
Security Audit Report for Multichain
veMULTI Contracts

Date: Apr 22, 2022

Version: 1.0

Contact: contact@blocksecteam.com

mailto:contact@blocksecteam.com

Contents

1 Introduction 1
1.1 About Target Contracts . 1

1.2 Disclaimer . 1

1.3 Procedure of Auditing . 1

1.3.1 Software Security . 2

1.3.2 DeFi Security . 2

1.3.3 NFT Security . 2

1.3.4 Additional Recommendation . 2

1.4 Security Model . 3

2 Findings 4
2.1 Software Security . 4

2.1.1 Unchecked ERC-721 Callback Result . 4

2.1.2 Improper Check for the Return Values of the transferFrom Function 5

2.1.3 Incorrect Address Used in the _burn Function . 6

2.1.4 Access Out Of Bounds in the getBlockByTime Function 6

2.1.5 Unchecked Arrays in the claimRewardMany Function 7

2.1.6 Inconsistent Implementation of the Burn Logic . 8

2.2 DeFi Security . 9

2.2.1 Inconsistent Handling of Epoch Time . 9

2.2.2 Inconsistent End Time in the addEpochBatch Function 10

2.2.3 Inconsistent Implementation of the Reward Calculation 11

2.3 Additional Recommendation . 11

2.3.1 Check Zero Address In the ve.ownerOf Function 11

2.3.2 Implement Secure Logic for the transferAdmin Function 12

2.3.3 Avoid Continuous Divisions in the _pendingRewardSingle Function 12

2.3.4 Alleviate the Concern of Potential Centrality . 13

2.3.5 Follow the Checks-Effects-Interactions Pattern . 13

i

Report Manifest

Item Description
Client Multichain
Target Multichain veMULTI Contracts

Version History

Version Date Description
1.0 Apr 22, 2022 First Release

About BlockSec The BlockSec Team focuses on the security of the blockchain ecosystem, and col-

laborates with leading DeFi projects to secure their products. The team is founded by top-notch security

researchers and experienced experts from both academia and industry. They have published multiple

blockchain security papers in prestigious conferences, reported several zero-day attacks of DeFi applica-

tions, and released detailed analysis reports of high-impact security incidents. They can be reached at

Email, Twitter and Medium.

ii

https://www.blocksecteam.com
mailto:contact@blocksecteam.com
https://twitter.com/BlockSecTeam
https://blocksecteam.medium.com/

Chapter 1 Introduction

1.1 About Target Contracts

Information Description
Type Smart Contract
Language Solidity
Approach Semi-automatic and manual verification

The auditing process is iterative. Specifically, we will audit the commits that fix the discovered issues.

If there are new issues, we will continue this process. The commit SHA values of the repo 1 during the

audit are shown in the following.

Project Commit SHA

veMULTI
Version 1 bac804399d1ea280e5bd8cdc9488b6fa6a0a7fcc

Version 2 6c6e267aaca71dd9e4b9f63bfab9a855d9638e2a

1.2 Disclaimer

This audit report does not constitute investment advice or a personal recommendation. It does not

consider, and should not be interpreted as considering or having any bearing on, the potential economics

of a token, token sale or any other product, service or other asset. Any entity should not rely on this report

in any way, including for the purpose of making any decisions to buy or sell any token, product, service or

other asset.

This audit report is not an endorsement of any particular project or team, and the report do not

guarantee the security of any particular project. This audit does not give any warranties on discovering

all security issues of the smart contracts, i.e., the evaluation result does not guarantee the nonexistence

of any further findings of security issues. As one audit cannot be considered comprehensive, we always

recommend proceeding with independent audits and a public bug bounty program to ensure the security

of smart contracts.

The scope of this audit is limited to the code mentioned in Section 1.1. Unless explicitly specified,

the security of the language itself (e.g., the solidity language), the underlying compiling toolchain and the

computing infrastructure are out of the scope.

