
ptsecurity.com

Linux ASLR and GNU Libc: Address space
layout computing and defence, and “stack
canary” protection bypass

Ilya Smith

Who Am I?

• Security Researcher at Positive Technologies

• CVE-2017-3223 https://www.ptsecurity.com/ww-en/about/news/286753/

• http://blog.ptsecurity.com/2012/12/windows-8-aslr-internals.html

• It’s just the beginning

• CTF player more then 10 years:

• SiBears as reverser, pwn, web

• LC/BC as pwn, reverser

• Email: blackzert@gmail.com

• twitter: @blackzert

• github: https://github.com/blackzert

• bitcoin: some day.

2

https://www.ptsecurity.com/ww-en/about/news/286753/
http://blog.ptsecurity.com/2012/12/windows-8-aslr-internals.html

Roadmap

Ø Linux ASLR implementation specifics and weaknesses

Ø GNU Libc under the microscope
ü Generic bypass of stack canary
ü EoP over ldd code execution vuln
ü Smash the cache
ü Find the Heap

Ø Story about 4 Linux kernel patches

3

Address Space Layout Randomization(ASLR)
• ASLR Overview
• ASLR Evolution
• Known Bypass Techniques

ASLR Overview

• Well-known mitigations are Data Execution Protection (DEP),

Stack Protector (Canary), ASLR

• ASLR is a mitigation technique against memory corruption

attacks:

address + random()

• Implementation is different for each operation systems

• ASLR is not exactly a formal approach

5

ASLR Evolution

• Introduced in Linux in 2005
• Yearly implementation on xorl described in detail
• Improvements made by the PaX patch and GRSecurity
team

• Compromised by Hector Marco-Gisbert and Ismael Ripoll in
2014 (offset2lib attack), patches released

• Last compromised by Marco-Gisbert and Ismael Ripoll in
2016 (see "ASLR-NG: Address Space Layout
Randomization Next Generation"), no patches provided

6

https://xorl.wordpress.com/2011/01/16/linux-kernel-aslr-implementation/
https://cybersecurity.upv.es/attacks/offset2lib/offset2lib.html
https://cybersecurity.upv.es/solutions/aslr-ng/aslr-ng.html

Known Bypass Techniques

• Information leakage

printf(“%p”, …)

• Out of bounds

read/write: array[hacker_input]

• Bad entropy or weak implementation

AMD Bulldozer ASLR weakness
• Side effects

Branch-prediction
Spectre, Meltdown

7

http://hmarco.org/bugs/AMD-Bulldozer-linux-ASLR-weakness-reducing-mmaped-files-by-eight.html
http://www.cs.ucr.edu/~nael/pubs/micro16.pdf
https://meltdownattack.com/

Current ASLR in Linux
• $ less /proc/self/maps
• From execve

• $ less /proc/self/maps shows a current process layout.
• Behaviour would be the same for any execution.
• Ubuntu x86-64 is used for the research.

Current ASLR in Linux

9

$ less /proc/self/maps Base Address

• /bin/less ends with the 5627a84ed000 address.
• 5627a82bf000 is a base address of an application image.
• ELF files can have a .bss section mapped anonymously.
• The result of /bin/less looks fine:

5627a82bf000-5627a82e5000 r-xp /bin/less
5627a84e4000-5627a84e5000 r--p /bin/less
5627a84e5000-5627a84e8000 rw-p /bin/less
5627a84e8000-5627a84ed000 rw-p

10

$ less /proc/self/maps Heap Address

• The heap start address is 5627aa2d4000.
• The heap can grow till it meets another segment.
• The result looks fine:

5627aa2d4000-5627aa2f5000 rw-p [heap]

11

• Libraries start with mmap_base = 7f3631293000.
• All libraries are close to each other: GNU Libc loads all other files with an

mmap system call.
7f3630a78000-7f3630c38000 r-xp .../libc-2.23.so
7f3630c38000-7f3630e38000 ---p .../libc-2.23.so
7f3630e38000-7f3630e3c000 r--p .../libc-2.23.so
7f3630e3c000-7f3630e3e000 rw-p .../libc-2.23.so
7f3630e3e000-7f3630e42000 rw-p
7f3630e42000-7f3630e67000 r-xp .../libtinfo.so.5.9
7f3630e67000-7f3631066000 ---p .../libtinfo.so.5.9
7f3631066000-7f363106a000 r--p .../libtinfo.so.5.9
7f363106a000-7f363106b000 rw-p .../libtinfo.so.5.9
7f363106b000-7f3631091000 r-xp .../ld-2.23.so
7f363126c000-7f363126f000 rw-p
7f363128e000-7f3631290000 rw-p
7f3631290000-7f3631291000 r--p .../ld-2.23.so
7f3631291000-7f3631292000 rw-p .../ld-2.23.so
7f3631292000-7f3631293000 rw-p

