
Security Audit Report for Mellow Vaults

Date: August 4, 2022

Version: 1.3

Contact: contact@blocksec.com

mailto:contact@blocksec.com

Contents

1 Introduction 1
1.1 About Target Contracts . 1

1.2 Disclaimer . 2

1.3 Procedure of Auditing . 2

1.3.1 Software Security . 2

1.3.2 DeFi Security . 3

1.3.3 NFT Security . 3

1.3.4 Additional Recommendation . 3

1.4 Security Model . 3

2 Findings 5
2.1 Software Security . 5

2.1.1 Potential conflict of access control in LStrategy . 5

2.1.2 Unchecked governance parameters . 6

2.2 DeFi Security . 6

2.2.1 Lack of checks on the vault type for AggregateVault 6

2.2.2 Undetermined allocation for the liquidity mining rewards 7

2.2.3 Potential dust tokens left in the vault . 7

2.2.4 The delay mechanism to update the validator parameters could be disabled 8

2.2.5 Improper price calculation in the _getTvlToken0 function 9

2.2.6 Incorrect TVL calculation of the AAVE vault . 9

2.2.7 Lack of access control for the new governance function 10

2.3 Additional Recommendation . 11

2.3.1 Remove unnecessary checks in ERC20RootVault 11

2.3.2 Avoid using shadowed variables . 12

2.3.3 Use mulDiv to prevent precision losses . 12

2.3.4 Fix incorrect event variables . 13

2.3.5 Inconsistent slippage checks in deposit and withdraw 13

2.4 Note . 15

2.4.1 Strategy contracts must implement price slippage checks 15

i

Report Manifest

Item Description
Client Mellow
Target Mellow Vaults

Version History

Version Date Description
1.0 June 29, 2022 First Release
1.1 July 26, 2022 Minor Change
1.2 July 27, 2022 Minor Change
1.3 August 4, 2022 Final Commit

About BlockSec BlockSec focuses on the security of the blockchain ecosystem and collaborates with

leading DeFi projects to secure their products. BlockSec is founded by top-notch security researchers and

experienced experts from both academia and industry. They have published multiple blockchain security

papers in prestigious conferences, reported several zero-day attacks of DeFi applications, and successfully

protected digital assets that are worth more than 5 million dollars by blocking multiple attacks. They can

be reached at Email, Twitter and Medium.

ii

https://www.blocksec.com
mailto:contact@blocksec.com
https://twitter.com/BlockSecTeam
https://blocksecteam.medium.com/

Chapter 1 Introduction

1.1 About Target Contracts

Information Description
Type Smart Contract
Language Solidity
Approach Semi-automatic and manual verification

The Mellow project provides an open platform for liquidity providers to earn rewards (from their liq-

uidities), and strategists to earn performance fees (by implementing active liquidity management strate-

gies to manipulate the liquidities). On one side, according to the design of the protocol, the vaults of

the lowest layer are used to hold liquidities and interact with the underlying earning protocols like AAVE,

Yearn and Uniswap. Based on them, multiple vaults are combined together as a group, and a top-layer

ERC20RootVault is used to provide liquidity management as well as vault management for the vault group.

On the other side, the vault management access control is based on NFTs, i.e., each vault is assigned

with an NFT and the ownership is given to the root vault, while the approval is given to a strategy. The

funds are allowed to be moved between vaults and pushed/pulled to/from the underlying protocols by the

strategists. However, they cannot be withdrawn from the system. Besides, the protocol implements some

operations relying on the token prices, and it adopts some external price oracles to prevent potential price

manipulation.

The auditing process is iterative. Specifically, we will audit the commits that fix the discovered issues.

If there are new issues, we will continue this process. The commit SHA values of the repo 1 during the

audit are shown in the following table. Our audit report is responsible for the code in the initial version

(Version 1), as well as new code (in the following versions) to fix issues in the audit report. Note that the

final commit of this project 2 is ahead of the commits listed in the table.