1.3 Procedure of Auditing

We perform the audit according to the following procedure.

Vulnerability Detection We first scan smart contracts with automatic code analyzers, and then

manually verify (reject or confirm) the issues reported by them.

Semantic Analysis We study the business logic of smart contracts and conduct further investiga-

tion on the possible vulnerabilities using an automatic fuzzing tool (developed by our research team).

1https://github.com/anyswap/veMULTI

1

https://github.com/anyswap/veMULTI

We also manually analyze possible attack scenarios with independent auditors to cross-check the

result.

Recommendation We provide some useful advice to developers from the perspective of good

programming practice, including gas optimization, code style, and etc.

We show the main concrete checkpoints in the following.

1.3.1 Software Security

Reentrancy

DoS

Access control

Data handling and data flow

Exception handling

Untrusted external call and control flow

Initialization consistency

Events operation

Error-prone randomness

Improper use of the proxy system

1.3.2 DeFi Security

Semantic consistency

Functionality consistency

Access control

Business logic

Token operation

Emergency mechanism

Oracle security

Whitelist and blacklist

Economic impact

Batch transfer

1.3.3 NFT Security

Duplicated item

Verification of the token receiver

Off-chain metadata security

1.3.4 Additional Recommendation

Gas optimization

Code quality and style�
Note The previous checkpoints are the main ones. We may use more checkpoints during the auditing

process according to the functionality of the project.

2

1.4 Security Model

To evaluate the risk, we follow the standards or suggestions that are widely adopted by both industry

and academy, including OWASP Risk Rating Methodology 2 and Common Weakness Enumeration 3.

The overall severity of the risk is determined by likelihood and impact. Specifically, likelihood is used to

estimate how likely a particular vulnerability can be uncovered and exploited by an attacker, while impact

is used to measure the consequences of a successful exploit.

In this report, both likelihood and impact are categorized into two ratings, i.e., high and low respec-

tively, and their combinations are shown in Table 1.1.

Table 1.1: Vulnerability Severity Classification

Im
pa

ct

High High Medium

Low Medium Low

High Low

Likelihood

Accordingly, the severity measured in this report are classified into three categories: High, Medium,

Low. For the sake of completeness, Undetermined is also used to cover circumstances when the risk

cannot be well determined.

Furthermore, the status of a discovered issue will fall into one of the following four categories:

Undetermined No response yet.

Acknowledged The issue has been received by the client, but not confirmed yet.

Confirmed The issue has been recognized by the client, but not fixed yet.

Fixed The issue has been confirmed and fixed by the client.

2https://owasp.org/www-community/OWASP_Risk_Rating_Methodology

3https://cwe.mitre.org/

3

https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
https://cwe.mitre.org/

Chapter 2 Findings

In total, we find nine potential issues. We have five recommendations.

- High Risk: 0

- Medium Risk: 3

- Low Risk: 6

- Recommendations: 5

ID Severity Description Category Status
1 Medium Unchecked ERC-721 Callback Result Software Security Fixed

2 Low
Improper Check for the Return Values of the
transferFrom Function

Software Security Acknowledged

3 Medium Incorrect Address Used in the _burn Function Software Security Fixed

4 Low
Access Out Of Bounds in the getBlockByTime

Function
Software Security Acknowledged

5 Low
Unchecked Arrays in the claimRewardMany

Function
Software Security Fixed

6 Low Inconsistent Implementation of the Burn Logic Software Security Fixed
7 Medium Inconsistent Handling of Epoch Time DeFi Security Fixed

8 Low
Inconsistent End Time in the addEpochBatch

Function
DeFi Security Fixed

9 Low
Inconsistent Implementation of the Reward
Calculation

DeFi Security Acknowledged

10 -
Check Zero Address In the ve.ownerOf Func-
tion

Recommendation Fixed

11 -
Implement Secure Logic for the transferAdmin

Function
Recommendation Fixed

12 -
Avoid Continuous Divisions in the
_pendingRewardSingle Function

Recommendation Fixed

13 - Alleviate the Concern of Potential Centrality Recommendation Acknowledged
14 - Follow the Checks-Effects-Interactions Pattern Recommendation Fixed

The details are provided in the following sections.

