
Security Audit Report for VECake Gauges
Contracts

Date: November 27, 2023

Version: 1.0

Contact: contact@blocksec.com

mailto:contact@blocksec.com

Contents

1 Introduction 1
1.1 About Target Contracts . 1

1.2 Disclaimer . 1

1.3 Procedure of Auditing . 2

1.3.1 Software Security . 2

1.3.2 DeFi Security . 2

1.3.3 NFT Security . 2

1.3.4 Additional Recommendation . 3

1.4 Security Model . 3

2 Findings 4
2.1 Software Security . 4

2.1.1 Inconsistent lock time limits . 4

2.1.2 Incorrect operator precedence . 5

2.1.3 Flawed code logic that cannot update the first added gauge info 5

2.1.4 Lack of sanity check on admin voting weight . 7

2.1.5 Lack of updates on gaugeChangesWeight and gaugeTypeChangesSum 8

2.2 DeFi Security . 8

2.2.1 Inconsistent designs related to boostMultiplier 8

2.3 Additional Recommendation . 9

2.3.1 Fix typos . 9

2.3.2 Remove debugging codes . 10

2.4 Note . 10

2.4.1 Potential centralization risk . 10

2.4.2 Ensure the proper use of function totalSupplyAtTime and balanceOfAtTime 10

i

Report Manifest

Item Description
Client Pancake
Target VECake Gauges Contracts

Version History

Version Date Description
1.0 November 27, 2023 First Release

About BlockSec BlockSec focuses on the security of the blockchain ecosystem and collaborates with

leading DeFi projects to secure their products. BlockSec is founded by top-notch security researchers and

experienced experts from both academia and industry. They have published multiple blockchain security

papers in prestigious conferences, reported several zero-day attacks of DeFi applications, and successfully

protected digital assets that are worth more than 5 million dollars by blocking multiple attacks. They can

be reached at Email, Twitter and Medium.

ii

https://www.blocksec.com
mailto:contact@blocksec.com
https://twitter.com/BlockSecTeam
https://blocksecteam.medium.com/

Chapter 1 Introduction

1.1 About Target Contracts

Information Description
Type Smart Contract
Language Solidity
Approach Semi-automatic and manual verification

The target of this audit is the code repository for VECake Gauges Contracts1 of Pancake. The VECake

Gauges Contracts include both the VECake and GaugeVoting contracts. Users can deposit LP tokens into

VECake to acquire voting power, and subsequently vote for gauge weights in the GaugeVoting contract.

Additionally, the VECake contract provides interfaces for users migrating from the CakePool contract to

the VECake contract. It is worth noting that external dependencies, such as OpenZeppelin’s library, are

assumed to be reliable and are therefore not included in the scope of this audit.

The auditing process is iterative. Specifically, we would audit the commits that fix the discovered

issues. If there are new issues, we will continue this process. The commit SHA values during the audit are

shown in the following table. Our audit report is responsible for the code in the initial version (Version 1),

as well as new code (in the following versions) to fix issues in the audit report.

Project Version Commit Hash

VECake Gauges Contracts
Version 1 7974a13e369fee4f4eb04143d54cf14535cab3c1

Version 2 3a66761d091a7ecb2e41d4c6c08ce5f5c95f7b88

Version 3 93a746c8fb3e0d23dd0292f4fa42866c565a6275

1.2 Disclaimer

This audit report does not constitute investment advice or a personal recommendation. It does not

consider, and should not be interpreted as considering or having any bearing on, the potential economics

of a token, token sale or any other product, service or other asset. Any entity should not rely on this report

in any way, including for the purpose of making any decisions to buy or sell any token, product, service or

other asset.

This audit report is not an endorsement of any particular project or team, and the report does not

guarantee the security of any particular project. This audit does not give any warranties on discovering

all security issues of the smart contracts, i.e., the evaluation result does not guarantee the nonexistence

of any further findings of security issues. As one audit cannot be considered comprehensive, we always

recommend proceeding with independent audits and a public bug bounty program to ensure the security

of smart contracts.

The scope of this audit is limited to the code mentioned in Section 1.1. Unless explicitly specified,

the security of the language itself (e.g., the solidity language), the underlying compiling toolchain and the

computing infrastructure are out of the scope.

1
https://github.com/Chef-Snoopy/gauges-contracts

1

https://github.com/Chef-Snoopy/gauges-contracts

1.3 Procedure of Auditing

We perform the audit according to the following procedure.

- Vulnerability Detection We first scan smart contracts with automatic code analyzers, and then

manually verify (reject or confirm) the issues reported by them.

