
Absolut! Documentation

1- How to install Absolut!

The absolut package allows to handle bindings of CDR3 Amino Acid sequences around virtual antigens in a 3D grid. Antigens
can be converted from a real PDB structure to a lattice representation [option discretize], lists of CDR3 sequences can be
‘folded’ around the antigen, giving the list of optimal structural bindings [option repertoire], and features can be extracted
from these bindings [option getFeatures and poolFeatures].

Three variants of the program can be installed / compiled depending on your needs:

- AbsolutNoLib is the easiest version to run, as it does not require any library. More than 200 antigens are available in
the library [option listAntigens], and all data processing (bindings and features) are available.

- Absolut is the full version of the program, which additionally allows to discretize antigens and display them in 3D

[option visualize]. A Qt-based graphical interface assists the discretization, but it is also possible to use qithout
graphical interface and compile without the Qt library (see Advanced).

- AbominationMPI is the paralellized version specially designed to bind millions of CDR3 sequences around antigens
[option repertoire] using the MPI library. Note that Delicab and Absolut are already multi threaded, but some cluster
require MPI when the program is to be run on different nodes.

Downloading Absolut!: will be in github soon

Requirements:

- C++ compiler: g++ and gcc (that should normally include a linker ld). Linux: ‘sudo apt-get install build-essential’. On
MACs that would be clang ‘brew install llvm’. Windows: mingw or visual C++.

- For using Qt, recommends installing qtcreator with the qt distribution. Linux: sudo apt-get install qtcreator, qt5-
default, libqt5

- For discretizing antigens: Wget, for downloading the PDB files and python, for pdb-tool PDB processing.

Notes:

- When using Qt, do not use qmake in the folder where the original Makefile is (that would replace it).
Suggest to use qtcreator, it will compile in a separate folder.

Absolut! Documentation

2- How to use Absolut! In a glance

Option 1: discretize: Open a graphical interface to discretize an antigen using LatFit.

Inputs:

- PDB_ID The 4-character name of the PDB to discretize (will automatically download if not in the folder)
- Chains The names of the chains to be discretized (one char per chain, put together)
- Resolution The resolution of the 3D lattice [default 5.25]
- TypePos The type of positions used for discretization [CA for Carbon Alpha, CoM for Centroid center of the

side-chain only, and FuC for fused center of the whole AA – default FuC]

Example:
 ./Absolut 1OB1 C
 ./Absolut 1CZ8 VW
 ./Absolut 1CZ8 VW 5.25 FuC

Outputs:

- Download the original PDB and fasta files from the PDB server, saves it into the running folder
- 1CZ8deIns.pdb new PDB with the same structures but where insertions are removed

 by shifting the ID of each residue (using pdb-tools). Note that side information
 of the PDB might be removed in this step, like the position of glycans.

- 1CZ8_VWprepared.pdb new PDB with only the chains of interest (as input for latfit)
- 1CZ8discretized5.25FuC.pdb Latfit output: new PDB file, one chain has the original positions (lines ATOM)

 and the positions in the 3D lattice (lines HETATOM)
- 1CZ8_VWInLattice.txt Description of the discretized antigen [Each chain is described as a starting

 position in the lattice (6-digits number) and a list of moves in space (straight S,
 up U, down D, left L, right R). See ‘info_position’ to convert lattice positions.
Note:

- A graphical interface will open, allowing to change the discretization parameters and visualize the results.
 See the following pages for description of the graphical interface

- Please do not run this option in debug, the call to python pdb-tools scripts using system() usually fails (no idea)
- Please keep this order of arguments

Absolut! Documentation

Graphical interface for discretization:

1: PDB file ID, will be downloaded directly from PDB database

2: Open Rasmol to view the original PDB. Suggestions: Use rasmol terminal to play:
‘select :A’ to select chain A, ‘restrict :A’ to only show chain A. Or ‘select hetero’ to
select the glycans or so. Suggestion: colour shapely, show spacefill, and unselect
hydrogens.

3: Shows the chains available in the PDB (note: sometimes PDB files have weird
formats and chains do not appear)

Selection of chains to be processed:

4: List of chains to be further discretized. The Merge command will create a new
PDB file where all those chains are put together in one chain.

5: Fasta information of the PDB. Note: some residues might be missing in the crystal
structure, so not all AAs will appear in the structure.

Discretization using the latfit library:

6: What will be discretized. Three options: ‘CA’: only the Carbon Alpha of each
amino acid is used. ‘CoM’: only the center of mass of the side-chain of the AAs is
taken (centroid representation), but the backbone is not included. ‘FuC’: Fused
Center, where the center of mass of both the side-chain and the backbone is taken.

7: Latfit reconstructs a structure from one tail, adding residues one by one in grid
space positions. nKeep is the number of best structures so far it stores before
adding the next amino acid. Min 1, suggest 25.

8: Some crystal structures have missing residues, or when you use more than one
chain, there is a gap between the last AA of one chain to the first AA of the next.
These are called jumps and we need to use this option when calling latfit.

9: During the discretization into lattice, we can decide what is the distance between
two consecutive AAs. When discretizing the Carbon Alphas, the average distance is
3.9Å between two next ones. However, when discretizing centroids or fused
centers, the average distance might bigger. Using higher distance between points
generates a more compact structure (with less holes) and with lower distances it
makes longer tails. The best is to look at the dRMSD between original and
discretized structure for different lattice distances.

10: Average distance between C Alphas in the PDB file.

11: Automatically iterates all possible lattice distances and types of discretization
(see 6).

