
Security Audit Report for Ref-Exchange

Date: Sept 28th, 2023

Version: 3.0

Contact: contact@blocksec.com

mailto:contact@blocksec.com

Contents

1 Introduction 1
1.1 About Target Contracts . 1

1.2 Disclaimer . 2

1.3 Procedure of Auditing . 2

1.3.1 Software Security . 2

1.3.2 DeFi Security . 3

1.3.3 NFT Security . 3

1.3.4 Additional Recommendation . 3

1.4 Security Model . 3

2 Findings 5
2.1 Software Security . 5

2.1.1 Improper Account Unregistration . 5

2.1.2 Lack of Storage Usage Check in function ft_on_transfer 6

2.2 DeFi Security . 8

2.2.1 Unrestricted Referral Account . 8

2.2.2 Incorrect Admin Fees Calculation in Simple Pool 9

2.3 Additional Recommendation . 11

2.3.1 Lack of Check on Guardians’ Removal . 11

2.3.2 Two-Step Transfer of Privileged Account Ownership 12

2.3.3 Potential Elastic Supply Token Problem . 12

2.3.4 Improper Check on the Admin Fees . 12

2.3.5 Lack of Check in retrieve_unmanaged_token() . 13

2.3.6 Lack of Check on the Gas Used by migrate() . 14

2.3.7 Code Optimization (I) . 15

2.3.8 Code Optimization (II) . 18

2.3.9 Avoid Logging in View Functions . 19

2.3.10 Slippage Protection in Function add_liquidity . 20

2.4 Notes . 23

2.4.1 Delayed Price in Rated Swap Pool . 23

2.4.2 Timely Triggering update_token_rate() . 23

2.4.3 Sensitive Functions Managed by DAO . 23

i

Report Manifest

Item Description
Client Ref Finance
Target Ref-Exchange

Version History

Version Date Description
1.0 November 2nd, 2022 First Version
2.0 November 20th, 2022 Second Version
3.0 September 28th, 2023 Third Version

About BlockSec The BlockSec Team focuses on the security of the blockchain ecosystem, and col-

laborates with leading DeFi projects to secure their products. The team is founded by top-notch security

researchers and experienced experts from both academia and industry. They have published multiple

blockchain security papers in prestigious conferences, reported several zero-day attacks of DeFi applica-

tions, and released detailed analysis reports of high-impact security incidents. They can be reached at

Email, Twitter and Medium.

ii

https://www.blocksec.com
mailto:contact@blocksec.com
https://twitter.com/BlockSecTeam
https://blocksecteam.medium.com/

Chapter 1 Introduction

1.1 About Target Contracts

Information Description
Type Smart Contract
Language Rust
Approach Semi-automatic and manual verification

The repository that has been audited includes ref-exchange 1.

The auditing process is iterative. Specifically, we will audit the commits that fix the discovered issues.

If there are new issues, we will continue this process. The commit SHA values during the audit are shown

in the following. Our audit report is responsible for the only initial version (i.e., Version 1), as well as new

codes (in the following versions) to fix issues in the audit report.

Project Commit SHA

Ref-Exchange
Version 1 536a60c842e018a535b478c874c747bde82390dd
Version 2 19e98ec7e70b72d0a2bb1281eb8cd171cebcc931
Version 3 edea28e1f9bb4f66f5f64eb8448f681f92ef3f10
Version 4 422591c276224c6477cd638a88ab21807b4b5795

Note that, we did NOT audit all the modules in the repository. The modules covered by this audit

report include ref-contracts/ref-exchange/src folder contract only. Specifically, the files covered in this

audit include:

1ref-exchange
2 |-- src
3 | |-- rated_swap
4 | | |-- linear_rate.rs
5 | | |-- math.rs
6 | | |-- mod.rs
7 | | |-- nearx_rate.rs
8 | | |-- rate.rs
9 | | |-- stnear.rs

10 | |
11 | |-- stable_swap
12 | | |-- math.rs
13 | | |-- mod.rs
14 | |
15 | |-- account_deposit.rs
16 | |-- action.rs
17 | |-- admin_fee.rs
18 | |-- custom_keys.rs
19 | |-- errors.rs
20 | |-- legacy.rs
21 | |-- lib.rs
22 | |-- multi_fungible_token.rs

1https://github.com/ref-finance/ref-contracts/tree/main/ref-exchange

1

23 | |-- owner.rs
24 | |-- pool.rs
25 | |-- simple_pool.rs
26 | |-- storage_impl.rs
27 | |-- token_receiver.rs
28 | |-- utils.rs
29 | |-- views.rs

Listing 1.1: Audit Scope for this Report

1.2 Disclaimer

This audit report does not constitute investment advice or a personal recommendation. It does not

consider, and should not be interpreted as considering or having any bearing on, the potential economics

of a token, token sale or any other product, service or other asset. Any entity should not rely on this report

in any way, including for the purpose of making any decisions to buy or sell any token, product, service or

other asset.

This audit report is not an endorsement of any particular project or team, and the report does not

guarantee the security of any particular project. This audit does not give any warranties on discovering

all security issues of the smart contracts, i.e., the evaluation result does not guarantee the nonexistence

of any further findings of security issues. As one audit cannot be considered comprehensive, we always

recommend proceeding with independent audits and a public bug bounty program to ensure the security

of smart contracts.

The scope of this audit is limited to the code mentioned in Section 1.1. Unless explicitly specified,

the security of the language itself (e.g., the solidity language), the underlying compiling toolchain and the

computing infrastructure are out of the scope.

1.3 Procedure of Auditing

We perform the audit according to the following procedure.

- Vulnerability Detection We first scan smart contracts with automatic code analyzers, and then

manually verify (reject or confirm) the issues reported by them.

- Semantic Analysis We study the business logic of smart contracts and conduct further investiga-

tion on the possible vulnerabilities using an automatic fuzzing tool (developed by our research team).

We also manually analyze possible attack scenarios with independent auditors to cross-check the

result.

