
Security Audit Report for NOAH-DAO

Date: Jul 10, 2023

Version: 1.0

Contact: contact@blocksec.com

mailto:contact@blocksec.com

Contents

1 Introduction 1
1.1 About Target Contracts . 1

1.2 Disclaimer . 4

1.3 Procedure of Auditing . 5

1.3.1 Software Security . 5

1.3.2 DeFi Security . 5

1.3.3 NFT Security . 6

1.3.4 Additional Recommendation . 6

1.4 Security Model . 6

2 Findings 7
2.1 Software Security . 9

2.1.1 Index out of Bounds for the Empty Array . 9

2.1.2 Improper Use of the Keyword Memory . 9

2.1.3 Incorrect Index in getPriorSupplyIndex . 11

2.1.4 Potential Loop from Self-Calling . 13

2.1.5 Incorrect Validation of Withdrawal Rate . 13

2.2 DeFi Security . 14

2.2.1 Miscalculated Bribe Rewards (I) . 14

2.2.2 Miscalculated Bribe Rewards (II) . 16

2.2.3 Timely invocation of update_period() before setReleaseFactor() and setPledgeFactor() 17

2.2.4 Timely invocation of distribute() in notifyRewardAmount() 19

2.2.5 Reward for Killed Gauge Being Locked . 20

2.2.6 Lack of Checks for Gauges that Do Not Support Voting 21

2.2.7 Reward Token can be Managed by Users with Different Privileges 22

2.2.8 Timely invocation of claimfees() in Gauge . 24

2.2.9 Failed to Notify Rewards due to the Reentrancy Lock 25

2.2.10 Swap Fee Rewards cannotDistribution Mechanism does not Work 27

2.2.11 Manipulated Unlocking Duration . 29

2.2.12 Risk of Voting Power Manipulation when is_unlock is True 32

2.2.13 Lack of Check of Function withdrawToken . 33

2.2.14 Inconsistent Status Update during Voting Process 33

2.2.15 Miscalculated poolWeight with Duplicated Pool Voting 35

2.2.16 Incorrect Reward Calculations from Inappropriate Check 36

2.3 Additional Recommendation . 39

2.3.1 Lack of Zero Address Check . 39

2.3.2 Redundant Functions . 39

2.3.3 Redundant Invocation of Function _updateFor . 40

2.3.4 Meaningless Usage of max . 41

2.3.5 Inappropriate Variable Naming . 41

i

2.3.6 Lack of Check for releaseFactor and pledgeFactor 41

2.3.7 Redundant Check in Function mint_marketing . 42

2.4 Notes . 42

2.4.1 Potential Centralization Problem . 42

2.4.2 Timely deployment contracts . 43

2.4.3 Non-Linear Unlocking in Multiple Claims . 43

2.4.4 Token Release for Team and VC without Time Restrictions 43

2.4.5 Potential Inequity Function poke() of the Contract Voter 43

2.4.6 Incompatible Tokens . 44

ii

Report Manifest

Item Description
Client NOAH
Target NOAH-DAO

Version History

Version Date Description
1.0 July 10, 2023 First Version

About BlockSec The BlockSec Team focuses on the security of the blockchain ecosystem, and col-

laborates with leading DeFi projects to secure their products. The team is founded by top-notch security

researchers and experienced experts from both academia and industry. They have published multiple

blockchain security papers in prestigious conferences, reported several zero-day attacks of DeFi applica-

tions, and released detailed analysis reports of high-impact security incidents. They can be reached at

Email, Twitter and Medium.

iii

https://www.blocksec.com
mailto:contact@blocksec.com
https://twitter.com/BlockSecTeam
https://blocksecteam.medium.com/

Chapter 1 Introduction

1.1 About Target Contracts

Information Description
Type Smart Contract
Language Solidity
Approach Semi-automatic and manual verification

The repository that has been audited includes noah-dap-contacts.zip.

The auditing process is iterative. Specifically, we will audit the commits that fix the discovered issues.

If there are new issues, we will continue this process. The MD5 values of the files during the audit are

shown in the following. Our audit report is responsible for the only initial version (i.e., Version 1), as well

as new codes (in the following versions) to fix issues in the audit report.

