
Anne Baanen
Alexander Bentkamp
Jasmin Blanchette
Johannes Hölzl
Jannis Limperg

The Hitchhiker’s Guide to
Logical Verification

2022 Standard Edition
(October 25, 2022)

lean-forward.github.io/
logical-verification/2022

https://lean-forward.github.io/logical-verification/2022
https://lean-forward.github.io/logical-verification/2022

ii

Contents

Contents iii

Preface vii

I Basics 1

1 Definitions and Statements 3
1.1 Types and Terms . 3
1.2 Type Definitions . 8
1.3 Function Definitions . 13
1.4 Lemma Statements . 16
1.5 Summary of New Lean Constructs . 18

2 Backward Proofs 19
2.1 Tactic Mode . 20
2.2 Basic Tactics . 21
2.3 Reasoning about Connectives and Quantifiers 24
2.4 Reasoning about Equality . 27
2.5 Rewriting Tactics . 28
2.6 Proofs by Mathematical Induction . 30
2.7 Induction Tactic . 31
2.8 Cleanup Tactics . 32
2.9 Summary of New Lean Constructs . 32

3 Forward Proofs 35
3.1 Structured Proofs . 35
3.2 Structured Constructs . 37
3.3 Forward Reasoning about Connectives and Quantifiers 39
3.4 Calculational Proofs . 41
3.5 Forward Reasoning with Tactics . 42
3.6 Dependent Types . 44
3.7 The PAT Principle . 45
3.8 Induction by Pattern Matching . 47
3.9 Summary of New Lean Constructs . 49

iii

II Functional–Logic Programming 51

4 Functional Programming 53
4.1 Inductive Types . 53
4.2 Structural Induction . 54
4.3 Structural Recursion . 56
4.4 Pattern Matching Expressions . 57
4.5 Structures . 59
4.6 Type Classes . 61
4.7 Lists . 64
4.8 Binary Trees . 69
4.9 Case Tactics . 71
4.10 Dependent Inductive Types . 72
4.11 Summary of New Lean Constructs . 74

5 Inductive Predicates 75
5.1 Introductory Examples . 75
5.2 Logical Symbols . 81
5.3 Rule Induction . 82
5.4 Linear Arithmetic Tactic . 85
5.5 Elimination . 85
5.6 Further Examples . 88
5.7 Summary of New Lean Constructs . 92

6 Monads 93
6.1 Introductory Example . 93
6.2 Two Operations and Three Laws . 95
6.3 A Type Class . 97
6.4 No E�ects . 98
6.5 Basic Exceptions . 99
6.6 Mutable State . 101
6.7 Nondeterminism . 104
6.8 Tautology Tactic . 105
6.9 A Generic Algorithm: Iteration over a List 105
6.10 Summary of New Lean Constructs . 106

7 Metaprogramming 109
7.1 Tactics and Tactic Combinators . 110
7.2 The Metaprogramming Monad . 113
7.3 Names, Expressions, Declarations, and Environments 116
7.4 First Example: A Conjunction-Destructing Tactic 120
7.5 Second Example: A Provability Advisor 122
7.6 A Look at Two Predefined Tactics . 123
7.7 Miscellaneous Tactics . 124
7.8 Summary of New Lean Constructs . 125

III Program Semantics 127

8 Operational Semantics 129

iv

8.1 Formal Semantics . 129
8.2 A Minimalistic Imperative Language . 130
8.3 Big-Step Semantics . 131
8.4 Properties of the Big-Step Semantics 133
8.5 Small-Step Semantics . 135
8.6 Properties of the Small-Step Semantics 138
8.7 Parallelism . 139

9 Hoare Logic 141
9.1 Hoare Triples . 141
9.2 Hoare Rules . 142
9.3 A Semantic Approach to Hoare Logic 144
9.4 First Program: Exchanging Two Variables 146
9.5 Second Program: Adding Two Numbers 147
9.6 Finish Tactic . 149
9.7 A Verification Condition Generator . 149
9.8 Second Program Revisited: Adding Two Numbers 151
9.9 Hoare Triples for Total Correctness . 152
9.10 Summary of New Lean Constructs . 152

10 Denotational Semantics 153
10.1 Compositionality . 153
10.2 A Relational Denotational Semantics 154
10.3 Fixpoints . 155
10.4 Monotone Functions . 156
10.5 Complete Lattices . 156
10.6 Least Fixpoint . 158
10.7 A Relational Denotational Semantics, Continued 158
10.8 Application to Program Equivalence . 158
10.9 A Simpler Approach Based on an Inductive Predicate 160

IV Mathematics 161

11 Logical Foundations of Mathematics 163
11.1 Universes . 163
11.2 The Peculiarities of Prop . 164
11.3 The Axiom of Choice . 166
11.4 Subtypes . 168
11.5 Quotient Types . 172
11.6 Summary of New Lean Constructs . 177

12 Basic Mathematical Structures 179
12.1 Type Classes over a Single Binary Operator 179
12.2 Type Classes over Two Binary Operators 182
12.3 Coercions . 184
12.4 Normalization Tactics . 185
12.5 Lists, Multisets, and Finite Sets . 185
12.6 Order Type Classes . 187

v

12.7 Summary of New Lean Constructs . 188

13 Rational and Real Numbers 189
13.1 Rational Numbers . 189
13.2 Real Numbers . 191
13.3 Final Exhortation . 196
13.4 Summary of New Lean Constructs . 196

Bibliography 197

vi

Preface

Formal proof assistants are software tools designed to help their users carry out
computer-checked proofs in a logical calculus. We usually call them proof as-
sistants, or interactive theorem provers, but a mischievous student coined the
phrase “proof-preventing beasts,” and dictation software occasionally misunder-
stands “theorem prover” as “fear improver.” Consider yourself warned.

Rigorous and Formal Proofs Interactive theorem proving has its own terminol-
ogy, already starting with the notion of “proof.” A formal proof is a logical argu-
ment expressed in a logical formalism. In this context, “formal” means “logical” or
“logic-based.” Logicians—the mathematicians of logics—carried out formal proofs
on paper decades before the advent of computers, but nowadays formal proofs
are almost always carried out using a proof assistant.

In contrast, an informal proof is what a mathematician would normally call a
proof. These are often carried out in LATEX or on a blackboard, and are also called
“pen-and-paper proofs.” The level of detail can vary a lot, and phrases such as “it
is obvious that,” “clearly,” and “without loss of generality” move some of the proof
burden onto the reader. A rigorous proof is a very detailed informal proof.

The main strength of proof assistants is that they help develop highly trustwor-
thy, unambiguous proofs of mathematical statements, using a precise logic. They
can be used to prove arbitrarily advanced results, and not only toy examples or
logic puzzles. Formal proofs also help students understand what constitutes a
valid definition or a valid proof. To quote Scott Aaronson:1

I still remember having to grade hundreds of exams where the students
started out by assuming what had to be proved, or filled page after
page with gibberish in the hope that, somewhere in the mess, they
might accidentally have said something correct.

When we develop a new theory, formal proofs can help us explore it. They
are useful when we generalize, refactor, or otherwise modify an existing proof, in
much the same way as a compiler helps us develop correct programs. They give
a high level of trustworthiness that makes it easier for others to review the proof.
In addition, formal proofs can form the basis of verified computational tools (e.g.,
verified computer algebra systems).

Success Stories There have been a number of success stories in mathematics
and computer science. Some landmark results in the formalization of mathemat-
ics have been the proof of the four-color theorem by Gonthier et al. [9], the proof

1https://www.scottaaronson.com/teaching.pdf

vii

https://www.scottaaronson.com/teaching.pdf

of the odd-order theorem by Gonthier et al. [10], the proof of the Kepler conjec-
ture by Hales et al. [13], and the definition of perfectoid spaces by Buzzard et
al. [6]. The earliest work in this area was carried out by Nicolaas de Bruijn and his
colleagues starting in the 1960s in a system called AUTOMATH.2

Today, few mathematicians use proof assistants, but this is slowly changing.
For example, 29 participants of the Lean Together 2019 meeting in Amsterdam,3
about formalization of mathematics, self-identified as mathematicians.

Most users of proof assistants today are computer scientists. A few compa-
nies, including AMD [31] and Intel [14], have been using proof assistants to verify
their designs. In academia, some of the milestones are the verifications of the
operating system kernels seL4 [16] and CertiKOS [12] and the development of the
verified compilers CompCert [19], JinjaThreads [23], and CakeML [18].

Proof Assistants There are dozens of proof assistants in development or use
across the world. A list of the main ones follows, classified by logical foundations:

set theory: Isabelle/ZF, Metamath, Mizar;
simple type theory: HOL4, HOL Light, Isabelle/HOL;
dependent type theory: Agda, Coq, Lean, Matita, PVS;
Lisp-like first-order logic: ACL2.

For a history of proof assistants and interactive theorem proving, we refer to
Harrison, Urban, and Wiedijk’s highly informative chapter [15].

Lean Lean is a new proof assistant developed primarily by Leonardo de Moura
(Microsoft Research) since 2012. Its mathematical library, mathlib, was originally
developed under the leadership of Jeremy Avigad (Carnegie Mellon University) but
is now maintained and further extended by the users’ community [24].4

We will use Lean community version 3.30.0, mathlib revision 48104c3a22ae,
and a few extensions collected in a small library called LoVelib.5 Although it is
still a research project, with some rough edges, there are several reasons why
Lean is a suitable vehicle to teach interactive theorem proving:

It has a highly expressive, and highly interesting, logic based on the calculus
of inductive constructions, a dependent type theory.
It is extended with classical axioms and quotient types, making it convenient
to verify mathematics.
It includes a convenient metaprogramming framework, which can be used
to program custom proof automation.
It includes a modern user interface via a Visual Studio Code plugin.
It has highly readable, fairly complete documentation.
It is open source.

2https://www.win.tue.nl/automath/
3https://lean-forward.github.io/lean-together/2019/index.html
4https://github.com/leanprover-community/mathlib
5https://github.com/blanchette/logical_verification_2022/raw/main/lean/lovelib.

lean

viii

https://www.win.tue.nl/automath/
https://lean-forward.github.io/lean-together/2019/index.html
https://github.com/leanprover-community/mathlib
https://github.com/blanchette/logical_verification_2022/raw/main/lean/lovelib.lean
https://github.com/blanchette/logical_verification_2022/raw/main/lean/lovelib.lean

Lean’s core library includes only basic algebraic definitions. More setup and
proof automation are found in mathlib. It is more than a mathematical library; it
provides a lot of basic automation on top of Lean’s core library that one would
expect from a modern proof assistant.

This Guide This guide is a companion to the MSc-level course Logical Verification
(LoVe) taught at the Vrije Universiteit Amsterdam. Our primary aim is to teach in-
teractive theorem proving. Lean is the vehicle, not an end of itself. As such, this
guide is not designed to be a comprehensive Lean tutorial—for this, we recom-
mend Theorem Proving in Lean [1]. The guide is also no substitute for attending
class or doing the exercises and homework. Theorem proving is not for spectators;
it can only be learned by doing.

Specifically, our goal is that you
learn fundamental theory and techniques in interactive theorem proving;
learn how to use logic as a precise language for modeling systems and stat-
ing properties about them;
familiarize yourselves with some areas in which proof assistants are success-
fully applied, such as functional programming, the semantics of imperative
programming languages, and mathematics;
develop some practical skills you can apply on a larger project (as a hobby,
for an MSc or PhD, or in industry);
reach a point where you feel ready to move to another proof assistant and
apply what you have learned;
get to understand the domain well enough to start reading relevant scientific
papers published at international conferences such as Certified Programs
and Proofs (CPP) and Interactive Theorem Proving (ITP) or in journals such
as the Journal of Automated Reasoning (JAR).

Equipped with a good knowledge of Lean, you will find it easy to move to an-
other proof assistant based on dependent type theory, such as Agda or Coq, or to
a system based on simple type theory, such as HOL4 or Isabelle/HOL.

We assume that you are familiar with typed functional programming, as em-
bodied in the languages Haskell, OCaml, and Standard ML. If you do not see that
the term g (f a b) applies the (curried) function f to two arguments a and b and
passes the result to the function g, or that λn, n + 1 is the function that maps n
to n + 1, we strongly recommend that you start by studying a tutorial, such as the
first chapters of the online tutorial Learn You a Haskell for Great Good! [22]. You
can stop reading once you have reached the end of the section titled “Lambdas.”

An important characteristic of this guide, which it shares with Knuth’s TEXbook
[17], is that it does not always tell the truth. To simplify the exposition, simple but
false claims are made about Lean. Some of these statements are rectified in later
chapters. Like Knuth, we feel that “this technique of deliberate lying will actually
make it easier for you to learn the ideas. Once you understand a simple but false
rule, it will not be hard to supplement that rule with its exceptions.”

The Lean files accompanying this guide can be found in a public repository.6
The files’ naming scheme follows this guide’s chapters; thus, love06_monads_demo.

6https://github.com/blanchette/logical_verification_2022

ix

https://github.com/blanchette/logical_verification_2022

lean is the main file associated with Chapter 6 (“Monads”), which is demonstrated
in class, love06_monads_exercise_sheet.lean is the exercise sheet, and love06_
monads_homework_sheet.lean is the homework sheet.

We have a huge debt to the authors of Theorem Proving in Lean [1] and Concrete
Semantics: With Isabelle/HOL [26], who have taught us Lean and programming
language semantics. Many of their ideas appear in this guide.

We thank Robert Lewis and Assia Mahboubi for their useful comments on this
guide’s organization and focus. We thank Kiran Gopinathan and Ilya Sergey for
sharing the anecdote reported in footnote 3 of Chapter 1 and letting us share it
further. We thank Daniel Fabian for designing the first tablet-optimized version of
this guide. Finally, we thank Chris Bailey, Kevin Buzzard, Dominique Danco, Wan
Fokkink, Lina Gerlach, Robert Lewis, Antonius Danny Reyes, Robert Schütz, Patrick
Thomas, Huub Vromen, Floris Westerman, and Wijnand van Woerkom for reporting
typos and some more serious errors they found in earlier editions of this guide.
Should you find some mistakes in this text, please let us know.

Special Symbols In this guide, we assume that you will be using Visual Studio
Code and its Lean extension to edit .lean files. Visual Studio Code lets us enter
Unicode symbols by entering backslash \ followed by an ASCII identifier. For ex-
ample,→, Z, or Q can be entered by typing \->, \Z, or \Q and pressing the tab key
or the space bar. We will freely use these notations. For reference, we provide a
list of the main non-ASCII symbols that are used in the guide and, for each, one of
its ASCII representations. By hovering over a symbol in Visual Studio Code while
holding the control or command key pressed, you will see the di�erent ways in
which it can be entered.

¬ \not ∧ \and ∨ \or
→ \-> ↔ \<-> ∀ \fo
∃ \ex ≤ \<= ≥ \>=
6= \neq ≈ \~~ × \x
◦ \circ ∅ \empty ∪ \union
∩ \intersect ∈ \in � \downleftharpoon
\bigcirc ← \<- 7→ \mapsto
⇒ \=> ⇒�⇒ \==> J \[[
K \]] N \N Z \Z
Q \Q R \R α \a
β \b γ \g δ \de
ε \e λ \la σ \s
0 \0 1 \1 2 \2
3 \3 4 \4 5 \5
6 \6 7 \7 8 \8
9 \9

x

Part I

Basics

1

Chapter 1

Definitions and Statements

We start our journey by studying the basics of Lean, without carrying out any
proofs yet. We review how to define new types and functions and how to state
their expected properties as lemmas.

Lean’s logical foundation is a rich formalism called the calculus of inductive
constructions, which supports dependent types. In this chapter, we restrict our
attention to its simply (i.e., nondependently) typed fragment. It is inspired by
the λ-calculus and resembles typed functional programming languages such as
Haskell, OCaml, and Standard ML. Even if you have not been exposed to these
languages, you will recognize many of the concepts from modern languages (e.g.,
Python, C++11, Java 8). In a first approximation:

Lean = functional programming + logic

If your background is in mathematics, you probably already know most of
the key concepts underlying functional programming, sometimes under di�erent
names. For example, the Haskell program

fib 0 = 0
fib 1 = 1
fib n = fib (n - 2) + fib (n - 1)

closely matches the mathematical definition

fib(n) =

0 if n = 0
1 if n = 1
fib(n− 2) + fib(n− 1) if n ≥ 2

1.1 Types and Terms

Simple type theory (also called higher-order logic) corresponds roughly to the
simply typed λ-calculus [5] extended with an equality operator (=). It is an abstract,
extremely simplified version of a programming language with a function-calling
mechanism that prefigures functional programming. It can also be viewed as a
generalization of first-order logic (also called predicate logic).

1.1.1 Types

Types are either basic types such as Z, Q, and bool or total functions σ→ τ, where
σ and τ are themselves types. Types indicate which values an expression may

3

4 Chapter 1. Definitions and Statements

evaluate to. They introduce a discipline that is followed somewhat implicitly in
mathematics. In principle, nothing prevents a mathematician from stating 1 ∈ 2,
but a typing discipline would mark this as the error it likely is.

Semantically, types can be viewed as sets. We would normally define the types
Z, Q, and bool so that they faithfully capture the mathematicians’ Z and Q and
the computer scientists’ Booleans, and similarly for the function arrow (→). But
despite their similarities, Lean and mathematics are distinct languages. Lean’s
types may be interpreted as sets, but they are not sets.

Higher-order types are types containing left-nested→ arrows. Values of such
types are functions that take other functions as arguments. Accordingly, the type
(Z→ Z)→ Q is the type of unary functions that take a function of type Z→ Z as
argument and that return a value of type Q.

1.1.2 Terms

The terms, or expressions, of simple type theory consist of
constants c;
variables x;
applications t u;
λ-expressions λx, t.

Above, t and u denote arbitrary terms. We can also write t : σ to indicate that the
term t has the type σ.

A constant c : σ is a symbol of type σ whose meaning is fixed in the current
global context. For example, an arithmetic theory might contain constants such
as 0 : Z, 1 : Z, abs : Z→ N, square : N→ N, and prime : N→ bool. Constants
include functions (e.g., abs) and predicates (e.g., prime).

A variable x : σ is either bound or free. A bound variable refers back to the
input of a λ-expression λx : σ, t enclosing it. In λx : Z, square (abs x) the sec-
ond x is a variable that refers back to the λ binder’s input x. By contrast, a free
variable is declared in the local context—a concept that will be explained below.

An application t u, where t : σ→ τ and u : σ, is a term of type τ denoting the
result of applying the function t to the argument u—e.g., abs 0. No parentheses
are needed around the argument, unless it is a complex term—e.g., prime (abs 0).

Given a term t : τ, a λ-expression λx : σ, t denotes the total function of type
σ→ τ that maps each input value x of type σ to the function body t, where t may
contain x. For example, λx : Z, square (abs x) denotes the function that maps
(the value denoted by) 0 to (the value denoted by) square (abs 0), that maps 1 to
square (abs 1), and so on. A more intuitive syntax would have been x 7→ square
(abs x), but this is not supported by Lean.

Applications and λ-expressions mirror each other: A λ-expression “builds” a
function; an application “destructs” a function. Although our functions are unary
(i.e., they take one argument), we can build n-ary functions by nesting λs, using
an ingenious technique called currying. For example, λx : σ, (λy : τ, x) denotes
the function of type σ→ (τ→ σ) that takes two arguments and returns the first
one. Strictly speaking, σ→ (τ→ σ) takes a single argument and returns a func-
tion, which in turn takes an argument. Applications work in the same way: If
K := (λx : Z, (λy : Z, x)), then K 1 = (λy : Z, 1) and (K 1) 0 = 1. The function K
in K 1, which is applied to a single argument, is said to be partially applied.

1.1. Types and Terms 5

Currying is so useful a concept that we will omit most parentheses, writing

σ→ τ→ υ for σ→ (τ→ υ)
t u v for (t u) v

λx : σ, λy : τ, t for λx : σ, (λy : τ, t)

and also

λ(x : σ) (y : τ), t for λx : σ, λy : τ, t
λx y : σ, t for λ(x : σ) (y : σ), t

In mathematics, it is customary to write binary operators in infix syntax—e.g.,
x + y. Such notations are also possible in Lean, as syntactic sugar for (+) x y. The
parentheses around the + sign are necessary to disable the parsing of + as an
infix operator. Partial application is possible with this syntax. For example, (+) 1
denotes the unary function that adds one to its argument. Other ways to write
this function are λx, (+) 1 x and λx, 1 + x.

One way to work with Lean is to declare the types and constants we need using
the constant(s) command. Consider the following declarations:

constants a b : Z
constant f : Z → Z
constant g : Z → Z → Z

#check λx : Z, g (f (g a x)) (g x b)
#check λx, g (f (g a x)) (g x b)

The first three lines declare four constants (a, b, f, g), which can be used to form
terms. The last two lines use the #check command to type-check some terms and
show their types. The # prefix identifies diagnosis commands: commands that are
useful for debugging but that we would normally not keep in our Lean files.

The constant(s) command can even be used to declare types. In Lean, types
are terms like any other. The next example introduces a type of “Trooleans” and
three constants of that type:

constant trool : Type
constants trool.true trool.false trool.maybe : trool

The constants thus introduced have no definition. They are fully unspecified. We
cannot tell whether trool.true, trool.false, and trool.maybe are equal or not,
and we know nothing about trool except that it has at least one value (e.g.,
trool.true).

1.1.3 Type Checking and Type Inference

When Lean parses a term, it checks whether the term is well typed. In the process,
it tries to infer the types of bound variables if those are omitted—e.g., the type of
x in λx, 1 + x. Type inference lightens notations and saves some typing.

For simple type theory, type checking and type inference are decidable prob-
lems. Advanced features such as overloading (the possibility to reuse the same
name for several constants—e.g., 0 : N and 0 : R) can lead to undecidability [29].
Lean takes a pragmatic, computer-science-oriented approach and assumes that
numerals 0, 1, 2, . . . are of type N if several types are possible.

6 Chapter 1. Definitions and Statements

Lean’s type system can be expressed as a formal system. A formal system
consists of judgments and of (derivation) rules for producing judgments. A typing
judgment has the form C ` t : σ, meaning that term t has type σ in local context C.
The local context gives the types of the variables in t that are not bound by a λ.
The local context is used to keep track of the variables bound by λ’s outside t.
For a function definition, it will consist of the function’s parameters. For example,
in Lean, the right-hand side of the last equation of fib’s above would be type-
checked in a local context consisting of n : N.

For simple type theory, there are four typing rules, one per kind of term:

Cst if c is declared with type σ
C `̀̀ c : σ

Var if x : σ is the last occurrence of x in C
C `̀̀ x : σ

C `̀̀ t : σ→ τ C `̀̀ u : σ
App

C `̀̀ t u : τ

C, x : σ `̀̀ t : τ
Lam

C `̀̀ (λx : σ, t) : σ→ τ

Each rule has zero or more premises (above the horizontal bar), a conclusion
(below the bar), and possibly a side condition. The premises are typing judgments,
whereas the side conditions are arbitrary mathematical conditions on the math-
ematical variables occurring in the rule. To discharge the premises, we need to
continue performing a derivation upward, as we will see in a moment. As for the
side conditions, we can use the entire arsenal of mathematics to show that they
are true.

The first two rules, labeled Cst and Var, have no premises, but they have side
conditions that must be satisfied for the rules to apply. The last two rules take
one or two judgments as premises and produce a new judgment. Lam is the only
rule that modifies the local context: As we enter the body t of a λ-expression, we
need to record the existence of the bound variable x and its type to be ready when
we meet x in t.

We can use this rule system to prove that a given term is well typed by working
our way backwards (i.e., upwards) and applying the rules, building a formal deriva-
tion of a typing judgment. Like natural trees, derivation trees are drawn with the
root at the bottom. The derived judgment appears at the root, and each branch
ends with the application of a premise-less rule. Rule applications are indicated
by a horizontal bar and a label. The following typing derivation establishes that
the term λx : Z, abs x has type Z→ N in an arbitrary local context C:

Cst
C, x : Z `̀̀ abs : Z→ N

Var
C, x : Z `̀̀ x : Z

App
C, x : Z `̀̀ abs x : N

Lam
C `̀̀ (λx : Z, abs x) : Z→ N

Reading the proof from the root upwards, notice how the local context is threaded
through and how it is extended by the Lam rule. The rule moves the variable bound
by the λ-expression to the local context, making an application of Var possible

1.1. Types and Terms 7

further up the tree. If the variable x is already declared in C, it becomes shadowed
by x : Z after entering the λ-expression.

In summary, the type system consists of derivation rules that can be (1) in-
stantiated with arbitrary values for their metavariables and (2) connected to form
derivation trees.

The above type system only checks that terms are well typed. It does not check
that types are well formed. For example, list Z is well formed, whereas Z list
and list list are ill-formed. For simple type theory, well-formedness is easy
to check: Only declared type constructors should be used, and each n-ary type
constructor should be passed exactly n type arguments.

1.1.4 Type Inhabitation

Given a type σ, the type inhabitation problem consists of finding an “inhabitant”
of that type—a term of type σ—within the empty local context. It may seem like a
pointless exercise, but as we will see in Chapter 3, this problem is closely related
to that of finding a proof of a proposition. Seemingly silly exercises of the form
“find a term of type σ” are good practice towards mastery of theorem proving.

Although this problem is in general undecidable, with heuristics we can go
a long way. To create a term of a given type, start with the placeholder _ and
recursively apply a combination of the following two steps:

1. If the type is of the form σ→ τ, a possible inhabitant is an anonymous func-
tion, of the form λx : σ, _, where _ is a placeholder for a missing term of
type τ. Lean will mark _ as an error; if you hover over it in Visual Studio
Code, a tooltip will show the missing term’s type as well as any variables
declared in the local context.

2. Given a type σ (which may be a function type), you can use any constant c
or variable x : τ1 → · · · → τn → σ to build a term of that type. For each
argument, you need to put a placeholder, yielding c _ . . . _ or x _ . . . _.

The placeholders can be eliminated recursively using the same heuristics.
As an example, we will apply the heuristics to find a term of type

(α→ β→ γ)→ ((β→ α)→ β)→ α→ γ

Initially, only step 1 is applicable, with σ := α→ β→ γ and τ := ((β→ α)→ β)
→ α→ γ. (Recall that→ is right-associative: σ→ τ→ υ stands for σ→ (τ→ υ).)
This results in the term λf, _, which has the right type but has a placeholder left.
Since the argument f has type σ, a function type, it makes sense to use the name
f for it. Then we continue recursively with the placeholder, of type τ. Again, only
step 1 is possible, so we end up with the term λf, λg, _, where g has type (β→
α)→ β and the placeholder has type α→ γ. A third application of step 1 yields
λf, λg, λa, _, where a has type α and the placeholder has type γ.

At this point, step 1 is no longer possible. Let us see if step 2 is applicable. The
context surrounding the placeholder contains the following variables:

f : α→ β→ γ, g : (β→ α)→ β, a : α

Recall that we are trying to build a term of type γ. The only variable we can use
to achieve this is f: It takes two arguments and returns a value of type γ. So

8 Chapter 1. Definitions and Statements

we replace the placeholder with the term f _ _, where the two new placeholders
stand for the two missing arguments. Putting everything together, we now have
the term λf, λg, λa, f _ _.

Following f’s type, the placeholders are of type α and β, respectively. The first
placeholder is easy to fill, using step 2 again, by simply supplying a, of type α, with
no arguments. For the second placeholder, we apply step 2 with the variable g,
which is the only source of βs. Since g takes an argument, we must supply a
placeholder. This means our current term is λf, λg, λa, f a (g _).

We are almost done. The only placeholder left has type β→ α, which is g’s
argument type. Applying step 1, we replace the placeholder with λb, _, where _
has type α. Here, we can simply supply a. Our final term is λf, λg, λa, f a (g (λ
b, a))—i.e., λf g a, f a (g (λb, a)).

The above derivation was tedious but deterministic: At each point, either step
1 or 2 was applicable, but not both. In general, this will not always be the case.
For some other types, we might encounter dead ends and need to backtrack. We
might also fail altogether, with nowhere to backtrack to. Notably, with an empty
local context, it is impossible to supply a witness for α.

The key idea is that the term should be syntactically correct at all times. The
only red underlining we should see in Visual Studio Code should appear under the
placeholders. In general, a good principle for software development is to start
with a program that compiles, perform the smallest change possible to obtain a
new compiling program, and repeat until the program is complete.

1.2 Type Definitions

A distinguishing feature of Lean’s calculus of inductive constructions is its built-in
support for inductive types. An inductive type is a type whose values are built by
applying special constants called constructors. Inductive types are a concise way
of representing acyclic data in a program. You may know them under some other,
largely synonymous names, including algebraic data types, inductive data types,
freely generated data types, recursive data types, and data types.

1.2.1 Natural Numbers

The “Hello, World!” example of inductive types is the type N of natural numbers.
In Lean, it can be defined as follows:

inductive nat : Type
| zero : nat
| succ : nat → nat

The first line announces to the world that we are introducing a new type called
nat, intended to represent the natural numbers. The second and third line de-
clare two new constructors, nat.zero : nat and nat.succ : nat→ nat, that can
be used to build values of type nat. Following an established convention in com-
puter science and logic, counting starts at zero. The second constructor is what
makes this inductive definition interesting—it requires an argument of type nat
to produce a value of type nat. The terms

nat.zero

1.2. Type Definitions 9

nat.succ nat.zero
nat.succ (nat.succ nat.zero)

...

denote the di�erent values of type nat—zero, its successor, its successor’s suc-
cessor, and so on. This notation is called unary, or Peano, after the logician
Giuseppe Peano. For an alternative explanation of Peano numbers in Lean (and
some groovy video game graphics), see Kevin Buzzard’s article “Can computers
prove theorems?”1

The general format of type declarations is

inductive type-name (params1 : type1) . . . (paramsk : typek) : Type
| constructor-name1 : constructor-type1...
| constructor-namen : constructor-typen

For the natural numbers, it is possible to convince Lean to use the familiar
names N, 0, 1, 2, . . . , and indeed the predefined nat type o�ers such syntactic
sugar. But using the lengthier notations sheds more light on Lean’s type defini-
tions. Besides, syntactic sugar is known to cause cancer of the semicolon [28].

In the Lean file accompanying this chapter, the definition of nat is located
in a namespace, delimited by namespace my_nat and end my_nat, to keep its ef-
fects contained to a portion of the file. After end my_nat, any occurrence of nat,
nat.zero, or nat.succ will refer to Lean’s predefined type of natural numbers.
Similarly, the entire file is located in the LoVe namespace to prevent name clashes
with existing Lean libraries.

We can inspect an earlier definition at any point in Lean by using the #print
command. For example, #print nat within the my_nat namespace displays the
following information:

inductive my_nat.nat : Type
constructors:
my_nat.nat.zero : nat
my_nat.nat.succ : nat → nat

The focus on natural numbers is one of the many features of this guide that
reveal a bias towards computer science. Number theorists would be more inter-
ested in the integers Z and the rational numbers Q; analysts would want to work
with the real numbers R and the complex numbers C. But the natural numbers are
ubiquitous in computer science and enjoy a very simple definition as an inductive
type. They can also be used to build other types, as we will see in Chapter 13.

1.2.2 Arithmetic Expressions

If we were to specify a calculator program or a programming language, we would
likely need to define a type to represent arithmetic expressions. The next example
shows how this could be done in Lean:

inductive aexp : Type
| num : Z → aexp

1http://chalkdustmagazine.com/features/can-computers-prove-theorems/

http://chalkdustmagazine.com/features/can-computers-prove-theorems/

10 Chapter 1. Definitions and Statements

| var : string → aexp
| add : aexp → aexp → aexp
| sub : aexp → aexp → aexp
| mul : aexp → aexp → aexp
| div : aexp → aexp → aexp

Mathematically, this definition is equivalent to defining the type aexp inductively
by the following formation rules:

1. For every integer i, the term aexp.num i is an aexp value. (Intuitively, the
constructor aexp.num “boxes” an integer into an arithmetic expression.)

2. For every character string x, the term aexp.var x is an aexp value.
3. If e1 and e2 are aexp values, then so are aexp.add e1 e2, aexp.sub e1 e2,

aexp.mul e1 e2, and aexp.div e1 e2.
The above definition is exhaustive. The only possible values for aexp are those
built using formation rules 1 to 3. Moreover, aexp values built using di�erent for-
mation rules are distinct. These two properties of inductive types are captured by
the motto “No junk, no confusion,” due to Joseph Goguen.

1.2.3 Comparison with Java

It may be instructive to compare the concise Lean specification of aexp above
with a Java program that achieves the same. The program consists of one inter-
face and six classes that implement it, corresponding to the aexp type and its six
constructors:

public interface AExp { }

public class Num implements AExp {
public int num;

public Num(int num) { this.num = num; }
}

public class Var implements AExp {
public String var;

public Var(String var) { this.var = var; }
}

public class Add implements AExp {
public AExp left;
public AExp right;

public Add(AExp left, AExp right)
{ this.left = left; this.right = right; }

}

public class Sub implements AExp {
public AExp left;

1.2. Type Definitions 11

public AExp right;

public Sub(AExp left, AExp right)
{ this.left = left; this.right = right; }

}

public class Mul implements AExp {
public AExp left;
public AExp right;

public Mul(AExp left, AExp right)
{ this.left = left; this.right = right; }

}

public class Div implements AExp {
public AExp left;
public AExp right;

public Div(AExp left, AExp right)
{ this.left = left; this.right = right; }

}

1.2.4 Comparison with C

In C, the natural counterpart of an inductive type is a tagged union. The type
declarations would be as follows:

#include <stddef.h>
#include <stdlib.h>

enum AExpKind {
AEK_NUM, AEK_VAR, AEK_ADD, AEK_SUB, AEK_MUL, AEK_DIV

};

struct aexp;

struct aexp_num {
int num;

};

struct aexp_var {
char var[1024];

};

struct aexp_binop {
struct aexp *left;
struct aexp *right;

};

12 Chapter 1. Definitions and Statements

struct aexp {
enum AExpKind kind;
union {

struct aexp_num anum;
struct aexp_var avar;
struct aexp_binop abinop;

} data;
};

Corresponding to each constructor in Lean, we would need to write a function
to allocate an aexp object of the right size in memory. Here is the definition of the
function corresponding to the first constructor, aexp.num:

struct aexp *create_num(int num)
{

struct aexp *res = malloc(offsetof(struct aexp, data) +
sizeof(struct aexp_num));

res->kind = AEK_NUM;
res->data.anum.num = num;
return res;

}

The subtle pointer arithmetic for the malloc call is needed to allocate exactly the
right amount of memory.

1.2.5 Lists

The next type we consider is that of finite lists:

inductive list (α : Type) : Type
| nil : list
| cons : α → list → list

The type is polymorphic: It is parameterized by a type α, which we can instantiate
with concrete types. For example, list Z is the type of lists over integers, and
list (list R) is the type of lists of lists of real numbers. The type constructor
list takes a type as argument and returns a type. Inside the definition, since α
is fixed as a parameter on the left-hand side of the colon, it is su�cient to write
list to get list α. Like generics in Java and templates in C++, polymorphism
o�ers parameterized types.

The following commands display the constructors’ types:

#check list.nil
#check list.cons

The output is

list.nil : Π(α : Type), list α
list.cons : ?M_1 → list ?M_1 → list ?M_1

Informally:
The nil constructor takes a typeα as argument and produces a result of type
list α. The Π syntax for the type argument will be explained in Chapter 3.

1.3. Function Definitions 13

The cons constructor takes an element (the head) of some arbitrary type
?M_1 as argument and a list over ?M_1 (the tail) and produces a result of
type list ?M_1. Unlike for nil, there is no need to pass a type argument to
cons—the type is inferred from the first argument. If we want to pass the type
argument explicitly, we need to write an at sign (@) in front of the constant:
@list.cons. We then have the type Πα : Type, α→ list α→ list α.

Even if we try to restrict ourselves to a fragment of Lean’s language, Lean often
exposes us to more advanced constructs in the output, such as Π above, Sort u,
or Type 1. Our advice is to adopt a sporty attitude: Do not worry if you do not
always understand everything the first time. Use your common sense and your
imagination. And, above all, do not hesitate to ask.

Lean’s built-in lists o�er syntactic sugar for writing lists:

[] for list.nil
x :: xs for list.cons x xs

[x1, . . ., xn] for x1 :: . . . :: xn :: []

The :: operator, like all other binary operators, binds less tightly than function
application. Thus, f x :: reverse ys is parsed as (f x) :: (reverse ys). It is good
practice to avoid needless parentheses. They can quickly impair readability. In
addition, it is important to put spaces around infix operators, to suggest the right
precedence; it is all too easy to misread f x::reverse ys as f (x::reverse) ys.

Functional programmers often use names such as xs, ys, zs for lists, although l
is also common in Lean. A list contains many elements, so a plural form is natural.
A list of cats might be called cats; a list of list of cats, catss. When a nonempty
list is presented as a head and a tail, we usually write, say, x :: xs or cat :: cats.

1.3 Function Definitions

If all we want is to declare a function, we can use the constant command de-
scribed above (Section 1.1.2). But usually, we want to define the function’s behav-
ior, and for this we would use def.

Going back to the arithmetic expression example (Section 1.2), if we wanted to
implement an eval function in Java, we would probably add it as part of AExp’s
interface and implement it in each subclass. For Add, Sub, Mul, and Div, we would
recursively call eval on the left and right objects.

In Lean, the syntax is very compact. We define a single function and use pattern
matching to distinguish the six cases:

def eval (env : string → Z) : aexp → Z
| (aexp.num i) := i
| (aexp.var x) := env x
| (aexp.add e1 e2) := eval e1 + eval e2
| (aexp.sub e1 e2) := eval e1 - eval e2
| (aexp.mul e1 e2) := eval e1 * eval e2
| (aexp.div e1 e2) := eval e1 / eval e2

The keyword def introduces the definition. The general format of definitions by
pattern matching is

14 Chapter 1. Definitions and Statements

def name (params1 : type1) . . . (paramsm : typem) : type
| patterns1 := result1

...
| patternsn := resultn

The parentheses () around the parameters can also be curly braces { } if we want
to make them implicit arguments. The parameters cannot be subjected to pattern
matching, only the remaining arguments (e.g., the aexp argument of eval).

Patterns may contain variables, which are then visible in the corresponding
right-hand side, as well as constructors. For example, in the second case in eval’s
definition, the variable x can be used in the right-hand side env x.

Some definitions do not need pattern matching. For these, the syntax is simply

def name (params1 : type1) . . . (paramsm : typem) : type :=
result

We can have pattern matching without recursion (e.g., in the aexp.num and aexp.
var cases above), and we can have recursion without pattern matching.

The basic arithmetic operations on natural numbers, such as addition, can be
defined by recursion:

def add : N → N → N
| m nat.zero := m
| m (nat.succ n) := nat.succ (add m n)

We pattern-match on two arguments at the same time, distinguishing the case
where the second argument is zero and the case where it is nonzero. Each recur-
sive call to add peels o� one nat.succ constructor from the second argument.
Instead of nat.zero and nat.succ n, Lean also allows us to write 0 and n + 1 as
syntactic sugar.

We can evaluate the result of applying add to numbers using #eval or #reduce:

#eval add 2 7
#reduce add 2 7

Both commands print 9, as expected (at least in Visual Studio Code). #eval em-
ploys an optimized interpreter, whereas #reduce uses Lean’s inference kernel,
which is less e�cient.

Perhaps you are worried about division by zero in the definition of eval above.
Let us see what #eval has to say about it:

#eval eval (λs, 7) (aexp.div (aexp.var "x") (aexp.num 0))

The output is 0. In Lean, division is conveniently defined as a total function that
returns zero when the denominator is zero. For a lucid explanation of why this is
not dangerous, see Buzzard’s blog.2

It is good practice to provide a few tests each time we define a function, to
ensure that it behaves as expected. You can even leave the #eval or #reduce
calls in your Lean files as documentation.

The definition of multiplication is similar to that of addition:
2https://xenaproject.wordpress.com/2020/07/05/division-by-zero-in-type-theory-a-

faq/

https://xenaproject.wordpress.com/2020/07/05/division-by-zero-in-type-theory-a-faq/
https://xenaproject.wordpress.com/2020/07/05/division-by-zero-in-type-theory-a-faq/

1.3. Function Definitions 15

def mul : N → N → N
| _ nat.zero := nat.zero
| m (nat.succ n) := add m (mul m n)

The underscore (_) stands for an unused variable. We could have put a name (e.g.,
m), but _ documents our intentions better.

The #eval command below prints 14, as expected:

#eval mul 2 7

The power operation (“m to the power of n”) can be defined in various ways.
Our first proposal is structurally identical to the definition of multiplication:

def power : N → N → N
| _ nat.zero := 1
| m (nat.succ n) := mul m (power m n)

Since the first argument, m, remains unchanged in the recursive call, power m n, we
can factor it out and put it next to the function’s name, as a parameter, before the
colon introducing the type of the function (excluding the parameter m):

def power2 (m : N) : N → N
| nat.zero := 1
| (nat.succ n) := mul m (power2 n)

Notice that the recursive call to power2 does not take m as argument. In the entire
def block introducing power2, m is fixed as the first argument. Outside the block,
power2 is a (curried) binary function, just like power. From the outside, there is no
di�erence between the two definitions. In fact, we already saw this syntax for the
type argument α of the list constructor (Section 1.2).

Yet another definition is possible by first introducing a general-purpose itera-
tor and then using it with the right arguments:

def iter (α : Type) (z : α) (f : α → α) : N → α

| nat.zero := z
| (nat.succ n) := f (iter n)

def power3 (m n : N) : N :=
iter N 1 (λl, mul m l) n

Notice that the second definition is not recursive.
Recursive functions on lists can be defined in a similar way:

def append (α : Type) : list α → list α → list α
| list.nil ys := ys
| (list.cons x xs) ys := list.cons x (append xs ys)

#check append
#eval append _ [3, 1] [4, 1, 5]

The append function takes three arguments: a type α and two lists of type list α.
By passing the placeholder _, we leave it to Lean to infer the type α from the type
of the other two arguments.

To make the type argument α implicit, we can put it in curly braces { }:

16 Chapter 1. Definitions and Statements

def append2 {α : Type} : list α → list α → list α
| list.nil ys := ys
| (list.cons x xs) ys := list.cons x (append2 xs ys)

#check append2
#eval append2 [3, 1] [4, 1, 5]

#check @append2
#eval @append2 _ [3, 1] [4, 1, 5]

The at sign (@) can be used to make the implicit arguments explicit. This is occa-
sionally necessary to guide Lean’s parser.

We can use syntactic sugar in the definition, both in the patterns on the left-
hand sides of := and in the right-hand sides:

def append3 {α : Type} : list α → list α → list α
| [] ys := ys
| (x :: xs) ys := x :: append3 xs ys

In Lean’s standard library, the append function is an infix operator called ++.
We can use it to define a function that reverses a list:

def reverse {α : Type} : list α → list α
| [] := []
| (x :: xs) := reverse xs ++ [x]

1.4 Lemma Statements

What makes Lean a proof assistant and not only a programming language is that
we can state lemmas about the types and constants we define and prove that they
hold. We will use the terms lemma, theorem, corollary, fact, property, and true
statement more or less interchangeably. Similarly, propositions, logical formulas,
and statements will all mean the same.

In Lean, propositions are simply terms of type Prop. This stands in contrast
with most descriptions of first-order logic, where terms and formulas are sepa-
rate syntactic entities. A proposition that can be proved is called a theorem (or
lemma, corollary, etc.); otherwise it is a nontheorem or false statement. Mathe-
maticians sometimes use the term “proposition” as a synonym for theorem (e.g.,
“Proposition 3.14”), but in formal logic propositions can also be false.

Here are examples of true statements that can be made about the addition,
multiplication, and list reversal operations defined in Section 1.3:

lemma add_comm (m n : N) :
add m n = add n m :=

sorry

lemma add_assoc (l m n : N) :
add (add l m) n = add l (add m n) :=

sorry

1.4. Lemma Statements 17

lemma mul_comm (m n : N) :
mul m n = mul n m :=

sorry

lemma mul_assoc (l m n : N) :
mul (mul l m) n = mul l (mul m n) :=

sorry

lemma mul_add (l m n : N) :
mul l (add m n) = add (mul l m) (mul l n) :=

sorry

lemma reverse_reverse {α : Type} (xs : list α) :
reverse (reverse xs) = xs :=

sorry

The general format is

lemma name (params1 : type1) . . . (paramsm : typem) :
statement :=

proof

The := symbol separates the lemma’s statement and its proof. The syntax of lemma
is very similar to that of a def command without pattern matching, with statement
instead of type and proof instead of result. In the examples above, we put the
marker sorry as a placeholder for the actual proof. The marker is quite literally
an apology to future readers and to Lean for the absence of a proof. It is also a
reason to worry, until we manage to eliminate it. In Chapters 2 and 3, we will see
how to achieve this.

The intuitive semantic of a lemma command with a sorry proof is, “This propo-
sition should be provable, but I have not carried out the proof yet—sorry.” Some-
times, we want to express a related idea, namely, “Let us assume this proposition
holds.” Lean provides the axiom command for this, which is often used in conjunc-
tion with constant(s). For example:

constants a b : Z

axiom a_less_b :
a < b

After the constants command, we have no information about a and b beyond their
type. The axiom specifies the desired property about them. The general format
of the command is

axiom name (params1 : type1) . . . (paramsm : typem) :
statement

Axioms are dangerous, because they rapidly can lead to an inconsistent logic,
in which we can derive false. For example, if we added a second axiom stat-
ing that a = b, we could easily derive b < b, from which we could derive false. The
history of interactive theorem proving is paved with inconsistent axioms. An anec-
dote among many: At the 2020 edition of the Certified Programs and Proofs (CPP)

18 Chapter 1. Definitions and Statements

conference, a submitted paper was rejected due to a flawed axiom, from which one
of the peer reviewers derived false.3 Therefore, we will generally avoid axioms,
preferring the benign combination of def and lemma to the dangerous combina-
tion of constant(s) and axiom.

From Lean’s point of view, a lemma with a sorry proof is e�ectively an axiom
and can be used to play havoc with the logic’s consistency. To prevent misunder-
standings, it is better to use sorry only as a temporary measure, while developing
a proof, and not as an alternative to the more explicit, and honest, axiom.

1.5 Summary of New Lean Constructs

At the end of this and most other chapters, we include a brief summary of the con-
structs introduced in the chapter. Some syntaxes have multiple meanings, which
will be introduced gradually. We refer to The Lean Reference Manual [3], the The-
orem Proving in Lean [1] tutorial, and the mathlib documentation4 for details.

Diagnosis Commands

#check checks and prints type of a term
#eval executes a term using an optimized interpreter
#print prints the definition of a constant
#reduce executes a term using Lean’s inference kernel

Declarations

axiom states an axiom
constant(s) declares unspecified new constants or types
def defines a new constant
inductive introduces a type and its constructors
lemma states a lemma and its proof
namespace . . . end collects declarations in a named scope

Proof Commands

sorry stands for a missing proof or definition

3One of the authors of that submission reported that the axiom has now been revised and
derived as a theorem. The entire formal development is now axiom-free. The revised paper has
been accepted at the conference Computer Aided Verification (CAV) 2020 [11].

4https://leanprover-community.github.io/mathlib_docs/

https://leanprover-community.github.io/mathlib_docs/

Chapter 2

Backward Proofs

In this chapter, we see how to prove Lean lemmas using tactics, and we review the
most important Lean tactics. A tactic is a procedure that operates on the goal—
the proposition to prove—and either fully proves it or produces new subgoals (or
fails). When we state a lemma, the lemma statement is the initial goal. A proof is
complete once all (sub)goals have been eliminated using suitable tactics. Most of
the tactics described here are documented in more detail in Chapter 5 of Theorem
Proving in Lean [1] and Chapter 6 of The Lean Reference Manual [3].

Tactics are a backward proof mechanism. They start from the goal and work
backwards towards the already proved lemmas. Consider the lemmas a, a→ b,
and b→ c and the goal ` c. An informal backward proof is as follows:

To prove c, by b→ c it su�ces to prove b.
To prove b, by a→ b it su�ces to prove a.
To prove a, we use a. ut

The telltale sign of a backward proof is the phrase “it su�ces to.” Notice how we
progress from one goal to another (` c, ` b, ` a) until no goal is left to prove. By
contrast, a forward proof would start from the lemma a and progress, one theorem
at a time, towards the desired theorem c:

From a and a→ b, we have b.
From b and b→ c, we have c, as desired. ut

A forward proof only manipulates theorems, not goals. We will study forward
proofs more deeply in Chapter 3.

Informal proofs are sometimes written in a mixture of both styles. This is man-
ageable as long as the backward steps are clearly identified, by such wording as
“to prove . . . , it su�ces to prove” It may help to put the ` sign next to goals
as a reminder that these claims have not been proved yet.

