
Security Audit Report for Cakepie
Contracts

Date: Dec 29, 2023

Version: 1.1

Contact: contact@blocksec.com

mailto:contact@blocksec.com

Contents

1 Introduction 1
1.1 About Target Contracts . 1

1.2 Disclaimer . 2

1.3 Procedure of Auditing . 2

1.3.1 Software Security . 2

1.3.2 DeFi Security . 3

1.3.3 NFT Security . 3

1.3.4 Additional Recommendation . 3

1.4 Security Model . 3

2 Findings 5
2.1 Software Security . 5

2.1.1 Uninitialized state variables . 5

2.1.2 Incorrect interface used for CakepieBribeManager 6

2.1.3 Potential DoS to native token transfer due to insufficient gas 6

2.1.4 Potential inconsistent pool identifier . 7

2.2 DeFi Security . 7

2.2.1 Potential inconsistent token pairs . 7

2.2.2 Insufficient check on the Pancakeswap pool . 8

2.3 Additional Recommendation . 10

2.3.1 Implement usages for unused isActive flags . 10

2.3.2 Add sanity checks before setting parameters . 10

2.3.3 Remove unused logic . 10

2.3.4 Fix typo in CakepieBribeRewardDistributor . 11

2.3.5 Remove unused payable attribute . 11

2.4 Note . 11

2.4.1 Centralization risk . 11

i

Report Manifest

Item Description
Client Cakepie
Target Cakepie Contracts

Version History

Version Date Description
1.0 Dec 10, 2023 First Release
1.1 Dec 29, 2023 Additional Comments

About BlockSec BlockSec focuses on the security of the blockchain ecosystem and collaborates with

leading DeFi projects to secure their products. BlockSec is founded by top-notch security researchers and

experienced experts from both academia and industry. They have published multiple blockchain security

papers in prestigious conferences, reported several zero-day attacks of DeFi applications, and successfully

protected digital assets that are worth more than 5 million dollars by blocking multiple attacks. They can

be reached at Email, Twitter and Medium.

ii

https://www.blocksec.com
mailto:contact@blocksec.com
https://twitter.com/BlockSecTeam
https://blocksecteam.medium.com/

Chapter 1 Introduction

1.1 About Target Contracts

Information Description
Type Smart Contract
Language Solidity
Approach Semi-automatic and manual verification

The target of this audit is the code repository of Cakepie Contracts1 of Cakepie. Cakepie is a yield

optimization protocol built upon PancakeSwap. It enables users to manage PancakeSwap V2/V3 positions

and claim rewards. CAKE holders can convert their CAKE token or locked CAKE positions from Pan-

cakeSwap on Cakepie. In addition, Cakepie grants users governance rights. Users with voting powers

can vote in Cakepie and votes will be cast to Pancake’s GaugeVoting. Cakepie also incorporates a bribe

market where users can add bribes that are distributed to active voters.

Please note that this audit only covers the following contracts:

- PancakeV3Helper.sol

- PancakeV2Helper.sol

- PancakeAMLHelper.sol

- PancakeStakingBNBChain.sol

- mCakeConvertorBNBChain.sol

- mCakeConvertorSideChain.sol

- PancakeStakingBaseUpg.sol

- mCakeConvertorBaseUpg.sol

- DustRefunder.sol

- Enumerable.sol

- CakepieReceiptToken.sol

- Cakepie.sol 2

- CakepieBribeManager.sol

- CakepieBribeDistributor.sol

- PancakeVoteManager.sol

- RewardDistributor.sol

- BaseRewardPoolV3.sol

The auditing process is iterative. Specifically, we would audit the commits that fix the discovered

issues. If there are new issues, we will continue this process. The commit SHA values during the audit are

shown in the following table. Our audit report is responsible for the code in the initial version (Version 1),

as well as new code (in the following versions) to fix issues in the audit report.

