»&

4%/ BlockSec

Security Audit Report for Aura

Date: Mar 15, 2023
Version: 1.0

Contact: contact@blocksec.com

Digitally signed by
BIOCkseC BlockSec Audit Team
. Date: 2023.03.16 11:46:10
Audit Team _oeon

mailto:contact@blocksec.com

1

Introduction

1.1
1.2
1.3

1.4

Findings

2.1

2.2

2.3

Contents

About Target Contracts e
Disclaimer e e
Procedure of Auditing e
1.3.1 Software Security
1.3.2 DeFiSecurity e
1.3.3 NFT Security o e
1.3.4 Additional Recommendation Lo

W W W MDD NN = = -

Security Model L e

DeFiSecurity o e
2.1.1 Lack of Check on parameter ExcludeCirculatingAddr
2.1.2 Incomplete Check in function ExcludeCirculatingAddr()
2.1.3 Incomplete Check in function CreatePeriodicVestingAccount()
2.1.4 No Limitation on Receiving Tokens for ExcludeCirculatingAddr
Additional Recommendation
2.2.1 |Insufficient Check of MaxSupply o
2.2.2 GasOptimization e 9

© © N oo~ b

2.3.1 Potential Effecton Minted Rewards 11
2.3.2 Assumption on the Secure Implementation of Contract Dependencies 11
2.3.3 Account Type of ExcludeCirculatingAddr 11

Report Manifest

Item Description
Client Aura Network
Target Aura

Version History

Version

Date

Description

1.0

March 15, 2023

First Version

About BlockSec
laborates with leading DeFi projects to secure their products. The team is founded by top-notch security
researchers and experienced experts from both academia and industry. They have published multiple
blockchain security papers in prestigious conferences, reported several zero-day attacks of DeFi applica-
tions, and released detailed analysis reports of high-impact security incidents. They can be reached at

Email, Twitter and Medium.

The BlockSec Team focuses on the security of the blockchain ecosystem, and col-

https://www.blocksec.com
mailto:contact@blocksec.com
https://twitter.com/BlockSecTeam
https://blocksecteam.medium.com/

Chapter 1 Introduction

1.1 About Target Contracts

Information | Description

Type Cosmos Chain

Language Go

Approach Semi-automatic and manual verification

The repository that has been audited includes aura-Aura_v0.4.3 1.

The auditing process is iterative. Specifically, we will audit the commits that fix the discovered issues.
If there are new issues, we will continue this process. The commit SHA values during the audit are shown
in the following. Our audit report is responsible for the only initial version (i.e., Version 1), as well as new
codes (in the following versions) to fix issues in the audit report.

Project Commit SHA
Version 1 019eacad3805a0c5101904035bbbf13deed68b05
Version 2 222d63elaabbb6feebaeab89bcdfcb9af2dbc82a2

Aura

Note that, we did NOT audit all the modules in the repository. The modules in this audit report covers
aura-Aura_v0.4.3 folder contract including five modules below:
- X/aura
- x/auth
- x/bank
- x/feegrant
- x/mint

1.2 Disclaimer

This audit report does not constitute investment advice or a personal recommendation. It does not
consider, and should not be interpreted as considering or having any bearing on, the potential economics
of a token, token sale or any other product, service or other asset. Any entity should not rely on this report
in any way, including for the purpose of making any decisions to buy or sell any token, product, service or
other asset.

This audit report is not an endorsement of any particular project or team, and the report does not
guarantee the security of any particular project. This audit does not give any warranties on discovering
all security issues of the smart contracts, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit cannot be considered comprehensive, we always
recommend proceeding with independent audits and a public bug bounty program to ensure the security
of smart contracts.

thitps://github.com/aura-nw/aura/releases/tag/Aura_v0.4.3

’g\,\l BlockSec

computing infrastructure are out of the scope.

The scope of this audit is limited to the code mentioned in Section 1.1. Unless explicitly specified,
the security of the language itself (e.g., the solidity language), the underlying compiling toolchain and the

1.3 Procedure of Auditing

We perform the audit according to the following procedure.
- Vulnerability Detection
manually verify (reject or confirm) the issues reported by them.

We first scan smart contracts with automatic code analyzers, and then

- Semantic Analysis We study the business logic of smart contracts and conduct further investiga-

- Recommendation

1.3.

*

1.3.

tion on the possible vulnerabilities using an automatic fuzzing tool (developed by our research team).

We also manually analyze possible attack scenarios with independent auditors to cross-check the

result.

programming practice, including gas optimization, code style, and etc.
We show the main concrete checkpoints in the following.