2.1 Software Security

2.1.1 Unchecked ERC-721 Callback Result

Severity Medium

Status Fixed in Version 2

Introduced by Version 1

Description The ve contract is forked from the VotingEscrow contract of the Curve project. The original

account-based VotingEscrow contract is modified into an ERC-721 based NFT token contract. In the

implementation of the safeTransferFrom function, according to the ERC-721 standard, the caller should

check the return value of the callback, and revert if the returned signature is incorrect. This check is not

4

implemented in the safeTransferFrom function. As a result, tokens transferred to a contract without proper

ERC-721 token support would be locked.

673 function safeTransferFrom(

674 address _from,

675 address _to,

676 uint _tokenId,

677 bytes memory _data

678) public {

679 _transferFrom(_from, _to, _tokenId, msg.sender);

680
681 if (_isContract(_to)) {

682 // Throws if transfer destination is a contract which does not implement ’

onERC721Received’

683 try IERC721Receiver(_to).onERC721Received(msg.sender, _from, _tokenId, _data) returns (

bytes4) {} catch (

684 bytes memory reason

685) {

686 if (reason.length == 0) {

687 revert(’ERC721: transfer to non ERC721Receiver implementer’);

688 } else {

689 assembly {

690 revert(add(32, reason), mload(reason))

691 }

692 }

693 }

694 }

695 }

Listing 2.1: ve.sol

Impact Tokens transferred to a contract without proper ERC-721 token support would be locked.

Suggestion Check the return value of the callback in the safeTransferFrom function.

2.1.2 Improper Check for the Return Values of the transferFrom Function

Severity Low

Status Acknowledged

Introduced by Version 1

Description The _deposit_for function in the ve contract transfers the deposit token to the contract and

checks the result of this transfer. This can fail due to improperly implemented tokens (for example, the

USDT token) that does not return value in the transferFrom function.

938 address from = msg.sender;

939 if (_value != 0 && deposit_type != DepositType.MERGE_TYPE) {

940 assert(IERC20(token).transferFrom(from, address(this), _value));

941 }

Listing 2.2: ve.sol

Impact If non-standard token is used as the deposit token in the ve contract, deposits may fail due to this

check.

5

Suggestion Use common libraries like SafeERC20 of OpenZeppelin.

Feedback from the Project The deposit token for this contract is fixed (i.e. the MULTI token, with address

0x65ef703f5594d2573eb71aaf55bc0cb548492df4). This token has a standard transferFrom function.

2.1.3 Incorrect Address Used in the _burn Function

Severity Medium

Status Fixed in Version 2

Introduced by Version 1

Description In the ERC-721 logic implementation of the ve contract, the _burn function calls the _removeTokenFrom

function in the end to remove the token ID from its owner. However, it is implemented incorrectly to remove

the token ID from the msg.sender, not its real owner.

1330 function _burn(uint _tokenId) internal {

1331 require(_isApprovedOrOwner(msg.sender, _tokenId), "caller is not owner nor approved");

1332
1333 address owner = ownerOf(_tokenId);

1334
1335 // Clear approval

1336 approve(address(0), _tokenId);

1337 // Remove token

1338 _removeTokenFrom(msg.sender, _tokenId);

1339 emit Transfer(owner, address(0), _tokenId);

1340 }

Listing 2.3: ve.sol

Impact If the operator (rather than the real owner) calls this function, it may fail because the operator

does not own the token ID.

Suggestion Change the first parameter of the _removeTokenFrom call to owner.