Project Commit SHA

Mellow

Version 1 f4a46879cbe2e7555df7ba33e6eb81dd7cfd4513
Version 2 82126916cd3c7fc1a26f507d06b8c8755908a915
Version 3 db5c15038e11277049b9c2471bbb5031d25eb0ab
Version 4 d7b0a4d842e70cd1704f67fe1d676ec7f7b923c0
Version 5 b4250761505742c211428986ecb4189ae2e402fc
Version 6 8ca35ad8d24a14dea69f74790a7e5363fc87e2c2
Version 7 165dfae8370d13227b5264d8c11200e16d426c6d
Version 8 dd00a6a334b16a599f358dcc9b3de86f1aea959e
Version 9 765376ae58677e4c7b5222a679bd4c9faa5c0da4
Version 10 a463f3a0a14ca47ca5eef3a56c47ed3263853b2d
Version 11 3caaf41d49e0cbcff9cfa5a5eefe2ae2478ceba8
Version 12 314a9e0ac6e959a1278590198731d11a75af5af9

1https://github.com/mellow-finance/mellow-vaults

2The commit hash is ed3e07e5b873dbe6f4e5d632d0adc1f5b47dec8e.

1

https://github.com/mellow-finance/mellow-vaults

1.2 Disclaimer

This audit report does not constitute investment advice or a personal recommendation. It does not

consider, and should not be interpreted as considering or having any bearing on, the potential economics

of a token, token sale or any other product, service or other asset. Any entity should not rely on this report

in any way, including for the purpose of making any decisions to buy or sell any token, product, service or

other asset.

This audit report is not an endorsement of any particular project or team, and the report do not

guarantee the security of any particular project. This audit does not give any warranties on discovering

all security issues of the smart contracts, i.e., the evaluation result does not guarantee the nonexistence

of any further findings of security issues. As one audit cannot be considered comprehensive, we always

recommend proceeding with independent audits and a public bug bounty program to ensure the security

of smart contracts.

The scope of this audit is limited to the code mentioned in Section 1.1. Unless explicitly specified,

the security of the language itself (e.g., the solidity language), the underlying compiling toolchain and the

computing infrastructure are out of the scope.

1.3 Procedure of Auditing

We perform the audit according to the following procedure.

Vulnerability Detection We first scan smart contracts with automatic code analyzers, and then

manually verify (reject or confirm) the issues reported by them.

Semantic Analysis We study the business logic of smart contracts and conduct further investiga-

tion on the possible vulnerabilities using an automatic fuzzing tool (developed by our research team).

We also manually analyze possible attack scenarios with independent auditors to cross-check the

result.

Recommendation We provide some useful advice to developers from the perspective of good

programming practice, including gas optimization, code style, and etc.

We show the main concrete checkpoints in the following.

1.3.1 Software Security

Reentrancy

DoS

Access control

Data handling and data flow

Exception handling

Untrusted external call and control flow

Initialization consistency

Events operation

Error-prone randomness

Improper use of the proxy system

2

1.3.2 DeFi Security

Semantic consistency

Functionality consistency

Permission management

Business logic

Token operation

Emergency mechanism

Oracle security

Whitelist and blacklist

Economic impact

Batch transfer

1.3.3 NFT Security

Duplicated item

Verification of the token receiver

Off-chain metadata security

1.3.4 Additional Recommendation

Gas optimization

Code quality and style
�

Note The previous checkpoints are the main ones. We may use more checkpoints during the auditing

process according to the functionality of the project.

1.4 Security Model

To evaluate the risk, we follow the standards or suggestions that are widely adopted by both industry

and academy, including OWASP Risk Rating Methodology 3 and Common Weakness Enumeration 4.

The overall severity of the risk is determined by likelihood and impact. Specifically, likelihood is used to

estimate how likely a particular vulnerability can be uncovered and exploited by an attacker, while impact

is used to measure the consequences of a successful exploit.

In this report, both likelihood and impact are categorized into two ratings, i.e., high and low respec-

tively, and their combinations are shown in Table 1.1.

Accordingly, the severity measured in this report are classified into three categories: High, Medium,

Low. For the sake of completeness, Undetermined is also used to cover circumstances when the risk

cannot be well determined.

Furthermore, the status of a discovered issue will fall into one of the following four categories:

Undetermined No response yet.

Acknowledged The issue has been received by the client, but not confirmed yet.

Confirmed The issue has been recognized by the client, but not fixed yet.

3https://owasp.org/www-community/OWASP_Risk_Rating_Methodology

4https://cwe.mitre.org/

3

https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
https://cwe.mitre.org/

Table 1.1: Vulnerability Severity Classification
Im

pa
ct

High High Medium

Low Medium Low

High Low

Likelihood

Fixed The issue has been confirmed and fixed by the client.

4

Chapter 2 Findings

In total, we find nine potential issues. We have five recommendations.

