
Elliptic curves and ellipses, what’s the deal?

Balázs Kőműves

ELTE, Budapest, 22 February 2024

Plane curves

Today1 we will talk about plane curves2. Plane curves are mostly
what you would imagine they are: 1 dimensional curves in a 2
dimensional plane. Like for example this one:

1slides available here: https://github.com/bkomuves/slides/
2and then quite some other stuff...

https://github.com/bkomuves/slides/

Algebraic curves

In particular, we will talk about algebraic curves, that is, curves
defined by an algebraic (or polynomial) equation. Everybody
already knows the circle:

x2 + y2 = 1

We could write down different equations and study the resulting
curves. This is something mathematicians like to do :)

Linear curves (or lines)
The simplest possible equations we can write down are linear
(degree 1 polynomials), for example: 2x+ 3y + 5 = 0; or more
generally

Ax+By + C = 0

where A,B,C are some fixed numbers (parameters).

These are just straight lines, we learn them in primary school.

Not much to say about these. An interesting fact that two lines
intersect in 1 point, except when they are parallel. Don’t worry, we
will fix that later!

Quadratic curves (or conic sections)

After the linear equation, the next simplest ones are quadratic
(degree 2) equations. We learn these in highschool, under the
name of “conic sections”:

▶ circle: x2 + y2 = R2

▶ ellipse: Ax2 +By2 = 1

▶ parabola: y = Cx2

▶ hyperbola: xy = C

There are two more types though, can you guess?

Conic sections

And this is why they are called “conic sections”:

(image source: CK-12)

Singular curves

Two types of quadratic equations are often omitted: x2 = 0 and
xy = 0. The first one is a “double line”, and the second one is two
intersecting lines.

These are called “singular”, and are less nice than the
“non-singular” or “smooth” curves (in the quadratic case also less
interesting).

The projective plane P2

Things become quite a bit nicer if we add some new points ”at
infinity” to the plane: One infinite point for each line passing
through the origin (it’s the same infinite in both direction, so the
line becomes a circle). This is called the “projective plane”, and is
a natural “compactification” (meaning roughly that you cannot
run away from your problems to infinity anymore :).

You can represent this with homogeneous or projective coordinates:
instead of two coordinates (x, y) you will have three coordinates
[X : Y : Z]; however, now [X : Y : Z] and [λX : λY : λZ] means
the same point (and [0 : 0 : 0] is disallowed). This means that your
equations must be homogeneus: For example instead of
2x3 + 5y2 = 3 you have to write 2X3 + 5Y 2Z = 3Z3. You can
easily map between the two:

(x, y) 7→ [x : y : 1] and [X : Y : Z] 7→ (X/Z, Y/Z).

When Z = 0 you get the points at the infinity.

Stereographic projection and the projective plane

The stereographic projection model of the projective plane.

(image source: Adrian Constantin et al)

Conic sections in the projective plane
Let us write down the homegenous equations for the conic sections:

▶ ellipse: αX2 + βY 2 = Z2

▶ parabola: Y Z = γX2

▶ hyperbola: XY = γZ2

But wait! Aren’t these just the same?! The last two only differ by
permuting the coordinates (a “rotation”), and to get the ellipse, just
substitute something like Y 7→ Z ′ − Y ′ and Z 7→ Z ′ + Y ′ (another
rotation) into the equation of the parabola.

So in the projective plane, there is no difference between the ellipse,
parabola and hyperbola. They only looked different before because they
intersect the “line at infinity” differently:

▶ the ellipse does not intersect it

▶ the parabola intersects in 1 point (it is tangent to it)

▶ and the hyperbola intersects in 2 points

But in the projective plane, the “line at infinity” isn’t special, it is exactly

the same as any other line.

Complex coordinates

Instead of using real numbers as coordinates, we could also use
complex numbers (or in fact any other field or even just a ring).

This again makes things a bit nicer, and will become important
later. Why does it help? Well, consider the good old circle
x2 + y2 = C. This works nicely when C > 0, but becomes a
degenerate point when C = 0, and simply disappears for C < 0!