Another format for expressing proofs you may be familiar with is natural de-
duction. A natural deduction derivation corresponding to the above proof is given
below:

`̀̀ b→ c

`̀̀ a→ b `̀̀ a
→E

`̀̀ b
→E

`̀̀ c

19

20 Chapter 2. Backward Proofs

When read from top to bottom, the derivation corresponds to a forward proof;
when read from bottom to top, it corresponds to a backward proof. We will not
use this notation in the rest of this guide.

2.1 Tactic Mode

In Chapter 1, whenever a proof was required, we simply put a sorry placeholder.
For a tactical proof, we will now write begin and end to enter and leave tactic
mode. In this mode, we can invoke a sequence of tactics, separated by commas.

Tactics operate on the goal, which consists of the proposition Q that we want to
prove and of a local context C. The local context consists of variable declarations
of the form c : τ and hypotheses of the form h : P. We write C ` Q to denote a
goal, where C is a list of variables and hypotheses and Q is the goal’s target.

To make things more concrete, consider the following Lean example:

lemma fst_of_two_props :
∀a b : Prop, a → b → a :=

begin
intros a b,
intros ha hb,
apply ha

end

Note that the implication arrow → is right-associative; this means that a→ b→
a is the same as a→ (b→ a). Intuitively speaking, it has the meaning “a implies
that b implies a,” or equivalently “a and b imply a.” In the example, three tactics
are invoked, each on its own line. Let us trace their behavior:

1. Initially, the goal is simply the lemma statement:

`̀̀ ∀a b : Prop, a→ b→ a

2. The intros a b tactic tells Lean to fix two free variables, a and b, correspond-
ing to the two bound variables of the same names. The tactic mimics how
mathematicians work on paper: To prove a ∀-quantified proposition, it suf-
fices to prove it for some arbitrary but fixed value of the bound variable. The
goal becomes

a b : Prop `̀̀ a→ b→ a

We often name the free variables after the bound variables, as we did here,
but this is not mandatory. Moreover, it is good practice to use unique names
and avoid shadowing existing variables.

3. The intros ha hb tactic tells Lean to move the assumptions a and b to the
local context and to call these hypotheses ha and hb. Indeed, to prove an
implication, it su�ces to take its left-hand side as hypothesis and prove its
right-hand side. The goal becomes

a b : Prop, ha : a, hb : b `̀̀ a

It is customary to prefix hypothesis names with h.

2.2. Basic Tactics 21

4. The apply ha tactic tells Lean to match the hypothesis a, called ha, against
the goal ` a. Since a is syntactically equal to a, we have a match, and this
completes the proof.

Informally, in a style reminiscent of pen-and-paper mathematics, we could
write the proof as follows:

Let a and b be propositions.
Assume (ha) a and (hb) b are true.
To prove a, we use hypothesis ha. ut

(Mathematicians would probably use numeric tags such as (1) and (2) for the hy-
potheses instead of informative names.)

Going back to the Lean proof, we can avoid the intros invocations by declaring
the variables and hypotheses as parameters of the lemma, as follows:

lemma fst_of_two_props2 (a b : Prop) (ha : a) (hb : b) :
a :=

begin
apply ha

end

If the proof consists of a single tactic invocation, we can use by instead. The
syntax by tactic abbreviates begin tactic end:

lemma fst_of_two_props3 (a b : Prop) (ha : a) (hb : b) :
a :=

by apply ha

Here is an example with multiple applys in sequence:

lemma prop_comp (a b c : Prop) (hab : a → b) (hbc : b → c) :
a → c :=

begin
intro ha,
apply hbc,
apply hab,
apply ha

end

Putting on our mathematician’s hat, we can verbalize the last proof as follows:

Assume (ha) a is true.
To prove c, by hypothesis hbc it su�ces to prove b.
To prove b, by hypothesis hab it su�ces to prove a.
To prove a, we use hypothesis ha. ut

2.2 Basic Tactics

We already saw the intros and apply tactics. These are the staples of tactical
proofs. Other basic tactics include refl, exact, assumption, and cc. These tactics
can go a long way, if we are patient enough to carry out the reasoning using them,

22 Chapter 2. Backward Proofs

without appealing to stronger proof automation. They can also be used to solve
various logic puzzles.

Below, the thin, large square brackets
[]

enclose optional syntax.

intro(s)

intro
[
name

]
intros

[
name1 . . . namen

]
The intro tactic moves the leading ∀-quantified variable or the leading assump-
tion a→ from the goal’s target to the local context. The tactic takes as an optional
argument the name to give to the variable or to the assumption in the context,
overriding the default name. The plural variant intros can be used to move sev-
eral variables or assumptions at once.

refl

The refl tactic proves goals of the form ` l = r, where the two sides l and r are
syntactically equal up to computation. Computation means expansion of defini-
tions, reduction of an application of a λ-expression to an argument, and more.
These conversions have traditional names. The main conversions are listed be-
low together with examples, in a global context containing def double (n : N)
: N := n + n:

α-conversion (λx, f x) = (λy, f y)
β-conversion (λx, f x) a = f a
δ-conversion double 5 = 5 + 5
ζ-conversion (let n : N := 2 in n + n) = 4
η-conversion (λx, f x) = f
ι-conversion prod.fst (a, b) = a

Applying conversions repeatedly as left-to-right rewrite rules is called reduc-
tion; applying a conversion once in reverse is called expansion. Since much of
Lean’s machinery treats terms that are syntactically equal up to computation
uniformly, it usually makes sense to tell Lean’s pretty-printer to aggressively β-
reduce its output. This is what the the command

set_option pp.beta true

near the top of the files accompanying this guide achieves.

apply

apply lemma-or-hypothesis

The apply tactic matches the goal’s target with the conclusion of the specified
lemma or hypothesis and adds the lemma or hypothesis’s assumptions as new
goals. The matching is performed up to computation.

We must invoke apply with care, because it can transform a provable goal into
an unprovable subgoal. For example, if the goal is ` 2 + 2 = 4 and we apply the
lemma false→ ?a, the variable ?a is matched against 2 + 2 = 4, and we end up

2.2. Basic Tactics 23

with the unprovable subgoal ` false. We say that apply is unsafe. In contrast,
intro always preserves provability and is therefore safe.

exact

exact lemma-or-hypothesis

The exact tactic matches the goal’s target with the specified lemma or hypothesis,
closing the goal. We can often use apply in such situations, but exact communi-
cates our intentions better. In the example from Section 2.1, we could have used
exact ha instead of apply ha.

assumption

The assumption tactic finds a hypothesis from the local context that matches the
goal’s target and applys it to prove the goal. In the example from Section 2.1, we
could have used assumption instead of apply ha.

cc

The cc tactic implements an algorithm known as congruence closure [32] to de-
rive new equalities from those that are present in the goal. For example, if the
goal contains b = a and f b 6= f a as hypotheses, the algorithm will derive f b =
f a from b = a and discover a contradiction with f b 6= f a. The cc tactic is also
suitable for more pedestrian work, such as proving hb : b ` a ∨ b ∨ c or discov-
ering a contradiction among the goal’s hypotheses.

In addition, cc can be used to reason up to associativity (e.g., (a + b) + c =
a + (b + c)) and commutativity (e.g, a + b = b + a). This works for binary opera-
tions that are registered as associative and commutative, such as + and * on arith-
metic types, and ∪ and ∩ on sets. We will see an example in Section 2.6.

At this point, you might wonder, “So what does cc do exactly?” Of course, you
could look up the reference [32] given above to the scientific paper that describes
its underlying algorithm, or even read the source code. But this might not be the
most e�cient use of your time. In truth, even expert users of proof assistants do
not fully understand the behavior of the tactics they use daily. The most success-
ful users adopt a relaxed, sporty attitude, trying tactics in sequence and studying
the emerging subgoals, if any, to see if they are on the right path.

As you keep on using cc and other tactics, you will develop some intuition
about what kinds of goal they work well on. This is one of the many reasons why
interactive theorem proving can only be learned by doing. Often, you will not un-
derstand exactly what Lean does—why a tactic succeeds, or fails. Theorem proving
can be very frustrating at times. The advice printed in large, friendly letters on the
cover of The Hitchhiker’s Guide to the Galaxy applies here: don’t panic.

sorry

The sorry proof command we encountered in Chapter 1 is also available as a tactic.
It “proves” the current goal without actually proving it. Use with care.

24 Chapter 2. Backward Proofs

2.3 Reasoning about Connectives and Quantifiers

Before we learn to reason about natural numbers, lists, or other data types, we
must first learn to reason about the logical connectives and quantifiers of Lean’s
logic. Let us start with a simple example: commutativity of conjunction (∧).

lemma and_swap (a b : Prop) :
a ∧ b → b ∧ a :=

begin
intro hab,
apply and.intro,
apply and.elim_right,
exact hab,
apply and.elim_left,
exact hab

end

At this point, we recommend that you move the cursor over the example in
Visual Studio Code, to see the sequence of proof states. By putting the cursor im-
mediately after each comma, you can see the e�ect of the command on that line.
If you want to see the proof state after the last command, you need to move the
cursor right before the e of the keyword end. Lean simply reports “goals accom-
plished,” meaning that no subgoals remain to be proved.

The proof is a typical intro–apply–exact mixture. It uses the lemmas

and.intro : ?a→ ?b→ ?a ∧ ?b
and.elim_left : ?a ∧ ?b→ ?a

and.elim_right : ?a ∧ ?b→ ?b

where the question marks (?) indicate variables that can be instantiated—for ex-
ample, by matching the goal’s target against the conclusion of a lemma.

The three lemmas above are the introduction rule and the two elimination
rules associated with conjunction. An introduction rule for a logical symbol (e.g.,
∧) is a lemma whose conclusion has that symbol as the outermost symbol. Dually,
an elimination rule has the symbol in an assumption. For each logical symbol,
the introduction rules tell us how to prove a proposition with that symbol as the
outermost position; by contrast, the elimination rules tell us how we must have
proved such a proposition.

In the above proof, we apply the introduction rule for ∧ to prove the goal ` b
∧ a, and we apply the two elimination rules to extract b and a from the hypothesis
a ∧ b. It may sound strange that we eliminate ∧ in ` b ∧ a by using a so-called
introduction rule. The terminology is backward because our proofs are backward.

Question marks can also arise in goals. They indicate variables that can be
instantiated arbitrarily. In the middle of the proof above, right after the tactic
apply and.elim_right, we have the goal

a b : Prop, hab : a ∧ b `̀̀ ?m_1 ∧ b

The tactic exact hab matches ?m_1 (in the target) with a (in hab). Because vari-
ables can occur both in the hypothesis or lemma that is applyd and in the target,
in general the procedure used to instantiate variables to make two terms syntac-
tically equal is called unification. Matching is a special case of unification where

2.3. Reasoning about Connectives and Quantifiers 25

one of the two terms contains no variables. In practice, goals with variables are
rare, so Lean’s unification usually amounts to matching.

(Incidentally, whenever ?m_ variables appear in goals, additional subgoals will
also appear, with the type of each ?m_ variable as a subgoal (e.g., ` Prop). These
confusing subgoals are merely a reminder that we will have to instantiate the ?m_
variables with a term of the right type. We can usually ignore them. As soon as the
variable is instantiated, typically when we solve another subgoal, its associated
subgoal also goes away.)

In Lean, unification is performed up to computation. For example, the terms
(λx, ?m) a and b can be unified by taking ?m := b, because (λx, b) a and b are
syntactically equal up to β-conversion.

The following is an alternative proof of the lemma and_swap:

lemma and_swap2 :
∀a b : Prop, a ∧ b → b ∧ a :=

begin
intros a b hab,
apply and.intro,
{ exact and.elim_right hab },
{ exact and.elim_left hab }

end

The lemma is stated di�erently, with a and b as ∀-quantified variables instead of
parameters of the lemma. Logically, this is equivalent, but in the proof we must
then introduce a and b in addition to hab.

Another di�erence is the use of curly braces { }. When we face two or more
goals to prove, it is generally good style to put each proof in its own block en-
closed in curly braces. The { } tactic combinator focuses on the first subgoal; the
tactic inside must prove it. In our example, the apply and.intro tactic creates
two subgoals, ` b and ` a.

A third di�erence is that we now apply, by juxtaposition, and.elim_right and
and.elim_left directly to the hypothesis a ∧ b to obtain b and a, respectively,
instead of waiting for the lemmas’ assumptions to emerge as new subgoals. This
is a small forward step in an otherwise backward proof. The same syntax is used
both to discharge (i.e., prove) a hypothesis and to instantiate a ∀-quantifier. One
benefit of this approach is that we avoid the potentially confusing ?m_1 variable.

The introduction and elimination rules for disjunction (∨) are as follows:

or.intro_left : ∀b : Prop, ?a→ ?a ∨ b
or.intro_right : ∀b : Prop, ?a→ b ∨ ?a

or.elim : ?a ∨ ?b→ (?a→ ?c)→ (?b→ ?c)→ ?c

The ∀-quantifiers in or.intro_left and or.intro_right can be instantiated
directly by applying the lemma name to the value we want to instantiate with,
via simple juxtaposition. Thus, or.intro_left false corresponds to the lemma
?a→ ?a ∨ false. This is the forward style.

Alternatively, we can invoke apply or.intro_left on a goal of the form . . . `
c ∨ d. This instantiates the lemma with ?a := c and ?b := d. The new subgoal is
. . . ` c. This is the backward style.

Both or.intro_left and or.intro_right are unsafe: If you apply the wrong
one of the two, or either of them too early in a proof, you might end up with an

26 Chapter 2. Backward Proofs

unprovable subgoal. This is easy to see if you consider the provable goal ` true
∨ false: applying or.intro_right yields the unprovable subgoal ` false.

The or.elim rule may seem counterintuitive at a first glance. In essence, it
states that if we have a ∨ b, then to prove an arbitrary c, it su�ces to prove c
when a holds and when b holds. You can think of (?a→ ?c)→ (?b→ ?c)→ ?c
as a clever trick to express the concept of disjunction using only implication.

The introduction and elimination rules for equivalence (↔) are as follows:

iff.intro : (?a→ ?b)→ (?b→ ?a)→ (?a↔ ?b)
iff.elim_left : (?a↔ ?b)→ ?a→ ?b
iff.elim_right : (?a↔ ?b)→ ?b→ ?a

The introduction and elimination rules for existential quantification (∃) are

exists.intro : ∀w, (?p w→ (∃x, ?p x))
exists.elim : (∃x, ?p x)→ (∀a, ?p a→ ?c)→ ?c

The introduction rule for ∃ can be used to instantiate an existential quantifier
with a witness. For example:

lemma nat_exists_double_iden :
∃n : N, double n = n :=

begin
apply exists.intro 0,
refl

end

Again, we instantiate a ∀-quantifier in a forward fashion: exists.intro 0 is the
lemma ?p 0→ (∃x, ?p x). The rule is unsafe: Choosing the wrong witness for x
will result in an unprovable goal. For example, if the goal is ` ∃n, n > 5 and we
take 3 as the witness, we end up with the unprovable subgoal ` 3 > 5.

The elimination rule for ∃ is reminiscent of ∨. Indeed, a fruitful way to think
of a quantification ∃n, ?p n is as a possibly infinitary disjunction ?p 0 ∨ ?p 1 ∨ · · · .
Similarly, ∀n, ?p n can be thought of as ?p 0 ∧ ?p 1 ∧ · · · .

For truth (true), there is only an introduction rule:

true.intro : true

Truth holds no information whatsoever. If it appears as a hypothesis, it is com-
pletely useless, and there is no elimination rule that will succeed at extracting
any information from it. The clear tactic, described in Section 2.8 below, can be
used to remove such useless hypotheses.

Dually, for falsehood (false), there is only an elimination rule:

false.elim : false→ ?a

There is no way to prove falsehood, but if we somehow have it from somewhere
(e.g., from a hypothesis), then we can derive ?anything.

In fact, negation (not) is defined in terms of implication and falsehood: ¬ a
abbreviates a→ false. Intuitively, these mean the same. We can think of “not a”
as saying that “a would imply something absurd (hence not a).”

Lean’s logic is classical, with support for the law of excluded middle and proof
by contradiction:

2.4. Reasoning about Equality 27

classical.em : ∀a : Prop, a ∨ ¬ a
classical.by_contradiction : (¬ ?a→ false)→ ?a

Finally, implication (→) and universal quantification (∀) are the proverbial dogs
that did not bark. For both of them, the intro tactic is the introduction principle,
and application is the elimination principle. For example, given the lemmas hab :
a→ b and ha : a, the juxtaposition hab ha is a lemma stating b.

For proving logic puzzles involving connectives and quantifiers, we advocate
a “mindless,” “video game” style of reasoning that relies mostly on basic tactics
such as intro(s) and apply. Here are some strategies that often work:

If the goal’s target is an implication P→ Q, invoke intro hP to move P into
your hypotheses: . . ., hP : P ` Q.
If the goal’s target is a universal quantification ∀x : σ, Q, invoke intro x to
move x into the local context: . . ., x : σ ` Q.
Look for a lemma or hypothesis whose conclusion has the same shape as the
goal’s target (possibly containing variables that can be matched), and apply
it. For example, if the goal’s target is Q and you have a lemma or hypothesis
of the form hPQ : P→ Q, try apply hPQ.
A negated goal ` ¬ P is syntactically equal to ` P→ false up to compu-
tation, so you can invoke intro hP to produce the subgoal hP : P ` false.
Expanding negation’s definition by invoking rw not_def (described in Sec-
tion 2.5) is often a good strategy.
Sometimes you can make progress by replacing the goal by false, by enter-
ing apply false.elim. As next step, you would typically apply a lemma or
hypothesis of the form P→ false or ¬ P.
When you face several choices (e.g., between or.intro_left and or.intro_
right), remember which choices you have made, and backtrack when you
reach a dead end or have the impression you are not making any progress.
If you suspect that you might have reached a dead end, check whether the
goal actually is provable under the given assumptions. Even if you started
with a provable lemma statement, the current goal might be unprovable (e.g.,
if you used unsafe rules such as or.intro_left).

2.4 Reasoning about Equality

Equality (=) is also a basic logical constant. It is characterized by the following
introduction and elimination rules:

eq.refl : ∀a, a = a
eq.symm : ?a = ?b→ ?b = ?a

eq.trans : ?a = ?b→ ?b = ?c→ ?a = ?c
eq.subst : ?a = ?b→ ?p ?a→ ?p ?b

The first three lemmas are introduction rules specifying that = is an equivalence
relation. The fourth lemma is an elimination rule that allows us to replace equals
for equals in an arbitrary context, represented by the higher-order variable ?p.

An example will show how this works. Below, we apply eq.subst to rewrite
f a b to f a’ b, using the equation a = a’:

28 Chapter 2. Backward Proofs

lemma cong_fst_arg {α : Type} (a a’ b : α)
(f : α → α → α) (ha : a = a’) :

f a b = f a’ b :=
begin

apply eq.subst ha,
apply eq.refl

end

The eq.subst instance we use has ?a := a, ?b := a’, and ?p := (λx, f a b = f x b):

a = a’→ (λx, f a b = f x b) a→ (λx, f a b = f x b) a’

In β-reduced form:

a = a’→ f a b = f a b→ f a b = f a’ b

The lemma’s first assumption matches the hypothesis ha : a = a’, which is passed
as argument in the first apply invocation. The lemma’s second assumption is a
trivial equality that can be proved by apply eq.refl or refl. The lemma’s con-
clusion matches the goal’s target. Notice how a higher-order variable (e.g., ?p)
can represent an arbitrary context (e.g., f . . . b) around a term (e.g., a or a’). This
works because apply unifies up to computation, including β-conversion.

The eq.subst lemma can be used several times in sequence, as follows:

lemma cong_two_args {α : Type} (a a’ b b’ : α)
(f : α → α → α) (ha : a = a’) (hb : b = b’) :

f a b = f a’ b’ :=
begin

apply eq.subst ha,
apply eq.subst hb,
apply eq.refl

end

Since rewriting in this way is such a common operation, Lean provides a rw tactic
to achieve the same result. The tactic will also notice if refl is applicable:

lemma cong_two_args2 {α : Type} (a a’ b b’ : α)
(f : α → α → α) (ha : a = a’) (hb : b = b’) :

f a b = f a’ b’ :=
begin

rw ha,
rw hb

end

A note on parsing: Equality binds more tightly than the logical connectives.
Thus, a = a’ ∧ b = b’ should be read as (a = a’) ∧ (b = b’).

2.5 Rewriting Tactics

The rewriting tactic rw and its relative simp replace equals for equals. Unlike cc,
they use equations as left-to-right rewrite rules. By default, they operate on the
goal’s target, but they can also be used to rewrite hypotheses specified using the
at keyword:

2.5. Rewriting Tactics 29

at ` rewrites the target (the default)
at h1 . . . hn rewrites the specified hypotheses
at * rewrites all hypotheses and the target

rw

rw lemma-or-constant
[
at position

]
The rw tactic rewrites the goal using a single equation as a left-to-right rewrite rule.
It searches for the first subterm that matches the equation’s left-hand side; once
found, all occurrences of that subterm are replaced by the right-hand side of the
equation. If the equation contains variables, these are instantiated as necessary.
To use a lemma as a right-to-left rewrite rule, put a short left arrow (←) in front
of the lemma’s name.

Given the lemma l : ∀x, g x = f x and the goal ` h (f a) (g b) (g c), the tac-
tic rw l produces the subgoal ` h (f a) (f b) (g c), whereas rw←l produces the
subgoal ` h (g a) (g b) (g c).

Instead of a lemma, we can also specify the name of a constant. This will at-
tempt to use one of the constant’s defining equations as rewrite rules. For techni-
cal reasons, this does not work with not (¬), and we must use rw not_def instead.

simp

simp
[
at position

]
The simp tactic rewrites the goal using a standard set of rewrite rules, called the
simp set, exhaustively. Each equation in the simp set is used as a left-to-right
rewrite rule. The simp set contains various rules about predefined symbols (e.g.,
arithmetic and list operators) and can be extended by putting the @[simp] at-
tribute on lemmas. Unlike rw, simp can rewrite terms containing bound variables
(e.g., occurrences of x in the body of λx, . . ., ∀x, . . ., or ∃x, . . .).

simp [lemma-or-constant1, . . . , lemma-or-constantn]
[
at position

]
For the above simp variant, the specified lemmas are temporarily added to the
simp set. In the lemma list, an asterisk (*) can be use to represent all hypotheses.
The minus sign (-) in front of a lemma name temporarily removes the lemma from
the simp set. A powerful incantation that both simplifies the hypotheses and uses
the result to simplify the goal’s target is simp [*] at *.

Given the lemma l : ∀x, g x = f x and the goal ` h (f a) (g b) (g c), the tac-
tic simp [l] produces the subgoal ` h (f a) (f b) (f c), where both g b and g c
have been rewritten. Instead of a lemma, we can also specify the name of a con-
stant. This temporarily adds the constant’s defining equations to the simp set.

To find out what simp does, you can enable tracing via the command

set_option trace.simplify.rewrite true

30 Chapter 2. Backward Proofs

2.6 Proofs by Mathematical Induction

The induction’ tactic performs structural induction on a value of an inductive
type [21]. Structural induction means that the induction follows the structure of
the inductive type. For natural numbers constructed from nat.zero and nat.succ,
structural induction corresponds to standard mathematical induction: To prove
p n, it su�ces to prove p 0 and ∀k, p k→ p (k + 1). Equipped with induction’,
we can reason about the addition and multiplication operations we defined by
recursion in Section 1.3.

Addition is defined by recursion on its second argument. We will prove two
lemmas, add_zero and add_succ, that give us alternative equations that recurse
on the first argument. We start with add_zero:

lemma add_zero (n : N) :
add 0 n = n :=

begin
induction’ n,
{ refl },
{ simp [add, ih] }

end

The first { } encloses the base case ` add 0 0 = 0. The second block corresponds
to the induction step

n : N, ih : add 0 n = n `̀̀ add 0 (nat.succ n) = (nat.succ n)

The local variable n in the step should not be confused with the n in the lemma
statement. Like mathematicians, induction’ tries to reuse variable names that
are no longer needed. The name ih for the induction hypothesis, in the induction
step, is also generated by the induction’ tactic.

We can keep on proving lemmas by structural induction:

lemma add_succ (m n : N) :
add (nat.succ m) n = nat.succ (add m n) :=

begin
induction’ n,
{ refl },
{ simp [add, ih] }

end

lemma add_comm (m n : N) :
add m n = add n m :=

begin
induction’ n,
{ simp [add, add_zero] },
{ simp [add, add_succ, ih] }

end

lemma add_assoc (l m n : N) :
add (add l m) n = add l (add m n) :=

begin
induction’ n,

2.7. Induction Tactic 31

{ refl },
{ simp [add, ih] }

end

Once we have proved that a binary operator is commutative and associative, it
is a good idea to let Lean’s automation, notably cc, know about this. The following
commands achieve this for add:

@[instance] def add.is_commutative : is_commutative N add :=
{ comm := add_comm }

@[instance] def add.is_associative : is_associative N add :=
{ assoc := add_assoc }

(The @[instance] mechanism will be explained in Chapter 4.) The following ex-
ample uses the cc tactic to reason up to associativity and commutativity of add:

lemma mul_add (l m n : N) :
mul l (add m n) = add (mul l m) (mul l n) :=

begin
induction’ n,
{ refl },
{ simp [add, mul, ih],

cc }
end

Here are a few hints on how to carry out proofs by induction:

It is usually beneficial to perform induction following the structure of the
definition of one of the functions appearing in the goal. In particular, if a
function is defined by recursion on its nth argument, it usually makes sense
to perform the induction on that argument.
If the base case of an induction is di�cult, this is often a sign that the wrong
variable was chosen or that some lemmas should be proved first.

2.7 Induction Tactic

induction′′′

induction’ term
[
with name1 . . . namen

]
The induction’ tactic performs structural induction on the specified term. This
gives rise to as many subgoals as there are constructors in the definition of the
term’s type. Induction hypotheses are available as hypotheses in the subgoals cor-
responding to recursive constructors (e.g., nat.succ or list.cons). The optional
names name1, . . . , namen are used for any emerging variables or hypotheses.

Note that the standard Lean tactic for structural induction is called induction.
The primed variant is provided by mathlib. It is more user-friendly and is the only
one we will use.

32 Chapter 2. Backward Proofs

2.8 Cleanup Tactics

The following tactics help us clean up the goal by allowing us to give more mean-
ingful names to variables or hypotheses or to remove useless hypotheses. We did
not need them so far, but they can be helpful during proof exploration.

rename

rename variable-or-hypothesis new-name

The rename tactic changes the name of a variable or hypothesis.

clear

clear variable-or-hypothesis1 . . . variable-or-hypothesisn

The clear tactic removes the specified variables and hypotheses, as long as they
are not used anywhere else in the goal.

2.9 Summary of New Lean Constructs

Command

set_option changes or activates tracing, syntax output, etc.

Attribute

@[simp] adds a lemma to the simp set

Proof Commands

begin . . . end invokes a list of tactics in sequence
by invokes a single tactic

Tactics

apply matches the goal’s target with the lemma’s conclusion
assumption proves the goal using a hypothesis
cc propagates equalities up to associativity and commutativity
clear removes a variable or hypothesis from the goal
exact proves the goal using the specified lemma
induction’ performs structural induction on a variable of an inductive type
intro(s) moves ∀-quantified variables into the goal’s hypotheses
refl proves l = r where l and r are equal up to computation
rename renames a variable or hypothesis
rewrite rewrites once using the given lemma as a left-to-right rewrite rule
simp rewrites using a set of preregistered rewrite rules exhaustively
sorry stands for a missing proof or definition

2.9. Summary of New Lean Constructs 33

Tactic Combinator

{ . . . } focuses on the first subgoal; needs to prove that goal

Chapter 3

Forward Proofs

Tactics are a backward proof mechanism. They start from the goal and break it
down. Often it makes sense to work in a forward fashion: to start with what we
already know and proceed step by step towards our goal. Structured proofs are
a style that supports this kind of reasoning. It can be combined with the tactical
style. Tactical proofs tend to be easier to write but harder to read; it is, after all,
easier to destruct things than to construct them. Most users combine the two
styles, using whichever seems the most appropriate for the situation. The higher
readability of structured proofs make them popular with some users, especially
in mathematical circles.

Structured proofs are syntactic sugar sprinkled over Lean’s proof terms. They
are built using keywords such as assume, have, let, and show that mimic pen-
and-paper proofs. All Lean proofs, whether tactical or structured, are reduced
internally to proof terms. We have seen some specimens already, in Chapter 2:
Given hypotheses ha : a and hab : a→ b, the term hab ha is a proof term for the
proposition b, and we write hab ha : b. The names of lemmas and hypotheses,
such as ha and hab, are also proof terms. Pushing this idea further, given hbc : b
→ c, we can build the proof term hbc (hab ha) for the proposition c. We can think
of hab as a function that converts a proof of a to a proof of b, and similarly for
hbc.

Structured proofs are the default in Lean. They can be used outside tactic
mode. To enter tactic mode, we need to use a begin . . . end block or a by line.

The concepts covered here are described in more detail in Chapters 2 to 4
of Theorem Proving in Lean [1]. Nederpelt and Geuvers’s textbook [25] and Van
Raamsdonk’s lecture notes [30] are other useful references.

3.1 Structured Proofs

As a first example, consider the following structured proof:

lemma fst_of_two_props :
∀a b : Prop, a → b → a :=

fix a b : Prop,
assume ha : a,
assume hb : b,
show a, from

ha

35

36 Chapter 3. Forward Proofs

Each variable bound by a ∀-quantifier and each assumption of an implication is
introduced explicitly in the proof using the fix and assume commands. Several
variables or hypotheses can be introduced simultaneously. We will often omit
the types of variables, especially when they can be guessed from their names;
however, we will usually spell out the propositions and put them one per line, to
increase readability—which is, after all, one of the main potential advantages of
the structured style. The show . . ., from command at the end repeats the propo-
sition to prove, for the sake of readability, and gives the proof after the keyword
from. The goal at this point is a b : Prop, ha : a, hb : b ` a.

Informally, we could write the proof as follows:

Fix some propositions a and b.
Assume (ha) a and (hb) b are true.
We must show a. This follows trivially from ha. ut

Some authors would insert some qualifiers such as “arbitrary but fixed” in front
of “propositions,” especially in textbooks for first-year bachelor students, or they
would write “Let a and b be some propositions.” All these variants are equivalent.
And instead of “ut,” some authors would write “QED” to conclude the proof.

The Lean proof above is atypical in that the goal’s target appears among the
hypotheses. Usually, we must perform some intermediate reasoning steps, essen-
tially of the form “from such-and-such, we have so-and-so.” In Lean, each inter-
mediate step takes the form of a have command, as in the following example:

lemma prop_comp (a b c : Prop) (hab : a → b) (hbc : b → c) :
a → c :=

assume ha : a,
have hb : b :=
hab ha,

have hc : c :=
hbc hb,

show c, from
hc

Informally:

Assume (ha) a is true.
From ha and hab, we have (hb) b.
From hb and hbc, we have (hc) c.
We must show c. This follows trivially from hc. ut

Notice that this is a forward proof: It progresses one theorem at a time from the
hypothesis a to the desired theorem c.

In general, the fix–assume–show skeleton simply repeats the lemma’s state-
ment. We often name the fixed variables after the bound variables from the goal,
as we did here, but this is not mandatory. Moreover, it is good practice to avoid
shadowing existing variables. Between the last fix or assume and the show, we
may have as many have commands as we want, depending on how detailed we
want the argument to be. Details can increase readability, but providing too many
details can overwhelm even the most persistent reader.

3.2. Structured Constructs 37

The have command has a similar syntax to lemma but appears inside a struc-
tured proof. We can think of a have as a definition. In have hb : b := hab ha, the
right-hand side hab ha is a proof term for b, and the left-hand side hb is defined
as a synonym for that proof term. From then on, hb and hab ha can be used inter-
changeably. Since hb and hc are used only once and their proofs are very short,
experts would tend to inline them, replacing hc by hbc hb and hb by hab ha, yield-
ing

lemma prop_comp2 (a b c : Prop) (hab : a → b) (hbc : b → c) :
a → c :=

assume ha : a,
show c, from
hbc (hab ha)

A typical structured proof has the following fix–assume–have–show format:

lemma l :
∀(c1 : σ1) . . . (cl : σl), P1 → · · · → Pm → R :=

fix (c1 : σ1) . . . (cl : σl),
assume h1 : P1,
...

assume hm : Pm,
have k1 : Q1 :=

. . .,
...

have kn : Qn :=
. . .,

show R, from
. . .

3.2 Structured Constructs

The previous section presented the main commands for writing structured proofs:
fix, assume, have, and show. We now review the components of structured proofs
more systematically.

Lemma or Hypothesis

The simplest structured proof, apart from sorry, is the name of a lemma or hy-
pothesis. If we have

lemma two_add_two_eq_four :
2 + 2 = 4 :=

begin
. . .

end

then the lemma name two_add_two_eq_four can be used as a proof of 2 + 2 = 4
later. For example:

38 Chapter 3. Forward Proofs

lemma this_time_with_feelings :
2 + 2 = 4 :=

two_add_two_eq_four

We can pass arguments to lemmas to instantiate ∀-quantifiers and discharge
assumptions. Suppose the lemma add_comm (m n : N) : add m n = add n m is avail-
able, and suppose we want to prove its instance add 0 n = add n 0. This can be
achieved neatly using the name of the lemma and two arguments:

lemma add_comm_zero_left (n : N) :
add 0 n = add n 0 :=

add_comm 0 n

This has the same e�ect as the tactical proof by exact add_comm 0 n, but is more
concise. The exact tactic can be seen as the inverse of by. Why enter tactic mode
if only to leave it immediately?

Like with exact and apply, the lemma or hypothesis’s statement is matched
with the current goal up to computation. This gives some flexibility.

fix

fix names
[
: type

]
,

fix (names1
[
: type1

]
) . . . (namesn

[
: typen

]
),

The fix command moves ∀-quantified variables from the goal’s target to the local
context. It can be seen as a structured version of the intros tactic.

Note that the standard Lean tactic for fixing variables is assume, which also
works in this case. We prefer to use fix, which is provided by LoVelib, as a more
readable alternative and reserve assume for assumptions.

assume

assume names
[
: proposition

]
,

assume (names1
[
: proposition1

]
) . . . (namesn

[
: propositionn

]
),

The assume command moves the leading assumptions from goal’s target to the
local context. It can be seen as a structured version of the intros tactic.

have

have name : proposition :=
proof,

The have command lets us state and prove an intermediate lemma, which may
refer to names introduced by previous fixes, assumes, and haves. The proof can
be tactical or structured. Generally, we tend to use structured proofs to sketch the
main argument and resort to tactical proofs for proving subgoals or uninteresting
intermediate steps. Another kind of mixture arises when we pass arguments to
lemma names. For example, given hab : a→ b and ha : a, the tactic exact hab ha
will prove the goal ` b. Here, hab ha is a proof term nested inside a tactic.

3.3. Forward Reasoning about Connectives and Quantifiers 39

let

let name
[
: type

]
:= term in

The let command introduces a new local definition. It can be used to name a
complex object that occurs several times in the proof afterwards. It is similar to
have but is designed for computable data, not proofs. Expanding or introducing
a let corresponds to ζ-conversion (Section 2.2).

show

show proposition, from
proof

The show command lets us repeat the goal to prove, which can be useful as docu-
mentation. It also allows us to rephrase the goal in a syntactically equal form up
to computation. Instead of the syntax show proposition, from proof, we can sim-
ply write proof if we do not want to repeat the goal and do not need to rephrase
it. The proof can be tactical or structured.

3.3 Forward Reasoning about Connectives and Quantifiers

Reasoning about the logical connectives and quantifiers in a forward fashion uses
the same introduction and elimination rules as in tactic mode (Section 2.3). A few
examples will show the flavor. Let us start with conjunction:

lemma and_swap (a b : Prop) :
a ∧ b → b ∧ a :=

assume hab : a ∧ b,
have ha : a :=
and.elim_left hab,

have hb : b :=
and.elim_right hab,

show b ∧ a, from
and.intro hb ha

Even readers who do not know what and.elim_left etc. means can understand
that we extract a and b from a ∧ b and put them back together as b ∧ a. Mathe-
maticians would probably have an easier time making sense of this proof than of
its tactical counterpart:

lemma and_swap (a b : Prop) :
a ∧ b → b ∧ a :=

begin
intro hab,
apply and.intro,
apply and.elim_right,
exact hab,
apply and.elim_left,
exact hab

end

40 Chapter 3. Forward Proofs

On the other hand, the tactical proof is easier to derive mindlessly.
In general, backward proofs are easier to find, and most of the automation pro-

vided by proof assistants works backwards. The reason is simple: Pretend that you
are Miss Marple or Hercule Poirot on a murder investigation. A backward investi-
gation would start from the crime scene and try to extract clues that potentially
connect a handful of suspects to the crime. In contrast, a forward investigation
might start by questioning as many as seven billion people to determine whether
they have an alibi. Which approach is more likely to succeed?

Our next examples concern one-point rules. These are lemmas that can be
used to eliminate a quantifier when the bound variable can e�ectively take only
one value. For example, the proposition ∀n, n = 666→ beast ≥ n can be simpli-
fied to beast ≥ 666. The following lemma justifies this simplification:

lemma forall.one_point {α : Type} (t : α) (p : α → Prop) :
(∀x, x = t → p x) ↔ p t :=

iff.intro
(assume hall : ∀x, x = t → p x,
show p t, from

begin
apply hall t,
refl

end)
(assume hp : p t,
fix x,
assume heq : x = t,
show p x, from

begin
rw heq,
exact hp

end)

The proof may look intimidating, but it was not hard to develop. The key was to
proceed one step at a time. At first, we observed that the goal is an implication,
so we wrote

iff.intro (_) (_)

The two placeholders are important to make this proof well formed. We already
put parentheses because we strongly suspect that these will be nontrivial proofs.
Because proofs are basically terms, which are basically programs, the advice we
gave in Section 1.1.4 applies here as well:

The key idea is that the [proof] should be syntactically correct at all
times. The only red underlining we should see in Visual Studio Code
should appear under the placeholders. In general, a good principle for
software development is to start with a program that compiles, per-
form the smallest change possible to obtain a new compiling program,
and repeat until the program is complete.

Hovering over the first placeholder makes the corresponding subgoal appear. We
can see that Lean expects a proof of ` (∀x, x = t→ p x)→ p t, so we provide

3.4. Calculational Proofs 41

a suitable skeleton. A structured proof of an implication consists of an assume
followed by a show:

iff.intro
(assume hall : ∀x, x = t → p x,
show p t, from

_)
(_)

Each of the remaining placeholder can be replaced by a structured proof or by a
tactical proof. To fill these placeholders, we can use essentially the same proce-
dure as for exhibiting an inhabitant of a type (Section 1.1.4), interpreting implica-
tion as the function arrow and writing assume–show instead of λ.

Let us check that the rule actually works on our motivating example:

lemma beast_666 (beast : N) :
(∀n, n = 666 → beast ≥ n) ↔ beast ≥ 666 :=

forall.one_point _ _

It works. Matching forall.one_point t p against the statement of beast_666
yields the instantiation t := 666 and p := (λm, beast ≥ m).

Finally, the one-point rule for ∃ demonstrates how to use the introduction and
elimination rules for ∃ in a structured proof:

lemma exists.one_point {α : Type} (t : α) (p : α → Prop) :
(∃x : α, x = t ∧ p x) ↔ p t :=

iff.intro
(assume hex : ∃x, x = t ∧ p x,
show p t, from

exists.elim hex
(fix x,
assume hand : x = t ∧ p x,
show p t, from

by cc))
(assume hp : p t,
show ∃x : α, x = t ∧ p x, from

exists.intro t
(show t = t ∧ p t, from

by cc))

Notice how we use exists.elim hex to obtain an x such that x = t ∧ p x. This
admittedly is a bit cumbersome.

3.4 Calculational Proofs

In informal mathematics, we often express proofs as transitive chains of equal-
ities, inequalities, or equivalences (e.g., a = b = c, a ≥ b ≥ c, or a↔ b↔ c). In
Lean, such calculational proofs are supported by the calc command. It provides a
lightweight syntax and takes care of applying transitivity lemmas for preregistered
relations, such as equality and the arithmetic comparison operators.

The general syntax is as follows:

42 Chapter 3. Forward Proofs

calc term0
op1 term1 :

proof1
... op2 term2 :
proof2

...
... opn termn :
proofn

The horizontal dots (...) are part of the syntax. Each proofi justifies the state-
ment termi-1 opi termi. The operators opi need not be identical, but they must
be compatible. For example, =, <, and ≤ are compatible, whereas > and < are
incompatible.

A simple example follows:

lemma two_mul_example (m n : N) :
2 * m + n = m + n + m :=

calc 2 * m + n
= (m + m) + n :

by rw two_mul
... = m + n + m :

by cc

Mathematicians (assuming they would condescend to o�er a justification for such
a trivial result) could have written the above proofs roughly as follows:

2 * m + n
= (m + m) + n (since 2 * m = m + m)
= m + n + m (by associativity and commutativity of +)
x ut

In the Lean proof, the horizontal dots stand for the term (m + m) + n, which we
would have had to repeat had we written the proof without calc:

lemma two_mul_example2 (m n : N) :
2 * m + n = m + n + m :=

have h1 : 2 * m + n = (m + m) + n :=
by rw two_mul,

have h2 : (m + m) + n = m + n + m :=
by cc,

show _, from
eq.trans h1 h2

Notice that with haves, we also need to explicitly invoke eq.trans and to give
names to the two intermediate steps.

3.5 Forward Reasoning with Tactics

Most users prefer the tactic mode. But even in tactic mode, it can be useful to
reason in a forward fashion, mixing forward and backward reasoning steps. The
structured proof commands have, let, and calc are also available as tactics, mak-
ing this possible.

3.5. Forward Reasoning with Tactics 43

The following example demonstrates the have and let tactics on a lemma we
have seen several times already:

lemma prop_comp3 (a b c : Prop) (hab : a → b) (hbc : b → c) :
a → c :=

begin
intro ha,
have hb : b :=

hab ha,
let c’ := c,
have hc : c’ :=

hbc hb,
exact hc

end

have

have
[[
name :

]
proposition

]
:=

proof

The have tactic lets us state and prove an intermediate lemma in tactic mode.
Afterwards, the lemma is available as a hypothesis in the goal state.

let

let name
[
: type

]
:= term

The let tactic lets us introduce a local definition in tactic mode. Afterwards, the
defined symbol and its definition are available in the goal state.

Observe that the syntax for the let tactic is slightly di�erent than for the let
structured proof command, with no in keyword (but a comma instead if the tactic
is followed by another tactic).

calc

calc term0
op1 term1 :

proof1
... op2 term2 :
proof2

...
... opn termn :
proofn

The calc tactic lets us enter a calculational proof (Section 3.4) in tactic mode. The
tactic has the same syntax as the structured proof command of the same name.
We can regard apply calc . . . , where calc is a tactic, as an alias for apply (exact
calc . . .), where calc is the structured proof command described above.

44 Chapter 3. Forward Proofs

3.6 Dependent Types

Dependent types are the defining feature of the dependent type theory family of
logics. Although you may not be familiar with the terminology, you are likely to
be familiar with the concept in some form or other.

Consider a function pick that takes a natural number n (i.e., a value from N
= {0, 1, 2, . . .}) and that returns a natural number between 0 and n. Intuitively,
pick n should have the type {0, 1, . . ., n} (i.e., the type consisting of all natural
numbers i ≤ n). In Lean, this is written {i : N // i ≤ n}. This would be the type
of pick n. Mathematically inclined readers might want to think of pick as an N-
indexed family of terms

(pick n : {i : N // i ≤ n})n:N

in which the type of each term depends on the index—e.g., pick 5 : {i : N //
i ≤ 5}. But what would be the type of pick itself? We would like to express that
pick is a function that takes an argument n : N and that returns a value of type
{i : N // i ≤ n}. To capture this, we will write

pick : (n : N)→ {i : N // i ≤ n}

This is a dependent type: The type of the result depends on the value of the
argument n. The variable name n is immaterial.

Unless otherwise specified, a dependent type means a type depending on a
(non-type) term, as above, with n : N as the term and {i : N // i ≤ n} as the type
that depends on it. This is what we mean when we claim that simple type theory
does not support dependent types. But a type may also depend on another type—
for example, the type constructor list, its η-expanded variant λα : Type, list α,
or the polymorphic type λα : Type, α→ α of functions with the same domain and
codomain. A term may depend on a type—for example, the polymorphic identity
function λα : Type, λx : α, x. And of course, a term may also depend on a term—
for example, λn : N, n + 2. In summary, there are four cases for λx, t:

Body (t) Argument (x) Description

A term depending on a term Simply typed λ-expression
A type depending on a term Dependent type (in the narrow sense)
A term depending on a type Polymorphic term
A type depending on a type Type constructor

The last three rows correspond to the three axes of Henk Barendregt’s λ-cube.1
The App and Lam rules presented in Section 1.1.3 must be generalized to work

with dependent types:

C `̀̀ t : (x : σ)→ τ[x] C `̀̀ u : σ
App′

C `̀̀ t u : τ[u]

C, x : σ `̀̀ t : τ[x]
Lam′

C `̀̀ (λx : σ, t) : (x : σ)→ τ[x]

1https://en.wikipedia.org/wiki/Lambda_cube

https://en.wikipedia.org/wiki/Lambda_cube

3.7. The PAT Principle 45

The notation τ[x] stands for a type that may contain x, and τ[u] stands for the
same type where all occurrences of x have been replaced by u.

The simply typed case arises when x does not occur in τ[x]. Then, we can
simply write σ→ instead of (x : σ)→. The familiar notation σ→ τ is equivalent
to (_ : σ) → τ. It is easy to check that App′ and Lam′ coincide with App and Lam
when x does not occur in τ[x]. The example below demonstrates App′:

`̀̀ pick : (n : N)→ i : N // i ≤ n 5 : N
App′

`̀̀ pick 5 : i : N // i ≤ 5

The next example demonstrates Lam′:

α : Type, x : α `̀̀ x : α
Lam or Lam′

α : Type `̀̀ (λx : α, x) : α→ α
Lam′

`̀̀ (λα : Type, λx : α, x) : (α : Type)→ α→ α

The picture is incomplete because we only check that the terms—the entities
on the left-hand side of a colon (:)—are well typed. The types—the entities on the
right-hand side of a colon—must also be checked, using the same type system,
but this time as terms. For example, the type of nat.succ is N→ N, whose type
is Type. Types of types, such as Type and Prop, are called universes. We will study
them more closely in Chapter 11.

Regrettably, the intuitive syntax (x : σ)→ τ used above is not available in
Lean. Instead, we must write ∀x : σ, τ. The familiar notation σ→ τ is supported
as syntactic sugar for ∀_ : σ, τ. The ∀ syntax emphasizes that x is a bound vari-
able. As an alias for ∀, we can also write Π. The two symbols are interchangeable.

In Section 1.2, we saw the commands

#check list.nil
#check list.cons

and their output

list.nil : Π(α : Type), list α
list.cons : ?M_1 → list ?M_1 → list ?M_1

We can now make sense of the Π-type: list.nil is a function that takes a type α
as argument and that returns a value of type list α.

3.7 The PAT Principle

You will likely have noticed that the same symbol → is used both for implica-
tion (e.g., false→ true) and as the type constructor of functions (e.g., Z→ N).
Similarly, ∀ is used both as a quantifier and to specify dependent types. Without
context, we cannot tell whether a→ b refers to the type of a function with domain
a and codomain b or to the proposition “a implies b,” and similarly, ∀x : a, b[x]
can denote a proposition or a dependent type.

It turns out that not only the two pairs of concepts look the same, they are the
same. This is called the PAT principle, where PAT is a double mnemonic:

PAT = propositions as types PAT = proofs as terms

46 Chapter 3. Forward Proofs

Furthermore, because types are also terms, we also have that propositions are
terms. However, PAT is not a quadruple mnemonic (PAT = proofs as types). Also
note that not all types are propositions, and not all terms are proofs.

By using terms and types to represent proofs and propositions, dependent
type theory achieves a considerable economy of concepts. The question “Is H a
proof of P?” becomes equivalent to “Does the term H have type P?” As a result,
inside of Lean, there is no proof checker, only a type checker.

Let us review the dramatis personae one by one. We use the metavariables σ,
τ for types; P, Q for propositions; t, u, x for terms; and h, G, H, for proofs.

Starting with “propositions as types,” for types, we have the following:
σ→ τ is the type of (total) functions from σ to τ.
∀x : σ, τ[x] is the dependent function type from x : σ to τ[x].