- Recommendation We provide some useful advice to developers from the perspective of good

programming practice, including gas optimization, code style, and etc.

We show the main concrete checkpoints in the following.

1.3.1 Software Security

∗ Reentrancy

∗ DoS

2

∗ Access control

∗ Data handling and data flow

∗ Exception handling

∗ Untrusted external call and control flow

∗ Initialization consistency

∗ Events operation

∗ Error-prone randomness

∗ Improper use of the proxy system

1.3.2 DeFi Security

∗ Semantic consistency

∗ Functionality consistency

∗ Access control

∗ Business logic

∗ Token operation

∗ Emergency mechanism

∗ Oracle security

∗ Whitelist and blacklist

∗ Economic impact

∗ Batch transfer

1.3.3 NFT Security

∗ Duplicated item

∗ Verification of the token receiver

∗ Off-chain metadata security

1.3.4 Additional Recommendation

∗ Gas optimization

∗ Code quality and style
�

Note The previous checkpoints are the main ones. We may use more checkpoints during the auditing

process according to the functionality of the project.

1.4 Security Model

To evaluate the risk, we follow the standards or suggestions that are widely adopted by both industry

and academy, including OWASP Risk Rating Methodology 2 and Common Weakness Enumeration 3.

The overall severity of the risk is determined by likelihood and impact. Specifically, likelihood is used to

estimate how likely a particular vulnerability can be uncovered and exploited by an attacker, while impact

is used to measure the consequences of a successful exploit.

2https://owasp.org/www-community/OWASP_Risk_Rating_Methodology

3https://cwe.mitre.org/

3

https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
https://cwe.mitre.org/

In this report, both likelihood and impact are categorized into two ratings, i.e., high and low respec-

tively, and their combinations are shown in Table 1.1.

Table 1.1: Vulnerability Severity Classification

Im
pa

ct

High High Medium

Low Medium Low

High Low

Likelihood

Accordingly, the severity measured in this report are classified into three categories: High, Medium,

Low. For the sake of completeness, Undetermined is also used to cover circumstances when the risk

cannot be well determined.

Furthermore, the status of a discovered item will fall into one of the following four categories:

- Undetermined No response yet.

- Acknowledged The item has been received by the client, but not confirmed yet.

- Confirmed The item has been recognized by the client, but not fixed yet.

- Fixed The item has been confirmed and fixed by the client.

4

Chapter 2 Findings

In total, we find four potential issues. We also have ten recommendations and three notes as follows:

- High Risk: 0

- Medium Risk: 3

- Low Risk: 1

- Recommendations: 10

- Notes: 3

ID Severity Description Category Status
1 Medium Improper Account Unregistration Software Security Fixed

2 Medium
Lack of Storage Usage Check in function
ft_on_transfer

Software Security Fixed

3 Low Unrestricted Referral Account DeFi Security Fixed

4 Medium
Incorrect Admin Fees Calculation in Simple
Pool

DeFi Security Fixed

5 - Lack of Check on Guardians’ Removal Recommendation Fixed

6 -
Two-Step Transfer of Privileged Account Own-
ership

Recommendation Confirmed

7 - Potential Elastic Supply Token Problem Recommendation Confirmed
8 - Improper Check on the Admin Fees Recommendation Fixed
9 - Lack of Check in retrieve_unmanaged_token() Recommendation Confirmed
10 - Lack of Check on the Gas Used by migrate() Recommendation Fixed
11 - Code Optimization (I) Recommendation Fixed
12 - Code Optimization (II) Recommendation Fixed
13 - Avoid Logging in View Functions Recommendation Fixed
14 - Slippage Protection in Function add_liquidity Recommendation Fixed*
15 - Delayed Price in Rated Swap Pool Note Confirmed
16 - Timely Triggering update_token_rate() Note Confirmed
17 - Sensitive Functions Managed by DAO Note Confirmed

The details are provided in the following sections.

2.1 Software Security

2.1.1 Improper Account Unregistration

Severity Medium

Status Fixed in Version 2

Introduced by Version 1

Description Function storage_unregister() allows users to unregister their accounts, and get back

their deposits (i.e., NEARs). However, it doesn’t check whether the legacy_tokens of accounts are empty

before the unregistration.

56 #[allow(unused_variables)]
57 #[payable]
58 fn storage_unregister(&mut self, force: Option<bool>) -> bool {

5

59 assert_one_yocto();
60 self.assert_contract_running();
61 let account_id = env::predecessor_account_id();
62 if let Some(account_deposit) = self.internal_get_account(&account_id) {
63 // TODO: figure out force option logic.
64 assert!(
65 account_deposit.tokens.is_empty(),
66 "{}", ERR18_TOKENS_NOT_EMPTY
67);
68 self.accounts.remove(&account_id);
69 Promise::new(account_id.clone()).transfer(account_deposit.near_amount);
70 true
71 } else {
72 false
73 }
74 }

Listing 2.1: src/storage_impl.rs

Impact Users may lose tokens that are recorded in legacy_tokens.

Suggestion I Add the check to ensure legacy_tokens of accounts are empty before the removal.

Feedback from the Project Will fix this in the next accumulated contract upgrade.

2.1.2 Lack of Storage Usage Check in function ft_on_transfer

Severity Medium

Status Fixed in Version 4

Introduced by Version 3

Description HotZap allows users to seamlessly swap tokens and provide liquidity to pools in a single

transaction via the function ft_on_transfer(). However, adding liquidity may potentially increase the

pool’s storage usage. The function does not perform sufficient validation of user’s storage usage.