Using complex numbers solves this problem: All cases C ̸= 0
becomes the same, and C = 0 at least becomes the union of two
(complex) lines, instead of a single point (which has the wrong
dimension: It’s a point, not a curve!). To see this, notice that

x2 + y2 = (x+ iy)(x− iy)

Unfortunately it’s hard to draw pictures with 2 complex
coordinates...

Bezout’s theorem

A degree d1 and a degree d2 plane curve intersects in at most d1d2
points in the plane. And it becomes exactly d1d2 points, if
understood in the complex projective plane, and counted with
multiplicities!

Intersection of the curves y = x3 − 2.3x and x = 2y2 − 1.7

Cubic curves

So after the lines (degree 1 curves) and conic sections (degree 2
curves), the next case is cubics (degree 3 curves). A typical cubic
plane curve equation can look for example like this:

y2 = x3 +Ax+B

Unlike the previous cases, cubics are already complicated enough
that: 1) they are really interesting; 2) there are very hard unsolved
problems concerning them!

For example, solving the Birch and Swinnerton-Dyer conjecture
would get you $1,000,000. Or the famous proof of Fermat’s
conjecture by Wiles was also (not so) secretly a statement about
elliptic (cubic) curves.

Elliptic curves
So what is an elliptic curve?

▶ a smooth cubic plane curve (together with a base point)

▶ smooth genus 1 curve (with a base point). Genus 1 means it
has “1 hole”, that is, it looks like a torus.

▶ a plane curve of the form y2 = x3 +Ax+B with
char(F) ̸= 2, 3 and 4A3 + 27B2 ̸= 0; (called “short
Weierstrass form”)

▶ 1 dimensional abelian variety

▶ . . .

Etimology / history:

▶ arc length of an ellipse

▶ elliptic integrals

▶ the inverse problem: elliptic functions

▶ elliptic curves

Pictures of elliptic curves over R

Singular cubics

Note that singular cubic curves are NOT called elliptic curves.
There are two types of possible singularities for cubic curves,
namely, double points and cusps:

Cusp Double point

Brief history of the name “elliptic curve”

Why are we calling nonsingular cubic (pointed) curves “elliptic”?

▶ it all started with the arc length of the ellipse

▶ elliptic integrals (generalization of the arc length of the ellipse)

▶ elliptic functions (doubly periodic meromorphic functions)

▶ take the quotient wrt. the periodic lattice → (complex)
elliptic curve groups

In the the next few slides, we will see this how the above 4 notions
come together.

However, elliptic curves are a very central notion of contemporary
mathematics, and they are related to many many other subjects
too.

Arc length of an ellipse
An ellipse: y = q

√
1− x2 with q > 0. The slope at (x, y):

dy

dx
=

−qx√
1− x2

Let’s write down the arc length:

S(t) =

∫ t

0

√
dx2 + dy2 =

∫ t

0

√
1 + (dy/dx)2 dx =

=

∫ t

0

√
1− x2 + q2x2

1− x2
dx =: E

(
t ;
√
1− q2

)
For q = 1 (circle), this simplifies; otherwise it is not an elementary
function (not even for t = 1). Remark:

E(t; k) =

∫ t

0

√
(1− k2x2)/(1− x2)dx

is called “incomplete elliptic integral of the second kind, Jacobi’s form”.

Generic elliptic integral:
∫
R(x,

√
P (x))dx, where P (x) is a cubic or quartic

polynomial without double roots, and R(x, y) is a rational function.

Elliptic functions

We already know periodic functions like sin(x) and cos(x), and
they are very interesting and useful.

What about doubly periodic functions? Let’s fix two complex
numbers ω1, ω2 ∈ C; we are then looking for functions f for which
f(z) = f(z + ω1) = f(z + ω2). In other words, ω1, ω2 generates
the lattice

Λ = {nω1 +mω2 : n,m ∈ Z } ⊂ C.

and the function needs to be invariant wrt. translation to this
lattice.