2.1.4 Access Out Of Bounds in the getBlockByTime Function

Severity Low

Status Acknowledged

Introduced by Version 1

Description The VEReward contract is used to distribute rewards to the holders of the NFTs issued by

the ve contract. In this contract, the getBlockByTime function is used to estimate the block number of any

time, given the point_history records in this contract. However, this function is not implemented properly.

For example, if the target _time parameter exceeds all historical records in the point_history, an access

out of bounds can occur due to the improper handling of the edge cases.

118 function getBlockByTime(uint _time) public view returns (uint) {

119 // Binary search

120 uint _min = 0;

121 uint _max = point_history.length - 1; // asserting length >= 2

122 for (uint i = 0; i < 128; ++i) {

123 // Will be always enough for 128-bit numbers

6

124 if (_min >= _max) {

125 break;

126 }

127 uint _mid = (_min + _max + 1) / 2;

128 if (point_history[_mid].ts <= _time) {

129 _min = _mid;

130 } else {

131 _max = _mid - 1;

132 }

133 }

134
135 Point memory point0 = point_history[_min];

136 Point memory point1 = point_history[_min + 1];

137 // asserting point0.blk < point1.blk, point0.ts < point1.ts

138 uint block_slope; // dblock/dt

139 block_slope = (BlockMultiplier * (point1.blk - point0.blk)) / (point1.ts - point0.ts);

140 uint dblock = (block_slope * (_time - point0.ts)) / BlockMultiplier;

141 return point0.blk + dblock;

142 }

Listing 2.4: VEReward.sol

Impact If the _time parameter exceeds all historical records in the point_history, this function will revert.

Suggestion Revise the code logic to properly handle edge cases of the binary search.

Feedback from the Project The getBlockByTime function is only used in the claimReward function. If

the _time parameter is correctly passed, it won’t cause any problems. If the _time parameter is wrongly

passed, the function will revert and thus causes no problems. Besides, from the point of gas consumption,

addtional checks are not desired.

2.1.5 Unchecked Arrays in the claimRewardMany Function

Severity Low

Status Fixed in Version 2

Introduced by Version 1

Description The VEReward contract provides a claimRewardMany function so that users can withdraw

rewards in many epochs for many token IDs. However, the function does not check the lengths of the

parameters.

268 function claimRewardMany(uint[] calldata tokenIds, Interval[][] calldata intervals) public

returns (uint[] memory rewards) {

269 rewards = new uint[] (tokenIds.length);

270 for (uint i = 0; i < tokenIds.length; i++) {

271 rewards[i] = claimReward(tokenIds[i], intervals[i]);

272 }

273 return rewards;

274 }

Listing 2.5: VEReward.sol

7

Impact N/A

Suggestion Check the lengths of the array parameters.

2.1.6 Inconsistent Implementation of the Burn Logic

Severity Low

Status Fixed in Version 2

Introduced by Version 1

Description The ve contract has a custom implementation of the ERC-721 standard. The _burn function

implemented in this contract is inconsistent with the standard OpenZeppelin’s implementation. Specif-

ically, the approve function forbids the approved account to call the approve function. However, in the

original OpenZeppelin’s implementation, the access control for _burn is _isApprovedOrOwner, which is

comprised of the following three conditions: spender == owner, isApprovedForAll(owner, spender), or

getApproved(tokenId).

1330 function _burn(uint _tokenId) internal {

1331 require(_isApprovedOrOwner(msg.sender, _tokenId), "caller is not owner nor approved");

1332
1333 address owner = ownerOf(_tokenId);

1334
1335 // Clear approval

1336 approve(address(0), _tokenId);

1337 // Remove token

1338 _removeTokenFrom(msg.sender, _tokenId);

1339 emit Transfer(owner, address(0), _tokenId);

1340 }

Listing 2.6: ve.sol

722 function approve(address _approved, uint _tokenId) public {

723 address owner = idToOwner[_tokenId];