1 Software Security

Reentrancy

DoS

Access control

Data handling and data flow

Exception handling

Untrusted external call and control flow
Initialization consistency

Events operation

Error-prone randomness

Improper use of the proxy system

2 DeFi Security

Semantic consistency
Functionality consistency
Access control

Business logic

Token operation
Emergency mechanism
Oracle security

Whitelist and blacklist
Economic impact

Batch transfer

We provide some useful advice to developers from the perspective of good

’Q\,\l BlockSec

1.3.3 NFT Security

+ Duplicated item
+ Verification of the token receiver
x Off-chain metadata security

1.3.4 Additional Recommendation

x Gas optimization

+x Code quality and style
Note The previous checkpoints are the main ones. We may use more checkpoints during the auditing
process according to the functionality of the project.

1.4 Security Model

To evaluate the risk, we follow the standards or suggestions that are widely adopted by both industry
and academy, including OWASP Risk Rating Methodology 2 and Common Weakness Enumeration 3.
The overall severity of the risk is determined by likelihood and impact. Specifically, likelihood is used to
estimate how likely a particular vulnerability can be uncovered and exploited by an attacker, while impact
is used to measure the consequences of a successful exploit.

In this report, both likelihood and impact are categorized into two ratings, i.e., high and low respec-
tively, and their combinations are shown in Table 1.1.

Table 1.1: Vulnerability Severity Classification

High

Impact

Low

High Low
Likelihood

Accordingly, the severity measured in this report are classified into three categories: High, Medium,
Low. For the sake of completeness, Undetermined is also used to cover circumstances when the risk
cannot be well determined.

Furthermore, the status of a discovered item will fall into one of the following four categories:

- Undetermined No response yet.

- Acknowledged The item has been received by the client, but not confirmed yet.

- Confirmed The item has been recognized by the client, but not fixed yet.

- Fixed The item has been confirmed and fixed by the client.

2https://owasp.org/www-community/ OWASP_Risk_Rating_Methodology

3https://cwe.mitre.org/

https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
https://cwe.mitre.org/

Chapter 2 Findings

In total, we find four potential issues. Besides, we have two recommendations and three notes as

follows:

- High Risk: 0

- Medium Risk: 4

- Low Risk: 0

- Recommendations: 2

- Notes: 3

ID | Severity | Description Category Status

1 Medium La.ck of Check on parameter ExcludeCircu- DeFi Security Fixed
latingAddr

5 Medium Ingomplete Check in function ExcludeCircu- DeFi Security Fixed
latingAddr()

3 Medium 'Incom'plete Check in function CreatePeriod- DeFi Security Fixed
icVestingAccount()

4 Medium Ng lel’Fahon on Receiving Tokens for Exclude- DeFi Security Fixed
CirculatingAddr

5 - Insufficient Check of MaxSupply Recommendation | Fixed

6 - Gas Optimization Recommendation | Fixed

7 - Potential Effect on Minted Rewards Note Confirmed

8 i Assumption on the Secure Implementation of Note Confirmed
Contract Dependencies

9 - Account Type of ExcludeCirculatingAddr Note Confirmed

The details are provided in the following sections.

2.1 DeFi Security

2.1.1 Lack of Check on parameter ExcludeCirculatingAddr

Severity Medium
Status Fixed in Version 2
Introduced by Version 1

Description In module aura, the parameter ExcludeCirculatingAddr is not validated in the process of
genesis state validation.

41// validate params
42func (p Params) Validate() error {
43 if err := validateMaxSupply(p.MaxSupply); err != nil {

44 return err
45 }

46

47 return nil
48}

Listing 2.1: aura/x/aura/types/params.go

@V BlockSec

Impact lllegal value of ExcludeCirculatingAddr can be initialized.

Suggestion Invoke the function validateExcludeCirculatingAddr () to check the state of the
ExcludeCirculatingAddr in the function validate ().

2.1.2 Incomplete Check in function ExcludeCirculatingAddr()

Severity Medium
Status Fixed in Version 2
Introduced by Version 1

Description The checks in the function validateExcludeCirculatingAddr() are incomplete. Specifi-
cally, the module needs to check each address is legitimate with fixed length and there are no repeated
addresses in the ExcludeCirculatingAddr. Furthermore, the total length of the ExcludeCirculatingAddr
is suggested to be checked with a reasonable threshold.