1
https://github.com/magpiexyz/cakepie_contract

2In the commit f31c87aaa0f8143f0c9fd9581f7b62f3873330ea, the auditors are requested to audit a new version of this
file, which is moved to path contracts/cakepie/crosschain/Cakepie.sol and changed to a different implementation of
the Cakepie token. The auditors have reviewed the file in the specified commit and found no issue.

1

https://github.com/magpiexyz/cakepie_contract

Project Version Commit Hash

Cakepie Contracts
Version 1 3abfc8d14d473eb53947963c0fcbdc4af2653eaa

Version 2 da2b39eb120affdca2cc6b930efd6312bedea5a6

1.2 Disclaimer

This audit report does not constitute investment advice or a personal recommendation. It does not

consider, and should not be interpreted as considering or having any bearing on, the potential economics

of a token, token sale or any other product, service or other asset. Any entity should not rely on this report

in any way, including for the purpose of making any decisions to buy or sell any token, product, service or

other asset.

This audit report is not an endorsement of any particular project or team, and the report does not

guarantee the security of any particular project. This audit does not give any warranties on discovering

all security issues of the smart contracts, i.e., the evaluation result does not guarantee the nonexistence

of any further findings of security issues. As one audit cannot be considered comprehensive, we always

recommend proceeding with independent audits and a public bug bounty program to ensure the security

of smart contracts.

The scope of this audit is limited to the code mentioned in Section 1.1. Unless explicitly specified,

the security of the language itself (e.g., the solidity language), the underlying compiling toolchain and the

computing infrastructure are out of the scope.

1.3 Procedure of Auditing

We perform the audit according to the following procedure.

- Vulnerability Detection We first scan smart contracts with automatic code analyzers, and then

manually verify (reject or confirm) the issues reported by them.

- Semantic Analysis We study the business logic of smart contracts and conduct further investiga-

tion on the possible vulnerabilities using an automatic fuzzing tool (developed by our research team).

We also manually analyze possible attack scenarios with independent auditors to cross-check the

result.

- Recommendation We provide some useful advice to developers from the perspective of good

programming practice, including gas optimization, code style, and etc.

We show the main concrete checkpoints in the following.

1.3.1 Software Security

∗ Reentrancy

∗ DoS

∗ Access control

∗ Data handling and data flow

∗ Exception handling

∗ Untrusted external call and control flow

∗ Initialization consistency

∗ Events operation

2

∗ Error-prone randomness

∗ Improper use of the proxy system

1.3.2 DeFi Security

∗ Semantic consistency

∗ Functionality consistency

∗ Permission management

∗ Business logic

∗ Token operation

∗ Emergency mechanism

∗ Oracle security

∗ Whitelist and blacklist

∗ Economic impact

∗ Batch transfer

1.3.3 NFT Security

∗ Duplicated item

∗ Verification of the token receiver

∗ Off-chain metadata security

1.3.4 Additional Recommendation

∗ Gas optimization

∗ Code quality and style�
Note The previous checkpoints are the main ones. We may use more checkpoints during the auditing

process according to the functionality of the project.

1.4 Security Model

To evaluate the risk, we follow the standards or suggestions that are widely adopted by both industry

and academy, including OWASP Risk Rating Methodology 3 and Common Weakness Enumeration 4.

The overall severity of the risk is determined by likelihood and impact. Specifically, likelihood is used to

estimate how likely a particular vulnerability can be uncovered and exploited by an attacker, while impact

is used to measure the consequences of a successful exploit.

In this report, both likelihood and impact are categorized into two ratings, i.e., high and low respec-

tively, and their combinations are shown in Table 1.1.

Accordingly, the severity measured in this report are classified into three categories: High, Medium,

Low. For the sake of completeness, Undetermined is also used to cover circumstances when the risk

cannot be well determined.

Furthermore, the status of a discovered item will fall into one of the following four categories:

3https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
4https://cwe.mitre.org/

3

https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
https://cwe.mitre.org/

Table 1.1: Vulnerability Severity Classification
Im

pa
ct

High High Medium

Low Medium Low

High Low

Likelihood

- Undetermined No response yet.