$ less /proc/self/maps mmap_base

12

Current ASLR in Linux From execve
TASK_SIZE = 248–4096
execve does the following:
1. Removes the current

mapping.
2. Creates the stack region.
3. Chooses mmap_base.
4. Loads binary at

2/3*TASK_SIZE + random.
5. Loads the interpreter if

needed.
6. Chooses a heap at an offset

of no more than 32MB from
binary. 13

MMAP Address Choosing
• VMA
• Doubly Linked List
• Augment Red-Black Tree

How mmap Really Works

15

struct vm_area_struct {
unsigned long vm_start;
unsigned long vm_end;
...
struct vm_area_struct *vm_next, *vm_prev;
struct rb_node vm_rb;
...
pgprot_t vm_page_prot;
...

};
• vm_start is the start of a region.
• vm_end is the first byte address after the end of the memory region.
• vm_page_prot is access permissions for this VMA.

Doubly Linked List

VMA is stored in a doubly linked list.

VMAVMA VMA

binary
vm_start
0x5000

heap
vm_start
0x7000

stack
vm_start
0x7fff000

16

Augment Red-Black Tree

• The key is vm_start.
• Augment is a gap defined in bytes as a

maximum of:
• Difference between the start of the

current VMA and the end of a
preceding VMA in a linked list

• Available memory in the left subtree
• Available memory in the right

subtree
• The lowest address is
mmap_min_addr (64KB by default)

• A maximum address with a suitable
length will be always chosen.

• mmap_base is the upper limit in
address choosing.

binary
0x5000

augment:
0x5000

libc
0xa000

augment:
0x5000

stack
0xf000

augment:
0x3000

binary
0x6000

augment:
0x5000

ld
0xc000

augment:
0x3000

heap
0x8000

augment:
0x2000

17

Why Is This Bad?
• Memory Regions Interaction
• Deeper Analysis

• Memory corruption
vulnerability will affect more
segments.

• Region leakage reveals
neighboring addresses.

• Different regions are grouped
into a bigger region accessible
to other regions.

• Offset2lib is a good example
of how this attack can be
performed.

• Old CVE-2014-9427 in the
PHP module is exactly what I
described.

• How serious is this issue?

Memory Regions Interaction

Description of offset2lib attack

https://cybersecurity.upv.es/attacks/offset2lib/offset2lib.html

I. Create a process:
1. Load the binary.
2. Load the ld interpreter.
3. Execute ld:

a. Load libraries.
b. Initialize LD inner stuff.
c. Run constructors.
d. ...

4. Run the application.
II. Find common constant steps.
III. Exploit everything.

Deeper Analysis

20

Analyze
• Controllable Execution flow
• Library Loading Order
• Holes
• Stack Guard
• Heap Alignment
• Mem Cache
• MAP_FIXED

Controllable Execution Flow

• Any program may have controllable execution flow
• Controlled execution flow is always used for attacks.
• To build such a flow, you need to analyze the application.
• strace can be used to get mmap calls and build the layout.

$ strace -e mmap ./hello_world

mmap(…) = 0x7f8ae9fd4000

mmap(…) = 0x7f8ae9fd3000

mmap(…) = 0x7f8ae99ff000

mmap(…) = 0x7f8ae9dbf000

mmap(…) = 0x7f8ae9dc5000

mmap(…) = 0x7f8ae9fd2000

mmap(…) = 0x7f8ae9fd1000

Hello, World!
22

Library Loading Order
• Library Loading Order
• Attack

Library Loading Order

• Since libc-5 glibc doesn’t use the system call 'uselib', glibc
loads libraries with mmap.

• Linux kernel loads only the binary image and interpreter.
• Library loading order is a constant in GNU Libc:

1. Put the ELF file into the FIFO (first input first output) queue
for loading.

2. Pop the ELF file from the queue and load it with mmap.
3. Repeat step 2 until the queue is not empty.

• ASLR ends on choosing mmap_base (libld).