Unfortunately, all such (holomorphic) functions are just constants.
However if we allow poles (infinity values at some points), then we
can have interesting periodic “meromorphic” functions

Such doubly periodic meromorphic functions are called “elliptic
functions”.

Weierstrass ℘ function

Let us use Λo = Λ\{0} for brevity. The Weierstrass ℘ function is
defined by

℘(z) =
1

z2
+
∑
ω∈Λo

[
1

(z − ω)2
− 1

ω2

]
(we need those funny “correction” terms to ensure that the sum
converges).

It is meromorphic function (has double poles exactly at the points
of Λ), periodic wrt. the lattice Λ (thus an elliptic function), and is
an even function: ℘(z) = ℘(−z).

It’s not so clear that it is periodic, however the derivative ℘′(z) is
clearly periodic; and together with the evenness it follows that
℘(z) is periodic too.

Fact: ℘(z) is the universal elliptic function (wrt. Λ): Any elliptic function is a

rational function of ℘(z) and ℘′(z).

The differential equation
Introduce the quantities:

g2 = g2(Λ) = 60 ·
∑
ω∈Λo

ω−4

g3 = g3(Λ) = 140 ·
∑
ω∈Λo

ω−6

The Laurent series expansion of ℘(z) can then be written as:

℘(z) = z−2 +
g2
20

z2 +
g3
28

z4 +O(z6)

Theorem: The Weierstrass ℘ function satisfies the following
differential equation:

[℘′(z)]2 = 4℘(z)3 − g2 ℘(z)− g3

Proof: Comparing the poles of the two sides, we can conclude that their

difference is a periodic entire function, and thus a constant (which can be

readily computed as 0).

The inverse of ℘(z)

The above differential equation looks quite interesting. So let’s
just play around with it!

Consider the derivative rule for inverse functions:

[f−1]′(x) =
1

f ′(f−1(x))

Applying this for f = ℘, we get another (simple) differential
equation for the derivitive [℘−1]′

[℘−1]′(y) =
1

℘′(℘−1(y))
=

=
1√

4℘(℘−1(y))3 − g2 ℘(℘−1(y))− g3
=

=
1√

4y3 − g2y − g3

Conclusion I. (inverse problem)

Integrating the above differential equation, we can see that for the
elliptic integral

u(y) = −
∫ ∞

y

1√
4s3 − g2s− g3

ds

we have y = ℘(u(y)), thus

℘ = u−1.

That is, the Weierstrass ℘ function is the inverse of this elliptic
integral. The “proof” is, again:

(℘−1)′(y) =
1

℘′(℘−1(y))
=

1√
4y3 − g2y − g3

Similarly, other elliptic functions solve the inverse problems for
other types of elliptic integrals (hence the name).

Complex tori

So an elliptic function is a complex function F (with poles allowed)
which is periodic wrt. a lattice Λ ⊂ C. In other words, for any
λ = nω1 +mω2 ∈ Λ:

F (z) = F (z + λ) = F (z + nω1 +mω2)

What this means that F is really defined on the quotient C/Λ!

This quotient is secretly a torus, and it also “inherits” the complex
structure of the complex plane C:

(image source: http://mathonline.wikidot.com)

Conclusion II. (elliptic curve)

From the differential equations, we can see directly that the
mapping

C → C/Λ → P2

z 7→ z mod Λ 7→
[
4℘(z) : 4℘′(z) : 1

]
is well-defined (actually, an isomorphism) between the complex
torus C/Λ and the elliptic curve

y2 = x3 +Ax+B

with A = −4 g2(Λ) and B = −16 g3(Λ).

So, elliptic functions are functions on the elliptic curve!

Moreover, Λ 7→ (g2, g3) is an isomorphism between the moduli space of lattices

and the moduli space of elliptic curves (whatever that means...).

The group law on elliptic curves

The torus C/Λ is naturally a group (it inherits the complex
addition), so it shouldn’t be too surprising that elliptic curves also
have a group structure. Actually it is rather surprising :)

Definitions (for the Weierstrass form):

▶ identity element: The special point at infinity (denoted by O)

▶ inverse: mirroring wrt. the X axis

▶ addition: if P , Q and R are on a straight line, we declare
P +Q+R = O

Group laws:

▶ identity satisfies what it should (trivial)

▶ addition is commutative (trivial)

▶ addition is associative (nontrival!)