- Acknowledged The item has been received by the client, but not confirmed yet.

- Confirmed The item has been recognized by the client, but not fixed yet.

- Fixed The item has been confirmed and fixed by the client.

4

Chapter 2 Findings

In total, we find six potential issues. Besides, we also have five recommendations and one note.

- Medium Risk: 3

- Low Risk: 3

- Recommendation: 5

- Note: 1

ID Severity Description Category Status
1 Medium Uninitialized state variables Software Security Fixed

2 Medium
Incorrect interface used for
CakepieBribeManager

Software Security Fixed

3 Medium
Potential DoS to native token transfer due to
insufficient gas

Software Security Fixed

4 Low Potential inconsistent pool identifier Software Security Fixed
5 Low Potential inconsistent token pairs DeFi Security Fixed
6 Low Insufficient check on the Pancakeswap pool DeFi Security Fixed
7 - Implement usages for unused isActive flags Recommendation Acknowledged
8 - Add sanity checks before setting parameters Recommendation Fixed
9 - Remove unused logic Recommendation Fixed
10 - Fix typo in CakepieBribeRewardDistributor Recommendation Fixed
11 - Remove unused payable attribute Recommendation Fixed
12 - Centralization risk Note -

The details are provided in the following sections.

2.1 Software Security

2.1.1 Uninitialized state variables

Severity Medium

Status Fixed in Version 2

Introduced by Version 1

Description In the following contracts, there are several state variables that cannot be set through con-

structors or privileged functions:

The CKPRatio variable of the RewardDistributor contract, which specifies the distribution ratio of

Cakepie rewards.

The gaugeVoting variable of the PancakeStakingBNBChain contract, which specifies the address for

the GaugeVoting contract from PancakeSwap.

The voter variable of the PancakeVoteManager contract, which specifies the address for the GaugeVoting

contract from PancakeSwap.

Impact The Cakepie rewards cannot be distributed and the voting cannot be cast on the GaugeVoting

contract.

Suggestion Configure the uninitialized state variables accordingly.

5

2.1.2 Incorrect interface used for CakepieBribeManager

Severity Medium

Status Fixed in Version 2

Introduced by Version 1

Description The PancakeVoteManager contract attempts to invoke the exactCurrentEpoch function in the

CakepieBribeManager contract (Line 284). However, there is no such interface in the target CakepieBribeManager

contract.

278 function _afterVoteUpdate(

279 address _user,

280 address _pool,

281 uint256 _pid,

282 int256 _weight

283) internal virtual {

284 uint256 epoch = ICakepieBribeManager(bribeManager).exactCurrentEpoch();

285 emit Voted(epoch, _user, _pool, _pid, _weight);

286 }

Listing 2.1: PancakeVoteManager.sol

Impact Users cannot vote due to the revert in the _afterVoteUpdate function.

Suggestion Revise the incorrect interface accordingly.

2.1.3 Potential DoS to native token transfer due to insufficient gas

Severity Medium

Status Fixed in Version 2

Introduced by Version 1

Description The _refundETH function in the DustRefunder contract utilizes send to transfer native tokens.

However, this can fail if the recipient is a proxy contract whose fallback function consumes significant gas,

causing a DoS.

34 function _refundETH(address payable _dustTo, uint256 _refundAmt) internal {

35 if (_refundAmt > 0) {

36 bool success = _dustTo.send(_refundAmt);

37 require(success, "ETH transfer failed");

38 }

39 }

Listing 2.2: DustRefunder.sol

Impact Contract users using a proxy cannot increase liquidity due to the revert in the _refundETH func-

tion.

Suggestion Revise the code logic accordingly.

6

2.1.4 Potential inconsistent pool identifier

Severity Low

Status Fixed in Version 2

Introduced by Version 1

Description In the CakepieBribeManager contract, a pool identifier consists of an epoch and a pid.

