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Abstract The paper deals with voting rules that require
voters to rate the candidates on a finite evaluation scale
and then elect a candidate whose median grade is max-
imum. These rules differ by the way they choose among
candidates with the same median grade. Call proponents
(resp. opponents) of a candidate the voters who rate this
candidate strictly above (resp. strictly below) her median
grade. A simple rule, called the typical judgment, orders
tied candidates by the difference between their share of
proponents and opponents. An appealing rule, called the
usual judgment, divides this difference by the share of
median votes. An alternative rule, called the central judg-
ment, compares the relative shares of proponents and
opponents. The usual judgment is continuous with re-
spect to these shares. The majority judgment of Balin-
ski & Laraki (2007) considers the largest of these shares
and loses continuity. A result in Balinski & Laraki (2014)
aims to characterize the majority judgment and states
that only a certain class of functions share some valu-
able characteristics, like monotonicity. We relativize this
result, by emphasizing that it only holds true for infinite
scales of grades. Properties remaining specific to the ma-
jority judgment in the discrete case are idiosyncratic fea-
tures rather than universally sought criteria, and other
median-based rules exist that are both monotonic and
continuous.
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1 Introduction

In a series of papers and a book, Balinski & Laraki
(2007; 2011; 2014; 2016) have developed a “theory of mea-
suring, electing and ranking”. This theory demonstrates5

valuable properties of a voting system based on evalu-
ations rather than on rankings or single marks, where
the choice (or candidate) obtaining the highest median
evaluation is elected. Balinski & Laraki (BL) have pro-
posed an elegant set of rules electing a choice with the10

highest median, and coined this voting system the “ma-
jority judgment”. Ties between choices with the same
median grades are resolved by comparing the shares of
grades above and below the median, respectively: the
choice with the largest of these shares wins if the grades of15

that largest share are above the median, and loses if they
are below. The majority judgment (MJ) holds remarkable
properties, making it the ideal voting system according
to its advocates.1 It is independent of irrelevant alterna-
tives, it reduces manipulability, and it does not fall into20

the scope of Arrow’s impossibility theorem (Balinski &
Laraki, 2007). These properties emerge from the expres-
siveness of the information contained in each vote, as
well as from the election of the highest median. They do
not rely on the particular tie-breaking rules of the major-25

ity judgment. Contrarily to what Balinski & Laraki (2014)
convey, neither does the property of monotonicity, which
ensures that a choice can only benefit from an increase of
its grades. Indeed, the uniqueness property of one of the
various theorems that BL have established in their theory30

turns out to be inapplicable. Actually, Balinski & Laraki
(2014) do not make clear that their theorem only applies
to an infinite set of grades, whereas in all practical appli-
cations, the set of grades is finite. As a consequence, other
voting systems electing the highest median are as cred-35

ible as the majority judgment. Rather than discrediting
the theory elaborated by BL, this observation enriches it
by a variety of simpler voting rules. We will present three
such rules in Section 3, after describing the setting and
notations of the paper in Section 2. Then, the main result40

is exposed in Section 4: we clear up ambiguity of a propo-
sition of BL on the uniqueness of monotonicity by show-
ing that our three voting rules are counter-examples. In
Section 5, we compare the properties of the different tie-
breaking rules, and show that the majority judgment is45

overly sensitive to small fluctuations in the grades. Fi-
nally, Section 6 provides a practical understanding of the

1 Nuanced reviews of MJ have also been published (Felsenthal &
Machover, 2008; Brams, 2011; Laslier, 2018).

difference between these voting systems, by exhibiting
how they behave on four real-world examples.

Fig. 1 Example of vote outcome where each choice A, B, C or D wins
according to one of the four tie-breaking rule studied: respectively
difference (d ), relative share (s ), normalized difference (n), and ma-
jority judgment (m j ).

c αc pc qc dc sc nc m jc

A 0 30
100

10
100

20
100

20
80

20
120

30
100

B 0 11
100

1
100

10
100

10
44

10
176

11
100

C 0 40
100

27
100

13
100

13
134

13
66

40
100

D 0 45
100

43
100

2
100

2
176

2
24

45
100

Table 1 Comparison of different tie-breaking rules on an example:
the score of the winner is in bold and blue for each rule.

Before the formal analysis, let us grasp an intuition of 50

the tie-breaking rules with a graphical example. Figure 1
and Table 1 show the voting profiles of four choices —A,
B, C and D— evaluated by 100 voters. All choices share
the same median gradeα= 0. Ties are resolved by looking
at what we abusively call the proponents and the oppo- 55

nents to each choice c: the voters attributing to c, respec-
tively, a higher and a lower grade than c’s median grade.
The shares of proponents and opponents are respectively
noted p and q —in this simple example, they correspond
to the votes 1 and −1. For example, A has 30 proponents 60

and 10 opponents, so that pA = 0.3 and qA = 0.1. Choice
D wins the majority judgment, because its share of pro-
ponents exceeds all other shares of proponents or oppo-
nents. A wins with the difference tie-breaking rule rely-
ing on the score d , because its difference between pro- 65

ponents’ and opponents’ shares is the highest. B wins the
tie-breaking rule relying on s , because its ratio of pro-
ponents (or equivalently, of pB − qB ) over non-median
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graders (pB+qB ) is the highest. C wins with n , because its
difference between proponents’ and opponents’ shares70

normalized by its share of median grades (1 − pC − qC )
is the highest. This example shows that the tie-breaking
rules described can lead to different outcomes. It is worth
noticing that, as MJ only takes into account the largest
of the two groups of non-median grades, it is more sen-75

sitive to a small variation in their sizes when these are
close: in our example, if 3% of grades shifts from 0 to −1
for D, the highest group of D becomes its opponents and
D is ranked last instead of first (in which case C wins MJ).
However, a similar variation would not impact the other80

tie-breaking rules as heavily.

2 Setting

LetC be a finite set of choices, V a finite set of V vot-
ers, and G a finite2 ordered set of G grades. We assume
that G ≥ 3, as all relevant rules boil down to approval vot-85

ing when G = 2.
The grade (or evaluation) of choice c by voter v is

noted gc ,v ∈G . The family Φ=
�

gc ,v

�

(c , v )∈C×V is called the
voting profile. In Appendix B, we allow for partial absten-
tion, i.e. gc ,v ∈G∪{;}, where gc ,v = ; indicates that voter v90

does not attribute any grade to c. All results are preserved
when allowing for partial abstention but to simplify the
presentation, we follow BL and consider that each choice
receives the same number of expressed grades V.
G is isomorphic to the ordered set of integers J1;G K95

and embedded in Z. Hence, each grade g ∈ G is identi-
fied with an integer, so that its successor (resp. its prede-
cessor) is simply noted g + 1 (resp. g − 1), and the order
relation on G is denoted by “≥”. Note that values or dis-
tances between values do not play any role, as all reason-100

ings rely on quantiles of grades, and not on averages.
We define the jth order function ` j : GV → G

as the function that returns the jth lowest grade of a
choice. In the following, we abusively write ` j (c ) as a
shortcut for ` j

