635008,0.06783237914047244,0.06712014514253532,0.06684199271055785,0.06673646097078097,0.06669686045962331,0.048367266985598754,0.05339181537347625,0.06310220454743835,0.0764641144066588,0.08804586876693994,0.09390687744849979,0.09399666476673958,0.0891251647175645,0.08122444656112628,0.07410013054594791,0.06987957832334168,0.06794309276338949,0.06715787170858097,0.06685552323860162,0.06674142803356788,0.05686944166790371,0.059858919171531313,0.06640489669168427,0.07757910950712824,0.09035221299128517,0.09929649470387016,0.10242438048901548,0.10010730608509506,0.09275448640655397,0.08276482725614112,0.07458235966698558,0.07001689455705684,0.06798512322633185,0.06717203239979372,0.06686057541118463,0.06117051656501316,0.06260416959867542,0.06608195512512206,0.07338998794239775,0.08496419657117338,0.0969186634542874,0.10439369174125095,0.10626265629543907,0.10283601258064841,0.0943177611807797,0.08339317816838987,0.07477017510502733,0.07006901423949928,0.06800090434714538,0.06717732481794611,0.0630229576324408,0.0636212754181188,0.06515940069014932,0.0688565326766548,0.07647165389518323,0.08811834219789726,0.09961832318479763,0.1064533922705559,0.10781116864925808,0.10393153773792776,0.09493525862915074,0.0836357814964867,0.07484136589599964,0.07008857475166254,0.068006795149018,0.06375708988593487,0.06399059989085816,0.06460656824077546,0.06618724574792585,0.06997204998531295,0.07770310134543364,0.08935974849473488,0.10066368577116495,0.1072456562024799,0.10840647903711854,0.10435182524134691,0.0951706084755315,0.08372742455958067,0.07486806787799868,0.07009588548611544,0.0640375336332748,0.06412612375355067,0.06436225792178768,0.06498500095857364,0.06658208814126965,0.07040042081649175,0.0781747165110585,0.08983215648415073,0.10105901180909048,0.10754451606869342,0.10863099547050982,0.10451020756872045,0.09525907968857449,0.08376175969848496,0.07487804556956162,0.06414304816562633,0.06417629036404279,0.06426525442587208,0.0645023828436161,0.06512768830328317,0.06673096907947461,0.07056191818563985,0.07835232654701772,0.09000999169976344,0.10120716902602325,0.1076564174365605,0.10871505671509314,0.10456948503965836,0.09529216003401078,0.08377458285406886,0.06418251813910468,0.06419493981095203,0.06422823469074664,0.0643173396837226,0.06455484008452995,0.06518110923009528,0.06678670636268852,0.07062237459119747,0.07841878740254721,0.09007559713602797,0.10126250644593758,0.10769819982423375,0.10874644180733366,0.10459161673611905,0.09530450259328782,0.06419725236496572,0.06420188473362712,0.06421431379553572,0.06424762839434323,0.06433678594744603,0.06457442566646741,0.06520104837000287,0.06680751698747596,0.07064494606486554,0.07844359671704629,0.09010035366561499,0.10128314938382832,0.10771378392269057,0.10875814819553302,0.1045998694288945,0.06420274351721741,0.06420447377902243,0.06420910784771572,0.06422153990980956,0.06425486585856248,0.06434403889965067,0.06458173103296867,0.06520848709154907,0.06681527849033167,0.07065336490903605,0.078452849881296,0.09010958603614988,0.10129084661560789,0.1077195961827326,0.10876251313376041,0.06420479191822417,0.06420543618262603,0.06420716584801707,0.06421180088326955,0.06422423411108955,0.06425756041855218,0.06434674387717183,0.06458445373538836,0.06521126071916775,0.0668181713574647,0.07065650339796405,0.0784562993949284,0.09011302826095492,0.10129372144960204,0.10772176119045168]]]}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1695\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1696\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Rect\",