317 function _getPoolIdentifier(uint256 _epoch, uint256 _pid) internal pure returns (bytes32) {

318 return keccak256(abi.encodePacked(_epoch, _pid));

319 }

Listing 2.3: CakepieBribeManager.sol

However, this contract allows the admin to force reset a pools pid, introducing potential data inconsis-

tency issues. Specifically, the bribe information is indexed based on these pool identifiers. If a pools pid is

reset improperly, it can break this index and cause unexpected behavior.

392 function forceSetMarketPID(address _pool, uint256 _newPid) external onlyOwner {

393 poolToPid[_pool] = _newPid;

394 }

Listing 2.4: CakepieBribeManager.sol

Impact N/A

Suggestion Revise the code logic accordingly.

2.2 DeFi Security

2.2.1 Potential inconsistent token pairs

Severity Low

Status Fixed in Version 2

Introduced by Version 1

Description In the PancakeStakingBaseUpg contract, the increaseLiquidityV3For function assumes

that token1 is the native token when a pool info’s isNative field is set to true. However, for token pairs with

the native token as token0, this assumption is violated. In such cases, the passed token1 will no longer be

the native token, causing the liquidity operation to fail.

The same issue also exists in the DustRefunder contract. It assumes only _token1 can be the native

token.

219 function increaseLiquidityV3For(

220 address _for,

221 address _v3Pool,

222 IMasterChefV3.IncreaseLiquidityParams calldata params

223) external payable nonReentrant whenNotPaused _onlyPoolHelper(pancakeV3Helper) {

224 Pool storage poolInfo = pools[_v3Pool];

225 address token0 = IPancakeV3PoolImmutables(poolInfo.poolAddress).token0();

226 address token1 = IPancakeV3PoolImmutables(poolInfo.poolAddress).token1();

227

7

228 (uint256 balBeforeToken0, uint256 balBeforeToken1) = _checkTokenBalances(token0, token1);

229
230 IERC20(token0).safeTransferFrom(_for, address(this), params.amount0Desired);

231 IERC20(token0).safeIncreaseAllowance(address(masterChefV3), params.amount0Desired);

232
233 if (poolInfo.isNative) {

234 balBeforeToken1 = address(this).balance - msg.value;

235 masterChefV3.increaseLiquidity{ value: msg.value }(params);

236 } else {

237 IERC20(token1).safeTransferFrom(_for, address(this), params.amount1Desired);

238 IERC20(token1).safeIncreaseAllowance(address(masterChefV3), params.amount1Desired);

239
240 masterChefV3.increaseLiquidity(params);

241 }

242
243 refundOrTransfer(token0, token1, _for, poolInfo.isNative, balBeforeToken0, balBeforeToken1)

;

244 }

Listing 2.5: PancakeStakingBaseUpg.sol

10 function refundOrTransfer(

11 address _token0,

12 address _token1,

13 address _dustTo,

14 bool _isNative,

15 uint256 _balBeforeToken0,

16 uint256 _balBeforeToken1

17) internal {

18 uint256 dustToken0Amt = IERC20(_token0).balanceOf(address(this)) - _balBeforeToken0;

19 if (dustToken0Amt > 0) {

20 IERC20(_token0).safeTransfer(_dustTo, dustToken0Amt);

21 }

22 uint256 dustToken1Amt;

23 if (_isNative) {

24 dustToken1Amt = address(this).balance - _balBeforeToken1;

25 _refundETH(payable(_dustTo), dustToken1Amt);

26 } else {

27 dustToken1Amt = IERC20(_token1).balanceOf(address(this)) - _balBeforeToken1;

28 if (dustToken1Amt > 0) {

29 IERC20(_token1).safeTransfer(_dustTo, dustToken1Amt);

30 }

31 }

32 }

Listing 2.6: DustRefunder.sol

Impact The liquidity cannot be added to token pairs with the native token as token0.

Suggestion Revise the code logic accordingly.