116 TokenReceiverMessage::HotZap {
117 referral_id,
118 hot_zap_actions,
119 add_liquidity_infos
120 } => {
121 assert!(hot_zap_actions.len() > 0 && add_liquidity_infos.len() > 0);
122 let sender_id: AccountId = sender_id.into();
123 let mut account = self.internal_unwrap_account(&sender_id);
124 let referral_id = referral_id.map(|x| x.to_string());
125 let out_amounts = self.internal_direct_actions(
126 token_in,
127 amount.0,
128 referral_id,
129 &hot_zap_actions,
130);
131
132 let mut token_cache = TokenCache::new();
133 for (out_token_id, out_amount) in out_amounts {

6

134 token_cache.add(&out_token_id, out_amount);
135 }
136
137 for add_liquidity_info in add_liquidity_infos {
138 let mut pool = self.pools.get(add_liquidity_info.pool_id).expect(ERR85_NO_POOL);
139 let tokens_in_pool = match &pool {
140 Pool::SimplePool(p) => p.token_account_ids.clone(),
141 Pool::RatedSwapPool(p) => p.token_account_ids.clone(),
142 Pool::StableSwapPool(p) => p.token_account_ids.clone(),
143 };
144
145 let mut add_liquidity_amounts = add_liquidity_info.amounts.iter().map(|v| v.0).collect

();
146
147 match pool {
148 Pool::SimplePool(_) => {
149 pool.add_liquidity(
150 &sender_id,
151 &mut add_liquidity_amounts,
152 false
153);
154 if let Some(min_amounts) = add_liquidity_info.min_amounts {
155 // Check that all amounts are above request min amounts in case of front

running that changes the exchange rate.
156 for (amount, min_amount) in add_liquidity_amounts.iter().zip(min_amounts.

iter()) {
157 assert!(amount >= &min_amount.0, "{}", ERR86_MIN_AMOUNT);
158 }
159 }
160 },
161 Pool::StableSwapPool(_) | Pool::RatedSwapPool(_) => {
162 let min_shares = add_liquidity_info.min_shares.expect("Need input min_shares");
163 pool.add_stable_liquidity(
164 &sender_id,
165 &add_liquidity_amounts,
166 min_shares.into(),
167 AdminFees::new(self.admin_fee_bps),
168 false
169);
170 }
171 };
172
173 for (cost_token_id, cost_amount) in tokens_in_pool.iter().zip(add_liquidity_amounts.

into_iter()) {
174 token_cache.sub(cost_token_id, cost_amount);
175 }
176
177 self.pools.replace(add_liquidity_info.pool_id, &pool);
178 }
179
180 for (remain_token_id, remain_amount) in token_cache.0.iter() {
181 account.deposit(remain_token_id, *remain_amount);
182 }

7

183
184 self.internal_save_account(&sender_id, account);
185
186 env::log(
187 format!(
188 "HotZap remain internal account assets: {:?}",
189 token_cache.0
190)
191 .as_bytes(),
192);
193
194 PromiseOrValue::Value(U128(0))
195 }

Listing 2.2: src/token_receiver.rs

Impact The storage fees that should be claimed from users may be bypassed. Furthermore, users can

claim extra fees with the function remove_liquidity or remove_liquidity_by_tokens.

Suggestion I Add storage check in the function ft_on_transfer().

2.2 DeFi Security

2.2.1 Unrestricted Referral Account

Severity Low

Status Fixed in Version 2

Introduced by Version 1

Description The protocol allows the user to provide a referral account for receiving a reward during the

swap process. However, there is no restriction on this referral account, which allows the user to receive

the referral fee as a reward by providing his/her own address.

62 #[allow(unreachable_code)]
63 fn ft_on_transfer(
64 &mut self,
65 sender_id: ValidAccountId,
66 amount: U128,
67 msg: String,
68) -> PromiseOrValue<U128> {
69 self.assert_contract_running();
70 let token_in = env::predecessor_account_id();
71 // feature frozenlist
72 self.assert_no_frozen_tokens(&[token_in.clone()]);
73 if msg.is_empty() {
74 // Simple deposit.
75 self.internal_deposit(sender_id.as_ref(), &token_in, amount.into());
76 PromiseOrValue::Value(U128(0))
77 } else {
78 // instant swap
79 let message =
80 serde_json::from_str::<TokenReceiverMessage>(&msg).expect(ERR28_WRONG_MSG_FORMAT);

8

81 match message {
82 TokenReceiverMessage::Execute {
83 referral_id,
84 actions,
85 } => {
86 let referral_id = referral_id.map(|x| x.to_string());
87 let out_amounts = self.internal_direct_actions(
88 token_in,
89 amount.0,
90 referral_id,
91 &actions,
92);
93 for (token_out, amount_out) in out_amounts.into_iter() {
94 self.internal_send_tokens(sender_id.as_ref(), &token_out, amount_out);
95 }
96 // Even if send tokens fails, we don’t return funds back to sender.
97 PromiseOrValue::Value(U128(0))
98 }
99 }

100 }
101 }

Listing 2.3: src/token_receiver.rs

Impact Users can earn the additional referral fee in the swap process, which is against the original

design.

Suggestion I Ensure the referral account is different from the sender_id.

Feedback from the Project The new rated referral fee feature would include a fix for it.

2.2.2 Incorrect Admin Fees Calculation in Simple Pool

Severity Medium

Status Fixed in Version 2

Introduced by Version 1

Description The shares minted to admin for Simple Pool are calculated as follows:

Minted_Share = Total_Share ∗Admin_Fee ∗
√
k′ −

√
k√

k′

The actual Admin_Fee is Admin_Fee_Amount
Total_Fee_Amount . The total value of the pool can be represented as

√
k′, and

the Total_Fee_Amount can be represented as
√
k′ −

√
k. Thus, Admin_Fee_Amount should be

Minted_Share
Total_Share+Minted_Share

∗
√
k′

In this case, given the Minted_Share above, the actual Admin_Fee could be calculated as follows:

ActualAdmin_Fee =
Total_Share ∗Admin_Fee ∗

√
k′−
√
k√

k′

Total_Share ∗Admin_Fee ∗
√
k′−
√
k√

k′
+ Total_Share

∗
√
k′√

k′ −
√
k
=

1

1
Admin_Fee +

√
k′−
√
k√

k′

, which is always less than the Admin_Fee in the Simple Pool. That’s to say, the calculation of the amount

of shares minted for the admin is incorrect.