- High Risk: 0

- Medium Risk: 4

- Low Risk: 5

- Recommendations: 5

ID Severity Description Category Status

1 Low
Potential conflict of access control in LStrategy

Software Security Fixed

2 Low Unchecked governance parameters Software Security Fixed

3 Medium
Lack of checks on the vault type for
AggregateVault

DeFi Security Fixed

4 Low
Undetermined allocation for the liquidity mining
rewards

DeFi Security Acknowledged

5 Low Potential dust tokens left in the vault DeFi Security Fixed

6 Medium
The delay mechanism to update the validator
parameters could be disabled

DeFi Security Fixed

7 Medium
Improper price calculation in the
_getTvlToken0 function

DeFi Security Fixed

8 Low Incorrect TVL calculation of the AAVE vault DeFi Security Fixed

9 Medium
Lack of access control for the new governance
function

DeFi Security Fixed

10 -
Remove unnecessary checks in
ERC20RootVault

Recommendation Acknowledged

11 - Avoid using shadowed variables Recommendation Fixed
12 - Use mulDiv to prevent precision losses Recommendation Fixed
13 - Fix incorrect event variables Recommendation Fixed

14 -
Inconsistent slippage checks in deposit and
withdraw

Recommendation Acknowledged

The details are provided in the following sections.

2.1 Software Security

2.1.1 Potential conflict of access control in LStrategy

Severity Low

Status Fixed in Version 12

Introduced by Version 1

Description To rebalance the liquidities between the ERC20 vaults and Uniswap V3 vaults, the deposit

and withdraw callback functions of the ERC20RootVault are implemented in the LStrategy contract. How-

ever, the function to perform the rebalancing (i.e., the rebalanceERC20UniV3Vaults) requires that the caller

must be at least the operator role, i.e., an off-chain bot according to the assumption. As a result, it would

5

require the ERC20RootVault to be set as the operator role, which might cause a conflict of the access

control.

Impact N/A

Suggestion Add an additional role for the ERC20RootVault contract.

Feedback from the Project Since the ERC20RootVault is the owner of the LStrategy, it already has

operator rights, therefore, the _requireAtLeastOperator check is not superfluous here.

Update: We are now evaluating two scenarios: either make rebalances available for the public (hence,

we will have to add on-chain slippage protection onto our contacts) or remove callbacks, both solutions

solve the problem of inconsistent access control. The choice hasn’t been made yet and we’re currently

evaluating this issue.

2.1.2 Unchecked governance parameters

Severity Low

Status Fixed in Version 6

Introduced by Version 1

Description The Mellow project has a layered governance system. There is a protocol-wise governance

contract named ProtocolGovernance which is used to set the global parameters and provide some global

methods. Besides, for each vault, there exists a governance contract that sets various vault-specific pa-

rameters. For example, in AAVE vault governance contract, the address of the AAVE Lending Pool contract

can be specified. However, in all governance contracts , there does not exist any check to verify the validity

of the provided parameters, e.g., whether the address of the AAVE Lending Pool contract is a non-zero

value.

Impact Invalid governance parameters may lead to unexpected behaviors.

Suggestion Add the sanity checks to verify the governance parameters.

2.2 DeFi Security

2.2.1 Lack of checks on the vault type for AggregateVault

Severity Medium

Status Fixed in Version 11

Introduced by Version 1

Description There is a special design of the vault system that the first vault (i.e., the vault with index 0,

also referred as zero vault) is a special vault of the ERC20Vault type with special logic in the push and pull

functions. However, in the _initialize function of the AggregateVault contract, there is no check to verify

whether the zero vault is of the ERC20Vault type or not.

The design is based on an assumption that vaults are created and controlled by the project. However,

to be able to serve as a permissionless vault system (i.e., allowing anyone to create vaults and strategies),

this check must be specified to ensure the logical soundness of the AggregateVault system.

Impact The incorrect type of the zero vault may lead to improper handling of vault tokens.

Suggestion Add proper sanity checks.

6

2.2.2 Undetermined allocation for the liquidity mining rewards

Severity Low

Status Acknowledged

Introduced by Version 1

Description The vaults in the Mellow project are managed to provide liquidity into the underlying projects

to make profits. These projects may issue protocol tokens as the liquidity provision rewards. As a result,

there should exist some logic to handle those protocol tokens in the vault contracts. However, this part of

logic has not been implemented yet.