2.2.2 Insufficient check on the Pancakeswap pool

Severity Low

8

Status Fixed in Version 2

Introduced by Version 1

Description In the PancakeV3Helper contract, the _checkForValidPool function verifies that token0 and

token1 of the position match the pool before position operations. However, this check may be inadequate

as the same token pair can correspond to multiple pools on PancakeSwap. According to PancakeSwap, a

pool is uniquely identified by token0, token1, and fee.

The code logic should not be affected, since the contract interacts with the correct pool. However, it

may lead to potential security issues if the event emitted is used off-chain.

193 function _checkForValidPool(

194 address _for,

195 address _pool,

196 uint256 _tokenId,

197 bool _isStore

198) internal {

199 (

200 address token0,

201 address token1,

202 int24 tickLower,

203 int24 tickUpper,

204 uint128 liquidity,

205 uint256 feeGrowthInside0LastX128,

206 uint256 feeGrowthInside1LastX128

207) = getCurrentPosition(_tokenId);

208
209 address token0Pool = IPancakeV3PoolImmutables(_pool).token0();

210 address token1Pool = IPancakeV3PoolImmutables(_pool).token1();

211
212 if (token0Pool != token0 || token1Pool != token1) revert InvalidPool();

213
214 if (_isStore) {

215 userPositionInfos[_tokenId] = Position({

216 poolAddress: _pool,

217 tokenId: _tokenId,

218 token0: token0,

219 token1: token1,

220 tickLower: tickLower,

221 tickUpper: tickUpper,

222 liquidity: liquidity,

223 feeGrowthInside0LastX128: feeGrowthInside0LastX128,

224 feeGrowthInside1LastX128: feeGrowthInside1LastX128

225 });

226
227 addToken(_for, _tokenId);

228 }

229 }

Listing 2.7: PancakeV3Helper.sol

Impact N/A

Suggestion Add the check on fee for the pool.

9

2.3 Additional Recommendation

2.3.1 Implement usages for unused isActive flags

Status Acknowledged

Introduced by Version 1

Description In the following contracts, there are isActive flags used to indicate whether a pool or other

identity is activated or enabled, but are rarely checked:

1. In contract PancakeStakingBaseUpg, the isActive flag for the pools is not checked when harvesting

rewards for V3 pools.

2. In contract PancakeVoteManager, the isActive flag for pools is set but not checked anywhere.

3. In contract RewardDistributor, the isActive flag for whether the fee is enabled is only set but not

checked anywhere.

Impact N/A

Suggestion Implement usages for those flags.

2.3.2 Add sanity checks before setting parameters

Status Fixed in Version 2

Introduced by Version 1

Description The following functions set parameters for the contract, but no proper sanity check is imple-

mented:

1. The function pushVotingEpoch in contract CakepieBribeManager does not check whether the new

epochStartTime is chronologically arranged. And so as forcePushEpoch.

2. The function setFeeRatio should check the upper limit (DENOMINATOR, which is 10000) of the feeRatio.

Likewise, the forcePushEpoch function should conduct sanity checks about the epoch time.

Impact Missing sanity check may allow misconfiguration.

Suggestion Add sanity checks accordingly.

2.3.3 Remove unused logic

Status Fixed in Version 2

Introduced by Version 1

Description In the following contracts, there are redundant logic or functions that can be removed to

reduce code size and gas usage.

1. In contract PancakeStakingBaseUpg, the _onlyAllowedOperator modifier is unused. Besides, the

require statement in this modifier is incorrect.

167 modifier _onlyAllowedOperator() {

168 if (allowedOperator[msg.sender]) revert OnlyAllowedOperator();

169 _;

170 }

Listing 2.8: PancakeStakingBaseUpg.sol

10

2. In contract CakepieBribeManager, the pushBribingEpoch function and currentBribingEpoch state

variable is not used.

3. In contract PancakeVoteManager, the functions getUserVoteForMarketsInVlCakepie and

getUserVoteForPoolsInVlCakepie are exactly the same.

Impact N/A.

Suggestion Remove the unused logic.