24

Load Library Order: Attack

• Procedure Linkage Table contains pointers to other libraries or
to libdl if not yet linked

• Calculation of library space: subtract the size of the previous
library, add the size of the next library.

• Linux distributives contain packages => easy to calculate the
library size.

• Since version 7, Android has implemented randomization for
the library order.

25

Holes

Holes

• Holes appear when unmap is a part of mapping.
• strace showed memory allocations with 4,096-byte offsets, which are inside libld. Linux

kernel created a hole.
mmap(… 4096 …) = 0x7f8ae9fd3000
mmap(… 4096 …) = 0x7f8ae9fd2000
mmap(… 4096 …) = 0x7f8ae9fd1000

7f8ae9dc9000-7f8ae9def000 …/ld-2.23.so
7f8ae9fd1000-7f8ae9fd4000
7f8ae9fee000-7f8ae9fef000 …/ld-2.23.so

• Memory was mapped after the kernel loaded the process.
• The hole is big enough to store more such mmap requests as 0x7f8ae9fd1000-

0x7f8ae9def000 = 0x1e2000.
• Can be used to bypass ASLR and access data inside ld.

27

Stack Guard
• TLS
• Stack Guard Protection
• Bypass
• Get The Buffer
• pthread Stack Thread
• PoC
• Mitigations

Thread Local Storage (TLS)

• TLS (thread local storage) is a mechanism for allocating variables (one
instance per an extant thread).

• One of three allocations are used for TLS:
mmap(… 4096 … MAP_ANONYMOUS …) = 0x7fd63e056000
arch_prctl(ARCH_SET_FS, 0x7fd63e056700) = 0

• `fs` register keeps the TCB (thread control block) structure.
typedef struct {

...
uintptr_t stack_guard;
...

} tcbhead_t;

29

• Stack guard is a mitigation against stack buffer overflow.
• Stack guard pushes a value to the stack top at prologue:
text:00000000004005EE mov rax, fs:28h
text:00000000004005F7 mov [rbp+var_8], rax
• Compares the value at epilogue with the saved value:
text:0000000000400631 mov rcx, [rbp+var_8]
text:0000000000400635 xor rcx, fs:28h
text:000000000040063E jz short ok
text:0000000000400640 call __stack_chk_fail
text:0000000000400645 ok:
text:0000000000400645 leave
text:0000000000400646 retn
• Terminates application if comparison fails.

Stack Guard

30

Stack Guard Bypass?

• We know where TCB is:
mmap(…) = 0x7f8ae9fd3000
mmap(…) = 0x7f8ae9fd2000 TCB
mmap(…) = 0x7f8ae9fd1000

• In a memory layout, it looks like this:
…
7f8ae9dc9000-7f8ae9def000 …/ld-2.23.so

Unmapped area

7f8ae9fd1000-7f8ae9fd4000 TCB is here

Unmapped area

7f8ae9fee000-7f8ae9fef000 …/ld-2.23.so

…
• mmap(length less 106496 …) will be under TCB
• mmap(length less 1974272 …) will be above TCB
• These lengths depend on the ld.so.cache size that was unmapped.

31

Get the Buffer

•mmap malicious file
•malloc(length > 135128) calls mmap

Vectors: mmap / heap overflow

32

pthread Stack Thread

•pthread_create can allocate stack with mmap.
• Stack will be placed near the libraries and mapped
segments.

• Where is the new-thread TCB? If it is mapped, we can
do the same:

clone(child_stack=0x7fc8416f0ff0,
..., tls=0x7fc8416f1700,...)

TCB is 1,808 bytes below the stack.
33

Proof of Concept

int a = (int)x;
unsigned long *tcb;
arch_prctl(ARCH_GET_FS, &tcb);
printf("thread FS %p\n", tcb);
printf("cookie thread: 0x%lx\n", tcb[5]);
unsigned long * frame = __builtin_frame_address(0);
printf("stack_cookie addr %p \n", &frame[-1]);
printf("diff : %lx\n", (char*)tcb - (char*) &frame[-1]);
unsigned long len = (char*)tcb - (char*)&frame[-1];

// Rewrite the cookie
memset(&frame[-1], 0x41, len+sizeof(tcbhead_t));
// Rewrite return address
frame[1] = &pwn_payload;

34

Proof Of Concept Result

$./thread_stack_tls
thread FS 0x7fc81039d700
cookie thread: 0xd56ca7e76bd15400
stack_cookie addr 0x7fc81039cf48
diff : 7b8 1976 bytes

hacked!