Version 1

File md5

BaseGauge.sol eaead534557d25bf6ba7a95b80cc42f3

Bribe.sol 4151633719b32fbe92a1a5feeb8f8b37

FeeVault.sol d38fcee1dc997569e44759a8f1c55aa7

EsNoah.sol b65dc788ba9d620bec3827ee28c66cea

Gauge.sol fb11a8c138272fb22e2a99f3c5785e87

Minter.sol 9baee1acd31ccd03550fe749363a6817

Noah.sol 7c182db38b27c1d698081a4b24d749dc

RewardsDistributor.sol e58e5bdcdbad246f8fd7522f4d999f7a

SmartWalletChecker.sol f605b646835a417981c46d8a0ff56b7f

Vester.sol a52f445260a58dbecb455580ccfebf81

Voter.sol 26a31c98bf72105de84aa8a94f094222

VotingEscrow.sol 4599ae7f4f9841682e439a1a5b3c9ac2

Governable.sol fda68347f3c7603d4b8a233becc1c147

BribeFactory.sol 8c7fe6af0b58c865ec17c4d35fc0107f

GaugeFactory.sol 6bb83e2490a0984f14aa6ef2a5abebe9

IBribe.sol 4a54ff55155f57b5f170a96ee0aa6d76

IBribeFactory.sol 56172e2cff78fc78ab52200f286587f2

IEsNoah.sol 61b6058048254589462e90995699b39d

IFeeVault.sol 189774af2210c3bccc7ea83f8e29e916

IGauge.sol 9bc68d9f50ce66c5c3ab129dba06b494

IGaugeFactory.sol 021fb49c3957ef2e51126701abee7808

IMinter.sol c7b17a1f31fa0852619b1615f108c407

INoah.sol f46c3fcc01301f60b880474724dad25e

IPairFactory.sol cccb14941fff68930545f58983d785d6

IPairInfo.sol deeb1114b0b61049dc805ce4e8673329

1

IRewardsDistributor.sol 4399b98b6650597b52a8380f7ed9f967

ISmartWalletChecker.sol 5bb7218c380c77b5e958ac6333ddcb75

IVester.sol 354443365d2b31acb8d3e1e4123aa703

IVoter.sol 76cba4b77f2caf2772a4189c44702eec

IVotingEscrow.sol 1bae373a2055f6ce58237164deaf8c95

IVotingEscrowCallback.sol 5feecd2601929d72abc1f32d36319e84

Math.sol 28f2a9eb3b3403f5963b85f279c553c1

Version 2

File md5

Bribe.sol b7cea8854529473a962007e68c3223a8

FeeVault.sol e9a66205d1a0ea3aa7f3abaf701e3aa2

EsNoah.sol 10dbe0109884d078f0a797bda0be8a72

Gauge.sol 435633fdb5d3fb2b4c50ca4514a15bc6

Minter.sol 49c8ee5f2bb9c109ae68a7aff4848158

Noah.sol d13cbd610049962c841e62c54f083270

RewardsDistributor.sol fa8c9a641f2a60a09779b10b9b63d885

SmartWalletChecker.sol c4d911993029f15ba6df051ff8b3b401

Vester.sol 3c120a2487d4d87afd86fe03091b4581

Voter.sol 81d107c61f6d1fb1896b9f65ac8dbcce

VotingEscrow.sol b0b1c3abe6e4a3de22f6ff0dc4aba6b4

Governable.sol a25efd519bd9d030764d5f0b388e3e40

BribeFactory.sol 8e60c92ff0804f0dd7508a84df761f11

GaugeFactory.sol b2d4cb930b5538e1e070846c27136610

IBribe.sol a08f093027f02fb302fabc54d1d6ff8c

IBribeFactory.sol 435da33a99d14cfa757ab7b35734ed57

IEsNoah.sol 86e21fa4b3f45b8727cf7cc847f48a61

IFeeVault.sol 94b42438bd0535f54a8ddc215b139b01

IGauge.sol ff713c71c20b4e2ac3bf14bff7a7678a

IGaugeFactory.sol ef1d4d06ee7ba37c514944deb07cb03d

IMinter.sol e69b46e14f731f0dc7ef2d93e8d4d805

INoah.sol 426df85b079bbe9d0d6fe5a8122aa226

IPairFactory.sol a391ffa04ae839c1d21625c2f39853a2

IPairInfo.sol f4a4bd3a5d96c05678a7b76e3d156ac5

IRewardsDistributor.sol 3168b1f567643e11bbd2e236c9930f64

ISmartWalletChecker.sol 92a322cda42a60c708c10c7827762472

IVester.sol 958de38a88ffbf3e6ed409e46ba03b58

IVoter.sol 94581fa63dc9807efb385cc2c6103b54

IVotingEscrow.sol 21f6c40e53c18f08eb618b6c1dc00ae2

IVotingEscrowCallback.sol d67bb583e8a5ae4ba894273e2045ab32

Math.sol faddfc801d4c366d01595cbd368ecca9

2

Version 3

File md5

Bribe.sol 3d1ca22669e82a3b70a569c18f53fe99

FeeVault.sol f00d33ebab1aa920c4d88916c5554cc7

EsNoah.sol b65dc788ba9d620bec3827ee28c66cea

Gauge.sol 1e03b35a37d02c4e53b3709f504dcb6f

Minter.sol df7a9e9525e3671f3c0c07f23f7f3f86

Noah.sol 7c182db38b27c1d698081a4b24d749dc

RewardsDistributor.sol 9ef07ce5fbf7a3270a4401de92f346b4

SmartWalletChecker.sol 85fb9a79ecf2b8237656a4fedbe8020b

Vester.sol 4e680a1d281f3aa64bed73efb15f7568

Voter.sol a42c33ab6eaf683a80f3b3a4995aa83e

VotingEscrow.sol fc42454dd7d81a6fef5a6409410f733e

Governable.sol ed8a6447422edb04a369af39d9a17364

BribeFactory.sol 0510b25dd1c0a463625dfb41c93155f8

GaugeFactory.sol ffa396aba19188cb4267cc531e4c9251

IBribe.sol 8962a247076481df0d9f7a574d95154d

IBribeFactory.sol ab816dd15588c7b60cddcf7270bdabce

IEsNoah.sol 61b6058048254589462e90995699b39d

IFeeVault.sol e371829da6bdcce25638fbde7f82c158

IGauge.sol f7e927ed4e56b8d77054a6afe3ee74a7

IGaugeFactory.sol 021fb49c3957ef2e51126701abee7808

IMinter.sol ab988381bb64f248318f7f358c4eeb52

INoah.sol f46c3fcc01301f60b880474724dad25e

IPairFactory.sol cccb14941fff68930545f58983d785d6

IPairInfo.sol deeb1114b0b61049dc805ce4e8673329

IRewardsDistributor.sol 4399b98b6650597b52a8380f7ed9f967

ISmartWalletChecker.sol 5bb7218c380c77b5e958ac6333ddcb75

IVester.sol b18d9c5acfb5e73719ec28e3e4fcd451

IVoter.sol d33a78f54f3ae1fc3f8468b5cb7279b8

IVotingEscrow.sol f3d6f952282a4fda942010acf166fbe0

IVotingEscrowCallback.sol 5feecd2601929d72abc1f32d36319e84

Math.sol bafeb8c445ef4482e47865ac54aaf881

Version 4

File md5

Bribe.sol a871ec26f04f9c916abe058647d79458

FeeVault.sol 5ebe1655ff1bcc3e0922704474e1a65d

EsNoah.sol b65dc788ba9d620bec3827ee28c66cea

Gauge.sol 1e03b35a37d02c4e53b3709f504dcb6f

Minter.sol df7a9e9525e3671f3c0c07f23f7f3f86

3

Noah.sol 7c182db38b27c1d698081a4b24d749dc

RewardsDistributor.sol 9ef07ce5fbf7a3270a4401de92f346b4

SmartWalletChecker.sol 85fb9a79ecf2b8237656a4fedbe8020b

Vester.sol 9646ee240408c00c4a6d8ae58a86664e

Voter.sol 4fc8bb4ffdbb578b20be52a06bfca106

VotingEscrow.sol fc42454dd7d81a6fef5a6409410f733e

Governable.sol ed8a6447422edb04a369af39d9a17364

BribeFactory.sol 0510b25dd1c0a463625dfb41c93155f8

GaugeFactory.sol ffa396aba19188cb4267cc531e4c9251

IBribe.sol 9c0d9f4ea8876ad3b3c3d3fb4651df75

IBribeFactory.sol ab816dd15588c7b60cddcf7270bdabce

IEsNoah.sol 61b6058048254589462e90995699b39d

IFeeVault.sol e371829da6bdcce25638fbde7f82c158

IGauge.sol f7e927ed4e56b8d77054a6afe3ee74a7

IGaugeFactory.sol 021fb49c3957ef2e51126701abee7808

IMinter.sol ab988381bb64f248318f7f358c4eeb52

INoah.sol f46c3fcc01301f60b880474724dad25e

IPairFactory.sol cccb14941fff68930545f58983d785d6

IPairInfo.sol deeb1114b0b61049dc805ce4e8673329

IRewardsDistributor.sol 4399b98b6650597b52a8380f7ed9f967

ISmartWalletChecker.sol 5bb7218c380c77b5e958ac6333ddcb75

IVester.sol b18d9c5acfb5e73719ec28e3e4fcd451

IVoter.sol d33a78f54f3ae1fc3f8468b5cb7279b8

IVotingEscrow.sol f3d6f952282a4fda942010acf166fbe0

IVotingEscrowCallback.sol 5feecd2601929d72abc1f32d36319e84

Math.sol bafeb8c445ef4482e47865ac54aaf881

1.2 Disclaimer

This audit report does not constitute investment advice or a personal recommendation. It does not

consider, and should not be interpreted as considering or having any bearing on, the potential economics

of a token, token sale or any other product, service or other asset. Any entity should not rely on this report

in any way, including for the purpose of making any decisions to buy or sell any token, product, service or

other asset.

This audit report is not an endorsement of any particular project or team, and the report does not

guarantee the security of any particular project. This audit does not give any warranties on discovering

all security issues of the smart contracts, i.e., the evaluation result does not guarantee the nonexistence

of any further findings of security issues. As one audit cannot be considered comprehensive, we always

recommend proceeding with independent audits and a public bug bounty program to ensure the security

of smart contracts.

4

The scope of this audit is limited to the code mentioned in Section 1.1. Unless explicitly specified,

the security of the language itself (e.g., the solidity language), the underlying compiling toolchain and the

computing infrastructure are out of the scope.

1.3 Procedure of Auditing

We perform the audit according to the following procedure.

- Vulnerability Detection We first scan smart contracts with automatic code analyzers, and then

manually verify (reject or confirm) the issues reported by them.

- Semantic Analysis We study the business logic of smart contracts and conduct further investiga-

tion on the possible vulnerabilities using an automatic fuzzing tool (developed by our research team).

We also manually analyze possible attack scenarios with independent auditors to cross-check the

result.

- Recommendation We provide some useful advice to developers from the perspective of good

programming practice, including gas optimization, code style, and etc.

We show the main concrete checkpoints in the following.

1.3.1 Software Security

∗ Reentrancy

∗ DoS

∗ Access control

∗ Data handling and data flow

∗ Exception handling

∗ Untrusted external call and control flow

∗ Initialization consistency

∗ Events operation

∗ Error-prone randomness

∗ Improper use of the proxy system

1.3.2 DeFi Security

∗ Semantic consistency

∗ Functionality consistency

∗ Access control

∗ Business logic

∗ Token operation

∗ Emergency mechanism

∗ Oracle security

∗ Whitelist and blacklist

∗ Economic impact

∗ Batch transfer

5

1.3.3 NFT Security

∗ Duplicated item

∗ Verification of the token receiver

∗ Off-chain metadata security

1.3.4 Additional Recommendation

∗ Gas optimization

∗ Code quality and style
�

Note The previous checkpoints are the main ones. We may use more checkpoints during the auditing

process according to the functionality of the project.

1.4 Security Model

To evaluate the risk, we follow the standards or suggestions that are widely adopted by both industry

and academy, including OWASP Risk Rating Methodology 1 and Common Weakness Enumeration 2. The

overall severity of the risk is determined by likelihood and impact. Specifically, likelihood is used to estimate

how likely a particular vulnerability can be uncovered and exploited by an attacker, while impact is used to

measure the consequences of a successful exploit.

In this report, both likelihood and impact are categorized into two ratings, i.e., high and low respec-

tively, and their combinations are shown in Table 1.5.

Table 1.5: Vulnerability Severity Classification

Im
pa

ct

High High Medium

Low Medium Low

High Low

Likelihood

Accordingly, the severity measured in this report are classified into three categories: High, Medium,

Low. For the sake of completeness, Undetermined is also used to cover circumstances when the risk

cannot be well determined.

Furthermore, the status of a discovered item will fall into one of the following four categories:

- Undetermined No response yet.

- Acknowledged The item has been received by the client, but not confirmed yet.

- Confirmed The item has been recognized by the client, but not fixed yet.

- Fixed The item has been confirmed and fixed by the client.

1https://owasp.org/www-community/OWASP_Risk_Rating_Methodology

2https://cwe.mitre.org/

6

https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
https://cwe.mitre.org/

Chapter 2 Findings

In total, we find Twenty-one potential issues. Besides, we have seven recommendations and six
notes as follows:

- High Risk: 7

- Medium Risk: 11

- Low Risk: 3

- Recommendations: 7

- Notes: 6

7

ID Severity Description Category Status
1 High Index out of Bounds for the Empty Array Software Security Fixed
2 Medium Improper Use of the Keyword Memory Software Security Fixed
3 Low Incorrect Index in getPriorSupplyIndex Software Security Fixed
4 Medium Potential Loop from Self-Calling Software Security Fixed
5 Low Incorrect Validation of Withdrawal Rate Software Security Fixed
6 High Miscalculated Bribe Rewards (I) DeFi Security Fixed
7 High Miscalculated Bribe Rewards (II) DeFi Security Fixed

8 Medium
Timely invocation of update_period() before
setReleaseFactor() and setPledgeFactor()

DeFi Security Acknowledged

9 Medium
Timely invocation of distribute() in notifyRewar-
dAmount()

DeFi Security Confirmed

10 Medium Reward for Killed Gauge Being Locked DeFi Security Confirmed

11 Medium
Lack of Checks for Gauges that Do Not Sup-
port Voting

DeFi Security Confirmed

12 Medium
Reward Token can be Managed by Users with
Different Privileges

DeFi Security Fixed

13 Medium Timely invocation of claimfees() in Gauge DeFi Security Acknowledged

14 High
Failed to Notify Rewards due to the Reentrancy
Lock

DeFi Security Fixed

15 High
Swap Fee Rewards cannotDistribution Mecha-
nism does not Work

DeFi Security Fixed

16 High Manipulated Unlocking Duration DeFi Security Fixed

17 Medium
Risk of Voting Power Manipulation when
is_unlock is True

DeFi Security Acknowledged

18 Medium Lack of Check of Function withdrawToken DeFi Security Fixed

19 Low
Inconsistent Status Update during Voting Pro-
cess

DeFi Security Fixed

20 Medium
Miscalculated poolWeight with Duplicated Pool
Voting

DeFi Security Fixed

21 High
Incorrect Reward Calculations from Inappropri-
ate Check

DeFi Security Fixed

22 - Lack of Zero Address Check Recommendation Confirmed
23 - Redundant Functions Recommendation Fixed
24 - Redundant Invocation of Function _updateFor Recommendation Fixed
25 - Meaningless Usage of max Recommendation Fixed
26 - Inappropriate Variable Naming Recommendation Confirmed

27 -
Lack of Check for releaseFactor and pledge-
Factor

Recommendation Confirmed

28 - Redundant Check in Function mint_marketing Recommendation Fixed
29 - Potential Centralization Problem Note Confirmed
30 - Timely deployment contracts Note Confirmed
31 - Non-Linear Unlocking in Multiple Claims Note Confirmed

32 -
Token Release for Team and VC without Time
Restrictions

Note Confirmed

33 -
Potential Inequity Function poke() of the Con-
tract Voter

Note Confirmed

34 - Incompatible Tokens Note Confirmed

8

The details are provided in the following sections.

2.1 Software Security

2.1.1 Index out of Bounds for the Empty Array

Severity High

Status Fixed in Version 2

Introduced by Version 1

Description In the contract Gauge, the array fees are initialized to an empty array in the constructor. The

function _claimFees() caches the global fees into the empty array fees[0] and loads the last value from it

directly, which results in a revert due to an index-out-of-bounds error.

18 constructor(
19 address _stake,
20 address _bribe,
21 address _ve,
22 address _voter,
23 bool _forPair,
24 address[] memory _allowedRewardTokens
25) BaseGauge(_stake, _bribe, _ve, _voter, _forPair, _allowedRewardTokens) {
26 fees = new uint[](0);
27 }

Listing 2.1: Gauge.sol

Impact Fees can not be claimed as the invocation of function notifyRewardAmount() will revert by the

index-out-of-bounds error.

Suggestion Revise the length of the array accordingly.

2.1.2 Improper Use of the Keyword Memory

Severity Medium

Status Fixed in Version 2

Introduced by Version 1

Description In Solidity, assignments made from memory to memory only create references. This means

that changing the value of one memory pointer will also update any other references to that same memory

location. In the function _checkpoint of the contract VotingEscrow, a memory pointer initial_last_point

is created as a reference to the variable last_point. The initial_last_point variable is intended to be

used as a bias to calculate the block number of subsequent checkpoints. However, due to the memory ref-

erence problem, the result of last_point.blk is incorrect. Specifically, the value of initial_last_point.ts

is modified to t_i when last_point.ts is assigned as t_i in the loop. As a result, the assignment

last_point.blk = initial_last_point.blk + (block_slope * (t_i - initial_last_point.ts) / MULTIPLIER)

is equivalent to last_point.blk = initial_last_point.blk. This causes the value of each checkpoint

to be the same as the value of the first one.