��

gc ,v

�

v∈V

�

. We define the lower middle-105

most grade αc of choice c, as the median grade of c
when V is odd, and as the V

2 th lowest grade when V

is even. Formally, αc = `d
V
2 e (c ), where d·e is the ceiling

function. We often abusively refer to αc as the median
grade of c. We call the middlemost grades the two central110

grades of c when V is even and the three central grades
when V is odd. Formally, the middlemost grades of c
are

�

`i (c )
�

i∈Jd V +1
2 e−1;d V

2 e+1K. We also define the first mid-

dlemost interval, whose bounds are middlemost grades:r
`d

V +1
2 e−1 (c ) ;`d

V
2 e+1 (c )

z
, and the kth middlemost interval115

2 We restrict our analysis to finite sets of grades as they cover all
practical applications.

(for any integer k < V
2 ) as

r
`d

V +1
2 e−k (c ) ;`d

V
2 e+k (c )

z
. For ex-

ample, with the tuple of grades (1, 1, 2, 4, 6, 7, 8), the lowest
middlemost grade —also called the zeroth middlemost
interval— is the median: 4, the middlemost grades are
(2, 4, 6), the first middlemost interval is J2; 6K, the second 120

middlemost interval is J1; 7K, and the third middlemost
interval is J1; 8K.

For n ∈ J1;G −1K, we denote by p n
c (resp. q n

c ) the pro-
portion of c’s grades at or above αc + n (resp. at or be-
low αc − n): p n

c := 1
V

�

�

�

v ∈V |gc ,v ≥αc +n
	�

� (resp. q n
c := 125

1
V

�

�

�

v ∈V |gc ,v ≤αc −n
	�

�). For simplicity, we abusively
qualify pc := p 1

c as the share of proponents and qc := q 1
c

as the share of opponents to c.
Finally, a rule is a total preorder onC , function of the

profile Φ; while a tie-breaking rule is an order on C re- 130

stricted to profiles with the same median grade. Rules of-
ten rely on scores, which are real-valued functions of the
grades of a choice. We call tie-breaking score a function
of p and q; primary score a function of α, p and q (more
precisely the sum of α and of a tie-breaking score); and 135

a complementary score any other function of the grades
which is used to rank choices sharing the same primary
score. Without further precision, score refers to primary
score.

3 Different tie-breaking rules 140

Hereafter we describe different tie-breaking rules,
which share the common characteristic that choices c of
C are ordered lexicographically starting with a primary
score which depends exclusively on the tuple

�

αc , pc , qc

�

(and preserves the ranking of median grades), and com- 145

pleted with complementary scores for rare cases where
ties remain. One can grasp the intuition behind these
rules with the graphical example of Section 1 as well as
with Figure 2.

Other types of tie-breaking rules have been proposed, 150

by Falcó & García-Lapresta (2011) and García-Lapresta
& Pérez-Román (2018). We do not further detail these
approaches, because they contain theoretical consider-
ations that are beyond the scope of the present paper.

3.1 Majority Judgment 155

Balinski & Laraki (2016) propose the following
majority-gauge rule between two choices A and B
sharing the same median grade. They write:

A �mg B ⇐⇒ pA >max
�

pB ; qA ; qB

	

or qB >max
�

pA ; pB ; qA

	

(1)
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In other words, the primary score m jc of a choice c
can be defined as:3

m jc :=m j
�

αc , pc , qc

�

:=αc +1pc>qc
pc −1pc≤qc

qc . (2)

Intuitively in MJ, the largest share of proponents (pc )
or opponents (qc ) determines the outcome of the vote: if160

the largest share corresponds to the proponents of c, c is
elected; if instead it corresponds to the opponents of c, c
is dismissed (and the operation is possibly iterated on the
—now smaller— set of tied winners).

By construction, it is possible that several choices165

share the same score mj even though their tuples
�

αc , pc , qc

�

are distinct. This is so when some tied tuples4

T are of the forms (i)
�

α, pc , q
�

, with q ≥ max
c∈T

�

pc

	

, or

(ii)
�

α, p , qc

�

, with p > max
c∈T

�

qc

	

. In such cases, choices

are ordered using a complementary score m j 2
c equal to170

m j
�

αc , pc , q 2
c

�

in case (i) and equal to m j
�

αc , p 2
c , qc

�

in
case (ii). If a tie remains, a new complementary score
is constructed along the same procedure until a unique
winner is found, by replacing the shared group (p n or q n )
by its successors (p n+1

c or q n+1
c ). This procedure specifies175

a total order on choices called the majority ranking, and
it characterizes the majority judgment.

For example, let C = {E ; F } and assume the follow-

ing voting profile: Φ =

�

gE ,v

gF,v

�

v∈V
=

�

−1 0 0 1 1
0 0 0 1 1

�

. E and

F share the same median grade 0, and the same score180

m jE =m jF =
2
5 . As the share of proponents is higher than

the share of opponents for both E and F, and as these
share of proponents are equal, our example belongs to
case (ii). We resolve the tie by comparing m j

�

αc , p 2
c , qc

�

for c ∈ {E ; F }. As p 2
E = p 2

F = 0 (because no grade higher185

than 1 has been attributed), this amounts to comparing
the shares of opponents of E and F. As qE =

1
5 > qF = 0,

m j 2
E =−

1
5 < 0=m j 2

F , and F wins.
Balinski & Laraki (2014) propose another descrip-

tion of MJ. The choice with the highest median grade is190

elected. In case of a tie, the order must depend on remain-
ing grades, so a single median vote is dropped. The op-
eration is then repeated on remaining grades, until one
choice has a median grade higher than the others. In our
example above, this means comparing in the following195

order, and for c ∈ C , the median grades: `3 (c ) = 0, then
the second lowest grades: `2 (c ) = 0, then `4 (c ) = 1. Fi-
nally, after dropping the middlemost grades, the median
grades of E and F are their lowest grades, and they differ;
as `1 (E ) = −1 < 0 = `1 (F ), F wins. Notice that we com-200

pared grades of same rank, starting with the median and

3 1P (x ) denotes the indicator function of the property P evalu-
ated in x . For example, 1pc >qc

= 1 if pc > qc and 0 otherwise.
4 We define tied tuples Tµ as tuples of choices sharing the m j

score µ: Tµ :=
��

αc , pc , qc

�

| c ∈C and m jc =µ
	

.

progressively moving away from it, alternating between
the “left-” (lower) and the “right-” (higher) hand side of
the median. Example 2 formalizes this idea.

Remark 1 Both definitions of MJ are equivalent. Indeed, 205

in the definition that uses scores, the first group p n or q n

that differ between the candidates provides the first grade
that differs in the voting profile when grades are ordered
as in the recursive definition of Balinski & Laraki (2014),
i.e. giving precedence to the middlemost ones. 210

3.2 Alternatives to the Majority Judgment

Here, we define three alternative tie-breaking rules for
the election of the highest median. They all rank choices
using a primary score and, in case of ties, rely on comple-
mentary scores. 215

3.2.1 Primary scores

The primary score of a candidate c is the sum of the
median grade αc and of a tie-breaking score. The latter is
comprised in

�

− 1
2 ; 1

2

�

so that primary scores do not over-
lap when median grades are distinct. We denote by ∆, σ 220

and ν the difference, relative share and normalized differ-
ence tie-breaking scores defined below, and by d , s and n
their respective primary score (e.g. dc =αc +∆c ).