724 // Throws if ‘_tokenId‘ is not a valid NFT

725 require(owner != address(0));

726 // Throws if ‘_approved‘ is the current owner

727 require(_approved != owner);

728 // Check requirements

729 bool senderIsOwner = (idToOwner[_tokenId] == msg.sender);

730 bool senderIsApprovedForAll = (ownerToOperators[owner])[msg.sender];

731 require(senderIsOwner || senderIsApprovedForAll);

732 // Set the approval

733 idToApprovals[_tokenId] = _approved;

734 emit Approval(owner, _approved, _tokenId);

735 }

Listing 2.7: ve.sol

304 function _burn(uint256 tokenId) internal virtual {

305 address owner = ERC721.ownerOf(tokenId);

306
307 _beforeTokenTransfer(owner, address(0), tokenId);

8

308
309 // Clear approvals

310 _approve(address(0), tokenId);

311
312 _balances[owner] -= 1;

313 delete _owners[tokenId];

314
315 emit Transfer(owner, address(0), tokenId);

316
317 _afterTokenTransfer(owner, address(0), tokenId);

318 }

Listing 2.8: openzeppelin-contracts/ERC721.sol

232 function _isApprovedOrOwner(address spender, uint256 tokenId) internal view virtual returns (

bool) {

233 require(_exists(tokenId), "ERC721: operator query for nonexistent token");

234 address owner = ERC721.ownerOf(tokenId);

235 return (spender == owner || isApprovedForAll(owner, spender) || getApproved(tokenId) ==

spender);

236 }

Listing 2.9: openzeppelin-contracts/ERC721.sol

21 function burn(uint256 tokenId) public virtual {

22 //solhint-disable-next-line max-line-length

23 require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721Burnable: caller is not owner nor

approved");

24 _burn(tokenId);

25 }

Listing 2.10: openzeppelin-contracts/ERC721Burnable.sol

Impact N/A

Suggestion Revise the code to keep compatible with the standard implementation.

2.2 DeFi Security

2.2.1 Inconsistent Handling of Epoch Time

Severity Medium

Status Fixed in Version 2

Introduced by Version 1

Description The VEReward contract provides token rewards to NFTs created in the ve contract. The

rewards are distributed in different epochs, while the project admin is allowed to create epochs, setting

the start time, end time and total rewards in this epoch. Two functions, i.e., the addEpoch function for

creating a single epoch and the addEpochBatch function for creating several continuous epochs, are imple-

mented to serve the purpose. However, these two functions are not consistent. Specifically, the addEpoch

function checks the end time of the epoch to ensure that the end time has not passed (i.e., less than

9

block.timestamp). In contrast, the addEpochBatch function does not check the end time for intermediate

epochs, which suggests that creating an epoch that has passed is allowed.

173 function addEpochBatch(uint startTime, uint endTime, uint epochLength, uint totalReward)

external onlyAdmin returns(uint, uint, uint) {

174 assert(block.timestamp < endTime && startTime < endTime);

175 if (epochInfo.length > 0) {

176 require(epochInfo[epochInfo.length - 1].endTime <= startTime);

177 }

178 uint numberOfEpoch = (endTime + 1 - startTime) / epochLength;

179 uint _reward = totalReward / numberOfEpoch;

180 uint _start = startTime;

181 uint _end;

182 uint _epochId;

183 uint accurateTR;

184 for (uint i = 0; i < numberOfEpoch; i++) {

185 _end = _start + epochLength;

186 (_epochId, accurateTR) = _addEpoch(_start, _end, _reward);

187 _start = _end;

188 }

189 uint lastPointTime = point_history[point_history.length - 1].ts;

190 if (lastPointTime < block.timestamp) {

191 addCheckpoint();

192 }

193 emit LogAddEpoch(startTime, _end, epochLength, _epochId + 1 - numberOfEpoch);

194 return (_epochId + 1 - numberOfEpoch, _epochId, accurateTR * numberOfEpoch);

195 }

Listing 2.11: VEReward.sol

Impact It is possible to create epochs whose end time have passed.