9

175 function _checkpoint(address _account, LockedBalance memory old_locked, LockedBalance memory
new_locked) internal {

176 Point memory u_old;
177 Point memory u_new;
178 int128 old_dslope = 0;
179 int128 new_dslope = 0;
180 uint _epoch = epoch;
181
182
183 if (_account != address(0)) {
184 // Calculate slopes and biases
185 // Kept at zero when they have to
186 if (old_locked.end > block.timestamp && old_locked.amount > 0) {
187 u_old.slope = old_locked.amount / iMAXTIME;
188 u_old.bias = u_old.slope * int128(int256(old_locked.end - block.timestamp));
189 }
190 if (new_locked.end > block.timestamp && new_locked.amount > 0) {
191 u_new.slope = new_locked.amount / iMAXTIME;
192 u_new.bias = u_new.slope * int128(int256(new_locked.end - block.timestamp));
193 }
194
195
196 // Read values of scheduled changes in the slope
197 // old_locked.end can be in the past and in the future
198 // new_locked.end can ONLY by in the FUTURE unless everything expired: than zeros
199 old_dslope = slope_changes[old_locked.end];
200 if (new_locked.end != 0) {
201 if (new_locked.end == old_locked.end) {
202 new_dslope = old_dslope;
203 } else {
204 new_dslope = slope_changes[new_locked.end];
205 }
206 }
207 }
208
209
210 Point memory last_point = Point({bias: 0, slope: 0, ts: block.timestamp, blk: block.number});
211 if (_epoch > 0) {
212 last_point = point_history[_epoch];
213 }
214 uint last_checkpoint = last_point.ts;
215 // initial_last_point is used for extrapolation to calculate block number
216 // (approximately, for *At methods) and save them
217 // as we cannot figure that out exactly from inside the contract
218 Point memory initial_last_point = last_point;
219 uint block_slope = 0; // dblock/dt
220 if (block.timestamp > last_point.ts) {
221 block_slope = (MULTIPLIER * (block.number - last_point.blk)) / (block.timestamp -

last_point.ts);
222 }
223 // If last point is already recorded in this block, slope=0
224 // But that’s ok b/c we know the block in such case

10

225
226
227 // Go over weeks to fill history and calculate what the current point is
228 {
229 uint t_i = (last_checkpoint / WEEK) * WEEK;
230 for (uint i; i < 255; ++i) {
231 // Hopefully it won’t happen that this won’t get used in 5 years!
232 // If it does, users will be able to withdraw but vote weight will be broken
233 t_i += WEEK;
234 int128 d_slope = 0;
235 if (t_i > block.timestamp) {
236 t_i = block.timestamp;
237 } else {
238 d_slope = slope_changes[t_i];
239 }
240 last_point.bias -= last_point.slope * int128(int256(t_i - last_checkpoint));
241 last_point.slope += d_slope;
242 if (last_point.bias < 0) {
243 // This can happen
244 last_point.bias = 0;
245 }
246 if (last_point.slope < 0) {
247 // This cannot happen - just in case
248 last_point.slope = 0;
249 }
250 last_checkpoint = t_i;
251 last_point.ts = t_i;
252 last_point.blk = initial_last_point.blk + (block_slope * (t_i - initial_last_point.ts))

/ MULTIPLIER;
253 _epoch += 1;
254 if (t_i == block.timestamp) {
255 last_point.blk = block.number;
256 break;
257 } else {
258 point_history[_epoch] = last_point;
259 }
260 }
261 }
262
263
264 ...
265}

Listing 2.2: VotingEscrow.sol

Impact Some functions that rely on the block number of the point_history may get unexpected results,

such as the function balanceOfAtB().

Suggestion Use deep copy for initial_last_point assignment.

2.1.3 Incorrect Index in getPriorSupplyIndex

Severity Low

11

Status Fixed in Version 3

Introduced by Version 2

Description In the function getPriorSupplyIndex() of the contract Bribe, the check statement if (supplyCheckpoints[0].timestamp

> timestamp) is incorrect. In the current implementation, the start index for the array supplyCheckpoints[]

begins from 1, so the check for the point at the index 0 is meaningless.

126 function getPriorSupplyIndex(uint timestamp) public view returns (uint) {
127 uint nCheckpoints = supplyNumCheckpoints;
128 if (nCheckpoints == 0) {
129 return 0;
130 }
131
132
133 // First check most recent balance
134 if (supplyCheckpoints[nCheckpoints].timestamp <= timestamp) {
135 return (nCheckpoints);
136 }
137
138
139 // Next check implicit zero balance
140 if (supplyCheckpoints[0].timestamp > timestamp) {
141 return 0;
142 }
143
144
145 uint lower = 0;
146 uint upper = nCheckpoints;
147 while (upper > lower) {
148 uint center = upper - (upper - lower) / 2; // ceil, avoiding overflow
149 SupplyCheckpoint memory cp = supplyCheckpoints[center];
150 if (cp.timestamp == timestamp) {
151 return center;
152 } else if (cp.timestamp < timestamp) {
153 lower = center;
154 } else {
155 upper = center - 1;
156 }
157 }
158 return lower;
159}

Listing 2.3: Bribe.sol

233 function _writeSupplyCheckpoint() internal {
234 uint _nCheckPoints = supplyNumCheckpoints;
235 uint _timestamp = block.timestamp;
236
237
238 if (_nCheckPoints > 0 && supplyCheckpoints[_nCheckPoints].timestamp == _timestamp) {
239 supplyCheckpoints[_nCheckPoints].supply = totalSupply;
240 } else {
241 _nCheckPoints += 1;

12

242 supplyCheckpoints[_nCheckPoints] = SupplyCheckpoint(_timestamp, totalSupply);
243 supplyNumCheckpoints = _nCheckPoints;
244 }
245}

Listing 2.4: Bribe.sol

Impact The check will always be false, which is meaningless.

Suggestion Use supplyCheckpoints[1].timestamp instead of supplyCheckpoints[0].timestamp.

2.1.4 Potential Loop from Self-Calling

Severity Medium

Status Fixed in Version 3

Introduced by Version 2

Description In the function check() of the contract SmartWalletChecker, there’s a function call to the

checker that implements the function check() interface. However, only the contract SmartWalletChecker

implements the function check(). In this case, if the called contract is the contract SmartWalletChecker

itself, it will result in a self-call loop and a revert due to out of gas.

48 function check(address _wallet) external view returns (bool) {
49 if (!isWhitelistEnabled) {
50 return true;
51 }
52
53
54 bool _check = wallets[_wallet];
55 if (_check) {
56 return _check;
57 } else {
58 if (checker != address(0)) {
59 return SmartWalletChecker(checker).check(_wallet);
60 }
61 }
62 return false;
63}

Listing 2.5: SmartWalletChecker.sol

Impact The invocation of the function check() may revert.

Suggestion Add a check to prevent the checker from being the contract SmartWalletChecker itself.

2.1.5 Incorrect Validation of Withdrawal Rate

Severity Low

Status Fixed in Version 4

Introduced by Version 3

13

Description In the function withdraw() of the contract Vester, the validation of require(rate > 0 ||

rate <= PRECISION, "Vester: rate invalid") is incorrect, it should ensure both conditions are satis-

fied, or the check will be meaningless.

70 function withdraw(uint rate) external nonReentrant {
71 require(rate > 0 || rate <= PRECISION, "Vester: rate invalid");
72 _updateVesting(msg.sender, OperationType.WITHDRAW_TYPE);
73
74
75 uint balance = balances[msg.sender];
76 require(balance > 0, "Vester: vested amount is zero");
77
78
79 uint amount = (balance * rate) / PRECISION;
80 if (amount == balance) {
81 ve.unvesting(msg.sender);
82 }
83
84
85 balances[msg.sender] = balance - amount;
86 totalVesting -= amount;
87
88
89 IERC20(esToken).safeTransfer(msg.sender, amount);
90
91
92 emit Withdraw(msg.sender, amount);
93 }

Listing 2.6: Vester.sol

Impact The check is meaningless.

Suggestion Change rate > 0 || rate <= PRECISION to rate > 0 && rate <= PRECISION.

2.2 DeFi Security

2.2.1 Miscalculated Bribe Rewards (I)

Severity High

Status Fixed in Version 2

Introduced by Version 1

Description The function earned() in the contract Bribe is used to calculate the user’s rewards in the

current epoch. It will synchronize rewards starting from the checkpoint where the user last claimed the

reward, traversing to the latest checkpoint. This process is divided into two steps. In the first step,

the traversal only goes up to the second-to-last checkpoint, while the second step updates only the last

checkpoint.

However, based on the current implementation, we have observed that the first step always misses the

accumulation of rewards for the second-to-last checkpoint. Specifically, the calculation of reward quantity

is based on the voting amount recorded for the user in the last checkpoint of each epoch. Each iteration

14

calculates the rewards for the corresponding epoch and then adds them to the total rewards the user should

receive in the next iteration. This results in the rewards for the epoch corresponding to the second-to-last

checkpoint being calculated but not included in the rewards available to the user.

235 function earned(address token, address account) public view returns (uint) {
236 uint _startTimestamp = lastEarn[token][account];
237 if (numCheckpoints[account] == 0) {
238 return 0;
239 }
240
241
242 uint _startIndex = getPriorBalanceIndex(account, _startTimestamp);
243 uint _endIndex = numCheckpoints[account] - 1;
244
245
246 uint reward = 0;
247 // you only earn once per epoch (after it’s over)
248 Checkpoint memory prevRewards; // reuse struct to avoid stack too deep
249 prevRewards.timestamp = _bribeStart(_startTimestamp);
250 uint _prevSupply = 1;
251
252
253 if (_endIndex > 0) {
254 for (uint i = _startIndex; i <= _endIndex - 1; i++) {
255 Checkpoint memory cp0 = checkpoints[account][i];
256 uint _nextEpochStart = _bribeStart(cp0.timestamp);
257 // check that you’ve earned it
258 // this won’t happen until a week has passed
259 if (_nextEpochStart > prevRewards.timestamp) {
260 reward += prevRewards.balanceOf;
261 }
262
263
264 prevRewards.timestamp = _nextEpochStart;
265 _prevSupply = supplyCheckpoints[getPriorSupplyIndex(_nextEpochStart + DURATION)].supply

;
266 prevRewards.balanceOf = (cp0.balanceOf * tokenRewardsPerEpoch[token][_nextEpochStart])

/ _prevSupply;
267 }
268 }
269
270
271 Checkpoint memory cp = checkpoints[account][_endIndex];
272 uint _lastEpochStart = _bribeStart(cp.timestamp);
273 uint t_i = _bribeStart(Math.max(_startTimestamp, _lastEpochStart));
274 {
275 while (true) {
276 t_i += DURATION;
277 if (t_i > block.timestamp) {
278 break;
279 }
280 reward +=
281 (cp.balanceOf * tokenRewardsPerEpoch[token][t_i - DURATION]) /

15

282 supplyCheckpoints[getPriorSupplyIndex(t_i)].supply;
283 }
284 }
285 return reward;
286}

Listing 2.7: Bribe.sol

Impact The rewards for the second-to-last checkpoint of the user will never be claimed.