\"id\":\"p1691\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"width\":{\"type\":\"value\",\"value\":1},\"height\":{\"type\":\"value\",\"value\":1},\"line_color\":{\"type\":\"value\",\"value\":null},\"fill_color\":{\"type\":\"field\",\"field\":\"z\",\"transform\":{\"type\":\"object\",\"name\":\"LogColorMapper\",\"id\":\"p1687\",\"attributes\":{\"palette\":[\"#440154\",\"#440255\",\"#440357\",\"#450558\",\"#45065A\",\"#45085B\",\"#46095C\",\"#460B5E\",\"#460C5F\",\"#460E61\",\"#470F62\",\"#471163\",\"#471265\",\"#471466\",\"#471567\",\"#471669\",\"#47186A\",\"#48196B\",\"#481A6C\",\"#481C6E\",\"#481D6F\",\"#481E70\",\"#482071\",\"#482172\",\"#482273\",\"#482374\",\"#472575\",\"#472676\",\"#472777\",\"#472878\",\"#472A79\",\"#472B7A\",\"#472C7B\",\"#462D7C\",\"#462F7C\",\"#46307D\",\"#46317E\",\"#45327F\",\"#45347F\",\"#453580\",\"#453681\",\"#443781\",\"#443982\",\"#433A83\",\"#433B83\",\"#433C84\",\"#423D84\",\"#423E85\",\"#424085\",\"#414186\",\"#414286\",\"#404387\",\"#404487\",\"#3F4587\",\"#3F4788\",\"#3E4888\",\"#3E4989\",\"#3D4A89\",\"#3D4B89\",\"#3D4C89\",\"#3C4D8A\",\"#3C4E8A\",\"#3B508A\",\"#3B518A\",\"#3A528B\",\"#3A538B\",\"#39548B\",\"#39558B\",\"#38568B\",\"#38578C\",\"#37588C\",\"#37598C\",\"#365A8C\",\"#365B8C\",\"#355C8C\",\"#355D8C\",\"#345E8D\",\"#345F8D\",\"#33608D\",\"#33618D\",\"#32628D\",\"#32638D\",\"#31648D\",\"#31658D\",\"#31668D\",\"#30678D\",\"#30688D\",\"#2F698D\",\"#2F6A8D\",\"#2E6B8E\",\"#2E6C8E\",\"#2E6D8E\",\"#2D6E8E\",\"#2D6F8E\",\"#2C708E\",\"#2C718E\",\"#2C728E\",\"#2B738E\",\"#2B748E\",\"#2A758E\",\"#2A768E\",\"#2A778E\",\"#29788E\",\"#29798E\",\"#287A8E\",\"#287A8E\",\"#287B8E\",\"#277C8E\",\"#277D8E\",\"#277E8E\",\"#267F8E\",\"#26808E\",\"#26818E\",\"#25828E\",\"#25838D\",\"#24848D\",\"#24858D\",\"#24868D\",\"#23878D\",\"#23888D\",\"#23898D\",\"#22898D\",\"#228A8D\",\"#228B8D\",\"#218C8D\",\"#218D8C\",\"#218E8C\",\"#208F8C\",\"#20908C\",\"#20918C\",\"#1F928C\",\"#1F938B\",\"#1F948B\",\"#1F958B\",\"#1F968B\",\"#1E978A\",\"#1E988A\",\"#1E998A\",\"#1E998A\",\"#1E9A89\",\"#1E9B89\",\"#1E9C89\",\"#1E9D88\",\"#1E9E88\",\"#1E9F88\",\"#1EA087\",\"#1FA187\",\"#1FA286\",\"#1FA386\",\"#20A485\",\"#20A585\",\"#21A685\",\"#21A784\",\"#22A784\",\"#23A883\",\"#23A982\",\"#24AA82\",\"#25AB81\",\"#26AC81\",\"#27AD80\",\"#28AE7F\",\"#29AF7F\",\"#2AB07E\",\"#2BB17D\",\"#2CB17D\",\"#2EB27C\",\"#2FB37B\",\"#30B47A\",\"#32B57A\",\"#33B679\",\"#35B778\",\"#36B877\",\"#38B976\",\"#39B976\",\"#3BBA75\",\"#3DBB74\",\"#3EBC73\",\"#40BD72\",\"#42BE71\",\"#44BE70\",\"#45BF6F\",\"#47C06E\",\"#49C16D\",\"#4BC26C\",\"#4DC26B\",\"#4FC369\",\"#51C468\",\"#53C567\",\"#55C666\",\"#57C665\",\"#59C764\",\"#5BC862\",\"#5EC961\",\"#60C960\",\"#62CA5F\",\"#64CB5D\",\"#67CC5C\",\"#69CC5B\",\"#6BCD59\",\"#6DCE58\",\"#70CE56\",\"#72CF55\",\"#74D054\",\"#77D052\",\"#79D151\",\"#7CD24F\",\"#7ED24E\",\"#81D34C\",\"#83D34B\",\"#86D449\",\"#88D547\",\"#8BD546\",\"#8DD644\",\"#90D643\",\"#92D741\",\"#95D73F\",\"#97D83E\",\"#9AD83C\",\"#9DD93A\",\"#9FD938\",\"#A2DA37\",\"#A5DA35\",\"#A7DB33\",\"#AADB32\",\"#ADDC30\",\"#AFDC2E\",\"#B2DD2C\",\"#B5DD2B\",\"#B7DD29\",\"#BADE27\",\"#BDDE26\",\"#BFDF24\",\"#C2DF22\",\"#C5DF21\",\"#C7E01F\",\"#CAE01E\",\"#CDE01D\",\"#CFE11C\",\"#D2E11B\",\"#D4E11A\",\"#D7E219\",\"#DAE218\",\"#DCE218\",\"#DFE318\",\"#E1E318\",\"#E4E318\",\"#E7E419\",\"#E9E419\",\"#ECE41A\",\"#EEE51B\",\"#F1E51C\",\"#F3E51E\",\"#F6E61F\",\"#F8E621\",\"#FAE622\",\"#FDE724\"],\"low\":0.009668746172601338,\"high\":0.10876251313376041}}}}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Rect\",\"id