9

To ensure that the actual Admin_Fee is equal to Admin_Fee, we have the following equations:

ActualAdmin_Fee =
Admin_Fee_Amount

Total_Fee_Amount
=

Minted_Share ∗
√
k′

Total_Share+Minted_Share
÷(
√
k′−
√
k) = Admin_Fee

Given the formula above, the minted share should be calculated as following:

Minted_Share = Total_Share ∗
√
k′ −

√
k

(1
Admin_Fee − 1) ∗

√
k′ +

√
k

269 pub fn swap(
270 &mut self,
271 token_in: &AccountId,
272 amount_in: Balance,
273 token_out: &AccountId,
274 min_amount_out: Balance,
275 admin_fee: &AdminFees,
276) -> Balance {
277 assert_ne!(token_in, token_out, "{}", ERR73_SAME_TOKEN);
278 let in_idx = self.token_index(token_in);
279 let out_idx = self.token_index(token_out);
280 let amount_out = self.internal_get_return(in_idx, amount_in, out_idx);
281 assert!(amount_out >= min_amount_out, "{}", ERR68_SLIPPAGE);
282 env::log(
283 format!(
284 "Swapped {} {} for {} {}",
285 amount_in, token_in, amount_out, token_out
286)
287 .as_bytes(),
288);
289
290 let prev_invariant =
291 integer_sqrt(U256::from(self.amounts[in_idx]) * U256::from(self.amounts[out_idx]));
292
293 self.amounts[in_idx] += amount_in;
294 self.amounts[out_idx] -= amount_out;
295
296 // "Invariant" is by how much the dot product of amounts increased due to fees.
297 let new_invariant =
298 integer_sqrt(U256::from(self.amounts[in_idx]) * U256::from(self.amounts[out_idx]));
299
300 // Invariant can not reduce (otherwise loosing balance of the pool and something it broken)

.
301 assert!(new_invariant >= prev_invariant, "{}", ERR75_INVARIANT_REDUCE);
302 let numerator = (new_invariant - prev_invariant) * U256::from(self.shares_total_supply);
303
304 // Allocate exchange fee as fraction of total fee by issuing LP shares proportionally.
305 if admin_fee.exchange_fee > 0 && numerator > U256::zero() {
306 let denominator = new_invariant * FEE_DIVISOR / admin_fee.exchange_fee;
307 self.mint_shares(&admin_fee.exchange_id, (numerator / denominator).as_u128());
308 }
309
310 // If there is referral provided and the account already registered LP, allocate it % of LP

rewards.

10

311 if let Some(referral_id) = &admin_fee.referral_id {
312 if admin_fee.referral_fee > 0
313 && numerator > U256::zero()
314 && self.shares.contains_key(referral_id)
315 {
316 let denominator = new_invariant * FEE_DIVISOR / admin_fee.referral_fee;
317 self.mint_shares(referral_id, (numerator / denominator).as_u128());
318 }
319 }
320
321 // Keeping track of volume per each input traded separately.
322 // Reported volume with fees will be sum of input, without fees will be sum of output.
323 self.volumes[in_idx].input.0 += amount_in;
324 self.volumes[in_idx].output.0 += amount_out;
325
326 amount_out
327 }

Listing 2.4: src/simple_pool.rs

Impact Simple Pool will always charge less admin fees than expected.

Suggestion I Use the equation listed above to calculate the shares minted for admins.

Note After the patch, the fee mechanism among Simple Pool, Stable Pool, and Rated Pool are consis-

tent. However, the actual admin fee rate is higher than the admin_fee_bps configured in AdminFees. The

reason is that the LP fees are distributed to all shares in the pool including the newly minted shares for

admins.

2.3 Additional Recommendation

2.3.1 Lack of Check on Guardians’ Removal

Status Fixed in Version 2

Introduced by Version 1

Description The owner of the protocol can remove guardians via the function remove_guardians(). How-

ever, the existence of guardians is not checked. In this case, if the guardians do not exist, the program

will not panic, which may mislead the owner and bring unexpected impact.

64 #[payable]
65 pub fn remove_guardians(&mut self, guardians: Vec<ValidAccountId>) {
66 assert_one_yocto();
67 self.assert_owner();
68 for guardian in guardians {
69 self.guardians.remove(guardian.as_ref());
70 }
71 }

Listing 2.5: src/owner.rs

Suggestion I Check the return value of function remove_guardians().

Feedback from the Project Will fix it in the next accumulated contract upgrade.

11

2.3.2 Two-Step Transfer of Privileged Account Ownership

Status Confirmed

Introduced by Version 1

Description The contract uses set_owner() to configure the privileged account, which can conduct

many sensitive operations (e.g., retrieve unmanaged tokens). In this case, when an incorrect new owner

is provided, the contract is under the risk of attack and the privileged functions cannot be invoked.

14 #[payable]
15 pub fn set_owner(&mut self, owner_id: ValidAccountId) {
16 assert_one_yocto();
17 self.assert_owner();
18 self.owner_id = owner_id.as_ref().clone();
19 }

Listing 2.6: src/owner.rs

Suggestion I Implement a two-step approach for the owner update: set_owner() and commit_owner().

Feedback from the Project To prevent human unintentional errors during the ownership transfer, we

would have a safety design to ensure the next owner exists and is able to perform his duty (sign TX). For

that purpose, we may leverage a relay baton process: Grant (by cur owner with a deadline blockheight or

timestamp), Accept (by next owner to ensure he can sign TX within the deadline), Confirm (by cur owner

and followed by the real ownership transfer) or Cancel (by cur owner)

2.3.3 Potential Elastic Supply Token Problem

Status Confirmed

Introduced by Version 1

Description Elastic supply tokens could dynamically adjust their price, supply, user’s balance, etc. For

example, inflation tokens, deflation tokens, rebasing tokens, and so forth. In the current implementation of

protocol, elastic supply tokens are not supported. If the token is a deflation token, there will be a difference

between the recorded amount of transferred tokens to this smart contract (as a parameter of function

ft_on_transfer()) and the actual number of transferred tokens (the token smart contract itself). That’s

because a small number of tokens will be burned by the token smart contract.