75func validateExcludeCirculatingAddr(i interface{}) error {
76 v, ok := i.([lstring)

77 if tok {

78 return fmt.Errorf("invalid parameter type: %T", i)
79)

80

81 for _, addBech32 := range v {

82 if strings.TrimSpace(addBech32) == "" {

83 return errors.New("exclude circulating address can not contain blank")
84 }

85 }

86 return nil

87}

Listing 2.2: aura/x/aura/types/params.go

Impact The number of coins held by ExcludeCirculatingAddr can influence the amount of minted re-
wards for each block. In this case, illegal ExcludeCirculatingAddr can result in unexpected block reward.

Suggestion Add the checks mentioned above in the function validateExcludeCirculatingAddr() ac-
cordingly.

2.1.3 Incomplete Check in function CreatePeriodicVestingAccount()

Severity Medium
Status Fixed in Version 2
Introduced by Version 1

Description In module auth, the user is able to create a periodic vesting account via the function
CreatePeriodicVestingAccount (). It will transfer a certain amount of assets from the user’s account
to this newly created account. The assets will be released periodically according to the StartTime and
VestingPeriods contained in the message.

However, the startTime is unchecked, and it could be set ahead of the current block time, which is
against the design of the function.

’g‘,\l BlockSec

28func (s msgServer) CreatePeriodicVestingAccount(goCtx context.Context, msg *types.

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

45
46
47
48
49
50
51
52
53
54
55

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

MsgCreatePeriodicVestingAccount) (*types.MsgCreatePeriodicVestingAccountResponse, error) {
ctx := sdk.UnwrapSDKContext (goCtx)

ak := s.AccountKeeper
bk :

s .BankKeeper

from, err := sdk.AccAddressFromBech32(msg.FromAddress)
if err != nil {

return nil, err

}
to, err := sdk.AccAddressFromBech32(msg.ToAddress)
if err != nil {
return nil, err
}
if acc := ak.GetAccount(ctx, to); acc != nil {
return nil, sdkerrors.Wrapf(sdkerrors.ErrInvalidRequest, "account %s already exists", msg.
ToAddress)
}

var totalCoins sdk.Coins

for _, period := range msg.VestingPeriods {

totalCoins = totalCoins.Add(period.Amount...)

baseAccount := authtypes.NewBaseAccountWithAddress(to)
baseAccount = ak.NewAccount(ctx, baseAccount) . (*authtypes.BaseAccount)
vestingAccount := org_types.NewPeriodicVestingAccount(baseAccount, totalCoins.Sort(), msg.

StartTime, msg.VestingPeriods)

ak.SetAccount(ctx, vestingAccount)

defer func() {

telemetry.IncrCounter (1, "new", "account")

for _, a := range totalCoins {
if a.Amount.IsInt64() {
telemetry.SetGaugeWithLabels (
[Istring{"tx", "msg", "create_periodic_vesting_account"},
float32(a.Amount.Int64()),

[Imetrics.Label{telemetry.NewLabel("denom", a.Denom)},

}O

err = bk.SendCoins(ctx, from, to, totalCoins)
if err != nil {

return nil, err

’g\,\l BlockSec

77

78 ctx.EventManager () .EmitEvent (

79 sdk.NewEvent (

80 sdk.EventTypeMessage,

81 sdk.NewAttribute (sdk.AttributeKeyModule, org_types.AttributeValueCategory),
82),

83)

84 return &types.MsgCreatePeriodicVestingAccountResponse{}, nil

85}

Listing 2.3: aura/x/auth/vesting/msg_server.go

Impact Part of vesting assets will be released immediately. What’s worse, if the EndTime is ahead of the
current block time, all vesting assets will be released immediately.

Suggestion Add the check to make sure that the StartTime is larger than the current block time.

2.1.4 No Limitation on Receiving Tokens for ExcludeCirculatingAddr

Severity Medium
Status Fixed in Version 2
Introduced by Version 1

Description In the current implementation, the assets held by ExcludeCirculatingAddr will not be
counted into the staking total supply. The staking total supply will increase correspondingly if assets
are transferred out to normal accounts.

According to the design, they will be created as vesting accounts whose assets will be locked at the
beginning and released periodically. In this case, the staking total supply will increase periodically as
expected. However, on the other side, if assets are transferred into these ExcludeCirculatingAddr, the
staking total supply will decrease as well, which is insecure.

13// BeginBlocker mints new tokens for the previous block.

