{
"cells": [
{
"cell_type": "markdown",
"id": "1114843e-744c-4a86-8639-9d793cad18c1",
"metadata": {},
"source": [
"# Problem 9.3: Linear stability analysis of the repressilator with mRNA\n",
"\n",
"
"
]
},
{
"cell_type": "markdown",
"id": "4e5edb6e-c4dd-477d-8705-3d3343bc8f1d",
"metadata": {},
"source": [
"The dimensionless dynamical equations we used for the repressilator system including mRNA are\n",
"\n",
"\\begin{align}\n",
"\\frac{\\mathrm{d}m_i}{\\mathrm{d}t} &= \\beta\\left(\\rho + \\frac{1}{1 + x_j^n}\\right) - m_i, \\\\[1em]\n",
"\\gamma^{-1}\\,\\frac{\\mathrm{d}x_i}{\\mathrm{d}t} &= m_i - x_i.\n",
"\\end{align}\n",
"\n",
"**a)** Show that the fixed point is unique and satisfies\n",
"\n",
"\\begin{align}\n",
"(x_0 - \\beta\\rho)(1+x_0^n) = \\beta.\n",
"\\end{align}\n",
"\n",
"\n",
"**b)** Perform linear stability analysis to show that when the fixed point is unstable, it is an oscillatory instability and that the instability occurs when\n",
"\n",
"\\begin{align}\n",
"\\left(\\sqrt{\\gamma} + \\sqrt{\\gamma^{-1}}\\right)^2 < \\frac{3f_0^2}{4+2f_0},\n",
"\\end{align}\n",
"\n",
"where\n",
"\n",
"\\begin{align}\n",
"f_0 = \\frac{\\beta n x_0^{n-1}}{(1+x_0^n)^2}.\n",
"\\end{align}\n"
]
},
{
"cell_type": "markdown",
"id": "5d47ca1b-6b7b-446e-87f7-b7a283a50b71",
"metadata": {},
"source": [
" "
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.10"
}
},
"nbformat": 4,
"nbformat_minor": 5
}