Specifically, the liquidity mining rewards could be claimed through the externalCall interface of the

vaults 1. However, invocations through this interface must be checked by some validator contracts, while

no logic in the current validator contracts explicitly supports claiming rewards (except the validator that

accepts any call). For example, the MStrategy contract that may deposit liquidity to AAVE or Yearn does

not implement the corresponding logic to claim the liquidity mining rewards.

Impact Liquidity providers may suffer from losses because the liquidity mining rewards provided by some

projects might not be claimed.

Suggestion N/A

Feedback from the Project For now, there is no such strategy that should claim rewards from internal

protocols. Actually, reclaimTokens and externalCall methods propose a way of claiming reward tokens.

The pipeline is the following: strategy claims reward tokens with reclaimTokens method. Then it uses

externalCall method to swap it on ERC20Vault tokens. We expect such logic to be implemented in the

strategy. If needed, it’s possible to approve AllowAllValidator to make any needed external call from a

strategy.

2.2.3 Potential dust tokens left in the vault

Severity Low

Status Fixed in Version 7

Introduced by Version 1

Description The reclaimTokens function in the IntegrationVault (i.e., the parent contract of the lowest

level vaults) is used to reclaim tokens that are sent to the vault contracts by mistake. The tokens are

transferred to the zero vault and can be claimed by invoking some external calls in the zero vault.

However, as shown in the following code snippet, if the reclaimed tokens are the vaultToken, the

token amounts will be checked against the predefined small values stored in _pullExistentials, which

may leave some dust of the tokens in the vaults.

121 function reclaimTokens(address[] memory tokens)
122 external
123 virtual
124 nonReentrant
125 returns (uint256[] memory actualTokenAmounts)
126 {

1Besides, some liquidity mining rewards are directly distributed to the LP address (i.e., the vaults interact with the underlying
protocol). However, these rewards can only be claimed to the zero vault and cannot be withdrawn.

7

127 uint256 nft_ = _nft;
128 require(nft_ != 0, ExceptionsLibrary.INIT);
129 IVaultGovernance.InternalParams memory params = _vaultGovernance.internalParams();
130 IProtocolGovernance governance = params.protocolGovernance;
131 IVaultRegistry registry = params.registry;
132 address owner = registry.ownerOf(nft_);
133 address to = _root(registry, nft_, owner).subvaultAt(0);
134 require(to != address(this), ExceptionsLibrary.INVARIANT);
135 actualTokenAmounts = new uint256[](tokens.length);
136 for (uint256 i = 0; i < tokens.length; ++i) {
137 require(
138 governance.hasPermission(tokens[i], PermissionIdsLibrary.ERC20_TRANSFER),
139 ExceptionsLibrary.INVALID_TOKEN
140);
141 IERC20 token = IERC20(tokens[i]);
142 actualTokenAmounts[i] = token.balanceOf(address(this));
143 int256 vaultTokenIndex = getVaultTokenIndex(tokens[i]);
144 if ((vaultTokenIndex != -1) && (actualTokenAmounts[i] <= _pullExistentials[uint256(

vaultTokenIndex)]))
145 continue;
146
147 token.safeTransfer(to, actualTokenAmounts[i]);
148 }
149 emit ReclaimTokens(to, tokens, actualTokenAmounts);
150 }

Listing 2.1: IntegrationVault.sol

Impact Some dust of tokens may be left in the vault.

Suggestion N/A

2.2.4 The delay mechanism to update the validator parameters could be disabled

Severity Medium

Status Fixed in Version 3

Introduced by Version 1

Description A validator parameter can be updated through two steps, i.e., first staging the parame-

ter and then committing it. The BaseValidator would add a delay in between the two steps. How-

ever, there exists an invocation path that the admin can set the parameter without any delay. Specifi-

cally, in the commitValidatorParams function, the variable named _stagedValidatorParamsTimestamp is

used to check whether the timestamp exceeds the delay time or not, and it would be deleted after the

check. Note that the deletion operation will set the variable to 0, hence the check in line 50 becomes

require(block.timestamp >= 0) and can always be satisfied and bypassed. As a result, the admin can

invoke the commitValidatorParams function again and set _validatorParams to 0, i.e., no delay anymore.

47 function commitValidatorParams() external {
48 IProtocolGovernance governance = _validatorParams.protocolGovernance;
49 require(governance.isAdmin(msg.sender), ExceptionsLibrary.FORBIDDEN);
50 require(block.timestamp >= _stagedValidatorParamsTimestamp, ExceptionsLibrary.TIMESTAMP);
51 _validatorParams = _stagedValidatorParams;

8

52 delete _stagedValidatorParams;
53 delete _stagedValidatorParamsTimestamp;
54 emit CommittedValidatorParams(tx.origin, msg.sender, _validatorParams);
55 }

Listing 2.2: BaseValidator.sol

Impact The commitValidatorParams function can be called repeatedly to disable the delay, which may

break the governance management.