Difference between non-median groups This tie-breaking
score is the difference in size between the shares of pro-
ponents and opponents to c:5

∆c := pc −qc . (3)

Relative share of proponents Here, the tie-breaking score
is given by the following formula:

σc :=
1

2

pc −qc

pc +qc +ε
(4)

where ε is an arbitrarily small number (taken be-
low 1

V , say ε = 10−10) insuring that the denominator al- 225

ways remains positive. Intuitively, the winner is the one
with the highest share of proponents within its non-
median voters, i.e. the highest p

p+q . Indeed, omitting ε,

σ = 1
2

�

p
p+q −

�

1− p
p+q

��

= p
p+q −

1
2 . Equivalently, σ re-

wards the highest ratio of proponents over opponents p
q , 230

as σ = 1
2

p−q
p+q =

1
2

1− q
p

1+ q
p
= f

�

p
q

�

with f (x ) := 1
2

1− 1
x

1+ 1
x

strictly

increasing.

5 According to (Balinski & Laraki, 2011), it was very first proposed
by David Gale.
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Fig. 2 Ternary plot showing the scores of different tie-breaking rules. Tuples
�

p , q , 1−p −q
�

for p , q ∈ (0; 1) are represented in barycentric

coordinates on the frame (+1,−1, 0). The interior of the red rhombus corresponds to p , q ≤ 1
2 . In such cases, the median grade is 0, and the

grades above (resp. below) 0 are treated as +1 (resp. −1). A, B, C and D are the example candidates described in Table 1.

Normalized difference between non-median groups No-
tice that, for a given size of median group rc := 1−pc −qc ,
the inequality pc ≤ 1

2 provides an upper bound on ∆c :235

∆c = pc − qc = rc − 1+ 2pc ≤ rc . By symmetry, the differ-
ence∆c is thus bounded by [−rc ; rc ], and it is tempting to
normalize it by 2·rc to define another tie-breaking score:6

νc :=
1

2

pc −qc

1−pc −qc
(5)

Intuitively, the winner is the one with the highest bal-
ance between proponents and opponents relative to the240

share of median voters. Hence, for a given difference ∆,
the candidate with the lowest share of median voters has
the largest score ν in absolute value. When the difference
is positive, the normalized difference rewards candidates
with relatively less median voters, but it is the contrary245

when the difference is negative.

Visualizing the rules Figure 2 presents each score in a
ternary plot, where the voting profile of any candidate
can be drawn using barycentric coordinates. Take can-
didate A defined in Table 1 for example. Assuming that250

all altitudes of the triangles are unitary, the distance from
point A to the (bottom) base of the triangle is the share of
median voters rA , while its distance to the upper left (resp.
right) edge is the share pA of proponents (resp. the share
qA of opponents). The dispositions of the white lines,255

which connect candidates with the same score, make
clear that different rules yield different rankings and re-
veals the discontinuities present in all rules but the nor-
malized difference (see Section 5.1). Notice that for the
scale {−1; 0;+1} that is used in the ternary plot, tuples of260

the form
�

αc , pc , qc

�

=
�

+1, 0, q
�

(resp.
�

−1, p , 0
�

) are un-
ambiguously represented at the bottom right (resp. left)
of each plot through the extension of p (resp. q) to

�

1
2 ; 1

�

.

Extensions These rules extend naturally to similar vot-
ing schemes where the winner is determined using the265

6 The denominator is always positive as we have qc <
1
2 , pc ≤ 1

2 .

(lowest) kth quantile `dk V e (instead of the median). Such
extensions can be preferred e.g. to allow least satisfied
people to get more influence on the final decision: the
grade with the highest first quartile could then be elected
instead of that with the highest median. In such cases, 270

the score mj turns into m j k
c = `

dk V e (c ) + 1 k
1−k pc>qc

pc −
1 k

1−k pc≤qc
qc ; the difference ∆ and the relative share σ can

write the same; while the normalized difference becomes
νk

c = νc ·
k ·(1−k )

k 2+(1−k )2
to avoid that scores with distinct medi-

ans overlap. These extensions conserve most of the prop- 275

erties of their original voting systems (even if properties
such as the majority rule need to be reformulated). How-
ever, Balinski & Laraki (2014) show that voting systems re-
lying on the highest median minimize the probability of
cheating. 280

3.2.2 Complementary scores and ultimate tie-breaking

When a primary score is shared by several choices, a
secondary score determines the ranking between these
choices. It is obtained by applying the tie-breaking score
to
�

p 2
c , q 2

c

�

. If a tie remains after n steps, a complemen- 285

tary score of degree n +1 is computed using
�

p n+1
c , q n+1

c

�

,
noted∆n+1

c ,σn+1
c or νn+1

c . We qualify these voting proce-
dures as highest median with nested tie-breaking scores.
For example, letC = {E ; F }, assume the following voting

profile: Φ =

�

gE

gF

�

=

�

−1 0 2
0 0 0

�

, and consider the differ- 290

ence rule. E and F share the same median 0, and we have
∆E =

1
3 −

1
3 = 0 = 0− 0 = ∆F . Thus, we compare E and F

using∆2
E =

1
3 −0= 1

3 > 0=∆2
F , and E wins.

When a tie remains after all these steps although the
grades are distinct, the tied choices T are ranked accord- 295

ing to the lexicographic order of vectors
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�

−q 1
c , p 1

c ,−q 2
c , p 2

c , ...,−q G−1
c , p G−1

c

�

c∈T
,7 i.e. the winner is

the one with the lowest proportion of opponents. For ex-
ample, if we have C = {E ′; F } and the following vot-

ing profile: Φ =

�

gE ′

gF

�

=

�

−1 0 1
0 0 0

�

, the tie remains af-300

ter comparing median grades, the primary score and the
secondary score, all equal to zero. Thus, we resort to the
ultimate tie-breaking rule and declare F winner because
−q 1

F = 0>− 1
3 =−q 1

E ′ .
We say that this ultimate tie-breaking rule is consen-305

sual because a choice with a shared opinion is preferred
to a polarizing one (the opposite option would be to fol-
low dissent, by favoring the highest q i

c instead of the low-
est). We say that it is innermost because the middlemost
grades are preeminent (we would say it is outermost if we310

were to compare
�

−p G−1
c

�

c
first and

�

−q 1
c

�

c
last — see Ta-

ble 2).8

Table 2 Summary of four ultimate tie-breaking rules when A and
B share the same primary and complementary scores. Here n̄ :=

arg max
n∈(0;G ), c∈{A;B }

�

q n
c > 0

	

. The variant in bold is the one defended in

(Balinski & Laraki, 2014) and followed in this paper.