In contrast, for propositions, we have the following:
P→ Q can be read as “P implies Q,” or as the type of functions mapping proofs
of P to proofs of Q.
∀x : σ, Q[x] can be read as “for all x, Q[x],” or as the type of functions
mapping values x of type σ to proofs of Q[x].

Continuing with “proofs as terms,” for terms, we have the following:
A constant is a term.
A variable is a term.
t u is the application of function t to argument u.
λx, t[x] is a function mapping x to t[x].

In contrast, for proofs (i.e., proof terms), we have the following:
The name of a lemma or hypothesis is a proof.
H t, which instantiates the leading parameter or quantifier of proof H’s state-
ment with term t, is a proof.
H G, which discharges the leading assumption of H’s statement with proof G,
is a proof. This operation is called modus ponens.
λh : P, H[h] is a proof of P→ Q, assuming H[h] is a proof of Q for h : P.
λx : σ, H[x] is a proof of ∀x : σ, Q[x], assuming H[x] is a proof of Q[x] for
x : σ.

The last two cases are justified by the Lam′ rule. In a structured proof, as opposed
to a raw proof term, we would write assume or fix instead of λ, and we would
probably want to repeat the conclusion using show for readability, as follows:

lemma case_4 :
P → Q :=

assume h : P,
show Q, from
H[h]

lemma case_5 :
∀x : σ, Q[x] :=

fix x,
show Q[x], from

H[x]

Some commands are provided in Lean under two di�erent names but are really
the same by the PAT principle. This is the case for constant and axiom as well as
for fix and assume; indeed, fix is defined by LoVelib as an alias for assume.

3.8. Induction by Pattern Matching 47

There are also pairs with slightly di�erent behavior, such as def and lemma or
let and have. The fundamental di�erence is this: When we define some function
or data, we care not only about the type but also about the body—the behavior. On
the other hand, once we have proved a lemma, the proof becomes irrelevant. All
that matters is that there is a proof. We will return to the topic of proof irrelevance
in Chapter 11.

The following correspondence table summarizes the di�erences between tac-
tical proofs, structured proofs, and raw proof terms:

Tactical proof Structured proof Raw proof term

intro x, fix x, λx,
intro h, assume h, λh,
have k := H, have k := H, (λk, . . .) H
let x := t, let x := t in (λx, . . .) t
exact (H : P) show P, from H H : P
calc . . . calc . . . calc . . .

Notice that let x := a in t is essentially a sophisticated way to write (λx, t) a.
Its main benefit, aside from readability, is that it is not subject to β-reduction.

The terminology of dependent type theory can be quite confusing, because
some words have a narrow and a broad sense. The following diagram captures
the various meanings of important words:

term︷ ︸︸ ︷
2 + 2 :

type︷︸︸︷
N : Type : · · ·

true.intro︸ ︷︷ ︸
proof

: true︸ ︷︷ ︸
proposition

: Prop : · · ·

universes

types

terms

According to the broad senses, any expression is a term, any expression that may
occur on the right-hand side of a typing judgment is a type, and any expression
that may occur on the right-hand side of a typing judgment with a type on its
left-hand side is a universe. This is consistent with the reading of t : u as “t has
type u” and the notion that universes are types of types.

3.8 Induction by Pattern Matching

In Section 2.6, we reviewed the use of the induction’ tactic to perform proofs by
induction. An alternative, more flexible style relies on pattern matching and the
PAT principle.

Recall the definition of the reverse of a list from Section 1.3:

def reverse {α : Type} : list α → list α
| [] := []

48 Chapter 3. Forward Proofs

| (x :: xs) := reverse xs ++ [x]

In fact, reverse exists as list.reverse in Lean’s standard library, but our defi-
nition is optimized for reasoning. A useful property to prove is that reverse is
its own inverse: reverse (reverse xs) = xs for all lists xs. However, if we try to
prove it by induction, we quickly run into an obstacle. The induction step is

ih : ∀xs, reverse (reverse xs) = xs `̀̀ reverse (reverse xs ++ [x]) = x :: xs

What is unpleasant about this subgoal is the presence of ++ [x] inside the double
reverse sandwich. We need a way to “distribute” the outer reverse over ++ to
obtain a term that matches the induction hypothesis’s left-hand side. The trick is
to prove and use the following lemma:

lemma reverse_append {α : Type} :
∀xs ys : list α,

reverse (xs ++ ys) = reverse ys ++ reverse xs
| [] ys := by simp [reverse]
| (x :: xs) ys := by simp [reverse, reverse_append xs]

The lemma’s proof uses a more flexible style than usual. Arguably, it looks more
like a recursive function definition than a proof. The patterns on the left, [] and x
:: xs, correspond to the two constructors of the ∀-quantified variable xs. On the
right-hand side of each := symbol is a proof for the corresponding case. The vari-
ables on which we can pattern-match are those that appear in the ∀ quantifiers,
in order of occurrence (here, xs and ys).

Inside the induction step’s proof, the induction hypothesis is available under
the same name as the lemma we are proving (reverse_append). We explicitly pass
xs as argument to the induction hypothesis. This restricts the hypothesis so that
it only applies to xs but not to other lists. In particular, this ensures that the
lemma will not be applied to x :: xs, which could lead to a circular argument: “To
prove reverse_append (x :: xs), use reverse_append (x :: xs).” Lean’s termina-
tion checker would notice that the argument is ill-founded and raise an error, but
we want to avoid that. In addition, the explicit argument xs is useful as documen-
tation, e�ectively saying, “The only recursive instance of the lemma we need is
the one on xs.”

For reference, the corresponding tactical proof is as follows:
lemma reverse_append2 {α : Type} (xs ys : list α) :

reverse (xs ++ ys) = reverse ys ++ reverse xs :=
begin

induction’ xs,
{ simp [reverse] },
{ simp [reverse, ih] }

end

The lemma would also be provable, and useful, if we put [y] instead of ys. But
it is a good habit to state lemmas as generally as possible. This results in more
reusable libraries. Moreover, this is often necessary to obtain a strong enough in-
duction hypothesis in a proof by induction. In general, finding the right inductions
and lemmas can require thought and creativity.

Simultaneous pattern matching on multiple variables is supported (e.g., xs
and ys above). The patterns are then separated by spaces. This explains why Lean

3.9. Summary of New Lean Constructs 49

requires us to put parentheses around complex patterns, even when we match on
a single variable. The general format is

lemma name (params1 : type1) . . . (paramsm : typem) :
statement

| patterns1 := proof1
...

| patternsn := proofn

Notice the strong similarity with the syntax of def (Section 1.3). The two commands
are, in fact, almost the same, the main exception being that lemma considers the
defined term or the proof opaque, whereas def keeps it transparent. Since the
actual proofs are irrelevant once a lemma is proven (Section 11), there is no need
to expand them later. A similar distinction exists between let and have.

By the PAT principle, a proof by induction by pattern matching is the same as
a recursive proof term. When we invoke the induction hypothesis, we are really
just invoking a recursive function recursively. This explains why the induction hy-
pothesis has the same name as the lemma we prove. Lean’s termination checker
is used to establish well-foundedness of the proof by induction.

With the reverse_append lemma in place, we can return to our initial goal:

lemma reverse_reverse {α : Type} :
∀xs : list α, reverse (reverse xs) = xs

| [] := by refl
| (x :: xs) :=
by simp [reverse, reverse_append, reverse_reverse xs]

Induction by pattern matching is highly popular among Lean users. Its main
advantages are its convenient syntax and its support for well-founded induction,
which is more powerful than structural induction as provided by the induction’
tactic (Section 2.7). However, in this guide, we will not need the full power of well-
founded induction. Furthermore, for subtle logical reasons, induction by pattern
matching is not available for inductive predicates, which are the topic of Chapter 5.
For these reasons, we will generally prefer induction’.

3.9 Summary of New Lean Constructs

Proof Commands

assume states assumptions
calc combines proofs by transitivity
fix fixes variables
have states an intermediate lemma
let . . . in introduces a local definition
show . . ., from states the target

Tactics

calc combines proofs by transitivity
have states an intermediate lemma

50 Chapter 3. Forward Proofs

let introduces a local definition

Part II

Functional–Logic Programming

51

Chapter 4

Functional Programming

We take a closer look at the essence of typed functional programming: induc-
tive types, proofs by induction, recursive functions, pattern matching, structures
(records), and type classes. The concepts covered here are described in more
detail in Chapters 7 to 9 of Theorem Proving in Lean [1].

4.1 Inductive Types

Inductive types are modeled after the data types of typed functional programming
languages (e.g., Haskell, ML, OCaml). They are also reminiscent of sealed classes
in Scala. Already in Chapter 1, we saw some basic inductive types: the natural
numbers, the finite lists, and a type of arithmetic expressions. In this chapter, we
revisit the lists and study binary trees. We also take a brief look at vectors of
length n, a dependent type.

Recall the definition of natural numbers as an inductive type:

inductive nat : Type
| zero : nat
| succ : nat → nat

This definition introduces three constants, which could have been declared as
follows:

constant nat : Type
constant nat.zero : nat
constant nat.succ : nat → nat

In addition, the inductive definitions asserts some properties about nat.zero and
nat.succ, which is why we use the inductive command. It also introduces further
constants that are used internally to support induction and recursion.

As we saw in Section 1.2, an inductive type is a type whose members are all
the values that can be built by a finite number of applications of its constructors,
and only those. Mottos:

No junk: The type contains no values beyond those expressible using the
constructors.
No confusion: Values built using a di�erent combination of constructors are
di�erent.

53

54 Chapter 4. Functional Programming

For natural numbers, “no junk” means that there exist no special values such as
−1, ε,∞, or NaN that cannot be expressed using a finite combination of nat.zero
and nat.succ,1 and “no confusion” ensures that nat.zero 6= nat.succ n for all n
and that nat.succ is injective. In addition, values of inductive types are always
finite. The infinite term

nat.succ (nat.succ (nat.succ (nat.succ . . .)))

is not a value. Nor does there exist a value n such that nat.succ n = n, as we will
show below.

Inductive types are very convenient to use, because they support induction
and recursion and their constructors are well behaved, but not all types can be
defined as an inductive type. In particular, mathematical types such as Q (the
rationals) and R (the real numbers) require more elaborate constructions, based
on quotienting and subtyping. These will be explained in Chapters 11 and 13.

4.2 Structural Induction

Structural induction is a generalization of mathematical induction to arbitrary in-
ductive types. To prove a goal n : N ` P[n] by structural induction on n, it su�ces
to show two subgoals, traditionally called the base case and the induction step:

`̀̀ P[0]

k : N,ih : P[k] `̀̀ P[k + 1]

We can of course also write nat.zero and nat.succ k.
In general, the situation is more complex. The goal might contain some ex-

tra hypotheses (e.g., Q) that do not depend on n and others (e.g., R[n]) that do.
Assuming we have one hypothesis of each kind, this gives the initial goal

hQ : Q, n : N, hR : R[n] `̀̀ S[n]

Structural induction on n then produces the two subgoals

hQ : Q, hR : R[0] `̀̀ S[0]

hQ : Q, k : N, ih : R[k]→ S[k], hR : R[k + 1] `̀̀ S[k + 1]

The hypothesis Q is simply carried over unchanged from the initial goal, whereas
R[n] ` S[n] is treated almost the same as if the goal’s target had been R[n]→
S[n]. This is easy to check by taking P[n] := R[n]→ S[n] in the first example
above. Since this general format is very verbose and hardly informative (now that
we understand how it works), from now on we will present goals in the simplest
form possible, without extra hypotheses.

For lists, given a goal xs : list α ` P[xs], structural induction on xs yields

`̀̀ P[[]]

y : α, ys : list α, ih : P[ys] `̀̀ P[y :: ys]

1We could try to cheat and axiomatize special constants using constant and axiom, but the
result would be either tautological (i.e., useless) or contradictory (i.e., positively harmful). A safer
but equally pointless alternative would be to locally assume the existence of such a value; this
would be pointless because the assumption could never be discharged.

4.2. Structural Induction 55

We can of course also write list.nil and list.cons y ys. There is no induction
hypothesis associated with y, because y is not of list type.

For arithmetic expressions, the base cases are

i : Z `̀̀ P[aexp.num i] x : string `̀̀ P[aexp.var x]

and the induction steps are

e1 e2 : aexp, ih1 : P[e1], ih2 : P[e2] `̀̀ P[aexp.add e1 e2]

e1 e2 : aexp, ih1 : P[e1], ih2 : P[e2] `̀̀ P[aexp.sub e1 e2]

e1 e2 : aexp, ih1 : P[e1], ih2 : P[e2] `̀̀ P[aexp.mul e1 e2]

e1 e2 : aexp, ih1 : P[e1], ih2 : P[e2] `̀̀ P[aexp.div e1 e2]

Notice the two induction hypotheses, about e1 and e2.
In general, structural induction produces one subgoal per constructor. In each

subgoal, induction hypotheses are available for all constructor arguments of the
type we are performing the induction on.

Regardless of the inductive type τ, the procedure to compute the subgoals is
always the same:

1. Replace the hole in P[] with each possible constructor applied to fresh vari-
ables (e.g., y :: ys), yielding as many subgoals as there are constructors.

2. Add these new variables (e.g., y, ys) to the local context.
3. Add induction hypotheses for all new variables of type τ.
As an example, we will prove that nat.succ n 6= n for all n : N. We start with

an informal proof, because these require us to understand what we are doing:

The proof is by structural induction on n.
Case 0: We must show nat.succ 0 6= 0. This follows from the “no con-
fusion” property of the constructors of inductive types.
Case nat.succ k: The induction hypothesis is nat.succ k 6= k. We
must show nat.succ (nat.succ k) 6= nat.succ k. By the injectivity of
nat.succ, we have that nat.succ (nat.succ k) = nat.succ k is equiv-
alent to nat.succ k = k. Thus, it su�ces to prove nat.succ k 6= k,
which corresponds exactly to the induction hypothesis. ut

Notice the main features of this informal proof, which you should aim to re-
produce in your own informal arguments:

The proof starts with an unambiguous announcement of the type of proof
we are carrying out (e.g., which kind of induction and on which variable).
The cases are clearly identified, and for each case, both the goal’s target and
the hypotheses are stated.
The key lemmas on which the proof relies are explicitly invoked (e.g., injec-
tivity of nat.succ).

Now let us carry out the proof in Lean:

lemma nat.succ_neq_self (n : N) :
nat.succ n 6= n :=

56 Chapter 4. Functional Programming

begin
induction’ n,
{ simp },
{ simp [ih] }

end

The routine reasoning about constructors is all carried out by simp automatically,
which is usually what we want.

We can supply our own names, and reorder the cases, by using the case tactic
in front of each case, together with the case’s name and the desired names for
the variables and hypotheses introduced by induction’. For example:

lemma nat.succ_neq_self2 (n : N) :
nat.succ n 6= n :=

begin
induction’ n,
case succ : m IH {

simp [IH] },
case zero {

simp }
end

Instead of n and ih, we chose the names m and IH.

4.3 Structural Recursion

Structural recursion is a form of recursion that allows us to peel o� one construc-
tor from the value on which we recurse. The factorial function below is structurally
recursive:

def fact : N → N
| 0 := 0
| (n + 1) := (n + 1) * fact n

The constructor we peel o� here is nat.succ (written + 1). Such functions are guar-
anteed to call themselves only finitely many times before the recursion stops; for
example, fact 12345 will call itself 12345 times. This is a prerequisite for estab-
lishing that the function terminates, an important property to ensure both logical
consistency and termination of evaluation.

With structural recursion, there are as many equations as there are construc-
tors. Novices are often tempted to supply additional, redundant cases, as in the
following example:

def fact2 : N → N
| 0 := 0
| 1 := 1
| (n + 1) := (n + 1) * fact2 n

It is in your own best interest to resist this temptation. The more cases you have
in your definitions, the more work it will be to reason about them. Keep in mind
the saying that one good definition is worth three theorems.

4.4. Pattern Matching Expressions 57

For structurally recursive functions, Lean can automatically prove termination.
For more general recursive schemes, the termination check may fail. Sometimes
it does so for a good reason, as in the following example:

-- fails
def illegal : N → N
| n := illegal n + 1

If Lean were to accept this definition, we could exploit it to prove that 0 = 1, by sub-
tracting illegal n on each side of the equation illegal n = illegal n + 1. From
0 = 1, we could derive false, and from false, we could derive anything, including
the three-color theorem. Clearly, we do not want that.

If we had used constant and axiom, nothing could have saved us:

constant immoral : N → N

axiom immoral_eq (n : N) :
immoral n = immoral n + 1

lemma proof_of_false :
false :=

have immoral 0 = immoral 0 + 1 :=
immoral_eq 0,

have immoral 0 - immoral 0 = immoral 0 + 1 - immoral 0 :=
by cc,

have 0 = 1 :=
by simp [*] at *,

show false, from
by cc

Another reason for preferring def is that the defining equations are used to
compute. Tactics such as refl that unify up to computation become stronger each
time we introduce a definition, and the diagnosis commands #eval and #reduce
can be used on defined constants.

The observant reader will have noticed that the above definitions of factorial
are mathematically wrong: fact shockingly returns 0 regardless of the argument,
and fact2 0 should give 1, not 0. We quite literally facted up. These embarrass-
ing mistakes remind us to test our definitions and prove some properties about
them. Although flawed axioms arise now and then, what is much more common
are definitions that fail to capture the intended concepts. Just because a function
is called fact does not mean that it actually computes factorials.

4.4 Pattern Matching Expressions

Pattern matching is possible not only at the top level of a def command but also
deeply within terms, via a match expression. The construct has the following gen-
eral syntax:

58 Chapter 4. Functional Programming

match term1, . . ., termm with
| pattern11, . . ., pattern1m := result1

...
| patternn1, . . ., patternnm := resultn
end

The construct is vaguely reminiscent of switch in many programming languages.
An English translation of the above match expression follows:

Consider the terms term1, . . ., termm.
If they are respectively of the forms pattern11, . . ., pattern1m,
then yield result1.

...
If they are respectively of the forms patternn1, . . ., patternnm,
then yield resultn.

Notice the di�erences with the pattern matching syntax in def: The patterns
are separated by commas and not by spaces. This reduces the number of required
parentheses. The patterns may contain variables, constructors, and nameless
placeholders (_). The resulti expressions may refer to the variables introduced
in the corresponding patterns.

The following function definition demonstrates the syntax of pattern matching
within expressions:

def bcount {α : Type} (p : α → bool) : list α → N
| [] := 0
| (x :: xs) :=

match p x with
| tt := bcount xs + 1
| ff := bcount xs
end

The bcount function counts the number of elements in a list that satisfy the given
predicate p. The predicate’s codomain is bool. As a general rule, we will use type
bool, of Booleans, within programs and use the type Prop, of propositions, when
stating properties of programs. The two values of type bool are called ff and tt.2
The connectives are called bor (infix: ||), band (infix: &&), bnot, and bxor.

The following diagram shows the interpretations of bool and Prop:

bool: · · Prop:

· ·
· · · ·

· · ·

Dots represents elements, circles represents types, and the rectangle represents
a type of types. We see that bool are interpreted as a set with two values, whereas

2Lean also allows us to use true and false, but these are then implicitly converted from Prop to
bool. We generally recommend to avoid relying on such implicit coercions. There is unfortunately
no way to disable them.

4.5. Structures 59

Prop consists in an infinite number of propositions (the types), each of which has
zero or more proofs (the elements). We will refine this picture in Chapter 11.

We cannot match on a proposition of type Prop, but we can use if–then–else
instead. For example, the min operator on natural numbers operator can be de-
fined as follows:

def min (a b : N) : N :=
if a ≤ b then a else b

This requires a decidable (i.e., executable) proposition. This is the case for ≤:
Given concrete values for the arguments, such as 35 and 49, Lean can reduce 35
≤ 49 to true. Lean keeps track of decidability using a mechanism called type

classes, which will be explained below.

4.5 Structures

Lean provides a convenient syntax for defining records, or structures as they are
also called. These are essentially nonrecursive single-constructor inductive types
but with some syntactic sugar.

The definition below introduces a structure called rgb with three fields of type
N called red, green, and blue:

structure rgb :=
(red green blue : N)

This definition has roughly the same e�ect as the following commands:

inductive rgb : Type
| mk : N → N → N → rgb

def rgb.red : rgb → N
| (rgb.mk r _ _) := r

def rgb.green : rgb → N
| (rgb.mk _ g _) := g

def rgb.blue : rgb → N
| (rgb.mk _ _ b) := b

We can define a new structure as the extension of an existing structure. The
definition below extends rgb with a fourth field, called alpha:

structure rgba extends rgb :=
(alpha : N)

The general syntax to define structures is

structure structure-name (params1 : type1) . . . (paramsk : typek)[
extends structure1, . . ., structurem

]
:=

(field-names1 : field-type1)
...

(field-namesn : field-typen)

60 Chapter 4. Functional Programming

The parameters params1, . . . , paramsk are e�ectively additional fields, but unlike
the fields field-names1, . . . , field-namesn, they are also stored in the type, as
arguments to the type constructor (structure-name).

Values can be specified in a variety of syntaxes:

def pure_red : rgb :=
{ red := 0xff,

green := 0x00,
blue := 0x00 }

def semitransparent_red : rgba :=
{ alpha := 0x7f,

..pure_red }

The definition of semitransparent_red copies all the values from pure_red (indi-
cated by the ..pure_red syntax) except for the alpha field, which it overrides.

Next, we define an operation called shuffle:

def shuffle (c : rgb) : rgb :=
{ red := rgb.green c,

green := rgb.blue c,
blue := rgb.red c }

The definition relies on the generated selectors rgb.red, rgb.green, and rgb.
blue. Instead of rgb.red c, we could also write c.red, and similarly for the other
fields. Sometimes we will see these forms in Lean’s output, even if we do not use
them ourselves.

Applying shuffle three times in a row is the same as not applying it at all:

lemma shuffle_shuffle_shuffle (c : rgb) :
shuffle (shuffle (shuffle c)) = c :=

begin
cases’ c,
refl

end

The proof relies on cases’, a relative of induction’. It performs a case distinc-
tion on its argument but does not generate induction hypotheses. For rgb, the
invocation cases’ c transforms a goal ` P[c] into a single subgoal, r g b : N
` P[rgb.mk r g b]. We could also have used induction’ c. If you find yourself
hesitating between induction’ and cases’, you can always choose induction’
and see afterwards if you needed the induction hypotheses. If you did not, it is
good style to document that fact by substituting cases’ for induction’.

In a structured proof, we can use match expressions to perform a case distinc-
tion. For example:

lemma shuffle_shuffle_shuffle2 (c : rgb) :
shuffle (shuffle (shuffle c)) = c :=

match c with
| rgb.mk _ _ _ := eq.refl _
end

Recall from Section 2.4 that eq.refl is the property ∀a, a = a.

4.6. Type Classes 61

4.6 Type Classes

Type classes are a mechanism that was popularized by Haskell and that is present
in several proof assistants. In Lean, a type class is a structure type combining
abstract constants and their properties. A type can be declared an instance of
a type class by providing concrete definitions for the constants and proving that
the properties hold. Based on the type, Lean retrieves the relevant instance.3

A simple example is the type class inhabited, which requires only a constant
inhabited.default and no properties:

@[class] structure inhabited (α : Type) : Type :=
(default : α)

The syntax is the same as for structures, except with the attribute @[class] in
front. The parameter α represents an arbitrary type that could be a member of
this class.

Any type that has at least one element can be registered as an instance of this
class. For example, we can register N by choosing an arbitrary number to be the
default value:

@[instance] def nat.inhabited : inhabited N :=
{ default := 0 }

This specifies a value called nat.inhabited of type inhabited N. Thanks to the
@[instance] attribute, the structure value is registered as the canonical instance
to use whenever a structure of type inhabited N is desired. In the global table
storing type class instances, there is now an entry

inhabited N 7→ nat.inhabited

For lists, the empty list is an obvious default value that can be constructed
even if α is not inhabited:

@[instance] def list.inhabited {α : Type} :
inhabited (list α) :=

{ default := [] }

This adds the following entry to the global table:

inhabited (list α) 7→ list.inhabited

Sometimes we may want to supply several instances of a given type class for
the same type. Lean will then choose the first matching instance it finds.

As an example, observe that finite functions of type α→ β can be represented
by their function tables, of type β × · · · × β (with |α| copies of β). Accordingly,
|α→ β| = |β||α|. To make this 0, we must have both |β| = 0 and |α| 6= 0. In
other words, the type α→ β is inhabited if either (1) β is inhabited or (2) α is not
inhabited. Case (1) is easy:

@[instance] def fun.inhabited {α β : Type} [inhabited β] :
inhabited (α → β) :=

{ default := λa : α, inhabited.default β }
3Despite its name, Lean’s type class mechanism is more closely related to Scala’s implicit argu-

ments than to Haskell’s type classes.

62 Chapter 4. Functional Programming

The instance relies itself on an instance of the same type class but on a di�erent
type. This frequently occurs and is part of the reason why we speak of type class
search and not lookup.

For case (2), there is no type class for noninhabitation, but we know that the
type empty is not inhabited, so it will do:

inductive empty : Type

@[instance] def fun_empty.inhabited {β : Type} :
inhabited (empty → β) :=

{ default := λa : empty, match a with end }

Notice the trivial match that implements the body of a function that can never be
called, because no value of type empty can be passed as argument. The definition
of empty has zero introduction rules, so the corresponding match has zero cases.

Finally, the type α × β of pairs, also called product type, contains values of
the form (a, b), where a : α and b : β. Given a pair ab, the first and second com-
ponents can be extracted by writing prod.fst ab and prod.snd ab. To provide an
inhabitant of α × β, we need both an inhabitant of α and an inhabitant of β:

@[instance] def prod.inhabited {α β : Type}
[inhabited α] [inhabited β] :

inhabited (α × β) :=
{ default := (inhabited.default α, inhabited.default β) }

Using the inhabited type class, we can define the head operation on lists: the
function that returns the first element of a list. Because an empty list contains no
elements, there is no meaningful value we can return in that case. Given a type
that belongs to the inhabited type class, we can simply return the default value:

def head {α : Type} [inhabited α] : list α → α

| [] := inhabited.default α
| (x :: _) := x

We require that α belongs to inhabited by writing [inhabited α]. This allows us
to access inhabited.default in the definition.

The syntax [inhabited α] adds an implicit argument to the head constant. But
unlike for other implicit arguments, Lean performs not only type inference but
also a type class search through all declared instances to determine the value of
this argument. Thus, when running the command

#eval head ([] : list N) -- result: 0

Lean will look for an inhabited N instance and find nat.inhabited, the instance
we declared above. In that declaration, we set default to be 0 and hence this
is what #eval prints. If multiple instances are applicable and Lean chooses the
wrong one, we can use the @ syntax to transform type class arguments into explicit
arguments and supply the desired type class instance. This is the main reason why
we give names to the type class instances.

Let us take a closer look at inhabited.default:

inhabited.default (α : Type) [i : inhabited α] : α

Notice that the selectors of plain structures use parentheses () whereas those
of type classes use square brackets []. When we used inhabited.default α to

4.6. Type Classes 63

define head, Lean looked for an instance of inhabited α in the global table of
registered instances and in the local context. The global table contained an entry
for inhabited N but none that matched inhabited α. On the other hand, the local
context contained an anonymous parameter of type inhabited α, which could be
used.

Lean’s core library defines list.head exactly as we did. In practice, almost
all types are nonempty (with the notable exceptions of empty and false), so the
inhabited restriction is hardly an issue. Regardless, lists over empty types are
uninteresting—the only possible value is [].

We can prove abstract lemmas about the inhabited type class, such as
lemma head_head {α : Type} [inhabited α] (xs : list α) :

head [head xs] = head xs

The assumption [inhabited α] is needed to use the operator head on lists of
type list α. If we omit this assumption, Lean will raise an error telling us that
type class synthesis failed.

There are more type classes with only a constant but no properties, including

class has_zero (α : Type) :=
(zero : α)

class has_neg (α : Type) :=
(neg : α → α)

class has_add (α : Type) :=
(add : α → α → α)

class has_one (α : Type) :=
(one : α)

class has_inv (α : Type) :=
(inv : α → α)

class has_mul (α : Type) :=
(mul : α → α → α)

These syntactic type classes introduce constants that are used in many di�erent
contexts with di�erent semantics. For example, one can stand for the natural num-
ber 1, the integer 1, the real 1, the identity matrix, and many other concepts of 1.
The main purpose of these type classes is to form the foundation for a rich hierar-
chy of algebraic type classes (groups, monoids, ring, fields, etc.) and to allow the
overloading of common mathematical symbols such as +, *, 0, 1, and −1.

Syntactic type classes do not impose serious restrictions on the types that
can be declared instances, except that a type of type class has_zero or has_one
must be inhabited. In contrast, the semantic type classes contain properties that
restrict how the given constants behave.

In Section 2.6, we encountered the following type classes:
class is_commutative (α : Type) (f : α → α → α) :=
(comm : ∀a b, f a b = f b a)

class is_associative (α : Type) (f : α → α → α) :=
(assoc : ∀a b c, f (f a b) c = f a (f b c))

This time, the associations are not from a type to a constant, but from a type and
a function to a property. Lean does not mind the abuse: Although they are called
type classes, Lean’s type classes are very flexible and can be used to express all
sorts of constraints.

Conceptually, is_commutative is a dependent type of triples (α, f, comm),
and similarly for is_associative. The type of f depends on α, and the type

64 Chapter 4. Functional Programming

of comm depends on α and f. Although they are parameters, α and f are also
stored along with comm. But the type class mechanism treats the parameters dif-
ferently from the fields: The parameters are treated as input to the type class
search, whereas the fields are output.

In Section 2.6, we registered our add function on N as a commutative and as-
sociative operation:

@[instance] def add.is_commutative : is_commutative N add :=
{ comm := add_comm }

@[instance] def add.is_associative : is_associative N add :=
{ assoc := add_assoc }

Whenever we try to access @is_commutative.comm N add, we obtain add_comm,
and similarly for @is_associative.assoc N add. The cc tactic tries to look up the
comm and assoc properties for all binary operators in the problem and exploits
the properties whenever they are present.

The general syntax to define a type class is as follows:

@[class] structure class-name (params1 : type1) . . . (paramsk : typek)[
extends structure1, . . ., structurem

]
:=

(constant-names1 : constant-type1)
...

(constant-namesn : constant-typen)
(property-names1 : proposition1)

...
(property-namesp : propositionp)

The general syntax to instantiate a type class is as follows:

@[instance] def instance-name : type-class arguments :=
{ constant1 := definition1,

...
constantn := definitionn,
property1 := proof1,

...
propertyp := proofp }

4.7 Lists

Lean provides a rich library of functions on finite lists. In this section, we will re-
view some of them, and we will define some of our own; these are good exercises
to familiarize ourselves with functional programming in Lean.

In the first example, we show how to exploit injectivity of constructors. The
cases’ tactic can be used to exploit injectivity to simplify equations in which both
sides have the same constructor applied. In the proof below, the equation before
simplification is x :: xs = y :: ys:

lemma injection_example {α : Type} (x y : α) (xs ys : list α)
(h : x :: xs = y :: ys) :

4.7. Lists 65

x = y ∧ xs = ys :=
begin
cases’ h,
cc

end

As a result of the case distinction, y is replaced by x and ys is replaced by xs
throughout the goal, yielding the subgoal

`̀̀ x = x ∧ xs = xs

The cases’ tactic is also useful when the constructors are di�erent, to detect
the impossible case:

lemma distinctness_example {α : Type} (y : α) (ys : list α)
(h : [] = y :: ys) :

false :=
by cases’ h

The first operation we define is a map function: a function that applies its
argument f—which is itself a function—to all elements stored in a container.

def map {α β : Type} (f : α → β) : list α → list β
| [] := []
| (x :: xs) := f x :: map xs

Notice that because f does not change in the recursive call, we put it as a param-
eter of the entire definition. This means we must write map xs and not map f xs in
the recursive call. However, when using the function later, we need to pass an ar-
gument for f. The alternative, which is the only option for arguments that change
in recursive calls, would be as follows:

def map2 {α β : Type} : (α → β) → list α → list β
| _ [] := []
| f (x :: xs) := f x :: map2 f xs

A basic property of map functions is that they have no e�ect if their argument
is the identity function (λx, x):

lemma map_ident {α : Type} (xs : list α) :
map (λx, x) xs = xs :=

begin
induction’ xs,
case nil {

refl },
case cons : y ys {

simp [map, ih] }
end

Another basic property is that successive maps can be compressed into a sin-
gle map, whose argument is the composition of the functions involved:

lemma map_comp {α β γ : Type} (f : α → β) (g : β → γ)
(xs : list α) :

map g (map f xs) = map (λx, g (f x)) xs :=

66 Chapter 4. Functional Programming

begin
induction’ xs,
case nil {

refl },
case cons : y ys {

simp [map, ih] }
end

When introducing new operations, it is useful to show how these behave when
used in combination with other operations. Here is an example:

lemma map_append {α β : Type} (f : α → β) (xs ys : list α) :
map f (xs ++ ys) = map f xs ++ map f ys :=

begin
induction’ xs,
case nil {

refl },
case cons : y ys {

simp [map, ih] }
end

Remarkably, the last three proofs are textually identical. These are typical
induction’–refl–simp proofs.

The next list operation removes the first element of a list, returning the tail:

def tail {α : Type} : list α → list α
| [] := []
| (_ :: xs) := xs

For [], we simply return [] as its own tail.
The counterpart of tail is a function that extracts the first element of a list.

We already reviewed one solution in Section 4.6. Another possible definition uses
an option wrapper:

def head_opt {α : Type} : list α → option α
| [] := option.none
| (x :: _) := option.some x

The type option α has two constructors: option.none and option.some a, where
a : α. We use option.none when we have no meaningful value to return and
option.some otherwise. We can think of option.none as the null pointer of func-
tional programming, but unlike null pointers (and null references), the type sys-
tem guards against unsafe dereferences. To retrieve the value stored in an option,
we must pattern-match. Schematically:

match head_opt xs with
| option.none := handle_the_error
| option.some x := do_something_with_value x
end

We cannot simply write do_something_with_value (head_opt xs), because this
would be type-incorrect. The type system forces us to think about error handling.

4.7. Lists 67

Using the power of dependent types, another way to implement a partial func-
tion is to specify a precondition. The callee must then pass a proof that the pre-
condition is satisfied as argument:

def head_pre {α : Type} : ∀xs : list α, xs 6= [] → α

| [] hxs := by cc
| (x :: _) _ := x

The head_pre function takes two explicit arguments. The first argument, xs, is a
list. The second argument, hxs, is a proof of xs 6= []. Since the type (xs 6= []) of
the second argument depends on the first argument, we must use the dependent
type syntax ∀xs : list α, rather than list α→ to name the first argument. The
result of the function is a value of type α; thanks to the precondition, there is no
need for an option wrapper.

The precondition hxs is used to rule out the case where xs is []. In that case,
hxs is a proof of [] 6= [], which is impossible. The cc tactic derives the contradic-
tion and exploits it to derive an arbitrary α. From a contradiction, we can derive
anything, even an inhabitant of α.

We can then invoke the function as follows:

#eval head_pre [3, 1, 4] (by simp)

This prints 3.
Let us move on. Given two lists [x1, . . ., xn] and [y1, . . ., yn] of the same

length, the zip operation constructs a list of pairs [(x1, y1), . . ., (xn, yn)]:

def zip {α β : Type} : list α → list β → list (α × β)
| (x :: xs) (y :: ys) := (x, y) :: zip xs ys
| [] _ := []
| (_ :: _) [] := []

The function is also defined if one list is shorter than the other. For example, zip
[a, b, c] [x, y] = [(a, x), (b, y)]. Notice that the recursion, with three cases,
deviates slightly from the structural recursion schema.

The length of a list is defined by recursion:

def length {α : Type} : list α → N
| [] := 0
| (x :: xs) := length xs + 1

We can say something interesting about the length of zip’s result—namely, it is
the minimum of the lengths of the two input lists:

lemma length_zip {α β : Type} (xs : list α) (ys : list β) :
length (zip xs ys) = min (length xs) (length ys) :=

begin
induction’ xs,
case nil {

refl },
case cons : x xs’ {

cases’ ys,
case nil {

refl },
case cons : y ys’ {

68 Chapter 4. Functional Programming

simp [zip, length, ih ys’, min_add_add] } }
end

The proof above teaches us yet another trick. The induction hypothesis is

ih : ∀{β} ys : list β, length (zip xs ys) = min (length xs) (length ys)

The syntax ∀{β} is new but suggestive: It indicates that the typeβ is an implicit
argument of ih. In contrast, ys is explicit—and from it, β can be inferred.

Why are there ∀-quantifiers? The induction’ tactic automatically generalized
the lemma statement so that the induction hypothesis is not restricted to same
fixed β and ys as the proof goal but can be used for arbitrary values of β and
ys. Such flexibility is rarely needed for types (e.g., β), but here we need it for ys,
because we want to instantiate the quantifier with ys’s tail (called ys’) and not
with ys itself.

The proof relies on a lemma about the min function that we need to prove
ourselves:

lemma min_add_add (l m n : N) :
min (m + l) (n + l) = min m n + l :=

begin
cases’ classical.em (m ≤ n),
case inl {

simp [min, h] },
case inr {

simp [min, h] }
end

Recall the definition min a b = (if a ≤ b then a else b). To reason about min, we
often need to perform a case distinction on the condition a ≤ b. This is achieved
using cases’ classical.em (a ≤ b). This creates two subgoals: one with a ≤ b as
a hypothesis and one with ¬ a ≤ b.

Here are two di�erent ways to perform a case distinction on a proposition in
a structured proof:

lemma min_add_add2 (l m n : N) :
min (m + l) (n + l) = min m n + l :=

match classical.em (m ≤ n) with
| or.inl h := by simp [min, h]
| or.inr h := by simp [min, h]
end

lemma min_add_add3 (l m n : N) :
min (m + l) (n + l) = min m n + l :=

if h : m ≤ n then
by simp [min, h]

else
by simp [min, h]

We see again that the mechanisms that are available to write functional programs,
such as match and if–then–else, are also available for writing structured proofs
(which are, after all, terms). We can now add a few rows to the table presented at
the end of Section 3.7:

4.8. Binary Trees 69

Tactical proof Structured proof Raw proof term

cases’ t, match t with _ end match t with _ end
cases’ classical.em Q, if Q then _ else _ if Q then _ else _

We conclude with a distributivity law about map and zip, expressed using the
prod.fst and prod.snd selectors on pairs:

lemma map_zip {α α’ β β’ : Type} (f : α → α’) (g : β → β’) :
∀xs ys,

map (λab : α × β, (f (prod.fst ab), g (prod.snd ab)))
(zip xs ys) =

zip (map f xs) (map g ys)
| (x :: xs) (y :: ys) := by simp [zip, map, map_zip xs ys]
| [] _ := by refl
| (_ :: _) [] := by refl

The patterns on the left correspond exactly to the patterns used in the definition
of zip. This is simpler than performing the induction on xs and the case distinc-
tion on ys separately, as we did when we proved length_zip. Good proofs often
follow the structure of the definitions they are based on.

In the definition of zip and in the proof of map_zip, we were careful to specify
three nonoverlapping patterns. It is also possible to write equations with overlap-
ping patterns, as in

def f {α : Type} : list α → · · ·
| [] := . . .
| xs := . . . xs . . .

Since the patterns are applied sequentially, the above command defines the same
function as

def f2 {α : Type} : list α → · · ·
| [] := . . .
| (x :: xs) := . . . (x :: xs) . . .

We generally recommend the latter, more explicit style, because it leads to fewer
surprises, especially in proofs.

4.8 Binary Trees

Inductive types with constructors taking several recursive arguments define tree-
like objects. Binary trees have nodes with at most two children. A possible defini-
tion of binary trees follows:

inductive btree (α : Type) : Type
| empty : btree
| node : α → btree → btree → btree

(The {} annotation is often used with nullary constructors of polymorphic types.
It indicates that all parameters—here, α—should be implicitly derived from the
context. This enables us to write tree.empty instead of tree.empty _, or tree.
empty N, etc.)

70 Chapter 4. Functional Programming

With binary trees, structural induction produces two induction hypotheses,
one for each subtree of an inner node. To prove a goal t : tree α ` P[t] by
structural induction on t, we need to show the subgoals

`̀̀ P[tree.empty]

a : α, l r : tree α, ih_l : P[l], ih_r : P[r] `̀̀ P[tree.node a l r]

The tree counterpart to list reversal is the mirror operation:

def mirror {α : Type} : btree α → btree α
| btree.empty := btree.empty
| (btree.node a l r) := btree.node a (mirror r) (mirror l)

Mirroring can be defined directly, without appealing to some append opera-
tion. As a result, reasoning about mirror is simpler than reasoning about reverse,
as we can see below:

lemma mirror_mirror {α : Type} (t : btree α) :
mirror (mirror t) = t :=

begin
induction’ t,
case empty {

refl },
case node : a l r ih_l ih_r {

simp [mirror, ih_l, ih_r] }
end

A more detailed informal proof would be as follows:

The proof is by structural induction on t.
Case tree.empty: We must show that mirror (mirror tree.empty) =
tree.empty. This follows directly from the definition of mirror.
Case tree.node a l r: The induction hypotheses are

(ih_l) mirror (mirror l) = l (ih_r) mirror (mirror r) = r

We must show mirror (mirror (tree.node a l r)) = tree.node a l r.
We have
mirror (mirror (tree.node a l r))

= mirror (tree.node a (mirror r) (mirror l)) (by def. of mirror)
= tree.node a (mirror (mirror l)) (mirror (mirror r)) (ditto)
= tree.node a l (mirror (mirror r)) (by ih_l)
= tree.node a l r (by ih_r)
x ut

To achieve the same level of detail in the Lean proof, we could use a calculational
block (Section 3.4) instead of simp:

lemma mirror_mirror2 {α : Type} :
∀t : btree α, mirror (mirror t) = t

| btree.empty := by refl
| (btree.node a l r) :=

4.9. Case Tactics 71

calc mirror (mirror (btree.node a l r))
= mirror (btree.node a (mirror r) (mirror l)) :

by refl
... = btree.node a (mirror (mirror l)) (mirror (mirror r)) :

by refl
... = btree.node a l (mirror (mirror r)) :

by rw mirror_mirror2 l
... = btree.node a l r :

by rw mirror_mirror2 r

The following lemma will be useful in Chapter 5:

lemma mirror_eq_empty_iff {α : Type} :
∀t : btree α, mirror t = btree.empty ↔ t = btree.empty

| btree.empty := by refl
| (btree.node _ _ _) := by simp [mirror]

4.9 Case Tactics

The following tactics are useful when performing case distinctions.

cases′′′

cases’ term
[
with name1 . . . namen

]
The cases’ tactic performs a case distinction on the specified term. This gives
rise to as many subgoals as there are constructors in the definition of the term’s
type. The tactic behaves roughly the same as induction’ except that it does not
produce induction hypotheses and it eliminates impossible cases.

The optional names name1, . . . , namen are used for any emerging variables or
hypotheses, to override the default names.

Note that the standard Lean tactic for case distinction is called cases. The
primed variant is provided by mathlib. It is more user-friendly and is the only
one we will use.

cases’ hypothesis-of-the-form-l-equals-r

The cases’ tactic can also be used on a hypothesis h of the form l = r. It matches
r against l and replaces all occurrences of the variables occurring in r with the
corresponding terms in l everywhere in the goal. The remaining hypothesis l = l
can be removed using clear h if desired. If r fails to match l, no subgoals emerge;
the proof is complete.

cases’ classical.em (proposition)
[
with name1 name2

]
The cases’ tactic can also be used to perform a case distinction on a proposition.
Two cases emerge: one in which the proposition is true and one in which it is false.
The optional names name1 and name2 are used for hypotheses in the true and false
cases, respectively.

72 Chapter 4. Functional Programming

case

case name
[
: name1 . . . namen

]
{

. . . }

The case tactic (with no s) can be used in tandem with cases’ or induction’ to
select a subgoal corresponding to the constructor called name and focus on it.

The optional names name1, . . . , namen are used for any emerging variables or
hypotheses, to override the default names.

4.10 Dependent Inductive Types

The inductive types list α and btree α fall within the simply typed fragment of
Lean. Inductive types may also depend on (non-type) terms. A typical example is
the type of lists of length n, or vectors:

inductive vec (α : Type) : N → Type
| nil : vec 0
| cons (a : α) {n : N} (v : vec n) : vec (n + 1)

Thus, the term vec.cons 3 (vec.cons 1 vec.nil) has type vec N 2. By encoding
the vector length in the type, we can provide more precise information about
the result of functions. A function such as vec.reverse, which reverses a vector,
would map a value vec α n to another value of the same type, with the same n. And
vec.zip could require its two arguments to have the same length. Fixed-length
vectors and matrices are also useful in mathematics.

Unfortunately, this more precise information comes at a cost. Dependent in-
ductive types cause di�culties when the terms they depend on are provably equal
but not syntactically equal up to computation (e.g., m + n vs. n + m). In this guide,
we will generally avoid dependent inductive types. They are briefly covered in this
section for completeness. To put it unambiguously: This is not exam material.

The definitions below introduce conversions between lists and vectors:

def list_of_vec {α : Type} : ∀{n : N}, vec α n → list α
| _ vec.nil := []
| _ (vec.cons a v) := a :: list_of_vec v

def vec_of_list {α : Type} :
∀xs : list α, vec α (list.length xs)

| [] := vec.nil
| (x :: xs) := vec.cons x (vec_of_list xs)

The list_of_vec conversion takes a type α, a length n, and a vector of length
n over α as arguments and returns a list over α. Although we do not care about
the length n, it still needs to be an argument because it appears in the type of the
third argument. The first two arguments are implicit, which is reasonable since
they can be inferred from the type of the third argument.

The vec_of_list conversion takes a type α and a list over α as arguments
and returns a vector of the same length as the list. Lean’s type checker is strong
enough to determine that the two right-hand sides have the desired type.

By the PAT principle, proofs are analogous to function definitions. Let us verify
that converting a vector to a list preserves its length:

4.10. Dependent Inductive Types 73

lemma length_list_of_vec {α : Type} :
∀{n : N} (v : vec α n), list.length (list_of_vec v) = n

| _ vec.nil := by refl
| _ (vec.cons a v) :=

by simp [list_of_vec, length_list_of_vec v]

To prove a goal v : vec α n ` P[v] by structural induction on v, we might
naively think that it su�ces to show the following two subgoals:

`̀̀ P[vec.nil]

m : N, a : α, u : vec α m, ih : P[u] `̀̀ P[vec.cons a u]

This is naive because the subgoals are not even type-correct: The hole in P[] has
type vec α n (the type of its original dweller, v), so we cannot simply plug vec.nil,
u, or vec.cons a u—which have types vec α 0, vec α m, and vec α (m + 1)—into
that hole. We must massage P each time, replacing n with 0, m, or m + 1. Using the
notation Pt[] for the variant of P[] where all occurrences of n are replaced by
term t, we get

`̀̀ P0[vec.nil]

m : N, a : α, u : vec α m, ih : Pm[u] `̀̀ Pm+1[vec.cons a u]

Proofs by case distinction using the cases’ tactic are similar, but without the
induction hypothesis. Often, the length n will be not a variable but a complex
term. Then the replacement of n in P[] might not be intuitively meaningful. With
cases’, the corresponding subgoal is silently eliminated. Thus, a case distinction
on a value of type vec α 0 will yield only one subgoal, of the form ` P[vec.nil],
since 0 could never be equal to a term of the form m + 1.

Dependently typed pattern matching is subtle, because the type of the value
we match on may change according to the constructor. Given v : vec α n, we might
be tempted to write

match v with
| vec.nil := . . .
| vec.cons a u := . . .
end

but this is just as naive as our first induction proof attempt above. Because the
term n in the type vec α n may change depending on the constructor, we must
pattern-match on it as well:

match n, v with
| 0, vec.nil := . . .
| m + 1, vec.cons a u := . . .
end

Showing the implicit arguments, we have

match n, v with
| 0, @vec.nil α := . . .
| m + 1, @vec.cons α a m u := . . .
end

74 Chapter 4. Functional Programming

Often, it is su�cient to put placeholders in the first column:

match n, v with
| _, vec.nil := . . .
| _, vec.cons a u := . . .
end

It may seem paradoxical to pattern-match on n only to ignore the result, but with-
out it Lean cannot infer the second implicit argument to vec.cons. In this respect,
cases’ is more user-friendly than match.

Incidentally, Lean’s core libraries define a type of fixed-length vectors, called
vector α n, as a subtype of list α:

def vector (α : Type) (n : N) :=
{xs : list α // list.length xs = n}

In other words, the type vector α n consists of the values xs of type list α such
that xs is of length n. This makes it possible to reuse Lean’s extensive list library.
Subtyping will be explained in Chapter 11.