Suggestion Include the rewards of the second-to-last checkpoint.

2.2.2 Miscalculated Bribe Rewards (II)

Severity High

Status Fixed in in Version 2

Introduced by Version 1

Description As mentioned in Issue-1, the function calculates rewards for voting users in two steps.

In the first step, it traverses from the checkpoint where the user last claimed the reward to the latest

checkpoint. However, this implementation does not take into account the possibility of epochs between

two checkpoints where no checkpoint exists.

Specifically, the loop only calculates rewards for each epoch based on the checkpoint it belongs to, and

any epochs without a corresponding checkpoint are skipped altogether, which results in the loss of rewards

for users in epochs without a corresponding checkpoint.

181 function earned(address token, address account) public view returns (uint) {
182 uint _startTimestamp = lastEarn[token][account];
183 if (numCheckpoints[account] == 0) {
184 return 0;
185 }
186
187
188 uint _startIndex = getPriorBalanceIndex(account, _startTimestamp);
189 uint _endIndex = numCheckpoints[account] - 1;
190
191
192 uint reward = 0;
193 // you only earn once per epoch (after it’s over)
194 Checkpoint memory prevRewards; // reuse struct to avoid stack too deep
195 prevRewards.timestamp = _bribeStart(_startTimestamp);
196 uint _prevSupply = 1;
197
198
199 if (_endIndex > 0) {
200 for (uint i = _startIndex; i <= _endIndex - 1; i++) {
201 Checkpoint memory cp0 = checkpoints[account][i];
202 uint _nextEpochStart = _bribeStart(cp0.timestamp);
203 // check that you’ve earned it
204 // this won’t happen until a week has passed
205 if (_nextEpochStart > prevRewards.timestamp) {
206 reward += prevRewards.balanceOf;

16

207 }
208
209
210 prevRewards.timestamp = _nextEpochStart;
211 _prevSupply = supplyCheckpoints[getPriorSupplyIndex(_nextEpochStart + DURATION)].supply

;
212 prevRewards.balanceOf = (cp0.balanceOf * tokenRewardsPerEpoch[token][_nextEpochStart])

/ _prevSupply;
213 }
214 }
215
216
217 Checkpoint memory cp = checkpoints[account][_endIndex];
218 uint _lastEpochStart = _bribeStart(cp.timestamp);
219 uint t_i = _bribeStart(Math.max(_startTimestamp, _lastEpochStart));
220 {
221 while (true) {
222 t_i += DURATION;
223 if (t_i > block.timestamp) {
224 break;
225 }
226 reward +=
227 (cp.balanceOf * tokenRewardsPerEpoch[token][t_i - DURATION]) /
228 supplyCheckpoints[getPriorSupplyIndex(t_i)].supply;
229 }
230 }
231 return reward;
232}

Listing 2.8: Bribe.sol

Impact Users will receive less rewards than expected.

Suggestion Implement corresponding logic to sum up the rewards of epochs that have no corresponding

checkpoints.

2.2.3 Timely invocation of update_period() before setReleaseFactor() and
setPledgeFactor()

Severity Medium

Status Acknowledged

Introduced by Version 1

Description The contract Minter is designed to periodically mint and distribute system rewards (i.e.

NOAH and esNOAH tokens). The amount of weekly rewards of esNOAH is calculated based on the constant

releaseFactor, totalSupply of NOAH and esNOAH. These rewards will be allocated to the LPs of various

Gauges, while the remaining rewards will be distributed as incentives for users who lock their NOAHs in the

contract VotingEscrow. For the rewards of LPs, it’s also calculated based on totalSupply of NOAH and

esNOAH, but using another constant pledgeFactor.

17

The aforementioned two constants releaseFactor and pledgeFactor are allowed to be modified by

the team through privileged functions setReleaseFactor() and setPledgeFactor(). However, before the

update, the contract will not invoke the function update_period() to update and distribute rewards of the

last epoch, which could result in the previous epoch’s rewards being directly changed. It’s unfair to the

contract users.

163 function update_period() external returns (uint) {
164 uint _period = esnoah_mining_active_period;
165 uint _esnoah_minted = esnoah_minted;
166 uint _esnoah_mining_weekly = esnoah_mining_weekly;
167 if (_esnoah_mining_weekly == 0) return _period;
168
169
170 if (block.timestamp >= _period + WEEK && initializer == address(0)) {
171 // only trigger if new week
172 _period = (block.timestamp / WEEK) * WEEK;
173 esnoah_mining_active_period = _period;
174
175
176 uint _left = ESNOAH_MINING_CAP - _esnoah_minted;
177 if (_esnoah_mining_weekly > _left) {
178 _esnoah_mining_weekly = _left;
179 esnoah_mining_weekly = 0;
180 } else {
181 esnoah_mining_weekly = (_esnoah_mining_weekly * EMISSION) / PRECISION;
182 }
183
184
185 // minted
186 esnoah_minted = _esnoah_minted + _esnoah_mining_weekly;
187
188
189 uint _balanceOf = _esNoah.balanceOf(address(this));
190 if (_balanceOf < _esnoah_mining_weekly) {
191 _esNoah.mint(address(this), _esnoah_mining_weekly - _balanceOf);
192 }
193
194
195 uint weekly_reward = calculate_reward(_esnoah_mining_weekly);
196 uint weekly_burn = _esnoah_mining_weekly - weekly_reward;
197 uint weekly_liquidity = calculate_liquidity(weekly_reward);
198 uint weekly_reward_distributor = weekly_reward - weekly_liquidity;
199
200
201 // burn
202 require(_esNoah.transfer(BLACK_HOLE, weekly_burn));
203 // reward stake noah
204 require(_esNoah.transfer(address(_rewards_distributor), weekly_reward_distributor));
205 _rewards_distributor.checkpoint_token(); // checkpoint token balance that was just

minted in rewards distributor
206 _rewards_distributor.checkpoint_total_supply(); // checkpoint supply
207 // liquidity

18

208 _voter.notifyRewardAmount(weekly_liquidity);
209
210
211 emit Mint(msg.sender, _esnoah_mining_weekly, weekly_liquidity,

weekly_reward_distributor, weekly_burn);
212 }
213 return _period;
214 }

Listing 2.9: Minter.sol

102 function setReleaseFactor(uint _releaseFactor) external override {
103 require(msg.sender == team, "not team");
104 releaseFactor = _releaseFactor;
105 }

Listing 2.10: Minter.sol

107 function setPledgeFactor(uint _pledgeFactor) external override {
108 require(msg.sender == team, "not team");
109 pledgeFactor = _pledgeFactor;
110}

Listing 2.11: Minter.sol

Impact Users may receive less rewards than expected.

Suggestion Invoke the function update_period() before modifying the releaseFactor and pledgeFactor.

Feedback from the Project The logic of the function update_period() determines the number of mining

and staking rewards in esNOAH for the week, and it will be executed at the start of each epoch (i.e.,

after 0:00 on every Thursday UTC). Executing this function at other times during the same epoch will

not take effect. While adjustments to the parameters are typically made within the current epoch, the new

parameters will only take effect after the start of the next epoch (i.e., the next Thursday). It is not necessary

to execute the function update_period() every time the parameters are adjusted.

2.2.4 Timely invocation of distribute() in notifyRewardAmount()

Severity Medium

Status Confirmed

Introduced by Version 1

Description According to the design, the distribution of esNOAHs among various Gauges is determined by

the voting results of users holding veNOAH in the contract Voter. This portion of rewards is transferred by the

contract Minter via the function notifyRewardAmount(). However, based on the current implementation,

these rewards are not directly settled and distributed to each Gauge based on the current votes after being

transferred to the contract Voter. In this case, a malicious user is able to frontrun the invocation of the

function distribute() to distribute the rewards to a specific Gauge, and vote for another Gauge right after

that, which votes twice with one ballot. Besides, although the function distribute() will be triggered when

the user claims rewards, the rewards may be delayed.

19

338 function distribute(address _gauge) public lock {
339 IMinter(minter).update_period();
340 _updateFor(_gauge); // should set claimable to 0 if killed
341 uint _claimable = claimable[_gauge];
342 if (_claimable > IGauge(_gauge).left(base) && _claimable / DURATION > 0) {
343 claimable[_gauge] = 0;
344 IGauge(_gauge).notifyRewardAmount(base, _claimable);
345 emit DistributeReward(msg.sender, _gauge, _claimable);
346 }
347 }

Listing 2.12: Voter.sol

320 function notifyRewardAmount(uint amount) external {
321 _safeTransferFrom(base, msg.sender, address(this), amount); // transfer the distro in
322 uint _ratio = (amount * 1e18) / totalWeight; // 1e18 adjustment is removed during claim
323 if (_ratio > 0) {
324 index += _ratio;
325 }
326 emit NotifyReward(msg.sender, base, amount);
327}

Listing 2.13: Voter.sol

Impact The reward distribution may be delayed, resulting in loss of rewards for certain users to experi-

ence loss.

Suggestion Invoke the function distribute() directly after the original logic in the function notifyRewardAmount()

is executed.

Feedback from the Project In order to reduce the gas costs incurred by users when invoking the func-

tion, the team will also promptly call the function distribute() after the start of each epoch, in the same

manner as regular users.

2.2.5 Reward for Killed Gauge Being Locked

Severity Medium

Status Confirmed

Introduced by Version 1

Description In contract Voter, users can vote for each Gauge. The reward of each epoch will be al-

located to the corresponding gauge according to the proportion of votes in each pool. The Gauge can

be disabled and enabled through the function killGauge() and reviveGauge() by the privileged account

emergencyCouncil. However, a disabled Gauge is still votable, and is included in the calculation of the

reward distribution, but not claimable.

359 function _updateFor(address _gauge) internal {
360 address _pool = poolForGauge[_gauge];
361 uint _supplied = weights[_pool];
362 if (_supplied > 0) {
363 uint _supplyIndex = supplyIndex[_gauge];

20

364 uint _index = index; // get global index0 for accumulated distro
365 supplyIndex[_gauge] = _index; // update _gauge current position to global position
366 uint _delta = _index - _supplyIndex; // see if there is any difference that need to be

accrued
367 if (_delta > 0) {
368 uint _share = (uint(_supplied) * _delta) / 1e18; // add accrued difference for each

supplied token
369 if (isAlive[_gauge]) {
370 claimable[_gauge] += _share;
371 }
372 }
373 } else {
374 supplyIndex[_gauge] = index; // new users are set to the default global state
375 }
376 }

Listing 2.14: Voter.sol

Impact Users who vote for “killed” Gauges will receive no rewards.

Suggestion Restrict users from voting for “killed” Gauges.

Feedback from the Project Which pool to vote for is entirely decided by the users, and the team will not

restrict users’ voting behavior. However, the frontend page will provide information on whether a pool is

voteable, to prevent users from voting for pools that are not voteable.