A � B if... consensus dissent
innermost q1

A < q1
B q 1

A > q 1
B

outermost q n̄
A < q n̄

B q n̄
A > q n̄

B

The voting systems resulting from these rules each
convey an order on choices. We denote by D, S, and N
respectively, the highest median ranking function with315

nested tie-breaking score ∆, σ, and ν following the in-
nermost consensus. We call D the typical judgment; S the
central judgment; and N the usual judgment.

4 Common properties of these rules

Most of the results on the majority judgment proven320

by Balinski & Laraki apply to all voting rules electing the

7 Admittedly, the
�

p i
�

i
are redundant with the

�

−q i
�

i
for d and n

as, for any i ∈ J1;G −1K, the common complementary score con-
veys a bijection from q i to p i . However, this is not the case for s i

when p i · q i = 0. In all cases, it is equivalent to order the
�

−q i
�

i

before or after the
�

p i
�

i
. We give precedence to the

�

−q i
�

i
only by

analogy with MJ.
8 Of course, we could have chosen an ultimate tie-breaking rule

following dissent instead of consensus, and/or an outermost one.
However, as Balinski & Laraki (2014) argue, following consensus is
consistent with deciding upon the lower middlemost grade (instead

of the upper one, `d
V +1

2 e), in that a majority always grades the win-
ner at least as much as its lower middlemost grade; while being in-
nermost is consistent with deciding upon the middlemost grades.
That being said, choosing another ultimate tie-breaking rule would
have virtually no consequence on ballots with many voters, as an
ultimate tie is highly improbable in such cases.

choice with the highest median grade. The main proper-
ties that rely on their tie-breaking rule also apply to the
alternative tie-breaking rules. Indeed, although Balinski
& Laraki (2014) convey that only a certain class of tie- 325

breaking rules (which does not encompass our alterna-
tive rules) satisfies some valuable properties like mono-
tonicity, this proposition is false in general. Indeed, BL
apply a result from social choice theory that is only valid
for an infinite set of grades. Yet in our setting, the set of 330

grades is finite. In any case, it could not be otherwise,
as the definitions of the alternative tie-breaking rules re-
quire a finite set of grades.

We first need to recall some definitions adapted from
Balinski & Laraki (2014) in order to expose the limit of 335

their proposition.

Definition 1 Independence of irrelevant alternatives in
ranking (IIAR). A preorder �Φ onC (function of the pro-
file Φ) is IIAR when, for any profile Φ′ obtained by elim-
inating or adjoining other choices (and corresponding 340

votes) from a profile Φ, and for any choices c and c ′

present in both profiles, c �Φ c ′ ⇐⇒ c �Φ′ c ′.

Remark 2 IIAR imposes that the ranking between two
choices does not depend on the votes over other choices
nor on the set of choices. 345

Definition 2 A preorder �Φ onC (function of the profile
Φ) is impartial when it is independent of a permutation
of choices (or rows) and voters (or columns).

Definition 3 A social-ranking function (SRF) � is a total
preorder onC , function of the profile Φ, that is impartial 350

and IIAR.

Example 1 Along with majority judgment, its alterna-
tives D, S and N define social-ranking functions. In ad-
dition, they specify an order (not only a preorder), as
choices with distinct grades are never tied. 355

Definition 4 A social-ranking function� is choice mono-
tone if A � B and a voter increases the grade of A implies
A � B .9

Definition 5 A social-ranking function � is order consis-
tent if the order between any two choices for some profile 360

Φ implies the same order for any profile Φ′ obtained from
Φby any strictly increasing transformationφ of all grades.

9 Balinski & Laraki (2011) define a related notion (p. 204), mono-
tonicity, equivalent to choice monotonicity as long as the social-
ranking function is antisymmetric (i.e. A � B and B � A⇒ A = B ).
All tie-breaking rules dealt with in this paper are antisymmetric and
thus monotonic, as each specifies an order. Hence, we sometimes
use monotonicity as a shortcut for choice monotonicity.



Tie-breaking the Highest Median: Alternatives to the Majority Judgment 7

Remark 3 Order consistency requires that the social-
ranking function should be insensitive to a relabeling of
grades, provided that the relabeling preserves the order365

between grades. In our setting, any social-ranking is triv-
ially order consistent, as the only strictly increasing trans-
formation of a finite set (of grades) is the identity func-
tion.10

Lemma 1 The social-ranking functions defined by the370

highest median with the nested tie-breaking scores ∆, σ
and ν are order consistent and choice monotone.

Proof As explained in the previous remark, the order con-
sistency is trivial. To prove the choice monotonicity, let A
and B be choices such that A � B . Either (i) A = B or (ii)375

A � B . In case (i), if a voter increases her grade of A, either
αA will increase, or there is a minimum step n0 for which
p n0

A will increase or q n0
A will decrease. In the latter case, the

score of A of degree n0 will (strictly) increase while there
will be no change on the scores of B. Both cases lead to380

A � B . The same reasoning applies on case (ii).

Definition 6 Let S = {r1; . . . ; rV } be an ordered set, such
that r1 < . . .< rV . A lexi-order social-ranking function uses
a bijection π : S → J1; V K to rank the choices by A �
B ⇐⇒

�

`π(r1) (A) , ...,`π(rV ) (A)
�

�lex

�

`π(r1) (B ) , ...,`π(rV ) (B )
�

,385

where �lex is the lexicographic order.

Example 2 The majority judgment is a lexi-order social-
ranking function, whose permutation πM J is defined by
πM J (2k +1) =

�

V +1
2

�

− k and πM J (2k ) =
�

V
2

�

+ k for k ∈q
0;
�

V −1
2

�y
.11 This was observed in Section 3.1 and is de-390

tailed in Balinski & Laraki (2011).

Lemma 2 Consider a social-ranking function R that re-
lies on a tie-breaking score whose sign is the sign of p −q .
Then R is not a lexi-order function. In particular, the typ-
ical judgment (D), the central judgment (S) and the usual395

judgment (N) are not lexi-order functions.

Proof Let C = {A; B } be the set of choices, let N = 3 and
let G = J−1; 2K.12 Let us exhibit two profiles Φ and Φ′ for

10 Let us precise that in absence of any explicit definition from BL,
we understand transformation in its usual sense of a function from
a set to itself. Indeed, it would make little sense to take a codomain
of φ larger than its domain, because then some new grades could
not be used.

11 When V is odd, the domainS of πM J is J0; V −1K, and when V
is even, πM J is instead defined on J1; V K.

12 The assumption on G (which amounts to take G ≥ 4) is made
to simplify the argument, but a similar proof exists for G = 3. Take

Φ1 =
�

−1 1 1 1 1
0 0 1 1 1

�

, Φ2 =
�

0 0 0 0 1
−1 −1 0 1 1

�

, Φ3 =
�

−1 −1 −1 0 0
−1 −1 −1 −1 1

�

andΦ4 =
�

−1 −1 0 1 1
−1 0 0 0 0

�

. In each case, A � B . UsingΦ1, this ranking

implies that quintile 2 should be compared before quintile 1, which
we denote 2 Ã 1. Combining this with the condition given by Φ2:
2 Ã 4 or 1 Ã 4, we obtain that 2 Ã 4. Similarly, 4 Ã 5 (Φ3), and 4 Ã
2 or 5Ã 2 (Φ4) imply that 4Ã 2, which yields a contradiction.

which A � B but for which R cannot be expressed as a
lexi-order function. We further denote with (resp. with- 400

out) a “′” the variables related to profile Φ′ (resp. Φ). Let

Φ =

�

gA,v

gB ,v

�

v∈V
=

�

0 0 1
−1 0 2

�

and Φ′ =
�

g ′c ,v

�

=

�

−1 1 2
0 1 1

�

.

