{ "cells": [ { "cell_type": "markdown", "id": "1114843e-744c-4a86-8639-9d793cad18c1", "metadata": {}, "source": [ "# Problem 9.3: Linear stability analysis of the repressilator with mRNA\n", "\n", "
" ] }, { "cell_type": "markdown", "id": "4e5edb6e-c4dd-477d-8705-3d3343bc8f1d", "metadata": {}, "source": [ "The dimensionless dynamical equations we used for the repressilator system including mRNA are\n", "\n", "\\begin{align}\n", "\\frac{\\mathrm{d}m_i}{\\mathrm{d}t} &= \\beta\\left(\\rho + \\frac{1}{1 + x_j^n}\\right) - m_i, \\\\[1em]\n", "\\gamma^{-1}\\,\\frac{\\mathrm{d}x_i}{\\mathrm{d}t} &= m_i - x_i.\n", "\\end{align}\n", "\n", "**a)** Show that the fixed point is unique and satisfies\n", "\n", "\\begin{align}\n", "(x_0 - \\beta\\rho)(1+x_0^n) = \\beta.\n", "\\end{align}\n", "\n", "\n", "**b)** Perform linear stability analysis to show that when the fixed point is unstable, it is an oscillatory instability and that the instability occurs when\n", "\n", "\\begin{align}\n", "\\left(\\sqrt{\\gamma} + \\sqrt{\\gamma^{-1}}\\right)^2 < \\frac{3f_0^2}{4+2f_0},\n", "\\end{align}\n", "\n", "where\n", "\n", "\\begin{align}\n", "f_0 = \\frac{\\beta n x_0^{n-1}}{(1+x_0^n)^2}.\n", "\\end{align}\n" ] }, { "cell_type": "markdown", "id": "5d47ca1b-6b7b-446e-87f7-b7a283a50b71", "metadata": {}, "source": [ "
" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.10" } }, "nbformat": 4, "nbformat_minor": 5 }