Suggestion Check and set _stagedValidatorParamsTimestamp properly.

2.2.5 Improper price calculation in the _getTvlToken0 function

Severity Medium

Status Fixed in Version 10

Introduced by Version 1

Description The _getTvlToken0 function is used to calculate the total TVL. Specifically, the protocol fee

will be calculated based on the first token (i.e., token0). However, the prices returned by the oracle will be

scaled up by 296, which is not properly handled by the current implementation.

192 function _getTvlToken0(
193 uint256[] memory tvls,
194 address[] memory tokens,
195 IOracle oracle
196) internal view returns (uint256 tvl0) {
197 tvl0 = tvls[0];
198 for (uint256 i = 1; i < tvls.length; i++) {
199 (uint256[] memory prices,) = oracle.price(tokens[0], tokens[i], 0x28);
200 require(prices.length > 0, ExceptionsLibrary.VALUE_ZERO);
201 uint256 price = 0;
202 for (uint256 j = 0; j < prices.length; j++) {
203 price += prices[j];
204 }
205 price /= prices.length;
206 tvl0 += tvls[i] / price;
207 }
208 }

Listing 2.3: ERC20RootVault.sol

Impact The protocol fee would be incorrectly calculated because the price is not improperly handled.

Suggestion Fix the calculation.

2.2.6 Incorrect TVL calculation of the AAVE vault

Severity Low

Status Fixed in Version 2

Introduced by Version 1

9

Description In the tvl function of the AAVE vault, the TVL is represented as two arrays, i.e., minTokenAmounts

and maxTokenAmounts, respectively. Specifically, minTokenAmounts comes from a state variable named

_tvls, while maxTokenAmounts is calculated based on minTokenAmounts and an estimated APY which re-

lies on the state variable named _lastTvlUpdateTimestamp (i.e., the last update timestamp of the TVL).

38 function tvl() public view override returns (uint256[] memory minTokenAmounts, uint256[] memory
maxTokenAmounts) {

39 minTokenAmounts = _tvls;
40 maxTokenAmounts = new uint256[](minTokenAmounts.length);
41 uint256 timeElapsed = block.timestamp - _lastTvlUpdateTimestamp;
42 uint256 factor = CommonLibrary.DENOMINATOR;
43 if (timeElapsed > 0) {
44 uint256 apy = IAaveVaultGovernance(address(_vaultGovernance)).delayedProtocolParams().

estimatedAaveAPY;
45 factor = CommonLibrary.DENOMINATOR + FullMath.mulDiv(apy, timeElapsed, CommonLibrary.YEAR);
46 }
47 for (uint256 i = 0; i < minTokenAmounts.length; i++) {
48 maxTokenAmounts[i] = FullMath.mulDiv(factor, minTokenAmounts[i], CommonLibrary.DENOMINATOR)

;
49 }
50 }

Listing 2.4: AaveVault.sol

_tvls is updated as the balances of the deposited aTokens in the updateTvls function.

65 function updateTvls() external {
66 _updateTvls();
67 }

Listing 2.5: AaveVault.sol

92 function _updateTvls() private {
93 uint256 tvlsLength = _tvls.length;
94 for (uint256 i = 0; i < tvlsLength; ++i) {
95 _tvls[i] = IERC20(_aTokens[i]).balanceOf(address(this));
96 }
97 }

Listing 2.6: AaveVault.sol

However, _lastTvlUpdateTimestamp is not properly updated, which may cause an incorrect calcula-

tion of the TVL of the AAVE vault.

Impact The TVL of the AAVE vault will be incorrectly calculated.

Suggestion Update _lastTvlUpdateTimestamp in the _updateTvls function.

2.2.7 Lack of access control for the new governance function

Severity Medium

Status Fixed in Version 8

Introduced by Version 4

10

Description In Version 4 a new function named commitYTokens is introduced to the governance contract

of the Yearn vault. Once this function is called, no new mapping (from a token to the corresponding

yToken) is allowed to set. However, this function does not have any access control, which means it could

be arbitrarily invoked to affect all newly deployed governance contracts.

