
Report for Neo X

Date: July 9, 2024 Version: 1.0
Contact: contact@blocksec.com

mailto:contact@blocksec.com

Contents

Chapter 1 Introduction 1
1.1 About Target Contracts . 1
1.2 Disclaimer . 1
1.3 Procedure of Auditing . 2

1.3.1 Software Security . 2
1.3.2 DeFi Security . 2
1.3.3 NFT Security . 3
1.3.4 Additional Recommendation . 3

1.4 Security Model . 3

Chapter 2Findings 5
2.1 Software Security . 5

2.1.1 Potential DoS risk . 5
2.1.2 Insufficient validation for P2P network messages 6

2.2 DeFi Security . 6
2.2.1 Lack of a time lock mechanism . 6

Report Manifest

Item Description
Client Bane Labs
Target Neo X

Version History

Version Date Description
1.0 July 9, 2024 First release

Signature

About BlockSec BlockSec focuses on the security of the blockchain ecosystem and col-
laborates with leading DeFi projects to secure their products. BlockSec is founded by top-
notch security researchers and experienced experts from both academia and industry. They
have published multiple blockchain security papers in prestigious conferences, reported sev-
eral zero-day attacks of DeFi applications, and successfully protected digital assets that are
worth more than 14 million dollars by blocking multiple attacks. They can be reached at Email,
Twitter and Medium.

https://www.blocksec.com
mailto:contact@blocksec.com
https://twitter.com/BlockSecTeam
https://blocksecteam.medium.com/

Chapter 1 Introduction

1.1 About Target Contracts

Information Description

Type Smart Contract & Modifications to Full Node
Implementation

Language Solidity & Go
Approach Semi-automatic and manual verification

The target of this audit is the code repository of Neo X by Bane Labs. Neo X is an EVM
compatible sidechain incorporating Neo’s distinctive dBFT consensus mechanism 1. As de-
scribed in the design document 2, the dBFT protocol requires more than half (i.e., 1/2 instead
of 2/3 as the consensus threshold for voting. This means that 4 validators are sufficient to
achieve consensus since the top 7 candidates will be selected for each epoch.

Please note that this audit does NOT cover all modules in the repository. Specifically ex-
cluded are source files under the consensus directory, which implement the dBFT protocol.
The audit scope is as follows:

The difference betweenGeth 1.13.11 3 (commit hash: 99dc3fe118a4d881d9b5347b5345669
f52de8143) and bane-go-ethereum4 (commit hash: 971cac59f17c2c4673f8170daf2a9fc94
acee74b)
PR #230 (latest commit hash: e8ef782c848839bb194d6ccf0810b4181b4019f3)
PR #166 (latest commit hash: 9c958085ce813384d90273680a86e27044fb3ae9)
The auditing process is iterative. Specifically, we would audit the commits that fix the dis-

covered issues. If there are new issues, we will continue this process. The commit SHA values
during the audit are shown in the following table. Our audit report is responsible for the code
in the initial version (Version 1), as well as new code (in the following versions) to fix issues in
the audit report.

Project Version Commit Hash / PR

Neo X Version 1
971cac59f17c2c4673f8170daf2a9fc94acee74b
PR #230
PR #166

Version 2 9af084ef711a7310f398a592ad74e8c4da207f9a

1.2 Disclaimer

This audit report does not constitute investment advice or a personal recommendation.
It does not consider, and should not be interpreted as considering or having any bearing on,

1https://docs.neo.org/docs/en-us/basic/consensus/consensus_algorithm.html
2https://docs.banelabs.org/governance/neo-x-system-contracts
3https://github.com/ethereum/go-ethereum
4https://github.com/bane-labs/go-ethereum

https://docs.neo.org/docs/en-us/basic/consensus/consensus_algorithm.html
https://docs.banelabs.org/governance/neo-x-system-contracts
https://github.com/ethereum/go-ethereum
https://github.com/bane-labs/go-ethereum

the potential economics of a token, token sale or any other product, service or other asset.
Any entity should not rely on this report in any way, including for the purpose of making any
decisions to buy or sell any token, product, service or other asset.

This audit report is not an endorsement of any particular project or team, and the report
does not guarantee the security of any particular project. This audit does not give any war-
ranties on discovering all security issues of the smart contracts, i.e., the evaluation result does
not guarantee the nonexistence of any further findings of security issues. As one audit can-
not be considered comprehensive, we always recommend proceeding with independent audits
and a public bug bounty program to ensure the security of smart contracts.