14func BeginBlocker(ctx sdk.Context, k custommint.Keeper) {

15 defer telemetry.ModuleMeasureSince(types.ModuleName, time.Now(), telemetry.
MetricKeyBeginBlocker)

16

17 // fetch stored minter & params

18 minter := k.GetMinter(ctx)

19 params := k.GetParams(ctx)

20

21 // check over max supply

22 maxSupplyString := k.GetMaxSupply(ctx)

23 maxSupply, ok := sdk.NewIntFromString(maxSupplyString)

24 if tok {

25 panic(errors.New("panic convert max supply string to bigInt"))

26 }

27 k.Logger(ctx) .Debug("Get max supply from aura", "maxSupply", maxSupply.String())

28 currentSupply := k.GetSupply(ctx, params.GetMintDenom())

29 k.Logger(ctx) .Debug("Get current supply from network", "currentSupply", currentSupply.String()
)

30

31 excludeAmount := k.GetExcludeCirculatingAmount (ctx, params.GetMintDenom())

’g\,\l BlockSec

32 k.Logger(ctx) .Debug("Exclude Addr", "exclude_addr", excludeAmount.String())
33

34 if currentSupply.LT(maxSupply) {

35 // recalculate inflation rate

36 totalStakingSupply := k.CustomStakingTokenSupply(ctx, excludeAmount.Amount)

37 bondedRatio := k.CustomBondedRatio(ctx, excludeAmount.Amount)

38 k.Logger (ctx) .Debug("Value BondedRatio: ", "bondedRatio", bondedRatio.String())

39 minter.Inflation = minter.NextInflationRate(params, bondedRatio)

40 minter.AnnualProvisions = minter.NextAnnualProvisions(params, totalStakingSupply)

41 k.SetMinter(ctx, minter)

42

43 // mint coins, update supply

44 mintedCoin := minter.BlockProvision(params)

45 mintedCoins := sdk.NewCoins(mintedCoin)

46

47 supplyNext := currentSupply.Add(mintedCoin.Amount)

48 if supplyNext.GT(maxSupply) {

49 mintedCoin.Amount = maxSupply.Sub(currentSupply)

50 mintedCoins = sdk.NewCoins(mintedCoin)

51 }

52 err := k.MintCoins(ctx, mintedCoins)

53 if err != nil {

54 panic(err)

55 }

56

57 // send the minted coins to the fee collector account

58 err = k.AddCollectedFees(ctx, mintedCoins)

59 if err != nil {

60 panic(err)

61 }

62

63 if mintedCoin.Amount.IsInt64() {

64 defer telemetry.ModuleSetGauge (types.ModuleName, float32(mintedCoin.Amount.Int64()), "

minted_tokens")

65 }

66

67 ctx.EventManager () .EmitEvent (

68 sdk.NewEvent (

69 types.EventTypeMint,

70 sdk.NewAttribute(types.AttributeKeyBondedRatio, bondedRatio.String()),

71 sdk.NewAttribute(types.AttributeKeyInflation, minter.Inflation.String()),

72 sdk.NewAttribute(types.AttributeKeyAnnualProvisions, minter.AnnualProvisions.String
0),

73 sdk.NewAttribute (sdk.AttributeKeyAmount, mintedCoin.Amount.String()),

74 Do

75)

76

77 } else {

78 k.Logger(ctx) .Info("Over the max supply", "currentSupply", currentSupply)

79 }

80}

Listing 2.4: aura/x/mint/abci.go

@V BlockSec

Impact The owner of ExcludeCirculatingAddr has the capability to manipulate the mint reward by trans-
ferring between ExcludeCirculatingAddr and normal accounts.

Suggestion Block ExcludeCirculatingAddr from receiving tokens.

2.2 Additional Recommendation

2.2.1 Insufficient Check of MaxSupply

Status Fixed in Version 2
Introduced by Version 1

Description In module aura, the check for parameter MaxSupply is insufficient. It only ensures the type
of the parameter is correct, and no blank exists in it.

58func validateMaxSupply(i interface{}) error {
59 v, ok := i.(string)
60 if lok {

61 return fmt.Errorf("invalid parameter type: %T", i)
62 }

63

64 if strings.TrimSpace(v) == "" {

65 return errors.New("max supply cannot be blank")

66 }

67

68 if !digitCheck.MatchString(strings.TrimSpace(v)) {

69 return errors.New("invalid max supply parameter, expected string as number")
70 }

71

72 return nil

73}

Listing 2.5: aura/x/aura/types/params.go

Suggestion | Add the check to make sure that the MaxSupply is equal or larger than a specified one.

2.2.2 Gas Optimization

Status Fixed in Version 2
Introduced by Version 1

Description Function CreatePeriodicVestingAccount () requires the provided address is not registered
in module auth before. If it's already registered, the function will return an error.