97 function commitYTokens() external {
98 _tokensCommited = true;
99}

Listing 2.7: YearnVaultGovernance.sol

Impact All newly deployed governance contracts of Yearn vaults might be affected due to the new gov-

ernance function without any access control.

Suggestion Add proper access control for this function.

2.3 Additional Recommendation

2.3.1 Remove unnecessary checks in ERC20RootVault

Status Acknowledged

Introduced by Version 1

Description In the following code snippet, the check in line 254 is unnecessary, i.e., the inequality will

not hold for all use cases.

241 function _getNormalizedAmount(
242 uint256 tvl_,
243 uint256 amount,
244 uint256 lpAmount,
245 uint256 supply
246) internal pure returns (uint256) {
247 if (supply == 0) {
248 // skip normalization on init
249 return amount;
250 }
251
252 // normalize amount
253 uint256 res = FullMath.mulDiv(tvl_, lpAmount, supply);
254 if (res > amount) {
255 res = amount;
256 }
257
258 return res;
259 }

Listing 2.8: ERC20RootVault.sol

Impact N/A

Suggestion Remove unnecessary checks to save gas.

Feedback from the Project In our opinion, the code looks more readable if this check remains.

11

2.3.2 Avoid using shadowed variables

Status Fixed in Version 9

Introduced by Version 1

Description In the _initialize function of the AggregateVault contract, there is a variable named

vaultTokens that shadows a state variable with the same name.

69 function _initialize(
70 address[] memory vaultTokens_,
71 uint256 nft_,
72 address strategy_,
73 uint256[] memory subvaultNfts_
74) internal virtual {
75 IVaultRegistry vaultRegistry = IVaultGovernance(msg.sender).internalParams().registry;
76 require(subvaultNfts_.length > 0, ExceptionsLibrary.EMPTY_LIST);
77 for (uint256 i = 0; i < subvaultNfts_.length; i++) {
78 uint256 subvaultNft = subvaultNfts_[i];
79 require(subvaultNft > 0, ExceptionsLibrary.VALUE_ZERO);
80 require(vaultRegistry.ownerOf(subvaultNft) == address(this), ExceptionsLibrary.FORBIDDEN)

;
81 require(_subvaultNftsIndex[subvaultNft] == 0, ExceptionsLibrary.DUPLICATE);
82 address vault = vaultRegistry.vaultForNft(subvaultNft);
83 require(vault != address(0), ExceptionsLibrary.ADDRESS_ZERO);
84 require(
85 IIntegrationVault(vault).supportsInterface(type(IIntegrationVault).interfaceId),
86 ExceptionsLibrary.INVALID_INTERFACE
87);
88 address[] memory vaultTokens = IIntegrationVault(vault).vaultTokens();
89 require(vaultTokens_.length == vaultTokens.length, ExceptionsLibrary.INVALID_LENGTH);

Listing 2.9: AggregateVault.sol

Impact N/A

Suggestion Rename one of the two variables.

2.3.3 Use mulDiv to prevent precision losses

Status Fixed in Version 4

Introduced by Version 1

Description The contracts have a mixed use of regular arithmetic expressions and the FullMath library.

Some calculations can be rewritten in the form of mulDiv calls to prevent precision losses, including the

following functions:

1. _getTvlToken0 of the ERC20RootVault contract.

2. tvl of the YearnVault contract.

Impact N/A

Suggestion Rewrite these calculations.

12

2.3.4 Fix incorrect event variables

Status Fixed in Version 5

Introduced by Version 1

Description In the following code snippet, the addresses logged into the added variable are always zero

addresses. Besides, the state variable _pools is never used.

138 function _addUniV3Pools(IUniswapV3Pool[] memory pools) internal {
139 IUniswapV3Pool[] memory replaced = new IUniswapV3Pool[](pools.length);
140 IUniswapV3Pool[] memory added = new IUniswapV3Pool[](pools.length);
141 uint256 j;
142 uint256 k;
143 for (uint256 i = 0; i < pools.length; i++) {
144 IUniswapV3Pool pool = pools[i];
145 address token0 = pool.token0();
146 address token1 = pool.token1();
147 _pools.add(address(pool));
148 IUniswapV3Pool currentPool = poolsIndex[token0][token1];
149 if (address(currentPool) != address(0)) {
150 replaced[j] = currentPool;
151 j += 1;
152 } else {
153 added[k] = currentPool;
154 k += 1;
155 }

Listing 2.10: UniV3Oracle.sol

Impact N/A

Suggestion Fix the code accordingly.