2.2.6 Lack of Checks for Gauges that Do Not Support Voting

Severity Medium

Status Confirmed

Introduced by Version 1

Description In the contract Voter, the user is allowed to vote for various Gauges via the function vote().

The function will allocate the user’s existing veNOAH based on the voting weights set by the user for Gauges.

If a Gauge does not support voting, the function will skip it, resulting in the votes of this portion of veNOAH not

being utilized. The user has to wait until the next epoch (up to a maximum of 7 days) to vote for the other

pools. In this case, it’s suggested to revert when the user tries to vote on the Gauge that is not supporting

voting.

218 function _vote(address _account, address[] memory _poolVote, uint[] memory _weights) internal
{

219 _reset(_account);
220 uint _poolCnt = _poolVote.length;
221 uint _weight = IVotingEscrow(_ve).balanceOf(_account);
222 uint _totalVoteWeight = 0;
223 uint _totalWeight = 0;
224 uint _usedWeight = 0;
225
226
227 for (uint i = 0; i < _poolCnt; i++) {
228 _totalVoteWeight += _weights[i];
229 }

21

230
231
232 for (uint i = 0; i < _poolCnt; i++) {
233 address _pool = _poolVote[i];
234 address _gauge = gauges[_pool];
235 if (isVotableGauge[_gauge]) {
236 uint _poolWeight = (_weights[i] * _weight) / _totalVoteWeight;
237 require(votes[_account][_pool] == 0);
238 require(_poolWeight != 0);
239 _updateFor(_gauge);
240
241
242 poolVote[_account].push(_pool);
243
244
245 uint _newWeights = weights[_pool] + _poolWeight;
246 weights[_pool] = _newWeights;
247 votes[_account][_pool] += _poolWeight;
248 IBribe(bribes[_gauge])._deposit(uint(_poolWeight), _account);
249 _usedWeight += _poolWeight;
250 _totalWeight += _poolWeight;
251 emit Voted(_account, _poolWeight);
252 emit PoolVoted(_pool, _newWeights);
253 }
254 }
255 if (_usedWeight > 0) IVotingEscrow(_ve).voting(_account);
256 uint newTotalWeight = totalWeight + uint(_totalWeight);
257 totalWeight = newTotalWeight;
258 usedWeights[_account] = uint(_usedWeight);
259 emit TotalWeight(newTotalWeight);
260}

Listing 2.15: Voter.sol

Impact Users have to wait for 7 days before they can vote again to correct any erroneous votes.

Suggestion Restrict users from voting for non votable Gauge.

Feedback from the Project Voting for project Gauges is controlled by a whitelist, if the code prevents

Gauge that are not in the whitelist from voting, it may cause anomalies when updating users who have

already voted. For example, if Gauge A is open for voting for the first three weeks, but disables voting for

the fourth week, users who have already voted for Gauge A will encounter errors when the function poke()

is triggered.

2.2.7 Reward Token can be Managed by Users with Different Privileges

Severity Medium

Status Fixed in Version 2

Introduced by Version 1

Description The contract Bribe plays a role in recording and distributing rewards to the voting users for

incentivizing more users to participate in voting. The rewards can be any token listed on the whitelist set by

22

the gov. After each distribution of a new type of token as a reward through the function notifyRewardAmount(),

the function will record it in the mapping isReward[]. This allows skipping unnecessary whitelist checks in

the future. However, the team is able to directly modify the mapping isReward[] via the privileged function

swapOutRewardToken(), without the need for whitelist checks for newly added reward tokens.

313 function swapOutRewardToken(uint i, address oldToken, address newToken) external {
314 require(msg.sender == IVotingEscrow(_ve).team(), "only team");
315 require(rewards[i] == oldToken);
316 isReward[oldToken] = false;
317 isReward[newToken] = true;
318 rewards[i] = newToken;
319}

Listing 2.16: Bribe.sol

249 function whitelist(address _token) public onlyGov {
250 _whitelist(_token);
251}

Listing 2.17: Voter.sol

253 function _whitelist(address _token) internal {
254 require(!isWhitelisted[_token]);
255 isWhitelisted[_token] = true;
256 emit Whitelisted(msg.sender, _token);
257 }

Listing 2.18: Voter.sol

290 function notifyRewardAmount(address token, uint amount) external lock {
291 require(amount > 0);
292 if (!isReward[token]) {
293 require(IVoter(voter).isWhitelisted(token), "bribe tokens must be whitelisted");
294 require(rewards.length < MAX_REWARD_TOKENS, "too many rewards tokens");
295 }
296 // bribes kick in at the start of next bribe period
297 uint adjustedTstamp = getEpochStart(block.timestamp);
298 uint epochRewards = tokenRewardsPerEpoch[token][adjustedTstamp];
299
300
301 _safeTransferFrom(token, msg.sender, address(this), amount);
302 tokenRewardsPerEpoch[token][adjustedTstamp] = epochRewards + amount;
303
304
305 periodFinish[token] = adjustedTstamp + DURATION;
306
307
308 if (!isReward[token]) {
309 isReward[token] = true;
310 rewards.push(token);
311 }
312
313

23

314 emit NotifyReward(msg.sender, token, adjustedTstamp, amount);
315}

Listing 2.19: Bribe.sol

Impact The team can bypass the check of whitelist by modifying the mapping isReward[] via the privi-

leged function swapOutRewardToken().

Suggestion Add the check to ensure the newly added reward token is included in the whitelist.

2.2.8 Timely invocation of claimfees() in Gauge

Severity Medium

Status Acknowledged

Introduced by Version 1

Description According to the design, a portion of transaction fee will be distributed to the contract

Bribe to incentivize the voting. However, this has to be manually triggered by someone via the function

claimFees(). In this case, the users may receive less rewards than expected.

21 function _claimFees() internal virtual override returns (uint[] memory claimed) {
22 claimed = new uint[](1);
23 if (!isForPair) {
24 return claimed;
25 }
26 IVoter _voter = IVoter(voter);
27 IFeeVault _feeVault = IFeeVault(_voter.feeVault());
28
29
30 claimed[0] = _feeVault.claimFees(stake);
31 if (claimed[0] == 0) {
32 return claimed;
33 }
34
35
36 address _bribe = bribe;
37 // no body vote
38 if (IBribe(_bribe).totalSupply() == 0 || !_voter.isVotableGauge(address(this))) {
39 _safeTransferFrom(stake, address(this), _feeVault.feeTo(), claimed[0]);
40 } else {
41 uint _fees0 = fees[0] + claimed[0];
42 address _token0 = stake;
43 if (_fees0 > IBribe(_bribe).left(_token0) && _fees0 / DURATION > 0) {
44 fees[0] = 0;
45 _safeApprove(_token0, _bribe, _fees0);
46 IBribe(_bribe).notifyRewardAmount(_token0, _fees0);
47 } else {
48 fees[0] = _fees0;
49 }
50 }
51
52
53 emit ClaimFees(msg.sender, claimed);

24

54 }

Listing 2.20: Gauge.sol

Impact Rewards for voters are delayed, and what’s worse, voters may lose the rewards.

Suggestion Ensure the function claimFees() will be triggered by the team periodically and timely.

Feedback from the Project To reduce the gas costs incurred by users when invoking the function, the

team will promptly call the function claimFees() in the same manner as regular users after the start of each

epoch.

2.2.9 Failed to Notify Rewards due to the Reentrancy Lock

Severity High

Status Fixed in Version 2

Introduced by Version 1

Description The function notifyRewardAmount() in the contract Gauge contains a reentrancy guard (i.e.

the modifier lock), and it claims swap fees from the contract FeeVault via the call stack nofityRewardAmount

-> _claimFees -> _feeVault.claimFees. However, the function claimFees() in the contract FeeVault re-

enters the original function notifyRewardAmount() in the caller Gauge when sufficient swap fees accumu-

lated. This can result in the revert of transaction as the original function notifyRewardAmount() is in a lock

state.

545 function notifyRewardAmount(address token, uint amount) external lock {
546 IVoter _voter = IVoter(voter);
547 require(_voter.isGaugeHandler(msg.sender));
548 require(token != stake);
549 require(amount > 0);
550 if (!isReward[token]) {
551 require(rewards.length < MAX_REWARD_TOKENS, "too many rewards tokens");
552 }
553 if (rewardRate[token] == 0) _writeRewardPerTokenCheckpoint(token, 0, block.timestamp);
554 (rewardPerTokenStored[token], lastUpdateTime[token]) = _updateRewardPerToken(token, type(uint)

.max, true);
555 _claimFees();
556
557
558 if (block.timestamp >= periodFinish[token]) {
559 _safeTransferFrom(token, msg.sender, address(this), amount);
560 rewardRate[token] = amount / DURATION;
561 } else {
562 uint _remaining = periodFinish[token] - block.timestamp;
563 uint _left = _remaining * rewardRate[token];
564 require(amount > _left);
565 _safeTransferFrom(token, msg.sender, address(this), amount);
566 rewardRate[token] = (amount + _left) / DURATION;
567 }
568 require(rewardRate[token] > 0);
569 uint balance = IERC20(token).balanceOf(address(this));
570 require(rewardRate[token] <= balance / DURATION, "Provided reward too high");

25

571 periodFinish[token] = block.timestamp + DURATION;
572 if (!isReward[token]) {
573 isReward[token] = true;
574 rewards.push(token);
575 }
576
577
578 emit NotifyReward(msg.sender, token, amount);
579}

Listing 2.21: BaseGauge.sol

29 function _claimFees() internal virtual override returns (uint[] memory claimed) {
30 claimed = new uint[](1);
31 if (!isForPair) {
32 return claimed;
33 }
34 IVoter _voter = IVoter(voter);
35 IFeeVault _feeVault = IFeeVault(_voter.feeVault());
36
37
38 claimed[0] = _feeVault.claimFees(stake);
39 if (claimed[0] == 0) {
40 return claimed;
41 }
42
43
44 address _bribe = bribe;
45 // no body vote
46 if (IBribe(_bribe).totalSupply() == 0 || !_voter.isVotableGauge(address(this))) {
47 _safeTransferFrom(stake, address(this), _feeVault.feeTo(), claimed[0]);
48 } else {
49 uint _fees0 = fees[0] + claimed[0];
50 address _token0 = stake;
51 if (_fees0 > IBribe(_bribe).left(_token0) && _fees0 / DURATION > 0) {
52 fees[0] = 0;
53 _safeApprove(_token0, _bribe, _fees0);
54 IBribe(_bribe).notifyRewardAmount(_token0, _fees0);
55 } else {
56 fees[0] = _fees0;
57 }
58 }
59
60
61 emit ClaimFees(msg.sender, claimed);
62 }

Listing 2.22: Gauge.sol

45 function claimFees(address token) external returns (uint forVote) {
46 require(voter.poolForGauge(msg.sender) == token);
47 uint balance = IERC20(token).balanceOf(address(this));
48 if (balance > 0) {

26

49 forVote = (balance * (PRECISION - teamRate)) / PRECISION;
50
51
52 if (forVote > 0) {
53 IERC20(token).approve(msg.sender, forVote);
54 IGauge(msg.sender).notifyRewardAmount(token, forVote);
55 }
56
57
58 IERC20(token).safeTransfer(feeTo, balance - forVote);
59 }
60}

Listing 2.23: FeeVault.sol

Impact Invoking the function notifyRewardAmount() within the Gauge will result in a revert due to the

inappropriate reentrancy lock, thus preventing the distribution of rewards to the Gauge.