\":\"p1692\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"width\":{\"type\":\"value\",\"value\":1},\"height\":{\"type\":\"value\",\"value\":1},\"line_color\":{\"type\":\"value\",\"value\":null},\"line_alpha\":{\"type\":\"value\",\"value\":0.1},\"fill_color\":{\"type\":\"field\",\"field\":\"z\",\"transform\":{\"id\":\"p1687\"}},\"fill_alpha\":{\"type\":\"value\",\"value\":0.1},\"hatch_alpha\":{\"type\":\"value\",\"value\":0.1}}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Rect\",\"id\":\"p1693\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"width\":{\"type\":\"value\",\"value\":1},\"height\":{\"type\":\"value\",\"value\":1},\"line_color\":{\"type\":\"value\",\"value\":null},\"line_alpha\":{\"type\":\"value\",\"value\":0.2},\"fill_color\":{\"type\":\"field\",\"field\":\"z\",\"transform\":{\"id\":\"p1687\"}},\"fill_alpha\":{\"type\":\"value\",\"value\":0.2},\"hatch_alpha\":{\"type\":\"value\",\"value\":0.2}}}}}],\"toolbar\":{\"type\":\"object\",\"name\":\"Toolbar\",\"id\":\"p1637\",\"attributes\":{\"tools\":[{\"type\":\"object\",\"name\":\"PanTool\",\"id\":\"p1665\"},{\"type\":\"object\",\"name\":\"WheelZoomTool\",\"id\":\"p1666\"},{\"type\":\"object\",\"name\":\"BoxZoomTool\",\"id\":\"p1667\",\"attributes\":{\"overlay\":{\"type\":\"object\",\"name\":\"BoxAnnotation\",\"id\":\"p1668\",\"attributes\":{\"syncable\":false,\"level\":\"overlay\",\"visible\":false,\"left_units\":\"canvas\",\"right_units\":\"canvas\",\"bottom_units\":\"canvas\",\"top_units\":\"canvas\",\"line_color\":\"black\",\"line_alpha\":1.0,\"line_width\":2,\"line_dash\":[4,4],\"fill_color\":\"lightgrey\",\"fill_alpha\":0.5}}}},{\"type\":\"object\",\"name\":\"SaveTool\",\"id\":\"p1669\"},{\"type\":\"object\",\"name\":\"ResetTool\",\"id\":\"p1670\"},{\"type\":\"object\",\"name\":\"HelpTool\",\"id\":\"p1671\"}]}},\"toolbar_location\":\"above\",\"left\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1658\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"FixedTicker\",\"id\":\"p1682\",\"attributes\":{\"ticks\":{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAEAAAACAAAAAwAAAAQAAAAFAAAABgAAAAcAAAAIAAAACQAAAAoAAAALAAAADAAAAA0AAAAOAAAA\"},\"shape\":[15],\"dtype\":\"int32\",\"order\":\"little\"},\"minor_ticks\":[]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1659\"},\"axis_label\":\"L\\u2082\",\"major_label_overrides\":{\"type\":\"map\",\"entries\":[[0,\"0.001\"],[1,\"\"],[2,\"\"],[3,\"\"],[4,\"\"],[5,\"\"],[6,\"\"],[7,\"1\"],[8,\"\"],[9,\"\"],[10,\"\"],[11,\"\"],[12,\"\"],[13,\"\"],[14,\"1000\"]]},\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1660\"},\"axis_line_color\":null,\"major_tick_line_color\":null}}],\"below\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1651\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"FixedTicker\",\"id\":\"p1680\",\"attributes\":{\"ticks\":{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAEAAAACAAAAAwAAAAQAAAAFAAAABgAAAAcAAAAIAAAACQAAAAoAAAALAAAADAAAAA0AAAAOAAAA\"},\"shape\":[15],\"dtype\":\"int32\",\"order\":\"little\"},\"minor_ticks\":[]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1652\"},\"axis_label\":\"L\\u2081\",\"major_label_overrides\":{\"type\":\"map\",\"entries\":[[0,\"0.001\"],[1,\"\"],[2,\"\"],[3,\"\"],[4,\"\"],[5,\"\"],[6,\"\"],[7,\"1\"],[8,\"\"],[9,\"\"],[10,\"\"],[11,\"\"],[12,\"\"],[13,\"\"],[14,\"1000\"]]},\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1653\"},\"axis_line_color\":null,\"major_tick_line_color\":null}}],\"center\":[{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1657\",\"attributes\":{\"axis\":{\"id\":\"p1651\"},\"grid_line_color\":null}},{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1664\",\"attributes\":{\"dimension\":1,\"axis\":{\"id\":\"p1658\"},\"grid_line_color\":null}}],\"frame_width\":300,\"frame_height\":300}}],\"callbacks\":{\"type\":\"map\"}}};\n", " const