Suggestion Add sanity checks to maintain the consistency of the epoch creation logic.

2.2.2 Inconsistent End Time in the addEpochBatch Function

Severity Low

Status Fixed in Version 2

Introduced by Version 1

Description The implementation of the addEpochBatch function may cause the inconsistency between

the calculated end time of the final period and the endTime parameter. For example, there will be only one

epoch if epochLength > (endTime - startTime) / 2. In such a case, the calculated end time is different

from the endTime passed into the function.

173 function addEpochBatch(uint startTime, uint endTime, uint epochLength, uint totalReward)

external onlyAdmin returns(uint, uint, uint) {

174 assert(block.timestamp < endTime && startTime < endTime);

175 if (epochInfo.length > 0) {

176 require(epochInfo[epochInfo.length - 1].endTime <= startTime);

177 }

178 uint numberOfEpoch = (endTime + 1 - startTime) / epochLength;

179 uint _reward = totalReward / numberOfEpoch;

10

180 uint _start = startTime;

181 uint _end;

182 uint _epochId;

183 uint accurateTR;

184 for (uint i = 0; i < numberOfEpoch; i++) {

185 _end = _start + epochLength;

186 (_epochId, accurateTR) = _addEpoch(_start, _end, _reward);

187 _start = _end;

188 }

189 uint lastPointTime = point_history[point_history.length - 1].ts;

190 if (lastPointTime < block.timestamp) {

191 addCheckpoint();

192 }

193 emit LogAddEpoch(startTime, _end, epochLength, _epochId + 1 - numberOfEpoch);

194 return (_epochId + 1 - numberOfEpoch, _epochId, accurateTR * numberOfEpoch);

195 }

Listing 2.12: VEReward.sol

Impact N/A

Suggestion Revise the batch epoch creation logic.

2.2.3 Inconsistent Implementation of the Reward Calculation

Severity Low

Status Acknowledged

Introduced by Version 1

Description There exists an inconsistency in the reward calculation logic in the VEReward contract. To

distribute the reward, the claimReward function will invoke the _pendingRewardSingle function to calculate

the reward amount. However, there is another function named pendingReward (which is a view function)

with slightly different logic for the reward calculation.

Impact N/A

Suggestion Maintain the consistency of the reward calculation logic.

Feedback from the Project The actual reward calculation is in the _pendingRewardSingle function. The

pendingReward is only a view function for front-end display. If there are any differences, the result returned

by the _pendingRewardSingle function is used.

2.3 Additional Recommendation

2.3.1 Check Zero Address In the ve.ownerOf Function

Status Fixed in Version 2

Introduced by Version 1

Description In the standard OpenZeppelin’s implementation of the ERC-721 token, the ownerOf function

will check whether the owner address is zero, to prevent returning owners of non-existent tokens (which is

a zero address). It is recommended to implemented the same logic in the ve contract.

11

490 function ownerOf(uint _tokenId) public view returns (address) {

491 return idToOwner[_tokenId];

492 }

Listing 2.13: ve.sol

70 function ownerOf(uint256 tokenId) public view virtual override returns (address) {

71 address owner = _owners[tokenId];

72 require(owner != address(0), "ERC721: owner query for nonexistent token");

73 return owner;

74 }

Listing 2.14: openzeppelin-contracts/ERC721.sol

Impact N/A

Suggestion Add the corresponding sanity checks.

2.3.2 Implement Secure Logic for the transferAdmin Function

Status Fixed in Version 2

Introduced by Version 1

Description The current implementation of the transferAdmin function directly changes the admin ad-

dress. It is suggested that the admin transfer follows the Transfer-Accept pattern as used in the Compound

project. Specifically, the transferAdmin function should only change the pending admin to be set, and an-

other function named acceptAdmin is used to set the pending admin to the actual admin.