Suggestion Ensure proper use of the re-entrancy lock.

2.2.10 Swap Fee Rewards cannotDistribution Mechanism does not Work

Severity High

Status Fixed in Version 2

Introduced by Version 1

Description The contract Gauge claims fees from the contract FeeVault via the external call _feeVault.claimFees(stake)

in the function _claimFees(). The contract FeeVault will then invoke the function notifyRewardAmount() to

send the reward. However, in the function notifyRewardAmount() of contract Gauge, there is a requirement

token != stake that will lead to revert of the transaction.

29 function _claimFees() internal virtual override returns (uint[] memory claimed) {
30 claimed = new uint[](1);
31 if (!isForPair) {
32 return claimed;
33 }
34 IVoter _voter = IVoter(voter);
35 IFeeVault _feeVault = IFeeVault(_voter.feeVault());
36
37
38 claimed[0] = _feeVault.claimFees(stake);
39 if (claimed[0] == 0) {
40 return claimed;
41 }
42
43
44 address _bribe = bribe;
45 // no body vote
46 if (IBribe(_bribe).totalSupply() == 0 || !_voter.isVotableGauge(address(this))) {
47 _safeTransferFrom(stake, address(this), _feeVault.feeTo(), claimed[0]);
48 } else {
49 uint _fees0 = fees[0] + claimed[0];

27

50 address _token0 = stake;
51 if (_fees0 > IBribe(_bribe).left(_token0) && _fees0 / DURATION > 0) {
52 fees[0] = 0;
53 _safeApprove(_token0, _bribe, _fees0);
54 IBribe(_bribe).notifyRewardAmount(_token0, _fees0);
55 } else {
56 fees[0] = _fees0;
57 }
58 }
59
60
61 emit ClaimFees(msg.sender, claimed);
62 }

Listing 2.24: Gauge.sol

45 function claimFees(address token) external returns (uint forVote) {
46 require(voter.poolForGauge(msg.sender) == token);
47 uint balance = IERC20(token).balanceOf(address(this));
48 if (balance > 0) {
49 forVote = (balance * (PRECISION - teamRate)) / PRECISION;
50
51
52 if (forVote > 0) {
53 IERC20(token).approve(msg.sender, forVote);
54 IGauge(msg.sender).notifyRewardAmount(token, forVote);
55 }
56
57
58 IERC20(token).safeTransfer(feeTo, balance - forVote);
59 }
60}

Listing 2.25: FeeVault.sol

548 function notifyRewardAmount(address token, uint amount) external lock {
549 IVoter _voter = IVoter(voter);
550 require(_voter.isGaugeHandler(msg.sender));
551 require(token != stake);
552 require(amount > 0);
553 if (!isReward[token]) {
554 require(rewards.length < MAX_REWARD_TOKENS, "too many rewards tokens");
555 }
556 if (rewardRate[token] == 0) _writeRewardPerTokenCheckpoint(token, 0, block.timestamp);
557 (rewardPerTokenStored[token], lastUpdateTime[token]) = _updateRewardPerToken(token, type(uint)

.max, true);
558 _claimFees();
559
560
561 if (block.timestamp >= periodFinish[token]) {
562 _safeTransferFrom(token, msg.sender, address(this), amount);
563 rewardRate[token] = amount / DURATION;
564 } else {

28

565 uint _remaining = periodFinish[token] - block.timestamp;
566 uint _left = _remaining * rewardRate[token];
567 require(amount > _left);
568 _safeTransferFrom(token, msg.sender, address(this), amount);
569 rewardRate[token] = (amount + _left) / DURATION;
570 }
571 require(rewardRate[token] > 0);
572 uint balance = IERC20(token).balanceOf(address(this));
573 require(rewardRate[token] <= balance / DURATION, "Provided reward too high");
574 periodFinish[token] = block.timestamp + DURATION;
575 if (!isReward[token]) {
576 isReward[token] = true;
577 rewards.push(token);
578 }
579
580
581 emit NotifyReward(msg.sender, token, amount);
582}

Listing 2.26: BaseGauge.sol

Impact The rewards cannot be distributed to the Gauge due to the revert caused by improper require

statement.

Suggestion Ensure proper use of the re-entrancy lock.

2.2.11 Manipulated Unlocking Duration

Severity High

Status Fixed in Version 3

Introduced by Version 2

Description The function _updateVesting() within the contract Vester is implemented to record and

update the status of user-locked assets. If the OperationType is DEPOSIT_TYPE or SYNC_TYPE, the unlocking

duration will be updated with the current timestamp correspondingly. This design is intended to synchro-

nize the changes in the amount of veNOAH of the user caused by the user-related actions in the contract

VotingEscrow.

However, the function deposit_for() allows other users to increase the locking amount of a specific user,

thereby updating the unlocking duration for that user. Since the unlocking duration is calculated based on

the latest timestamp, the unlocking duration will be extended. In this case, a malicious user can simply

deposit 1 wei for others to manipulate their unlocking duration.

134 function _updateVesting(address account, OperationType _type) private {
135 uint amount = _getNextClaimableAmount(account);
136 Vesting storage _vesting = _lastVesting[account];
137 IVotingEscrow.LockedBalance memory lockedBalance = ve.locked(account);
138 _vesting.lastTime = block.timestamp;
139 _vesting.lockedAmount = uint(int256(lockedBalance.amount));
140 if (_type == OperationType.DEPOSIT_TYPE || _type == OperationType.SYNC_TYPE) {
141 uint unlock_duration = YEAR;
142 if (lockedBalance.end > block.timestamp) {

29

143 unlock_duration = YEAR - (lockedBalance.end - block.timestamp) / 6;
144 }
145 // The maximum unlocking duration is 1 year. The minimum unlocking duration is 6 months
146 _vesting.duration = unlock_duration;
147 }
148
149
150 if (amount == 0) {
151 return;
152 }
153
154
155 balances[account] -= amount;
156 totalVesting -= amount;
157
158
159 claimableAmounts[account] += amount;
160 IEsNoah(esToken).burn(amount);
161}

Listing 2.27: Vester.sol

111 function syncWithVotingEscrow(address account) external {
112 require(msg.sender == address(ve), "no voting escrow");
113 _updateVesting(account, OperationType.SYNC_TYPE);
114}

Listing 2.28: Vester.sol

408 function increase_amount(uint _value) external nonreentrant {
409 assert_not_contract(msg.sender);
410 LockedBalance memory _locked = locked[msg.sender];
411
412
413 assert(_value > 0); // dev: need non-zero value
414 require(_locked.amount > 0, "No existing lock found");
415 require(_locked.end > block.timestamp, "Cannot add to expired lock. Withdraw");
416
417
418 _deposit_for(msg.sender, _value, 0, _locked, DepositType.INCREASE_LOCK_AMOUNT);
419}

Listing 2.29: VotingEscrow.sol

314 function _deposit_for(
315 address _account,
316 uint _value,
317 uint unlock_time,
318 LockedBalance memory locked_balance,
319 DepositType deposit_type
320) internal {
321 LockedBalance memory _locked = locked_balance;
322 uint supply_before = supply;

30

323
324
325 supply = supply_before + _value;
326 LockedBalance memory old_locked;
327 (old_locked.amount, old_locked.end) = (_locked.amount, _locked.end);
328 // Adding to existing lock, or if a lock is expired - creating a new one
329 _locked.amount += int128(int256(_value));
330 if (unlock_time != 0) {
331 _locked.end = unlock_time;
332 }
333 locked[_account] = _locked;
334
335
336 // Possibilities:
337 // Both old_locked.end could be current or expired (>/< block.timestamp)
338 // value == 0 (extend lock) or value > 0 (add to lock or extend lock)
339 // _locked.end > block.timestamp (always)
340 _checkpoint(_account, old_locked, _locked);
341
342
343 address from = msg.sender;
344 if (_value != 0) {
345 assert(IERC20(token).transferFrom(from, address(this), _value));
346 }
347
348
349 _syncWithVotingEscrow(_account);
350
351
352 emit Deposit(from, _account, _value, _locked.end, deposit_type, block.timestamp);
353 emit Supply(supply_before, supply_before + _value);
354}

Listing 2.30: VotingEscrow.sol

351 function _syncWithVotingEscrow(address _account) internal {
352 EnumerableSet.AddressSet storage gauges = _attachments[_account];
353 uint _count = gauges.length();
354 for (uint i; i < _count; i++) {
355 IVotingEscrowCallback(gauges.at(i)).syncWithVotingEscrow(_account);
356 }
357 if (vest[_account]) {
358 IVotingEscrowCallback(vester).syncWithVotingEscrow(_account);
359 }
360 if (voted[_account]) {
361 IVoter(voter).poke(_account);
362 }
363 }

Listing 2.31: VotingEscrow.sol

Impact The user’s unlocking duration can be extended by a malicious user.

Suggestion Set a minimum deposit value in the function deposit_for().

31

2.2.12 Risk of Voting Power Manipulation when is_unlock is True

Severity Medium

Status Acknowledged

Introduced by Version 2

Description In the current implementation, the user is allowed to withdraw their locked tokens before the

lock end time if the global variable is_unlocked is set as true. However, the user is also allowed to lock

their tokens in this situation, which poses a risk of potential manipulation of the user’s voting power.

437 function withdraw(address _account) external nonreentrant {
438 LockedBalance memory _locked = locked[_account];
439 require(block.timestamp >= _locked.end || is_unlocked, "The lock didn’t expire and funds are

not unlocked");
440 uint value = uint(int256(_locked.amount));
441
442
443 locked[_account] = LockedBalance(0, 0);
444 uint supply_before = supply;
445 supply = supply_before - value;
446
447
448 // old_locked can have either expired <= timestamp or zero end
449 // _locked has only 0 end
450 // Both can have >= 0 amount
451 _checkpoint(_account, _locked, LockedBalance(0, 0));
452
453
454 uint time_expire = msg.sender != _account && block.timestamp >= _locked.end + WEEK
455 ? block.timestamp - _locked.end - WEEK
456 : 0;
457 uint penalty_ratio = Math.min(
458 (MULTIPLIER * penalty_factor) / 1000,
459 (MULTIPLIER * time_expire) / MAX_PENALTY_TIME
460);
461 uint penalty = (value * penalty_ratio) / MULTIPLIER;
462 if (penalty != 0) assert(IERC20(token).transfer(msg.sender, penalty));
463
464
465 assert(IERC20(token).transfer(_account, value - penalty));
466
467
468 _syncWithVotingEscrow(_account);
469
470
471 emit Withdraw(msg.sender, _account, value, penalty, block.timestamp);
472 emit Supply(supply_before, supply_before - value);
473}

Listing 2.32: VotingEscrow.sol

Impact If is_unlock is set as true, a malicious user could manipulate their own voting power via Flashloan.