Addition on elliptic curves

(image source: Vitalik Buterin)

Types of elliptic curves

Unlike conic sections, there are infinitely many different “types” of
cubics, and elliptic curves. By ‘different’ here we mean that they
are not isomorphic (cannot be changed into each other by
coordinate transformations).

We have seen above that complex tori C2/Λ are elliptic curves, and
in fact the converse is also true: All (complex) elliptic curves are of
the form C2/Λ. So we could in theory understand elliptic curves by
understanding lattices Λ ⊂ C2 (and that feels quite a bit simpler!)

This will again result in more beautiful, interesting and important
mathematics!

Space of lattices in C
A 2D lattice is generated by two vectors (here complex numbers)
ω1, ω2 ∈ C. Because we only care about lattices up to rotation and
scaling (which is the same as multiplication by a complex number),
we can transform one of them into say 1 ∈ C; this way we get the
pair (τ, 1) with τ = ω1/ω2 ∈ C. We can also assume wlog. that
im(τ) > 0 (otherwise just mirror it).

However, different bases (or τ -s) can result in the same lattice.
When does this happen?

Different basises of a lattice

Two pairs of vectors (v1, v2) and (w1, w2) generate the same
lattice, iff. there are integers a, b, c, d ∈ Z such that

w1 = av1 + bv2

w2 = cv1 + dv2

det

[
a b
c d

]
= ad− bc = ±1

The last condition here means the area of the spanned
parallelogram remains the same; which in turns means that we
don’t “leave out” any lattice points.

It’s easy to rewrite all this in the τ = ω1/ω2 convention: It means
that τ is mapped to

τ 7→ aτ + b

cτ + d

The groups SL2(Z) and Γ = PSL2(Z)

To summarize:

▶ lattices in C (up to scaling and rotation) can be described by
complex numbers τ ∈ H = {z ∈ C : im(z) > 0} (H ⊂ C is
called the ‘upper halfplane’)

▶ two lattices defined by τ and τ ′ are the same if
τ ′ = (aτ + b)/(cτ + d) for some integers a, b, c, d ∈ Z with
ad− bc = 1 (we don’t need the −1 option, that would mean
im(τ ′) < 0)

We can rephrase all this that group SL2(Z) (group of 2× 2
integral matrices with determinant 1) acts on the upper halfplane
H by τ 7→ (aτ + b)/(cτ + d), and the quotient H/SL2(Z) is the
“space of lattices” in C up to scaling and rotation.

Note: negating all four of a, b, c, d leaves τ the same, so we don’t
really need that; it’s better to use PSL2(Z) = SL2(Z)/{+1,−1}.

The fundamental domain

The following two matrices in fact generate PSL2(Z):

S =

[
0 −1
1 0

]
= τ 7→ −1

τ
T =

[
1 1
0 1

]
= τ 7→ τ + 1

Using this fact, one can draw the following picture:

(image source: wikipedia)

The j-invariant
The j-invariant is a complex function which can distinguish elliptic curves
from each other.

One way to write it is quite simple: For the curve C defined by the
equation y2 = x3 +Ax+B, we have j(C) = 1728× 4A3/(4A3 + 27B2).
This looks deceivingly simple, but the truth is way more interesting!

We can also write it terms of τ ∈ H. By definition, it must be invariant
to the action of SL2(Z), and that already makes it something very
interesting, called a “modular function”!

Plot of j(τ) (image source: Fredrik Johansson)

Some formulas for the j-invariant

j(τ) = 1728
g2(τ)

3

g2(τ)3 − 27g3(τ)2
= 1728

g2(τ)
3

∆(τ)
=

[
12

g2(τ)

(2π)4η(τ)8

]3
where recall that

g2(τ) = 60
∑

(m,n)̸=(0,0)

(m+ nτ)−4 g3(τ) = 140
∑

(m,n)̸=(0,0)

(m+ nτ)−6

∆(τ) = g2(τ)
3 − 27g3(τ)

2 = (2π)12η(τ)24 is called the “modular
discriminant”; and η is called Dedekind eta, and is defined by (with
q = e2πiτ)

η(τ) = q1/24
∞∏
n=1

(1− qn)

There are many many other fascinating formulas and other stuff
related to these, check out the wikipedia page for a quick look!