490 function transferAdmin(address _admin) external onlyAdmin {

491 admin = _admin;

492 }

Listing 2.15: ve.sol

Impact N/A

Suggestion Implement secure logic for the transfer admin procedure.

2.3.3 Avoid Continuous Divisions in the _pendingRewardSingle Function

Status Fixed in Version 2

Introduced by Version 1

Description The current implementation of the _pendingRewardSingle function has continuous divisions.

It is recommended to refactor the original logic into a multiplication to prevent the potential precision loss.

236 uint reward = epoch.rewardPerSecond * (end - last) * power / epoch.totalPower /

RewardMultiplier;

237 return (reward, finished);

238 }

Listing 2.16: VEReward.sol

Impact Potential precision loss.

Suggestion Remove the continuous divisions.

12

2.3.4 Alleviate the Concern of Potential Centrality

Status Acknowledged

Introduced by Version 1

Description The reward token in the VEReward contract is directly transferred from the project admin

to the contract. There is no explicit logic that requires the project admin to transfer reward token to the

contract when adding an epoch through invoking the addEpoch function (or the addEpochBatch function).

Therefore, it is not guaranteed (as in the contract level) that users will always be able to fully withdraw the

rewards. This is subject to the centrality problem.

Impact N/A

Suggestion Transfer reward in the addEpoch function.

Feedback from the Project Because the exact reward amount cannot be accurately calculated and

someone may not claim the rewards for any reasons, it will be directly set by the project admin, and in the

not soon future, this admin will be transfer to MultiDAO.

2.3.5 Follow the Checks-Effects-Interactions Pattern

Status Fixed in Version 2

Introduced by Version 1

Description In the withdraw function of the ve contract, the implementation does not follow the Checks-

Effects-Interactions pattern, i.e., the transfer is done before the NFT is burned.

1095 assert(IERC20(token).transfer(msg.sender, value));

1096
1097 // Burn the NFT

1098 _burn(_tokenId);

1099
1100 emit Withdraw(msg.sender, _tokenId, value, block.timestamp);

1101 emit Supply(supply_before, supply_before - value);

1102 }

Listing 2.17: ve.sol

Impact N/A

Suggestion Follow the Checks-Effects-Interactions pattern.

Feedback from the Project There is a reentrancy guard in the withdraw function of the ve contract.

13

	1 Introduction
	1.1 About Target Contracts
	1.2 Disclaimer
	1.3 Procedure of Auditing
	1.3.1 Software Security
	1.3.2 DeFi Security
	1.3.3 NFT Security
	1.3.4 Additional Recommendation

	1.4 Security Model

	2 Findings
	2.1 Software Security
	2.1.1 Unchecked ERC-721 Callback Result
	2.1.2 Improper Check for the Return Values of the structurecolortransferFrom Function
	2.1.3 Incorrect Address Used in the structurecolor_burn Function
	2.1.4 Access Out Of Bounds in the structurecolorgetBlockByTime Function
	2.1.5 Unchecked Arrays in the structurecolorclaimRewardMany Function
	2.1.6 Inconsistent Implementation of the Burn Logic

	2.2 DeFi Security
	2.2.1 Inconsistent Handling of Epoch Time
	2.2.2 Inconsistent End Time in the structurecoloraddEpochBatch Function
	2.2.3 Inconsistent Implementation of the Reward Calculation

	2.3 Additional Recommendation
	2.3.1 Check Zero Address In the structurecolorve.ownerOf Function
	2.3.2 Implement Secure Logic for the structurecolortransferAdmin Function
	2.3.3 Avoid Continuous Divisions in the structurecolor_pendingRewardSingle Function
	2.3.4 Alleviate the Concern of Potential Centrality
	2.3.5 Follow the Checks-Effects-Interactions Pattern

		2022-04-24T17:55:51+0800
	BlockSec Audit Team