Suggestion Set all users’ voting power to zero when is_unlock is true.

32

Feedback from the Project Function is_unlocked can only be modified by the privileged role admin.

The purpose of setting this state variable is to provide an actionable plan for the admin during emergencies

or exceptional situations, allowing users who have staked for a long period of time to retrieve their assets.

Once this state is activated, the project will consider migrating to a new contract.

2.2.13 Lack of Check of Function withdrawToken

Severity Medium

Status Fixed in Version 4

Introduced by Version 3

Description The function withdrawToken() allows the privileged role team to rescue the stuck tokens of

the contract for users who accidentally transfer their tokens in. However, as the staking token, esNOAH is

also allowed to be withdrawn in this function, which is risky for the stakers.

47 // to help users who accidentally send their tokens to this contract
48function withdrawToken(address _token, address account, uint amount) external {
49 require(msg.sender == ve.team(), "only team");
50 IERC20(_token).safeTransfer(account, amount);
51}

Listing 2.33: Vester.sol

Impact Team can transfer all the staked esNOAH tokens via the function withdrawToken().

Suggestion Add check to ensure esNOAH can not be withdrawn via the function withdrawToken().

2.2.14 Inconsistent Status Update during Voting Process

Severity Low

Status Fixed in Version 4

Introduced by Version 3

Description The internal function _vote() of the contract Voter is designed to synchronize the voting

weight based on the changing veNOAH balance of users and the predefined voting weights for each pool.

If the balance of veNOAH decreases to zero, the internal function _reset() will be invoked to clear all the

voting weights from the user to all pools. In this case, the function abstain() should also be invoked to

update the status of the account.

207 function _vote(address _account, address[] memory _poolVote, uint[] memory _weights) internal
{

208 IVotingEscrow ve = IVotingEscrow(_ve);
209 uint _weight = ve.balanceOf(_account);
210 if (_weight == 0) {
211 _reset(_account);
212 return;
213 }
214
215
216 _update_period();
217 uint _poolCnt = _poolVote.length;

33

218 uint _totalVoteWeight;
219 uint _usedWeight;
220 uint _oldVotingWeight;
221
222
223 for (uint i; i < _poolCnt; i++) {
224 _totalVoteWeight += _weights[i];
225 }
226
227
228 delete poolVote[_account];
229 address account = _account; //stack too deep
230 for (uint i; i < _poolCnt; i++) {
231 address _pool = _poolVote[i];
232 uint _oldVotes = votes[msg.sender][_pool];
233 if (isVotablePool[_pool]) {
234 uint _poolWeight = (_weights[i] * _weight) / _totalVoteWeight;
235 require(_poolWeight != 0);
236
237
238 poolVote[account].push(_pool);
239
240
241 if (_oldVotes == _poolWeight) continue;
242
243
244 _usedWeight += _poolWeight;
245 _oldVotingWeight += _oldVotes;
246
247
248 address _gauge = gauges[_pool];
249 _updateFor(_gauge);
250
251
252 uint _newWeights = weights[_pool] - _oldVotes + _poolWeight;
253 weights[_pool] = _newWeights;
254 votes[account][_pool] = _poolWeight;
255
256
257 IBribe(IGauge(_gauge).bribe())._voted(_poolWeight, account);
258
259
260 emit Voted(account, _pool, _poolWeight);
261 emit PoolVoted(_pool, _newWeights);
262 } else {
263 votes[account][_pool] = 0;
264 emit Abstained(account, _oldVotes);
265 }
266 }
267 if (_oldVotingWeight == 0 && _usedWeight > 0) ve.voting(_account);
268 uint newTotalWeight = totalWeight + _usedWeight - _oldVotingWeight;
269 totalWeight = newTotalWeight;
270 emit TotalWeight(newTotalWeight);

34

271}

Listing 2.34: Voter.sol

152 function reset() external onlyNewEpoch {
153 lastVoted[msg.sender] = block.timestamp;
154 _reset(msg.sender);
155 IVotingEscrow(_ve).abstain(msg.sender);
156}

Listing 2.35: Voter.sol

Impact The statuses of users may be incorrect.

Suggestion Invoke the function abstain() after _reset() in the function _vote().

2.2.15 Miscalculated poolWeight with Duplicated Pool Voting

Severity Medium

Status Fixed in Version 4

Introduced by Version 3

Description In the function _vote(), the voting weights for users in the pool are not assigned cumula-

tively. This leads to inaccuracies when a user casts multiple votes for the same pool during the voting

process, resulting in an incorrect voting weight for that pool.

207 function _vote(address _account, address[] memory _poolVote, uint[] memory _weights) internal
{

208 IVotingEscrow ve = IVotingEscrow(_ve);
209 uint _weight = ve.balanceOf(_account);
210 if (_weight == 0) {
211 _reset(_account);
212 return;
213 }
214
215
216 _update_period();
217 uint _poolCnt = _poolVote.length;
218 uint _totalVoteWeight;
219 uint _usedWeight;
220 uint _oldVotingWeight;
221
222
223 for (uint i; i < _poolCnt; i++) {
224 _totalVoteWeight += _weights[i];
225 }
226
227
228 delete poolVote[_account];
229 address account = _account; //stack too deep
230 for (uint i; i < _poolCnt; i++) {
231 address _pool = _poolVote[i];
232 uint _oldVotes = votes[msg.sender][_pool];

35

233 if (isVotablePool[_pool]) {
234 uint _poolWeight = (_weights[i] * _weight) / _totalVoteWeight;
235 require(_poolWeight != 0);
236
237
238 poolVote[account].push(_pool);
239
240
241 if (_oldVotes == _poolWeight) continue;
242
243
244 _usedWeight += _poolWeight;
245 _oldVotingWeight += _oldVotes;
246
247
248 address _gauge = gauges[_pool];
249 _updateFor(_gauge);
250
251
252 uint _newWeights = weights[_pool] - _oldVotes + _poolWeight;
253 weights[_pool] = _newWeights;
254 votes[account][_pool] = _poolWeight;
255
256
257 IBribe(IGauge(_gauge).bribe())._voted(_poolWeight, account);
258
259
260 emit Voted(account, _pool, _poolWeight);
261 emit PoolVoted(_pool, _newWeights);
262 } else {
263 votes[account][_pool] = 0;
264 emit Abstained(account, _oldVotes);
265 }
266 }
267 if (_oldVotingWeight == 0 && _usedWeight > 0) ve.voting(_account);
268 uint newTotalWeight = totalWeight + _usedWeight - _oldVotingWeight;
269 totalWeight = newTotalWeight;
270 emit TotalWeight(newTotalWeight);
271}

Listing 2.36: Voter.sol

Impact User’s vote weight may be incorrect.

Suggestion Update the vote weight cumulatively instead of the direct assignment.

2.2.16 Incorrect Reward Calculations from Inappropriate Check

Severity High

Status Fixed in Version 4

Introduced by Version 3

36

Description In the function _vote() of the contract Voter, the _poolWeight may be 0 due to arithmetic

round down. In this scenario, any attempt to invoke the function _vote() for this account will result in a

failure. A malicious user can craft a _poolWeight that decreases to zero during the voting process, thereby

ensuring that poke() (which invokes _vote()) calls can not be made to his/her account until the voting

power decreases to zero.

As a result, the user’s voting record within the contract Bribe will remain static across multiple epochs,

which allows him/her to gain more rewards than anticipated.

207 function _vote(address _account, address[] memory _poolVote, uint[] memory _weights) internal
{

208 IVotingEscrow ve = IVotingEscrow(_ve);
209 uint _weight = ve.balanceOf(_account);
210 if (_weight == 0) {
211 _reset(_account);
212 return;
213 }
214
215
216 _update_period();
217 uint _poolCnt = _poolVote.length;
218 uint _totalVoteWeight;
219 uint _usedWeight;
220 uint _oldVotingWeight;
221
222
223 for (uint i; i < _poolCnt; i++) {
224 _totalVoteWeight += _weights[i];
225 }
226
227
228 delete poolVote[_account];
229 address account = _account; //stack too deep
230 for (uint i; i < _poolCnt; i++) {
231 address _pool = _poolVote[i];
232 uint _oldVotes = votes[msg.sender][_pool];
233 if (isVotablePool[_pool]) {
234 uint _poolWeight = (_weights[i] * _weight) / _totalVoteWeight;
235 require(_poolWeight != 0);
236
237
238 poolVote[account].push(_pool);
239
240
241 if (_oldVotes == _poolWeight) continue;
242
243
244 _usedWeight += _poolWeight;
245 _oldVotingWeight += _oldVotes;
246
247
248 address _gauge = gauges[_pool];
249 _updateFor(_gauge);

37

250
251
252 uint _newWeights = weights[_pool] - _oldVotes + _poolWeight;
253 weights[_pool] = _newWeights;
254 votes[account][_pool] = _poolWeight;
255
256
257 IBribe(IGauge(_gauge).bribe())._voted(_poolWeight, account);
258
259
260 emit Voted(account, _pool, _poolWeight);
261 emit PoolVoted(_pool, _newWeights);
262 } else {
263 votes[account][_pool] = 0;
264 emit Abstained(account, _oldVotes);
265 }
266 }
267 if (_oldVotingWeight == 0 && _usedWeight > 0) ve.voting(_account);
268 uint newTotalWeight = totalWeight + _usedWeight - _oldVotingWeight;
269 totalWeight = newTotalWeight;
270 emit TotalWeight(newTotalWeight);
271}

Listing 2.37: Voter.sol

195 function poke(address _account) external {
196 address[] memory _poolVote = poolVote[_account];
197 uint _poolCnt = _poolVote.length;
198 uint[] memory _weights = new uint[](_poolCnt);
199
200
201 for (uint i; i < _poolCnt; i++) {
202 _weights[i] = votes[_account][_poolVote[i]];
203 }
204
205
206 _vote(_account, _poolVote, _weights);
207}

Listing 2.38: Voter.sol

250 function getReward(address account, address[] memory tokens) external lock {
251 address _voter = voter;
252 require(msg.sender == account || msg.sender == _voter);
253
254
255 IVoter(_voter).poke(account);
256 _claimFees();
257
258
259 uint length = tokens.length;
260 for (uint i; i < length; i++) {
261 _claim(tokens[i], account);

38

262 }
263}

Listing 2.39: Bribe.sol

Impact Malicious users are able to earn more rewards than expected.

Suggestion Remove the redundant check.

2.3 Additional Recommendation

2.3.1 Lack of Zero Address Check

Status Confirmed

Introduced by Version 1

Description Lack of zero address check before updating address variables in multiple places, such as

function setEmergencyCouncil() and constructor() in contract Voter.