- Semantic Analysis We study the business logic of smart contracts and conduct further investiga-

tion on the possible vulnerabilities using an automatic fuzzing tool (developed by our research team).

We also manually analyze possible attack scenarios with independent auditors to cross-check the

result.

- Recommendation We provide some useful advice to developers from the perspective of good

programming practice, including gas optimization, code style, and etc.

We show the main concrete checkpoints in the following.

1.3.1 Software Security

∗ Reentrancy

∗ DoS

∗ Access control

∗ Data handling and data flow

∗ Exception handling

∗ Untrusted external call and control flow

∗ Initialization consistency

∗ Events operation

∗ Error-prone randomness

∗ Improper use of the proxy system

1.3.2 DeFi Security

∗ Semantic consistency

∗ Functionality consistency

∗ Permission management

∗ Business logic

∗ Token operation

∗ Emergency mechanism

∗ Oracle security

∗ Whitelist and blacklist

∗ Economic impact

∗ Batch transfer

1.3.3 NFT Security

∗ Duplicated item

∗ Verification of the token receiver

∗ Off-chain metadata security

2

1.3.4 Additional Recommendation

∗ Gas optimization

∗ Code quality and style�
Note The previous checkpoints are the main ones. We may use more checkpoints during the auditing

process according to the functionality of the project.

1.4 Security Model

To evaluate the risk, we follow the standards or suggestions that are widely adopted by both industry

and academy, including OWASP Risk Rating Methodology 2 and Common Weakness Enumeration 3.

The overall severity of the risk is determined by likelihood and impact. Specifically, likelihood is used to

estimate how likely a particular vulnerability can be uncovered and exploited by an attacker, while impact

is used to measure the consequences of a successful exploit.

In this report, both likelihood and impact are categorized into two ratings, i.e., high and low respec-

tively, and their combinations are shown in Table 1.1.

Table 1.1: Vulnerability Severity Classification

Im
pa

ct

High High Medium

Low Medium Low

High Low

Likelihood

Accordingly, the severity measured in this report are classified into three categories: High, Medium,

Low. For the sake of completeness, Undetermined is also used to cover circumstances when the risk

cannot be well determined.

Furthermore, the status of a discovered item will fall into one of the following four categories:

- Undetermined No response yet.

- Acknowledged The item has been received by the client, but not confirmed yet.

- Confirmed The item has been recognized by the client, but not fixed yet.

- Fixed The item has been confirmed and fixed by the client.

2https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
3https://cwe.mitre.org/

3

https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
https://cwe.mitre.org/

Chapter 2 Findings

In total, we find six potential issues. Besides, we also have two recommendations and two notes.

- High Risk: 3

- Low Risk: 3

- Recommendation: 2

- Note: 2

ID Severity Description Category Status
1 Low Inconsistent lock time limits Software Security Fixed
2 High Incorrect operator precedence Software Security Fixed

3 Low
Flawed code logic that cannot update the first
added gauge info

Software Security Fixed

4 Low Lack of sanity check on admin voting weight Software Security Fixed

5 High
Lack of updates on gaugeChangesWeight and
gaugeTypeChangesSum

Software Security Fixed

6 High
Inconsistent designs related to
boostMultiplier

DeFi Security Fixed

7 - Fix typos Recommendation Fixed
8 - Remove debugging codes Recommendation Fixed
9 - Potential centralization risk Note -

10 -
Ensure the proper use of function
totalSupplyAtTime and balanceOfAtTime

Note -

The details are provided in the following sections.

2.1 Software Security

2.1.1 Inconsistent lock time limits

Severity Low

Status Fixed in Version 2

Introduced by Version 1

Description The MAX_LOCK in the VECake contract is defined as 53 weeks, while the MAX_LOCK_TIME is 104

weeks in the GaugeVoting contract, causing an inconsistency.

98 // MAX_LOCK 53 weeks - 1 seconds

99 uint256 public constant MAX_LOCK = (53 * WEEK) - 1;

Listing 2.1: VECake.sol

28 uint256 constant MAX_LOCK_TIME = WEEK * 104;

Listing 2.2: GaugeVoting.sol

Impact N/A

Suggestion Revise the code accordingly.

4

2.1.2 Incorrect operator precedence

Severity High

Status Fixed in Version 2

Introduced by Version 1

Description The _vote1 function in the GaugeVoting contract incorrectly updates the bias value.

