
Security Audit Report for LiNEAR

Date: Apr 1st, 2022

Version: 1.0

Contact: contact@blocksecteam.com

mailto:contact@blocksecteam.com

Contents

1 Introduction 1
1.1 About Target Contracts . 1

1.2 Disclaimer . 1

1.3 Procedure of Auditing . 1

1.3.1 Software Security . 2

1.3.2 DeFi Security . 2

1.3.3 NFT Security . 2

1.3.4 Additional Recommendation . 2

1.4 Security Model . 3

2 Findings 4
2.1 Software Security . 4

2.1.1 Precision loss . 4

2.2 DeFi Security . 5

2.2.1 User’s available balance may be locked temporarily 5

2.2.2 Unlimited reward distribution to beneficiaries . 6

2.2.3 Users’ unstaking requests may not be satisfied in time 6

2.3 Additional Recommendation . 7

2.3.1 Function epoch_update_rewards may not work due to unlimited beneficiaries 7

2.3.2 Redundant code . 8

2.3.3 Missing check on the prepaid_gas in function ft_transfer_call 8

2.3.4 The risk of centralized design . 9

i

Report Manifest

Item Description
Client LiNEAR Protocol
Target LiNEAR

Version History

Version Date Description
1.0 Apr 1st, 2022 First Release

About BlockSec The BlockSec Team focuses on the security of the blockchain ecosystem, and col-

laborates with leading DeFi projects to secure their products. The team is founded by top-notch security

researchers and experienced experts from both academia and industry. They have published multiple

blockchain security papers in prestigious conferences, reported several zero-day attacks of DeFi applica-

tions, and released detailed analysis reports of high-impact security incidents. They can be reached at

Email, Twitter and Medium.

ii

https://www.blocksecteam.com
mailto:contact@blocksecteam.com
https://twitter.com/BlockSecTeam
https://blocksecteam.medium.com/

Chapter 1 Introduction

1.1 About Target Contracts

Information Description
Type Smart Contract
Language Rust
Approach Semi-automatic and manual verification

The repository that has been audited includes LiNEAR 1.

The auditing process is iterative. Specifically, we will audit the commits that fix the discovered issues.

If there are new issues, we will continue this process. The commit SHA values during the audit are shown

in the following. Our audit report is responsible for the initial version (i.e., Version 1), as well as new codes

(in the following versions) to fix issues in the audit report.

Project Version Commit SHA

LiNEAR
Version 1 fdbacc68c98205cba9f42c130d464ab3114257b6
Version 2 41bb61f72a7575861b39faa5e888a86148958c5f

1.2 Disclaimer

This audit report does not constitute investment advice or a personal recommendation. It does not

consider, and should not be interpreted as considering or having any bearing on, the potential economics

of a token, token sale or any other product, service or other asset. Any entity should not rely on this report

in any way, including for the purpose of making any decisions to buy or sell any token, product, service or

other asset.

This audit report is not an endorsement of any particular project or team, and the report does not

guarantee the security of any particular project. This audit does not give any warranties on discovering

all security issues of the smart contracts, i.e., the evaluation result does not guarantee the nonexistence

of any further findings of security issues. As one audit cannot be considered comprehensive, we always

recommend proceeding with independent audits and a public bug bounty program to ensure the security

of smart contracts.

The scope of this audit is limited to the code mentioned in Section 1.1. Unless explicitly specified,

the security of the language itself (e.g., the solidity language), the underlying compiling toolchain and the

computing infrastructure are out of the scope.

1.3 Procedure of Auditing

We perform the audit according to the following procedure.

Vulnerability Detection We first scan smart contracts with automatic code analyzers, and then

manually verify (reject or confirm) the issues reported by them.

1https://github.com/linear-protocol/LiNEAR

1

Semantic Analysis We study the business logic of smart contracts and conduct further investiga-

tion on the possible vulnerabilities using an automatic fuzzing tool (developed by our research team).

We also manually analyze possible attack scenarios with independent auditors to cross-check the

result.

Recommendation We provide some useful advice to developers from the perspective of good

programming practice, including gas optimization, code style, and etc.

We show the main concrete checkpoints in the following.

1.3.1 Software Security

Reentrancy

DoS

Access control

Data handling and data flow

Exception handling

Untrusted external call and control flow

Initialization consistency

Events operation

Error-prone randomness

Improper use of the proxy system

1.3.2 DeFi Security

Semantic consistency

Functionality consistency

Access control

Business logic

Token operation

Emergency mechanism

Oracle security

Whitelist and blacklist

Economic impact

Batch transfer

1.3.3 NFT Security

Duplicated item

Verification of the token receiver

Off-chain metadata security

1.3.4 Additional Recommendation

Gas optimization

Code quality and style

2

�

Note The previous checkpoints are the main ones. We may use more checkpoints during the auditing

process according to the functionality of the project.