render_items = [{\"docid\":\"976f65bd-5946-4cb0-a443-d8f897971b4f\",\"roots\":{\"p1634\":\"8e9f1fb1-b63a-47fd-b003-d2a7d4fc071d\"},\"root_ids\":[\"p1634\"]}];\n", " root.Bokeh.embed.embed_items_notebook(docs_json, render_items);\n", " }\n", " if (root.Bokeh !== undefined) {\n", " embed_document(root);\n", " } else {\n", " let attempts = 0;\n", " const timer = setInterval(function(root) {\n", " if (root.Bokeh !== undefined) {\n", " clearInterval(timer);\n", " embed_document(root);\n", " } else {\n", " attempts++;\n", " if (attempts > 100) {\n", " clearInterval(timer);\n", " console.log(\"Bokeh: ERROR: Unable to run BokehJS code because BokehJS library is missing\");\n", " }\n", " }\n", " }, 10, root)\n", " }\n", "})(window);" ], "application/vnd.bokehjs_exec.v0+json": "" }, "metadata": { "application/vnd.bokehjs_exec.v0+json": { "id": "p1634" } }, "output_type": "display_data" } ], "source": [ "i = 8936\n", "\n", "K = parameters[i][\"K\"]\n", "c0 = make_c0_grid(nA, nB, nL, n)\n", "c0[:,:4] = parameters[i][\"receptor_conc\"]\n", "epsilon = parameters[i][\"epsilon\"]\n", "\n", "c = eqtk.fixed_value_solve(c0=c0, fixed_c=fixed_c, N=N, K=K)\n", "s = readout(epsilon, c)\n", "\n", "bokeh.io.show(heatmap(c0, s, n))" ] }, { "cell_type": "markdown", "id": "201dad4b-eaaa-42b9-aa20-86b49ff26994", "metadata": {}, "source": [ "This is a response function that was not observed experimentally! We will call it a 'Balance' function because the pathway is maximally activated when the concentrations of $\\mathrm{L}_1$ and $\\mathrm{L}_2$ are equal to each other, in addition to being above a minimal threshold." ] }, { "cell_type": "markdown", "id": "f76d9f99-9860-40b7-a993-78bdfd35ac0c", "metadata": {}, "source": [ "## Determining the causes of the response functions\n", "\n", "We have now seen that the model is able to generate a variety of different response functions, but one question we have not yet answered is *why* the model sometimes generates one response function and sometimes generates another. Thankfully, because we saved all the parameter values associated with each point in (RLS, LIC) space, we can choose a particular point with a known response function and back out the actual $K_{ijk}$ and $\\varepsilon_{ijk}$ values that define that point. Looking at common trends in the relationships between the parameter values that yield a given response function, we can then start to get insights into the potential mechanistic sources of these response functions.\n", "\n", "Performing such an analysis, Su et al. concluded that the response functions arise due to particular relationships between the $K_{ijk}$ values and the $\\varepsilon_{ijk}$ values. The schematic on the bottom row of the figure below represents the system with 2 ligand types and 2 of each receptor type, like we have examined. The top set of arrows represent the $K_{ijk}$ values and the bottom set of arrows represent the $\\varepsilon_{ijk}$ values, with thicker arrows representing a stronger value (tight binding via low $K_{ijk}$ or strong activation via high $\\varepsilon_{ijk}$). Blue arrows represent the parameters associated with the $\\mathrm{L}_1$ ligand while green arrows represent the parameters associated with the $\\mathrm{L}_2$ ligand.\n", "\n", "