2.3.4 Fix typo in CakepieBribeRewardDistributor

Status Fixed in Version 2

Introduced by Version 1

Description There is a typo in function emergencyWithdraw of contract CakepieBribeRewardDistributor.

The bribeManager should be NATIVE.

253 function emergencyWithdraw(address _token, address _receiver) external onlyOwner {

254 if (_token == bribeManager) {

255 address payable recipient = payable(_receiver);

256 recipient.transfer(address(this).balance);

257 } else {

258 IERC20(_token).safeTransfer(_receiver, IERC20(_token).balanceOf(address(this)));

259 }

260}

Listing 2.9: CakepieBribeRewardDistributor.sol

Impact N/A.

Suggestion Fix the typo accordingly.

2.3.5 Remove unused payable attribute

Status Fixed in Version 2

Introduced by Version 1

Description In contract mCakeConvertorBNBChain, the function lockAllCake does not need the payable

attribute. Removing this attribute prevents callers from mistakenly transferring native tokens to this con-

tract.

Impact N/A.

Suggestion Remove the payable attribute for this function.

2.4 Note

2.4.1 Centralization risk

Description In the Cakepie contracts, there are privileged functions that can cause severe conse-

quences when misused by the project maintainers.

1. In contract CakepieBribeRewardDistributor, the function emergencyWithdraw can withdraw any to-

ken from the contract.

11

2. In contract mCakeConvertorBNBChain , the mintFor function can arbitrarily mint mCake token to any

account. There is no contract to call this function, so it is assumed that an operator EOA calls this

function.

3. In contract BaseRewardPoolV3, the function emergencyWithdraw can withdraw any token from the

contract. Besides, the function only allows calls from MasterCakepie, but the contract does not seem

to implement this function.

4. In contract CakepieBribeManager, the function manualClaimFees effectively withdraw any token from

the contract, instead of only withdrawing the unclaimed fees stored in the unCollectedFee state

variable.

5. In contract CakepieBribeRewardDistributor, rewards are distributed to the users by verifying the

merkle proofs submitted and the merkle roots stored in the contract. The operator of the contract

can update the merkle roots so that users may be unable to claim their rewards if the roots are reset

mistakenly.

Feedback from the Project
1. Yes, we want to withdraw all tokens in the contract if we got any emergency situation, this is the

onlyOwner function we only can call it through the multiSig account.

2. mintFor should be called by pancakeStaking, since in the future, if someone delegates to pancakeStaking,

mCake should be minted for the delegator.

3. Intended for now, not adding on MasterCakepie unless we really need it when some reward stuck in

rewarder.

4. In our implementation, only fee might leave in the manager contract if collector not set, reward will

be transferred to the distributor directly.

5. When rolling merkle tree, off-chain logic does reserve the unclaimed rewards for users, so user won’t

lose whatever unclaimed.

12

	1 Introduction
	1.1 About Target Contracts
	1.2 Disclaimer
	1.3 Procedure of Auditing
	1.3.1 Software Security
	1.3.2 DeFi Security
	1.3.3 NFT Security
	1.3.4 Additional Recommendation

	1.4 Security Model

	2 Findings
	2.1 Software Security
	2.1.1 Uninitialized state variables
	2.1.2 Incorrect interface used for CakepieBribeManager
	2.1.3 Potential DoS to native token transfer due to insufficient gas
	2.1.4 Potential inconsistent pool identifier

	2.2 DeFi Security
	2.2.1 Potential inconsistent token pairs
	2.2.2 Insufficient check on the Pancakeswap pool

	2.3 Additional Recommendation
	2.3.1 Implement usages for unused isActive flags
	2.3.2 Add sanity checks before setting parameters
	2.3.3 Remove unused logic
	2.3.4 Fix typo in CakepieBribeRewardDistributor
	2.3.5 Remove unused payable attribute

	2.4 Note
	2.4.1 Centralization risk

		2023-12-29T19:26:00+0800
	BlockSec Audit Team