1.4 Security Model

To evaluate the risk, we follow the standards or suggestions that are widely adopted by both industry

and academy, including OWASP Risk Rating Methodology 2 and Common Weakness Enumeration 3.

The overall severity of the risk is determined by likelihood and impact. Specifically, likelihood is used to

estimate how likely a particular vulnerability can be uncovered and exploited by an attacker, while impact

is used to measure the consequences of a successful exploit.

In this report, both likelihood and impact are categorized into two ratings, i.e., high and low respec-

tively, and their combinations are shown in Table 1.1.

Table 1.1: Vulnerability Severity Classification

Im
pa

ct

High High Medium

Low Medium Low

High Low

Likelihood

Accordingly, the severity measured in this report are classified into three categories: High, Medium,

Low. For the sake of completeness, Undetermined is also used to cover circumstances when the risk

cannot be well determined.

Furthermore, the status of a discovered issue will fall into one of the following four categories:

Undetermined No response yet.

Acknowledged The issue has been received by the client, but not confirmed yet.

Confirmed The issue has been recognized by the client, but not fixed yet.

Fixed The issue has been confirmed and fixed by the client.

2https://owasp.org/www-community/OWASP_Risk_Rating_Methodology

3https://cwe.mitre.org/

3

https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
https://cwe.mitre.org/

Chapter 2 Findings

In total, we find 4 potential issues in the smart contract. We also have 4 recommendations, as follows:

High Risk: 0

Medium Risk: 2

Low Risk: 2

Recommendations: 4

ID Severity Description Category Status
1 Medium Precision loss Software Security Fixed

2 Low
User’s available balance may be locked tem-
porarily

DeFi Security Confirmed

3 Medium Unlimited reward distribution to beneficiaries DeFi Security Fixed

4 Low
Users’ unstaking requests may not be satisfied
in time

DeFi Security Fixed

7 -
Function epoch_update_rewards may not work
due to unlimited beneficiaries

Recommendation Fixed

8 - Redundant code Recommendation Confirmed

6 -
Missing check on the prepaid_gas in function
ft_transfer_call

Recommendation Fixed

9 - The risk of centralized design Recommendation Confirmed

The details are provided in the following sections.

2.1 Software Security

2.1.1 Precision loss

Status Fixed in version 2

Introduced by version 1

Description In line 125 of function internal_calculate_distribution, division is performed before mul-

tiplication when calculating variable reward_per_session .

110 fn internal_calculate_distribution(
111 &self,
112 farm: &Farm,
113 total_staked: Balance,
114) -> Option<RewardDistribution> {
115 if farm.start_date > env::block_timestamp() {
116 // Farm hasn’t started.
117 return None;
118 }
119 let mut distribution = farm.last_distribution.clone();
120 if distribution.undistributed == 0 {
121 // Farm has ended.
122 return Some(distribution);
123 }
124 distribution.reward_round = (env::block_timestamp() - farm.start_date) / SESSION_INTERVAL;

4

125 let reward_per_session =
126 farm.amount / (farm.end_date - farm.start_date) as u128 * SESSION_INTERVAL as u128;

Listing 2.1: contracts/linear/src/farm.rs

Impact Division truncates for integers in Rust language. In this case, division before multiplication for

intergers may result in precision loss.

Suggestion I Modify this calculation to perform multiplication before division.

Suggestion II Pre-calculate the value of reward_per_session when a farm is added. This is because

farm.amount, farm.end_date and farm.start_date do not change during farming process unless the

owner stops it.

2.2 DeFi Security

2.2.1 User’s available balance may be locked temporarily

Status Confirmed

Introduced by version 1

Description User’s deposited NEARs will be added into the user’s unstaked balance directly. Therefore, if

the user invoked the unstake/unstake_all functions, that amount of available NEARs will be locked in the

next 0 to 8 epochs.

13 pub(crate) fn internal_deposit(&mut self, amount: Balance) {
14 let account_id = env::predecessor_account_id();
15 let mut account = self.internal_get_account(&account_id);
16 account.unstaked += amount;
17 self.internal_save_account(&account_id, &account);
18
19 Event::Deposit {
20 account_id: &account_id,
21 amount: &U128(amount),
22 new_unstaked_balance: &U128(account.unstaked),
23 }
24 .emit();
25 }

Listing 2.2: contracts/linear/src/internal.rs

Impact If a user is unaware of this contract workflow and directly interacts with this contract, the user’s

available balance may be locked temporarily.