\n", "\n", "![BMP 1 step response schematics](figs/BMP_1step_ResponseFunction_Schematics.png)\n", "\n", "
\n", "\n", "Think through each of these schematics— does it make sense to you that they would lead to the given response? For example, in the Ratiometric response, both ligands bind to both receptor types with equal affinity, but complexes that contain ligand 1 activate the downstream pathway strongly, while complexes that contain ligand 2 activate the downstream pathway weakly. This means that if the concentraiton of ligand 2 is higher than that of ligand 1, then most of the receptors will be bound up in weakly-activating complexes, making the total pathway activation low. On the other hand, if the concentration of ligand 1 is higher than that of ligand 2, then most of the receptors will instead be bound up in complex of the strongly-activating form, making the total pathway activation high. It is therefore through these sequestration effects that emerge from the promiscuous interactions that these complex response functions are able to emerge." ] }, { "cell_type": "markdown", "id": "dd5c627b-3b51-4673-9e3b-9f6be22c7f99", "metadata": {}, "source": [ "## Removing the trimolecular binding assumption from the model\n", "\n", "At this point, we have now seen that our simple model for the BMP system can capture a variety of different response functions to two ligand inputs, and in particular can reproduce the three experimentally-observed response functions. But is this result a quirk of the specific assumptions we made in setting up our model? In particular, we might be concerned about the presence of trimolecular binding events— perhaps the model's reliance on such unphsyical reactions are causing it to generate unrealistic outputs.\n", "\n", "We will therefore modify our model to relax this trimolecular binding assumption. This new model follows the structure that was used in Antebi et al.\n", "\n", "
\n", "\n", "![promiscuous_model.png](figs/promiscuous_model.png)\n", "\n", "
\n", "\n", "The major change between this model and the previous one-step binding model is that we now explicitly require the trimer to form by two successive bimolecular binding reactions, where a ligand $L_j$ first binds a Type A receptor $A_i$ to form a dimer $D_{ij}$, which then binds to a Type B receptor $B_k$ to form a trimer $T_{ijk}$. Our equations for the model are therefore\n", "\n", "\\begin{align}\n", "&\\mathrm{D}_{ij} \\rightleftharpoons \\mathrm{A}_i + \\mathrm{L}_j \\\\[1em]\n", "&\\mathrm{T}_{ijk} \\rightleftharpoons \\mathrm{D}_{ij} + \\mathrm{B}_k, \\\\[1em]\n", "&s = \\sum_{ijk} \\varepsilon_{ijk}\\,t_{ijk}.\n", "\\end{align}" ] }, { "cell_type": "markdown", "id": "e0acee9f-1fe6-495c-9f6b-6de3c9317663", "metadata": {}, "source": [ "### A dashboard for the two-step binding model\n", "\n", "As above, we can use EQTK to solve the two-step model. We have developed a dashboard below that you can use to explore the model by changing the values of of the various $K_{ij}$ (binding constants for the dimer-formation reactions) and the $K_{ijk}$ (binding constants for the trimer-forming reactions) values. \n", "\n", "As you can see by the four preset parameter values included in the dashboard, the model can still produce the four types of response functions that we observed in the one-step model. Can you find any other types of response functions?" ] }, { "cell_type": "code", "execution_count": 23, "id": "b5845a34-4bcb-442f-b2ea-ced3ef8b13c6", "metadata": {}, "outputs": [ { "data": { "application/vnd.bokehjs_exec.v0+json": "", "text/html": [ "" ] }, "metadata": { "application/vnd.bokehjs_exec.v0+json": { "server_id": "a3a00c6fae5f4fae83ba45277b24c664" } }, "output_type": "display_data" } ], "source": [ "bokeh.io.show(\n", " biocircuits.apps.promiscuous_222_app(), notebook_url=notebook_url\n", ")" ] }, { "cell_type": "markdown", "id": "e14e7506-bc83-43da-8f2c-64d85f3392bc", "metadata": {}, "source": [ "## Ligand-receptor promiscuity enables cellular addressing\n", "\n", "Now that we have seen these complex response functions that are possible through the promiscuous interactions of the BMP sysytem, however, we might ask what functional consequence these response functions might have beyond their direct application of enabling the cells to compute and respond to ratios of different input signals. In particular, a natural question would be whether such a promiscuous architecture would allow a given ligand profile to selectively activate, or address, a larger number of cell types than a corresponding nonpromiscuous one-to-one architecture with the same diversity of ligand and receptor types.\n", "\n", "
\n", "\n", "![One to One siganling vs Promiscuous signaling](figs/BMP_1to1_vs_promiscuous.png)\n", "\n", "
\n", "\n", "Su et al. investigated this question, and found that a promiscuous architecture can indeed increase the bandwidth of cellular addressing. As the diversity of receptor types is increased, the model can generate even more distinct response behaviors than those we explored above. For example, in the heatmaps below, we see that a system with 4 type A receptors and 3 type B receptors can, even when only two ligand types are present, uniquely address eight different cell types that are distinguished by different expression profiles of the various receptors, simply by expressing different concentration profiles of these two ligands.\n", "\n", "
\n", "\n", "![BMP 8 cell type addressing](figs/BMP_8addressing.png)\n", "\n", "
\n" ] }, { "cell_type": "markdown", "id": "47d563ea-d083-4a0e-b0a8-c24f0afbfcf6", "metadata": {}, "source": [ "## Looking forward: what is the 'grammar' of BMP signaling?\n", "\n", "We have now seen that by understanding this combinatorial logic of BMP signaling, we may be able to understand how the cell uses this pathway to target specific cell types to help orchestrate developmental processes. An immediate implication of this understanding is that we might be able to leverage this knowledge to manually target these cell types for therapeutic purposes. However, all of our analyses so far have relied on smaller, more interpretable case studies that only involve two ligand types. How can we scale up our understanding of the BMP pathway to the complexity we see in nature, where there are ten major distinct BMP ligands?\n", "\n", "As we saw earlier in our parameter screen, this is another situation where low-dimensional representations are required in order to navigate a high-dimensional space. While previously this space was the space of the many different parameters, here this space expands further to include the many possible ligand and receptor types as well. What sort of low-dimensional representation would be useful here to navigate such a huge combinatorial space?