4.11 Summary of New Lean Constructs

Declaration

structure introduces a structure type and its selectors

Attributes

@[class] declares a structure type as a type class
@[instance] registers a structure value as a type class instance

Term Language

if . . . then . . . else . . .
performs a case distinction on a decidable proposition

match . . . with . . . end
performs pattern matching

Tactics

case focuses on a subgoal and names its variables and hypotheses
cases’ performs a case distinction

Chapter 5

Inductive Predicates

Inductive predicates, or inductively defined propositions, are a convenient way to
specify functions of type · · · → Prop. They are reminiscent of formal systems and
of Prolog-style logic programming. But Lean o�ers a much stronger logic than
Prolog, so we need to do some work to establish theorems instead of just running
the Prolog interpreter. A possible view of Lean:

Lean = functional programming + logic programming + more logic

5.1 Introductory Examples

Unless you have been exposed to Prolog or logic programming, you will proba-
bly wonder what inductive predicates are and why they are useful. We start by
reviewing three examples that demonstrate the variety of uses: even numbers,
tennis games, and the reflexive transitive closure.

5.1.1 Even Numbers

Mathematicians often define sets as the smallest set that meets some criteria.
Consider this definition:

The set E of even natural numbers is defined as the smallest set S
closed under the following rules:

(1) 0 ∈ S;

(2) for every k ∈ N, if k ∈ S, then k + 2 ∈ S.

Such a set exists by the Knaster–Tarski theorem.

(The last sentence is often left implicit.) It is easy to convince ourselves that E
contains all the even numbers and only those. Let us put on our mathematician’s
hat and prove that 4 is even:

By rule (1), we have 0 ∈ E.

Hence, by rule (2) (with k := 0), we have 2 ∈ E.

Thus, by rule (2) (with k := 2), we have 4 ∈ E, as desired. ut

75

76 Chapter 5. Inductive Predicates

By contrast, computer scientists might use a formal system consisting of two
derivation rules to specify the same set:

Zero
0 ∈ E

k ∈ E
AddTwokk + 2 ∈ E

A proof is then a derivation tree:

Zero
0 ∈ E

AddTwo0
2 ∈ E

AddTwo2
4 ∈ E

The proof is forward if we read it downwards and backward if we read it upwards.
Inductive predicates are the logicians’ way to achieve the same result. In Lean,

instead of a set, we would define a characteristic predicate inductively:

inductive even : N → Prop
| zero : even 0
| add_two : ∀k : N, even k → even (k + 2)

This should look familiar. We have used the exact same syntax, except with Type
instead of Prop, to define inductive types. Inductive types and inductive predi-
cates are the same mechanism in Lean.

The command above defines a unary predicate even as well as two introduc-
tion rules even.zero and even.add_two that can be used to prove goals of the
form ` even Recall that an introduction rule for a symbol (e.g., even) is a
lemma whose conclusion contains that symbol (Section 3.3). By the PAT principle,
even n can be viewed as a dependent inductive type like vec α n (Section 4.10),
and even.zero and even.add_two as constructors like vec.nil and vec.cons.

If we translate the Lean definition back into English, we get something similar
to the Knaster–Tarski-style definition above:

The following clauses define the even numbers.

(1) 0 is even;
(2) any number of the form k + 2 is even, if k is even.

Any other number is not even.

It is worth nothing that inductively defined symbols have no definition. Thus,
we cannot unfold their definition using simp, any more than we can unfold the def-
inition of an inductive type such as list. The only reasoning principles available
are introduction and elimination.

As a warm-up exercise, here is a proof of even 4:

lemma even_4 :
even 4 :=

have even_0 : even 0 :=
even.zero,

have even_2 : even 2 :=

5.1. Introductory Examples 77

even.add_two _ even_0,
show even 4, from

even.add_two _ even_2

For example, the proof term even.add_two _ even_0 has type even (0 + 2), which
is syntactically equal to even 2 up to computation and hence equal from the type
checker’s point of view. The underscore stands for 0.

Thanks to the “no junk” guarantee of inductive definitions, even.zero and
even.add_two are the only two ways to construct proofs of ` even By inspec-
tion of the conclusions even 0 and even (k + 2), we see that there is no danger of
ever proving that 1 is even.1

Another way to view the inductive definition above is as follows: The first line
introduces a predicate, whereas the second and third lines introduce axioms we
want the predicate to satisfy. Accordingly, we could have written

constant even : N → Prop
axiom even.zero : even 0
axiom even.add_two : ∀k : N, even k → even (k + 2)

replacing inductive by constant and | by axiom. But this axiomatic version, apart
from being dangerous, does not give us any information about when even is false.
We cannot use it to prove ¬ even 1 or ¬ even 17. For all we know, even could be
true for all natural numbers. In contrast, the inductive definition guarantees that
we obtain the least (i.e., the most false) predicate that satisfies the introduction
rules even.zero and even.add_two, and provides elimination and induction prin-
ciples that allow us to prove ¬ even 1, ¬ even 17, or ¬ even (2 * n + 1).

Why should we bother with inductive predicates when we can define recursive
functions? Indeed, the following definition is perfectly legitimate:

def even2 : N → bool
| 0 := tt
| 1 := ff
| (k + 2) := even2 k

Each style has its strengths and weaknesses. The recursive version forces us to
specify a false case (the second equation), and it forces us to worry about termi-
nation. On the other hand, because it is equational and computational, it works
well with refl, simp, #reduce, and #eval. The inductive version is arguably more
abstract and elegant. Each introduction rule is stated independently. We can add
or remove rules without having to think about termination or executability.

Yet another way to define even is as a nonrecursive definition, using the mod-
ulo operator (%):

def even3 (k : N) : bool :=
k % 2 = 0

Mathematicians would likely prefer this version. But the inductive version is a
convenient “Hello, World!” example that resembles many realistic inductive defi-
nitions. It might be a toy, but it is a useful toy.

1We could cheat and add an axiom stating even 1, but this would be inconsistent. Alternatively,
we could add an assumption even 1 to our lemma and use it to prove even 1, but this would be
tautological and hence pointless.

78 Chapter 5. Inductive Predicates

5.1.2 Tennis Games

Transition systems consists of transition rules that connect a “before” and an “af-
ter” state. As a specimen of a transition system, we consider the possible transi-
tions in a game of tennis, starting from 0–0 (“Love all”). Tennis games are also a
toy, but in Chapter 8, we will define the semantics of an imperative programming
language as a transition system in a similar style.

The scoring rules for tennis from the International Tennis Federation’s Rules
of Tennis are reproduced below.

A standard game is scored as follows with the server’s score being
called first:

No point – “Love”
First point – “15”
Second point – “30”
Third point – “40”
Fourth point – “Game”

except that if each player/team has won three points, the score is
“Deuce.” After “Deuce,” the score is “Advantage” for the player/team
who wins the next point. If that same player/team also wins the next
point, that player/team wins the “Game”; if the opposing player/team
wins the next point, the score is again “Deuce.” A player/team needs
to win two consecutive points immediately after “Deuce” to win the
“Game.”

We first define an inductive type to represent scores:

inductive score : Type
| vs : N → N → score
| adv_srv : score
| adv_rcv : score
| game_srv : score
| game_rcv : score

A score such as 30–15 is represented as score.vs 30 15, which we will also write
in infix notation as 30–15. We ignore some of the most frivolous aspects of the
scoring rules, writing 0 for “Love” and 40–40 for “Deuce.” If we really cared, we
could introduce aliases such as def love : N := score.vs 0 0.

The next stage is to introduce a binary predicate step that determines whether
a transition is possible:

inductive step : score → score → Prop
| srv_0_15 : ∀n, step (0–n) (15–n)
| srv_15_30 : ∀n, step (15–n) (30–n)
| srv_30_40 : ∀n, step (30–n) (40–n)
| srv_40_game : ∀n, n < 40 → step (40–n) score.game_srv
| srv_40_adv : step (40–40) score.adv_srv
| srv_adv_40 : step score.adv_srv (40–40)
| srv_adv_game : step score.adv_srv score.game_srv
| rcv_0_15 : ∀n, step (n–0) (n–15)
| rcv_15_30 : ∀n, step (n–15) (n–30)

5.1. Introductory Examples 79

| rcv_30_40 : ∀n, step (n–30) (n–40)
| rcv_40_game : ∀n, n < 40 → step (n–40) score.game_rcv
| rcv_40_adv : step (40–40) score.adv_rcv
| rcv_adv_40 : step score.adv_rcv (40–40)
| rcv_adv_game : step score.adv_rcv score.game_rcv

Let s⇒ t abbreviate step s t. A game is a chain s0 ⇒ s1 ⇒ s2 ⇒ · · · ⇒ sn where
s0 = 0–0 and no transition is possible from sn. The predicate allows nonsensical
transitions such as 15–99⇒ 30–99, but since the score 15–99 cannot be reached
from 0–0, these transitions are harmless.

Equipped with a formal definition, we can ask, and formally answer, questions
such as: Do games have a maximal length? How many di�erent final scores are
possible? Is the score 15–99 reachable from “Love all”? And can the score ever
return to 0–0? Let us use Lean to disprove the last claim:

lemma no_step_to_0_0 (s : score) :
¬ step s (0–0) :=

begin
intro h,
cases’ h

end

The diagram below summarizes which scores are reachable from which scores:

40–15

30–0

40–0 15–30

30–40

0–15

0–40

0–0

15–0

score.adv_rcv

score.game_rcv

score.adv_srv

score.game_srv

15–40

0–30

40–30

40–40

30–15

30–30

15–15

5.1.3 Reflexive Transitive Closure

Are there any convincing non-toy applications of inductive predicates? The answer
is yes. Consider the reflexive transitive closure r∗ of a binary relation r. The star
(∗) operator is often defined as a formal system:

(a, b) ∈ r
Base

(a, b) ∈ r∗
Refl

(a, a) ∈ r∗
(a, b) ∈ r∗ (b, c) ∈ r∗

Trans
(a, c) ∈ r∗

These rules define r∗ as the smallest relation that contains r (by Base) and that is
reflexive (by Refl) and transitive (by Trans). If we wanted to define the transitive

80 Chapter 5. Inductive Predicates

closure r+ instead, we would simply omit the Refl rule. If we wanted the reflexive
symmetric closure, we would replace the Trans rule by a Symm rule. With a formal
system, we simply declare the properties we want to be true, without giving a
thought to termination or executability.

It is straightforward to translate the above derivation rules into introduction
rules of an inductive predicate:

inductive star {α : Type} (r : α → α → Prop) : α → α → Prop
| base (a b : α) : r a b → star a b
| refl (a : α) : star a a
| trans (a b c : α) : star a b → star b c → star a c

We represent relations as binary predicates rather than sets of pairs, writing r a b
for (a, b) ∈ r. The reflexive transitive closure of r is written star r. Inside the
definition, r is omitted since it is declared as a parameter, on the left of a colon
(:). Notice that a, b, and c are declared as parameters of the introduction rules,
on the left of the colons. We could also have written

| base : ∀a b : α, r a b → star a b

or at the other extreme

| base (a b : α) (hab : r a b) : star a b

and similarly for star.refl and star.trans. All these forms are logically and
operationally equivalent.

The general format of inductive predicates is as follows:

inductive predicate-name (params1 : type1) . . . (paramsk : typek) :
typek+1 → · · · → typek+p → Prop

| rule-name1 (params11 : type11) . . . (params1m : type1m) : proposition1...
| rule-namen (paramsn1 : typen1) . . . (paramsnm : typenm) : propositionn

where the conclusion of each propositionj must be an application of the defined
predicate predicate-name to some arguments. These arguments may be arbitrary
terms; they do not need to be constructor patterns. We can also use curly braces
{ } instead of parentheses () if we wanted to make the arguments corresponding
to the parameters implicit.

The above definition of star is truly elegant. If you still doubt this, try imple-
menting it as a recursive function:

def star_rec {α : Type} (r : α → α → bool) :
α → α → bool :=

To summarize, each introduction rule of an inductive predicate p consists of
the following components:

an application of p to some arguments, forming a pattern;
zero or more conditions that must be fulfilled, which may apply p recursively;
variables that may appear in the pattern and the conditions.

Thus, for rule star.base, the pattern is star a b, the condition is r a b, and the
variables are a and b.

5.2. Logical Symbols 81

5.1.4 A Nonexample

Not all inductive definitions admit a least solution. The simplest nonexample is

-- fails
inductive illegal2 : Prop
| intro : ¬ illegal2 → illegal2

If Lean accepted this definition, we could use it to prove the equivalence illegal2
↔¬ illegal2, from which we could easily derive false. Fortunately, Lean rejects
the definition:

arg #1 of ’illegal2.intro’ has a non positive occurrence of
the datatypes being declared

The nonpositive occurrence it complains about is the occurrence of illegal2 un-
der a negation. Mathematicians would reject the definition on the ground that
the monotonicity condition of the Knaster–Tarski theorem is not satisfied.

5.2 Logical Symbols

Although even is the first openly inductive predicate in this guide, the earlier chap-
ters already presented other inductive predicates clandestinely. The very first of
these is equality (=), introduced in Chapter 1, followed by the logical symbols ∧,
∨,↔, ∃, true, and false. Their definitions are worth studying closely:

inductive and (a b : Prop) : Prop
| intro : a → b → and

inductive or (a b : Prop) : Prop
| intro_left : a → or
| intro_right : b → or

inductive iff (a b : Prop) : Prop
| intro : (a → b) → (b → a) → iff

inductive Exists {α : Type} (p : α → Prop) : Prop
| intro : ∀a : α, p a → Exists

inductive true : Prop
| intro : true

inductive false : Prop

inductive eq {α : Type} : α → α → Prop
| refl : ∀a : α, eq a a

(Strictly speaking, in Lean, some of the above definitions are actually structures
and not inductive predicates, but the di�erence is unimportant: Structures are
essentially single-constructor inductive predicates with some syntactic sugar.)

The traditional notations ∃x : α, p and x = y are syntactic sugar for Exists
(λx : α, p) and eq x y. Notice how λ acts as an all-purpose binder. Notice also

82 Chapter 5. Inductive Predicates

that there is no constructor for false. There are no proofs of false, just like there
is no proof of even 1. With inductive predicates, we only state the rules we want
to be true.

The symbol ∀, including its special case→, is built directly into the logic and
is not defined as inductive predicates. Nor does it have explicit introduction or
elimination rules. The introduction principle is λ-expression λx, _, and the elimi-
nation principle is function application _ u.

As for any inductive predicates, only the introduction rules are specified. The
elimination rules presented in Sections 2.3 and 2.4 must be derived manually.

5.3 Rule Induction

In the same way that we can perform an induction on a term of inductive type,
we can perform an induction on a proof of an inductive predicate. For example,
given the goal h : even n ` p n, we can invoke induction’ h and get two subgoals,
for even.zero and even.add_two. This is called induction on the structure of the
derivation of h or simply rule induction, because the induction is on the predi-
cate’s introduction rules (i.e., the constructors of the proof term).

There are two ways to look at rule induction: the “least-predicate-such-that
view” and the “PAT view.” To understand the least-predicate-such-that view, recall
that an inductive definition introduces a symbol as the least (i.e., the most false)
predicate satisfying the introduction rules. Accordingly, even is the least predicate
q such that the properties q 0 and ∀k, q k→ q (k + 2) hold. Therefore, if we can
show that p 0 and ∀k, p k→ p (k + 2) hold for some predicate p, then p is either
even itself or greater than (i.e., more true than) even. As a result, even n implies
p n, which is exactly what we need to prove the goal h : even n ` p n.

The least-predicate-such-that view gives a nice intuitive account of rule in-
duction that can be used in informal arguments, such as the following proof that
even n implies n % 2 = 0 for all n:

The proof is by rule induction on the hypothesis even n.
Case even.zero: We must show 0 % 2 = 0. This follows by computation.
Case even.add_two k: The induction hypothesis is k % 2 = 0. We must
show (k + 2) % 2 = 0. This follows by basic arithmetic reasoning. ut

The Lean proof has the same structure:

lemma mod_two_eq_zero_of_even (n : N) (h : even n) :
n % 2 = 0 :=

begin
induction’ h,
case zero {

refl },
case add_two : k hk ih {

simp [ih] }
end

The PAT principle gives us another fruitful way to look at rule induction. The
key idea is that rule induction on h in a goal such as h : even n ` P[h] is perfectly

5.3. Rule Induction 83

analogous to structural induction on a value of a dependent inductive type such
as vec α n (Section 4.10). Writing Pu[] for the variant of P[] where n is replaced
by some term u, we get the subgoals

`̀̀ P0[even.zero : even 0]

k : N, hk : even k, ih : Pk[hk] `̀̀ Pk+2[even.add_two k hk : even (k + 2)]

These are precisely the subgoals produced by induction’ h with k hk ih.
Regardless of the inductive predicate q, the procedure to compute the sub-

goals is always the same:
1. Replace h in P[h] with each possible introduction rule applied to fresh vari-

ables (e.g., even.add_two k hk), massaging P[] to make it type-correct. This
yields as many subgoals as there are introduction rules.

2. Add these new variables (e.g., k, hk) to the local context.
3. Add induction hypotheses for all new hypotheses that assert q
Notice the presence of hk : even k among the hypotheses above. It was absent

in the least-predicate-such-that view and is not essential because it can always
be recovered by strengthening P to be of the form even n ∧ · · · .

In nearly all practical cases, h will not occur in P[h]. We can then simply write

`̀̀ P0 k : N, hk : even k, ih : Pk `̀̀ Pk+2

In rare cases, h will occur in P[h]. Proofs may appear as subterms in arbitrary
terms, as we saw when we tried to extract the head of a list in Section 4.7.

When the argument to even in h is not a variable, performing an induction will
destroy its structure. Fortunately, induction’ (with a prime) notices this situation
and preserves the information in a hypothesis called index_eq. Thus, given the
goal h : even (2 * n + 1) ` false , invoking induction’ h with k hk ih produces
the induction step

k : N, h : even k, n : N, index_eq : k + 1 = 2 * n, ih : ∀n, ¬ k = 2 * n + 1
`̀̀ false

for even.add_two. The trivial base case ¬ even 1 is eliminated automatically by
basic constructor reasoning.

The hypothesis index_eq records the equality between even’s argument in the
initial goal (i.e., 2 * n + 1) and even’s argument in the even.add_two rule (i.e., k
+ 2). Notice that the equation is simplified by subtracting 1 from both sides. To
continue the proof, we need to instantiate n in the induction hypothesis with n - 1.
Here is the complete proof:

lemma not_even_two_mul_add_one (n : N) :
¬ even (2 * n + 1) :=

begin
intro h,
induction’ h,
apply ih (n - 1),
cases’ n,
case zero {

linarith },

84 Chapter 5. Inductive Predicates

case succ {
simp [nat.succ_eq_add_one] at *,
linarith }

end

We use the lemma nat.succ_eq_add_one to rewrite terms of the form nat.succ
n to n + 1 and the linarith tactic to perform simple arithmetic reasoning. The
lemma is very useful when we face a mixture of nat.succ and addition.

The reflexive transitive closure star r is similar to even. Given a goal h : star r
x y ` P, rule induction on h produces the following subgoals, where Pt,u denotes

the variant of P where x and y are replaced by t and u, respectively:

a b : α, hab : r a b `̀̀ Pa,b
a : α `̀̀ Pa,a

a b c : α, hab : star r a b, hbc : star r b c, ihab : Pa,b, ihbc : Pb,c `̀̀ Pa,c

This is where the “assistant” aspect of “proof assistant” comes into play. One of
the key properties of star is idempotence—applying star to star r has no e�ect.
This can be proved as follows in Lean, using rule induction for the→ direction of
the equivalence:

lemma star_star_iff_star {α : Type} (r : α → α → Prop)
(a b : α) :

star (star r) a b ↔ star r a b :=
begin

apply iff.intro,
{ intro h,

induction’ h,
case base : a b hab {

exact hab },
case refl : a {

apply star.refl },
case trans : a b c hab hbc ihab ihbc {

apply star.trans a b,
{ exact ihab },
{ exact ihbc } } },

{ intro h,
apply star.base,
exact h }

end

We use the case tactic both to document which cases we are focusing on and
to give intuitive names to the emerging variables. It is easy to get lost in goals
containing long, automatically generated names. The cleanup tactics introduced
in Section 2.8 can also be a great help when facing large goals.

We can state the idempotence property more standardly in terms of equality
instead of as an equivalence:

@[simp] lemma star_star_eq_star {α : Type}
(r : α → α → Prop) :

star (star r) = star r :=

5.4. Linear Arithmetic Tactic 85

begin
apply funext,
intro a,
apply funext,
intro b,
apply propext,
apply star_star_iff_star

end

The proof requires two lemmas that are available because Lean’s logic is classical:

funext : (∀x, ?f x = ?g x)→ ?f = ?g
propext : (?a↔ ?b)→ ?a = ?b

Functional extensionality (funext) states that if two functions yield equal results
for all inputs, then the two functions must be equal. Propositional extensional-
ity (propext) states that equivalence of propositions coincides with equality. In
these phrases, extensionality means something like “what you see is what you
get.” These properties may seem obvious, and yet there exist proof assistants
built on weaker, intuitionistic logics in which the properties do not generally hold.

We register the lemma star_star_eq_star as a simp rule, because viewed
as a left-to-right rewrite rule, it genuinely replaces a complex term by a simpler
term. It is hard to imagine a situation where we would not want simp to rewrite
star (star . . .) to star

For rule induction, we normally use the induction’ tactic. For subtle logical
reasons that will become clearer in Chapter 11, rule induction by pattern matching
is generally not possible.

5.4 Linear Arithmetic Tactic

linarith

The linarith tactic can be used to prove goals involving linear arithmetic equal-
ities (=), inequalities (<, >, ≤, and ≥), and disequalities (6=). Linear means that
multiplication and division do not occur, or if they do then one of the operands
must be a numeric constant. For example, 2 * x < y is a linear constraint (which
can be rewritten to x + x < y), whereas x * y < y is nonlinear.

5.5 Elimination

Given an inductive predicate q, its introduction rules typically are of the form
∀. . ., · · · → q . . . and can be used to prove goals of the form ` q Elimination
works the other way around: It extracts information from a lemma or hypothesis h
: q Elimination takes many forms: the cases’ and induction’ tactics, pattern
matching, and elimination rules (e.g., and.elim_left).

Invoked on h : q . . . , the cases’ h tactic performs roughly the same rule in-
duction as induction’ h but without producing any induction hypotheses. We
encountered two idioms in Chapter 4 that we can finally understand.

The first idiom is when h is of the form l = r—i.e., eq l r (Section 5.2). Suppose
the goal is h : l = r ` P[h]. The procedure presented in Section 5.3 produces the

86 Chapter 5. Inductive Predicates

subgoal
a : α `̀̀ Pa,a[eq.refl a : a = a]

in which Pt,u[] stands for the variant of P[] where l and r are replaced by t
and u, respectively. (Strictly speaking, the useless hypothesis h : a = a would also
appear in the subgoal.) In practice, P[h] would likely not depend on h. Moreover,
cases’ reuses the name l instead of inventing the name a. Thus, we would get

l : α `̀̀ Pl,l

In other words, all occurrences of r in the original goal have been replaced by l.
This corresponds to the behavior we observed in Section 4.7.

The second idiom is the tactic cases’ classical.em Q, where Q is a proposi-
tion. The classical.em Q part is a proof term for Q ∨ ¬ Q—i.e., or Q (¬ Q) (Sec-
tion 5.2). Then cases’ is simply applied to eliminate the ∨ connective. Suppose
the goal is ` P[classical.em Q]. By the definition of the or predicate, the new
subgoals are

hQ : Q `̀̀ P[or.intro_left hQ : Q ∨ ¬ Q]

hnQ : ¬ Q `̀̀ P[or.intro_right hnQ : Q ∨ ¬ Q]

There is no need to massage P because or.intro_left hQ and or.intro_right
hnQ have the same type as classical.em Q—namely, Q ∨ ¬ Q. In practice, the goal
would be ` P, with no dependency on classical.em Q. We would then have

hQ : Q `̀̀ P hnQ : ¬ Q `̀̀ P

Again, this is the behavior we observed in Section 4.7.
In structured proofs, we can use match expressions (Section 4.4) to achieve

the same e�ect as cases’. This works well for logical symbols. However, for pred-
icates such as even and star, with arguments that evolve through the induction,
we end up with dependently typed pattern matching, which is subtle (Section 4.10).
It is generally easier to let cases’ figure out what the subgoals should look like
than to pattern-match. We will review an example of both styles below.

It can be useful to expand a hypothesis of the form q (c . . .), where c is a
constructor or some other constant. We can state and prove an inversion rule to
support such eliminative reasoning. A typical inversion rule has the form

∀x1 . . . xn, q (c x1 . . . xn)→ (∃. . ., · · · ∧ · · ·) ∨ · · · ∨ (∃. . ., · · · ∧ · · ·)

It can be useful to combine introduction and elimination into a single lemma,
which can be used for rewriting both the hypotheses and the targets of goals. The
format is the same except for the connective↔ in the middle:

∀x1 . . . xn, q (c x1 . . . xn)↔ (∃. . ., · · · ∧ · · ·) ∨ · · · ∨ (∃. . ., · · · ∧ · · ·)

An inversion rule for even is given below:

lemma even_iff (n : N) :
even n ↔ n = 0 ∨ (∃m : N, n = m + 2 ∧ even m) :=

begin
apply iff.intro,

5.5. Elimination 87

{ intro hn,
cases’ hn,
case zero {

simp },
case add_two : k hk {

apply or.intro_right,
apply exists.intro k,
simp [hk] } },

{ intro hor,
cases’ hor,
case inl : heq {

simp [heq, even.zero] },
case inr : hex {

cases’ hex with k hand,
cases’ hand with heq hk,
simp [heq, even.add_two _ hk] } }

end

As usual, the tactical proof is not particularly readable, but we see that introduc-
tion rules and the eliminative cases’ tactic play a major role, for both the logical
symbols and the even predicate. The simp tactic puts the final touches.

For those who have a preference for structured proofs, here is a version of the
proof with dependently typed pattern matching on hn : even n:

lemma even_iff2 (n : N) :
even n ↔ n = 0 ∨ (∃m : N, n = m + 2 ∧ even m) :=

iff.intro
(assume hn : even n,
match n, hn with
| _, even.zero :=

show 0 = 0 ∨ _, from
by simp

| _, even.add_two k hk :=
show _ ∨ (∃m, k + 2 = m + 2 ∧ even m), from

or.intro_right _ (exists.intro k (by simp [*]))
end)

(assume hor : n = 0 ∨ (∃m, n = m + 2 ∧ even m),
match hor with
| or.inl heq :=

show even n, from
by simp [heq, even.zero]

| or.inr hex :=
match hex with
| Exists.intro m hand :=

match hand with
| and.intro heq hm :=

show even n, from
by simp [heq, even.add_two _ hm]

end
end

88 Chapter 5. Inductive Predicates

end)

For technical reasons, we must pattern-match on or.inl and or.inr, which are
constructors and which take a single explicit argument, rather than on the variants
or.intro_left and or.intro_right, which are defined functions that take two
explicit arguments.

5.6 Further Examples

Equipped with a better understanding of inductive predicates, we are now ready
to review in turn four realistic applications.

5.6.1 Sorted Lists

Our first example is a predicate that checks whether a list of natural numbers is
sorted in increasing order:

inductive sorted : list N → Prop
| nil : sorted []
| single {x : N} : sorted [x]
| two_or_more {x y : N} {zs : list N} (hle : x ≤ y)

(hsorted : sorted (y :: zs)) :
sorted (x :: y :: zs)

This definition captures the following mathematical intuition:

The set of sorted lists is defined as the smallest set S closed under the
following rules:

(1) the list [] is sorted;
(2) given a number x, the list [x] is sorted;
(3) given two numbers x, y and a list zs, if x < y and y :: zs is sorted,

then x :: y :: zs is sorted.

It is always a good idea to test our definitions by trying it on small examples.
Is the list [3, 5] sorted? It would appear so:

lemma sorted_3_5 :
sorted [3, 5] :=

begin
apply sorted.two_or_more,
{ linarith },
{ exact sorted.single }

end

The example needs two of the introduction rules for sorted. This approach tends
to work well for expressions consisting only of closed terms. A more compact
proof follows, using proof terms for everything:

lemma sorted_3_52 :
sorted [3, 5] :=

sorted.two_or_more (by linarith) sorted.single

5.6. Further Examples 89

The same idea can be used to prove that [7, 9, 9, 11] is sorted:

lemma sorted_7_9_9_11 :
sorted [7, 9, 9, 11] :=

sorted.two_or_more (by linarith)
(sorted.two_or_more (by linarith)

(sorted.two_or_more (by linarith)
sorted.single))

Conversely, we can show that some lists are not sorted. For this, we need to
use elimination:

lemma not_sorted_17_13 :
¬ sorted [17, 13] :=

begin
intro h,
cases’ h,
linarith

end

From the hypothesis that the list [17, 13] is sorted, we extract the inequality 17
≤ 13. The cases’ tactic silently eliminates the sorted.nil and sorted.single

cases, because they cannot match a two-element list. Then we just need to invoke
linarith to exploit the impossible hypothesis 17 ≤ 13.

5.6.2 Palindromes

Palindromes are lists that read the same from left to right and from right to left.
For example, [a, b, b, a] and [a, h, a] are palindromes. The following inductive
predicate is true if and only if the list passed as argument is a palindrome:

inductive palindrome {α : Type} : list α → Prop
| nil : palindrome []
| single (x : α) : palindrome [x]
| sandwich (x : α) (xs : list α) (hxs : palindrome xs) :

palindrome ([x] ++ xs ++ [x])

The definition distinguishes three cases: (1) [] is a palindrome; (2) for any element
x, the singleton list [x] is a palindrome; (3) for any element x and any palindrome
[y1, . . ., yn], the list [x, y1, . . ., yn, x] is a palindrome.

Palindromes are another example where inductive predicates come into their
own. The following naive recursive definition cannot work because [x] ++ xs ++
[x] is not a constructor pattern, and the variable x is repeated:

-- fails
def palindrome2 {α : Type} : list α → bool
| [] := tt
| [_] := tt
| ([x] ++ xs ++ [x]) := palindrome2 xs
| _ := ff

A correct recursive definition is possible but beyond the scope of this guide.
Naturally, the reverse of a palindrome is a palindrome. It is a good exercise:

90 Chapter 5. Inductive Predicates

lemma reverse_palindrome {α : Type} (xs : list α)
(hxs : palindrome xs) :

palindrome (reverse xs) :=
begin

induction’ hxs,
case nil {

exact palindrome.nil },
case single {

exact palindrome.single x },
case sandwich {

simp [reverse, reverse_append],
exact palindrome.sandwich _ _ ih }

end

Informally:

The proof is by rule induction on the hypothesis hxs.
Case palindrome.nil: We must show palindrome (reverse []). This
follows from palindrome.nil using reverse [] = [].
Case palindrome.single x: We must show palindrome (reverse [x]).
This follows from palindrome.single using reverse [x] = [x].
Case palindrome.sandwich x xs hxs: We must show palindrome
(reverse ([x] ++ xs ++ [x])) under the hypothesis (hxs) palindrome
xs. The induction hypothesis is palindrome (reverse xs). By simplifi-
cation, it su�ces to show palindrome ([x] ++ reverse xs ++ [x]). By
palindrome.sandwich, it su�ces to show palindrome (reverse xs),
which is exactly the induction hypothesis. ut

5.6.3 Full Binary Trees

Our third example is based on the type of binary trees introduced in Section 4.8:

inductive btree (α : Type) : Type
| empty : btree
| node : α → btree → btree → btree

A binary tree is full if all its nodes have either zero or two children. This can
be encoded as an inductive predicate:

inductive is_full {α : Type} : btree α → Prop
| empty : is_full btree.empty
| node (a : α) (l r : btree α)

(hl : is_full l) (hr : is_full r)
(hiff : l = btree.empty ↔ r = btree.empty) :

is_full (btree.node a l r)

The first case states that the empty tree is a full tree. The second case states that
a nonempty tree is a full tree if it has two child trees that are themselves full and
that are both empty or both nonempty. The two cases neatly follow the structure
of the inductive type, so it is natural to reuse the names empty and node.

The tree that consists of a node with empty trees as children is a full tree. Here
is a simple proof:

5.6. Further Examples 91

lemma is_full_singleton {α : Type} (a : α) :
is_full (btree.node a btree.empty btree.empty) :=

begin
apply is_full.node,
{ exact is_full.empty },
{ exact is_full.empty },
{ refl }

end

A somewhat more interesting property of full trees is that fullness is preserved
by the mirror operation. Our first proof is by rule induction on ht : is_full t:

lemma is_full_mirror {α : Type} (t : btree α)
(ht : is_full t) :

is_full (mirror t) :=
begin

induction’ ht,
case empty {

exact is_full.empty },
case node : a l r hl hr hiff ih_l ih_r {

rw mirror,
apply is_full.node,
{ exact ih_r },
{ exact ih_l },
{ simp [mirror_eq_empty_iff, *] } }

end

Since is_full’s definition follows btree’s definition, it is also reasonable to per-
form structural induction on the tree t:

lemma is_full_mirror2 {α : Type} (t : btree α) :
is_full t → is_full (mirror t) :=

begin
induction’ t,
case empty {

intro ht,
exact ht },

case node : a l r ih_l ih_r {
intro ht,
cases’ ht with _ _ _ hl hr hiff,
rw mirror,
apply is_full.node,
{ exact ih_r hr },
{ apply ih_l hl },
{ simp [mirror_eq_empty_iff, *] } }

end

The key is the case distinction on the hypothesis ht : is_full (node a l r). The
cases’ tactic notices that the is_full.empty introduction rule cannot have been
used to derive ht, so it only produces one case, corresponding to is_full.node.
As usual, the tactical proof will make more sense if you inspect it in Visual Studio
Code, moving the cursor around.

92 Chapter 5. Inductive Predicates

5.6.4 First-Order Terms

Our last example is based on an inductive type of first-order terms:

inductive term (α β : Type) : Type
| var : β → term
| fn : α → list term → term

A first-order term is either a variable x or a function symbol f applied to a list
of arguments: f(t1, . . . , tn), where the metavariables t1, . . ., tn stand for the argu-
ments, which are themselves terms. Thus, sin(max(x, y)) is a first-order term. The
parameters α and β are the types of function symbols and variables, respectively.

Not all terms are legal. For example, the term min(cos(a), cos(a, b)) is con-
sidered ill-formed, because the function cos is invoked with di�erent number of
arguments (1 versus 2). Along with α andβ, we also consider the arity, represented
by a function arity : α→ N indicating how many arguments each function sym-
bol takes. For example, a binary symbol has arity 2. The well_formed predicate
then checks whether the given term only contains function symbol applications
with the specified number of arguments:

inductive well_formed {α β : Type} (arity : α → N) :
term α β → Prop

| var (x : β) : well_formed (term.var x)
| fn (f : α) (ts : list (term α β))

(hargs : ∀t ∈ ts, well_formed t)
(hlen : list.length ts = arity f) :

well_formed (term.fn f ts)

The fn case checks that the arguments ts are recursively well formed and that
the length of ts equals the specified arity for the function symbol f in question.

Another interesting property of first-order terms is whether they contain vari-
ables. This can be checked easily using an inductive predicate:

inductive variable_free {α β : Type} : term α β → Prop
| fn (f : α) (ts : list (term α β))

(hargs : ∀t ∈ ts, variable_free t) :
variable_free (term.fn f ts)

There is no introduction rule corresponding to term.var because variables are
never variable-free.

5.7 Summary of New Lean Constructs

Lemmas

funext functional extensionality
propext propositional extensionality

Tactic

linarith invokes a procedure for linear arithmetic

Chapter 6

Monads

Pure functional programming can sometimes feel overly restrictive. E�ectful func-
tional programming provides idioms that alleviate some of these restrictions, giv-
ing us the impression of programming with side e�ects, exceptions, nondetermin-
ism, and other e�ects.

The underlying abstraction is called monad. Monads generalize programs with
side e�ects. They are popular in Haskell to write imperative programs. In Lean,
they are used to express imperative programs and to reason about them. They
are even useful for programming Lean itself, as we will see in Chapter 7.

These notes are inspired by Chapter 7 of Programming in Lean [2]. We also
refer to Chapter 14 of Real World Haskell [27] for a general introduction to e�ectful
functional programming.

6.1 Introductory Example

Consider the following programming task:

Implement a function sum_2_5_7 ns that sums up the second, fifth, and
seventh items of a list ns of natural numbers. Use option N for the
result so that if the list has too few items, return option.none.

A straightforward solution would be as follows:

def sum_2_5_7 (ns : list N) : option N :=
match list.nth ns 1 with
| option.none := option.none
| option.some n2 :=

match list.nth ns 4 with
| option.none := option.none
| option.some n5 :=

match list.nth ns 6 with
| option.none := option.none
| option.some n7 := option.some (n2 + n5 + n7)
end

end
end

93

94 Chapter 6. Monads

(Confusingly, list.nth and its relative list.update_nth count elements from 0.)
The code is quite inelegant, because of all the pattern matching on option. Al-
though the programming task is contrived, we can all recall writing code with
nested error handling and ever increasing indentation levels.

We can do better, by concentrating all the ugliness in one function:

def connect {α : Type} {β : Type} :
option α → (α → option β) → option β

| option.none f := option.none
| (option.some a) f := f a

The connect function works on an option. If the value is option.none, we leave
it as is. This corresponds to an error condition, and errors are “sticky.” Otherwise,
the value is of the form option.some a, and we apply the operation f on a—or
bind f’s argument to a. We can now use connect to program our sum function:

def sum_2_5_72 (ns : list N) : option N :=
connect (list.nth ns 1)

(λn2, connect (list.nth ns 4)
(λn5, connect (list.nth ns 6)

(λn7, option.some (n2 + n5 + n7))))

Intuitively, the program performs the following steps:
1. Extract the second item from the list. If it is option.none, we are done. Oth-

erwise, bind n2 to this item and continue with the next step.
2. Perform the same for the fifth and seventh item, mutatis mutandis.
3. Return the sum of n2, n5, and n7 in an option.some wrapper.

Semantically, our new function sum_2_5_72 is equal to the original sum_2_5_7.
Instead of defining connect ourselves, we could have used Lean’s predefined

general bind operation. It takes the same arguments in the same order. Here is
the new code:

def sum_2_5_73 (ns : list N) : option N :=
bind (list.nth ns 1)

(λn2, bind (list.nth ns 4)
(λn5, bind (list.nth ns 6)

(λn7, pure (n2 + n5 + n7))))

We also use the predefined pure function instead of option.some to convert a
pure α value to an option.

One of the advantages of using the predefined notions is that they provide
syntactic sugar, in the form of the >>= operator:

def sum_2_5_74 (ns : list N) : option N :=
list.nth ns 1 >>=
λn2, list.nth ns 4 >>=
λn5, list.nth ns 6 >>=
λn7, pure (n2 + n5 + n7)

The syntax ma >>= f expands to bind ma f, where ma stands for “maybe an α.”
The next-to-last version of the sum program uses heavier syntactic sugar:

6.2. Two Operations and Three Laws 95

def sum_2_5_75 (ns : list N) : option N :=
do n2 ← list.nth ns 1,
do n5 ← list.nth ns 4,

do n7 ← list.nth ns 6,
pure (n2 + n5 + n7)

The do notation provides a convenient syntax for e�ectful programs. The program
do a← ma, t is equivalent to ma >>= (λa, t). If we are not interested in the result
of ma’s computation, we can omit the a← binding and write do ma, t, which ex-
pands to ma >>= (λ_, t).

The do notation conveniently allows multiple← bindings in a single block. This
brings us to the final version of the program:

def sum_2_5_76 (ns : list N) : option N :=
do

n2 ← list.nth ns 1,
n5 ← list.nth ns 4,
n7 ← list.nth ns 6,
pure (n2 + n5 + n7)

Each line with an arrow← attempts to read a value. In case of failure, the entire
program evaluates to option.none.

The above function can be read as an imperative program where each of the
list.nth calls can throw an exception. But even though the notation has an im-
perative flavor, the function is a pure functional program.

6.2 Two Operations and Three Laws

The option type constructor is an example of a monad, called the option monad.
In general, a monad is a unary type constructor m : Type→ Type that depends on
some type parameter α equipped with two distinguished operations:

pure {α : Type} : α→ m α
bind {α β : Type} : m α→ (α→ m β)→ m β

As usual, curly braces denote implicit arguments. For options, the pure operation
is simply option.some, whereas bind is what we called connect.

Recall that a value of type m α is an e�ectful program. The pure operation
embeds a pure, e�ectless program of type α in m α. The bind operation composes
two e�ectful programs, of types m α and m β. The first program’s output, of type α,
is passed to the second program. The second program’s output is also the output
of the composite program.

We can think of a monad as a box containing some data. The box captures
some special e�ect (e.g., exceptions, a mutable state). The pure operation puts
data into the box, whereas bind allows us to access the data in the box and modify
it—possibly even changing its type, since the result has type m β, not m α. There
is, however, no general way to extract the data from the box—i.e., to obtain an α
from an m α. There might not be any α value in it, or there might be several.

To summarize, pure a is a box containing the value a, with no side e�ects,
whereas bind ma f (also written ma >>= f or do a← ma, f a) executes ma, then ex-

96 Chapter 6. Monads

ecutes f with the unboxed result a of ma. It is convenient to use names such as ma
or mb for values of type m α or m β, and a or b for data of type α or β.

Monads are an abstract concept with many applications. The option type is
only one instance among many. The following table gives an overview of some
monad instances and their e�ects.

Type E�ect

id α no e�ects
option α simple exceptions
σ→ α × σ threading through a state of type σ
set α nondeterministic computations returning α values
t→ α reading elements of type t (e.g., a configuration)
N × α adjoining running time (e.g., to model algorithmic complexity)
string × α adjoining text output (e.g., for logging)
prob α probability (e.g., using random number generators)
io α interaction with the operating system
tactic α interaction with the proof assistant

All of the above are unary type constructors m : Type→ Type applied to an ar-
gument α. Some e�ects can be combined (e.g., option (t→ α)). Some e�ects are
not executable (e.g., prob α); they are nonetheless useful for modeling programs
abstractly. Specific type constructors m may provide further operators beyond
pure and bind. For example, they may provide a way to extract the boxed value.

Monads have several benefits. They provide the highly readable do notation.
They support generic operations, such as list.mmap {α β : Type} : (α→ m β)→
list α→ m (list β), that work uniformly for all monads m. To quote Program-
ming in Lean [2]:

The power of the abstraction is not only that it provides general func-
tions and notation that can be used in all these various instantiations,
but also that it provides a helpful way of thinking about what they all
have in common.

Besides being a useful computer science concept, monads provide a nice example
of axiomatic reasoning.

The bind and pure operations are normally required to obey three laws. The
bind operation combines two programs. If either of these is a pure program, we
can inline it and eliminate the bind. This gives us the first two laws:

do
a’← pure a, = f a
f a’

and
do
a← ma, = ma
pure a

The third law is an associativity rule for bind. It allows us to flatten a nested
computation:

6.3. A Type Class 97

do do
b← do { a← ma,
a← ma, = b← f a,
f a }, g b

g b

Notice that we can use curly braces { } around the body of a do block to delimit
it, instead of enclosing the entire block in parentheses ().

The do notation is compatible with let, which can be used for storing pure
data. Instead of

do
a’← pure a,
b← f a’,
g b

we can write
do
let a’ := a in
do
b← f a’,
g b

or

do
let a’ := a,
b← f a’,
g b

Earlier we compared a monad to a box. It may help to think of the box more
concretely as a Swiss bank account, with α := money. The first law means that if
you put some money in the account, you can take it out. The second law means
that nobody will notice if you take out some money and put it back afterwards.
The third law means that performing two bank operations together followed by a
third one is the same as performing the first one alone followed by the other two.
Given the Swiss banks’ reputation for secrecy, all three laws seem plausible.

6.3 A Type Class

Monads are a mathematical structure, so we use a type class to specify them in
Lean. Recall that a type class is a structure type that is parameterized, typically by
a type, but here by a type constructor m : Type→ Type. Whenever we use a field
from the type class on a concrete m, the type class inference mechanism retrieves
the relevant structure value—the type class instance.

A possible Lean definition of monads, together with the three laws, follows:

@[class] structure lawful_monad (m : Type → Type)
extends has_bind m, has_pure m :=

(pure_bind {α β : Type} (a : α) (f : α → m β) :
(pure a >>= f) = f a)

98 Chapter 6. Monads

(bind_pure {α : Type} (ma : m α) :
(ma >>= pure) = ma)

(bind_assoc {α β γ : Type} (f : α → m β) (g : β → m γ)
(ma : m α) :

((ma >>= f) >>= g) = (ma >>= (λa, f a >>= g)))

Let us study this definition step by step:

We are creating a structure parameterized by a unary type constructor m—i.e.,
a value of type Type→ Type.
The structure inherits the fields, and any syntactic sugar, from structures
called has_bind and has_pure. These provide the bind and pure operations
on m, with the expected types and the syntactic sugar.
Finally, three fields (pure_bind, bind_pure, and bind_assoc) are added to
those already provided by has_bind and has_pure. Each field is a proof of
one of the three laws.

We call our type class “lawful monad” because the three laws are required to
hold. To instantiate this definition, we must supply the type constructor m, suitable
bind and pure operators, and proofs of the laws.

Lean includes a predefined concept of monads, which is essentially equivalent
to the above but is more complicated. In particular, Lean distributes the definition
over two type classes, monad and is_lawful_monad.

6.4 No E�ects

Lean’s constant id {α : Type} : α→ α is defined as the identity function λx, x.
The identity type constructor is obtained by taking α := Type. We can register it
as a monad:

def id.pure {α : Type} : α → id α :=
id

def id.bind {α β : Type} : id α → (α → id β) → id β
| a f := f a

@[instance] def id.lawful_monad : lawful_monad id :=
{ pure := @id.pure,

bind := @id.bind,
pure_bind :=

begin
intros α β a f,
simp [pure, (>>=)],
refl

end,
bind_pure :=

begin
intros α ma,
simp [pure, (>>=)],
refl

6.5. Basic Exceptions 99

end,
bind_assoc :=

begin
intros α β γ f g ma,
simp [(>>=)],
refl

end }

The identity monad is the simplest monad possible. It provides a simple box, with
a single value in it, without any e�ect. It plays a similar role as 0 in additive
arithmetic. We can think of the other monads as variations of it; for example, the
option monad is an identity monad enriched with a special option.none value
representing an error state.

6.5 Basic Exceptions

As we saw above, the option type provides a basic exception mechanism. The
following code shows how to register option : Type→ Type as a lawful monad:

def option.pure {α : Type} : α → option α :=
option.some

def option.bind {α β : Type} :
option α → (α → option β) → option β

| option.none f := option.none
| (option.some a) f := f a

@[instance] def option.lawful_monad : lawful_monad option :=
{ pure := @option.pure,

bind := @option.bind,
pure_bind :=

begin
intros α β a f,
simp [pure, (>>=)],
refl

end,
bind_pure :=

begin
intros α ma,
simp [pure, (>>=)],
cases’ ma,
{ refl },
{ refl }

end,
bind_assoc :=

begin
intros α β γ f g ma,
simp [(>>=)],
cases’ ma,
{ refl },

100 Chapter 6. Monads

{ refl }
end }

The registration process requires us to provide five components: the pure and
bind operations and the proofs of the three laws. For the first and second compo-
nents of the record, we use the @ syntax to make the type arguments explicit, in
agreement with the format expected by has_pure and has_bind. The three proofs
are straightforward.

Beyond the standard operations, it can be useful to throw and catch excep-
tions. This can be implemented as follows:

def option.throw {α : Type} : option α :=
option.none

def option.catch {α : Type} :
option α → option α → option α

| option.none ma’ := ma’
| (option.some a) _ := option.some a

The option.throw operation raises an exception, leaving the program in an error
state (option.none). The option.catch operation can be used to recover from
an earlier exception. If the program is currently in an error state, option.catch
invokes some exception-handling code (its second argument). This code might in
turn raise a new exception. If option.catch is applied to a normal state (of the
form option.some a), nothing happens.

As a convenient alternative to option.catch ma ma’, Lean supports the syn-
tax ma.catch ma’. Here is a schematic example that demonstrates throwing and
catching with this syntax:

do {
. . .,
if . . . then

option.throw
else

. . . }
.catch do {

. . . }

The corresponding Java code would look as follows:

try {
. . .
if (. . .) {

throw new UnknownException();
} else {

. . .
}

} catch (UnknownException e) {
. . .