The scope of this audit is limited to the code mentioned in Section 1.1. Unless explicitly
specified, the security of the language itself (e.g., the solidity language), the underlying com-
piling toolchain and the computing infrastructure are out of the scope.

1.3 Procedure of Auditing

We perform the audit according to the following procedure.
- Vulnerability Detection We first scan smart contracts with automatic code analyzers,
and then manually verify (reject or confirm) the issues reported by them.

- Semantic Analysis We study the business logic of smart contracts and conduct further
investigation on the possible vulnerabilities using an automatic fuzzing tool (developed by
our research team). We alsomanually analyze possible attack scenarioswith independent
auditors to cross-check the result.

- Recommendation We provide some useful advice to developers from the perspective
of good programming practice, including gas optimization, code style, and etc.
We show the main concrete checkpoints in the following.

1.3.1 Software Security

∗ Reentrancy
∗ DoS
∗ Access control
∗ Data handling and data flow
∗ Exception handling
∗ Untrusted external call and control flow
∗ Initialization consistency
∗ Events operation
∗ Error-prone randomness
∗ Improper use of the proxy system

1.3.2 DeFi Security

∗ Semantic consistency
∗ Functionality consistency
∗ Permission management

2

∗ Business logic
∗ Token operation
∗ Emergency mechanism
∗ Oracle security
∗ Whitelist and blacklist
∗ Economic impact
∗ Batch transfer

1.3.3 NFT Security

∗ Duplicated item
∗ Verification of the token receiver
∗ Off-chain metadata security

1.3.4 Additional Recommendation

∗ Gas optimization
∗ Code quality and style�

Note The previous checkpoints are the main ones. We may use more checkpoints during the
auditing process according to the functionality of the project.

1.4 Security Model

To evaluate the risk, we follow the standards or suggestions that arewidely adopted by both
industry and academy, including OWASP Risk Rating Methodology 5 and Common Weakness
Enumeration 6. The overall severity of the risk is determined by likelihood and impact. Specif-
ically, likelihood is used to estimate how likely a particular vulnerability can be uncovered and
exploited by an attacker, while impact is used to measure the consequences of a successful
exploit.

Table 1.1: Vulnerability Severity Classification

Im
pa
ct

High High Medium

Low Medium Low

High Low
Likelihood

5https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
6https://cwe.mitre.org/

3

https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
https://cwe.mitre.org/

In this report, both likelihood and impact are categorized into two ratings, i.e., high and low
respectively, and their combinations are shown in Table 1.1.

Accordingly, the severity measured in this report are classified into three categories: High,
Medium, Low. For the sake of completeness, Undetermined is also used to cover circum-
stances when the risk cannot be well determined.

Furthermore, the status of a discovered item will fall into one of the following four cate-
gories:

- Undetermined No response yet.
- Acknowledged The item has been received by the client, but not confirmed yet.
- Confirmed The item has been recognized by the client, but not fixed yet.
- Fixed The item has been confirmed and fixed by the client.

4

Chapter 2 Findings

In total, we found three potential security issues.
- High Risk: 1
- Medium Risk: 2

ID Severity Description Category Status

1 Medium Potential DoS risk Software Secu-
rity Fixed

2 High Insufficient validation for P2P network
messages

Software Secu-
rity Fixed

3 Medium Lack of a time lock mechanism DeFi Security Fixed

The details are provided in the following sections.

2.1 Software Security

2.1.1 Potential DoS risk

Severity Medium
Status Fixed in Version 2

Introduced by Version 1

Description The Governance contract allows anyone to pay a registration fee to become a
validator candidate. The registerCandidate function ensures that the number of registered
candidates does not exceed a preconfigured capacity. However, the registration fee is fully
refunded to the candidate upon exit via the exitCandidate function. This design flaw enables
malicious users to perform a denial-of-service DoS attack on the registration process by
massively registering new candidates to occupy the candidate capacity.
116 function registerCandidate(uint shareRate) external payable {
117 if (tx.origin != msg.sender) revert Errors.OnlyEOA();
118 if (msg.value < registerFee) revert Errors.InsufficientValue();
119 if (shareRate > 1000) revert Errors.InvalidShareRate();
120 if (candidateList.length() >= IPolicy(POLICY).getCandidateLimit())
121 revert Errors.RegisterDisabled();
122 if (exitHeightOf[msg.sender] > 0) revert Errors.LeftNotClaimed();
123 if (!candidateList.add(msg.sender)) revert Errors.CandidateExists();
124 if (receivedVotes[msg.sender] > 0) {
125 totalVotes += receivedVotes[msg.sender];
126 }
127
128 // record share rate and balance
129 shareRateOf[msg.sender] = shareRate;
130 candidateBalanceOf[msg.sender] = msg.value;
131 emit Register(msg.sender);
132 }
133
134 function exitCandidate() external {