The medians of A and B are the same in each case, so
the tie-breaking rule applies. We have pA =

1
3 > 0 = qA

while pB = qB =
1
3 on the one hand, and p ′A = q ′A =

1
3 405

while p ′B = 0 < 1
3 = q ′B on the other hand. As the sign of

the tie-breaking score of R is the sign of p − q , we have
A � B in each profile. To rationalize this ranking inΦwith
a lexi-order function, the lowest grades should be com-
pared before the highest ones as, in Φ, the lowest grade 410

of A is the only one above that of B. However by the same
reasoning on Φ′, the highest grades should be compared
before the lowest ones, if R is a lexi-order function. There
is a contradiction, proving that R is not a lexi-order func-
tion. 415

Claim (Theorem 11 in (Balinski & Laraki, 2014)) The
unique choice-monotone and order consistent social-
ranking functions are the lexi-order functions.

Remark 4 This claim is equivalent to the remark follow-
ing theorem 11.5b in Chapter 11 of (Balinski & Laraki, 420

2011) which is supposed to prove it: “Repeated appli-
cation of the theorem 11.5b shows that an SRF is order
consistent and monotonic if and only if there is a se-
quence of order functions that decide: if the first does not
strictly rank the candidates, the second does; if the sec- 425

ond doesn’t either, then the third does; and so on.” It is
true that for any profile, a monotonic and order consis-
tent SRF can be characterized by a lexi-order function,
but in general the sequence of order functions depends
on the profile. Admittedly, the remark of BL can be justi- 430

fied using Theorem 5 from (Gevers, 1979) when the set of
grades is infinite, an assumption which is made in (Balin-
ski & Laraki, 2011). However, (Balinski & Laraki, 2014) do
not state clearly the assumption of continuity, suggesting
a more general result. The following proposition removes 435

ambiguity.

Proposition 1 Theorem 11 of (Balinski & Laraki, 2014)
does not apply when the set of grades is finite. Indeed, there
exist social-ranking functions other than lexi-order func-
tions that are choice monotone and order consistent. Ex- 440

amples of those are the typical judgment (D), the central
judgment (S) and the usual judgment (N).

Proof This ensues directly from Lemmas 1 and 2.

5 Properties specific to each rule

The previous proposition shows that the most valu- 445

able property of MJ is not as specific as was thought. Now
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Table 3 Marginal effects on each primary score of infinitesimal in-
crease or growth in p relative to an equivalent reduction in q .

d s n mj

− d ·/d p
d ·/d q 1 q

p
1−2q
1−2p

�

+∞ if p ≥ q

0 if p < q− p
q

d ·/d p
d ·/d q

p
q 1 p

q
1−2q
1−2p

that we have dismissed the main rationale to overlook
alternative tie-breaking rules, we explore the properties
specific to each tie-breaking rule, to understand which
one should be preferred. We first describe how each score450

reacts to a marginal change in the votes, then study the
sensitivity of each rule to small fluctuations in the votes,
and finally we analyze the properties specific to the ma-
jority judgment.

5.1 Influence of each group455

Table 3 gives the relative influence of an infinitesimal
shift of voters from opponents to proponents. More pre-
cisely, the first row provides the ratio of the derivative of
each score with respect to p over its derivative with re-
spect to −q . This ratio is equal to 1 for ∆, because one460

more proponent yields the same influence on ∆ as one
less opponent. The second row displays the ratio of elas-
ticities of each score instead of the ratio of derivatives.
This elasticity ratio is equal to 1 for σ, as σ is an increas-
ing transformation of p

q and thus the multiplicative ana-465

log to ∆ = p − q . Except for these two cases, the alter-
native tie-breaking rules do not provide equal influence
(in an additive or multiplicative sense) to each group, as
other ratios are different from 1. However, their ratios al-
ways remain finite, which is not the case for the major-470

ity judgment, where additional voters have no influence
at all when they join the smallest non-median group. In-
deed, the majority judgment does not fully exploit the in-
formation available in

�

α, p , q
�

, as the value of the small-
est non-median group has no influence on the value of475

the score m j . Hence, to the extent that the influence of
all marginal voters is desired, MJ should be avoided.

5.2 Sensitivity to small fluctuations

It is arguably appealing that a rule be insensitive to
small fluctuations in the profiles. Indeed, it may seem un-480

fair (or too random) if a score can vary substantially with
a small change in the profile. Furthermore, a high sensi-
tivity to small fluctuations could lead to more frequent
allegations of irregularities in ballots among large elec-
torates, as a losing candidate could rationally hope that485

the results would change after a new vote (or a recount).

Fig. 3 Score of each rule given the following distribution of grades:
20% of−1, 10% of+2, the abscissa x of grades+1, and the remaining
of 0.

Sensitivity to small fluctuations appear when the
score of a choice is discontinuous with respect to the
shares of each grade. Figures 2 and 3 help understand
where the discontinuities occur. Figure 2 displays all pos- 490

sible score in a ternary plot when G = {−1; 0;+1}. Figure 3
uses G = J−1; 2K and shows how the scores vary with the
share x of grades+1, keeping the shares of grades−1 and
+2 constant at .2 and .1, respectively. One can notice that
a discontinuity occurs for the majority judgment where 495

p = q , as the largest group flips when the share of propo-
nents exceeds the share of opponents. However, when the
share of proponents increases so much that the median
grade changes (i.e. when p go beyond 1

2 ), the score m j
adapts smoothly, as the largest non-median group flips 500

from one half of proponents with a median of 0 to one
half of opponents with a median of 1. Conversely, for D
and S the discontinuity occurs when the median grade
changes (i.e. at p = 1

2 or q = 1
2 ). Indeed, when p exceeds

1
2 , the share of grades −1 leaves the formula of the score 505

while a new share of proponents (0.1) enters. Contrarily
to D and S, the normalized difference succeeds in keeping
the continuity when the median grade changes. Indeed,
the difference is then equal to the share of median grades
in absolute terms, making their ratio unitary. Thus, the 510

location of discontinuities is restricted to p = q = 1
2 for

the normalized difference, which should be more robust
to small fluctuations.

We can also assess the sensitivity to small fluctuations
using numerical simulations. Taking a profile with many 515

choices sharing the same median grade, we can mea-
sure the shift in ranking triggered by a small fluctuation
in the grades of one choice. To this end, we draw ran-
domly 100, 000 p and q independently from the uniform
distribution over (0; 0.5).13 We rank all choices according 520

to each rule. Then, we reallocate 2% of the grades of each
choice independently. For each choice, we draw ε uni-

13 We choose the uniform distribution since we have no good
prior on the real-world distribution of grades of an ordinary choice.
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Fig. 4 CDF of quantile shift following a random reallocation of 2%
of grades of a random choice. E.g. the probability that the rank of a
choice shifts by less than 45 percentiles after a random reallocation
of 2% of grades is 99% for MJ.