This inconsistency can lead to security impacts for the operations based on the transferred amount of

tokens.

Suggestion I Do not add elastic supply tokens to the whitelist.

2.3.4 Improper Check on the Admin Fees

Status Fixed in Version 2

Introduced by Version 1

Description In the process of swapping, the user has to pay three different fees for the service, i.e.,

exchange_fee, referral_fee, and "lp_fee". The admin fee (i.e., exchange_fee and referral_fee) is ad-

justed with the function modify_admin_fee(). However, the maximum admin fee (the sum of exchange_fee

12

and referral_fee) is allowed to be set as FEE_DIVISOR (i.e., 100%), which means all the fees collected

from the user are kept to admin. In this case, the liquidity provider cannot get any profit, which is unfair.

137 #[payable]
138 pub fn modify_admin_fee(&mut self, exchange_fee: u32, referral_fee: u32) {
139 assert_one_yocto();
140 self.assert_owner();
141 assert!(exchange_fee + referral_fee <= FEE_DIVISOR, "{}", ERR101_ILLEGAL_FEE);
142 self.exchange_fee = exchange_fee;
143 self.referral_fee = referral_fee;
144 }

Listing 2.7: src/owner.rs

Suggestion I It is recommended to limit the sum up of exchange_fee + referral_fee with a reasonable

value, which is less than FEE_DIVISOR.

Feedback from the Project Will fix it in the next accumulated contract upgrade.

2.3.5 Lack of Check in retrieve_unmanaged_token()

Status Confirmed

Introduced by Version 1

Description Function retrieve_unmanaged_token() enables the owner to transfer NEP-141 tokens from

the contract to the owner. The purpose is to retrieve the tokens accidentally transferred in by others.

However, there is no limitation on the amount of tokens that are transferred out. In this case, users’ assets

may lose if the owner transfers more tokens than expected.

29 #[payable]
30 pub fn retrieve_unmanaged_token(&mut self, token_id: ValidAccountId, amount: U128) -> Promise

{
31 self.assert_owner();
32 assert_one_yocto();
33 let token_id: AccountId = token_id.into();
34 let amount: u128 = amount.into();
35 assert!(amount > 0, "{}", ERR29_ILLEGAL_WITHDRAW_AMOUNT);
36 env::log(
37 format!(
38 "Going to retrieve token {} to owner, amount: {}",
39 &token_id, amount
40)
41 .as_bytes(),
42);
43 ext_fungible_token::ft_transfer(
44 self.owner_id.clone(),
45 U128(amount),
46 None,
47 &token_id,
48 1,
49 env::prepaid_gas() - GAS_FOR_BASIC_OP,
50)
51 }

13

Listing 2.8: src/owner.rs

Suggestion I It is recommended to add the check to ensure the user’s assets would not be transferred

out.

Feedback from the Project Current safety policy includes two points: First, we only grant that sensitive

interface to the owner’s management, and he (the DAO) would be careful with the numbers according to

relevant transfer TX. Second, this interface can only withdraw tokens to the owner’s account, which gives

the owner (the DAO) 2ed chance to inspect numbers.

2.3.6 Lack of Check on the Gas Used by migrate()

Status Fixed in Version 2

Introduced by Version 1

Description There is no check on whether the attached_gas is enough for function migrate().

309 #[no_mangle]
310 pub extern "C" fn upgrade() {
311 env::setup_panic_hook();
312 env::set_blockchain_interface(Box::new(near_blockchain::NearBlockchain {}));
313 let contract: Contract = env::state_read().expect(ERR103_NOT_INITIALIZED);
314 contract.assert_owner();
315 let current_id = env::current_account_id().into_bytes();
316 let method_name = "migrate".as_bytes().to_vec();
317 unsafe {
318 BLOCKCHAIN_INTERFACE.with(|b| {
319 // Load input into register 0.
320 b.borrow()
321 .as_ref()
322 .expect(BLOCKCHAIN_INTERFACE_NOT_SET_ERR)
323 .input(0);
324 let promise_id = b
325 .borrow()
326 .as_ref()
327 .expect(BLOCKCHAIN_INTERFACE_NOT_SET_ERR)
328 .promise_batch_create(current_id.len() as _, current_id.as_ptr() as _);
329 b.borrow()
330 .as_ref()
331 .expect(BLOCKCHAIN_INTERFACE_NOT_SET_ERR)
332 .promise_batch_action_deploy_contract(promise_id, u64::MAX as _, 0);
333 let attached_gas = env::prepaid_gas() - env::used_gas() - GAS_FOR_MIGRATE_CALL;
334 b.borrow()
335 .as_ref()
336 .expect(BLOCKCHAIN_INTERFACE_NOT_SET_ERR)
337 .promise_batch_action_function_call(
338 promise_id,
339 method_name.len() as _,
340 method_name.as_ptr() as _,
341 0 as _,
342 0 as _,

14

343 0 as _,
344 attached_gas,
345);
346 });
347 }
348 }

Listing 2.9: src/owner.rs

Suggestion I Check whether the attached_gas is larger than a specified value.

Feedback from the Project Will fix it in the next accumulated contract upgrade.

2.3.7 Code Optimization (I)

Status Fixed in Version 2

Introduced by Version 1

Description Function internal_unwrap_or_default_account() is used to get the stored Account in the

contract with the AccountId. If the AccountId is not registered, the function will return a default Account.

This function is improperly used in the functions listed below (i.e., add_liquidity(), add_stable_liquidity(),

remove_liquidity(), and remove_liquidity_by_tokens()). Take the function add_liquidity() as an ex-

ample, if the Account of the sender doesn’t exist (line 266), the withdrawal of the deposited tokens in the

newly created Account (lines 269 - 271) will always fail.