2.3.5 Inconsistent slippage checks in deposit and withdraw

Status Acknowledged

Introduced by Version 1

Description The ERC20RootVault contract is used to handle the liquidity management, i.e., users deposit

liquidity to get LP tokens, and burn LP tokens to retrieve liquidity back. Specifically, the withdraw function

of the ERC20RootVault contract will pull from underlying vaults and check whether the actual pulled amount

is larger than the minTokenAmounts (which serves as a slippage check). However, the actualTokenAmounts

may not be the same as the tokenAmounts calculated before and there does not exist a second check to

verify the actual token amounts regarding to the burnt LP token amounts.

Furthermore, in the deposit function, the token amounts deposited is derived from the real amounts

pushed to the sub-vaults for minting LP tokens. The implementation is slightly inconsistent between the

deposit and withdraw functions.

140 function withdraw(
141 address to,
142 uint256 lpTokenAmount,
143 uint256[] memory minTokenAmounts,

13

144 bytes[] memory vaultsOptions
145) external nonReentrant returns (uint256[] memory actualTokenAmounts) {
146 uint256 supply = totalSupply;
147 require(supply > 0, ExceptionsLibrary.VALUE_ZERO);
148 address[] memory tokens = _vaultTokens;
149 uint256[] memory tokenAmounts = new uint256[](_vaultTokens.length);
150 (uint256[] memory minTvl,) = tvl();
151 if (lpTokenAmount > balanceOf[msg.sender]) {
152 lpTokenAmount = balanceOf[msg.sender];
153 }
154 for (uint256 i = 0; i < _vaultTokens.length; ++i) {
155 tokenAmounts[i] = FullMath.mulDiv(lpTokenAmount, minTvl[i], supply);
156 }
157 actualTokenAmounts = _pull(address(this), tokenAmounts, vaultsOptions);
158 for (uint256 i = 0; i < _vaultTokens.length; ++i) {
159 require(actualTokenAmounts[i] >= minTokenAmounts[i], ExceptionsLibrary.LIMIT_UNDERFLOW);
160 }

Listing 2.11: ERC20RootVault.sol

83 function deposit(
84 uint256[] memory tokenAmounts,
85 uint256 minLpTokens,
86 bytes memory vaultOptions
87) external nonReentrant returns (uint256[] memory actualTokenAmounts) {
88 require(
89 !IERC20RootVaultGovernance(address(_vaultGovernance)).operatorParams().disableDeposit,
90 ExceptionsLibrary.FORBIDDEN
91);
92 address[] memory tokens = _vaultTokens;
93 if (totalSupply == 0) {
94 for (uint256 i = 0; i < tokens.length; ++i) {
95 require(tokenAmounts[i] > FIRST_DEPOSIT_LIMIT, ExceptionsLibrary.LIMIT_UNDERFLOW);
96 }
97 }
98 (uint256[] memory minTvl, uint256[] memory maxTvl) = tvl();
99 uint256 thisNft = _nft;

100 IERC20RootVaultGovernance.DelayedStrategyParams memory delayedStrategyParams =
IERC20RootVaultGovernance(

101 address(_vaultGovernance)
102).delayedStrategyParams(thisNft);
103 require(
104 !delayedStrategyParams.privateVault || _depositorsAllowlist.contains(msg.sender),
105 ExceptionsLibrary.FORBIDDEN
106);
107 uint256 supply = totalSupply;
108 uint256 preLpAmount = _getLpAmount(maxTvl, tokenAmounts, supply);
109 uint256[] memory normalizedAmounts = new uint256[](tokenAmounts.length);
110 for (uint256 i = 0; i < tokens.length; ++i) {
111 normalizedAmounts[i] = _getNormalizedAmount(maxTvl[i], tokenAmounts[i], preLpAmount,

supply);
112 IERC20(tokens[i]).safeTransferFrom(msg.sender, address(this), normalizedAmounts[i]);
113 }

14

114 actualTokenAmounts = _push(normalizedAmounts, vaultOptions);
115 uint256 lpAmount = _getLpAmount(maxTvl, actualTokenAmounts, supply);
116 require(lpAmount >= minLpTokens, ExceptionsLibrary.LIMIT_UNDERFLOW);
117 require(lpAmount != 0, ExceptionsLibrary.VALUE_ZERO);
118 IERC20RootVaultGovernance.StrategyParams memory params = IERC20RootVaultGovernance(address(

_vaultGovernance))
119 .strategyParams(thisNft);
120 require(lpAmount + balanceOf[msg.sender] <= params.tokenLimitPerAddress, ExceptionsLibrary.