}

A more idiomatic approach is to register option.catch as the option type’s
“or else” operator <|>:

6.6. Mutable State 101

@[instance] def option.has_orelse : has_orelse option :=
{ orelse := @option.catch }

This enables us to write

do {
. . .,
if . . . then

option.throw
else

. . . }
<|>
do {

. . . }

Monads equipped with <|> are called alternative monads.
Options cater for only one kind of error state. A more general abstraction,

called error monad, supports di�erent errors, as with the exceptions of Java and
other programming languages.

6.6 Mutable State

The state monad provides an abstraction corresponding to a mutable state. For
some programming languages, the compiler can detect the use of the state monad
and translate programs using them to more e�cient imperative programs.

Admittedly, “abstraction corresponding to a mutable state” may sound some-
what abstract, so let us consider a semiconcrete example. If you have some ex-
perience with functional programming, you probably at some point or other have
written code that looks very much like this fragment:

def welcome_new_user (user_name : string) (ctxt : context) :
(N × string) × context :=

let
(user, ctxt’) := create_user user_name ctxt,
(password, ctxt’’) := generate_temporary_password user ctxt’,
(ok, ctxt’’’) := send_unencrypted_email user password ctxt’’

in
((user, password), ctxt’’’)

(It is very important to send the password in an unencrypted email, and to ignore
the ok status of the function.) The function takes some global state or context
as input and invokes three functions in turn, each of which takes a context value
and returns both some data and a new context. The context is e�ectively threaded
through the program. This allows us to have a mutable state in a programming
language without side e�ects.

The above approach is error-prone—it is all too easy to forget one prime (’)
and pass the wrong context to a function. It is also cluttered by all the context
variables. What if we could simply write the following instead?

def welcome_new_user2 (user_name : string) :
context → (N × string) × context :=

do

102 Chapter 6. Monads

user ← create_user user_name,
password ← generate_temporary_password user,
ok ← send_unencrypted_email user password,
pure (user, password)

This is exactly what the state monad provides.
The state monad builds on top of a binary type constructor action, which

captures the concept of computations or actions over states of type σ with return
values of type α. In Lean, action σ α is defined as equal to σ→ α × σ:1

def action (σ α : Type) : Type :=
σ → α × σ

(Since types are terms, we can use def also to define type abbreviations.) For
a given type σ, we have that action σ : Type → Type is a monad. The type σ
abstracts over the exact memory layout. We could use tuples or lists to represent
memory, for example, and instantiate the abstract state σ accordingly.

A stateful action is a function that takes some state and returns both a value
and some new state. The σ→ part of action’s definition gives the old state; the
left component of the cartesian product, α, gives the result of the computation;
and the right component of the product, σ, gives the new state. Thus, the state is
implicitly threaded through the program. As with other e�ectful programs, the do
notation only exposes the data—the value of type α—and conceals the e�ect—the
old and new σ states.

The case where σ := unit, a type of cardinality one (similar to void in C or Java)
whose unique value is written (), corresponds to the identity monad: The type
unit→ α × unit is isomorphic to α. This intuition can guide us when defining
pure and bind.

We start by defining basic operations: two operations, read and write, to ac-
cess the memory, and the standard operations bind and pure:

def action.read {σ : Type} : action σ σ

| s := (s, s)

def action.write {σ : Type} (s : σ) : action σ unit
| _ := ((), s)

def action.pure {σ α : Type} (a : α) : action σ α

| s := (a, s)

def action.bind {σ : Type} {α β : Type} (ma : action σ α)
(f : α → action σ β) :

action σ β

| s :=
match ma s with
| (a, s’) := f a s’
end

1This type constructor is traditionally called State or state, but these names are awfully confus-
ing. In this case, it seems preferable to honor tradition in the breach rather than in the observance.

6.6. Mutable State 103

The read operation simply returns the current state s (in the first pair component)
and leaves the state unchanged (in the second pair component). The write oper-
ation replaces the current state with s and returns (). The pure operation returns
the current state s unchanged tupled together with the given value a. The bind
operation passes the initial state to the ma argument, yielding a result a and a new
state s’. These are passed to f, which returns a new result and a new state.

To register the action type constructor as a lawful monad, we need functional
extensionality (funext): To prove f = g, it su�ces to show ∀x, f x = g x.

@[instance] def action.lawful_monad {σ : Type} :
lawful_monad (action σ) :=

{ pure := @action.pure σ,
bind := @action.bind σ,
pure_bind :=

begin
intros α β a f,
simp [pure, (>>=)],
apply funext,
intro s,
refl

end,
bind_pure :=

begin
intros α ma,
simp [pure, (>>=)],
apply funext,
intro s,
simp [action.bind],
cases’ ma s,
refl

end,
bind_assoc :=

begin
intros α β γ f g ma,
simp [(>>=)],
apply funext,
intro s,
simp [action.bind],
cases’ ma s,
refl

end }

As an example, the following program removes all elements that are smaller
than a previous element in the list, leaving us with a list of increasing elements.
The maximal element is stored as the state σ.

def increasingly : list N → action N (list N)
| [] := pure []
| (n :: ns) :=

do
prev ← action.read,

104 Chapter 6. Monads

if n < prev then
increasingly ns

else
do

action.write n,
ns’ ← increasingly ns,
pure (n :: ns’)

Notice how the state is accessed by read and write.
To execute the program, we must supply an initial state. The last state is re-

turned along with the resulting list. It corresponds to the largest element encoun-
tered in the list or the start state. Thus, the commands

#eval increasingly [1, 2, 3, 2] 0
#eval increasingly [1, 2, 3, 2, 4, 5, 2] 0

produce the output

([1, 2, 3], 3)
([1, 2, 3, 4, 5], 5)

6.7 Nondeterminism

Whereas the option monad stores zero or one α values and the identity and state
monads store exactly one value, the set monad stores a possibly infinite number
of values. This is useful to model nondeterminism, as a set of possible behaviors.

Lean’s type set α is defined as α→ Prop. In other words, a set is identified
with its characteristic predicate. Familiar operators such as the empty set (∅), the
universal set (set.univ), union (∪), intersection (∩), and membership (∈) are sup-
ported, as well as traditional curly brace notations such as {a}, {a, b}, and {x |
p x}. Many set constructs can be simplified by simp.

The set type constructor can be registered as a lawful monad as follows:

def set.pure {α : Type} : α → set α
| a := {a}

def set.bind {α β : Type} : set α → (α → set β) → set β
| A f := {b | ∃a, a ∈ A ∧ b ∈ f a}

@[instance] def set.lawful_monad : lawful_monad set :=
{ pure := @set.pure,

bind := @set.bind,
pure_bind :=

begin
intros α β a f,
simp [pure, (>>=)],
simp [set.pure, set.bind]

end,
bind_pure :=

begin
intros α ma,

6.8. Tautology Tactic 105

simp [pure, (>>=)],
simp [set.pure, set.bind]

end,
bind_assoc :=

begin
intros α β γ f g ma,
simp [(>>=)],
simp [set.bind],
apply set.ext,
simp,
tautology

end }

The pure operation simply puts the given value a in a singleton set {a}. The bind
operation calls f on all values in the set A and returns the union of all the results.
For example, if A := {3, 8} and f := (λa, {a, a + 1}), then set.bind A f equals
{3, 4, 8, 9} . The last proof relies on set extensionality, which states that two sets
that contain the same elements must be equal:

set.ext {α : Type} {A B : set α} : (∀x, x ∈ A↔ x ∈ B)→ A = B

Another noteworthy point is the use of the tautology tactic. The goal’s target is
∀x, (∃a, (∃a_1, a_1 ∈ m ∧ a ∈ f a_1) ∧ x ∈ g a)↔ (∃a, a ∈ m ∧ ∃a_1, a_1 ∈ f a
∧ x ∈ g a_1), where the two sides of↔ are the same except for the placement of
the existential quantifiers (and, confusingly, the names of the bound variables).
This ugly proposition could be proved by a tedious sequence of introduction and
elimination, but we deserve more automation.

6.8 Tautology Tactic

tautology

The tautology tactic performs elimination of the logical symbols ∧, ∨,↔, and ∃
in hypotheses and introduction of ∧,↔, and ∃ in the target, until all the emerging
subgoals can be trivially proved (e.g., by refl).

6.9 A Generic Algorithm: Iteration over a List

Suppose we apply an e�ectful function f on all elements of a list using map. We
then obtain a regular list of e�ectful values. For example:

def nths_fine {α : Type} (xss : list (list α)) (n : N) :
list (option α) :=

list.map (λxs, list.nth xs n) xss

The function nths_fine xss n tries to extract the (n + 1)st element of each list in
xss. Running

#eval nths_fine [[11, 12, 13, 14], [21, 22, 23]] 2

returns [option.some 13, option.some 23].

106 Chapter 6. Monads

These option.some constructors can be inconvenient. Often, we only care
about whether any error arose. This leads us to our final example: a generic ef-
fectful program mmap that iterates over a list and applies an e�ectful function f to
each element. The definition is recursive:

def mmap {m : Type → Type} [lawful_monad m] {α β : Type}
(f : α → m β) :

list α → m (list β)
| [] := pure []
| (a :: as) :=
do

b ← f a,
bs ← mmap as,
pure (b :: bs)

Notice that the function returns a single m value containing a list and not a list of
m values. Try to work out why it is well typed and has the desired behavior.

We can now trying using mmap instead of map:

def nths_coarse {α : Type} (xss : list (list α)) (n : N) :
option (list α) :=

mmap (λxs, list.nth xs n) xss

Now, running

#eval nths_coarse [[11, 12, 13, 14], [21, 22, 23]] 2

returns option.some [13, 23], with a single option.some around a pure list.
The mmap function distributes over the append operator ++. The do notation is

useful not only for defining functions but also for stating their properties:

lemma mmap_append {m : Type → Type} [lawful_monad m]
{α β : Type} (f : α → m β) :

∀as as’ : list α, mmap f (as ++ as’) =
do

bs ← mmap f as,
bs’ ← mmap f as’,
pure (bs ++ bs’)

| [] _ :=
by simp [mmap, lawful_monad.bind_pure, lawful_monad.pure_bind]

| (a :: as) as’ :=
by simp [mmap, mmap_append as as’, lawful_monad.pure_bind,

lawful_monad.bind_assoc]

Incidentally, Lean already includes a function called list.mmap corresponding
to our mmap.

6.10 Summary of New Lean Constructs

Notations

do indicates the start of an e�ectful program
let introduces a local definition in an e�ectful program

6.10. Summary of New Lean Constructs 107

<|> tries the left-hand side first; tries the right-hand side on failure
>>= composes e�ectful computations

Lemma

set.ext set extensionality

Tactic

tautology proves tautologies involving the basic logical symbols

Chapter 7

Metaprogramming

Like most proof assistants, Lean can be extended with custom tactics and other
functionality. Programming Lean itself is called metaprogramming. Lean’s meta-
programming framework uses mostly the same notions and syntax as Lean’s input
language itself, so that we do not need to learn a di�erent programming language.
Monads are used to provide access to the proof assistant’s state and handle tactic
failures.

Abstract syntax trees, presented as inductive types, reflect internal data struc-
tures. In a metaprogram, Lean terms are viewed as an inductive type with ten
constructors, but internally they are stored in a C++ data structure. The proof
assistant’s C++ internals are exposed through Lean interfaces, which we can use
for accessing the current goal, unifying terms, querying and modifying the global
context, and setting attributes (e.g., @[simp]).

Here are some example applications of metaprogramming:

goal transformations (e.g., applying safe introduction rules, put the goal in
negation normal form);
heuristic proof search (e.g., applying unsafe introduction rules with back-
tracking);
decision procedures (e.g., for linear arithmetic, propositional logic);
definition generators (e.g., Haskell-style derive for inductive types);
advisor tools (e.g., lemma finders, counterexample generators);
exporters (e.g., documentation generators);
ad hoc proof automation (to avoid boilerplate or duplication).

As mathematician and Lean user Kevin Buzzard wrote:1

If you find yourself “grinding” (to use a computer game phrase), doing
the same sort of stu� over and over again because you need to do it
to make progress, then you can try to persuade a computer scientist
to write a tactic to do it for you (or even write your own tactic if you’re
brave enough to write meta Lean code).

This chapter is inspired by an article by Ebner et al. [8] and by Chapter 8 of
Programming in Lean [2].

1https://xenaproject.wordpress.com/2020/02/09/lean-is-better-for-proper-maths-
than-all-the-other-theorem-provers/

109

https://xenaproject.wordpress.com/2020/02/09/lean-is-better-for-proper-maths-than-all-the-other-theorem-provers/
https://xenaproject.wordpress.com/2020/02/09/lean-is-better-for-proper-maths-than-all-the-other-theorem-provers/

110 Chapter 7. Metaprogramming

7.1 Tactics and Tactic Combinators

When programming our own tactics, we often need to repeat some actions on
several goals, or to recover if a tactic fails. Tactic combinators help in such case.
The most important one is repeat { tactic }. It invokes the tactic specified within
curly braces repeatedly on all goals, emerging subgoals, emerging subsubgoals,
and so on, until the tactic is no longer applicable. Here is an example of repeat
in action:

lemma repeat_example :
even 4 ∧ even 7 ∧ even 3 ∧ even 0 :=

begin
repeat { apply and.intro },
repeat { apply even.add_two },

After the first repeat, the proof state consists of four goals:

`̀̀ even 4 `̀̀ even 7 `̀̀ even 3 `̀̀ even 0

There are no more conjunctions in sight. The second repeat, which applies the
lemma even.add_two : ∀k, even k→ even (k + 2) over and over, leaves us with
these goals:

`̀̀ even 0 `̀̀ even 1 `̀̀ even 1 `̀̀ even 0

The first and last goals are annoying because they correspond to the lemma
even.zero. We can prove them by trying to apply even.zero whenever applying
even.add_two fails. This is achieved as follows:

lemma repeat_orelse_example :
even 4 ∧ even 7 ∧ even 3 ∧ even 0 :=

begin
repeat { apply and.intro },
repeat {

apply even.add_two
<|> apply even.zero },

The tactic combinator <|> first executes its left-hand side. If this fails, the right-
hand side is executed instead. If the right-hand side also fails, the entire combi-
nator fails. With the new tactic, we have two unprovable goals left:

`̀̀ even 1 `̀̀ even 1

The repeat combinator is very aggressive, targeting all goals and subgoals
recursively. A less ambitious variant is iterate. It works repeatedly on the first
goal until it fails; then it stops. Consider this example:

lemma iterate_orelse_example :
even 4 ∧ even 7 ∧ even 3 ∧ even 0 :=

begin
repeat { apply and.intro },
iterate {

apply even.add_two
<|> apply even.zero },

7.1. Tactics and Tactic Combinators 111

After three applications of even.add_two or even.zero, the first goal cedes its
place to the second goal. The iterate combinator keeps on working on this goal,
until it gets stuck:

`̀̀ even 1 `̀̀ even 3 `̀̀ even 0

The last two goals are never considered.
Next, all_goals invokes a tactic exactly once on each goal. The combinator

succeeds only if the inner tactic succeeds on all goals. It fails in the example
below, because even.add_two cannot be applied to the goal ` even 0:

lemma all_goals_example :
even 4 ∧ even 7 ∧ even 3 ∧ even 0 :=

begin
repeat { apply and.intro },
all_goals { apply even.add_two }, -- fails

To ignore failures of the inner tactic, we can wrap it in the try combinator:

lemma all_goals_try_example :
even 4 ∧ even 7 ∧ even 3 ∧ even 0 :=

begin
repeat { apply and.intro },
all_goals { try { apply even.add_two } },

The resulting state is

`̀̀ even 2 `̀̀ even 5 `̀̀ even 1 `̀̀ even 0

The construct try { tactic } is equivalent to tactic <|> skip, where skip is a
tactic that succeeds without doing anything. A related tactic is done; it succeeds
if there are no goals left and fails otherwise.

Another variant is the any_goals combinator. Like all_goals, it invokes a
tactic once one each goal. But unlike all_goals, it succeeds if the inner tactic
succeeds on any goal. The example

lemma any_goals_example :
even 4 ∧ even 7 ∧ even 3 ∧ even 0 :=

begin
repeat { apply and.intro },
any_goals { apply even.add_two },

results in the state

`̀̀ even 2 `̀̀ even 5 `̀̀ even 1 `̀̀ even 0

This is the same state as in the previous example. The di�erence is that any_goals
can fail whereas all_goals { try { . . . } } always succeeds.

Sometimes we want to leave a goal alone unless we can fully prove it. The
solve1 combinator takes an arbitrary tactic as argument and transforms it into
an all-or-nothing tactic (also called a terminal or end-game tactic). If the inner
tactic does not prove the goal, the combinator fails. In the example

112 Chapter 7. Metaprogramming

lemma any_goals_solve1_repeat_orelse_example :
even 4 ∧ even 7 ∧ even 3 ∧ even 0 :=

begin
repeat { apply and.intro },
any_goals { solve1 { repeat {

apply even.add_two
<|> apply even.zero } } },

the first and fourth goals are proved, and we are left with the two unprovable
goals, exactly as they stand in the lemma statement:

`̀̀ even 7 `̀̀ even 3

The combinators repeat, iterate, all_goals, and any_goals can lead to infi-
nite looping. Consider this example:

lemma repeat_not_example :
¬ even 1 :=

begin
repeat { apply not.intro },

The not.intro rule is (?a→ false)→ ¬ ?a, so it applies once to transform the
goal into ` even 1→ false. Because ¬ ?a is defined as ?a→ false, the rule ap-
plies again, yielding the same goal again. The tactic loops.

So far we have not left the comfort of Lean’s interactive interface level. It is
time to start with the actual metaprogramming, by coding a custom tactic. The
tactic embodies the behavior we hardcoded in the solve1 example above:

meta def intro_and_even : tactic unit :=
do

tactic.repeat (tactic.applyc ‘‘and.intro),
tactic.any_goals (tactic.solve1 (tactic.repeat

(tactic.applyc ‘‘even.add_two
<|> tactic.applyc ‘‘even.zero))),

pure ()

Let us analyze this code step by step:
The first line starts with meta def, indicating the declaration of a metafunc-
tion. These are much like regular functions declared without the meta key-
word, but they do not need to pass the termination check.
The first line declares a metafunction called intro_and_even of type tactic
unit, where tactic α is the type of metaprograms returning a value of type
α. (The terms “tactic” and “metaprogram” are often used interchangeably in
Lean.) Often, metaprograms only have side e�ects on the state but return
no value. In such cases, they can return the empty tuple (), of type unit.
The second line, do, marks the entry into a monad: the metaprogramming
monad (tactic).
The third line is the low-level, metaprogram equivalent of the familiar tactic
invocation repeat { apply and.intro } . The tactic.repeat metafunction
corresponds to repeat. The tactic.applyc metafunction is one of several
that correspond to apply. It applies a lemma specified by its name, of type

7.2. The Metaprogramming Monad 113

name. The name here is ‘‘and.intro. The two backticks resolve the name
of a Lean constant and create a value of type name.
The rest of the metaprogram follows the same principles. Notice how the
monad operator <|> is used to provide the same e�ect as the tactic com-
binator <|>. In fact, the metaprogramming monad is an alternative monad.
Without pure () at the end, the metaprogram would have all_goal’s result
type as its type, but we want tactic unit.

Tactics and tactic combinators often have the same name at the user interface
level and at the metaprogramming level, except for the tactic. prefix. A notable
exception is sorry, which is called tactic.admit.

Once we have defined a custom tactic, we can invoke it as usual:

lemma any_goals_solve1_repeat_orelse_example2 :
even 4 ∧ even 7 ∧ even 3 ∧ even 0 :=

begin
intro_and_even,

This yields the subgoals

`̀̀ even 7 `̀̀ even 3

A key benefit of Lean’s metaprogramming framework is that we do not need
to learn another programming language to write metaprograms. We can work
with the same constructs and notation used to define ordinary objects in Lean’s
library. Everything in that library is available for metaprogramming purposes (e.g.,
Z, list). Metaprograms can be written and debugged in the same interactive en-
vironment, encouraging a style where formal libraries and supporting automation
are developed at the same time. All we need is some basic understanding of mon-
ads and some familiarity with Lean’s metaprogramming interfaces.

We conclude this section by introducing a further tactic combinator that can
be useful for metaprogramming. The “and then” operator ; can be used to join
two tactics. The left-hand side is executed on the first goal. The right-hand side
is executed on every emerging subgoal (but not on the original second goal, third
goal, etc.). Like <|>, the ; operator has the same syntax at the interactive interface
level and at the metaprogramming level. Thus, we can write

by induction n; simp [*]

instead of

begin
induction n,
{ simp },
{ simp [n_ih] }

end

7.2 The Metaprogramming Monad

The metaprogramming monad, tactic, combines the attributes of several kinds
of monads:

114 Chapter 7. Metaprogramming

tactic is a state monad providing access among others to the list of goals,
the global context (including all definitions and inductive types), notations,
and attributes (e.g., the list of @[simp] lemmas).
tactic behaves like an option monad. The program tactic.fail string,
where string is an error message, leaves the monad in an error state.
tactic is an alternative monad. Namely, it provides an operator <|> for
specifying alternatives.
tactic supports tracing. We can use tactic.trace string, or display the
current proof state using tactic.trace_state.

In addition, metaprograms have access to the current goals. Each goal is repre-
sented as a metavariable ?m standing for a missing proof term. Each metavariable
has a type and a local context specifying the variables and hypotheses that can
be used to instantiate ?m. By the PAT principle, variables and hypotheses are not
distinguished. Metaprograms have access to Lean’s functions for inferring implicit
arguments and types.

Let us put the metaprogramming monad to some use:

lemma even_14 :
even 14 :=

by do
tactic.trace "Proving evenness . . .",
intro_and_even

This first example is very modest: It uses the monad’s tracing facilities to print
the message “Proving evenness . . . ” before invoking the intro_and_even tactic we
developed above. The do keyword signals entry into the monad. The by keyword
preceding it is necessary to enter tactic mode, as usual.

As usual in computer science, we can introduce a layer of indirection. We can
package our combination of tracing and proving as its own tactic, and invoking it
to prove that 16 is even:

meta def hello_then_intro_and_even : tactic unit :=
do
tactic.trace "Proving evenness . . .",
intro_and_even

lemma even_16 :
even 16 :=

by hello_then_intro_and_even

Notice, again, the presence of the meta keyword in front of the function definition.
Any executable Lean definition can be used as a metaprogram. In addition, we can
put meta in front of a definition to indicate that is a metadefinition. These need
not terminate but cannot be used in non-meta contexts, because they might be
logically inconsistent. Metaprograms can also call other metaprograms, some of
which are implemented in C++.

Most metaprograms are designed to work on a proof state, as a tactic, but
some can also be used on the top level, without a proof context, by invoking the
run_cmd command:

run_cmd tactic.trace "Hello, Metaworld!"

7.2. The Metaprogramming Monad 115

To adapt to the situation in which they are invoked, tactics must be able to
inspect the current goal. The following example outputs the local context, the
target, and all goals (both the metavariables and their types):

meta def trace_goals : tactic unit :=
do
tactic.trace "local context:",
ctx ← tactic.local_context,
tactic.trace ctx,
tactic.trace "target:",
P ← tactic.target,
tactic.trace P,
tactic.trace "all missing proofs:",
Hs ← tactic.get_goals,
tactic.trace Hs,
τs ← list.mmap tactic.infer_type Hs,
tactic.trace τs

lemma even_18_and_even_20 (α : Type) (a : α) :
even 18 ∧ even 20 :=

by do
tactic.applyc ‘‘and.intro,
trace_goals,
intro_and_even

The output, which is visible by hovering over the do keyword, is as follows:

local context:
[α, a]
target:
even 18
all missing proofs:
[?m_1, ?m_1]
[even 18, even 20]

The goals are a list of metavariables that must be instantiated. They are normally
not displayed in the proof state; instead, only their types are shown. In the ex-
ample, the goals are ?m_1 : even 18 and ?m_1 : even 20. Confusingly, Lean reuses
the same metavariable names for di�erent goals.

The metafunctions in the above programs have the following types:

tactic.trace : α→ tactic unit
tactic.local_context : tactic (list expr)

tactic.target : tactic expr
tactic.get_goals : tactic (list expr)

tactic.infer_type : expr→ tactic expr

where expr stores a term and α is restricted by a type class (not shown) to be
printable. In addition, list.mmap (Section 6.9) is typed as follows:

list.mmap {α β : Type} : (α→ m β)→ list α→ m (list β)

116 Chapter 7. Metaprogramming

In practice, instead of the ad hoc trace_goals tactic, we would normally use
the following predefined tactic:

tactic.trace_state : tactic unit

The next example is more realistic. It implements a hypothesis tactic that,
like the predefined assumption, looks for a hypothesis of the right type (i.e., the
right proposition) and applies it to prove the goal:

meta def exact_list : list expr → tactic unit
| [] := tactic.fail "no matching expression found"
| (h :: hs) :=

do {
tactic.trace "trying",
tactic.trace h,
tactic.exact h }

<|> exact_list hs

meta def hypothesis : tactic unit :=
do

hs ← tactic.local_context,
exact_list hs

The main metafunction extracts all available hypotheses in the local context,
which are stored as expressions of type expr, and iterates through them. For each
hypothesis, we first try to invoke the predefined exact tactic. If this fails, the <|>
operator passes control to the right branch, in which we continue recursively with
the remaining hypotheses. If no hypotheses are left, we invoke tactic.fail.

A simple invocation follows:

lemma app_of_app {α : Type} {p : α → Prop} {a : α}
(h : p a) :

p a :=
by hypothesis

The tracing informs us that α, p, a, and h were tried in turn before the matching h
was found and successfully applied.

The example featured the metafunction

tactic.fail {α β : Type} : α→ tactic β

where α must support printing.

7.3 Names, Expressions, Declarations, and Environments

The metaprogramming framework revolves around five main types:
tactic manages the proof state, the global context, and more;
name represents a structured name (e.g., x, even.add_two);
expr represents an expression—i.e., a term, type, proof, or proposition—as
an abstract syntax tree;
declaration represents a constant declaration, a definition, an axiom, or a
lemma;

7.3. Names, Expressions, Declarations, and Environments 117

environment stores all the declarations and notations that make up the
global context.

The type expr is presented as follows to metaprograms:
meta inductive expr : Type
| var {} : nat → expr
| sort {} : level → expr
| const {} : name → list level → expr
| mvar : name → name → expr → expr
| local_const : name → name → binder_info → expr → expr
| app : expr → expr → expr
| lam : name → binder_info → expr → expr → expr
| pi : name → binder_info → expr → expr → expr
| elet : name → expr → expr → expr → expr
| macro : macro_def → list expr → expr

In turn:

expr.var represents a bound variable, using a notation known as De Bruijn
indices. For example, expr.var 0 refers to the variable bound by the closest
λ- or ∀-binder, expr.var 1 refers to the variable bound by the second closest
binder, and so on.
expr.sort is used to represent the types of types. For example, expr.sort
level.zero represents Prop, and expr.sort (level.succ level.zero) rep-
resents Type.
expr.const represents a constant, such as list.reverse or N. The second
argument represents universe levels, a concept that will be explained in
Chapter 11.
expr.mvar represents a metavariable, i.e., a variable ?mwith a question mark.
The first name argument is a unique name for the metavariable, the second
name is a “pretty” name, and the expr either stores the metavariable’s type
or is a dummy value.
expr.local_const represents a variable in the local context (e.g., x, h). The
first name argument is a unique name for the variable; the second name is
a “pretty” name; the binder_info stores whether the variable is an explicit
(), implicit { }, or type class [] argument; and the expr either stores the
variable’s type or is a dummy value.
expr.app represents the application of a function to an argument.
expr.lam represents a λ-expression. The name is the bound variable’s name,
the binder_info is as for expr.local_const, the first expr is the bound
variable’s type, and the second expr is the λ-expression’s body.
expr.pi represents a ∀-quantifier, including the degenerate case where the
bound variable does not occur in the body (→). The arguments are as for
expr.lam.
expr.elet represents a let expression. The name is the name of the defini-
tion variable, the first expr is its type, the second expr is the right-hand side
of the definition, and the third expr is the let expression’s body.
expr.macro is a low-level mechanism used to implement sorry, nameless
placeholders (_), and recursive metaprograms.

118 Chapter 7. Metaprogramming

To each constructor corresponds a discriminator of type expr→ bool. For
example, expr.is_pi e returns tt if e is of the form expr.pi . . . ; otherwise, it
returns ff. The names are easy to guess, except for expr.is_constant, expr.
is_local_constant, expr.is_lambda, and expr.is_let.

A lightweight way to construct an expression uses Lean’s quoting mechanism,
based on backticks. Expressions are enclosed in parentheses () and preceded
by one, two, or three backticks (‘).

An expression preceded by a single backtick—‘(expr)—must be fully elabo-
rated. In other words, it may not contain placeholders, as in the second example:

run_cmd do
let e : expr := ‘(list.map (λn : N, n + 1) [1, 2, 3]),
tactic.trace e

run_cmd do
let e : expr := ‘(list.map _ [1, 2, 3]), -- fails
tactic.trace e

With two backticks—‘‘(expr)—we have pre-expressions. These are Lean ex-
pressions that may contain some placeholders to be filled in later:

run_cmd do
let e1 : pexpr := ‘‘(list.map (λn, n + 1) [1, 2, 3]),
let e2 : pexpr := ‘‘(list.map _ [1, 2, 3]),
tactic.trace e1,
tactic.trace e2

The type pexpr is a variant of expr. A pexpr can be elaborated into an expression
using tactic.to_expr, which has type pexpr→ tactic expr.

With three backticks—‘‘‘(expr)—we have pre-expressions without any name
checking. We can refer to seattle.washington even if it does not exist when the
pre-expression is parsed:

run_cmd do
let e : pexpr := ‘‘‘(seattle.washington),
tactic.trace e

A similar quoting mechanism exists for names. The syntax consists of one or
two backticks, without parentheses:

run_cmd tactic.trace ‘and.intro
run_cmd tactic.trace ‘intro_and_even
run_cmd tactic.trace ‘seattle.washington

run_cmd tactic.trace ‘‘and.intro
run_cmd tactic.trace ‘‘intro_and_even
run_cmd tactic.trace ‘‘seattle.washington -- fails

The single-backtick variant—‘name—does not check whether the name exists. The
two-backtick variant—‘‘name—fully elaborates the name of a constant and re-
turns an error if no constant of that name exists in the current global context.
Whether the check and elaboration is desirable depends on the situation. In
the demonstration file associated with this chapter, ‘intro_and_even returns the
name intro_and_even (of the metafunction we defined in Section 7.1), whereas

7.3. Names, Expressions, Declarations, and Environments 119

‘‘intro_and_even expands to the fully elaborated name LoVe.intro_and_even,
including the namespace LoVe. Tactics such as tactic.applyc expect a fully elab-
orated name. This is why we wrote tactic.applyc ‘‘and.intro earlier. A name
can be turned into a string using the polymorphic to_string operation.

Sometimes we would like to embed an existing expression in a larger expres-
sion. This can be achieved using antiquotations. These are announced by the
prefix %% followed by a name from the current context. Antiquotations are avail-
able with one, two, and three backticks:

run_cmd do
let x : expr := ‘(2 : N),
let e : expr := ‘(%%x + 1),
tactic.trace e

run_cmd do
let x : expr := ‘(@id N),
let e : pexpr := ‘‘(list.map %%x),
tactic.trace e

run_cmd do
let x : expr := ‘(@id N),
let e : pexpr := ‘‘‘(a _ %%x),
tactic.trace e

The three commands print 2 + 1, list.map (as_is (id.{1} nat)), and a 6._.13
(as_is (id.{1} nat))—cryptic but precise.

Antiquotations can also be used to perform pattern matching:

lemma one_add_two_eq_three :
1 + 2 = 3 :=

by do
‘(%%a + %%b = %%c) ← tactic.target,
tactic.trace a,
tactic.trace b,
tactic.trace c,
‘(@eq %%α %%l %%r) ← tactic.target,
tactic.trace α,
tactic.trace l,
tactic.trace r,
tactic.exact ‘(refl _ : 3 = 3)

The two← lines, corresponding to bind operations, succeed only if the right-hand
side has the right shape (which it has). Given that target is 1 + 2 = 3, executing
the first line binds the variables a, b, c to 1, 2, 3, respectively. The second pattern
looks at 1 + 2 = 3 through di�erent lenses—namely, without syntactic sugar, as an
expression of the form @eq α l r. This also succeeds, binding α, l, r to N, 1 + 2,
and 3, respectively.

Declarations are presented as an inductive type to metaprogrammers:

meta inductive declaration
| defn : name → list name → expr → expr →
reducibility_hints → bool → declaration

120 Chapter 7. Metaprogramming

| thm : name → list name → expr → task expr → declaration
| cnst : name → list name → expr → bool → declaration
| ax : name → list name → expr → declaration

For example, in a declaration of the form declaration.defn nam _ τ rhs _ _, nam
is the name of the defined constant, τ is its type, and rhs is the definition’s body.
Given a declaration, declaration.to_name extracts its first component, of type
name.

The environment is presented as an abstract type, equipped with some oper-
ations to query and modify it. The most useful metafunction is

environment.fold {α : Type} :
environment→ α→ (declaration→ α→ α)→ α

A call to environment.fold env x f applies the given function f on each declara-
tion in the global context in turn. In addition, an accumulator value is threaded
through. Its initial value is x and the final value is returned at the end. For example,
the following command outputs the number of global declarations:

run_cmd do
env ← tactic.get_env,
tactic.trace (environment.fold env 0 (λdecl n, n + 1))

Fold functions are a common idiom in functional programming. If you are not
familiar with them, we recommend the chapter “Higher Order Functions” of Learn
You a Haskell for Great Good! [22]. You can start from the heading “Only folds and
horses.”

7.4 First Example: A Conjunction-Destructing Tactic

In this and the next section, we review two metaprograms that accomplish well-
defined tasks. The first program is a tactic called destruct_and that automates
the elimination of conjunctions in premises. Our aim is to automate proofs such
as the following:

lemma abcd_a (a b c d : Prop) (h : a ∧ (b ∧ c) ∧ d) :
a :=

and.elim_left h

lemma abcd_b (a b c d : Prop) (h : a ∧ (b ∧ c) ∧ d) :
b :=

and.elim_left (and.elim_left (and.elim_right h))

lemma abcd_bc (a b c d : Prop) (h : a ∧ (b ∧ c) ∧ d) :
b ∧ c :=

and.elim_left (and.elim_right h)

In each case, we would like to simply write destruct_and h.
Our tactic relies on a helper metafunction, which takes as argument the hy-

pothesis h to use as an expression rather than as a name:

meta def destruct_and_helper : expr → tactic unit
| h :=

7.4. First Example: A Conjunction-Destructing Tactic 121

do
t ← tactic.infer_type h,
match t with
| ‘(%%a ∧ %%b) :=

tactic.exact h
<|>
do {

ha ← tactic.to_expr ‘‘(and.elim_left %%h),
destruct_and_helper ha }

<|>
do {

hb ← tactic.to_expr ‘‘(and.elim_right %%h),
destruct_and_helper hb }

| _ := tactic.exact h
end

We first extract h’s type (i.e., its proposition). We perform pattern matching with
antiquotations to see if the type is of the form a ∧ b. If so, we try three things
in turn. First, we invoke exact h. If this fails, we apply the left elimination rule
on h, producing the proof term and.elim_left h : a, and continue recursively
with that proof term. The tactic.to_expr call converts a pre-expression into
an expression, elaborating it. If our attempt at left elimination fails, we try right
elimination instead.

The main metafunction has very little to do:

meta def destruct_and (nam : name) : tactic unit :=
do

h ← tactic.get_local nam,
destruct_and_helper h

The metafunction retrieves the hypothesis h with the specified name nam using
tactic.get_local, which has type name→ tactic expr, and calls the helper meta-
function.

We can now turn to our motivating examples and prove them again, this time
using our new widget:

lemma abc_a (a b c : Prop) (h : a ∧ b ∧ c) :
a :=

by destruct_and ‘h

lemma abc_b (a b c : Prop) (h : a ∧ b ∧ c) :
b :=

by destruct_and ‘h

lemma abc_bc (a b c : Prop) (h : a ∧ b ∧ c) :
b ∧ c :=

by destruct_and ‘h

Unfortunately, we need to quote the name of the hypothesis with a backtick. We
would need more, unpleasant-to-write code to provide proper parsing for our tac-
tic’s argument.

122 Chapter 7. Metaprogramming

7.5 Second Example: A Provability Advisor

Sometimes we state a lemma, prove it, and later realize that the lemma already
existed. This can be prevented using prove_direct, a tool that traverses all avail-
able lemmas and checks whether one of them can prove the current goal.

We will review the code of prove_direct in steps. The first step is a metafunc-
tion is_theorem that returns tt if a declaration is a lemma or an axiom and ff
otherwise:

meta def is_theorem : declaration → bool
| (declaration.defn _ _ _ _ _ _) := ff
| (declaration.thm _ _ _ _) := tt
| (declaration.cnst _ _ _ _) := ff
| (declaration.ax _ _ _) := tt

We will use this metafunction to filter out the declarations that do not interest us.
The next metafunction returns the list of all theorem names:

meta def get_all_theorems : tactic (list name) :=
do

env ← tactic.get_env,
pure (environment.fold env [] (λdecl nams,

if is_theorem decl then declaration.to_name decl :: nams
else nams))

The tactic.get_env metafunction yields an environment object giving the global
context. We can traverse it using environment.fold, which is applied on each
declaration decl in turn and on an accumulator nams. We extend the accumulator
with each declaration’s name that satisfies is_theorem. At the end, environment.
fold returns the accumulator.

Another component we need is a tactic that attempts to prove the goal using
a theorem specified by its name:

meta def prove_with_name (nam : name) : tactic unit :=
do
tactic.applyc nam

({ md := tactic.transparency.reducible, unify := ff }
: tactic.apply_cfg),

tactic.all_goals tactic.assumption,
pure ()

The tactic.applyc applies the theorem named nam to the current goal. For per-
formance, we pass an optional configuration,{ md := transparency.reducible,
unify := ff }, which instructs tactic.applyc to perform less computational ex-
pansion. This is important since this tactic will be invoked thousands of times. The
tactic.all_goals combinator, in conjunction with tactic.assumption, is used
to apply the hypotheses from the local context to all remaining subgoals.

Finally, our prove_direct tactic goes through all theorems found by get_all_
theorems and succeeds with the first theorem that proves the current goal:

meta def prove_direct : tactic unit :=
do

nams ← get_all_theorems,

7.6. A Look at Two Predefined Tactics 123

list.mfirst (λnam,
do

prove_with_name nam,
tactic.trace ("directly proved by " ++ to_string nam))

nams

The list.mfirst e�ectful function invokes a tactic to each element of a list until
one invocation succeeds. We use tactic.trace to output the successful theorem
to the user, so that they can apply the theorem directly.

As a small refinement of the above, we propose a version of prove_direct
that also looks for equalities stated in symmetric form—for example, if the goal is
l = r but the theorem is r = l:

meta def prove_direct_symm : tactic unit :=
prove_direct
<|>
do {

tactic.applyc ‘eq.symm,
prove_direct }

Our solution is simple: We first try prove_direct, and if that fails, we apply sym-
metry of equality (the property ?l = ?r→ ?r = ?l) to change the goal and try
prove_direct again.

This concludes our review of prove_direct. A similar, more sophisticated tac-
tic is available as library_search in mathlib.

7.6 A Look at Two Predefined Tactics

Quite a few of Lean’s predefined tactics are implemented as metaprograms and
not in C++. We can find these definitions by clicking the name of a construct in
Visual Studio Code while holding the control or command key. To familiarize our-
selves further with the metaprogramming framework, we conclude this chapter
by looking at the implementation of two basic tactics that were introduced in
Chapter 2: intro and assumption.

We can find intro’s code by entering #check tactic.intro and by clicking
tactic.intro while holding control or command:

meta def intro (n : name) : tactic expr :=
do

t ← target,
if expr.is_pi t ∨ expr.is_let t then

intro_core n
else

whnf_target >> intro_core n

The definition is located inside the tactic namespace, explaining why tactic.
intro and tactic.target are simply called intro and target. If the goal’s target
is a ∀-quantifier or a let expression, tactic.intro_core is invoked. Otherwise, a
tactic named tactic.whnf_target is invoked before tactic.intro_core, in the
hope that a ∀ or let will emerge. The >> operator performs sequential composi-
tion in a monad; ma >> mb is syntactic sugar for do ma, mb.

If we follow the definition of tactic.intro_core, we reach a dead end:

124 Chapter 7. Metaprogramming

meta constant intro_core : name → tactic expr

The metafunction is simply declared as a constant, without a definition. This indi-
cates that the implementation is in C++. The core of the whnf_target tactic, which
normalizes the goal by expanding definitions, β-reducing, and more, is also im-
plemented in C++, for e�ciency reasons.

In Section 7.2, we implemented a hypothesis tactic that mimicked assumption.
Let us now have a look at the real thing:

meta def assumption : tactic unit :=
do {
ctx ← local_context,
t ← target,
H ← find_same_type t ctx,
exact H }

<|> fail "assumption tactic failed"

Again, the definition is in the tactic namespace. The assumption tactic attempts
to find a hypothesis H (of type expr) among the variables declared in the local
context ctx that has a type unifiable with that of the target t (i.e., a hypothesis
whose statement is unifiable with t). Then H is applied to the target using tactic.
exact. If anything goes wrong, the assumption tactic catches the error and reports
“assumption tactic failed.”

The auxiliary metafunction find_same_type is defined as follows:

meta def find_same_type : expr → list expr → tactic expr
| e [] := failed
| e (H :: Hs) :=

do
t ← infer_type H,
(unify e t >> return H)
<|> find_same_type e Hs

The metafunction takes an expression e representing a type (i.e., a proposition)
and a context and returns an expression. If the context is empty, an anonymous
error is raised. Otherwise, we check if the local context’s first hypothesis H’s type t
is unifiable with e. If so, H is returned; otherwise, we continue with the remaining
hypotheses Hs. The return operation is an alias for pure.

The find_same_type metafunction relies on two general-purpose metafunc-
tions we had not encountered before:

tactic.failed {α : Type} : tactic α
tactic.unify : expr→ expr→ tactic unit

7.7 Miscellaneous Tactics

skip

The skip tactic succeeds without doing anything. It is sometimes useful when
writing custom tactics.

7.8. Summary of New Lean Constructs 125

done

The done tactic raises a failure if there are some goals left; otherwise, it succeeds
without doing anything. It is sometimes useful as a building block when writing
custom tactics.

library_search

The library_search tactic searches the loaded libraries for a lemma that exactly
proves the goal. On success, it suggests a tactic invocation of the form exact . . . ,
which can be inserted in the formalization.

7.8 Summary of New Lean Constructs

Command

run_cmd executes a metaprogram on the top level, without a proof context

Declaration

meta prefixes declarations of metaprograms

Quotations

‘n quotes literal name, with checking
‘‘n quotes literal name, without checking
‘(e) quotes fully elaborated expressions
‘‘(e) quotes pre-expressions, with name checking
‘‘‘(e) quotes pre-expressions, without name checking
%%x embeds an expression within a quotation

Tactic

done fails if there are some goals left
library_search searches the libraries for a lemma that proves the current goal
skip does nothing

Tactic Combinators

; invokes the second tactic to all subgoals from the first tactic
<|> tries the left-hand side first; tries the right-hand side on failure
all_goals invokes a tactic once on each goal, expecting only successes
any_goals invokes a tactic once on each goal, expecting at least one success
iterate repeatedly invokes a tactic on the first goal until failure
repeat repeatedly invokes a tactic on all goals and subgoals until failure
solve1 transforms a tactic into an all-or-nothing tactic
try tries to invoke a tactic; does nothing on failure

Part III

Program Semantics

127

Chapter 8

Operational Semantics

In this and the next two chapters, we will see how to use Lean to specify the syntax
and semantics of programming languages, to prove properties of the semantics,
and to reason about concrete programs.

This chapter is heavily inspired by Chapter 7 of Concrete Semantics: With Isa-
belle/HOL [26].

8.1 Formal Semantics

A formal semantics allows us to specify and reason about a programming language
and about individual programs written in that language. It can form the basis
of verified compilers, interpreters, verifiers, static analyzers, type checkers, and
more. Without formal proofs, these tools are almost always wrong.

Consider WebAssembly, a new machine-like language for web browsers, de-
signed as a portable target for compiling high-level languages such as C++ and
Rust. A researcher, Conrad Watt [33], formalized its semantics and type system
using the Isabelle/HOL proof assistant. He found many issues (our italics):

We have produced a full Isabelle mechanisation of the core execution
semantics and type system of the WebAssembly language. In addition,
we have created a mechanised proof for the type soundness properties
stated in the working group’s paper. In order to complete this proof,
several deficiencies in the o�cial WebAssembly specification, uncov-
ered by our proof and modelling work, needed to be corrected by the
specification authors. In some cases, these meant that the type system
was originally unsound.
We have maintained a constructive dialogue with elements of the work-
ing group, mechanising and verifying new features as they are added
to the specification. In particular, the mechanism by which a Web-
Assembly implementation interfaces with its host environment was
not formally specified in the working group’s original paper. Extend-
ing our mechanisation to model this feature revealed a deficiency in
the WebAssembly specification that sabotaged the soundness of the
type system.

Watt’s research is only one example among many. Proof assistants are widely
used for programming language research. Every year, around 10%–20% of papers

129

130 Chapter 8. Operational Semantics

presented at the Principles of Programming Languages (POPL) conference are for-
malized. This is possible because comparatively little machinery is needed to get
started. The proofs tend to have lots of cases, which is a good match for comput-
ers. Moreover, proof assistants are extremely convenient to keep track of what
needs to be changed as we extend a programming language with more features.

8.2 A Minimalistic Imperative Language

WHILE1 is a minimalistic imperative language with the following grammar:

S ::= skip (no-op)
| x := a (assignment)
| S ; S (sequential composition)
| if b then S else S (conditional statement)
| while b do S (while loop)

where S stands for a statement (also called command or program), x for a program
variable, a for an arithmetic expression, and b for a Boolean expression.

In our grammar, we deliberately leave the syntax of arithmetic and Boolean
expressions unspecified. In Lean, we have the choice:

We can use a type such as aexp from Section 1.2 and similarly for Booleans.
We can simply decide that an arithmetic expression is a function from states
to numbers (e.g., state→ N) and a Boolean expression is a predicate over
states (e.g., state→ bool or state→ Prop). A state is a mapping from pro-
gram variables to values. Thus, x + y + 1 would be represented by the func-
tion λs : state, s "x" + s "y" + 1, and a 6= b would be represented by the
predicate λs : state, s "a" 6= s "b".

These two options correspond to the di�erence between deep and shallow
embeddings. A deep embedding of some syntax (expression, formula, program,
etc.) consists of an abstract syntax tree specified in the proof assistant (e.g., aexp)
with a semantics (e.g., eval). In contrast, a shallow embedding simply reuses the
corresponding mechanisms from the logic (e.g., functions and predicates).

A deep embedding allows us to reason about a program’s syntax. A shallow
embedding is more lightweight, because we can use it directly, without having to
define a semantics. A shallow embedding is its own semantics.

In Chapter 6, we used a shallow embedding of e�ectful programs. Here, we
will use a deep embedding of programs (which we find interesting and want to
study closely) and a shallow embedding of arithmetic and Boolean expressions
(which we find less interesting). Our Lean definition of programs follows:

inductive stmt : Type
| skip : stmt
| assign : string → (state → N) → stmt
| seq : stmt → stmt → stmt
| ite : (state → Prop) → stmt → stmt → stmt
| while : (state → Prop) → stmt → stmt

1Fans of backronyms might enjoy this one: Weak Hypothetical Imperative Language Example.

8.3. Big-Step Semantics 131

The infix syntax S ;; T abbreviates stmt.seq S T. We cannot use a single semi-
colon ; because it means “and then” (Section 7.1).

The correspondence between the inductive type’s constructors and the WHILE
grammar rules should be clear. Variables are represented by strings. The type
state is defined as string→ N, a mapping from variable names to values. For
simplicity, our program variables are all of type natural number, and (somewhat
unusually) all possible variable names exist in the state and are assigned a value.

The following small program illustrates deep embedding:

def silly_loop : stmt :=
stmt.while (λs, s "x" > s "y")

(stmt.skip ;; stmt.assign "x" (λs, s "x" - 1))

8.3 Big-Step Semantics

An operational semantics corresponds to an idealized interpreter. There are two
main variants: big-step semantics and small-step semantics. We will start by giv-
ing a big-step semantics to our WHILE language.

In a big-step operational semantics (also called natural semantics), judgments
have the form (S, s)⇒�⇒ t and the following intuitive interpretation:

Starting in a state s, executing S may terminate in the state t.