237 #[payable]
238 pub fn add_liquidity(
239 &mut self,
240 pool_id: u64,
241 amounts: Vec<U128>,
242 min_amounts: Option<Vec<U128>>,
243) -> U128 {
244 self.assert_contract_running();
245 assert!(
246 env::attached_deposit() > 0,
247 "{}", ERR35_AT_LEAST_ONE_YOCTO
248);
249 let prev_storage = env::storage_usage();
250 let sender_id = env::predecessor_account_id();
251 let mut amounts: Vec<u128> = amounts.into_iter().map(|amount| amount.into()).collect();
252 let mut pool = self.pools.get(pool_id).expect(ERR85_NO_POOL);
253 // feature frozenlist
254 self.assert_no_frozen_tokens(pool.tokens());
255 // Add amounts given to liquidity first. It will return the balanced amounts.
256 let shares = pool.add_liquidity(
257 &sender_id,
258 &mut amounts,
259);
260 if let Some(min_amounts) = min_amounts {
261 // Check that all amounts are above request min amounts in case of front running that

changes the exchange rate.
262 for (amount, min_amount) in amounts.iter().zip(min_amounts.iter()) {
263 assert!(amount >= &min_amount.0, "{}", ERR86_MIN_AMOUNT);

15

264 }
265 }
266 let mut deposits = self.internal_unwrap_or_default_account(&sender_id);
267 let tokens = pool.tokens();
268 // Subtract updated amounts from deposits. This will fail if there is not enough funds for

any of the tokens.
269 for i in 0..tokens.len() {
270 deposits.withdraw(&tokens[i], amounts[i]);
271 }
272 self.internal_save_account(&sender_id, deposits);
273 self.pools.replace(pool_id, &pool);
274 self.internal_check_storage(prev_storage);
275
276 U128(shares)
277 }

Listing 2.10: src/lib.rs

284 #[payable]
285 pub fn add_stable_liquidity(
286 &mut self,
287 pool_id: u64,
288 amounts: Vec<U128>,
289 min_shares: U128,
290) -> U128 {
291 self.assert_contract_running();
292 assert!(
293 env::attached_deposit() > 0,
294 "{}", ERR35_AT_LEAST_ONE_YOCTO
295);
296 let prev_storage = env::storage_usage();
297 let sender_id = env::predecessor_account_id();
298 let amounts: Vec<u128> = amounts.into_iter().map(|amount| amount.into()).collect();
299 let mut pool = self.pools.get(pool_id).expect(ERR85_NO_POOL);
300 // feature frozenlist
301 self.assert_no_frozen_tokens(pool.tokens());
302 // Add amounts given to liquidity first. It will return the balanced amounts.
303 let mint_shares = pool.add_stable_liquidity(
304 &sender_id,
305 &amounts,
306 min_shares.into(),
307 AdminFees::new(self.exchange_fee),
308);
309 let mut deposits = self.internal_unwrap_or_default_account(&sender_id);
310 let tokens = pool.tokens();
311 // Subtract amounts from deposits. This will fail if there is not enough funds for any of

the tokens.
312 for i in 0..tokens.len() {
313 deposits.withdraw(&tokens[i], amounts[i]);
314 }
315 self.internal_save_account(&sender_id, deposits);
316 self.pools.replace(pool_id, &pool);
317 self.internal_check_storage(prev_storage);

16

318
319 mint_shares.into()
320 }

Listing 2.11: src/lib.rs

333 #[payable]
334 pub fn remove_liquidity(&mut self, pool_id: u64, shares: U128, min_amounts: Vec<U128>) -> Vec<

U128> {
335 assert_one_yocto();
336 self.assert_contract_running();
337 let prev_storage = env::storage_usage();
338 let sender_id = env::predecessor_account_id();
339 let mut pool = self.pools.get(pool_id).expect(ERR85_NO_POOL);
340 // feature frozenlist
341 self.assert_no_frozen_tokens(pool.tokens());
342 let amounts = pool.remove_liquidity(
343 &sender_id,
344 shares.into(),
345 min_amounts
346 .into_iter()
347 .map(|amount| amount.into())
348 .collect(),
349);
350 self.pools.replace(pool_id, &pool);
351 let tokens = pool.tokens();
352 let mut deposits = self.internal_unwrap_or_default_account(&sender_id);
353 for i in 0..tokens.len() {
354 deposits.deposit(&tokens[i], amounts[i]);
355 }
356 // Freed up storage balance from LP tokens will be returned to near_balance.
357 if prev_storage > env::storage_usage() {
358 deposits.near_amount +=
359 (prev_storage - env::storage_usage()) as Balance * env::storage_byte_cost();
360 }
361 self.internal_save_account(&sender_id, deposits);
362
363 amounts
364 .into_iter()
365 .map(|amount| amount.into())
366 .collect()
367 }

Listing 2.12: src/lib.rs

373 #[payable]
374 pub fn remove_liquidity_by_tokens(
375 &mut self, pool_id: u64,
376 amounts: Vec<U128>,
377 max_burn_shares: U128
378) -> U128 {
379 assert_one_yocto();
380 self.assert_contract_running();

17

381 let prev_storage = env::storage_usage();
382 let sender_id = env::predecessor_account_id();
383 let mut pool = self.pools.get(pool_id).expect(ERR85_NO_POOL);
384 // feature frozenlist
385 self.assert_no_frozen_tokens(pool.tokens());
386 let burn_shares = pool.remove_liquidity_by_tokens(
387 &sender_id,
388 amounts
389 .clone()
390 .into_iter()
391 .map(|amount| amount.into())
392 .collect(),
393 max_burn_shares.into(),
394 AdminFees::new(self.exchange_fee),
395);
396 self.pools.replace(pool_id, &pool);
397 let tokens = pool.tokens();
398 let mut deposits = self.internal_unwrap_or_default_account(&sender_id);
399 for i in 0..tokens.len() {
400 deposits.deposit(&tokens[i], amounts[i].into());
401 }
402 // Freed up storage balance from LP tokens will be returned to near_balance.
403 if prev_storage > env::storage_usage() {
404 deposits.near_amount +=
405 (prev_storage - env::storage_usage()) as Balance * env::storage_byte_cost();
406 }
407 self.internal_save_account(&sender_id, deposits);
408
409 burn_shares.into()
410 }

Listing 2.13: src/lib.rs

Suggestion I Replace the function internal_unwrap_or_default_account() with the function internal_un-

wrap_account() in above functions.