Table 4 Sensitivity to small fluctuations for each rule: locations of
discontinuities and probability that a random reallocation of 2% of
grades shift the ranking by more than 20 or 50 percentiles.

d s n mj
Discontinuity at: p = 1

2 or q = 1
2 p = q = 1

2 p = q
Proba shift > 20% (in %) 0.80 1.64 0.39 1.64
Proba shift > 50% (in %) 0.02 0.09 0.05 0.90

formly in [0; 0.02] and draw with probability 1
2 the sign of

the variation in p and, independently, the sign for q. Then,
we increase or decrease p by ε and q by 0.02−ε.14 Finally,525

we measure the quantile shift in the rankings following
each reallocation, i.e. the absolute difference between the
original quantile and the quantile of the perturbed choice
in the distribution of the 100,000 unperturbed scores. Fig-
ure 4 shows the probability that the quantile shift is lower530

than a given quantile r (r > 0.1), for each rule. Table 4
reports the probabilities that a quantile shift is large (i.e.
higher than 20 percentiles) or very large (i.e. higher than
50 percentiles). It confirms that the majority judgment is
the rule most prone to large or very large shifts follow-535

ing small fluctuations, as these probabilities are 4 times
and 20 times higher for MJ than for N , respectively. Com-
pared to N , D and S have similar probabilities of very
large shifts (below 1h) but they have higher probabili-
ties of large shifts (0.8 and 1.6 respectively, compared to540

0.4 for N ).

Overall, the normalized difference N is the most ap-
pealing rule regarding the criteria of continuity and of
low sensitivity to small fluctuations. Concerning this lat-
ter criterion, the majority judgment is hardly satisfactory,545

as it is 20 times more prone to very large shifts following
small fluctuations than the normalized difference.

14 Drawing the variation in q independently from that in p (from
a uniform distribution in [−0.02; 0.02]) yields equivalent results.

5.3 Properties specific to the majority judgment

Since the alternative tie-breaking scores appear to
take better account of all non-median groups than mj, 550

which varies only with the larger one, and since mj com-
pares poorly to the normalized difference regarding the
sensitivity to small fluctuations, one wonders what prop-
erties can make MJ attractive.

Advantages with polarized pairs MJ holds interesting 555

and specific properties when the choices consist in a po-
larized pair, i.e. when the more a voter appreciates one
candidate in a pair, the less the voter appreciates the
other one. Balinski & Laraki (2016) formalize these prop-
erties. 560

Definition 7 (Balinski & Laraki, 2016) Two choices A and
B are polarized if, for any two voters, i evaluates A higher
(respectively, lower) than j then i evaluates B no higher
(respectively, no lower) than j.

Definition 8 (Balinski & Laraki, 2016) A method is 565

strategy-proof when it is an optimal strategy for every
voter to express their opinion honestly. It is assumed that
a voter’s utility is the grade they attach to the elected
choice.

Proposition 2 (Theorem 6 in (Balinski & Laraki, 2016)) 570

A social-ranking function � that is strategy-proof on the
limited domain of polarized pairs of choices must coincide
with the majority-gauge rule when the language of grades
is sufficiently rich (i.e. when there are no less grades than
choices15). 575

Corollary 1 D, S and N are not strategy-proof on the lim-
ited domain of polarized pairs of candidates.

Definition 9 (adapted from (Balinski & Laraki, 2016)) A
social-ranking function � is consistent with the majority
rule on polarized pairs of choices A and B if A � B when- 580

ever
�

�

�

v |gA,v > gB ,v

	�

�>
�

�

�

v |gA,v < gB ,v

	�

�.

Remark 5 This definition relies on the concept of rel-
ative majority. If instead one was interested in strict
majority, one should require that A � B whenever
�

�

�

v |gA,v > gB ,v

	�

� > V
2 . All tie-breaking rules studied in 585

this paper are consistent with this strict majority rule on
polarized pairs.16 However, the alternatives to majority

15 BL prefer to say that a language is sufficiently rich if “a voter
who gives the same grade to two candidates has no preference be-
tween them”.

16 To see this, let us define M =
�

v |gA,v > gB ,v

	

, ĝ = min
v∈M

�

gA,v

	

and M̂ =
�

v |gA,v = ĝ
	

. Take k ∈ M̂ . ∀ j ∈ M r M̂ , gA, j > ĝ = gA,k .
Thus, as A and B are polarized, gB , j ≤ gB ,k < gA,k = ĝ . In addition,
∀i ∈ M̂ , gB ,i < ĝ . Hence, ∀v ∈M , gB ,v < ĝ ≤ gA,v . Finally, we deduce
that αB < ĝ ≤αA from |M |> V

2 .
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judgment are not consistent with the broader, relative
majority rule on polarized pairs of the previous defini-
tion, as can be deduced from the following theorem.590

Proposition 3 (adapted from Theorem 4 of (Balinski &
Laraki, 2016)) A choice monotone social-ranking func-
tion that is consistent with the majority rule on polarized
pairs of choices must coincide with the majority-gauge
rule when the language of grades is sufficiently rich.595

Balinski & Laraki (2016) summarize the specific ad-
vantages of the majority judgment in their footnote 20:
“only the majority-gauge rule coincides with the [relative]
majority rule and combats strategic manipulation on po-
larized pairs”. Understandably, they do not recall other600

properties of MJ, detailed in Appendix C, because these
properties are not universally sought. That being said, MJ
is arguably the best-behaved tie-breaking rule when the
choice involves a polarized pair. However, the respect of
the majority rule on polarized pairs should not be ex-605

aggerated, as alternative tie-breaking rules also coincide
with the strict majority rule. More importantly, the uni-
versally sought properties of MJ only apply to polarized
pairs of choices, which generally do not occur in practice
(see Section 6).17610

6 The different rules in practice

In this section, we examine how the different tie-
breaking rules compare in practice amongst them-
selves, and with respect to another voting system rely-
ing on grades: evaluative voting. Evaluative voting simply615

amounts to averaging the grades of each choice (see e.g.
Hillinger, 2004). Four real datasets are used, where peo-
ple had to express their preferences over several choices
using grades. Two of them are polls on 2012 and 2017
French presidential elections, and are reported in (Balin-620

ski & Laraki, 2016). Their samples have not been weighted
to account for under or over-representation of some
socio-demographic groups in the samples relative to the
French population, so their results are not representative
of French preferences. The third dataset is the results to625

a citizens’ primary for the 2017 French presidential elec-
tion –la Primaire–, which constitutes the widest use of
the majority judgment to date, as 11,304 persons have
graded 5 candidates drawn randomly within a list of 12.
The last one comes from a survey on French preferences630

for income distribution, where respondents were asked

17 One could also argue that in practice, there are often more
choices than grades, so that the universally sought properties do
not apply. However, even with a large number of choices, one must
acknowledge that it is unlikely that the number of choices that are
tied together exceeds the number of grades.