For deterministic languages, since programs always have a single outcome, “may
terminate” means the same as “must terminate” or “terminates.”

In accordance with the definition of WHILE programs, a state s is a function of
type string→ N. An example judgment follows:

(x := x + y; y := 0, [x 7→ 3, y 7→ 5])⇒�⇒ [x 7→ 8, y 7→ 0]

We use the informal notation [x 7→ 3, y 7→ 5] to represent the function λv, if v =
"x" then 3 else if v = "y" then 5 else 0 and similarly for [x 7→ 8, y 7→ 0]. Intu-
itively, the judgment holds.

The traditional way to specify such a semantics is through a formal system of
derivation rules, in the style of the typing rules presented in Sections 1.1.3 and 3.6.
The derivation rules for big-step semantics judgments are given below. The rules
can be seen as an idealized interpreter for WHILE programs.

Skip
(skip, s)⇒�⇒ s

Asn
(x := a, s)⇒�⇒ s{x 7→ a s}

(S, s)⇒�⇒ t (T, t)⇒�⇒ u
Seq

(S; T, s)⇒�⇒ u

(S, s)⇒�⇒ t
If-True if b s is true

(if b then S else T, s)⇒�⇒ t

(T, s)⇒�⇒ t
If-False if b s is false

(if b then S else T, s)⇒�⇒ t

132 Chapter 8. Operational Semantics

(S, s)⇒�⇒ t (while b do S, t)⇒�⇒ u
While-True if b s is true

(while b do S, s)⇒�⇒ u

While-False if b s is false
(while b do S, s)⇒�⇒ s

In the rules, a s denotes the value of arithmetic expression a in state s, and
similarly for b s. Moreover, the syntax s{x 7→ n} represents the state that is iden-
tical to s except that it maps the variable x to n. Formally:

s{x 7→ n} = (λv, if v = x then n else s v)

This syntax and its automation are provided by LoVelib.
As an exercise, let us derive the example judgment above. Let s := [x 7→ 3,

y 7→ 5], t := [x 7→ 8, y 7→ 5], and u := [x 7→ 8, y 7→ 0]. Then we have

Asn
(x := x + y, s)⇒�⇒ t

Asn
(y := 0, t)⇒�⇒ u

Seq
(x := x + y; y := 0, s)⇒�⇒ u

The derivation rules can be read intuitively. Consider Seq:

If (1) executing S in state s leads to state t and (2) executing T in state
t leads to state u, then executing the sequential composition S; T in
state s leads to state u.

The conditions (1) and (2) correspond to the two premises of Seq.
The most complicated rule is undoubtedly While-True. Intuitively, it can be

understood as follows:

Assume condition b is true in state s. If (1) executing S in state s leads
to state t and (2) executing while b do S from state t leads to state u,
then executing while b do S in state s leads to state u.

Another way to think about While-True is in terms of loop unrolling. If the loop
condition is true, while b do S is equivalent to the compound statement S; while
b do S. The two premises of While-True correspond to the two premises of the
instance of the Seq rule for S; while b do S.

In Lean, a big-step semantics judgment is represented by an inductive predi-
cate whose introduction rules closely follow the derivation rules above:

inductive big_step : stmt × state → state → Prop
| skip {s} :

big_step (stmt.skip, s) s
| assign {x a s} :

big_step (stmt.assign x a, s) (s{x 7→ a s})
| seq {S T s t u} (hS : big_step (S, s) t)

(hT : big_step (T, t) u) :
big_step (S ;; T, s) u

| ite_true {b : state → Prop} {S T s t} (hcond : b s)
(hbody : big_step (S, s) t) :

big_step (stmt.ite b S T, s) t

8.4. Properties of the Big-Step Semantics 133

| ite_false {b : state → Prop} {S T s t} (hcond : ¬ b s)
(hbody : big_step (T, s) t) :

big_step (stmt.ite b S T, s) t
| while_true {b : state → Prop} {S s t u} (hcond : b s)

(hbody : big_step (S, s) t)
(hrest : big_step (stmt.while b S, t) u) :

big_step (stmt.while b S, s) u
| while_false {b : state → Prop} {S s} (hcond : ¬ b s) :

big_step (stmt.while b S, s) s

We use implicit arguments, within curly braces, for many of the variables corre-
sponding to the derivation rule’s metavariables.

Using an inductive predicate as opposed to a recursive function allows us to
cope with nontermination (e.g., a diverging while) and, for languages richer than
WHILE, nondeterminism. It also arguably provides a nicer syntax, closer to the
judgment rules that are traditionally used in the scientific literature. If we were
to attempt a recursive definition such as

def eval : stmt → state → state
| stmt.skip s := s
| (stmt.assign x a) s := s{x 7→ a s}
| (stmt.ite b S T) s := if b s then eval S s else eval T s
| (S ;; T) s := eval T (eval S s)
| (stmt.while b S) s :=

if b s then eval (stmt.while b S) (eval S s) else s

instead, we would face nontermination of the stmt.while case. Indeed, since
the program stmt.while (λ_, true) stmt.skip loops forever, trying to evaluate
it using evalwould never return. (There are other issues with the above definition,
due to the use of Prop to represent Boolean expressions.)

Equipped with a big-step semantics, we can reason about concrete programs
such as the one defined in Section 8.2 and prove lemmas such as the following:

lemma silly_loop_from_1_big_step :
(silly_loop, (λ_, 0){"x" 7→ 1}) ⇒�⇒ (λ_, 0) :=

begin
rw silly_loop,
apply big_step.while_true,
{ simp },
{ apply big_step.seq,

{ apply big_step.skip },
{ apply big_step.assign } },

{ simp,
apply big_step.while_false,
linarith }

end

8.4 Properties of the Big-Step Semantics

Equipped with a big-step semantics, we can reason about concrete programs,
proving theorems relating final states with initial states. Perhaps more interest-

134 Chapter 8. Operational Semantics

ingly, we can prove properties of the programming language, such as determinism
and nontermination.

We start with determinism. It may seem like a trivial property, but it is easy
to mistype a rule and obtain nondeterminism. For example, in the rule for assign-
ment, if we mistakenly write big_step (stmt.assign x a, s) (s{y 7→ a s}) with y
instead of x, we suddenly can use the rule to modify any variable y we please. In
other words, an execution of the program could modify any variable at random.
So let us verify that our WHILE language really is deterministic:

lemma big_step_deterministic {S s l r} (hl : (S, s) ⇒�⇒ l)
(hr : (S, s) ⇒�⇒ r) :

l = r

The Lean proof is in the demonstration file associated with this chapter. We con-
tent ourselves with an informal proof sketch:

The proof is by rule induction over (S, s)⇒�⇒ l.
Case Skip: To have (skip, s)⇒�⇒ l or (skip, s)⇒�⇒ r, we need l = r
= s.
Case Asn: Similar to Skip.
Case Seq: We have the hypotheses (S, s)⇒�⇒ t, (T, t) ⇒�⇒ l, (S, s)
⇒�⇒ t’, and (T, t’)⇒�⇒ r and the induction hypotheses ∀r, (S, s)⇒�⇒
r→ t = r and ∀r, (T, t)⇒�⇒ r→ l = r. From the first induction hy-

pothesis together with (S, s)⇒�⇒ t’, we derive t = t’. From the sec-
ond induction hypothesis together with (T, t’)⇒�⇒ r, we derive l = r.
Case If-True: Since b s is true, (if b then S else T, s) ⇒�⇒ r can only
have been derived using If-True and thus (S, s)⇒�⇒ r. The induction
hypothesis is ∀r, (S, s)⇒�⇒ r→ l = r. We can apply (S, s)⇒�⇒ r to it
to obtain l = r.
Case If-False: Similar to If-True.
Case While-True: Similar to Seq.
Case While-False: Similar to Skip. ut

Given that the WHILE language is deterministic, for the big-step semantics,
termination would amount to the following:

lemma big_step_terminates {S s} :
∃t, (S, s) ⇒�⇒ t

This property means that for every statement S and state s, there exists a state
t such that executing S starting in s may terminate in t. Because WHILE is deter-
ministic, “may terminate” means the same as “must terminate.”

However, the property does not hold. The big-step semantics can be used to
show that stmt.while (λ_, true) S will never terminate, regardless of the start
state:

lemma big_step_doesnt_terminate {S s t} :
¬ (stmt.while (λ_, true) S, s) ⇒�⇒ t :=

begin
intro hw,

8.5. Small-Step Semantics 135

induction’ hw,
case while_true {

assumption },
case while_false {

cc }
end

When reasoning about an inductive predicate, it is often convenient to use
inversion rules (Section 5.5). Accordingly, we prove the following rules:

@[simp] lemma big_step_skip_iff {s t} :
(stmt.skip, s) ⇒�⇒ t ↔ t = s

@[simp] lemma big_step_assign_iff {x a s t} :
(stmt.assign x a, s) ⇒�⇒ t ↔ t = s{x 7→ a s}

@[simp] lemma big_step_seq_iff {S T s t} :
(S ;; T, s) ⇒�⇒ t ↔ (∃u, (S, s) ⇒�⇒ u ∧ (T, u) ⇒�⇒ t)

@[simp] lemma big_step_ite_iff {b S T s t} :
(stmt.ite b S T, s) ⇒�⇒ t ↔
(b s ∧ (S, s) ⇒�⇒ t) ∨ (¬ b s ∧ (T, s) ⇒�⇒ t)

lemma big_step_while_iff {b S s u} :
(stmt.while b S, s) ⇒�⇒ u ↔
(∃t, b s ∧ (S, s) ⇒�⇒ t ∧ (stmt.while b S, t) ⇒�⇒ u)
∨ (¬ b s ∧ u = s)

lemma big_step_while_true_iff {b : state → Prop} {S s u}
(hcond : b s) :

(stmt.while b S, s) ⇒�⇒ u ↔
(∃t, (S, s) ⇒�⇒ t ∧ (stmt.while b S, t) ⇒�⇒ u)

@[simp] lemma big_step_while_false_iff {b : state → Prop}
{S s t} (hcond : ¬ b s) :

(stmt.while b S, s) ⇒�⇒ t ↔ t = s

We add most of the rules to the simp set. We leave out big_step_while_iff
and big_step_while_true_iff because they could make simp loop, due to the
presence on the right-hand side of a term that matches the left-hand side.

8.5 Small-Step Semantics

A limitation of big-step semantics is that they do not let us reason about interme-
diate states. From a judgment (S, s)⇒�⇒ t, all we see is the initial state s and the
final state t. This is too coarse-grained to reason about multithreaded programs,
where several processes can interact with each other’s intermediate states. More-
over, for nondeterministic languages, big-step semantics o�er no general way to
express termination: A judgment indicates a possibility (executing S in state s may
result in state t), not a necessity.

136 Chapter 8. Operational Semantics

Small-step operational semantics provide a finer view. The transition predi-
cate⇒ has type stmt × state→ stmt × state→ Prop. Intuitively,(S, s)⇒ (T, t)
means that executing one step of program S in state s leaves the program T to be
executed, in state t. If there is nothing left to be executed, we put skip.

An execution is a finite or infinite chain (S0, s0)⇒ (S1, s1)⇒ · · · of “small”
⇒ steps. A pair (S, s) is called a configuration; it is final if no transition of the
form (S, s)⇒ (T, t) is possible, for any (T, t). A possible execution follows:

(x := x + y; y := 0, [x 7→ 3, y 7→ 5])
⇒ (skip; y := 0, [x 7→ 8, y 7→ 5])
⇒ (y := 0, [x 7→ 8, y 7→ 5])
⇒ (skip, [x 7→ 8, y 7→ 0])

If we take the analogy of a computer processor, the S component of a con-
figuration (S, s) can be thought of as a program counter, which indicates which
instructions should be executed next. The step-by-step execution of a program
resembles running a program in a debugger with a breakpoint at every step.

The valid small-step judgments are given as derivation rules:

Asn
(x := a, s)⇒ (skip, s{x 7→ a s})

(S, s)⇒ (S’, s’)
Seq-Step

(S; T, s)⇒ (S’; T, s’)

Seq-Skip
(skip; T, s)⇒ (T, s)

If-True if b s is true
(if b then S else T, s)⇒ (S, s)

If-False if b s is false
(if b then S else T, s)⇒ (T, s)

While
(while b do S, s)⇒ (if b then (S; while b do S) else skip, s)

The rules are reminiscent of the tennis game transition system of Section 5.1.2.
These, too, specified small steps: from 0–0 to 15–0, to 15–15, and so on.

Unlike in the big-step semantics, there is no rule for skip in the small-step se-
mantics. This is because a configuration of the form (skip, s) is considered final;
skip is understood as the statement whose execution is vacuous. By inspection
of the rules, we can convince ourselves that a configuration is final if and only if
its first component is skip.

Two rules concern sequential composition S; T. The first rule is applicable if
some progress can be made executing S. But if S is skip, no progress can be made
and the second rule applies.

The rules for if check the condition b and, depending on its truth value, put
the then or the else branch as the remaining computation to perform.

For the while loop, there is a single unconditional rule that expands one iter-
ation of the loop, introducing an if statement. It is then the role of the If-True
and If-False rules to process the if. In the If-True case, we eventually reach the
while loop again. This can continue forever for infinite loops.

In Lean, the small-step semantics is specified as follows:

8.5. Small-Step Semantics 137

inductive small_step : stmt × state → stmt × state → Prop
| assign {x a s} :

small_step (stmt.assign x a, s) (stmt.skip, s{x 7→ a s})
| seq_step {S S’ T s s’} (hS : small_step (S, s) (S’, s’)) :

small_step (S ;; T, s) (S’ ;; T, s’)
| seq_skip {T s} :

small_step (stmt.skip ;; T, s) (T, s)
| ite_true {b : state → Prop} {S T s} (hcond : b s) :

small_step (stmt.ite b S T, s) (S, s)
| ite_false {b : state → Prop} {S T s} (hcond : ¬ b s) :

small_step (stmt.ite b S T, s) (T, s)
| while {b : state → Prop} {S s} :

small_step (stmt.while b S, s)
(stmt.ite b (S ;; stmt.while b S) stmt.skip, s)

Based on a small-step semantics, we can define a big-step semantics as

(S, s)⇒�⇒ t if and only if (S, s)⇒* (skip, t)

where p* denotes the reflexive transitive closure of a binary predicate p. Alterna-
tively, if we have already defined a big-step semantics, we can prove the above
equivalence theorem to validate our definitions.

The main disadvantage of small-step semantics is that we now have two pred-
icates, ⇒ and ⇒*, and the derivation rules and proofs tend to be more compli-
cated than with big steps. This is clearly visible on the following example, which
requires us to apply the lemma

star.head : ?r ?a ?b→ star ?r ?b ?c→ star ?r ?a ?c

once for each small step:

lemma silly_loop_from_1_small_step :
(silly_loop, (λ_, 0){"x" 7→ 1}) ⇒*
(stmt.skip, ((λ_, 0) : state)) :=

begin
rw silly_loop,
apply star.head,
{ apply small_step.while },
{ apply star.head,

{ apply small_step.ite_true,
simp },

{ apply star.head,
{ apply small_step.seq_step,

apply small_step.seq_skip },
{ apply star.head,

{ apply small_step.seq_step,
apply small_step.assign },

{ apply star.head,
{ apply small_step.seq_skip },
{ apply star.head,

{ apply small_step.while },

138 Chapter 8. Operational Semantics

{ apply star.head,
{ apply small_step.ite_false,

simp },
{ simp } } } } } } }

end

8.6 Properties of the Small-Step Semantics

We can prove that a configuration (S, s) is final if and only if S = skip. Doing so
ensures that we have not forgotten a derivation rule and hence that the small-
steps semantics cannot get stuck. The lemma statement is as follows:

lemma small_step_final (S s) :
(¬ ∃T t, (S, s) ⇒ (T, t)) ↔ S = stmt.skip

The proof is by structural induction on S.
Like the big-step semantics, the small-step semantics is deterministic:
lemma small_step_deterministic {S s Ll Rr}

(hl : (S, s) ⇒ Ll) (hr : (S, s) ⇒ Rr) :
Ll = Rr

The proof is by rule induction on hl or hr.
For the small-step semantics, a configuration (S0, s0) terminates if all exe-

cutions starting in it are finite: (S0, s0)⇒ (S1, s1) ⇒ · · · ⇒ (Sn, sn). It is non-
terminating if there exists an infinite chain (S0, s0)⇒ (S1, s1)⇒ · · · . The pro-
gramming language as a whole is terminating if and only if all its configurations
terminate. It is easy to show that the WHILE language is nonterminating, by taking
S0 := stmt.while (λ_, true) stmt.skip. For any s0, we then have

(S0, s0)⇒ (S0, s0)⇒ (S0, s0)⇒ · · ·

We can define inversion rules about the small-step semantics, such as these:
lemma small_step_skip {S s t} :
¬ ((stmt.skip, s) ⇒ (S, t))

@[simp] lemma small_step_seq_iff {S T s Ut} :
(S ;; T, s) ⇒ Ut ↔
(∃S’ t, (S, s) ⇒ (S’, t) ∧ Ut = (S’ ;; T, t))
∨ (S = stmt.skip ∧ Ut = (T, s))

@[simp] lemma small_step_ite_iff {b S T s Us} :
(stmt.ite b S T, s) ⇒ Us ↔
(b s ∧ Us = (S, s)) ∨ (¬ b s ∧ Us = (T, s))

A more fundamental result is the equivalence between the big-step and the
small-step semantics:

lemma big_step_iff_star_small_step {S s t} :
(S, s) ⇒�⇒ t ↔ (S, s) ⇒* (stmt.skip, t)

Recall that⇒* denotes the reflexive transitive closure of the small-step predicate
⇒. The theorem’s proof is beyond the scope of this course. We refer to Chapter 7
of Concrete Semantics: With Isabelle/HOL [26] or to the demonstration file for this
chapter.

8.7. Parallelism 139

8.7 Parallelism

The WHILE language is a sequential language: one in which statements are exe-
cuted in turn, without interruptions or interference. In this section, we will con-
sider PAR, an extension of WHILE with top-level parallelism. A PAR program con-
sists of a list [S1, . . ., Sn] of WHILE programs. The individual WHILE programs are
executed in parallel, as their own threads, using an interleaving semantics. This
means that the semantics of the entire PAR program is given by interleaving small
steps of the threads.

A PAR configuration (Ss, s) consists of a list Ss of WHILE programs and a
state s. A PAR step can be defined as follows:

inductive par_step :
nat → list stmt × state → list stmt × state → Prop

| intro {Ss Ss’ S S’ s s’ i}
(hi : i < list.length Ss)
(hS : S = list.nth_le Ss i hi)
(hs : (S, s) ⇒ (S’, s’))
(hS’ : Ss’ = list.update_nth Ss i S’) :

par_step i (Ss, s) (Ss’, s’)

Informally, from an arbitrary configuration (Ts ++ [S] ++ Us, s), we can make a
small step to (Ts ++ [S’] ++ Us, s’) whenever (S, s)⇒ (S’, s’). The par_step
predicate’s first argument is the index of the thread that makes a transition.

To see that PAR is nondeterministic, consider the program [S0, S1], with

S0 := stmt.assign "x" (λ_, 42) S1 := stmt.assign "x" (λ_, 999)

and consider the start state s. Taking a par_step 0 step results in the configura-
tion ([stmt.skip, S1], s{x 7→ 42}), whereas taking a par_step 1 step results in
([S0, stmt.skip], s{x 7→ 999}).

Sometimes the nondeterminism is harmless, if the final result is the same. This
is called determinacy. In particular, some languages enjoy the diamond property:

lemma par_step_diamond {i j Ss Ts Ts’ s t t’}
(hi : i < list.length Ss)
(hj : j < list.length Ss)
(hij : i 6= j)
(hT : par_step i (Ss, s) (Ts, t))
(hT’ : par_step j (Ss, s) (Ts’, t’)) :

∃u Us, par_step j (Ts, t) (Us, u) ∧
par_step i (Ts’, t’) (Us, u)

The diamond property implies determinacy. However, PAR is not determinate,
and hence cannot enjoy the diamond property. If we take par_step 0 followed
by par_step 1, we inevitably reach the final state ([stmt.skip, stmt.skip],
s{x 7→ 999}), whereas if we start with par_step 1 and then take par_step 0, we
inevitably reach ([stmt.skip, stmt.skip], s{x 7→ 42}), a counterexample both
to determinacy and to the diamond property.

The counterexample has two threads writing to the same variable x. If we
were to restrict access to variables written by other threads, we could salvage the
diamond property. First, we need some auxiliary definitions:

140 Chapter 8. Operational Semantics

def stmt.W : stmt → set string
| stmt.skip := ∅
| (stmt.assign x _) := {x}
| (stmt.seq S T) := stmt.W S ∪ stmt.W T
| (stmt.ite _ S T) := stmt.W S ∪ stmt.W T
| (stmt.while _ S) := stmt.W S

def exp.R {α : Type} : (state → α) → set string
| f := {x | ∃s n, f (s{x 7→ n}) 6= f s}

def stmt.R : stmt → set string
| stmt.skip := ∅
| (stmt.assign _ a) := exp.R a
| (stmt.seq S T) := stmt.R S ∪ stmt.R T
| (stmt.ite b S T) := exp.R b ∪ stmt.R S ∪ stmt.R T
| (stmt.while b S) := exp.R b ∪ stmt.R S

def stmt.V : stmt → set string
| S := stmt.W S ∪ stmt.R S

The function stmt.W returns the set of variables written by a thread, stmt.R is
the set of variables read by a thread, and stmt.V is the set of variables written or
read by a thread. Notice the markedly semantic definition of exp.R: A variable x is
read by a shallowly embedded arithmetic or Boolean expression f if there exists
a state s and a value n such that setting x to n in s influences f’s behavior. If we
had a deep embedding of arithmetic and Boolean expressions, we could perform
a syntactic analysis instead (as we do in stmt.R for programs).

Using the above definitions, we can revise the diamond property:

lemma par_step_diamond_VW_disjoint {i j Ss Ts Ts’ s t t’}
(hiS : i < list.length Ss)
(hjT : j < list.length Ts)
(hij : i 6= j)
(hT : par_step i (Ss, s) (Ts, t))
(hT’ : par_step j (Ss, s) (Ts’, t’))
(hWV : stmt.W (list.nth_le Ss i hiS)
∩ stmt.V (list.nth_le Ts j hjT) = ∅)

(hVW : stmt.V (list.nth_le Ss i hiS)
∩ stmt.W (list.nth_le Ts j hjT) = ∅) :

∃u Us, par_step j (Ts, t) (Us, u) ∧
par_step i (Ts’, t’) (Us, u)

This proposition looks plausible, but considering Conrad Watt’s experience with
WebAssembly and that of dozens of other researchers, we should not put too
much faith in it until we have established it formally.

Chapter 9

Hoare Logic

If operational semantics corresponds to an idealized interpreter, Hoare logic cor-
responds to an idealized verifier. Hoare logic can be used to specify the semantics
of a programming language, but it is particularly convenient to reason about con-
crete programs and prove them correct. It is named after its inventor, Charles
Antony Richard (Tony) Hoare. Hoare logic is also called axiomatic semantics.

This chapter is heavily inspired by Chapter 12 of Concrete Semantics: With Isa-
belle/HOL [26].

9.1 Hoare Triples

Hoare logic is a framework for deducing valid correctness formulas in a mechan-
ical way, using a set of derivation rules. It allows us to reason directly about a
program’s syntax, without concerning ourselves with its operational semantics.
The approach is mechanical in the sense that the applicability of a derivation rule
can easily be checked.

We start by introducing Hoare logic abstractly, without any connection to Lean.
In a second step, we will see how we can embed Hoare logic judgments in Lean
in a natural way. The basic judgments of Hoare logic are called Hoare triples.
They have the form {P} S {Q}, where S is a WHILE statement, and P and Q are
logical formulas over the program variables. For the moment, we imagine the
formulas as syntactic objects built using the familiar connectives and quantifiers.
The intended meaning of a Hoare triple is as follows:

If the precondition P is true before S is executed and the execution
terminates normally, the postcondition Q is true at termination.

This is a partial correctness statement: The program is correct if it terminates
normally; otherwise, we do not know or care. For WHILE programs, the only way
not to terminate normally is to enter an infinite loop. For other programming
languages, infinite recursion and run-time errors such as division by zero may
also result in divergence or abnormal termination.

Intuitively, all of the Hoare triples below should be valid:

{true} b := 4 {b = 4}

{a = 2} b := 2 * a {a = 2 ∧ b = 4}

{b ≥ 5} b := b + 1 {b ≥ 6}

141

142 Chapter 9. Hoare Logic

{false} skip {b = 10}

{true} while i 6= 10 do i := i + 1 {i = 10}

The first three Hoare triples should be fairly natural. The fourth triple is vacuously
true, since the precondition false can never be met. The part “If the precondition
P is true” of the definition of Hoare triple is always false; hence the triple is true.
The triple is equivalent to the proposition false→ b = 10, which holds for any
value of b. As for the fifth triple, there are no guarantees that control will escape
the loop (if i > 10 initially), but if it does escape, then the loop’s condition must
be false and hence we have the postcondition i = 10.

The following triples are bizarre but interesting:

{false} S {true}

{false} S {false}

{true} S {true}

{true} S {false}

The first two triples are true of any statement S (and therefore pointless): The
precondition is never satisfied, so any postcondition holds vacuously. The third
triple is always true as well, regardless of S. The fourth triple is true if S never
terminates (e.g., S := while true do skip); otherwise, it is false.

9.2 Hoare Rules

Below we give a complete set of derivation rules for reasoning about WHILE pro-
grams:

Skip
{P} skip {P}

Asn
{Q[a/x]} x := a {Q}

{P} S {R} {R} T {Q}
Seq

{P} S; T {Q}

{P ∧ b} S {Q} {P ∧ ¬b} T {Q}
If

{P} if b then S else T {Q}

{P ∧ b} S {P}
While

{P} while b do S {P ∧ ¬b}

P′ → P {P} S {Q} Q → Q′
Conseq

{P′} S {Q′}

In the Asn rule, the syntax Q[a/x] denotes the condition Q in which all occurrences
of x are replaced by a. The rule is sometimes presented as

Asn
{Q[a]} x := a {Q[x]}

where [x] factors out the occurrences of x in Q.

9.2. Hoare Rules 143

The Asn rule may seem counterintuitive because it works backwards: From the
postcondition, it computes a precondition. Nevertheless, it correctly captures the
semantics of the assignment statement, as illustrated below:

{0 = 0} x := 0 {x = 0}

{0 = 0 ∧ y = 5} x := 0 {x = 0 ∧ y = 5}

{x + 1 ≥ 5} x := x + 1 {x ≥ 5}

Using elementary arithmetic, we can simplify the computed preconditions; for
example, 0 = 0 is equivalent to true, and x + 1 ≥ 5 is equivalent to x ≥ 4.

The Seq rule requires us to come up with an intermediate condition R that
holds after executing S and before executing T. Here is an example of Seq in action:

Asn
{a = 2} b := a {b = 2}

Asn
{b = 2} c := b {c = 2}

Seq
{a = 2} b := a; c := b {c = 2}

The While rule is the most intricate. The condition P is called an invariant.
It is the pre- and the postcondition of the loop itself but also of its body. The
body’s precondition is strengthened with the knowledge that b must be true be-
fore executing the body. Similarly, the loop’s postcondition is strengthened with
the knowledge that b must be false when the loop exits.

Consider an execution of a loop with n iterations. Suppose that the initial state
is s0 and that the state after the ith iteration of the loop is si. Then the following
conditions will hold:

P s0 P s1 ∧ b s1 · · · P sn−1 ∧ b sn−1 P sn ∧ ¬ b sn

If n = 0, we immediately have that P s0 ∧ ¬ b s0 and never enter the loop.
The Conseq rule is the only rule that has logical formulas among its premises,

as opposed to Hoare triples. These conditions must be discharged, whether using
pen and paper or a proof assistant. Conseq can be used to strengthen a precon-
dition (i.e., make it more strict), weaken a postcondition (i.e., make it less strict),
or both. An example derivation follows:

x > 8 → x > 4
Asn

{x > 4} y := x {y > 4} y > 4 → y > 0
Conseq

{x > 8} y := x {y > 0}

Reading the tree from top to bottom, we have strengthened the triple’s precondi-
tion from x > 4 to x > 8 and weakened the postcondition from y > 4 to y > 0. We
can also read the tree from the bottom up: To prove the triple {x > 8} y := x
{y > 0}, it su�ces to prove {x > 4} y := x {y > 4}, where the precondition is
weakened and the postcondition is strengthened.

Except for Conseq, the rules are syntax-driven: We know which rule to apply
in each case, simply by inspecting the statement at hand. For an assignment, we
apply Asn; for a while loop, we apply While; and so on.

The rules Seq, If, and Conseq are bidirectional: Their conclusions are of the
form {P} . . . {Q}, for distinct mathematical metavariables P, Q. This can make
them convenient to apply. By combining the other rules with Conseq, we can
derive bidirectional variants:

144 Chapter 9. Hoare Logic

P→ Q
Skip′

{P} skip {Q}

P → Q[a/x]
Asn′

{P} x := a {Q}

{P ∧ b} S {P} P ∧ ¬b → Q
While′

{P} while b do S {Q}

As an easy exercise, you could try to derive each of these rules from Skip, Asn, or
While in conjunction with Conseq.

9.3 A Semantic Approach to Hoare Logic

A natural way to encode Hoare logic in Lean would be to proceed as we have done
for the big- and small-step semantics: Define a syntactic notion of Hoare triple
and an inductive predicate, with one introduction rule for each core Hoare rule;
to represent pre- and postconditions, use predicates on states (state → Prop).
Then we could prove soundness with respect to the big-step semantics, meaning
the following: Whenever {P} S {Q} is derivable, if P s and (S, s)⇒�⇒ t, then Q t.
This is merely a logical rendition of the intuitive meaning of a Hoare triple:

If the precondition P is true before S is executed (i.e., P s) and the ex-
ecution terminates normally (i.e., (S, s) ⇒�⇒ t), the postcondition Q is
true at termination (i.e., Q t).

Instead of pursuing this approach, we propose to define Hoare triples seman-
tically in Lean, in terms of the big-step semantics, so that they are correct by
definition. Then we will derive the Hoare rules as lemmas, instead of stating them
as introduction rules. In conjunction with the use of predicates to represent for-
mulas, this approach is resolutely semantic.

Hoare triple (for partial correctness) are defined as follows:

def partial_hoare (P : state → Prop) (S : stmt)
(Q : state → Prop) : Prop :=

∀s t, P s → (S, s) ⇒�⇒ t → Q t

Instead of writing partial_hoare P S Q, we introduce some syntactic sugar to al-
low {* P *} S {* Q *}, which is closer to the informal syntax {P} S {Q}.

The core Hoare rules are stated as follows:

lemma skip_intro {P} :
{* P *} stmt.skip {* P *}

lemma assign_intro (P : state → Prop) {x} {a : state → N} :
{* λs, P (s{x 7→ a s}) *} stmt.assign x a {* P *}

lemma seq_intro {P Q R S T} (hS : {* P *} S {* Q *})
(hT : {* Q *} T {* R *}) :

{* P *} S ;; T {* R *}

9.3. A Semantic Approach to Hoare Logic 145

lemma ite_intro {b P Q : state → Prop} {S T}
(hS : {* λs, P s ∧ b s *} S {* Q *})
(hT : {* λs, P s ∧ ¬ b s *} T {* Q *}) :

{* P *} stmt.ite b S T {* Q *}

lemma while_intro (P : state → Prop) {b : state → Prop} {S}
(h : {* λs, P s ∧ b s *} S {* P *}) :

{* P *} stmt.while b S {* λs, P s ∧ ¬ b s *}

lemma consequence {P P’ Q Q’ : state → Prop} {S}
(h : {* P *} S {* Q *}) (hp : ∀s, P’ s → P s)
(hq : ∀s, Q s → Q’ s) :

{* P’ *} S {* Q’ *}

All of the above lemmas have proofs based on the big-step semantics. Some
of the triples—for example, the precondition in assign_intro—need to refer to
the state. We then use a λ-expression to access it. Recall that P and λs, P s are
the same by η-conversion. Moreover, for a premise written informally as P→ Q, in
Lean we must write ∀s, P s→ Q s. This reflects the di�erence between syntactic
formulas and semantic predicates. As in Chapter 8, the syntax s{x 7→ n} in the
assignment rule denotes the state that is identical to s except that it maps x to n.

The following convenience rules can be derived from the core rules:

lemma consequence_left (P’ : state → Prop) {P Q S}
(h : {* P *} S {* Q *}) (hp : ∀s, P’ s → P s) :

{* P’ *} S {* Q *}

lemma consequence_right (Q) {Q’ : state → Prop} {P S}
(h : {* P *} S {* Q *}) (hq : ∀s, Q s → Q’ s) :

{* P *} S {* Q’ *}

lemma skip_intro’ {P Q : state → Prop} (h : ∀s, P s → Q s) :
{* P *} stmt.skip {* Q *}

lemma assign_intro’ {P Q : state → Prop} {x} {a : state → N}
(h : ∀s, P s → Q (s{x 7→ a s})):

{* P *} stmt.assign x a {* Q *}

lemma seq_intro’ {P Q R S T} (hT : {* Q *} T {* R *})
(hS : {* P *} S {* Q *}) :

{* P *} S ;; T {* R *}

lemma while_intro’ {b P Q : state → Prop} {S}
(I : state → Prop)
(hS : {* λs, I s ∧ b s *} S {* I *})
(hP : ∀s, P s → I s)
(hQ : ∀s, ¬ b s → I s → Q s) :

{* P *} stmt.while b S {* Q *}

Using the bidirectional assign_intro’, we can derive a forward version of the
assignment rule:

146 Chapter 9. Hoare Logic

lemma assign_intro_forward (P) {x a} :
{* P *}
stmt.assign x a
{* λs, ∃n0, P (s{x 7→ n0}) ∧ s x = a (s{x 7→ n0}) *} :=

begin
apply assign_intro’,
intros s hP,
apply exists.intro (s x),
simp [*]

end

The variable n0 stands for the value of x before the assignment. Hence, in the
postcondition, s{x 7→ n0} denotes the state before the assignment. Since P is a
precondition, we have P (s{x 7→ n0}). In addition, the new value of x, given by
s x, must be equal to the value of the expression a evaluated in the old state
s{x 7→ n0}.

The forward rule is less convenient than the backward rule, because the post-
condition contains an existential quantifier. It is possible to state a backward rule
in a similar style, revealing a hidden symmetry:

lemma assign_intro_backward (Q : state → Prop) {x}
{a : state → N} :

{* λs, ∃n’, Q (s{x 7→ n’}) ∧ n’ = a s *}
stmt.assign x a
{* Q *}

Notice that this existential quantifier can be eliminated using a one-point rule
(Section 3.3). We then get the familiar backward rule assign_intro, with λs, P (s
{x 7→ a s}) as the precondition.

9.4 First Program: Exchanging Two Variables

Let us use the Hoare logic to verify our first program: a three-line program that
exchanges the values of its variables a and b, using t for temporary storage. The
program is defined as follows:

def SWAP : stmt :=
stmt.assign "t" (λs, s "a") ;;
stmt.assign "a" (λs, s "b") ;;
stmt.assign "b" (λs, s "t")

The correctness statement is as follows:

lemma SWAP_correct (a0 b0 : N) :
{* λs, s "a" = a0 ∧ s "b" = b0 *}
SWAP
{* λs, s "a" = b0 ∧ s "b" = a0 *}

The logical variables a0 and b0 “freeze” the initial value of the program variables
a and b so that we can refer to them in the postcondition. After all, it would make
no sense to use λs, s "a" = s "b" ∧ s "b" = s "a" as the postcondition.

The correctness proof follows:

9.5. Second Program: Adding Two Numbers 147

begin
apply partial_hoare.seq_intro’,
apply partial_hoare.seq_intro’,
apply partial_hoare.assign_intro,
apply partial_hoare.assign_intro,
apply partial_hoare.assign_intro’,
simp { contextual := tt }

end

The applications of the sequential composition and assignment rules are guided
by the program’s syntax. There are two sequential compositions and three assign-
ments in the program and therefore as many invocations of the corresponding
rules. We end up with a very aesthetically challenged subgoal:

`̀̀ ∀s : state,
s "a" = a0 ∧ s "b" = b0 →
s{"t" 7→ s "a"}{"a" 7→ s{"t" 7→ s "a"} "b"}
{"b" 7→ s{"t" 7→ s "a"}{"a" 7→ s{"t" 7→ s "a"} "b"} "t"} "a" = b0 ∧

s{"t" 7→ s "a"}{"a" 7→ s{"t" 7→ s "a"} "b"}
{"b" 7→ s{"t" 7→ s "a"}{"a" 7→ s{"t" 7→ s "a"} "b"} "t"} "b" = a0

Fortunately, simp can reduce the subgoal dramatically, and if we enable contextual
rewriting—an option that tells simp to use any assumptions in the goal’s target
(such as s "a" = a0 and s "b" = b0) as left-to-right rewrite rules—simp can even
prove the subgoal.

The above proof could also be carried out directly in terms of the big-step
semantics, without using the Hoare rules:

lemma SWAP_correct2 (a0 b0 : N) :
{* λs, s "a" = a0 ∧ s "b" = b0 *}
SWAP
{* λs, s "a" = b0 ∧ s "b" = a0 *} :=

begin
intros s t hP hstep,
cases’ hstep,
cases’ hstep,
cases’ hstep_1,
cases’ hstep_1_1,
cases’ hstep_1,
finish

end

The finish tactic combines various techniques, including normalization of logical
connectives and quantifiers, simplification, congruence closure, and quantifier in-
stantiation. Like tautology (Section 6.8), it provides strong automation that can
ruin many logical exercises if introduced too early in a course.

9.5 Second Program: Adding Two Numbers

Our second example computes m + n, leaving the result in m, using only these prim-
itive operations: k + 1, k - 1, and k 6= 0 (for arbitrary k):

148 Chapter 9. Hoare Logic

def ADD : stmt :=
stmt.while (λs, s "n" 6= 0)

(stmt.assign "n" (λs, s "n" - 1) ;;
stmt.assign "m" (λs, s "m" + 1))

Because of the presence of a while loop, the proof is more involved:

lemma ADD_correct (n0 m0 : N) :
{* λs, s "n" = n0 ∧ s "m" = m0 *}
ADD
{* λs, s "n" = 0 ∧ s "m" = n0 + m0 *} :=

partial_hoare.while_intro’ (λs, s "n" + s "m" = n0 + m0)
begin

apply partial_hoare.seq_intro’,
{ apply partial_hoare.assign_intro },
{ apply partial_hoare.assign_intro’,

simp,
intros s hnm hnz,
rw ←hnm,
cases s "n",
{ finish },
{ simp [nat.succ_eq_add_one],

linarith } }
end
(by simp { contextual := tt })
(by simp { contextual := tt })

The first step is to apply the derived while rule with a loop invariant. Our invariant
is that the sum of the program variables n and m must be equal to the desired
mathematical result n0 + m0, where n0 and m0 correspond to the initial values of n
and m, as required by the precondition.

How did we come up with this invariant? Even for a simple loop, finding a
suitable invariant can be challenging. The di�culty is that the invariant must

1. be true before we enter the loop;
2. remain true after each iteration of the loop if it was true before the iteration;
3. be strong enough to imply the desired loop postcondition.

An invariant such as true meets requirements 1 and 2 but usually not 3. Similarly,
false meets requirements 2 and 3 but not 1. In practice, invariants tend to be of
the form

work done + work remaining = desired result

where + stands for some appropriate operator (not necessarily addition). When
we enter the loop, work done will often be 0 (or some other appropriate “zero”
value), and the invariant becomes

work remaining = desired result

This invariant would have to be provable at the beginning of the loop—either from
the postcondition of the previous statement or from the desired precondition of
the entire program if there is no previous statement. When we exit the loop, work

9.6. Finish Tactic 149

remaining should be 0 (or some variant thereof), and the invariant becomes

work done = desired result

Often, work done takes the form of a variable in which we accumulate the result,
whereas work remaining is similar to desired result but depends on program vari-
ables whose values change inside the loop and must account for work done.

For the ADD program’s loop, the work done is m, the work remaining is n, and
the desired result is n0 + m0. When entering the loop, the invariant m + n = n0 + m0
holds because then m = m0 and n = n0. (Unusually, the work done is not 0 for this
example, because we reuse the input m as our accumulator, as an optimization.)
When exiting the loop, we have that n = 0, so the invariant becomes m = n0 + m0.
We can retrieve the result from m.

The while_intro’ lemma is used directly as a proof term. It gives rise to three
subgoals. The proofs that the invariant is implied by the desired precondition and
that it implies the desired postcondition are trivial: They consist of a call to simp
with contextual rewriting enabled. The only nontrivial subgoal is the condition
that executing the body maintains the invariant. There is some ugly arithmetic on
natural numbers necessary due to the use of the truncated minus operator. Our
proof simply performs a case distinction to isolate the zero case (where 0 - 1 = 0)
from the nonzero case.

For this example, Hoare logic really helps. Reasoning directly about the oper-
ational semantics would be inconvenient, because we would need induction to
reason about the while loop. With Hoare logic, this induction is performed out
once and for all in the proof of the while_intro rule.

9.6 Finish Tactic

finish

finish
[
[h1, . . ., hm]

] [
using [k1, . . ., kn]

]
The finish tactic first normalizes and simplifies the hypotheses, using the op-
tionally supplied lemmas h1, . . . , hm. Then it applies the congruence closure (cc)
together with the optionally supplied lemmas k1, . . . , kn. Universally quantified hy-
potheses and lemmas are instantiated automatically. Like cc, finish either fully
succeeds or fails. The tactic is complete for propositional logic.

9.7 A Verification Condition Generator

Verification condition generators (VCGs) are programs that apply Hoare logic rules,
producing verification conditions that must be proved manually. We can think of
them as mechanical civil servants that take care of the Hoare logic bureaucracy.
As users, we must provide strong enough loop invariants as annotations in our
programs. Hundreds of program verification tools are based on these principles.

VCGs typically work backwards from the postcondition, using backward rules—
rules stated to have an arbitrary Q as their postcondition. This works well because
the central rule of Hoare logic—the assignment rule—is backward.

150 Chapter 9. Hoare Logic

We can use Lean’s metaprogramming framework to define a simple VCG. First,
we introduce a constant called stmt.while_inv that carries a user-supplied in-
variant P in addition to the loop condition b and body S:

def stmt.while_inv (I b : state → Prop) (S : stmt) : stmt :=
stmt.while b S

We provide two Hoare rules for the construct: a backward rule and a bidirec-
tional rule. Both are justified in terms of the bidirectional while_intro’ rule:

lemma while_inv_intro {b I Q : state → Prop} {S}
(hS : {* λs, I s ∧ b s *} S {* I *})
(hQ : ∀s, ¬ b s → I s → Q s) :

{* I *} stmt.while_inv I b S {* Q *} :=
while_intro’ I hS (by cc) hQ

lemma while_inv_intro’ {b I P Q : state → Prop} {S}
(hS : {* λs, I s ∧ b s *} S {* I *})
(hP : ∀s, P s → I s) (hQ : ∀s, ¬ b s → I s → Q s) :

{* P *} stmt.while_inv I b S {* Q *} :=
while_intro’ I hS hP hQ

The rules simply use the invariant annotation as their invariant. When using the
framework, we will have to be careful to annotate all while loops with suitable
invariants. If we specify a wrong invariant, we will face unprovable subgoals, indi-
cating that we must revise the invariant.

The code of the VCG is fairly concise:

meta def vcg : tactic unit :=
do

t ← tactic.target,
match t with
| ‘({* %%P *} %%S {* _ *}) :=

match S with
| ‘(stmt.skip) :=

tactic.applyc
(if expr.is_mvar P then ‘‘partial_hoare.skip_intro
else ‘‘partial_hoare.skip_intro’)

| ‘(stmt.assign _ _) :=
tactic.applyc

(if expr.is_mvar P then ‘‘partial_hoare.assign_intro
else ‘‘partial_hoare.assign_intro’)

| ‘(stmt.seq _ _) :=
tactic.applyc ‘‘partial_hoare.seq_intro’; vcg

| ‘(stmt.ite _ _ _) :=
tactic.applyc ‘‘partial_hoare.ite_intro; vcg

| ‘(stmt.while_inv _ _ _) :=
tactic.applyc

(if expr.is_mvar P then ‘‘partial_hoare.while_inv_intro
else ‘‘partial_hoare.while_inv_intro’);
vcg

| _ :=

9.8. Second Program Revisited: Adding Two Numbers 151

tactic.fail (to_fmt "cannot analyze " ++ to_fmt S)
end

| _ := pure ()
end

The VCG extracts the current goal’s target and inspects it. If it is a Hoare
triple, it inspects its precondition P and statement S. If the precondition is a
metavariable (e.g., ?P), it applies a backward rule if there exists one (e.g., the
standard assignment rule assign_intro) because this will instantiate the meta-
variable. Otherwise, a bidirectional rule is used, with an arbitrary variable as its
precondition, which can be matched against the target’s precondition. For while
loops, we only consider programs that use stmt.while_inv, because we cannot
guess the invariant programmatically.

The VCG calls itself recursively on all newly emerging subgoals (via the tactic
combinator ;) for the compound statements.

9.8 Second Program Revisited: Adding Two Numbers

Using the verification condition generator, we can revisit the correctness proof for
the ADD program presented above:

lemma ADD_correct2 (n0 m0 : N) :
{* λs, s "n" = n0 ∧ s "m" = m0 *}
ADD
{* λs, s "n" = 0 ∧ s "m" = n0 + m0 *} :=

show {* λs, s "n" = n0 ∧ s "m" = m0 *}
stmt.while_inv (λs, s "n" + s "m" = n0 + m0)

(λs, s "n" 6= 0)
(stmt.assign "n" (λs, s "n" - 1) ;;
stmt.assign "m" (λs, s "m" + 1))

{* λs, s "n" = 0 ∧ s "m" = n0 + m0 *}, from
begin

vcg; simp { contextual := tt },
intros s hnm hnz,
rw ←hnm,
cases s "n",
{ finish },
{ simp [nat.succ_eq_add_one],

linarith }
end

We use show to annotate the while loop with an invariant. Recall that the show
command restates the goal in a computationally equivalent way. Here, we use

this facility to replace stmt.while by stmt.while_inv, which equals stmt.while
by definition. The program and its pre- and postconditions are otherwise the

same as in the lemma statement.
We invoke vcg as the first proof step. This will apply all the necessary Hoare

rules and leave us with some subgoals. We first simplify them with contextual
rewriting enabled; this already takes care of two of the three subgoals. For the
third subgoal, the proof is as in Section 9.5.

152 Chapter 9. Hoare Logic

9.9 Hoare Triples for Total Correctness

The focus so far in this chapter has been on partial correctness. When we state the
Hoare triple {P} S {Q}, we claim that the final state will satisfy Q if the program S
terminates, but we say nothing when S does not terminate. In particular, we can
prove any postcondition for the program while true do skip. This is admittedly
too liberal: If you are asked to program a sorting algorithm at an exam, you should
certainly not give while true do skip as your answer.

Total correctness is a stronger notion that asserts, in addition to partial cor-
rectness, that the program terminates normally. One reason to focus on partial
correctness is that it is a necessary component of total correctness. It is also
simpler, which is a benefit in the classroom.

The Hoare triples for total correctness have the form [P] S [Q], with the fol-
lowing intended meaning:

If the precondition P holds before S is executed, the execution termi-
nates normally and the postcondition Q holds in the final state.

For deterministic programs, this can be expressed equivalently as follows:

If the precondition P holds before S is executed, there exists a state in
which execution terminates normally and the postcondition Q holds in
that state.

Here is an example Hoare triple that is valid:

[i ≤ 10] while i < 10 do i := i + 1 [i = 10]

For the WHILE language, the distinction between partial and total correctness
only concerns while loops (and programs containing them). The Hoare rule for
while must now be annotated by a variant V—a natural number that decreases
by one or more with each iteration:

[P ∧ b ∧ V = v0] S [P ∧ V < v0]
While-Var

[P] while b do S [P ∧ ¬b]

Here, v0 is a logical variable that freezes V’s initial value and whose scope is the
entire premise, whereas V is a mathematical metavariable (like P, b, and S). For
the example above, we could take 10 - i as the variant (or 50 - i or 1024 - i * i).