100 function setEmergencyCouncil(address _council) public {
101 require(msg.sender == emergencyCouncil);
102 emergencyCouncil = _council;
103}

Listing 2.40: Voter.sol

161 constructor(address __ve, address _base) {
162 _ve = __ve;
163 base = _base;
164 minter = msg.sender;
165 emergencyCouncil = msg.sender;
166 isGaugeHandler[address(this)] = true;
167}

Listing 2.41: Voter.sol

Suggestion Add zero address checks accordingly.

2.3.2 Redundant Functions

Status Fixed in Version 2

Introduced by Version 1

Description In the contract Voter, there are two identical functions with different names, one named

distro() while the other named distribute().

399 function distro() external {
400 distribute(0, pools.length);
401}

Listing 2.42: Voter.sol

39

403 function distribute() external {
404 distribute(0, pools.length);
405}

Listing 2.43: Voter.sol

Suggestion Remove the redundant function.

2.3.3 Redundant Invocation of Function _updateFor

Status Fixed in Version 2

Introduced by Version 1

Description The function setVotableGauge() allows the privileged gov to enable a Gauge that can not be

voted for, or disable a votable Gauge. When the gov tries to disable a votable Gauge, the function will first

distribute unreleased rewards by invoking the function distribute(), and invoke the function _updateFor()

after that to update the reward of the Gauge. However, the function distribute() itself has already invoked

the function _updateFor(), thus the function _updateFor() in line 126 is redundant.

119 function setVotableGauge(address _gauge, bool _isActive) external onlyGov {
120 require(isGauge[_gauge]);
121 require(isVotableGauge[_gauge] != _isActive);
122 isVotableGauge[_gauge] = _isActive;
123 if (!_isActive) {
124 distribute(_gauge);
125
126 _updateFor(_gauge);
127 address _pool = poolForGauge[_gauge];
128 uint newTotalWeight = totalWeight - weights[_pool];
129 totalWeight = newTotalWeight;
130 weights[_pool] = 0;
131
132
133 emit PoolVoted(_pool, 0);
134 emit TotalWeight(newTotalWeight);
135 }
136 emit SetVotableGauge(_gauge, _isActive);
137 }

Listing 2.44: Voter.sol

388 function distribute(address _gauge) public lock {
389 IMinter(minter).update_period();
390 _updateFor(_gauge); // should set claimable to 0 if killed
391 uint _claimable = claimable[_gauge];
392 if (_claimable > IGauge(_gauge).left(base) && _claimable / DURATION > 0) {
393 claimable[_gauge] = 0;
394 IGauge(_gauge).notifyRewardAmount(base, _claimable);
395 emit DistributeReward(msg.sender, _gauge, _claimable);
396 }
397}

40

Listing 2.45: Voter.sol

Suggestion Remove the redundant function.

2.3.4 Meaningless Usage of max

Status Fixed in Version 2

Introduced by Version 1

Description There are several meaningless usages of function Max() in the contract RewardDistributor.

The return value of Max(uint(X), 0) will always be X itself.

134 return Math.max(uint(int256(pt.bias - pt.slope * (int128(int256(_timestamp - pt.ts))))), 0);

Listing 2.46: RewardDistributor.sol

153 ve_supply[t] = Math.max(uint(int256(pt.bias - pt.slope * dt)), 0);

Listing 2.47: RewardDistributor.sol

203 uint balance_of = Math.max(uint(int256(old_user_point.bias - dt * old_user_point.slope)), 0);

Listing 2.48: RewardDistributor.sol

260 uint balance_of = Math.max(uint(int256(old_user_point.bias - dt * old_user_point.slope)), 0);

Listing 2.49: RewardDistributor.sol

Suggestion Return the X directly instead of invoking the function Max().

2.3.5 Inappropriate Variable Naming

Status Confirmed

Introduced by Version 1

Description The name of variable bribeForGauge in the contract Voter is confusing because it uses the

key of bribe to index the gauge in the function registerGauge. This is semantically inconsistent with the

variable poolForGauge, which uses gauge as the key to index the pool.

Suggestion Change bribeForGauge to gaugeForBribe.

2.3.6 Lack of Check for releaseFactor and pledgeFactor

Status Confirmed

Introduced by Version 1

Description In the contract Minter, the increase of releaseFactor and pledgeFactor will increase the

number of tokens minted in each epoch. They can be updated via the function setReleaseFactor()

and setPledgeFactor() respectively by the privileged role Owner. However, there is no check to limit

the maximum value of them.

41

130 function setReleaseFactor(uint _releaseFactor) external override onlyOwner {
131 releaseFactor = _releaseFactor;
132}

Listing 2.50: Minter.sol

134 function setPledgeFactor(uint _pledgeFactor) external override onlyOwner {
135 pledgeFactor = _pledgeFactor;
136}

Listing 2.51: Minter.sol

Suggestion Add a check to ensure the releaseFactor and pledgeFactor will never exceed a reasonable

maximum value.

2.3.7 Redundant Check in Function mint_marketing

Status Fixed in Version 2

Introduced by Version 1

Description In the function mint_marketing() of the contract Minter, there are two identical checks (i.e.,

require(amount > 0); and require(amount > 0, "fully minted");) , which are redundant.

138 function mint_marketing(uint amount, address receiver) external override {
139 require(msg.sender == marketer, "not marketer");
140 require(receiver != address(0), "zero address");
141 require(amount > 0);
142
143
144 uint _marketing_minted = marketing_minted;
145 uint _left = MARKETING - _marketing_minted;
146 if (amount > _left) {
147 amount = _left;
148 }
149 require(amount > 0, "fully minted");
150 marketing_minted = _marketing_minted + amount;
151 _noah.mint(receiver, amount);
152 emit MarketingMint(msg.sender, amount);
153}

Listing 2.52: Minter.sol

Suggestion Remove the redundant check.

2.4 Notes

2.4.1 Potential Centralization Problem

Status Confirmed

Introduced by version 1

42

Description This project has potential centralization problems. The privileged role team can change the

releaseFactor and pledgeFactor impacts the volume of esNoah minted in each epoch . Meanwhile, it can

also change the teamRate affects the transaction fee rewards received by users. The privileged role gov

can change the whitelist token, which changes the reward token users receive in the contract Bribe. We

suggest these roles should be in multi-signature. and they are out of scope for auditing.

2.4.2 Timely deployment contracts

Status Confirmed

Introduced by version 1

Description The contract VotingEscrow, FeeVault, Minter, and RewardDistributor within the project all

initialize the relevant variables in the contracts using the current block.timestamp at the time of deploy-

ment. The system’s token minting and distribution depend on the time variables in these contracts being

synchronized within the same week. If they are not consistent, users may receive an incorrect number of

rewards.

2.4.3 Non-Linear Unlocking in Multiple Claims

Status Confirmed

Introduced by version 1

Description The function _getNextClaimableAmount() in the contract vester is designed to compute

the amount of tokens that a user can unlock at the moment. As per the system’s design, linear unlocking

operates in a linear fashion for a single claim cycle, but it does not maintain this linearity when the user

makes multiple claims. It unlocks linearly based on the quantity of remaining esNOAH that are yet to be

unlocked.

2.4.4 Token Release for Team and VC without Time Restrictions

Status Confirmed

Introduced by version 2

Description In the contract Minter, the function mint_team() and mint_vc() are utilized to mint NOAH and

esNOAH tokens for the team and the vc respectively. However, these functions lack time-staggered batches

unlocking checks. Consequently, the corresponding privileged role team has the ability to mint NOAH and

esNOAH tokens to anyone at any time.

2.4.5 Potential Inequity Function poke() of the Contract Voter

Status Confirmed

Introduced by version 1

Description The public function poke() in the contract Voter allows anyone to update votes of any

account according to the original proportion as veNOAH decreases linearly over time.It will also update

the voting amount of the account in the contract Bribe. Since the contract Bribe calculates the rewards of

the voter based on the latest votes in the epoch, the final voting rewards that the voter can receive depend

on not only their veNOAH amount but also on whether they have been “poked” by others in that epoch.

43

This mechanism may indeed appear unfair to ordinary users who are unaware of its workings, as they may

be poked by others before the end of an epoch while some others are not. It introduces an additional layer

of subjectivity and potential bias. The fairness and transparency of the mechanism could be compromised

if it relies on manual intervention.

2.4.6 Incompatible Tokens

Status Confirmed

Introduced by version 1

Description Elastic supply tokens are not compatible with the protocol. They could dynamically adjust

their price, supply, user’s balance, etc. Such as inflation tokens, deflation tokens, rebasing tokens, and

so forth. The inconsistency could result in security impacts if some critical operations are based on the

recorded amount of transferred tokens.

44

	1 Introduction
	1.1 About Target Contracts
	1.2 Disclaimer
	1.3 Procedure of Auditing
	1.3.1 Software Security
	1.3.2 DeFi Security
	1.3.3 NFT Security
	1.3.4 Additional Recommendation

	1.4 Security Model

	2 Findings
	2.1 Software Security
	2.1.1 Index out of Bounds for the Empty Array
	2.1.2 Improper Use of the Keyword Memory
	2.1.3 Incorrect Index in getPriorSupplyIndex
	2.1.4 Potential Loop from Self-Calling
	2.1.5 Incorrect Validation of Withdrawal Rate

	2.2 DeFi Security
	2.2.1 Miscalculated Bribe Rewards (I)
	2.2.2 Miscalculated Bribe Rewards (II)
	2.2.3 Timely invocation of update_period() before setReleaseFactor() and setPledgeFactor()
	2.2.4 Timely invocation of distribute() in notifyRewardAmount()
	2.2.5 Reward for Killed Gauge Being Locked
	2.2.6 Lack of Checks for Gauges that Do Not Support Voting
	2.2.7 Reward Token can be Managed by Users with Different Privileges
	2.2.8 Timely invocation of claimfees() in Gauge
	2.2.9 Failed to Notify Rewards due to the Reentrancy Lock
	2.2.10 Swap Fee Rewards cannotDistribution Mechanism does not Work
	2.2.11 Manipulated Unlocking Duration
	2.2.12 Risk of Voting Power Manipulation when is_unlock is True
	2.2.13 Lack of Check of Function withdrawToken
	2.2.14 Inconsistent Status Update during Voting Process
	2.2.15 Miscalculated poolWeight with Duplicated Pool Voting
	2.2.16 Incorrect Reward Calculations from Inappropriate Check

	2.3 Additional Recommendation
	2.3.1 Lack of Zero Address Check
	2.3.2 Redundant Functions
	2.3.3 Redundant Invocation of Function _updateFor
	2.3.4 Meaningless Usage of max
	2.3.5 Inappropriate Variable Naming
	2.3.6 Lack of Check for releaseFactor and pledgeFactor
	2.3.7 Redundant Check in Function mint_marketing

	2.4 Notes
	2.4.1 Potential Centralization Problem
	2.4.2 Timely deployment contracts
	2.4.3 Non-Linear Unlocking in Multiple Claims
	2.4.4 Token Release for Team and VC without Time Restrictions
	2.4.5 Potential Inequity Function poke() of the Contract Voter
	2.4.6 Incompatible Tokens

		2023-07-10T16:52:24+0800
	BlockSec Audit Team