12: Text of the generated PDB file after discretization. It contains the original
structure of the points to be discretized in 3D (the C Alphas, or centroids, or fused
centers), and the position of discretized points as well.

13: Runs latfit to discretize the selected chains into a lattice.

14: Reads the PDB generated by latfit and transforms into our lattice
representation with Straight, Up, Down, Left, Right.

15: Visualization of the discretized lattice in 3D. Holes (defined as external points
with 5 contacts or more to the structure, are marked by a green small sphere).

16: Generates all structures around the antigen and shows a small number of them,
to see where the antibodies would bind. Options:

17: Normally, it takes an antibody sequence randomly and shows the
top structures with higher total energy. However, by clicking random,
a ramdom set of structures would be shown instead.

18: Number of structures to show at the same time

19: Size of antibody (receptor) structures. This is number of bounds,
so add +1 to have their number of AAs.

20: Minimum number of contact points of the structures.

21: Result of converting the discretized protein into our lattice system: Number of
subchains, and for each subchain, the starting position in space (a 6-digit ID that
encodes x + 64y + 4096z) and the structure. At the end, the list of AAs in the
structure is given.

Commands when visualizing structures in the program:
Q/D: Previous/next structure. S: Axis B: Black / White background
J: next heatmap (the last one is the merging of all)
A: Mode Amino Acid coloring / random color
H: Mode Heatmap / random color
l/L: smaller/larger AA spheres
Arrows (left/right): moves the structures.
X/Y/Z x/y/z: move the current point +/- along an axis
P: (on/off) prints the position of the current point in cout
O: (on/off): Outputs the current display as image, automatic naming

Absolut! Documentation

Option 2: repertoire: Calculates the best binding of CDR3 sequences around a discretized antigen from the library.

Inputs:

- Antigen_ID The ID of the antigen in the library. The full name would contain the chains, for instance 1FBI_X.
 However, provided there is only one antigen for this PDB ID, we can use 1FBI as shorter name.

- Precomputed structure file.

Ultimately, the program needs three precomputed files for an antigen. A list of structures, a dictionnary of
structures to binding codes, and a compact list of binding codes. These (weird) files look like:

i) SUDRRec88cb568db9617734142c2e1cb8ae9e-10-11-
91fbe8b6e59930b8e5270c6093af8136Structures.txt

ii) SUDRRec88cb568db9617734142c2e1cb8ae9e+NISQH9359bc275d9357a840bfec064d42ea6a-10-11-
91fbe8b6e59930b8e5270c6093af8136.txt

iii) SUDRRec88cb568db9617734142c2e1cb8ae9e+NISQH9359bc275d9357a840bfec064d42ea6a-10-11-
91fbe8b6e59930b8e5270c6093af8136Compact.txt

The first file (Structures.txt) is smaller (like 100MB) while the two other ones can be huge (1GB). Luckily, the
program can recompute the files ii) and iii) quite fast, so you just need to provide the Structures file.

 Where to find the structures file? Philippe-robert.com/Absolut/Structures/

 If the structure file is not available?
 You need to recompute it, can take up to 5 days [not parallelized]. Use the command singleBindings for that.

- Repertoire file: List of CDR3 to process, with a unique ID for each of them [ID can be integer or string or whatever]
 Should be two columns: ID then CDR3 sequence.

Outputs: Annotated raw binding file

Absolut! Documentation

Advanced: Installng the required libraries for Windows

Installing Qt framework https://www.qt.io/ => download => open source

Recommend to use a Qt distribution that includes a C++ compiler if you don't have:
https://www.qt.io/offline-installers

Installing gsl library

https://sourceforge.net/projects/gnu-scientific-library-windows/

Make sure git is installed in a folder WITHOUT SPACES, so not in Program Files => needed to reinstall manually outside the
program center. Git can be found here: https://git-scm.com/download/win

Find mingw32-make.exe and rename it to mingw32-make.exe as just make.exe and make sure it’s in the path, so that
make can be run directly on a command line.

./configure --host=x86_64-w64-mingw32 --prefix=/mingw/local --enable-shared --enable-static

$ make

$ make install

Then the dll are created in the .libs folders

Same thing for openGL libraries. Seems GLUT is not supported anymore => Change to freeglut. Good thing, we can have
multiple time a GlutMainLoop window, need to find how to do it later. So, to install freeglut:

Install freeglut

Help can be found there https://medium.com/@bhargav.chippada19/how-to-setup-opengl-on-mingw-
w64-in-windows-10-64-bits-b77f350cea7e

Needed to install cmake

https://cmake.org/download/

and to put it’s folder in the path

Then downloaded freeglut

http://prdownloads.sourceforge.net/freeglut/freeglut-3.0.0.tar.gz?download

Then from CMD (and not from git bash), inside the unpacked freeglut, do:

cmake -G "MinGW Makefiles" -S . -B . -DCMAKE_INSTALL_PREFIX= x86_64-w64-mingw32

 do make all

https://sourceforge.net/projects/gnu-scientific-library-windows/
https://git-scm.com/download/win
https://medium.com/@bhargav.chippada19/how-to-setup-opengl-on-mingw-w64-in-windows-10-64-bits-b77f350cea7e
https://medium.com/@bhargav.chippada19/how-to-setup-opengl-on-mingw-w64-in-windows-10-64-bits-b77f350cea7e
https://cmake.org/download/
http://prdownloads.sourceforge.net/freeglut/freeglut-3.0.0.tar.gz?download