135 if (!candidateList.remove(msg.sender))
136 revert Errors.CandidateNotExists();
137 // remove candidate list, balance still locked
138 exitHeightOf[msg.sender] = block.number;
139 if (receivedVotes[msg.sender] > 0) {
140 totalVotes -= receivedVotes[msg.sender];
141 }
142 emit Exit(msg.sender);
143 }

Listing 2.1: contracts/solidity/Governance.sol

Impact Malicious users can DoS the candidate registration process.
Suggestion Charge a fee to increase the cost of performing DoS attacks.

2.1.2 Insufficient validation for P2P network messages

Severity High
Status Fixed in Version 2

Introduced by Version 1

Description In the forked version of the full node implementation, a new P2P messaging pro-
tocol called dBFT is introduced for transmitting messages related to the dBFT protocol among
peers in the P2P network. Upon receipt, each message undergoes initial verification to ensure
valid signatures are present. Subsequently, the message is processed by the dBFT engine and
then placed into a pool for further querying by other peers. However, the function responsible
for verifying whether the sender of a message is allowed, i.e., the IsAddressAllowed function,
consistently returns true.
23 func (l *ledger) IsAddressAllowed(addr common.Address) bool {
24 // Call governance contract here.
25 return true
26 }

Listing 2.2: eth/protocols/dbft/ledger.go

Impact Unverified P2Pmessages allowmalicious nodes to impersonate privileged ones, thereby
increasing the resource usage of full nodes with fake messages.
Suggestion Verify the messages properly.

2.2 DeFi Security

2.2.1 Lack of a time lock mechanism

Severity Medium
Status Fixed in Version 2

Introduced by Version 1

6

Description The GovernanceVote contract implements a voting mechanism that requires a
privileged operation (i.e., setting key parameters of the entire network) to be voted on by a suf-
ficient number of voters before execution. The GovProxyAdmin inherits this contract and adapts
this mechanism to upgrade the Governance contract.

However, the voting mechanism lacks a time lock mechanism, which ensures that an op-
eration can only be executed after a certain period following the receipt of enough votes. In the
worst-case scenario, malicious candidates could insert themselves into the currentConsensus
list, vote for the upgrade, and immediately profit by draining the contract. Implementing a time
lock mechanism in the voting process would provide a rescue timeframe for the project if ma-
licious proposals are passed.
30 modifier needVote(bytes32 methodKey, bytes32 paramKey) {
31 address[] memory miners = IGovReward(GOV_REWARD).getMiners();
32 if (!_contains(miners, msg.sender)) revert Errors.NotMiner();
33 // update vote map
34 _vote(methodKey, paramKey);
35 // check vote, if not pass just return
36 if (!_checkVote(methodKey, paramKey, miners)) {
37 return;
38 }
39 emit VotePass(methodKey, paramKey);
40 // clear vote
41 _clearVote(methodKey);
42 // execute method
43 _;
44 }

Listing 2.3: contracts/solidity/base/GovernanceVote.sol

21 function upgradeAndCall(
22 GovProxyUpgradeable proxy,
23 address newImplementation,
24 bytes memory data
25)
26 public
27 payable
28 virtual
29 needVote(
30 bytes32(
31 // keccak256("upgradeAndCall")
32 0xe739b9109d83c1c6d0d640fe9ed476fc5862a6de5483b00678a3fffa7a2be2f6
33),
34 keccak256(abi.encode(proxy, newImplementation, data))
35)
36 {
37 proxy.upgradeToAndCall{value: msg.value}(newImplementation, data);
38 }

Listing 2.4: contracts/solidity/GovProxyAdmin.sol

Impact Malicious proposals will be executed immediately once the votes are manipulated,
leaving no time window for rescues.

7

Suggestion Implement a time lock before executing the proposals.

8

	1 Introduction
	1.1 About Target Contracts
	1.2 Disclaimer
	1.3 Procedure of Auditing
	1.3.1 Software Security
	1.3.2 DeFi Security
	1.3.3 NFT Security
	1.3.4 Additional Recommendation

	1.4 Security Model

	2 Findings
	2.1 Software Security
	2.1.1 Potential DoS risk
	2.1.2 Insufficient validation for P2P network messages

	2.2 DeFi Security
	2.2.1 Lack of a time lock mechanism

		2024-07-10T10:39:43+0800