• The issue was first found in 2013, not reported (link from Red Hat Security team ;)

• Intel ME was hacked the same way.

• Legacy from Minix?

35

http://bases-hacking.org/tcb-overwrite.html
https://www.blackhat.com/docs/eu-17/materials/eu-17-Goryachy-How-To-Hack-A-Turned-Off-Computer-Or-Running-Unsigned-Code-In-Intel-Management-Engine.pdf

Mitigations

• Remove write access from stack guard.
• Remove stack guard from the stack, get a separate region.
• TCB must be placed randomly.
• Generate a new canary on pthread_create:

• fs register points to thread’s own TLS (TCB)

Glibc development team wants this bug to be published to fix it.
0-day

36

Heap Alignment
• pthread and malloc
• Proof of Concept
• Heap Alignment
• Heap Alignment PoC
• Result

pthread and malloc

•malloc from a new thread will create a new heap
with mmap.

•Heap objects are now close to the libraries.

•Heap address leakage => leakage of any library
address.

38

Prof Of Concept

void * thread(void *x) {
int a = (int)x;
int *p_a = &a;
void *ptr = malloc(8);
printf("%lx\nn", (unsigned long long)ptr - (unsigned long long)p_a);
return 0;

}

$./thread_stack_small_heap
fffffffff935e98c
$./thread_stack_small_heap
fffffffff938d98c

Difference?
39

Heap Alignment

• Thread heap is aligned to the heap size (64 MB).

[pid 30394] mmap(…134217728 …) = 0x7f3233613000 128MB Chunk

[pid 30394] munmap(0x7f3233613000, 10407936) = 0 Unmap head
[pid 30394] munmap(0x7f3238000000, 56700928) = 0 Unmap tail

• TASK_SIZE is 248, 64MB is 226, results in 222 possible heaps.

• mmap_base has fixed 8 bits = 0x7f.

• The first heap has the 214 entropy—easy to guess!

• Vendor response:

"This is not a vulnerability in itself. It is an algorithmic constraint how glibc malloc
operates. We have some ideas how to randomize the allocation offset within the
subheap, which would introduce further randomization. … We are planning to treat this as a security

hardening as well." Red Hat Product Security

40

Heap alignment PoC

Python script to get statistics

import subprocess
d = {}
def dump(iteration, hysto):

print 'Iteration %d len %d'%(iteration, len(hysto))
for key in sorted(hysto):

print hex(key), hysto[key]
i = 0
while i < 1000000:

out = subprocess.check_output(['./t'])
addr = int(out, 16) #omit page size
addr >>= 12
if addr in d:

d[addr] += 1
else:

d[addr] = 1
i += 1

dump(i,d)
41

PoC Result

•C code of the thread
void *thread()
{

printf("%p\n", malloc(8));
}

•PoC result is 16,385 different addresses = 214 + 1

42

MAP_FIXED
• Is MAP_FIXED Safe?
• ELF Segments Loading
• ldd Exploit
• ldd Exploit description
• Do You Know ldd?
• Impact

Is MAP_FIXED SAFE?

• From the mmap manual:

MAP_FIXED
Don't interpret addr as a hint: place the mapping at exactly that address. addr

must be a multiple of the page size. If the memory region specified by addr and len
overlaps pages of any existing mapping(s), then the overlapped part of the
existing mapping(s) will be discarded. If the specified address cannot be used,
mmap() will fail. Because requiring a fixed address for a mapping is less portable, the
use of this option is discouraged.

• Problem is already discussed at lwn.net/Articles/741335/.

• Here is a good example…

44

https://lwn.net/Articles/741335/

ELF Segments Loading

• An ELF file includes segments to be loaded. MAP_FIXED is used to load them.
Here are some words about the ELF file segments:

PT_LOAD
The array element specifies a loadable segment, described

by p_filesz and p_memsz. The bytes from the file are mapped to
the beginning of the memory segment. If the segment’s memory
size (p_memsz) is larger than the file size (p_filesz), the
‘‘extra’’ bytes are defined to hold the value 0 and to follow
the segment’s initialized area. The file size may not be larger
than the memory size. Loadable segment entries in the program
header table appear in ascending order, sorted on the p_vaddr
member.
• The order is not checked by the kernel and libld
• No impact is noticed from kernel side