Consider an execution s0, s1, . . . , sn−1, sn corresponding to n loop iterations,
as in Section 9.2. The following conditions will hold:

P s0 P s1 ∧ b s1 · · · P sn−1 ∧ b sn−1 P sn ∧ ¬ b sn

V s0 > V s1 > · · · > V sn−1 > V sn

9.10 Summary of New Lean Constructs

Tactics

finish normalizes, simplifies, performs congruence closure, and more
simp . . . { contextual := tt }

simplifies using assumptions in the goal’s target as rewrite rules

Chapter 10

Denotational Semantics

We review a third way to specify the semantics of a programming language: de-
notational semantics. Denotational semantics directly specifies the meaning of
programs as a mathematical object. If operational semantics corresponds to an
idealized interpreter and Hoare logic corresponds to an idealized verifier, then de-
notational semantics corresponds to an idealized compiler: a compiler that trans-
lates the source program not to assembly language but directly to mathematics.

The core of this chapter is modeled closely after Chapter 11 of Concrete Se-
mantics: With Isabelle/HOL [26].

10.1 Compositionality

A denotational semantics defines the meaning of each program as a mathematical
object. Abstractly, it can be viewed as a function

J K : syntax→ semantics

A key property of denotational semantics is compositionality: The meaning of a
compound statement should be defined in terms of the meaning of its compo-
nents. Consider the straightforward definition

JSK = {(s, t) | (S, s)⇒�⇒ t}

in terms of the big-step semantics (⇒�⇒). Actually, because Lean supports only
variables on the left-hand side of the vertical bar, we must write

JSK = {st | (S, prod.fst st)⇒�⇒ prod.snd st}

This definition specifies the desired semantics, but it does not qualify as a denota-
tional semantics due to lack of compositionality: The meaning of the compound
statements (sequential composition, if then else, and while) is given directly,
without using the denotation of their components.

A fully compositional definition allows us to reason equationally about pro-
grams, which is often more convenient than using the introduction, elimination,
and inversion principles of ⇒�⇒. In essence, we want structurally recursive equa-
tions of the form

JS ; TK = . . . JSK . . . JTK . . .
Jif b then S else TK = . . . JSK . . . JTK . . .

Jwhile b do SK = . . . JSK . . .

153

154 Chapter 10. Denotational Semantics

with no occurrences of S and T in the right-hand sides except as arguments to J K.
An evaluation function for arithmetic expressions

eval : aexp︸ ︷︷ ︸
syntax

→ (string→ Z)→ Z︸ ︷︷ ︸
semantics

satisfying equations such as

eval (aexp.add e1 e2) env = eval e1 env + eval e2 env

is a denotational semantics, because the semantics of aexp.add e1 e2 is defined
in terms of the semantics of e1 and of e2.

Denotational semantics are a natural match for arithmetic expressions but
also functional programs. Now we want a convenient denotational semantics for
imperative programs. Because of while loops, which are not guaranteed to ter-
minate, we need to develop some additional mathematical notions to reach the
point where we can formulate the desired semantics.

10.2 A Relational Denotational Semantics

Denotational semantics for deterministic languages are normally given as a func-
tion from prestate to poststate, but relations are more general and more conve-
nient to manipulate. We present a relational denotational semantics.

A denotational semantics of a program will be a mathematical object of type
set (state × state). The relational approach was also used for the big-step se-
mantics, which took the form of a predicate of type state→ state→ Prop. These
two types are isomorphic, but set α, defined as α→ Prop, supports convenient
operations and notations, such as ∅, ∪, ∩, ∈, and {. . . | . . .} (Section 6.7).

Our semantics is called denote, with J K as syntactic sugar. We start with the
first four equations of the definition, keeping while for later:

def denote : stmt → set (state × state)
| stmt.skip := Id
| (stmt.assign x a) :=

{st | prod.snd st = (prod.fst st){x 7→ a (prod.fst st)}}
| (stmt.seq S T) := denote S # denote T
| (stmt.ite b S T) :=

(denote S � b) ∪ (denote T � (λs, ¬ b s))

The skip statement is interpreted as the identity relation over states—i.e., the
set of all tuples of the form (s, s). This captures the desired semantics of skip:
The poststate is always identical to the prestate.

The semantics of assignment is the set of tuples where the second component
reflects the result of the assignment.

The semantics of sequential composition is elegantly expressed as a relational
composition #, which is defined by the equation

r1 # r2 = {ac | ∃b, (prod.fst ac, b) ∈ r1 ∧ (b, prod.snd ac) ∈ r2}

The definition is perhaps easier to relate to when expressed as

r1 # r2 = {(a, c) | ∃b, (a, b) ∈ r1 ∧ (b, c) ∈ r2}

10.3. Fixpoints 155

Unfortunately, Lean cannot process that form. It requires the left part of a com-
prehension to be a single variable.

The semantics of if then else is given as the union of the semantics of the
two branches, restricted to include only the tuples whose first component makes
the Boolean condition true or false, depending on the branch. The restriction
operator is defined by

r � p = {ab | ab ∈ r ∧ p (prod.fst ab)}

A more intuitive definition would have been

r � p = {(a, b) | (a, b) ∈ r ∧ p a}

but again this is not supported by Lean. Note two degenerate cases: If p := (λ_,
true), then r � p = r, and if p := (λ_, false), then r � p = ∅.

The di�culties arise when we try to define the semantics of while loops. We
would like to write

| (stmt.while b S) :=
((denote S # denote (stmt.while b S)) � b)
∪ (Id � (λs, ¬ b s))

but this is ill-founded due to the recursive call on stmt.while b S. We need some-
thing else. What we are looking for on the right-hand side is some term X that
satisfies the equation

X = ((denote S # X) � b) ∪ (Id � (λs, ¬ b s))

We are looking for what mathematicians call a fixpoint. The next four sections are
concerned with building an operator lfp that computes the fixpoint for a given
equation. Using lfp, we will be able to define the semantics of while loops by

| (stmt.while b S) :=
lfp (λX, ((denote S # X) � b) ∪ (Id � (λs, ¬ b s)))

10.3 Fixpoints

A fixpoint (or fixed point) of f is a solution for X in the equation

X = f X

In general, fixpoints may not exist at all for some f (e.g., f := nat.succ), or there
may be several fixpoints (e.g., f := (λx, x)). Under some conditions on f, a unique
least fixpoint and a unique greatest fixpoint are guaranteed to exist.

Consider the following fixpoint equation, with X : N→ Prop:

X = (λn : N, n = 0 ∨ (∃m : N, n = m + 2 ∧ X m))

This equation is the β-reduced variant of an equation with the right format:

X =

f︷ ︸︸ ︷
(λ(p : N→ Prop) (n : N), n = 0 ∨ (∃m : N, n = m + 2 ∧ p m)) X

156 Chapter 10. Denotational Semantics

A solution is X := even, the predicate that characterizes the even natural numbers.
Recall that we proved the inversion rule

even n↔ n = 0 ∨ (∃m : N, n = m + 2 ∧ even m)

in Section 5.5. It turns out that even is the only fixpoint. In general, the least and
greatest fixpoint may be di�erent. Consider the equation

X = (λp, p) X

for X : N→ Prop. The least fixpoint is λ_, False and the greatest fixpoint is λ_,
True. By convention, we have False < True and thus (λ_, False) < (λ_, True).
Similarly, ∅ < @set.univ α for any inhabited type α.

For the semantics of while loops, X will have type set (state × state) of
relations between states, and fwill correspond to either taking one extra iteration
of the loop (if the condition b is true) or the identity (if b is false).

Which fixpoint should we use for the semantics of while? A program should be
prohibited from looping infinitely. Each time a loop is executed, it must terminate
after some number n of iterations. Let fn denote the n-fold composition of f,
corresponding to performing at most n iterations. We have X = fn(∅) in this case.
If we do not know the value of n ahead of time, we can always take

X = f0(∅) ∪ f1(∅) ∪ f2(∅) ∪ · · ·

By Kleene’s fixpoint theorem,1 such an X is equal to the least fixpoint lfp f. The
greatest fixpoint would also allow cyclic and diverging executions, which we want
to rule out.

10.4 Monotone Functions

We claimed above that the least and greatest fixpoints are guaranteed to exist
under some conditions on f. It is time to make this more precise. Let α and β be
arbitrary types, each equipped with a partial order ≤. The function f : α→ β is
monotone if a ≤ b→ f a ≤ f b for all a, b. The function f : set α→ set α admits
least and greatest fixpoints if f is monotone.

Many operations on sets (e.g., union ∪), relations (e.g., composition #), and
functions (e.g., the identity function λx, x, the constant function λ_, k, composi-
tion ◦) are monotone or preserve monotonicity. Of course, not all functions are
monotone. Here is an example of a nonmonotone function f on set α:

f A = (if A = ∅ then set.univ else ∅)

If α is inhabited, we have ∅ ⊆ set.univ but f ∅ = set.univ * ∅ = f set.univ.

10.5 Complete Lattices

To define lfp for sets (including relations), we need two operations: subset ⊆ :
set α→ set α→ Prop and big intersection

⋂
: set (set α)→ set α, which can

be defined as ⋂
X = {a | ∀A, A ∈ X→ a ∈ A}

If X is a finite set {A1, . . ., An}, then
⋂

X = A1 ∩ · · · ∩ An.
1https://en.wikipedia.org/wiki/Kleene_fixed-point_theorem

https://en.wikipedia.org/wiki/Kleene_fixed-point_theorem

10.5. Complete Lattices 157

We can define lfp more generally so that it works not only with sets but with
any instance of the algebraic structure called a complete lattice. A complete lattice
α is an ordered type for which each set α has an infimum, also called greatest
lower bound. A complete lattice consists of

1. a partial order ≤ : α→ α→ Prop (i.e., a reflexive, transitive, and antisym-
metric binary predicate);

2. an operator
d

: set α→ α, called the infimum.
The

d
operator satisfies the following two conditions:

1.
d

A is a lower bound of A:
d

A ≤ b for all b ∈ A;
2.

d
A is a greatest lower bound: b ≤

d
A for all b such that ∀a, a ∈ A→ b ≤ a.

Together, conditions 1 and 2 ensure that
d

A is the unique greatest lower bound.
The lattice operators ≤ and

d
generalize ⊆ : set α→ set α→ Prop and

⋂
:

set (set α)→ set α. Be aware that
d

A need not be in A. For example, an open
interval]a, b[overR has infimum a /∈]a, b[. The infimum of a set is a generalization
of the notion of minimal element.

Here are some examples of complete lattices:
set α with respect to ⊆ and

⋂
for all types α;

Prop with respect to→ and λA, ∀a ∈ A, a;
enat := N ∪ {∞} with respect to ≤ and a suitable infimum operator;
ereal := R ∪ {-∞,∞} with respect to ≤ and a suitable infimum operator.

If α is a complete lattice, then β→ α is also a complete lattice. If α and β are
complete lattices, then α × β is also a complete lattice. In both cases, ≤ and

d

are defined componentwise.
Here are some nonexamples of complete lattices: N, Z, Q, and R with respect

to ≤. The issue is that there is no greatest element to assign to
d
∅. Another

nonexample: erat := Q ∪{-∞,∞} , because
d

{q | 2 < q * q} = sqrt 2 is not in
erat.

In Lean, it is natural to represent complete lattices using type classes:

@[class] structure complete_lattice (α : Type)
extends partial_order α : Type :=

(Inf : set α → α)
(Inf_le : ∀A b, b ∈ A → Inf A ≤ b)
(le_Inf : ∀A b, (∀a, a ∈ A → b ≤ a) → b ≤ Inf A)

The type set α is an instance of the type class:

@[instance] def set.complete_lattice {α : Type} :
complete_lattice (set α) :=

{ le := (⊆),
le_refl := by tautology,
le_trans := by tautology,
le_antisymm :=

begin
intros A B hAB hBA,
apply set.ext,
tautology

end,

158 Chapter 10. Denotational Semantics

Inf := λX, {a | ∀A, A ∈ X → a ∈ A},
Inf_le := by tautology,
le_Inf := by tautology }

10.6 Least Fixpoint

Using complete lattices, we can define the least fixpoint operator:

lfp f =
d

{x | f x ≤ x}

The Knaster–Tarski theorem,2 which we briefly mentioned in Section 5.1, gives us
the following properties for any monotone function f on a complete lattice:

lfp f is a fixpoint: lfp f = f (lfp f);
lfp f is smaller than any other fixpoint: X = f X→ lfp f ≤ X.

10.7 A Relational Denotational Semantics, Continued

With lfp, we can fulfill our promise and complete the definition of the denota-
tional semantics of WHILE programs:

| (stmt.while b S) :=
lfp (λX, ((denote S # X) � b) ∪ (Id � (λs, ¬ b s)))

To validate our definition, we can prove the following connection between the
denotational and the big-step semantics:

lemma denote_iff_big_step (S : stmt) (s t : state) :
(s, t) ∈ JSK ↔ (S, s) ⇒�⇒ t

For the proof, we refer to Chapter 11 of Concrete Semantics: With Isabelle/HOL [26]
or to the demonstration file accompanying this chapter.

10.8 Application to Program Equivalence

Based on the denotational semantics, we introduce a notion of program equiva-
lence. Two programs are equivalent if they have the same semantics:

def denote_equiv (S1 S2 : stmt) : Prop :=
JS1K = JS2K

We write S1 ~ S2 as an abbreviation for denote_equiv S1 S2. It is obvious from the
definition that ~ is an equivalence relation.

Program equivalence can be used to replace a subprogram in a larger program
with another subprogram if they have the same semantics. This is achieved by the
following congruence rules:

lemma denote_equiv.seq_congr {S1 S2 T1 T2 : stmt}
(hS : S1 ~ S2) (hT : T1 ~ T2) :

S1 ;; T1 ~ S2 ;; T2 :=
by simp [denote_equiv, denote, *] at *

2https://en.wikipedia.org/wiki/Knaster-Tarski_theorem

https://en.wikipedia.org/wiki/Knaster-Tarski_theorem

10.8. Application to Program Equivalence 159

lemma denote_equiv.ite_congr {b} {S1 S2 T1 T2 : stmt}
(hS : S1 ~ S2) (hT : T1 ~ T2) :

stmt.ite b S1 T1 ~ stmt.ite b S2 T2 :=
by simp [denote_equiv, denote, *] at *

lemma denote_equiv.while_congr {b} {S1 S2 : stmt}
(hS : S1 ~ S2) :

stmt.while b S1 ~ stmt.while b S2 :=
by simp [denote_equiv, denote, *] at *

A congruence rule is a lemma that lifts an equivalence relation over some context
(here, ~ over ;; , stmt.ite, and stmt.while).

Notice how the denotational semantics leads to short proofs by rewriting. This
should not be surprising, given that it is designed to be equational and composi-
tional. If we had used the big-step semantics as the basis for program equivalence
instead, these proofs would have been much more complicated.

We can now prove simple programs equivalent by equational reasoning:

lemma denote_equiv.skip_assign_id {x} :
stmt.assign x (λs, s x) ~ stmt.skip :=

by simp [denote_equiv, denote, Id]

lemma denote_equiv.seq_skip_left {S : stmt} :
stmt.skip ;; S ~ S :=

by simp [denote_equiv, denote, Id, comp]

lemma denote_equiv.seq_skip_right {S : stmt} :
S ;; stmt.skip ~ S :=

by simp [denote_equiv, denote, Id, comp]

We defined the semantics of while using the lfp operator, but who knows
whether monotonicity—which guarantees the existence of a least fixpoint—is met?
To quell such doubts, we prove the following lemma:

lemma denote_equiv.ite_seq_while {b} {S : stmt} :
stmt.ite b (S ;; stmt.while b S) stmt.skip ~ stmt.while b S :=

begin
simp [denote_equiv, denote],
apply eq.symm,
apply lfp_eq,
apply monotone_while_lfp_arg

end

The lemma gives us a convenient way to expand or contract one iteration of a loop.
The second apply invokes the lemma lfp_eq : lfp f = f (lfp f), stating that lfp
is a fixpoint.

The last step applies a lemma to convince Lean that lfp’s argument is mono-
tone. The lemma’s proof is fairly monotonous:

lemma monotone_while_lfp_arg (S b) :
monotone (λX, JSK # X � b ∪ Id � λs, ¬b s) :=

160 Chapter 10. Denotational Semantics

begin
apply monotone_union,
{ apply sorry_lemmas.monotone_restrict,

apply sorry_lemmas.monotone_comp,
{ exact monotone_const _ },
{ exact monotone_id } },

{ apply sorry_lemmas.monotone_restrict,
exact monotone_const _ }

end

10.9 A Simpler Approach Based on an Inductive Predicate

Lean’s inductive predicates correspond to least fixpoints, but they are built into
Lean’s logic (the calculus of inductive constructions), without using a fixpoint op-
erator like lfp. Most of this section was dedicated to the construction of an lfp
operator. Could we have used an inductive predicate instead and saved ourselves
this work?

The answer is yes. First, recall that the types set (state × state) and state
→ state→ Prop are equivalent representations of binary relations in Lean. So we
can build the following awhile predicate, which resembles the reflexive transitive
closure but stops only if the given condition p turns false:

inductive awhile (b : state → Prop)
(r : set (state × state)) :

state → state → Prop
| true {s t u} (hcond : b s) (hbody : (s, t) ∈ r)

(hrest : awhile t u) :
awhile s u

| false {s} (hcond : ¬ b s) :
awhile s s

With this operator, the definition of the definitional semantics becomes

def denote_ind : stmt → set (state × state)...
| (stmt.while b S) :=
{st | awhile b (denote_ind S) (prod.fst st) (prod.snd st)}

The awhile predicate’s introduction rules closely resembles the while rules
of the big-step operational semantics. Behind their di�erent façades, operational
and denotational semantics are not so dissimilar after all.

Part IV

Mathematics

161

Chapter 11

Logical Foundations of
Mathematics

In this chapter, we dive deeper into the logical foundations of Lean. Most of the
features described here are especially relevant for defining mathematical objects
and proving theorems about them. For even more details, we refer to Carneiro’s
MSc thesis [7].

11.1 Universes

In dependent type theory, not only all terms have a type, but also all types have
types themselves. We have already seen some occurrences of this principle. The
PAT principle tells us to view proofs as terms and propositions as types. For ex-
ample, the lemma

@and.intro : ∀a b, a→ b→ a ∧ b

is really a term @and.intro of type ∀a b, a→ b→ a ∧ b, which in turn has a type:

∀a b, a→ b→ a ∧ b : Prop

What is the type of Prop then? Prop has the same type as virtually all other types
we have constructed so far:

Prop : Type

What is the type of Type? The simplest solution would be to let Type : Type, but
this choice leads to Girard’s paradox, the type theory equivalent of Russel’s para-
dox. To avoid inconsistencies, we need a fresh type to contain Type, which we call
Type 1. Type 1 itself has type Type 2, and so on:

Type : Type 1
Type 1 : Type 2
Type 2 : Type 3

...

In fact, Type with no argument is an abbreviation for Type 0. If we want to
incorporate Prop in this hierarchy, we can use the syntax Sort u, where Sort 0 is

163

164 Chapter 11. Logical Foundations of Mathematics

an alias for Prop and Sort (u + 1) is an alias for Type u. The hierarchy is captured
by the following typing judgment:

Sort
C `̀̀ Sort u : Sort (u + 1)

All of these types containing other types are called universes, and the u in the
expression Sort u is a universe level. Although universe levels look like terms of
type N, they are in fact not even terms. By convention, universes are capitalized—
hence we have Prop but bool.

Instead of using Type everywhere, you can make your theorems slightly more
general without having to think about universe levels by writing Type _ or Type*.
It leaves it to Lean to figure the right universe level or to create a fresh universe
variable. This helps maintain the illusion that we work in a convenient logic where
Type : Type holds, but without introducing any paradoxes. In practice, Type 0 is
large enough for most of computer science and mathematics.

11.2 The Peculiarities of Prop

Although Prop may seem to fit nicely into the universe hierarchy, it di�ers from
the other universes in several important respects.

11.2.1 Impredicativity

When constructing a new type from other types (e.g., α→ β from α : Type u and
β : Type v), the newly constructed type is more complex than each of its com-
ponents, and it is natural to put it into the largest universe involved (e.g., α→
β : Type (max u v)). This is exactly what Lean does. The following typing rule ex-
presses this idea generally for dependent types:

C `̀̀ α : Type u C, a : α `̀̀ β a : Type v
Forall-Type

C `̀̀ (∀a : α, β a) : Type (max u v)

This behavior of the Type universes is called predicativity. In general, predicativity
means that an object must not be defined in terms of a quantifier ranging over
that same object.

However, it is convenient to have Prop behave di�erently. We would like the
expression ∀a : Prop, a→ a to be of type Prop—it is, after all, a proposition. Un-
folding the syntactic sugar→, this expression is the same as ∀(a : Prop) (x : a)
, a. If we had Type u instead of Prop, the above typing rule would yield

(∀(a : Type u) (x : a), a) : Type (u + 1)

because Type u : Type (u + 1) and max (u + 1) (max u u) = u + 1. Thus, the uni-
verse level is increased by one when typing this expression. To force expressions
such as ∀a : Prop, a→ a to be of type Prop anyway, we need a special typing rule
for ∀-expressions with a Prop body:

C `̀̀ α : Sort u C, (a : α) `̀̀ β a : Prop
Forall-Prop

C `̀̀ (∀a : α, β a) : Prop

11.2. The Peculiarities of Prop 165

The rule yields
(∀(a : Prop) (x : a), a) : Prop

as desired. The two typing rules for ∀-expressions above can be summarized as
the single rule

C `̀̀ α : Sort u C, a : α `̀̀ β a : Sort v
Forall

C `̀̀ (∀a : α, β a) : Sort (imax u v)

where imax u 0 = 0 and imax u (v + 1) = max u (v + 1). This behavior is called im-
predicativity of Prop. In general, impredicativity means that an object may be
defined via a quantifier ranging over itself.

11.2.2 Proof Irrelevance

A second di�erence between Prop and Type is proof irrelevance. It means that any
two proofs of the same proposition a are equal:

lemma proof_irrel {a : Prop} (h1 h2 : a) :
h1 = h2 :=

by refl

In Lean, this equality is a syntactic equality up to computation, allowing us to use
the refl tactic. When viewing a proposition as a type and a proof as an element
of that type, proof irrelevance means that a proposition is either an empty type or
has exactly one inhabitant. If it is empty, it is false. If it has exactly one inhabitant,
it is true. Proof irrelevance is very helpful when reasoning about dependent types.

In Chapter 5, we saw a diagram depicting the interpretation of bool and Prop
side by side. The diagram did not take proof irrelevance into account and showed
multiple proofs for the same proposition. We now know this is not accurate. Here
is a revised diagram:

bool: · · Prop:

·
· · · ·

· · ·

To make proof irrelevance work, Lean must give up the “no confusion” property
for inductive predicates. Indeed, various proofs of the same proposition should
definitely be “confused.” This only concerns inductive predicates, not inductive
types in general.

An unfortunate consequence of proof irrelevance is that it prevents us from
performing rule induction by pattern matching. Induction by pattern matching re-
lies on a “measure”—a function to N that assigns a size to the arguments. Without
large elimination, the measure cannot be defined meaningfully. This explains why
we always use the induction’ tactic for rule induction.

Other systems and logics make di�erent choices. For example, Coq is proof-
relevant by default but compatible with proof irrelevance. Homotopy type theory
and other constructive or intuitionistic type theories build on data in equality
proofs and are therefore incompatible with proof irrelevance.

166 Chapter 11. Logical Foundations of Mathematics

11.2.3 No Large Elimination

A further di�erence between Prop and Type is that Prop does not allow large elim-
ination: It is generally impossible to extract information from a proof of a propo-
sition and use it in a program (i.e., a value of a type from Type). After all, because
of proof irrelevance, all proofs of a given proposition are equal, so they cannot
carry specific information that would distinguish them.

Imagine we could extract information from proofs inside a program. We could
for instance use the match construct in function definitions such as the following:

-- fails
def unsquare (i : Z) (hsq : ∃j, i = j * j) : Z :=
match hsq with
| Exists.intro j _ := j
end

The unsquare takes a square number i and a proof hsq that i is actually a square
number and returns the number j before squaring, extracted from the proof. Lean
raises the error

induction tactic failed, recursor ’Exists.dcases_on’ can
only eliminate into Prop

If it accepted the definition, we could derive false as follows. Let

hsq1 := Exists.intro 3 (by linarith)
hsq2 := Exists.intro (-3) (by linarith)

be two proofs of ∃j, (9 : Z) = j * j. Notice that they use di�erent witnesses for j
(3 versus -3). We then have unsquare 9 hsq1 = 3 and unsquare 9 hsq2 = -3. Yet, by
proof irrelevance, hsq1 = hsq2. Hence, unsquare 9 hsq2 equals 3. But we already
determined that it equals -3. This means 3 = -3, a contradiction.

As a compromise, Lean allows small elimination, which eliminates only into
Prop—whereas large elimination can eliminate into an arbitrary large universe
Sort u. This means we can use match to analyze the structure of a proof, extract
existential witnesses, and so on, as long as the match expression itself is a proof.
We have seen several examples of this in Section 5.5.

As a further compromise, Lean allows large elimination for syntactic subsin-
gletons: types in Prop for which it can be established syntactically that they have
cardinality 0 or 1. These are propositions such as false and a ∧ b that can be
proved in at most one way. For example, false has no proof, and all proofs of
a ∧ b have the form and.intro _ _. (Recursively, there might be several ways to
prove a and b.) More precisely, a syntactic subsingleton is an inductive definition
with at most one constructor whose arguments are either Prop or appear as imme-
diate arguments in the result type. When we match h : a ∧ b against the pattern
and.intro ha hb, no information is leaked about h.

11.3 The Axiom of Choice

Lean’s logic includes the axiom of choice, which makes it possible to obtain an
arbitrary element of any nonempty type. Consider the following predicate:

11.3. The Axiom of Choice 167

inductive nonempty (α : Sort u) : Prop
| intro (val : α) : nonempty

The predicate states that α has at least one element. To prove nonempty α, we
must provide an α value to nonempty.intro:

lemma nat.nonempty :
nonempty N :=

nonempty.intro 0

Since nonempty lives in Prop, large elimination is not available, and thus we cannot
extract the element that was used from the proof of nonempty α.

In Lean, the axiom of choice takes the form of a function that returns an arbi-
trary α-typed value given a proof of nonempty α:

constant classical.choice {α : Sort u} : nonempty α → α

We have no way to know whether this is the same element that was used to prove
nonempty α. It will just be an arbitrary element of α, thereby avoiding inconsisten-
cies. Using the axiom of choice, we can state properties that are unprovable but
whose negation is also unprovable—e.g., classical.choice nat.nonempty = 42.

The constant classical.choice is noncomputable. If we ask Lean for its value
using #reduce or #eval, it will refuse to compute it. In other words, proofs may
be terms, but they are not necessarily programs. This is one of the reasons why
some logicians prefer to work without this axiom. By contrast, the vast majority
of mathematicians have no objections against the axiom.

Unlike proof irrelevance and large and small elimination, the axiom of choice
is not built into the Lean kernel; it is only an axiom in the core library, giving
us the freedom to work without it. Lean requires us to mark definitions using
the noncomputable keyword if they use classical.choice to define constants in
Type, much in the same way as meta for metadefinitions (Chapter 7).

The following tools rely on classical.choice:

The function classical.some, often called Hilbert’s choice operator, can
help us find a witness of ∃a : α, p a, if we do not care which one. Its compan-
ion classical.some_spec gives a proof that the witness is indeed a witness.

classical.some : (∃a : α, p a)→ α

classical.some_spec : ∀h : (∃a : α, p a), p (classical.some h)

Intuitively, the choice operator tells us, “Convince me that there exists an
element satisfying p and I will give you such an element.”
We can also derive the traditional axiom of choice:

classical.axiom_of_choice (α β : Type) {r : α→ β→ Prop} :
(∀x : α, ∃y : β, r x y)→ (∃f, ∀x, r x (f x))

From the axiom of choice and propositional and functional extensionality
(propext, funext), we can derive the law of excluded middle:

classical.em : ∀a : Prop, a ∨ ¬ a

With the law of excluded middle, every proposition is decidable. This means
that we can construct proofs based on a case distinction on whether a cer-
tain proposition is true. We introduced this technique in Chapters 4 and 5.

168 Chapter 11. Logical Foundations of Mathematics

In Section 11.2.2, we saw a diagram depicting the interpretation of bool and
Prop side by side. The diagram suggested the existence of an infinite number of
propositions, but we now know that there are exactly two propositions: false and
true, the latter of which has a proof. Here is a revised diagram:

bool: · · Prop: ·
If we mentally connect bool’s two elements (ff and tt) with Prop’s two types
(false and true), we see that Prop is nearly the same as bool, except that propo-
sitions of type Prop can store proofs, in accordance with the PAT principle. The
following table summarizes the situation:

: false : Prop
true.intro : true : Prop
ff : bool : Type
tt : bool : Type

11.4 Subtypes

Inductive types are a very convenient definitional mechanism when they are appli-
cable, but lots of mathematical constructions do not fit that mold. Lean provides
two alternatives to cater for these: subtypes and quotients.

Subtyping is a mechanism to create new types from existing ones. Given a pred-
icate on the elements of a base type, the subtype contains only those elements
of the base type that fulfill this property. More precisely, the subtype contains
element–proof pairs that combine an element of the base type and a proof that
it fulfills the property.

The following diagram depicts a subtype that was created by keeping two of
the base type’s five elements:

· ·
·· · · ·

·· ·
base type subtype

Subtyping is useful for those types that cannot be defined as an inductive type.
For example, any attempt at defining the type of finite sets along the lines of

inductive finset (α : Type) : Type
| empty : finset
| insert : α → finset → finset

is doomed, because a given set may have multiple representations. For example,
{1, 2} can be represented in any of the following ways, and more:

finset.insert 1 (finset.insert 2 empty)
finset.insert 2 (finset.insert 1 empty)

finset.insert 1 (finset.insert 1 (finset.insert 2 empty))

11.4. Subtypes 169

Instead, we can define finite sets as the subtype of (possibly infinite) sets that
are finite. In general, subtypes have the syntax

{variable : base-type // property-applied-to-variable}

We saw an example in Section 3.6, namely, {i : N // i ≤ n}, which consists of the
natural numbers i fulfilling i ≤ n, where n is fixed in the context. The base type
is N, and the property is λi, i ≤ n. A less suggestive but perhaps less confusing
syntax for the same type is @subtype N (λi, i ≤ n). Our motivating example, the
type of finite sets over some type α, is specified as {A : set α // set.finite A},
where set.finite returns true if and only if its argument is finite.

11.4.1 First Example: Full Binary Trees

To illustrate subtypes, we will define a type of full binary trees, building on the
type btree from Section 4.8. In Section 5.6.3, we introduced a predicate is_full
that is true if each node of a tree has either zero or two child nodes. Based on
this type and this predicate, we can construct a subtype full_btree, containing
only full binary trees, as follows:

def full_btree (α : Type) : Type :=
{t : btree α // is_full t}

This is syntactic sugar for

def full_btree (α : Type) : Type :=
@subtype (btree α) is_full

where subtype is defined as follows:

inductive subtype {α : Type} (p : α → Prop) : Type
| mk : ∀x : α, p x → subtype

Elements of full_btree are essentially dependently typed pairs, where the
first component is a tree t and the second component is a proof that t is full:

def empty_full_btree : full_btree N :=
subtype.mk btree.empty is_full.empty

def full_btree_6 : full_btree N :=
subtype.mk (btree.node 6 btree.empty btree.empty)

begin
apply is_full.node,
apply is_full.empty,
apply is_full.empty,
refl

end

From a given element of full_btree, we can retrieve its two components via
subtype.val and subtype.property:

#reduce subtype.val full_btree_6
#check subtype.property full_btree_6

170 Chapter 11. Logical Foundations of Mathematics

The most appealing aspect of subtypes is that we can lift the operations from
the base type to the subtype instead of having to build a library from scratch, as
long as they preserve the subtype property. We only need to define “wrappers”
around constants from the base type. In general, defining such a wrapper given
an operation f on the base type involves three steps:

1. extract the base type values from the wrapper arguments;
2. invoke f on those base type values;
3. encapsulate the result using subtype.mk, together with a proof that the re-

sulting base type value fulfills the subtype property.
Using this procedure, we can lift btree functions to full_btree functions if

they preserve the property is_full. To lift the mirror operation from the type
btree→ btree to the type full_btree→ full_btree, we must

1. extract the btree from the wrapper argument;
2. invoke mirror on that btree;
3. encapsulate the result using subtype.mk, together with a proof that the re-

sulting btree fulfills is_full.
For step 3, we must extract the proof of is_full from the argument and use the
lemma is_full_mirror proved in Section 5.6.3. Putting everything together, we
get

def full_btree.mirror {α : Type} (t : full_btree α) :
full_btree α :=

subtype.mk (mirror (subtype.val t))
begin

apply is_full_mirror,
apply subtype.property t

end

The input is an element t of the subtype full_btree. We decompose t into
subtype.val t : btree and subtype.property t : is_full t. We use the mirror
function to reverse the tree component of t and use the lemma is_full_mirror,
together with the proof component of t, to show the condition is_full (mirror
(subtype.val t)).

Finally, we build a pair containing the resulting tree and the proof that this
tree is full using subtype.mk. The subtype.mk constructor can be seen both as
a pair-like constructor and as a cast from btree to full_btree, with a second
argument that guarantees that the cast is safe.

For proofs about subtypes, the following lemma is useful:

subtype.eq : subtype.val ?a = subtype.val ?b→ ?a = ?b

It states that two subtype values are equal if their subtype.val components are
equal. It is convenient that proofs are irrelevant in Lean, because we would not
want to have spurious duplicate values in the subtype, di�ering only in their
proofs. Here is how subtype.eq can be used to prove that the mirror image of
the mirror image of a full_btree is the full_btree itself:

lemma full_btree.mirror_mirror {α : Type} (t : full_btree α) :
(full_btree.mirror (full_btree.mirror t)) = t :=

11.4. Subtypes 171

begin
apply subtype.eq,
simp [full_btree.mirror, mirror_mirror]

end

Applying the lemma subtype.eq and then unfolding the definition of full_btree.
mirror yields the subgoal

mirror (mirror (subtype.val t)) = subtype.val t

which matches the statement of the lemma mirror_mirror from Section 4.8.

11.4.2 Second Example: Vectors

As a second example, consider the definition of vectors from Lean’s core libraries:

def vector (α : Type) (n : N) : Type :=
{xs : list α // list.length xs = n}

A vector is defined as a list of a given length. With lists, there is only one type for
a list of all lengths. For vectors, we have one dedicated type for every length of a
vector. The advantage of this scheme is that some operations, such as addition or
scalar product of vectors, rely on the two involved vectors having the same length.
We saw a morally equivalent but less practical definition of vectors in Section 4.10.

Vectors can be built from lists using subtype.mk:

def vector_123 : vector Z 3 :=
subtype.mk [1, 2, 3] (by refl)

Basic operations on vectors can be defined by decomposing them with subtype.
val and subtype.property, manipulating the underlying lists, and then recom-
posing them with subtype.mk. For example, we can define the componentwise
negation of an integer vector as follows:

def vector.neg {n : N} (v : vector Z n) : vector Z n :=
subtype.mk (list.map int.neg (subtype.val v))

begin
rw list.length_map,
exact subtype.property v

end

We use the function list.map to negate every entry of the underlying list and the
lemma list.length_map to show that this operation does not change the list’s
length.

Using subtype.eq, we can prove the following lemma about vector.neg:

lemma vector.neg_neg (n : N) (v : vector Z n) :
vector.neg (vector.neg v) = v :=

begin
apply subtype.eq,
simp [vector.neg]

end

The application of subtype.eq reduces the goal to showing the corresponding
property on the underlying lists. We can then use simp to finish the proof.

172 Chapter 11. Logical Foundations of Mathematics

11.5 Quotient Types

Quotients are a powerful construction in mathematics used to define Z, R, and
many other sets. Lean supports quotient types, an analogous mechanism on types.
Like subtyping, quotienting constructs a new type from an existing type. Unlike
a subtype, a quotient type contains all of the elements of the base type, except
that some elements that are di�erent in the base type may be considered equal
in the quotient type. In mathematical terms, the quotient type is isomorphic to a
partition of the base type. The diagram below shows a quotient type built from a
three-way partition:

· ·
·· · · ·

·· · · ·
·· ·

base type subtype quotient type

The depicted quotient type has only three elements, represented by gray ellipses.
Each of these elements corresponds to one or more base type elements.

The prerequisites to construct a quotient type are a base type τ and an equiv-
alence relation r : τ→ τ→ Prop specifying which elements of the base type will
be considered equal in the quotient. To construct the quotient type, we first need
to prove that r is an equivalence relation on τ. A type τ equipped with an equiv-
alence relation is called a setoid. In Lean, setoid is a type class. We can declare
an instance as follows:

@[instance] def τ.setoid : setoid τ :=
{ r := r,

iseqv := . . . }

In addition, this instance declaration introduces the notation a ≈ b for r a b. More
importantly, we can now use the quotient type quotient τ.setoid.

Every element a : τ belongs to some element in quotient τ.setoid, given by

quotient.mk : τ→ quotient τ.setoid

As an abbreviation for quotient.mk a, we can write JaK.
The following axiom guarantees that pairs of elements for which r holds are

indeed equal in the quotient type:

quotient.sound {a b : τ} : a ≈ b→ JaK = JbK

A lemma states the converse:

quotient.exact {a b : τ} : JaK = JbK→ a ≈ b

Finally, we can lift functions of type τ→ υ, where υ is some arbitrary type, to
quotient τ.setoid→ υ using quotient.lift, which has the following computa-
tion rule. Given some f : τ→ υ such that h : ∀a b, a ≈ b→ f a = f b, we have

quotient.lift f h JaK = f a

for all a : τ. The argument h is a proof that f is compatible with ≈; in other words,
it does not distinguish between ≈-equivalent arguments.

11.5. Quotient Types 173

11.5.1 First Example: Integers

As an example for a quotient type, we will construct the integers. A convenient
approach is to construct a quotient over pairs of natural numbers. The idea is
that a pair (p, n) of natural numbers represents the integer p - n. In this way, we
can represent all nonnegative integers p by (p, 0) and all negative integers - n
by (0, n). In addition, we get many more representations of the same integers;
for example, (7, 0), (8, 1), (9, 2), and (10, 3) all represent the integer 7.

First, we need to register the equivalence relation that we want to use. We
want two pairs (p1, n1) and (p2, n2) to be equal when p1 - n1 and p2 - n2 yield
the same integer. However, the condition p1 - n1 = p2 - n2 does not work because
subtraction on N is ill-behaved (e.g., 0 - 1 = 0). Instead, we use the condition
p1 + n2 = p2 + n1, which relies on addition.

We provide the definition of our equivalence relation, followed by a proof that
it is reflexive, symmetric, and transitive:

@[instance] def int.rel : setoid (N × N) :=
{ r :=

λpn1 pn2 : N × N,
prod.fst pn1 + prod.snd pn2 = prod.fst pn2 + prod.snd pn1,

iseqv :=
begin

repeat { apply and.intro },
{ intro pn,

refl },
{ intros pn1 pn2 h,

rw h },
{ intros pn1 pn2 pn3 h12 h23,

apply @add_right_cancel _ _ _ (prod.snd pn2),
cc }

end }

We can now write ≈ for the equivalence relation:

lemma int.rel_iff (pn1 pn2 : N × N) :
pn1 ≈ pn2 ↔
prod.fst pn1 + prod.snd pn2 = prod.fst pn2 + prod.snd pn1 :=

by refl

Using the name int.rel of our setoid instance that we registered above, we can
then define the integers as

def int : Type :=
quotient int.rel

We can define the integer zero as

def int.zero : int :=
J(0, 0)K

In fact, any term of the form J(m, m)K represents the same integer:

lemma int.zero_eq (m : N) :
int.zero = J(m, m)K :=

174 Chapter 11. Logical Foundations of Mathematics

begin
rw int.zero,
apply quotient.sound,
rw int.rel_iff,
simp

end

Next, we define addition on our new integers. To define functions on a quo-
tient type, we cannot simply define them by pattern matching, as for inductive
types. Instead, we define the function on the base type first and then lift the def-
inition to the quotient. To achieve this, we must prove that the definition of the
function f does not depend on the chosen representative of an equivalence class
(i.e., a ≈ b→ f a = f b). The functions quotient.lift (for unary functions) and
quotient.lift2 (for binary functions) can be used to lift functions in this way.

Addition can be defined as adding the pairs of natural numbers component-
wise. We then need to provide a proof that this can be lifted to a function on the
quotient by showing that pn1 ≈ pn1’ and pn2 ≈ pn2’ imply

J(prod.fst pn1 + prod.fst pn2 , prod.snd pn1 + prod.snd pn2)K
= J(prod.fst pn1’ + prod.fst pn2’, prod.snd pn1’ + prod.snd pn2’)K

Formally:
def int.add : int → int → int :=
quotient.lift2

(λpn1 pn2 : N × N,
J(prod.fst pn1 + prod.fst pn2,

prod.snd pn1 + prod.snd pn2)K)
begin

intros pn1 pn2 pn1’ pn2’ h1 h2,
apply quotient.sound,
rw int.rel_iff at *,
linarith

end

The resulting function int.add has the intended behavior:
lemma int.add_eq (p1 n1 p2 n2 : N) :

int.add J(p1, n1)K J(p2, n2)K = J(p1 + p2, n1 + n2)K :=
by refl

It would be very convenient if Lean let us enter this lemma as the definition of
int.add in the first place, presumably with the following syntax:

-- fails
def int.add : int → int → int
| J(p1, n1)K J(p2, n2)K := J(p1 + p2, n1 + n2)K

This would be a nice and intuitive syntax, but without a proof that the definition is
compatible with≈, we could define nonsensical functions and use them to derive
false. For example, we could define

-- fails
def int.fst : int → N
| J(p, n)K := p

11.5. Quotient Types 175

Observe that int.fst J(0, 0)K = 0 and int.fst J(1, 1)K = 1. However, since J(0,
0)K = J(1, 1)K, we get 0 = 1, a contradiction.

We can use the characteristic lemma int.add_eq to prove other lemmas about
int.add, such as

lemma int.add_zero (i : int) :
int.add int.zero i = i :=

begin
apply quotient.induction_on i,
intro pn,
rw int.zero,
cases’ pn with p n,
rw int.add_eq,
apply quotient.sound,
simp

end

The somewhat ill-named lemma quotient.induction_on is applied to perform a
case distinction on i, replacing i by JpnK, where pn is an arbitrary value of the
base type N × N. In general:

quotient.induction_on : ∀q : quotient ?s, (∀a, ?p JaK)→ ?p q

A more intuitive syntax for the first proof step would have been cases’ i, but this
is not supported by Lean.

11.5.2 Second Example: Unordered Pairs

Unordered pairs are pairs for which no distinction is made between the first and
second components. They are usually written {a, b}. We will introduce the type
upair α of unordered pairs over α as the quotient of pairs (a, b) with respect to
the relation “contains the same elements as”:

@[instance] def upair.rel (α : Type) : setoid (α × α) :=
{ r := λab1 ab2 : α × α,

({prod.fst ab1, prod.snd ab1} : set α) =
({prod.fst ab2, prod.snd ab2} : set α),

iseqv := by repeat { apply and.intro }; finish }

lemma upair.rel_iff {α : Type} (ab1 ab2 : α × α) :
ab1 ≈ ab2 ↔
({prod.fst ab1, prod.snd ab1} : set α) =
({prod.fst ab2, prod.snd ab2} : set α) :=

by refl

def upair (α : Type) : Type :=
quotient (upair.rel α)

We define upair.mk a b to construct an unordered pair containing a and b:

def upair.mk {α : Type} (a b : α) : upair α :=
J(a, b)K

176 Chapter 11. Logical Foundations of Mathematics

It is easy to prove that upair.mk is symmetric, meaning that our pairs are really
unordered:

lemma upair.mk_symm {α : Type} (a b : α) :
upair.mk a b = upair.mk b a :=

begin
unfold upair.mk,
apply quotient.sound,
rw upair.rel_iff,
apply set.union_comm

end

Another representation of unordered pairs is as sets of cardinality 1 or 2. The
following operation converts upair α values to that representation:

def set_of_upair {α : Type} : upair α → set α :=
quotient.lift (λab : α × α, {prod.fst ab, prod.snd ab})

begin
intros ab1 ab2 h,
rw upair.rel_iff at *,
exact h

end

11.5.3 Alternative Definitions via Normalization and Subtyping

Each element of a quotient type correspond to a class of≈-equivalent elements of
the base type. If there exists a systematic way to obtain a canonical representative
for each≈-equivalence class, we can use a subtype instead of a quotient, keeping
only the canonical representatives and filtering out the other elements.

Consider the quotient type int of integers constructed above. We observed
that (7, 0), (8, 1), (9, 2), and (10, 3) all represent the integer 7, but intuitively
(7, 0) seems preferable to the others. We will say that a pair (p, n) is canonical
if p or n (or both) is 0:

inductive int.is_canonical : N × N → Prop
| nonpos {n : N} : int.is_canonical (0, n)
| nonneg {p : N} : int.is_canonical (p, 0)

The integers consist of the canonical pairs of natural numbers:

def int : Type :=
{pn : N × N // int.is_canonical pn}

Clearly, each integer can be represented in one and only one way. Operations
on integers, such as addition and multiplication, must provide canonical results.
Fortunately, normalizing pairs of natural numbers is easy:

def int.normalize : N × N → N × N
| (p, n) := if p ≥ n then (p - n, 0) else (0, n - p)

lemma int.is_canonical_normalize (pn : N × N) :
int.is_canonical (int.normalize pn)

11.6. Summary of New Lean Constructs 177

For unordered pairs, there is no obvious normal form, except to always put the
smaller element first (or last). This requires a linear order ≤ on α:

def upair.is_canonical {α : Type} [linear_order α] :
α × α → Prop

| (a, b) := a ≤ b

def upair (α : Type) [linear_order α] : Type :=
{ab : α × α // upair.is_canonical ab}

Returning to the int.is_canonical predicate, notice that there are two proofs
that (0, 0) is canonical, using either nonpos or nonneg. By proof irrelevance, these
proofs must be equal. But this would seem to contradict the “no confusion” prop-
erty of inductive definitions. Fortunately, as we saw in Section 11.2.2, this property
does not apply to inductive predicates, so there is no reason to worry.

11.6 Summary of New Lean Constructs

Declaration

noncomputable prefixes noncomputable declarations

Constants

classical.choice function that returns an arbitrary element of a nonempty type
classical.some function that returns a witness given a proof of an existential
quotient function that creates a quotient type of a given setoid instance
quotient.lift function that lifts a unary function to a quotient type
quotient.lift2 function that lifts a binary function to a quotient type
setoid type class for a type with an equivalence relation on it
Sort u universe at level u

Notations

{x : α // P[x]} subtype of all x in α fulfilling P[x]
≈ equivalence relation on a setoid (used for quotienting)
Prop abbreviation for Sort 0
Type u abbreviation for Sort (u + 1)

Lemmas

classical.axiom_of_choice
traditional axiom of choice

classical.some_spec
characteristic property of classical.some

quotient.exact equality on quotient type implies ≈ on base type
quotient.induction_on

case distinction on a quotient type value
quotient.sound ≈ on base type implies equality on quotient type
subtype.eq equality on base type implies equality of subtype

Chapter 12

Basic Mathematical Structures

In this chapter, we introduce definitions and proofs about basic mathematical
structures such as groups, fields, and linear orders.

12.1 Type Classes over a Single Binary Operator

In mathematics, a group is a set G with a binary operator • : G × G→ G fulfilling
the following properties, called group axioms:

Associativity: For all a, b, c ∈ G, we have (a • b) • c = a • (b • c).
Identity element: There exists an element e ∈ G such that for all a ∈ G, we
have e • a = a.
Inverse element: For each a ∈ G, there exists an inverse element denoted
a−1 such that a−1 • a = e.

In Lean, a type class for groups could be defined as follows:

@[class] structure group (α : Type) :=
(mul : α → α → α)
(one : α)
(inv : α → α)
(mul_assoc : ∀a b c, mul (mul a b) c = mul a (mul b c))
(one_mul : ∀a, mul one a = a)
(mul_left_inv : ∀a, mul (inv a) a = one)

However, this is not the o�cial definition. Groups are part of a larger hierarchy of
algebraic structures.

Group operations can be written multiplicatively (with operator ∗, identity ele-
ment 1, and inverse element a−1) or additively (with operator +, identity element 0,
and inverse element −a). This is why Lean o�ers two type classes for groups: the
multiplicative group and the additive add_group. They are essentially the same
but use di�erent names for their constants and properties.