\n", "\n", "Klumpe et al. ([2022, *Cell Systems*](https://doi.org/10.1016/j.cels.2022.03.002)) had the insight to, instead of coming up with different measures and trying to force them onto the data, to instead directly ask the cells themselves what sort of low-dimensional representation they themselves might be using. The authors took various cell types, distinguished by their receptor expression profiles, and screened them against all pairwise combinations of all 10 BMP ligands, and noted whether the two ligands in a pair acted synergistically or antisynergistically with each other for a given cell type. Importantly, this screen then allowed the authors to determine whether any set of ligands had the same interactions with a given partner ligand. Any set of ligands where all the ligands had the same interaction profile with all other ligands would be, from the point of view of this cell type, functionally identical to each other. The authors termed this an 'equivalence class', as schematized below.\n", "\n", "
\n", "\n", "![Schematic of BMP equivalence classes](figs/BMP_equivalence_schematic.png)\n", "\n", "
\n", "\n", "While such a strict requirement for equivalence might seem like it would rarely ever occur, the authors found that all seven cell types that they tested showed strong equivalence behavior between many of the BMP ligands, as shown in the figure below. In fact, some of the equivalence classes were quite large, with some cell types treating eight distinct BMP ligands as funtionally equivalent!\n", "\n", "
\n", "\n", "![BMP equivalence classes for 7 cell types](figs/BMP_7_donuts.png)\n", "\n", "
\n", "\n", "These data suggest that one potential consequence of a promiscuous interaction system with many different ligand/receptor types is that any given cell type will interpret several of these components as functionally equivalent, and that such redundancy may be a required part of the increased addressing bandwidth enabled by such architectures.\n", "\n", "Through their work, Klumpe et al. were therefore able to accomplish the first step in determining what sort of representation the cells themselves are using when presented with a particular set of BMP ligands— we now know that, whatever the representation is, it must interpret these particular sets of ligand types as equivalent. This knowledge allows us to place a constraint on the possible representations that could exist, and by placing additional constraints on these possible representations, we will eventually be able to hone in on the true 'grammar' by which cells compute and respond to BMP signals. This is the frontier of the field, and so we ask you: what would be the next constraint you would try to place, and how would you set up an experiment to do so?" ] }, { "cell_type": "markdown", "id": "9245ab79-5837-42e4-bea0-2866453d3008", "metadata": {}, "source": [ "## Computing environment" ] }, { "cell_type": "code", "execution_count": 24, "id": "4a175e95-dcb9-466f-878a-ecd74b5341ab", "metadata": { "tags": [ "hide-input" ] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Python implementation: CPython\n", "Python version : 3.10.10\n", "IPython version : 8.12.0\n", "\n", "numpy : 1.23.5\n", "tqdm : 4.65.0\n", "eqtk : 0.1.3\n", "biocircuits: 0.1.12\n", "bokeh : 3.1.0\n", "jupyterlab : 3.5.3\n", "\n" ] } ], "source": [ "%load_ext watermark\n", "%watermark -v -p numpy,tqdm,eqtk,biocircuits,bokeh,jupyterlab" ] }, { "cell_type": "markdown", "id": "8c67a00e-2ab6-46d3-b23a-fb8b276df422", "metadata": { "tags": [] }, "source": [ "
\n", "\n", "## Problems" ] }, { "cell_type": "markdown", "id": "d63d683b-2caa-41b9-b1af-e85d3af67be8", "metadata": { "nbsphinx-toctree": {}, "tags": [] }, "source": [ "- [13.1: Programming cellular response](../problems/13/problem_13.1.ipynb)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.10" } }, "nbformat": 4, "nbformat_minor": 5 }