693 function _vote1(bytes32 gauge_hash, VotedSlope memory old_slope, VotedSlope memory new_slope,

uint256 old_bias, uint256 new_bias) internal {

694 uint256 next_time = (block.timestamp + WEEK) / WEEK * WEEK;

695
696 uint256 gauge_type = gaugeTypes_[gauge_hash] - 1;

697 require(gauge_type >= 0, "Gauge not added");

698
699 // Remove old and schedule new slope changes

700 // Remove slope changes for old slopes

701 // Schedule recording of initial slope for next_time

702 uint256 old_weight_bias = _getWeight(gauge_hash);

703 uint256 old_weight_slope = gaugePointsWeight[gauge_hash][next_time].slope;

704 uint256 old_sum_bias = _getTypeSum(gauge_type);

705 uint256 old_sum_slope = gaugeTypePointsSum[gauge_type][next_time].slope;

706
707 gaugePointsWeight[gauge_hash][next_time].bias = old_weight_bias + new_bias > old_bias ?

old_weight_bias + new_bias : old_bias - old_bias;

708 gaugeTypePointsSum[gauge_type][next_time].bias = old_sum_bias + new_bias > old_bias ?

old_sum_bias + new_bias : old_bias - old_bias;

Listing 2.3: GaugeVoting.sol

The bias is calculated as:

bias = max(old_weight_bias + new_bias, old_bias) - old_bias

Therefore, Line 707 should be:

(old_weight_bias + new_bias > old_bias ? old_weight_bias + new_bias : old_bias) - old_bias

The same issue also exists in the _vote2 and _vote3 functions.

Impact Incorrect operator precedence will lead to unexpected behaviors.

Suggestion Revise the code accordingly.

2.1.3 Flawed code logic that cannot update the first added gauge info

Severity Low

Status Fixed in Version 2

Introduced by Version 1

Description The updateGaugeInfo function in the GaugeVoting contract updates the gauge info. Line

213 requires gaugeIndex[gauge_hash]-1 to be greater than or equal to 0, which will underflow for the first

gauge at index 0. This causes the function to revert when trying to update gauges[0].

5

207 function updateGaugeInfo(address gauge_addr, uint256 _pid, address _masterChef, uint256

_chainId, uint256 _boostMultiplier, uint256 _maxVoteCap) external onlyOwner {

208 require(_masterChef != address(0), "masterChef address is empty");

209 require(_boostMultiplier >= 100 && _boostMultiplier <= 500);

210 require(_maxVoteCap >= 0 && _maxVoteCap <= 10000);

211
212 bytes32 gauge_hash = keccak256(abi.encodePacked(gauge_addr, _chainId));

213 uint256 idx = gaugeIndex_[gauge_hash] - 1;

214 require(idx >= 0, "Gauge not added");

215
216 gauges[idx] = GaugeInfo({

217 pairAddress: gauge_addr,

218 pid: _pid,

219 masterChef: _masterChef,

220 chainId: _chainId,

221 boostMultiplier: _boostMultiplier,

222 maxVoteCap: _maxVoteCap

223 });

224
225 emit UpdateGaugeInfo(gauge_hash, _pid, _masterChef, _chainId, _boostMultiplier, _maxVoteCap

);

226 }

Listing 2.4: GaugeVoting.sol

155 function addGauge(address gauge_addr, uint256 _type, uint256 _weight, uint256 _pid, address

_masterChef, uint256 _chainId, uint256 _boostMultiplier, uint256 _maxVoteCap) external

onlyOwner {

156 require(_type >= 0 && _type < gaugeTypes, "Invalid gauge type");

157 bytes32 gauge_hash = keccak256(abi.encodePacked(gauge_addr, _chainId));

158 require(gaugeTypes_[gauge_hash] == 0, "Gauge already added"); // dev: cannot add the same

twice

159 require(_masterChef != address(0), "masterChef address is empty");

160 require(_boostMultiplier >= 100 && _boostMultiplier <= 500);

161 require(_maxVoteCap >= 0 && _maxVoteCap <= 10000);

162
163 uint256 n = gaugeCount;

164 gaugeCount = n + 1;

165 gauges[uint256(n)] = GaugeInfo({

166 pairAddress: gauge_addr,

167 pid: _pid,

168 masterChef: _masterChef,

169 chainId: _chainId,

170 boostMultiplier: _boostMultiplier,

171 maxVoteCap: _maxVoteCap

172 });

173
174 gaugeIndex_[gauge_hash] = n;

175 gaugeTypes_[gauge_hash] = _type + 1;

Listing 2.5: GaugeVoting.sol

Impact The first added gauge info can be never updated.