45

Demo

ldd Exploit

• Ldd helps to check needed libraries. Usage example:
$ ldd ./main
linux-vdso.so.1 => (0x00007ffc48545000)
libevil.so => ./libevil.so (0x00007fbfaf53a000)
libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6

(0x00007fbfaf14d000)
/lib64/ld-linux-x86-64.so.2 (0x000055dda45e6000)

• Let’s change libevil to exploit ldd:
$ ldd ./main
root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin
bin:x:2:2:bin:/bin:/usr/sbin/nologin
sys:x:3:3:sys:/dev:/usr/sbin/nologin

47

$ readelf –a libevil.so shows the following info

• ELF is loaded by GNU Libc with following code:
maplength = loadcmds[nloadcmds - 1].allocend -
loadcmds[0].mapstart;
mmap((l_addr + c->mapstart),.., MAP_FIXED| …)
maplength is equel to 0x400000, that is virtual address of second
segment
• It re-mmaps libdl and takes control over the execution process.

ldd Exploit Explain

Type VirtAddr MemSiz
0 LOAD 0x0 0x1819

1 LOAD 0x400000 0x200000

2 LOAD 0x200000 0x200000

48

Do You Know ldd?

• man ldd:
"Be aware, however, that in some circumstances,
some versions of ldd may attempt to obtain the dependency
information by directly executing the program. Thus, you should
never employ ldd on an untrusted executable, since this may result in
the execution of arbitrary code.”

• “glibc upstream does not consider ldd fit for inspecting
untrusted binaries” Red Hat Product Security

• “its either a hardening or a non-security bug.” Red Hat Product
Security

49

Impact

• Vulnerable copy-pasted code
• Obfuscation or anti-emulation:

• Remapping the current ELF segment by the next
loaded library

• Not only a library entry point, constructors, or export
functions

• Cheating with binary-analysis tools:
• rabin2 from radare2 crashed

• Maybe more?
50

Memory Cache

Memory cache

Glibc caches the mmaped stack and heap
segments.

This allows ASLR bypass and control over
uninitialized values.

52

Memory Cache PoC

void * func(void *x) { …
long a[1024];
printf("addr: %p\n", &a[0]);
if (x)

printf("value %lx\n", a[0]);
else
{

a[0] = 0xdeadbeef;
printf("value %lx\n", a[0]);

}
void * addr = malloc(32);
printf("malloced %p\n", addr);
free(addr); ...

int main(){ ...
pthread_t thread; printf("thread1\n");
pthread_create(&thread, NULL, func, 0);
pthread_join(thread, &val); printf("thread2\n");
pthread_create(&thread, NULL, func, 1);
pthread_join(thread, &val); ... 53

Memory Cache PoC Result

$./pthread_cache
thread1
addr: 0x7fd035e04f40
value deadbeef
malloced 0x7fd030000cd0
thread2
addr: 0x7fd035e04f40
value deadbeef
malloced 0x7fd030000cd0

• Addresses are the same. No any mmap call between threads.
• “After analyzing the flaw and talking with glibc upstream it seems this issue is more

of a security hardening than a flaw in itself, since ASLR is a post-exploitation
mitigation measure.” Red Hat Product Security

54

Address Space Layout un-Randomization

Address Space Layout un-Randomization

• Kernel mmap address choosing
algorithm is easy to implement.

• Order of the ASLR created regions is
known.

• Library load order is known.
• Distances between regions are too big to

change anything.

• Fix the maximum ASLR possible output
to get the layout.

• Get as many mmap calls from the
process start as possible.

• Get mmap_base (optional).
• Rebase any created segment (optional).

56

How we can Patch it
• Holes
• PT_LOAD Order
• mmap Address Choosing
• mmap_min_addr

Holes Patch

Glibc calls mprotect on holes to set PROT_NONE on it.

vm_map is good here, makes these pages

ANONYMOUS.

lkml.org/lkml/2017/7/14/290

58

https://lkml.org/lkml/2017/7/14/290

PT_LOAD Order Patch

Check the ELF segment order. Terminate if
the check fails.