Table 5 Kendall distance between different rules estimated on real
data involving 187 pairs of choices (in %). A distance of 5% means
that –on average– there is a 5% chance that the order within a pair
of choices would be reversed between the two rankings.

mean m j d s n
mean 0.0 4.8 2.1 3.2 2.7

m j 4.8 0.0 2.7 3.7 2.1
d 2.1 2.7 0.0 1.1 0.5
s 3.2 3.7 1.1 0.0 1.6
n 2.7 2.1 0.5 1.6 0.0

to grade different distributions (Fabre, 2018). Overall, 40
choices have been evaluated, ranging from 7 choices in
the last dataset to 12 in the citizens’ primary. In Appendix
A, one can see the grades of each choice in the Figures, 635

and read the rankings they imply in the corresponding
Tables.

The winner to each of these real examples is the same
irrespective of the voting system. For each dataset, we
obtain five different rankings (one per rule); we then 640

measure the distance between these rankings using the
Kendall distance and aggregate these distances.18 The
rankings somewhat vary amongst one another. For ex-
ample, for 4.8% pairs of choices (i.e. 9 pairs of among
∑

k∈{7;10;11;12}
k ·(k−1)

2 = 187), the order within the pair is re- 645

versed between majority judgment and evaluative vot-
ing (see Table 5). Empirically, 4.8% is the (normalized)
Kendall distance between MJ and evaluative voting, and
this is the highest distance between the 5 rules studied.
The closest ones are the three alternative tie-breaking 650

rules for the highest median, all at a distance lower than
2% from one another, while each of them has a Kendall
distance of 2.9 ± 0.8% to the majority judgment and to
evaluative voting. Similar figures are obtained if we com-
pute the Kendall distances on the rankings over the four 655

datasets combined. This analysis shows that in practice,
all systems are usually equivalent; but in some occasions,
the tie-breaking rule will decide the election.

Finally, the discontinuity of the majority judgment at
p = q discussed in Section 5.2 is not far from occurring in 660

the 2012 French presidential election, as the winner, Hol-
lande, obtains p = 0.451 and q = 0.433 (see Table 6 and
Figure 5 in Appendix A). Hence, the tie-breaking score of
Hollande would have reversed from+0.451 to−0.453 had
2% of median voters decreased their grade: in such a case, 665

Bayrou would have won the majority judgment. Yet, such
a small variation would not have put the victory of Hol-
lande at risk with respect to the other rules, because they
rely on both the proponents and the opponents, and not
only on the largest between the two. In a way, they use 670

18 The Kendall distance counts the number of pairwise disagree-
ments between two rankings. In other words, it gives the minimal
number of swaps between neighboring choices required to trans-
form one ranking into the other.

http://laprimaire.org
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more information than the majority judgment, and this
helps them be more robust to fluctuations in the results.

7 Conclusion

We enriched the theory of Balinski & Laraki on vot-
ing systems electing the choice with the highest median675

grade, by proposing tie-breaking rules alternative to the
majority judgment. We called the voting systems result-
ing from these rules the typical judgment (abbreviated
D), the central judgment (S) and the usual judgment (N).
We disputed the claim of BL that MJ “invokes no tie-680

breaking rules” and that the class it belongs –the lexi-
order functions– has unique and valuable properties. In
particular, we showed that our alternative tie-breaking
rules also share this valuable property that the score of a
choice necessarily increases if some voter increase their685

grades for this choice. Then, we detailed the different
characteristics of the different tie-breaking rules: the ma-
jority judgment combats well manipulability on polar-
ized pairs of choices, while rankings from alternative tie-
breaking rules are more robust to small fluctuations in690

the grades. The usual judgment is the most robust to
small fluctuations, as it is continuous where other rules
are discontinuous. The lack of robustness of the major-
ity judgment can have practical consequences: as shown
in the last paragraph, the result of the vote could have695

been reversed in the example of the 2012 French election.
This might be a decisive argument in favor of more robust
rules, such as the usual judgment.
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Appendix

A Applying the tie-breaking rules on real examples

Table 6 Different tie-breaking rules for the highest median applied
on a poll on 2012 French presidential election (737 respondents).
Data from Balinski & Laraki (2016).

choices mean MG m j d s n
Hollande 1.00 1+ 1.450 1.018 1.010 1.076
Bayrou 0.79 1- 0.593 0.934 0.956 0.868
Sarkozy 0.48 0+ 0.493 0.096 0.054 0.433
Mélenchon 0.25 0+ 0.425 0.020 0.012 0.060
Dupont-Aignan -0.60 -1+ -0.594 -0.934 -0.955 -0.870
Joly -0.65 -1- -1.385 -1.018 -1.012 -1.036
Poutou -0.98 -1- -1.457 -1.195 -1.136 -1.348
Le Pen -0.27 -1- -1.476 -1.015 -1.008 -1.119
Arthaud -1.07 -1- -1.499 -1.251 -1.168 -1.497
Cheminade -1.16 -2 -1.520 -1.520 -1.510 -1.538
Hollande changed 0.98 1- 0.547 0.998 0.999 0.988

Table 7 Different tie-breaking rules for the highest median applied
on a poll on 2017 French presidential election (1000 respondents).
Data from Laraki’s website.

choices mean MG m j d s n
Mélenchon 0.71 1- 0.644 0.999 0.999 0.998
Macron 0.49 1- 0.581 0.905 0.936 0.815
Hamon 0.12 0+ 0.466 0.102 0.061 0.300
Dupont-Aignan -0.15 0- -0.448 -0.075 -0.046 -0.209
Le Pen 0.08 0- -0.477 -0.021 -0.011 -0.157
Poutou -0.26 0- -0.485 -0.146 -0.089 -0.415
Fillon -0.19 -1+ -0.514 -0.849 -0.908 -0.578
Lassale -0.55 -1+ -0.564 -0.856 -0.901 -0.735
Arthaud -0.52 -1+ -0.576 -0.868 -0.908 -0.768
Asselineau -0.65 -1+ -0.610 -0.926 -0.948 -0.874
Cheminade -0.73 -1+ -0.632 -0.955 -0.967 -0.927

Table 8 Different tie-breaking rules for the highest median applied
on a 2017 citizens’ primary for French presidential election (11304
voters). Data from laprimaire.org.

choices mean MG m j d s n
Marchandise 0.96 1+ 1.477 1.193 1.127 1.405
Bernabeu 0.48 1- 0.558 0.826 0.878 0.701
Revon 0.47 1- 0.536 0.790 0.854 0.629
Bourgeois 0.08 0+ 0.403 0.066 0.045 0.127
Pettini 0.04 0+ 0.382 0.029 0.020 0.056
Mazuel -0.06 0- -0.388 -0.039 -0.027 -0.075
Fortané -0.10 0- -0.389 -0.058 -0.040 -0.103
Vitalis -0.05 0- -0.401 -0.019 -0.012 -0.043
Nonnez -0.16 0- -0.404 -0.073 -0.049 -0.137
Billaut -0.19 0- -0.431 -0.105 -0.069 -0.217
André -0.31 0- -0.479 -0.177 -0.113 -0.403
Bussard -0.38 0- -0.482 -0.233 -0.160 -0.432

Fig. 5 Grades for 2012 French presidential election (cf. Table 6).