Monstrous moonshine
The Monster group is the largest finite sporadic simple group, it has
approx. 8× 1053 elements, more precisely:

|M | = 808, 017, 424, 794, 512, 875, 886, 459, 904, 961, 710, 757, 005, 754, 368, 000, 000, 000

Now compare the q-expansion (here q = e2πiτ) of the j-invariant:

j(τ) = q−1+196884q+21493760q2+864299970q3+20245856256q4+. . .

with the dimensions r1, r2, r3, . . . of the smallest irreducible
representations of the Monster group:

1 = r1

196884 = r1 + r2 = 1 + 196883

21493760 = r1 + r2 + r3

864299970 = 2r1 + 2r2 + r3 + r4

20245856256 = 3r1 + 3r2 + r3 + 2r4 + r5 = 2r1 + 3r2 + 2r3 + r4 + r6

. . . = . . .

Yeah, like, WTF?! And that’s exactly what every mathematician thought

when this was first discovered!

Elliptic curves over finite fields

Elliptic curves make sense over different fields: C, R, Q, Fq,
function fields, etc. So far we were looking at R and C, but the
other cases are interesting too (in fact, using the viewpoint of
modern mathematics, you should really try and look at all of them
at the same time!).

For example elliptic curves over both Q and finite fields Fq are of
great interest for number theorists, and the finite field version also
for cryptographers.

Among the many many interesting questions, we can for example
ask how many points an elliptic curve has over a finite field Fq

(there are finitely many possible coordinates, so this will be always
a finite number).

Counting points
Given a curve equation y2 = x3 +Ax+B of a curve E with A,B ∈ Z,
we can make it sense in any field (or ring), since there is a unique
morphism from Z to any ring.

We can then ask how the number of points |E(Fq)| over the field of size q
varies when as we change q. Recall that finite fields exist only for q = pk

where p is a prime; nevertheless for any such q we can form the series

Nm := |E(Fqm)|

The “local zeta function” is then defined as

ZE/Fq
(t) := exp

(∞∑
m=1

Nm
tm

m

)
=

1− (q + 1− |E(Fq)|) · t+ qt2

(1− t)(1− qt)

and the “global Hasse-Weil zeta function” is (almost...) the infinite
product over all primes p of

ζE(s) ≈
∏
p

ZE/Fp
(p−s)

This is closely related to the famous Riemann zeta function!

Elliptic curves in cryptography

To be able to do cryptography, we need computable objects; thus
the natural choice of finite fields Fq. In practice either q = 2m or a
prime q = p (exception: pairing-based cryptography).

Furthermore, the safety of ECC depends on the (conjectured)
hardness of the elliptic curve discrete logarithm problem. Note that
not all curves are created equal in this sense!

An example, here is the standardized curve called secp256k1 (this is the curve
used by Bitcoin):

▶ the field is Fp with p = 2256 − 232 − 29 − 28 − 27 − 26 − 24 − 1 ≈ 1077

▶ the curve equation is y2 = x3 + 7 (that is, A = 0 and B = 7)

▶ the number of points on the curve n is also a prime, and “close” to p (to
be more precise, p− 2129 < n < p− 2128)

▶ since n is prime, the group is cyclic; thus any element (except the
infinity) will do as the generator G

▶ but there is a concrete, randomly-looking G in the standard

A picture of y2 = x3 + 7 over F59

Remark: p ≈ 2256 ≈ 1077 ≈ no. of elementary particles in the universe

Symmetric key cryptography

The two parties have a shared secret key; they can then encrypt
and decrypt messages using this key.

With modern symmetric key encryption standards, it is infeasible
for an attacker to guess the message without knowing the secret
key.