Feedback from the Project Will fix it in the next accumulated contract upgrade.

2.3.8 Code Optimization (II)

Status Fixed in Version 2

Introduced by Version 1

Description Function ft_on_transfer() is a callback function which is used to receive tokens. It will

check whether the token transferred in is frozen for both the operation of deposit and the operation of

swap. There also exist checks in the operation of swap to make sure the token swapped out is not frozen

as well. However, this check will be done for each swap. The problem comes when a sequence of swaps

executes, and there is a frozen token in the middle of the sequence. In this case, the execution will not fail

until it reaches the middle, and the gas is wasted for executing the previous swap actions.

62 #[allow(unreachable_code)]
63 fn ft_on_transfer(

18

64 &mut self,
65 sender_id: ValidAccountId,
66 amount: U128,
67 msg: String,
68) -> PromiseOrValue<U128> {
69 self.assert_contract_running();
70 let token_in = env::predecessor_account_id();
71 // feature frozenlist
72 self.assert_no_frozen_tokens(&[token_in.clone()]);
73 if msg.is_empty() {
74 // Simple deposit.
75 self.internal_deposit(sender_id.as_ref(), &token_in, amount.into());
76 PromiseOrValue::Value(U128(0))
77 } else {
78 // instant swap
79 let message =
80 serde_json::from_str::<TokenReceiverMessage>(&msg).expect(ERR28_WRONG_MSG_FORMAT);
81 match message {
82 TokenReceiverMessage::Execute {
83 referral_id,
84 actions,
85 } => {
86 let referral_id = referral_id.map(|x| x.to_string());
87 let out_amounts = self.internal_direct_actions(
88 token_in,
89 amount.0,
90 referral_id,
91 &actions,
92);
93 for (token_out, amount_out) in out_amounts.into_iter() {
94 self.internal_send_tokens(sender_id.as_ref(), &token_out, amount_out);
95 }
96 // Even if send tokens fails, we don’t return funds back to sender.
97 PromiseOrValue::Value(U128(0))
98 }
99 }

100 }
101 }

Listing 2.14: src/token_receiver.rs

Suggestion I Check all the tokens listed in actions before the swapping to make sure no frozen tokens

exist.

Feedback from the Project Will fix it in the next accumulated contract upgrade.

2.3.9 Avoid Logging in View Functions

Status Fixed in Version 4

Introduced by Version 3

Description The function shown below will always emit the logs regardless of whether the is_view ar-

gument is true or false, which can lead to inaccuracies in off-chain statistics and analytics. Though logs

19

emitted in most of the functions can be differentiated by originating from a view account or not, logs emitted

in function swap cannot be differentiated between view and non-view usage.

File Function
simple_pool.rs add_liquidity
simple_pool.rs remove_liquidity
simple_pool.rs swap
rated_swap/mod.rs add_liquidity
rated_swap/mod.rs remove_liquidity_by_shares
rated_swap/mod.rs remove_liquidity_by_tokens
rated_swap/mod.rs swap
stable_swap/mod.rs add_liquidity
stable_swap/mod.rs remove_liquidity_by_shares
stable_swap/mod.rs remove_liquidity_by_tokens
stable_swap/mod.rs swap

Suggestion I Avoid emitting logs when is_view is true.

2.3.10 Slippage Protection in Function add_liquidity

Status Fixed* in Version 4

Introduced by Version 3

Description When providing liquidity to simple pools via the operation HotZap, users can optionally

specify the parameter min_amounts to control slippage. However, when providing liquidity to stable pools

or rated pools, the function add_liqudity() requires users to provide a mint_shares.

Considering the consistency and risk of frontrunning, it’s recommended to check that min_amounts

has to be provided.

250 #[payable]
251 pub fn add_liquidity(
252 &mut self,
253 pool_id: u64,
254 amounts: Vec<U128>,
255 min_amounts: Option<Vec<U128>>,
256) -> U128 {
257 self.assert_contract_running();
258 assert!(env::attached_deposit() > 0, "{}", ERR35_AT_LEAST_ONE_YOCTO);
259 let prev_storage = env::storage_usage();
260 let sender_id = env::predecessor_account_id();
261 let mut amounts: Vec<u128> = amounts.into_iter().map(|amount| amount.into()).collect();
262 let mut pool = self.pools.get(pool_id).expect(ERR85_NO_POOL);
263 // feature frozenlist
264 self.assert_no_frozen_tokens(pool.tokens());
265 // Add amounts given to liquidity first. It will return the balanced amounts.
266 let shares = pool.add_liquidity(&sender_id, &mut amounts, false);
267 if let Some(min_amounts) = min_amounts {
268 // Check that all amounts are above request min amounts in case of front running that

changes the exchange rate.
269 for (amount, min_amount) in amounts.iter().zip(min_amounts.iter()) {
270 assert!(amount >= &min_amount.0, "{}", ERR86_MIN_AMOUNT);

20

271 }
272 }
273 // [AUDITION_AMENDMENT] 2.3.7 Code Optimization (I)
274 let mut deposits = self.internal_unwrap_account(&sender_id);
275 let tokens = pool.tokens();
276 // Subtract updated amounts from deposits. This will fail if there is not enough funds for

any of the tokens.
277 for i in 0..tokens.len() {
278 deposits.withdraw(&tokens[i], amounts[i]);
279 }
280 self.internal_save_account(&sender_id, deposits);
281 self.pools.replace(pool_id, &pool);
282 self.internal_check_storage(prev_storage);
283
284
285 U128(shares)
286 }