LIMIT_OVERFLOW);
121 require(lpAmount + totalSupply <= params.tokenLimit, ExceptionsLibrary.LIMIT_OVERFLOW);
122
123 _chargeFees(thisNft, minTvl, supply, actualTokenAmounts, lpAmount, tokens, false);
124 _mint(msg.sender, lpAmount);
125
126 for (uint256 i = 0; i < _vaultTokens.length; ++i) {
127 if (normalizedAmounts[i] > actualTokenAmounts[i]) {
128 IERC20(_vaultTokens[i]).safeTransfer(msg.sender, normalizedAmounts[i] -

actualTokenAmounts[i]);
129 }
130 }
131
132 if (delayedStrategyParams.depositCallbackAddress != address(0)) {
133 ILpCallback(delayedStrategyParams.depositCallbackAddress).depositCallback();
134 }
135
136 emit Deposit(msg.sender, _vaultTokens, actualTokenAmounts, lpAmount);
137 }

Listing 2.12: ERC20RootVault.sol

Impact The liquidity providers may suffer from losses.

Suggestion N/A

Feedback from the Project The withdraw function logic is that for the set lpTokenAmount and minTokenAmonts

limits, the user will receive at least minTokenAmonts tokens, for lpTokenAmount lp-tokens. We think that ad-

ditionally checking the number of burned lp tokens is redundant in this case.

2.4 Note

2.4.1 Strategy contracts must implement price slippage checks

Status Acknowledged

Introduced by Version 1

Description The externalCall interface allows the strategies to implement arbitrary calls on behalf of

the vaults (i.e., the calls will be initiated from the vaults). Besides the normal token actions (e.g., transfer

and approve), these calls can also be used to swap tokens between the vault and DEXes (e.g., Uniswap

and Cowswap). There are some special contracts (i.e., the validators) to verify these calls. However,

only the tokens and the recipient are checked in the validator contracts. Hence the unchecked price

slippage may lead to token swaps in imbalanced or manipulatable pools, and eventually undermine the

15

corresponding strategies. So either the Mellow core contracts or the strategy contracts must implement

proper price slippage checks.

Impact The liquidity providers may suffer from losses due to the potential price slippage.

Suggestion It is important to enforce the price slippage checks. Specifically, if the strategies must be

audited and whitelisted by the project administrators, they can still possibly be manipulated to swap in

an imbalanced pool which may inevitably cause LPs to lose their funds. Besides, the strategists may

enlist some scam strategies to attract the users and then rugpull through unchecked swaps using the

externalCall interface.

Feedback from the Project The main idea behind validators is to check if arguments are valid. Our

consideration here is the following: we will publish only audited and trusted strategies on our site. If the

strategy is not audited and trusted by Mellow team, the strategist should persuade liquidity providers to put

their liquidity by himself.

16

	1 Introduction
	1.1 About Target Contracts
	1.2 Disclaimer
	1.3 Procedure of Auditing
	1.3.1 Software Security
	1.3.2 DeFi Security
	1.3.3 NFT Security
	1.3.4 Additional Recommendation

	1.4 Security Model

	2 Findings
	2.1 Software Security
	2.1.1 Potential conflict of access control in structurecolorLStrategy
	2.1.2 Unchecked governance parameters

	2.2 DeFi Security
	2.2.1 Lack of checks on the vault type for structurecolorAggregateVault
	2.2.2 Undetermined allocation for the liquidity mining rewards
	2.2.3 Potential dust tokens left in the vault
	2.2.4 The delay mechanism to update the validator parameters could be disabled
	2.2.5 Improper price calculation in the structurecolor_getTvlToken0 function
	2.2.6 Incorrect TVL calculation of the AAVE vault
	2.2.7 Lack of access control for the new governance function

	2.3 Additional Recommendation
	2.3.1 Remove unnecessary checks in ERC20RootVault
	2.3.2 Avoid using shadowed variables
	2.3.3 Use structurecolormulDiv to prevent precision losses
	2.3.4 Fix incorrect event variables
	2.3.5 Inconsistent slippage checks in structurecolordeposit and structurecolorwithdraw

	2.4 Note
	2.4.1 Strategy contracts must implement price slippage checks

		2022-08-05T16:48:50+0800
	BlockSec Audit Team