Suggestion I Add another attribute (e.g., available_amount) to struct Account to maintain the available

NEARs.

Feedback from the Project This is by design, basically following the original interface and design of the

staking pool. To resolve the potential issue, we can make enhancements to add another field ‘unstaking‘

to distinguish from ‘unstaked‘, and move ‘unstaking‘ into ‘unstaked‘ before we kick off the next unstaking

process for this account. But for now, we’d prefer to not make the change at the moment, to keep the

workflow consistent with staking pool. As a workaround, when users are unstaking from frontend, the UI

will remind users to withdraw first if they have ‘unstaked‘ amount in their account.

5

2.2.2 Unlimited reward distribution to beneficiaries

Status Fixed in version 2

Introduced by version 1

Description This contract does not check the total weight of all beneficiaries in the function assert_valid

when setting up a new beneficiary.

21 pub fn set_beneficiary(&mut self, account_id: AccountId, fraction: Fraction) {
22 self.assert_owner();
23 fraction.assert_valid();
24 self.beneficiaries.insert(&account_id, &fraction);
25 }

Listing 2.3: contracts/linear/src/owner.rs

21 pub fn assert_valid(&self) {
22 require!(self.denominator != 0, ERR_FRACTION_BAD_DENOMINATOR);
23 require!(
24 self.numerator <= self.denominator,
25 ERR_FRACTION_BAD_NUMERATOR
26);
27 }

Listing 2.4: contracts/linear/src/utils.rs

Impact Once the total weight of beneficiaries exceeds 100%, the LiNEARs minted for beneficiaries may

decrease the price of LiNEAR after the execution of action epoch_update_rewards.

Suggestion I Introduce a reasonable threshold to limit the total reward distributed to beneficiaries.

2.2.3 Users’ unstaking requests may not be satisfied in time

Status Fixed in version 2

Introduced by version 1

Description The number of epochs returned from function get_num_epoch_to_unstake should be dou-

bled in some corner cases. For example, if the total NEARs staked in validator staking pools, which are

not in pending status, is not enough, the users can not withdraw all the unstaked NEARs requested after 4

epochs.

199 pub fn get_num_epoch_to_unstake(&self, _amount: u128) -> EpochHeight {
200 // the num of epoches can be doubled or trippled if not enough stake is available
201 NUM_EPOCHS_TO_UNLOCK
202 }

Listing 2.5: contracts/linear/src/validator_pool.rs

Impact User’s unstaking requests may not always be satisfied in time.

Suggestion I Implement a strategy to predict the user’s unstaking waiting time based on validator staking

pools’ status.

6

2.3 Additional Recommendation

2.3.1 Function epoch_update_rewards may not work due to unlimited beneficiaries

Status Fixed in version 2

Introduced by version 1

Description The number of beneficiaries is unlimited. In this case, function epoch_update_rewards that

invokes function internal_distribute_staking_rewards may run out of gas.

129pub fn epoch_update_rewards(&mut self, validator_id: AccountId) {
130 let min_gas = GAS_EPOCH_UPDATE_REWARDS + GAS_EXT_GET_BALANCE + GAS_CB_VALIDATOR_GET_BALANCE;
131 require!(
132 env::prepaid_gas() >= min_gas,
133 format!("{}. require at least {:?}", ERR_NO_ENOUGH_GAS, min_gas)
134);
135
136 let validator = self
137 .validator_pool
138 .get_validator(&validator_id)
139 .expect(ERR_VALIDATOR_NOT_EXIST);
140
141 if validator.staked_amount == 0 && validator.unstaked_amount == 0 {
142 return;
143 }
144
145 validator
146 .refresh_total_balance()
147 .then(ext_self_action_cb::validator_get_balance_callback(
148 validator.account_id,
149 env::current_account_id(),
150 NO_DEPOSIT,
151 GAS_CB_VALIDATOR_GET_BALANCE,
152));
153}

Listing 2.6: contracts/linear/src/epoch_actions.rs

200 /// When there are rewards, a part of them will be
201 /// given to executor, manager or treasury by minting new LiNEAR tokens.
202 pub(crate) fn internal_distribute_staking_rewards(&mut self, rewards: Balance) {
203 let hashmap: HashMap<AccountId, Fraction> = self.internal_get_beneficiaries();
204 for (account_id, fraction) in hashmap.iter() {
205 let reward_near_amount: Balance = fraction.multiply(rewards);
206 // mint extra LiNEAR for him
207 self.internal_mint_beneficiary_rewards(&account_id, reward_near_amount);
208 }
209 }

Listing 2.7: contract/src/internal.rs

Impact Function epoch_update_rewards may not work due to limited gas when there are too many ben-

eficiaries.