Any type that satisfies the group axioms can be registered as a group or add_
group. To illustrate this, we will define the type int2 of integers modulo 2, also
known as Z/2Z, and register it as an add_group. The type int2 has two elements:

inductive int2 : Type
| zero
| one

179

180 Chapter 12. Basic Mathematical Structures

Addition is defined as follows:

def int2.add : int2 → int2 → int2
| int2.zero a := a
| int2.one int2.zero := int2.one
| int2.one int2.one := int2.zero

Running #print add_group tells us all the constants and properties we need to
provide:

structure add_group : Type u → Type u
fields:
add_group.add : Π{α} [add_group α], α → α → α

add_group.add_assoc :
∀{α} [add_group α] (a b c : α), a + b + c = a + (b + c)

add_group.zero : Π(α) [add_group α], α
add_group.zero_add : ∀{α} [add_group α] (a : α), 0 + a = a
add_group.add_zero : ∀{α} [add_group α] (a : α), a + 0 = a
add_group.neg : Π{α} [c : add_group α], α → α

add_group.add_left_neg : ∀{α} [add_group α] (a : α), -a + a = 0

The constants add_group.add, add_group.zero, and add_group.neg correspond
to the binary operator •, the identity element e, and the inverse −1. The proper-
ties add_group.add_assoc, add_group.zero_add, and add_group.add_left_neg
correspond to the three group axioms. For technical reasons, we must also prove
the redundant property add_group.add_zero.

The type int2 can be registered as a group as follows:

@[instance] def int2.add_group : add_group int2 :=
{ add := int2.add,

add_assoc :=
by intros a b c; cases’ a; cases’ b; cases’ c; refl,

zero := int2.zero,
zero_add := by intro a; cases’ a; refl,
add_zero := by intro a; cases’ a; refl,
neg := λa, a,
add_left_neg := by intro a; cases’ a; refl }

With this instance declaration, we can now write 0, +, and -:

#reduce int2.one + 0 - 0 - int2.one

We can also use any lemma that has been proved for add_group:

lemma int2.add_right_neg:
∀a : int2, a + - a = 0 :=

add_right_neg

The algebraic hierarchy contains further type classes with one binary operator.
The main ones are listed below:

12.1. Type Classes over a Single Binary Operator 181

Type class Properties Examples

semigroup associativity of * R, Q, Z, N
monoid semigroup with unit 1 R, Q, Z, N
left_cancel_semigroup semigroup with c * a = c * b→ a = b
right_cancel_semigroup semigroup with a * c = b * c→ a = b
group monoid with inverse −1

Most of these structures have commutative versions (where a • b = b • a for
all elements a, b), prefixed with comm_: comm_semigroup, comm_monoid, comm_
group. All of these type classes have additive counterparts prefixed with add_:
add_semigroup, add_monoid, add_group, add_comm_semigroup, add_comm_monoid,
add_comm_group, add_left_cancel_semigroup, add_right_cancel_semigroup:

Type class Properties Examples

add_semigroup associativity of+ R, Q, Z, N
add_monoid add_semigroup with unit 0 R, Q, Z, N
add_left_cancel_semigroup add_semigroup with R, Q, Z, N

c + a = c + b→ a = b
add_right_cancel_semigroup add_semigroup with R, Q, Z, N

a + c = b + c→ a = b
add_group add_monoid with inverse - R, Q, Z

Although the additive type classes are isomorphic to their multiplicative coun-
terparts, they are crucial when constructing algebraic structures with more than
one binary operator such as rings and fields. To avoid duplicating all lemmas and
definitions based on the multiplicative type classes, the copying process is au-
tomated by a tactic (transport_multiplicative_to_additive) and an attribute
(@[to_additive]).

An example instance of add_monoid is the type list with the empty list [] as
zero and the append operator ++ as addition:

@[instance] def list.add_monoid {α : Type} :
add_monoid (list α) :=

{ zero := [],
add := (++),
add_assoc := list.append_assoc,
zero_add := list.nil_append,
add_zero := list.append_nil }

We could continue and register list with [] and ++ as an add_left_cancel_
semigroup and an add_right_cancel_semigroup.

The graph below illustrates the relationships between some of these type
classes. An arrow from X to Y means “X inherits all properties from Y.”

semigroup monoid group

comm_semigroup comm_monoid comm_group

182 Chapter 12. Basic Mathematical Structures

add_semigroup add_monoid add_group

add_comm_semigroup add_comm_monoid add_comm_group

12.2 Type Classes over Two Binary Operators

The additive and multiplicative structures are amalgamated to form more complex
type classes over two binary operators. One of these is field. A field F is defined
by the following properties:

F forms a commutative group under an operator +, called addition, with iden-
tity element 0.
F\{0} forms a commutative group under an operator ∗, called multiplication.
Multiplication distributes over addition—i.e., a ∗ (b + c) = a ∗ b + a ∗ c for all
a, b, c ∈ F.

By running #print field, we can display all constants and properties required
by field. Again, the type class includes some redundant properties such as left_distrib
and right_distrib due to its construction.

We will now show that int2 is a field by instantiating the field type class with
it. First, we must define multiplication on int2:

def int2.mul : int2 → int2 → int2
| int2.one a := a
| int2.zero _ := int2.zero

To declare int2 a field, we can reuse the instance int2.add_group that we de-
clared above using the syntax ..int2.add_group. We can prove the remaining
properties as follows:

@[instance] def int2.field : field int2 :=
{ one := int2.one,
mul := int2.mul,
inv := λa, a,
add_comm := by intros a b; cases’ a; cases’ b; refl,
exists_pair_ne :=

by apply exists.intro int2.zero;
apply exists.intro int2.one; finish,

one_mul := by intros a; refl,
mul_one := by intros a; cases’ a; refl,
mul_inv_cancel := by intros a h; cases’ a; finish,
inv_zero := by refl,
mul_assoc :=

by intros a b c; cases’ a; cases’ b; refl,
mul_comm := by intros a b; cases’ a; cases’ b; refl,
left_distrib := by intros a b c; cases’ a; cases’ b; refl,
right_distrib :=

by intros a b c; cases’ a; cases’ b; cases’ c; refl,
..int2.add_group }

12.2. Type Classes over Two Binary Operators 183

With this declaration in place, we can now use the notations 1, *, /, and more:

#reduce (1 : int2) * 0 / (0 - 1)

The command prints int2.zero. The type annotation : int2 is necessary here
to tell Lean that we want to calculate in int2 and not in N, the default. We can
even use arbitrary numerals in int2. For example, the numeral 3 is interpreted as
1 + 1 + 1, which is the same as 1 in int2:

#reduce (3 : int2)

The command prints int2.one.
Besides field, there are many more type classes for structures with two binary

operators. These are the main ones:

Type class Properties Examples

semiring monoid and add_comm_monoid with distributivity R, Q, Z, N
comm_semiring semiring with commutativity of * R, Q, Z, N
ring monoid and add_comm_group with distributivity R, Q, Z
comm_ring ring with commutativity of * R, Q, Z
division_ring ring with multiplicative inverse R, Q
field division_ring with commutativity of * R, Q

The property ∀n, n / 0 = 0 required by the field type class is simply a convention
to make division a total function. Mathematicians would regard division as a par-
tial function. The graph below illustrates the relationships between these type
classes.

semiring ring division_ring

comm_semiring comm_ring field

The hierarchy between ring and field is more complex than depicted and in-
cludes type classes for domains, integral domains, Euclidean rings, and more.

Once we have instantiated the type classes with types of interest, we can use
the ring and ring_exp tactics [4] to normalize terms containing operators on
those types. For example:

lemma ring_example (a b : int2) :
(a + b) ^ 3 = a ^ 3 + 3 * a ^ 2 * b + 3 * a * b ^ 2 + b ^ 3 :=

by ring

lemma ring_exp_example (a b : int2) (n : N):
(a + b) ^ (2 + n) =
(a + b) ^ n * (a ^ 2 + 2 * a * b + b ^ 2) :=

by ring_exp

These tactics are available for any type that is declared as a field or more generally
as a commutative semiring. The distinguishing feature of ring_exp is that it can
reason about exponents containing variables.

184 Chapter 12. Basic Mathematical Structures

For commutative monoids and groups, there is a similar normalization tactic
called abel:

lemma abel_example (a b : int2) :
a + b + 0 - (b + a + a) = - a :=

by abel

12.3 Coercions

When combining numbers from N, Z, Q, and R in the same lemmas, we may want
to cast from one type to another. For example, given a natural number, we may
need to convert it to an integer. Consider the following lemma and notice the type
of the arguments of multiplication:

lemma neg_mul_neg_nat (n : N) (z : Z) :
(- z) * (- n) = z * n :=

neg_mul_neg z n

Surprisingly, this statement does not lead to an error, although negation - n is not
defined on n : N, multiplication of z : Z and n : N is not defined, and the lemma
neg_mul_neg does not apply to natural numbers.

The diagnosis command #print neg_mul_neg_nat tells us what happened:

theorem neg_mul_neg_nat :
∀(z : Z) (n : N), -z * -↑n = z * ↑n :=

λ(z : Z) (n : N), neg_mul_neg z ↑n

Lean has a mechanism to introduce coercions, denoted by ↑ or coe, when neces-
sary. This coercion operator can be set up to provide implicit conversions between
arbitrary types. Many coercions are already in place, including these:

coe : N→ α casts N to another semiring α;
coe : Z→ α casts Z to another ring α;
coe : Q→ α casts Q to another division ring α.

In some cases, Lean is unable to figure out where to place the coercions. We
can then provide some type annotations to guide Lean’s inference algorithm, as
in the following example:

lemma neg_nat_mul_neg (n : N) (z : Z) :
(- n : Z) * (- z) = n * z :=

neg_mul_neg n z

In proofs involving coercions, the tactic norm_cast can be convenient. It can
help with goals such as ` m n : N, h : ↑m = ↑n ` m = n in the proof

lemma norm_cast_example_1 (m n : N) (h : (m : Z) = (n : Z)) :
m = n :=

begin
norm_cast at h,
exact h

end

or ` m n : N ` ↑m + ↑n = ↑(m + n) in the proof

12.4. Normalization Tactics 185

lemma norm_cast_example_2 (m n : N) :
(m : Z) + (n : Z) = ((m + n : N) : Z) :=

by norm_cast

The norm_cast tactic relies on lemmas such as the following:

nat.cast_add : ∀a b : N, ↑(a + b) = ↑a + ↑b
int.cast_add : ∀a b : Z, ↑(a + b) = ↑a + ↑b
rat.cast_add : ∀a b : Q, ↑(a + b) = ↑a + ↑b

12.4 Normalization Tactics

The algebraic tactics ring, ring_exp, and abel and the coercion tactic norm_cast
all work by normalization: They rewrite expressions in the hope that they become
syntactically equal, at which point equality is trivial to prove. Like rw and simp,
they produce a subgoal when they make some progress but do not fully succeed.

The optional position argument is as for the rewriting tactics (Section 2.5).

ring and ring_exp

ring
[
at position

]
ring_exp

[
at position

]
The ring and ring_exp tactics prove equalities over commutative rings and semir-
ings (such as N, Z, Q, and R) by normalizing expressions and syntactically com-
paring the result. The ring_exp variant performs more aggressive normalization
in the presence of variables in exponents.

abel

abel
[
at position

]
The abel tactic proves equalities over additive commutative monoids and groups
(such as N, Z, Q, and R) by normalizing expressions and syntactically comparing
the result.

norm_cast

norm_cast
[
at position

]
The norm_cast tactic moves coercions towards the inside of expressions, as a form
of simplification.

12.5 Lists, Multisets, and Finite Sets

We have seen many examples of how lists can be used in previous chapters. But
when making a new definition or stating a new lemma, we should also reflect on
alternatives such as multisets and finite sets.

Consider the following definition, based on the binary trees we introduced in
Section 4.8:

186 Chapter 12. Basic Mathematical Structures

def list.elems : btree N → list N
| btree.empty := []
| (btree.node a l r) := a :: list.elems l ++ list.elems r

This function returns a list of all the elements occurring in the tree. It traverses
the tree depth first, from left to right. But for some applications, we might not
care about the order of the elements.

This is where multisets can help us. For multisets, we have {3, 2, 1, 2} =
{1, 2, 2, 3} , whereas the two lists [3, 2, 1, 2] and [1, 2, 2, 3] are di�erent.
Multisets are defined as the quotient type over lists up to reordering. We can
redo the above definition using multisets as follows:

def multiset.elems : btree N → multiset N
| btree.empty := ∅
| (btree.node a l r) :=

{a} ∪ (multiset.elems l ∪ multiset.elems r)

Using this definition, we can prove that multiset.elems t = multiset.elems
(mirror t), whereas list.elems t = list.elems (mirror t) does not hold.

For some applications, we might want to go a step further and ignore not only
the order but also how often each element occurs in the tree, distinguishing only
between occurrence and nonoccurrence. This is where finite sets, or finsets, come
into play. On finsets, we have {3, 2, 1, 2} = {1, 2, 3}. Finsets are defined as
the subtype of multisets that do not contain any repeated elements. (Another
possible definition would have been as the subtype of sets that are finite.) We
can redo the definition above using finsets as follows:

def finset.elems : btree N → finset N
| btree.empty := ∅
| (btree.node a l r) := {a} ∪ (finset.elems l ∪ finset.elems r)

For all three of these structures, Lean o�ers sum and product operators to add or
multiply all of the elements:

#eval list.sum [2, 3, 4] -- result: 9
#eval multiset.sum ({2, 3, 4} : multiset N) -- result: 9
#eval finset.sum ({2, 3, 4} : finset N) (λn, n) -- result: 9

#eval list.prod [2, 3, 4] -- result: 24
#eval multiset.prod ({2, 3, 4} : multiset N) -- result: 24
#eval finset.prod ({2, 3, 4} : finset N) (λn, n) -- result: 24

The operators finset.sum and finset.prod take a second argument, a function
that maps the values of the finset to the values that should be added or multiplied.
If we put the identity function λn, n for that second argument, they behave like
the corresponding operators for lists and multisets.

These operators require the type of the elements to be declared as an instance
of add_monoid for addition or of monoid for multiplication. For multiset and
finset, they additionally require an instance declaration for add_comm_monoid
or comm_monoid because the result cannot depend on the order of adding or mul-
tiplying the elements.

12.6. Order Type Classes 187

Lean’s mathlib provides a collections of lemmas describing how the big oper-
ators behave under reorderings, basic operators on list, multiset, and finset,
homomorphisms, order relations, and more.

12.6 Order Type Classes

Many of the structures introduced above can be ordered. For example, the well-
known order on the natural numbers can be defined as

inductive nat.le : N → N → Prop
| refl : ∀a : N, nat.le a a
| step : ∀a b : N, nat.le a b → nat.le a (b + 1)

This is an example of a linear order. A linear order (or total order) is a binary
relation ≤ such that for all a, b, and c, the following properties hold:

Reflexivity: a ≤ a.
Transitivity: If a ≤ b and b ≤ c, then a ≤ c.
Antisymmetry: If a ≤ b and b ≤ a, then a = b.
Totality: a ≤ b or b ≤ a.

If a relation has the first three properties, it is a partial order. An example is the
subset relation ⊆ on sets, finite sets, or multisets. If a relation has the first two
properties, it is a preorder. An example is comparing lists by their length.

In Lean, there are type classes for the di�erent kinds of orders: linear_order,
partial_order, and preorder. The preorder class has the fields

le : α→ α→ Prop
le_refl : ∀a : α, le a a

le_trans : ∀a b c : α, le a b→ le b c→ le a c

The partial_order class has the additional field

le_antisymm : ∀a b : α, le a b→ le b a→ a = b

and linear_order has the additional field

le_total : ∀a b : α, le a b ∨ le b a

We can declare the preorder on list α that compares lists by their length as
follows:

@[instance] def list.length.preord {α : Type} :
preorder (list α) :=

{ le := λxs ys, list.length xs ≤ list.length ys,
le_refl := by intro xs; exact nat.le_refl _,
le_trans := by intros xs ys zs; exact nat.le_trans }

This type class instance gives us access to the infix syntax ≤ and to the corre-
sponding relations ≥, <, and >:

lemma list.length.preord_example {α : Type} (c : α) :
[c] > [] :=

dec_trivial

188 Chapter 12. Basic Mathematical Structures

dec_trivial is a special lemma that relies on type class inference to prove trivial
decidable goals.

Complete lattices, which we discussed in Chapter 10, are formalized as another
type class, complete_lattice, which inherits from partial_order. In the follow-
ing diagram, an arrow from X to Y means “X inherits all properties from Y.”

preorder partial_order linear_order

complete_lattice

Finally, Lean provides type classes that combine orders and algebraic struc-
tures: ordered_cancel_comm_monoid, ordered_comm_group, ordered_semiring,
linear_ordered_semiring, linear_ordered_comm_ring, linear_ordered_field.
All these mathematical structures relate ≤ and < with the constants 0, 1, +, and *
by monotonicity rules (e.g., a ≤ b→ c ≤ d→ a + c ≤ b + d) and cancellation rules
(e.g., c + a ≤ c + b→ a ≤ b).

12.7 Summary of New Lean Constructs

Notation

↑ coercion operator coe

Lemma

dec_trivial decidable truth (e.g., a true closed executable expression)

Tactics

abel normalizes terms of commutative monoids and groups
norm_cast normalizes coercions
ring normalizes ring expressions
ring_exp normalizes ring expressions including exponents with variables

Chapter 13

Rational and Real Numbers

We have seen how the natural numbers N can be defined as an inductive type and
how the integers Z can be defined as a quotient over N × N. In this chapter, we
review the construction of the rational numbers Q and the real numbers R. The
tools used for these constructions are inductive types, subtypes, and quotients.

This procedure can be followed to construct types with specific properties:
1. Create a new type that is large enough to represent all elements, but not

necessarily in a unique manner.
2. Take the quotient of this representation, equating elements as needed.
3. Define operators on the quotient type by lifting functions from the base type,

and prove that they are compatible with the quotient relation.
We used this approach to construct the type Z in Section 11.5.1. It can be used for
Q and R as well.

13.1 Rational Numbers

A rational number is a number that can be expressed as a fraction n/d of integers
n and d, where d 6= 0:

structure fraction :=
(num : Z)
(denom : Z)
(denom_ne_zero : denom 6= 0)

The number n is called the numerator, and the number d is called the denominator.
The representation of a rational number as a fraction is not unique. For example,
the rationals 1/2, 2/4, and −1/−2 are all equal. This representation as a fraction
will serve as the base type from which we will derive a quotient.

Two fractions n1/d1 and n2/d2 represent the same rational number if the ratio
between numerator and denominator are the same: n1 ∗ d2 = n2 ∗ d1. To construct
the quotient over the type fraction with respect to this relation, we show that
the relation is an equivalence relation. This is achieved by declaring fraction an
instance of the setoid type class:

namespace fraction

@[instance] def setoid : setoid fraction :=

189

190 Chapter 13. Rational and Real Numbers

{ r := λa b : fraction, num a * denom b = num b * denom a,
iseqv :=

begin
repeat { apply and.intro },
{ intros a; refl },
{ intros a b h; cc },
{ intros a b c eq_ab eq_bc,

apply int.eq_of_mul_eq_mul_right (denom_ne_zero b),
cc }

end }

lemma setoid_iff (a b : fraction) :
a ≈ b ↔ num a * denom b = num b * denom a :=

by refl

end fraction

Then we can define the type of rationals as the quotient over this setoid:

def rat : Type :=
quotient fraction.setoid

To define zero, one, addition, multiplication, and other operations, we first define
them on the fraction type. To add two fractions, we convert the fractions to a
common denominator and add the numerators. The easiest common denomina-
tor to use is simply the product of the two denominators:

@[instance] def has_add : has_add fraction :=
{ add := λa b : fraction,

{ num := num a * denom b + num b * denom a,
denom := denom a * denom b,
denom_ne_zero :=

by apply mul_ne_zero; exact denom_ne_zero _ } }

We register these operations directly as instances of the syntactic type classes
such as has_add to be able to use convenient notation such as + on fraction.
Similarly, we define zero as 0 := 0/1, one as 1 := 1/1, and multiplication as the
pairwise multiplication of numerators and denominators.

To lift these operations to rat, we must prove them compatible with ≈:

namespace fraction

@[simp] lemma add_num (a b : fraction) :
num (a + b) = num a * denom b + num b * denom a :=

by refl

@[simp] lemma add_denom (a b : fraction) :
denom (a + b) = denom a * denom b :=

by refl

lemma add_equiv_add {a a’ b b’ : fraction} (ha : a ≈ a’)
(hb : b ≈ b’) :

a + b ≈ a’ + b’ :=

13.2. Real Numbers 191

begin
simp [setoid_iff, add_denom, add_num] at *,
calc (num a * denom b + num b * denom a)

* (denom a’ * denom b’)
= num a * denom a’ * denom b * denom b’

+ num b * denom b’ * denom a * denom a’ :
by simp [add_mul, mul_add]; ac_refl

... = num a’ * denom a * denom b * denom b’
+ num b’ * denom b * denom a * denom a’ :

by simp [*]
... = (num a’ * denom b’ + num b’ * denom a’)

* (denom a * denom b) :
by simp [add_mul, mul_add]; ac_refl

end

end fraction

(The ac_refl tactic is a variant of refl that reasons up to associativity and com-
mutativity, much like cc.) Then we can use quotient.lift(2) to define the rat
operations, and we can instantiate the relevant syntactic type classes, such as

namespace rat

@[instance] def has_add : has_add rat :=
{ add := quotient.lift2 (λa b : fraction, Ja + bK)

begin
intros a b a’ b’ ha hb,
apply quotient.sound,
exact fraction.add_equiv_add ha hb

end }

end rat

From here, we can proceed and prove all the properties needed to make rat an
instance of field or, if we are more ambitious, discrete_linear_ordered_field.

Alternative Definitions of the Rational Numbers In mathlib, another approach
is used to defined the rationals. The type rat is defined as a subtype of fraction,
with the requirement that the denominator is positive and that the numerator
and the denominator are coprime (i.e., they have no common divisors except 1
and −1):

We discussed this general strategy in Section 11.5.3. In this way, no quotient is
required, computation is more e�cient, and more properties are syntactic equal-
ities up to computation. A disadvantage is that function definitions become more
complicated due to the need to normalize fractions.

13.2 Real Numbers

Some sequences of rational numbers seem to converge because the numbers in
the sequence get closer and closer to each other, and yet do not converge to a

192 Chapter 13. Rational and Real Numbers

rational number. The sequence

a0 = 1
a1 = 1.4
a2 = 1.41
a3 = 1.414
a4 = 1.4142

...

where an is the largest number with n digits after the decimal point such that
a2

n < 2, is such a sequence. It seems to converge because each an is at most 10−n

away from any of the following numbers, but the limit is
√

2 /∈ Q. In that sense, the
rational numbers are incomplete, and the reals are their completion. To construct
the reals, we need to fill in the gaps that are revealed by these sequences that
seem to converge but do not.

Cauchy sequences capture the notion of a sequence that seems to converge.
A sequence a0, a1, . . . is Cauchy if for any ε > 0, there exists an N ∈ N such that for
all m ≥ N, we have |aN − am| < ε. In other words, no matter how small we choose
ε, we can always find a point in the sequence from which all following numbers
deviate by less than ε.

We formalize sequences of rational numbers as functions f : N→ Q and de-
note the absolute value | | by abs. This yields the following Lean definition of
Cauchy sequences:

def is_cau_seq (f : N → Q) : Prop :=
∀ε > 0, ∃N, ∀m ≥ N, abs (f N - f m) < ε

Not every sequence is a Cauchy sequence:

lemma id_not_cau_seq :
¬ is_cau_seq (λn : N, (n : Q)) :=

begin
rw is_cau_seq,
intro h,
cases’ h 1 zero_lt_one with i hi,
have hi_succi :=

hi (i + 1) (by simp),
simp [←sub_sub] at hi_succi,
assumption

end

We define a type of Cauchy sequences as a subtype:

def cau_seq : Type :=
{f : N → Q // is_cau_seq f}

It will be convenient to have an auxiliary function that extracts the actual se-
quence from a cau_seq:

def seq_of (f : cau_seq) : N → Q :=
subtype.val f

13.2. Real Numbers 193

The basic idea of the construction is to represent the real numbers by Cauchy
sequences. Each Cauchy sequence represents the real number that is its limit; for
example, the sequence an = 1/n represents the real number 0, and the sequence
1, 1.4, 1.41, . . . represents the real number

√
2.

Two di�erent Cauchy sequences can represent the same real number; for ex-
ample, the sequence an = 1/n and the constant sequence bn = 0 both represent
0. Therefore, we need to take the quotient over sequences representing the same
real number. Two sequences represent the same real number when their di�er-
ence converges to zero:

namespace cau_seq

@[instance] def setoid : setoid cau_seq :=
{ r := λf g : cau_seq,

∀ε > 0, ∃N, ∀m ≥ N, abs (seq_of f m - seq_of g m) < ε,
iseqv :=

begin
apply and.intro,
{ intros f ε hε,

apply exists.intro 0,
finish },

apply and.intro,
{ intros f g hfg ε hε,

cases’ hfg ε hε with N hN,
apply exists.intro N,
intros m hm,
rw abs_sub,
apply hN m hm },

{ intros f g h hfg hgh ε hε,
cases’ hfg (ε / 2) (half_pos hε) with N1 hN1,
cases’ hgh (ε / 2) (half_pos hε) with N2 hN2,
apply exists.intro (max N1 N2),
intros m hm,
calc abs (seq_of f m - seq_of h m)

≤ abs (seq_of f m - seq_of g m)
+ abs (seq_of g m - seq_of h m) :

by apply abs_sub_le
... < ε / 2 + ε / 2 :

add_lt_add (hN1 m (le_of_max_le_left hm))
(hN2 m (le_of_max_le_right hm))

... = ε :
by simp }

end }

lemma setoid_iff (f g : cau_seq) :
f ≈ g ↔
∀ε > 0, ∃N, ∀m ≥ N, abs (seq_of f m - seq_of g m) < ε :=

by refl

end cau_seq

194 Chapter 13. Rational and Real Numbers

Using this setoid instance, we can now define the real numbers:

def real : Type :=
quotient cau_seq.setoid

Like for the rational numbers, we need to define zero, one, addition, multi-
plication, and other operators. We define them on cau_seq first and lift them to
real afterwards. For the constants 0 and 1, we can define them simply as constant
sequences. Any constant sequence is a Cauchy sequence:

namespace cau_seq

def const (q : Q) : cau_seq :=
subtype.mk (λ_ : N, q) (by rw is_cau_seq; intros ε hε; finish)

We can declare real instances of the syntactic type classes has_zero and has_one:

@[instance] def has_zero : has_zero real :=
{ zero := Jcau_seq.const 0K }

@[instance] def has_one : has_one real :=
{ one := Jcau_seq.const 1K }

Defining addition (and, similarly, multiplication) of real numbers requires a little
more e�ort. We define addition on Cauchy sequences by adding the elements of
the sequence pairwise:

@[instance] def has_add : has_add cau_seq :=
{ add := λf g : cau_seq,

subtype.mk (λn : N, seq_of f n + seq_of g n) sorry }

This definition requires a proof that the result is a Cauchy sequence, given that
f and g are Cauchy sequences. It is omitted.

Next, we need to show that this addition is compatible with ≈:

lemma add_equiv_add {f f’ g g’ : cau_seq} (hf : f ≈ f’)
(hg : g ≈ g’) :

f + g ≈ f’ + g’ :=
begin

intros ε0 hε0,
simp [setoid_iff],
cases’ hf (ε0 / 2) (half_pos hε0) with Nf hNf,
cases’ hg (ε0 / 2) (half_pos hε0) with Ng hNg,
apply exists.intro (max Nf Ng),
intros m hm,
calc abs (seq_of (f + g) m - seq_of (f’ + g’) m)

= abs ((seq_of f m + seq_of g m)
- (seq_of f’ m + seq_of g’ m)) :

by refl
... = abs ((seq_of f m - seq_of f’ m)

+ (seq_of g m - seq_of g’ m)) :
begin

have arg_eq :
seq_of f m + seq_of g m - (seq_of f’ m + seq_of g’ m) =

13.2. Real Numbers 195

seq_of f m - seq_of f’ m + (seq_of g m - seq_of g’ m),
by linarith,

rw arg_eq
end

... ≤ abs (seq_of f m - seq_of f’ m)
+ abs (seq_of g m - seq_of g’ m) :

by apply abs_add
... < ε0 / 2 + ε0 / 2 :

add_lt_add (hNf m (le_of_max_le_left hm))
(hNg m (le_of_max_le_right hm))

... = ε0 :
by simp

end

end cau_seq

To prove that f + g ≈ f’ + g’, we are given an ε0 > 0 and must show that there
exists a number N such that

∀m, m ≥ N→ abs (subtype.val (f + g) m - subtype.val (f’ + g’) m) < ε0

To obtain N, we use f ≈ f’ and g ≈ g’. The equivalence f ≈ f’ gives us for any
ε > 0 a number Nf such that abs (seq_of f m - seq_of f’ m) < ε for all m ≥ Nf. The
fact g ≈ g’ gives us a number Ng with a similar property. For the calculations to
work out in the end, we take the numbers Nf and Ng for ε := ε0 / 2. Then we choose
N to be the maximum of Nf and Ng, so that we get the inequalities for any m ≥ N.
The calc block at the end of the proof establishes that, for all m ≥ N,

abs (seq_of (f + g) m - seq_of (f’ + g’) m) < ε0

Using this lemma, we can define addition on real:

namespace real

@[instance] def has_add : has_add real :=
{ add := quotient.lift2 (λa b : cau_seq, Ja + bK)

begin
intros a b a’ b’ ha hb,
apply quotient.sound,
exact cau_seq.add_equiv_add ha hb,

end }

end real

In summary, real numbers are defined as a quotient over Cauchy sequences,
which are in turn defined as a subtype of N→ Q.

Alternative Definitions of the Real Numbers In mathlib, the construction of the
real numbers is essentially as described above. Only some definitions are stated
in a more general fashion to allow construction of other algebraic structures, such
as the p-adic numbers [20].

196 Chapter 13. Rational and Real Numbers

Alternatively, the real numbers can be defined using Dedekind cuts. A num-
ber r : R is then represented as the set of numbers x : Q such that x < r. An-
other alternative, which does not depend on Q, is to define R using binary se-
quences N→ bool. The elements of the sequence represent the number’s digits.
This works particularly well if we only need the real interval [0, 1].

13.3 Final Exhortation

We have now reached the end of this course. You now know fundamental theory
and techniques in interactive theorem proving as well as some application areas.
Although we used Lean, your skills should help you with other systems, especially
those based on simple or dependent type theory. You should also be able to read
many if not most scientific papers in the area.

Even if you do not choose to pursue a career in theorem proving, the authors
hope you will bring proof assistants with you and use them when it makes sense,
either because of their high trustworthiness or because of their convenience for
keeping track of complex proof goals.

If you continue using Lean, the natural next step would be to familiarize your-
self with mathlib and its documentation. If you use Lean outside a class context,
you will often find yourself looking up lemmas and tactics. The #find command
will surely be useful.1 And the Lean Zulip chat2 is the meeting place of Lean users.

13.4 Summary of New Lean Constructs

Command

#find looks up a lemma by pattern matching

Tactic

ac_refl proves equalities l = r up to associativity and commutativity

1https://leanprover-community.github.io/mathlib_docs/commands.html#find
2https://leanprover.zulipchat.com/

https://leanprover-community.github.io/mathlib_docs/commands.html##find
https://leanprover.zulipchat.com/

Bibliography

[1] J. Avigad, L. de Moura, and S. Kong. Theorem Proving in Lean: Release 3.20.0.
2020. https://leanprover.github.io/theorem_proving_in_lean/.

[2] J. Avigad, L. de Moura, and J. Roesch. Programming in Lean. 2016.
https://leanprover.github.io/programming_in_lean/.

[3] J. Avigad, G. Ebner, and S. Ullrich. The Lean Reference Manual: Release 3.3.0.
2018. https://leanprover.github.io/reference/.

[4] A. Baanen. A Lean tactic for normalising ring expressions with exponents
(short paper). In N. Peltier and V. Sofronie-Stokkermans, editors, IJCAR 2020,
volume 12167 of Lecture Notes in Computer Science, pages 21–27. Springer,
2020. https://lean-forward.github.io/ring_exp/paper.pdf.

[5] H. P. Barendregt, W. Dekkers, and R. Statman. Lambda Calculus with Types.
Perspectives in logic. Cambridge University Press, 2013.

[6] K. Buzzard, J. Commelin, and P. Massot. Formalising perfectoid spaces. In
J. Blanchette and C. Hritcu, editors, Proceedings of the 9th ACM SIGPLAN
International Conference on Certified Programs and Proofs, CPP 2020, New
Orleans, LA, USA, January 20-21, 2020, pages 299–312. ACM, 2020.

[7] M. Carneiro. The type theory of Lean. MSc thesis, Carnegie Mellon
University, 2019. https://github.com/digama0/lean-type-
theory/releases/download/v1.0/main.pdf.

[8] G. Ebner, S. Ullrich, J. Roesch, J. Avigad, and L. de Moura. A metaprogramming
framework for formal verification. PACMPL, 1(ICFP):34:1–34:29, 2017.
https://leanprover.github.io/papers/tactic.pdf.

[9] G. Gonthier. Formal proof—the Four-Color Theorem. Notices AMS,
55(11):1382–1393, 2008.
https://www.ams.org/notices/200811/tx081101382p.pdf.

[10] G. Gonthier, A. Asperti, J. Avigad, Y. Bertot, C. Cohen, F. Garillot, S. L. Roux,
A. Mahboubi, R. O’Connor, S. O. Biha, I. Pasca, L. Rideau, A. Solovyev, E. Tassi,
and L. Théry. A machine-checked proof of the Odd Order Theorem. In
S. Blazy, C. Paulin-Mohring, and D. Pichardie, editors, ITP 2013, volume 7998
of Lecture Notes in Computer Science, pages 163–179. Springer, 2013.
https://hal.inria.fr/hal-00816699/document.

197

https://leanprover.github.io/theorem_proving_in_lean/
https://leanprover.github.io/programming_in_lean/
https://leanprover.github.io/reference/
https://lean-forward.github.io/ring_exp/paper.pdf
https://github.com/digama0/lean-type-theory/releases/download/v1.0/main.pdf
https://github.com/digama0/lean-type-theory/releases/download/v1.0/main.pdf
https://leanprover.github.io/papers/tactic.pdf
https://www.ams.org/notices/200811/tx081101382p.pdf
https://hal.inria.fr/hal-00816699/document

198 Bibliography

[11] K. Gopinathan and I. Sergey. Certifying certainty and uncertainty in
approximate membership query structures. In S. Lahiri and C. Wang, editors,
CAV 2020, Lecture Notes in Computer Science. Springer, 2020.
https://ilyasergey.net/papers/ceramist-draft.pdf.

[12] R. Gu, Z. Shao, H. Chen, X. N. Wu, J. Kim, V. Sjöberg, and D. Costanzo.
CertiKOS: An extensible architecture for building certified concurrent OS
kernels. In K. Keeton and T. Roscoe, editors, OSDI 2016, pages 653–669.
USENIX Association, 2016. https:
//www.usenix.org/system/files/conference/osdi16/osdi16-gu.pdf.

[13] T. C. Hales, M. Adams, G. Bauer, D. T. Dang, J. Harrison, T. L. Hoang, C. Kaliszyk,
V. Magron, S. McLaughlin, T. T. Nguyen, T. Q. Nguyen, T. Nipkow, S. Obua,
J. Pleso, J. Rute, A. Solovyev, A. H. T. Ta, T. N. Tran, D. T. Trieu, J. Urban, K. K. Vu,
and R. Zumkeller. A formal proof of the Kepler conjecture. CoRR,
abs/1501.02155, 2015. http://arxiv.org/abs/1501.02155.

[14] J. Harrison. Formal verification at Intel. In LICS 2003, pages 45–54. IEEE
Computer Society, 2003.
https://ieeexplore.ieee.org/document/1210044.

[15] J. Harrison, J. Urban, and F. Wiedijk. History of interactive theorem proving.
In J. H. Siekmann, editor, Computational Logic, volume 9 of Handbook of the
History of Logic, pages 135–214. Elsevier, 2014.
https://www.cl.cam.ac.uk/~jrh13/papers/joerg.pdf.

[16] G. Klein, J. Andronick, K. Elphinstone, G. Heiser, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and
S. Winwood. seL4: Formal verification of an operating-system kernel.
Commun. ACM, 53(6):107–115, 2010. https://www.researchgate.net/
profile/Gernot_Heiser/publication/220910193_SeL4_Formal_
verification_of_an_OS_kernel/links/09e4150f00292a0329000000/SeL4-
Formal-verification-of-an-OS-kernel.pdf.

[17] D. E. Knuth. The TEXbook. Addison-Wesley, 1986.
http://www.ctex.org/documents/shredder/src/texbook.pdf.

[18] R. Kumar, M. O. Myreen, M. Norrish, and S. Owens. CakeML: A verified
implementation of ML. In S. Jagannathan and P. Sewell, editors, POPL 2014,
pages 179–192. ACM, 2014. https://cakeml.org/popl14.pdf.

[19] X. Leroy. A formally verified compiler back-end. J. Automated Reasoning,
43(4):363–446, 2009. https://arxiv.org/pdf/0902.2137.pdf.

[20] R. Y. Lewis. A formal proof of Hensel’s lemma over the p-adic integers. In
A. Mahboubi and M. O. Myreen, editors, CPP 2019, pages 15–26. ACM, 2019.
https://arxiv.org/pdf/1909.11342.pdf.

[21] J. Limperg. A novice-friendly induction tactic for Lean. In C. Hritcu and
A. Popescu, editors, CPP ’21, pages 199–211. ACM, 2021.
https://arxiv.org/pdf/2012.08990.pdf.

https://ilyasergey.net/papers/ceramist-draft.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-gu.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-gu.pdf
http://arxiv.org/abs/1501.02155
https://ieeexplore.ieee.org/document/1210044
https://www.cl.cam.ac.uk/~jrh13/papers/joerg.pdf
https://www.researchgate.net/profile/Gernot_Heiser/publication/220910193_SeL4_Formal_verification_of_an_OS_kernel/links/09e4150f00292a0329000000/SeL4-Formal-verification-of-an-OS-kernel.pdf
https://www.researchgate.net/profile/Gernot_Heiser/publication/220910193_SeL4_Formal_verification_of_an_OS_kernel/links/09e4150f00292a0329000000/SeL4-Formal-verification-of-an-OS-kernel.pdf
https://www.researchgate.net/profile/Gernot_Heiser/publication/220910193_SeL4_Formal_verification_of_an_OS_kernel/links/09e4150f00292a0329000000/SeL4-Formal-verification-of-an-OS-kernel.pdf
https://www.researchgate.net/profile/Gernot_Heiser/publication/220910193_SeL4_Formal_verification_of_an_OS_kernel/links/09e4150f00292a0329000000/SeL4-Formal-verification-of-an-OS-kernel.pdf
http://www.ctex.org/documents/shredder/src/texbook.pdf
https://cakeml.org/popl14.pdf
https://arxiv.org/pdf/0902.2137.pdf
https://arxiv.org/pdf/1909.11342.pdf
https://arxiv.org/pdf/2012.08990.pdf

199

[22] M. Lipovaca. Learn You a Haskell for Great Good!: A Beginner’s Guide. No
Starch Press, 1st edition, 2011. http://learnyouahaskell.com/.

[23] A. Lochbihler. Verifying a compiler for Java threads. In A. D. Gordon, editor,
ESOP 2010, volume 6012 of Lecture Notes in Computer Science, pages
427–447. Springer, 2010. https:
//link.springer.com/content/pdf/10.1007/978-3-642-11957-6_23.pdf.

[24] The mathlib Community. The Lean mathematical library. In J. Blanchette
and C. Hrit,cu, editors, CPP 2020, pages 367–381. ACM, 2020.
https://arxiv.org/pdf/1910.09336.pdf.

[25] R. Nederpelt and H. Geuvers. Type Theory and Formal Proof: An Introduction.
Cambridge University Press, 2014.

[26] T. Nipkow and G. Klein. Concrete Semantics: With Isabelle/HOL. Springer,
2014. http://www.concrete-semantics.org/concrete-semantics.pdf.

[27] B. O’Sullivan, D. Stewart, and J. Goerzen. Real World Haskell. O’Reilly, 2008.
http://book.realworldhaskell.org/read/.

[28] A. J. Perlis. Epigrams on programming. SIGPLAN Notices, 17(9):7–13, 1982.
https://dl.acm.org/doi/pdf/10.1145/947955.1083808?casa_token=Z_
grmOD_yAYAAAAA:dvMu7thQc-8XmGJCZ1ARQ24_
XB1qel3M1jYUmBPAKfuBaZrryxmKiKValMrwpunJ0dv9vhr2kDvMxA.

[29] B. C. Pierce. Types and Programming Languages. MIT Press, 2002.

[30] F. van Raamsdonk. Logical Verification: Course Notes. 2011.
https://www.cs.vu.nl/~jbe248/lv2017/notes.pdf.

[31] D. M. Russino�. A mechanically checked proof of correctness of the AMD K5
floating point square root microcode. Formal Methods in System Design,
14(1):75–125, 1999. https://link.springer.com/content/pdf/10.1023/A:
1008669628911.pdf.

[32] D. Selsam and L. de Moura. Congruence closure in intensional type theory.
In N. Olivetti and A. Tiwari, editors, IJCAR 2016, volume 9706 of Lecture Notes
in Computer Science, pages 99–115. Springer, 2016.
https://arxiv.org/pdf/1701.04391.pdf.

[33] C. Watt. Mechanising and verifying the WebAssembly specification. In
J. Andronick and A. P. Felty, editors, CPP 2018, pages 53–65. ACM, 2018.
https://www.cl.cam.ac.uk/~caw77/papers/mechanising-and-verifying-
the-webassembly-specification.pdf.

http://learnyouahaskell.com/
https://link.springer.com/content/pdf/10.1007/978-3-642-11957-6_23.pdf
https://link.springer.com/content/pdf/10.1007/978-3-642-11957-6_23.pdf
https://arxiv.org/pdf/1910.09336.pdf
http://www.concrete-semantics.org/concrete-semantics.pdf
http://book.realworldhaskell.org/read/
https://dl.acm.org/doi/pdf/10.1145/947955.1083808?casa_token=Z_grmOD_yAYAAAAA:dvMu7thQc-8XmGJCZ1ARQ24_XB1qel3M1jYUmBPAKfuBaZrryxmKiKValMrwpunJ0dv9vhr2kDvMxA
https://dl.acm.org/doi/pdf/10.1145/947955.1083808?casa_token=Z_grmOD_yAYAAAAA:dvMu7thQc-8XmGJCZ1ARQ24_XB1qel3M1jYUmBPAKfuBaZrryxmKiKValMrwpunJ0dv9vhr2kDvMxA
https://dl.acm.org/doi/pdf/10.1145/947955.1083808?casa_token=Z_grmOD_yAYAAAAA:dvMu7thQc-8XmGJCZ1ARQ24_XB1qel3M1jYUmBPAKfuBaZrryxmKiKValMrwpunJ0dv9vhr2kDvMxA
https://www.cs.vu.nl/~jbe248/lv2017/notes.pdf
https://link.springer.com/content/pdf/10.1023/A:1008669628911.pdf
https://link.springer.com/content/pdf/10.1023/A:1008669628911.pdf
https://arxiv.org/pdf/1701.04391.pdf
https://www.cl.cam.ac.uk/~caw77/papers/mechanising-and-verifying-the-webassembly-specification.pdf
https://www.cl.cam.ac.uk/~caw77/papers/mechanising-and-verifying-the-webassembly-specification.pdf

	Contents
	Preface
	I Basics
	1 Definitions and Statements
	1.1 Types and Terms
	1.1.1 Types
	1.1.2 Terms
	1.1.3 Type Checking and Type Inference
	1.1.4 Type Inhabitation

	1.2 Type Definitions
	1.2.1 Natural Numbers
	1.2.2 Arithmetic Expressions
	1.2.3 Comparison with Java
	1.2.4 Comparison with C
	1.2.5 Lists

	1.3 Function Definitions
	1.4 Lemma Statements
	1.5 Summary of New Lean Constructs

	2 Backward Proofs
	2.1 Tactic Mode
	2.2 Basic Tactics
	2.3 Reasoning about Connectives and Quantifiers
	2.4 Reasoning about Equality
	2.5 Rewriting Tactics
	2.6 Proofs by Mathematical Induction
	2.7 Induction Tactic
	2.8 Cleanup Tactics
	2.9 Summary of New Lean Constructs

	3 Forward Proofs
	3.1 Structured Proofs
	3.2 Structured Constructs
	3.3 Forward Reasoning about Connectives and Quantifiers
	3.4 Calculational Proofs
	3.5 Forward Reasoning with Tactics
	3.6 Dependent Types
	3.7 The PAT Principle
	3.8 Induction by Pattern Matching
	3.9 Summary of New Lean Constructs

	II Functional–Logic Programming
	4 Functional Programming
	4.1 Inductive Types
	4.2 Structural Induction
	4.3 Structural Recursion
	4.4 Pattern Matching Expressions
	4.5 Structures
	4.6 Type Classes
	4.7 Lists
	4.8 Binary Trees
	4.9 Case Tactics
	4.10 Dependent Inductive Types
	4.11 Summary of New Lean Constructs

	5 Inductive Predicates
	5.1 Introductory Examples
	5.1.1 Even Numbers
	5.1.2 Tennis Games
	5.1.3 Reflexive Transitive Closure
	5.1.4 A Nonexample

	5.2 Logical Symbols
	5.3 Rule Induction
	5.4 Linear Arithmetic Tactic
	5.5 Elimination
	5.6 Further Examples
	5.6.1 Sorted Lists
	5.6.2 Palindromes
	5.6.3 Full Binary Trees
	5.6.4 First-Order Terms

	5.7 Summary of New Lean Constructs

	6 Monads
	6.1 Introductory Example
	6.2 Two Operations and Three Laws
	6.3 A Type Class
	6.4 No Effects
	6.5 Basic Exceptions
	6.6 Mutable State
	6.7 Nondeterminism
	6.8 Tautology Tactic
	6.9 A Generic Algorithm: Iteration over a List
	6.10 Summary of New Lean Constructs

	7 Metaprogramming
	7.1 Tactics and Tactic Combinators
	7.2 The Metaprogramming Monad
	7.3 Names, Expressions, Declarations, and Environments
	7.4 First Example: A Conjunction-Destructing Tactic
	7.5 Second Example: A Provability Advisor
	7.6 A Look at Two Predefined Tactics
	7.7 Miscellaneous Tactics
	7.8 Summary of New Lean Constructs

	III Program Semantics
	8 Operational Semantics
	8.1 Formal Semantics
	8.2 A Minimalistic Imperative Language
	8.3 Big-Step Semantics
	8.4 Properties of the Big-Step Semantics
	8.5 Small-Step Semantics
	8.6 Properties of the Small-Step Semantics
	8.7 Parallelism

	9 Hoare Logic
	9.1 Hoare Triples
	9.2 Hoare Rules
	9.3 A Semantic Approach to Hoare Logic
	9.4 First Program: Exchanging Two Variables
	9.5 Second Program: Adding Two Numbers
	9.6 Finish Tactic
	9.7 A Verification Condition Generator
	9.8 Second Program Revisited: Adding Two Numbers
	9.9 Hoare Triples for Total Correctness
	9.10 Summary of New Lean Constructs

	10 Denotational Semantics
	10.1 Compositionality
	10.2 A Relational Denotational Semantics
	10.3 Fixpoints
	10.4 Monotone Functions
	10.5 Complete Lattices
	10.6 Least Fixpoint
	10.7 A Relational Denotational Semantics, Continued
	10.8 Application to Program Equivalence
	10.9 A Simpler Approach Based on an Inductive Predicate

	IV Mathematics
	11 Logical Foundations of Mathematics
	11.1 Universes
	11.2 The Peculiarities of Prop
	11.2.1 Impredicativity
	11.2.2 Proof Irrelevance
	11.2.3 No Large Elimination

	11.3 The Axiom of Choice
	11.4 Subtypes
	11.4.1 First Example: Full Binary Trees
	11.4.2 Second Example: Vectors

	11.5 Quotient Types
	11.5.1 First Example: Integers
	11.5.2 Second Example: Unordered Pairs
	11.5.3 Alternative Definitions via Normalization and Subtyping

	11.6 Summary of New Lean Constructs

	12 Basic Mathematical Structures
	12.1 Type Classes over a Single Binary Operator
	12.2 Type Classes over Two Binary Operators
	12.3 Coercions
	12.4 Normalization Tactics
	12.5 Lists, Multisets, and Finite Sets
	12.6 Order Type Classes
	12.7 Summary of New Lean Constructs

	13 Rational and Real Numbers
	13.1 Rational Numbers
	13.2 Real Numbers
	13.3 Final Exhortation
	13.4 Summary of New Lean Constructs

	Bibliography