59

mmap Address Choosing

• Need to randomize any address chosen by mmap.
• Choose gap = gaps[random % gaps_count].
• The array of gaps is overhead.
• Walk the tree and make a random choice.
• Algorithm:

1. Use the current algorithm to get the maximum number of addresses and
choose one among them.

2. Walk the tree from the lowest VMA to the chosen address and randomly
change the choice.

3. Don’t visit unsuitable subtrees.
4. Select a random suitable page in the chosen region.

60

Result Of Randomization

• The patch was tested on Ubuntu x86-64.
• All libraries are far from each other.
• It is hard to predict the address.
• The TCB region is also randomized.
• The system (even browsers) works fine

61

Before And After

• Before
5627a82bf000-5627a82e5000 r-xp /bin/less
...
5627a84e8000-5627a84ed000 rw-p

5627aa2d4000-5627aa2f5000 rw-p [heap]

7f363066f000-7f3630a78000 r--p .../locale-archive

7f3630a78000-7f3630c38000 r-xp .../libc-2.23.so
7f3630c38000-7f3630e38000 ---p .../libc-2.23.so
7f3630e38000-7f3630e3c000 r--p .../libc-2.23.so
7f3630e3c000-7f3630e3e000 rw-p .../libc-2.23.so
7f3630e3e000-7f3630e42000 rw-p
7f3630e42000-7f3630e67000 r-xp .../libtinfo.so.5.9
7f3630e67000-7f3631066000 ---p .../libtinfo.so.5.9
7f3631066000-7f363106a000 r--p .../libtinfo.so.5.9
7f363106a000-7f363106b000 rw-p .../libtinfo.so.5.9
7f363106b000-7f3631091000 r-xp .../ld-2.23.so
7f363126c000-7f363126f000 rw-p
7f363128e000-7f3631290000 rw-p
7f3631290000-7f3631291000 r--p .../ld-2.23.so
7f3631291000-7f3631292000 rw-p .../ld-2.23.so
7f3631292000-7f3631293000 rw-p

• After
314a2d0da000-314a2d101000 r-xp .../ld-2.26.so
314a2d301000-314a2d302000 r--p .../ld-2.26.so
314a2d302000-314a2d303000 rw-p .../ld-2.26.so
314a2d303000-314a2d304000 rw-p

3169afcd8000-3169afcdb000 rw-p TCB region

316a94aa1000-316a94ac6000 r-xp .../libtinfo.so.5.9
316a94ac6000-316a94cc5000 ---p .../libtinfo.so.5.9
316a94cc5000-316a94cc9000 r--p .../libtinfo.so.5.9
316a94cc9000-316a94cca000 rw-p .../libtinfo.so.5.9
3204e362d000-3204e3630000 rw-p

4477fff2c000-447800102000 r-xp .../libc-2.26.so
447800102000-447800302000 ---p .../libc-2.26.so
447800302000-447800306000 r--p .../libc-2.26.so
447800306000-447800308000 rw-p .../libc-2.26.so
447800308000-44780030c000 rw-p
509000396000-509000d60000 r--p .../locale-archive

56011c1b1000-56011c1d7000 r-xp /bin/less
56011c3d6000-56011c3d7000 r--p /bin/less
56011c3d7000-56011c3db000 rw-p /bin/less
56011c3db000-56011c3df000 rw-p
56011e0d8000-56011e0f9000 rw-p [heap] 62

Limitations

Works only with 64-bit architectures.

Overhead is added, in the worst case the whole
tree is visited.

63

One more Bug

EPERM

• Sometimes applications were crashed with EPERM on an mmap
request.

• The reason of EPERM was the mmap_min_address variable.
• The address search function was called with hardcoded 4,096, but not

mmap_min_address.
• The manual says: "EPERM The operation was prevented by a file seal;

see fcntl(2)."
• Code doesn’t expect EPERM on anonymous mmap.
• There is a risk of denial of service (DoS) if mmap_min_address is set to

TASK_SIZE, hard to investigate.
• Use of mmap_min_address in a search function call is the fix.

65

Conclusion

Achievements

• Current implementation described
• Problems found:

• mmap address choosing
• Holes
• Close memory regions
• Stack and heap cache
• Heap alignment

• Hacked:
• ldd with ELF
• Stack guard

• Implemented:
• Utility for ASLR bypassing
• Patches for the Linux kernel

67

Whats Next?

•Microsoft Windows can have the same issues.
•Mac OS X can have the same issues.
•32-bit systems are in danger.

68

• Many brilliant people from Positive Technologies
• @rkarabut for good picture ;)

Kudos!

Thank you

ptsecurity.com
2018

Questions?