6

Suggestion Revise the code accordingly.

2.1.4 Lack of sanity check on admin voting weight

Severity Low

Status Fixed in Version 2

Introduced by Version 1

Description The voteFromAdmin function in the GaugeVoting contract currently lacks a sanity check on

the _admin_weight parameter. This value is used to specify the voting weight proportion, which should be

between 0 and 10,000.

323 function voteFromAdmin(address _gauge_addr, uint256 _admin_weight, uint256 _end, uint256

_chainId) external onlyOwner {

324 uint256 nextTime = (block.timestamp + WEEK) / WEEK * WEEK;

325 require(_end > nextTime, "Your end timestamp expires too soon");

326
327 bytes32 gauge_hash = keccak256(abi.encodePacked(_gauge_addr, _chainId));

328
329 // Prepare slopes and biases in memory

330 VotedSlope memory old_slope = voteUserSlopes[address(0)][gauge_hash];

331 uint256 old_bias = old_slope.slope;

332
333 uint256 idx = gaugeIndex_[gauge_hash];

334 require(idx >= 0, "Gauge not added");

335
336 GaugeInfo memory info = gauges[idx];

337 uint256 _admin_weight2 = _admin_weight;

338
339 VotedSlope memory new_slope = VotedSlope({

340 slope: gaugePointsTotal[totalLastScheduled] * _admin_weight2 * 20 / 1000000,

341 end: _end,

342 power: _admin_weight2

343 });

344 uint256 new_bias = new_slope.slope;

345
346 if (old_slope.end > nextTime) {

347 _vote1(gauge_hash, old_slope, new_slope, old_bias, new_bias);

348 } else {

349 _vote2(gauge_hash, new_slope, old_bias, new_bias);

350 }

351 if (old_slope.end > block.timestamp) {

352 _vote3(gauge_hash, old_slope, old_bias, new_bias);

353 }

354
355 _getTotal();

356
357 emit VoteForGaugeFromAdmin(block.timestamp, msg.sender, gauge_hash, new_slope.power);

358 }

Listing 2.6: GaugeVoting.sol

7

Impact The admin may mistakenly gain too much voting power.

Suggestion Add sanity check on the admin voting weight.

2.1.5 Lack of updates on gaugeChangesWeight and gaugeTypeChangesSum

Severity High

Status Fixed in Version 2

Introduced by Version 1

Description Two mappings, gaugeChangesWeight and gaugeTypeChangesSum, of the GaugeVoting con-

tract, are never modified. Specifically, they should be updated within the _vote1, _vote2, and _vote3 func-

tions to track changes in the slope. Although these variables are used in functions such as _getTypeSum

and _getWeight, their values persistently remain at zero.

92 /// @dev type_id -> time -> slope

93 mapping(uint256 => mapping(uint256 => uint256)) public gaugeTypeChangesSum;

Listing 2.7: GaugeVoting.sol

85 /// @dev gauge_hash -> time -> slope

86 mapping(bytes32 => mapping(uint256 => uint256)) public gaugeChangesWeight;

Listing 2.8: GaugeVoting.sol

Impact Corresponding calculations will be wrong due to the lack of updates.

Suggestion Revise the code accordingly.

2.2 DeFi Security

2.2.1 Inconsistent designs related to boostMultiplier

Severity High

Status Fixed in Version 3

Introduced by Version 1

Description The GaugeVoting contract allocates a boostMultiplier for each gauge to calculate the

weights. However, there are some inconsistent designs around the use of boostedMultiplier. For ex-

ample, both gaugeTypePointsSum and gaugePointsTotal are calculated based on the boostedMultiplier

when adding a new gauge.

179 if (_weight > 0) {

180 uint256 typeWeight = _getTypeWeight(_type);

181 uint256 oldTypeSum = _getTypeSum(_type);

182 uint256 oldTotal = _getTotal();

183
184 gaugeTypePointsSum[_type][nextTime].bias = _weight * _boostMultiplier + oldTypeSum;

185 gaugeTypeSumLastScheduled[_type] = nextTime;

186 gaugePointsTotal[nextTime] = oldTotal + typeWeight * _weight * _boostMultiplier;

187 totalLastScheduled = nextTime;

188

8

189 gaugePointsWeight[gauge_hash][nextTime].bias = _weight;

190 }

Listing 2.9: GaugeVoting.sol

Therefore, if a boostedMultiplier is updated in the updateGaugeInfo function, these two variables

should be recalculated correspondingly. However, at present, they are not updated as necessary.