However, the check uses the function GetAccount () in the account keeper to get the value of the
account from KvVStore, but never uses it in the following implementation, which is a waste of gas.

28func (s msgServer) CreatePeriodicVestingAccount(goCtx context.Context, msg *types.
MsgCreatePeriodicVestingAccount) (*types.MsgCreatePeriodicVestingAccountResponse, error) {

29 ctx := sdk.UnwrapSDKContext (goCtx)

30

31 ak :

32 bk := s.BankKeeper

s.AccountKeeper

’g‘,\l BlockSec

33
34
35
36
37
38
39
40
41
42
43
44

45
46
47
48
49
50
51
52
53
54
55

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

from, err := sdk.AccAddressFromBech32(msg.FromAddress)
if err != nil {

return nil, err

}
to, err := sdk.AccAddressFromBech32(msg.ToAddress)
if err != nil {

return nil, err

}

if acc := ak.GetAccount(ctx, to); acc != nil {
return nil, sdkerrors.Wrapf (sdkerrors.ErrInvalidRequest, "account J%s already exists", msg.
ToAddress)

var totalCoins sdk.Coins

for _, period := range msg.VestingPeriods {

totalCoins = totalCoins.Add(period.Amount...)

baseAccount := authtypes.NewBaseAccountWithAddress(to)
baseAccount = ak.NewAccount(ctx, baseAccount) . (*authtypes.BaseAccount)
vestingAccount := org_types.NewPeriodicVestingAccount(baseAccount, totalCoins.Sort(), msg.

StartTime, msg.VestingPeriods)

ak.SetAccount (ctx, vestingAccount)

defer func() {

telemetry.IncrCounter (1, "new", "account")

for _, a := range totalCoins {
if a.Amount.IsInt64() {
telemetry.SetGaugeWithLabels(
[Istring{"tx", "msg", "create_periodic_vesting_account"},
float32(a.Amount.Int64()),
[Imetrics.Label{telemetry.NewLabel("denom", a.Denom)},

}
0

err = bk.SendCoins(ctx, from, to, totalCoins)
if err != nil {

return nil, err

ctx.EventManager () .EmitEvent (
sdk.NewEvent (
sdk.EventTypelMessage,
sdk.NewAttribute(sdk.AttributeKeyModule, org_types.AttributeValueCategory),
Do

10

@V BlockSec

‘ 84 return &types.MsgCreatePeriodicVestingAccountResponse{}, nil
‘ 85}

Listing 2.6: aura/x/auth/vesting/msg_server.go

Suggestion | It's suggested to replace the function GetAccount () with the function HasAccount ().

2.3 Notes

2.3.1 Potential Effect on Minted Rewards
Status Confirmed
Introduced by version 1

Description The Aura chain introduces a few privileged addresses whose assets will not be counted into
the custom staking token total supply. Since the amount of minted rewards for each block is calculated
based on the total supply, the balance change of these addresses may affect the minted rewards.

2.3.2 Assumption on the Secure Implementation of Contract Dependencies
Status Confirmed
Introduced by version 1

Description The Aura chain is mainly built based on Wasmd (version 0.29.1), Cosmos-SDK (version 0.45.14)
and IBC-Go (version 3.3.0). In this audit, we assume the implementation provided by the standard library
has no security issues.

2.3.3 Account Type of ExcludeCirculatingAddr
Status Confirmed
Introduced by version 1

Description According to the design of Aura, ExcludeCirculatingAddr will be created as vesting ac-
counts in the genesis block so that their locked assets will be released periodically to increase the total

supply.

11

	1 Introduction
	1.1 About Target Contracts
	1.2 Disclaimer
	1.3 Procedure of Auditing
	1.3.1 Software Security
	1.3.2 DeFi Security
	1.3.3 NFT Security
	1.3.4 Additional Recommendation

	1.4 Security Model

	2 Findings
	2.1 DeFi Security
	2.1.1 Lack of Check on parameter ExcludeCirculatingAddr
	2.1.2 Incomplete Check in function ExcludeCirculatingAddr()
	2.1.3 Incomplete Check in function CreatePeriodicVestingAccount()
	2.1.4 No Limitation on Receiving Tokens for ExcludeCirculatingAddr

	2.2 Additional Recommendation
	2.2.1 Insufficient Check of MaxSupply
	2.2.2 Gas Optimization

	2.3 Notes
	2.3.1 Potential Effect on Minted Rewards
	2.3.2 Assumption on the Secure Implementation of Contract Dependencies
	2.3.3 Account Type of ExcludeCirculatingAddr

		2023-03-16T11:46:10+0800
	BlockSec Audit Team