Suggestion I It is recommended to add a reasonable threshold to limit the number of beneficiaries.

7

2.3.2 Redundant code

Status Confirmed

Introduced by version 1

Description Parameter registration_only is redundant as function storage_deposit do not implement

any logic for this parameter.

79 fn storage_deposit(
80 &mut self,
81 account_id: Option<AccountId>,
82 registration_only: Option<bool>,
83) -> StorageBalance {
84 let amount: Balance = env::attached_deposit();
85 let account_id = account_id.unwrap_or_else(env::predecessor_account_id);
86 if let Some(account) = self.accounts.get(&account_id) {
87 log!("The account is already registered, refunding the deposit");
88 if amount > 0 {
89 Promise::new(env::predecessor_account_id()).transfer(amount);
90 }
91 } else {
92 let min_balance = self.storage_balance_bounds().min.0;
93 if amount < min_balance {
94 env::panic_str("The attached deposit is less than the minimum storage balance");
95 }
96
97 self.internal_register_account(&account_id);
98 let refund = amount - min_balance;
99 if refund > 0 {

100 Promise::new(env::predecessor_account_id()).transfer(refund);
101 }
102 }
103 self.internal_storage_balance_of(&account_id).unwrap()
104 }

Listing 2.8: contracts/linear/src/fungible_token/storage.rs

Suggestion I It is recommended to remove this unused parameter in function storage_deposit.

Feedback from the Project That’s true. The same happens to the standard FT implementation in near-

contract-standards crate. We’ll keep the unused registration_only parameter to keep consistent with the

standard storage_deposit(account_id, registration_only) interface.

2.3.3 Missing check on the prepaid_gas in function ft_transfer_call

Status Fixed in version 2

Introduced by version 1

Description The prepaid_gas should be checked to ensure it is enough for the target functions including

ft_on_transfer and ft_resolve_transfer.

25 #[payable]
26 fn ft_transfer_call(
27 &mut self,

8

28 receiver_id: AccountId,
29 amount: U128,
30 memo: Option<String>,
31 msg: String,
32) -> PromiseOrValue<U128> {
33 assert_one_yocto();
34 let sender_id = env::predecessor_account_id();
35 let amount = amount.into();
36 self.internal_ft_transfer(&sender_id, &receiver_id, amount, memo);
37 // Initiating receiver’s call and the callback
38 ext_fungible_token_receiver::ft_on_transfer(
39 sender_id.clone(),
40 amount.into(),
41 msg,
42 receiver_id.clone(),
43 NO_DEPOSIT,
44 env::prepaid_gas() - GAS_FOR_FT_TRANSFER_CALL,
45)
46 .then(ext_ft_self::ft_resolve_transfer(
47 sender_id,
48 receiver_id,
49 amount.into(),
50 env::current_account_id(),
51 NO_DEPOSIT,
52 GAS_FOR_RESOLVE_TRANSFER,
53))
54 .into()
55 }

Listing 2.9: contracts/linear/src/fungible_token/core.rs

Suggestion I Check the prepaid_gas.

2.3.4 The risk of centralized design

Status Confirmed

Introduced by version 1

Description This project has potential centralization problems.

Suggestion I It is recommended to introduce a decentralization design in the contract, such as multi-

signature or DAO.

Feedback from the Project I Yes. This in plan as mentioned in github.com/linear-protocol/LiNEAR/issues/60

Suggestion II The project owner needs to ensure the security of the private key of the OWNER_ROLE/MA-

NAGERS_ROLE and use a multi-signature scheme to reduce the risk of single-point failure.

Feedback from the Project II Yes. We have been working on security policies to reduce the risks of

single point of failure.

9

	1 Introduction
	1.1 About Target Contracts
	1.2 Disclaimer
	1.3 Procedure of Auditing
	1.3.1 Software Security
	1.3.2 DeFi Security
	1.3.3 NFT Security
	1.3.4 Additional Recommendation

	1.4 Security Model

	2 Findings
	2.1 Software Security
	2.1.1 Precision loss

	2.2 DeFi Security
	2.2.1 User's available balance may be locked temporarily
	2.2.2 Unlimited reward distribution to beneficiaries
	2.2.3 Users' unstaking requests may not be satisfied in time

	2.3 Additional Recommendation
	2.3.1 Function structurecolorepoch_update_rewards may not work due to unlimited beneficiaries
	2.3.2 Redundant code
	2.3.3 Missing check on the structurecolorprepaid_gas in function structurecolorft_transfer_call
	2.3.4 The risk of centralized design

		2022-04-02T19:52:43+0800
	BlockSec Audit Team