207 function updateGaugeInfo(address gauge_addr, uint256 _pid, address _masterChef, uint256

_chainId, uint256 _boostMultiplier, uint256 _maxVoteCap) external onlyOwner {

208 require(_masterChef != address(0), "masterChef address is empty");

209 require(_boostMultiplier >= 100 && _boostMultiplier <= 500);

210 require(_maxVoteCap >= 0 && _maxVoteCap <= 10000);

211
212 bytes32 gauge_hash = keccak256(abi.encodePacked(gauge_addr, _chainId));

213 uint256 idx = gaugeIndex_[gauge_hash] - 1;

214 require(idx >= 0, "Gauge not added");

215
216 gauges[idx] = GaugeInfo({

217 pairAddress: gauge_addr,

218 pid: _pid,

219 masterChef: _masterChef,

220 chainId: _chainId,

221 boostMultiplier: _boostMultiplier,

222 maxVoteCap: _maxVoteCap

223 });

224
225 emit UpdateGaugeInfo(gauge_hash, _pid, _masterChef, _chainId, _boostMultiplier, _maxVoteCap

);

226 }

Listing 2.10: GaugeVoting.sol

Additionally, there are inconsistencies in other places related to weight points about whether or not to

use the boostedMultiplier.

Impact Inconsistent usages could potentially lead to unexpected consequences.

Suggestion Revise the code accordingly.

2.3 Additional Recommendation

2.3.1 Fix typos

Status Fixed in Version 2

Introduced by Version 1

Description “inilization should be “initialization”.

113 // Cake pool migation inilization flag

114 bool public inilization;

Listing 2.11: VECake.sol

9

Impact N/A

Suggestion Fix the typo.

2.3.2 Remove debugging codes

Status Fixed in Version 3

Introduced by Version 2

Description There are some debugging codes that should be removed.

8 import "hardhat/console.sol";

Listing 2.12: GaugeVoting.sol

Impact N/A

Suggestion Remove the debugging codes.

2.4 Note

2.4.1 Potential centralization risk

Description The owner of the VECake and GaugeVoting contracts possesses notable privileges to modify

critical configurations. For instance, the owner can enable emergency withdrawals, add gauges, update

weights, and more. This concentration of power introduces a single point of failure. If an attacker were to

compromise the owner, the entire system could potentially be incapacitated.

Feedback from the Project Owner will be controlled by multisig wallet.

2.4.2 Ensure the proper use of function totalSupplyAtTime and balanceOfAtTime

Description In the VECake contract, the totalSupply function should, in theory, not return the total supply

at a timestamp beyond block.timestamp. However, in Version 2, the contract introduces a totalSupply

function (renamed to totalSupplyAtTime in Version 3) without timestamp limitations that accommodates

special usages in the GaugeVoting contract. Other external contracts utilizing this function should take

care to invoke it properly. Passing a future timestamp could produce incorrect results. The same issue

also holds for function balanceOfAtTime.

883 function totalSupplyAtTime(uint256 _timestamp) external view returns (uint256) {

884 return _totalSupplyAt(pointHistory[epoch], _timestamp);

885 }

Listing 2.13: VECake.sol

347 function balanceOfAtTime(address _user, uint256 _timestamp) external view returns (uint256) {

348 return _balanceOf(_user, _timestamp);

349 }

Listing 2.14: VECake.sol

Feedback from the Project Should be ok, if other smart contract used the totalSupplyAtTime(uint256

_timestamp), they should know what are they doing.

10

	1 Introduction
	1.1 About Target Contracts
	1.2 Disclaimer
	1.3 Procedure of Auditing
	1.3.1 Software Security
	1.3.2 DeFi Security
	1.3.3 NFT Security
	1.3.4 Additional Recommendation

	1.4 Security Model

	2 Findings
	2.1 Software Security
	2.1.1 Inconsistent lock time limits
	2.1.2 Incorrect operator precedence
	2.1.3 Flawed code logic that cannot update the first added gauge info
	2.1.4 Lack of sanity check on admin voting weight
	2.1.5 Lack of updates on gaugeChangesWeight and gaugeTypeChangesSum

	2.2 DeFi Security
	2.2.1 Inconsistent designs related to boostMultiplier

	2.3 Additional Recommendation
	2.3.1 Fix typos
	2.3.2 Remove debugging codes

	2.4 Note
	2.4.1 Potential centralization risk
	2.4.2 Ensure the proper use of function totalSupplyAtTime and balanceOfAtTime

		2023-12-08T17:09:00+0800
	BlockSec Audit Team