The big issue: How to agree on a secret key? In practice, this
needs meeting in person (often inpractical) and at a secure
location (can be inpractical, or even impossible). Also, we want
machines to communicate safely, too.

Nevertheless, symmetric key encryption algorithms are useful
components of larger crypto systems.

Asymmetric (or public) key cryptography

Each party has a pair of corresponding keys: one which is public
(say, published on their homepage) and one which is private (only
a single person knows it).

Main applications:

▶ Estabilishing a shared secret without meeting (key exchange)

▶ Send messages which only the intended recepient can decrypt
(encryption)

▶ Prove that a message was really written by the person who
claims it (signature)

From these basic building blocks, a huge set of really interesting
applications can be built.

Public-key crypto is widely used on the internet today: HTTPS,
SSL, PGP, Bitcoin, Ethereum, etc...

Public key cryptography, II.

Public-key cryptosystems are based on problems which are easy to
compute in one direction, but hard to compute in the other
direction:

▶ factorization of the product of two large prime numbers (RSA)

▶ discrete logarithm (ElGamal)

▶ elliptic curve discrete logarithm (ECC)

Discrete logarithm: Fix a finite cyclic group G of order n and a
generator g ∈ G.

▶ private key: a random number d ∈ [1, n− 1] ⊂ N
▶ public key: the group element Q = d ∗ g ∈ G

The idea is that it is very hard to determine d from Q (for
appropriate choices of G). Elliptic curve crypto: Let G be a
subgroup of an appropriately chosen elliptic curve over a finite field.

Diffie-Hellmann key exchange

Recall that a key pair (d,Q) consists of

▶ a private key, which is a random number d ∈ [1, n− 1] ⊂ N
▶ a public key, which is the group element Q = d ∗ g ∈ G

Let there be two parties: Alice and Bob, with key pairs (dA, QA)
and (dB, QB). They can compute a shared secret S ∈ G as follows:

dA ∗QB = dA ∗ (dB ∗ g) = (dAdB) ∗ g︸ ︷︷ ︸
S

= dB ∗ (dA ∗ g) = dB ∗QA

Alice can knows dA, so she can compute the leftmost version; Bob
knows dB, so he can compute the rightmost version. But nobody
else knows neither dA or dB, thus S is their secret.

They can then proceed and use S for any purpose, for example as
the key of a symmetric encryption scheme.

Public-key encryption

Alice wants to send a message to Bob, but wants to make sure
that nobody else can read it.

This can be implemented as an application of the Diffie-Hellmann
key exchange:

1. Alice generates an ephemeral key pair (dE , QE)

2. She then computes a shared secret S = dE ∗QB

3. computes a symmetric key k = k(S) from S

4. encrypts the message m with the key k

5. sends QE and the ciphertext ck(m) to Bob

On the other side: Bob computes S = dB ∗QE , then k = k(S),
and decrypts the message. Nobody else knows neither dE or dB.

In practice it is a bit more complicated, but that’s the idea.

Elliptic Curve Digital Signature Algorithm
Alice writes a message m, and wants to prove that she wrote it.
She already has key pair (dA, QA), and people accept that the
public key QA in fact belongs to her.

Construction of the signature:

1. compute a hash z = HASH(m) ∈ [1, n− 1] of the message m

2. generate an ephemeral key pair: k and Qk = k ∗ g = (x, y)

3. let r = (x mod n) ∈ Zn

4. let s = k−1(z + rdA) ∈ Zn

5. the signatures is (r, s) ∈ Zn × Zn

Verification of the signature:

1. compute z = HASH(m) ∈ [1, n− 1] as before

2. compute u = s−1z ∈ Zn and v = s−1r ∈ Zn

3. compute the curve point (x, y) = Q = u ∗ g + v ∗QA ∈ G
4. the signature is valid iff x = r.

Computations with elliptic curves, I.

How to compute d ∗Q ∈ G efficiently, with d ∈ Zn and Q ∈ G?