Fig. 6 Grades for 2017 French presidential election (cf. Table 7).

Fig. 7 Grades of a 2017 citizens’ primary for French presidential
election (cf. Table 8).

http://bit.ly/ExperimentMJ
https://docs.google.com/spreadsheets/d/1MbFtR0lD-QldXZGgID0L-oImUFsqH-MurGBSFRcFGDY/edit#gid=1073724486
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Table 9 Different tie-breaking rules for the highest median applied
on a 2016 survey on French preferences over income distributions
(1000 respondents). Data from Fabre (2018).

choices mean MG m j d s n
Rawlsian optimal 0.24 0+ 0.497 0.160 0.096 0.484
Utilitarian optimal 0.11 0+ 0.464 0.084 0.050 0.268
Demogrant median 0.04 0+ 0.431 0.050 0.031 0.132
Median reform -0.10 0- -0.430 -0.050 -0.031 -0.132
Personnalized -0.40 -1+ -0.554 -0.772 -0.828 -0.660
Actual -0.78 -1- -1.408 -1.051 -1.033 -1.109
Egalitarian -0.75 -1- -1.475 -1.106 -1.062 -1.341

Fig. 8 Grades of income distributions (cf. Table 9).

B Allowing for partial abstention

As some voters may not express an opinion over all choices, for
example because there are plenty of choices, it is useful to allow for735

partial abstention. In this Appendix, we extend our setting in such
a way, and show that all previous results hold. The formalization
simply needs some adjustments.

The set of grades becomesG ∪{;}, where gc ,v = ; indicates that
voter v does not attribute any grade to c. The number of expressed740

grades for c is Ec :=
�

�

�

v ∈V |gc ,v ∈G
	�

�. We then define αc as the
lower middlemost grade among expressed grades to c, and we de-
fine the shares of proponents and opponents to a choice relative
to its number of expressed grades: p n

c := 1
Ec

�

�

�

v ∈V |gc ,v ≥αc +n
	�

�

(resp. q n
c := 1

Ec

�

�

�

v ∈V |gc ,v ≤αc −n
	�

�), for n ∈ (0;G ). We also re-745

define each order function ` j (c ), as the j th (lowest) quantile of ex-
pressed grades of c, and we adopt the convention that when this
quantile falls between two grades of c, then ` j (c ) equals the low-
est of the two. For example, assuming that there are two voters and
that the grades of E are:

�

gE ,v

�

=
�

0 1
�

, we have ` j (E ) = 0 for j ≤ 1
2750

and ` j (E ) = 1 for j > 1
2 ; and in particular, αE = `

1/2 (E ) = 0. Then,
the characterization of MJ as a lexi-order social-ranking function
(see Section 3.1 and Example 2) requires that, when comparing
grades of same rank, we move away from the median with a step
small enough to capture any change in grade “at the right quan-755

tile”.19 Thus, we introduceΠ, the least common multiple of (Ec )c∈C
(or more simply, Π :=

∏

c∈C Ec ), and redefine the bijection πM J

19 For example, assume that among four voters, all attribute a
grade to E:

�

gE ,v

�

=
�

−1 0 1 1
�

, but only two attribute a grade to F :
�

gF,v

�

v |gF,v ∈G
=
�

0 0
�

. As E and F share the same lower middlemost

grade 0, the lexi-order characterization of MJ requires that we com-
pare another rank, say a lower one (the example should be adapted
if we were to compare a higher one). One could naively think that
comparing the first quartile would be natural, as V = 4. However,

that characterizes MJ as a lexi-order social-ranking function as fol-
lows: πM J (2k +1) = 1

2 −
k

2Π −
1

4Π and πM J (2k ) = 1
2 +

k
2Π −

1
4Π for

k ∈ J0;Π−1K.20 760

With the appropriate formalization just described, all the re-
sults of the paper can be as easily derived when allowing for partial
abstention as for the restrictive case used in the main text.

C Other properties specific to the majority judgment

Resists manipulability In Theorem 13 of (Balinski & Laraki, 765

2014) and Theorem 13.5 of (Balinski & Laraki, 2011), BL show
that electing the choice with the highest median grade minimizes
manipulability. This result applies also to alternative tie-breaking
rules. However, among social-ranking functions, MJ is the least ma-
nipulable because ties are resolved using middlemost grades. That 770

being said, it is not clear if this theoretical nuance would have any
behavioral implication in practice, as the different voting systems
differ only by their tie-breaking rules, and elect the same choice in
most of cases (see Section 6).

Other features The following characteristics of MJ consists more 775

in idiosyncratic features than in universally sought criteria for a
rule.

Definition 10 (Balinski & Laraki, 2007) Decisive for the center
grades: the ranking between A and B is the ranking determined by
the middlemost grades unless that ranking is a tie; in that case, the 780

ranking is determined by the residual grades.

Example 3 Majority judgment is decisive for the center grades
(Balinski & Laraki, 2007), while D, S and N are not. Indeed, with
the latter rules, choices with distinct middlemost grades can share
the same primary score, in which case the tie is resolved using sec- 785

ondary score instead of comparing the middlemost grades. For ex-

ample, take C = {E ; F }, Φ =
�

gE ,v

gF,v

�

v∈V
=
�

−1 0 0 1 1
0 0 0 0 2

�

, and con-

sider the rule D. We have αE =αF = 0 and∆E =∆F =
1
5 , so that F is

the winner for D as ∆2
F =

1
5 > 0 = ∆2

E . Conversely, MJ decides with
the middlemost grades and elects E. 790

Definition 11 (Balinski & Laraki, 2014) Suppose the first of the jth-
middlemost intervals ( j ≥ 0) where A’s and B’s grades differ is the
kth. A social-ranking function rewards consensus when all of A’s
grades strictly belong to the kth-middlemost interval of B’s grades
implies that A is ranked above B. 795

Example 4 Majority judgment rewards consensus (Balinski &
Laraki, 2014), while D, S and N do not. For example, takeC = {E ; F }

and Φ =
�

gE ,v

gF,v

�

v∈V
=
�

−1 1 2
0 1 1

�

: MJ elects F (as lowest grades de-

cide the ranking) while the alternatives elect E (because∆F =− 1
3 <

0=∆E ). 800

Proposition 4 (theorem 17 in (Balinski & Laraki, 2007), theorem
15 in (Balinski & Laraki, 2014)) The majority-ranking is the unique
monotone social-ranking function that is decisive for the center and
rewards consensus.

as `1/4 (E ) = −1 < 0 = `1/4 (F ), this would lead to elect F, against the
spirit of MJ and the ranking of m j scores: m jE =

1
2 > 0=m jF .

20 In our example, asΠ= 4, the step k
2Π between each (same side)

rank used in the comparison is one eighth (and not one quarter),
and one can check that this leads to electing E, as it should be.
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