Listing 2.15: src/lib.rs

116 TokenReceiverMessage::HotZap {
117 referral_id,
118 hot_zap_actions,
119 add_liquidity_infos
120 } => {
121 assert!(hot_zap_actions.len() > 0 && add_liquidity_infos.len() > 0);
122 let sender_id: AccountId = sender_id.into();
123 let mut account = self.internal_unwrap_account(&sender_id);
124 let referral_id = referral_id.map(|x| x.to_string());
125 let out_amounts = self.internal_direct_actions(
126 token_in,
127 amount.0,
128 referral_id,
129 &hot_zap_actions,
130);
131
132 let mut token_cache = TokenCache::new();
133 for (out_token_id, out_amount) in out_amounts {
134 token_cache.add(&out_token_id, out_amount);
135 }
136
137 for add_liquidity_info in add_liquidity_infos {
138 let mut pool = self.pools.get(add_liquidity_info.pool_id).expect(ERR85_NO_POOL);
139 let tokens_in_pool = match &pool {
140 Pool::SimplePool(p) => p.token_account_ids.clone(),
141 Pool::RatedSwapPool(p) => p.token_account_ids.clone(),
142 Pool::StableSwapPool(p) => p.token_account_ids.clone(),
143 };
144
145 let mut add_liquidity_amounts = add_liquidity_info.amounts.iter().map(|v| v.0).collect

();
146
147 match pool {

21

148 Pool::SimplePool(_) => {
149 pool.add_liquidity(
150 &sender_id,
151 &mut add_liquidity_amounts,
152 false
153);
154 if let Some(min_amounts) = add_liquidity_info.min_amounts {
155 // Check that all amounts are above request min amounts in case of front

running that changes the exchange rate.
156 for (amount, min_amount) in add_liquidity_amounts.iter().zip(min_amounts.

iter()) {
157 assert!(amount >= &min_amount.0, "{}", ERR86_MIN_AMOUNT);
158 }
159 }
160 },
161 Pool::StableSwapPool(_) | Pool::RatedSwapPool(_) => {
162 let min_shares = add_liquidity_info.min_shares.expect("Need input min_shares");
163 pool.add_stable_liquidity(
164 &sender_id,
165 &add_liquidity_amounts,
166 min_shares.into(),
167 AdminFees::new(self.admin_fee_bps),
168 false
169);
170 }
171 };
172
173 for (cost_token_id, cost_amount) in tokens_in_pool.iter().zip(add_liquidity_amounts.

into_iter()) {
174 token_cache.sub(cost_token_id, cost_amount);
175 }
176
177 self.pools.replace(add_liquidity_info.pool_id, &pool);
178 }
179
180 for (remain_token_id, remain_amount) in token_cache.0.iter() {
181 account.deposit(remain_token_id, *remain_amount);
182 }
183
184 self.internal_save_account(&sender_id, account);
185
186 env::log(
187 format!(
188 "HotZap remain internal account assets: {:?}",
189 token_cache.0
190)
191 .as_bytes(),
192);
193
194 PromiseOrValue::Value(U128(0))
195 }

Listing 2.16: src/token_receiver.rs

22

Suggestion I Revise the logic accordingly.

Feedback from the Project The add_liquidity function has not been updated for compatibility.

2.4 Notes

2.4.1 Delayed Price in Rated Swap Pool

Status Confirmed

Introduced by version 1

Description Given the async nature of NEAR protocol, one transaction on the NEAR protocol may be ex-

ecuted in several blocks. The price of tokens in the Rated Swap Pool may not be the latest. Therefore, it

should be noted that the token added to the Rated Swap Pool should be as stable as possible.

2.4.2 Timely Triggering update_token_rate()

Status Confirmed

Introduced by version 1

Description Function update_token_rate() is used to get the newest rates of tokens from the token

contracts and update them in the contract for further use. It’s important for the team to make sure that the

function will be triggered by the team timely.

2.4.3 Sensitive Functions Managed by DAO

Status Confirmed

Introduced by version 1

Description Privileged functions in Ref-Exchange are controlled by DAO (i.e., ref-finance.sputnik-dao.near).

The DAO has the privilege to configure system parameters, change the state of the contract (pause and

unpause), upgrade the contract, etc. The community should manage the DAO carefully.

23

	1 Introduction
	1.1 About Target Contracts
	1.2 Disclaimer
	1.3 Procedure of Auditing
	1.3.1 Software Security
	1.3.2 DeFi Security
	1.3.3 NFT Security
	1.3.4 Additional Recommendation

	1.4 Security Model

	2 Findings
	2.1 Software Security
	2.1.1 Improper Account Unregistration
	2.1.2 Lack of Storage Usage Check in function ft_on_transfer

	2.2 DeFi Security
	2.2.1 Unrestricted Referral Account
	2.2.2 Incorrect Admin Fees Calculation in Simple Pool

	2.3 Additional Recommendation
	2.3.1 Lack of Check on Guardians' Removal
	2.3.2 Two-Step Transfer of Privileged Account Ownership
	2.3.3 Potential Elastic Supply Token Problem
	2.3.4 Improper Check on the Admin Fees
	2.3.5 Lack of Check in retrieve_unmanaged_token()
	2.3.6 Lack of Check on the Gas Used by migrate()
	2.3.7 Code Optimization (I)
	2.3.8 Code Optimization (II)
	2.3.9 Avoid Logging in View Functions
	2.3.10 Slippage Protection in Function add_liquidity

	2.4 Notes
	2.4.1 Delayed Price in Rated Swap Pool
	2.4.2 Timely Triggering update_token_rate()
	2.4.3 Sensitive Functions Managed by DAO

		2023-10-07T10:29:38+0800
	BlockSec Audit Team