Answer: “fast exponentation”! Write d in binary form:
d =

∑m−1
i=0 di2

i, where di ∈ {0, 1}.

d ∗Q =

(
m−1∑
i=0

di2
i

)
∗Q =

m−1∑
i=0

di ∗ (2i ∗Q) =

m−1∑
i=0

di ∗Qi

where Qi = 2i ∗Q can be computated by repeated doubling:
Q0 = Q, Q1 = 2 ∗Q0, Q2 = 2 ∗Q1, Q3 = 2 ∗Q2, etc...

Thus we need addition and doubling (which is a special case of
addition, but needs to be handled separately anyway).

Elliptic curve addition and doubling in pictures

Addition of distinct points Doubling of a point

Elliptic curve addition and doubling in Weierstrass form

In any field F (at least with char(F) ̸= 2, 3), for two distinct points
P ̸= Q ̸= O on the elliptic curve y2 = x3 + ax+ b, with
coordinates P = (xp, yp) and Q = (xq, yq), it is relatively
straightforward to calculate the coordinates of
P +Q = R = (xr, yr) and 2P = U = (xu, yu):

s =
yq−yp
xq−xp

t =
3x2

p+a

2y

xr = s2 − (xp + xq) xu = t2 − 2xu

yr = −yp − s(xr − xp) yu = −yp − s(xu − xp)

Here s resp. t are the slopes of the secant resp. tangent lines.

It’s possible to derive the formulas from either the geometric
definition or via the ℘(z) functions.

Projective coordinates

The problem: Each addition or doubling needs a division in Fq,
which is slow; each exponentiation needs a lot of additions and
doublings; and we need several exponentiation to do cryptography.

The divisions are the bottleneck. How to make divisions faster?
Answer: Don’t do divisions!

Using projective coordinates, we only need one division at the end,
when we convert back to affine coordinates. Using weighted
projective coordinates P(2, 3, 1) can be even better (at least for
some computations):

[x : y : z] = [λ2x : λ3y : λz] ∈ P(2, 3, 1).

Other representations can be even more efficient.

Pairings

“Pairings” is just another name for a bilinear map between groups:

⟨−,−⟩ : G1 ×G2 → Gt

That is, it should have the following properties:

⟨g1 + g2, h⟩ = ⟨g1, h⟩ · ⟨g2, h⟩
⟨g, h1 + h2⟩ = ⟨g, h1⟩ · ⟨g, h2⟩

⟨d ∗ g, h⟩ = ⟨g, d ∗ h⟩ = ⟨g, h⟩d

Note: for reasons, the groups G1 and G2 are usually written with
additive notation, while Gt is written with multiplicative notation.
The latter is because Gt is usually a subgroup of the multiplicative
group of a finite field Fpk .

Pairing-based cryptography

With really careful choices, we can have such pairings with an
elliptic curve E, with practically useful properties.

G1 ⊂ E(Fp)

G2 ⊂ E(Fpk)

G2
∼= G′

2 ⊂ E(Fp2)

Gt ⊂ F×
pk

Note: k ∈ N (called the “embedding degree”) depends on the
elliptic curve E, and is a really dedicated balancing act (too small
means insecure; too big means too inefficient). In practice we
usually have k = 12.

Let’s just take the above on faith, it’s way more complicated than
most of stuff so far...

BLS signatures

An example of pairing-based cryptography is BLS digital signature:

▶ private key: d ∈ N
▶ public key: Q := d ∗ g1 ∈ G1

▶ message m; hash it into the curve h = HASH(m) ∈ G2

▶ signature: σ := d ∗ h ∈ G2

▶ verification: check that ⟨g1, σ⟩ = ⟨Q, h⟩
Why does this work?

⟨g1, σ⟩ = ⟨g1, d ∗ h⟩ = ⟨g1, h⟩d = ⟨d ∗ g1, h⟩ = ⟨Q, h⟩

Note: the role of G1 and G2 is interchangeable here.

Pairings are useful because they allow to check a “single
multiplication”. Even more spectacular usage of pairings can be
found in (zk-)SNARKS (zero-knowledge proofs).

