
Security Audit Report for PancakeSwap
Cross Farming Contracts

Date: September 28, 2022

Version: 1.0

Contact: contact@blocksec.com

mailto:contact@blocksec.com

Contents

1 Introduction 1
1.1 About Target Contracts . 1

1.2 Disclaimer . 1

1.3 Procedure of Auditing . 2

1.3.1 Software Security . 2

1.3.2 DeFi Security . 2

1.3.3 NFT Security . 2

1.3.4 Additional Recommendation . 3

1.4 Security Model . 3

2 Findings 4
2.1 DeFi Security . 4

2.1.1 Potential improper gas price estimation . 4

2.1.2 Unchecked valid range for Chainlink prices . 5

2.1.3 Being unable to disable pools . 6

2.1.4 Potential double deposit or withdrawal in the fallback situation 6

2.2 Additional Recommendation . 8

2.2.1 Remove unused contract . 8

2.2.2 Follow the check-effect-interactions pattern . 9

i

Report Manifest

Item Description
Client PancakeSwap Cross Farming
Target PancakeSwap Cross Farming Contracts

Version History

Version Date Description
1.0 September 28, 2022 First Release

About BlockSec BlockSec focuses on the security of the blockchain ecosystem and collaborates with

leading DeFi projects to secure their products. BlockSec is founded by top-notch security researchers and

experienced experts from both academia and industry. They have published multiple blockchain security

papers in prestigious conferences, reported several zero-day attacks of DeFi applications, and successfully

protected digital assets that are worth more than 5 million dollars by blocking multiple attacks. They can

be reached at Email, Twitter and Medium.

ii

https://www.blocksec.com
mailto:contact@blocksec.com
https://twitter.com/BlockSecTeam
https://blocksecteam.medium.com/

Chapter 1 Introduction

1.1 About Target Contracts

Information Description
Type Smart Contract
Language Solidity
Approach Semi-automatic and manual verification

The target of this audit is the cross farming contracts of the PancakeSwap Protocol 1. This project

allows users depositing their LP tokens on EVM-compatible chains to the MasterChefV2 contract on the

Binance Smart Chain (aka BSC) network by utilizing the cBridge SGN network as the cross-chain message

forwarder. Note that the audit scope is limited to contracts under the projects/cross-chain/contracts/

folder, while other contracts and files are out of the scope.

The auditing process is iterative. Specifically, we would audit the commits that fix the discovered

issues. If there are new issues, we will continue this process. The commit SHA values during the audit are

shown in the following table. Our audit report is responsible for the code in the initial version (Version 1),

as well as new code (in the following versions) to fix issues in the audit report.

Project Version Commit Hash

pancake-contracts
Version 1 e77daef1ae954d6fd96d3f4d41c5327ce5125d83

Version 2 f56a59f56083d684b281a247670af9c600d923ee

1.2 Disclaimer

This audit report does not constitute investment advice or a personal recommendation. It does not

consider, and should not be interpreted as considering or having any bearing on, the potential economics

of a token, token sale or any other product, service or other asset. Any entity should not rely on this report

in any way, including for the purpose of making any decisions to buy or sell any token, product, service or

other asset.

This audit report is not an endorsement of any particular project or team, and the report does not

guarantee the security of any particular project. This audit does not give any warranties on discovering

all security issues of the smart contracts, i.e., the evaluation result does not guarantee the nonexistence

of any further findings of security issues. As one audit cannot be considered comprehensive, we always

recommend proceeding with independent audits and a public bug bounty program to ensure the security

of smart contracts.

The scope of this audit is limited to the code mentioned in Section 1.1. Unless explicitly specified,

the security of the language itself (e.g., the solidity language), the underlying compiling toolchain and the

computing infrastructure are out of the scope.

1The features/cross-chain branch of repo https://github.com/chefcooper/pancake-contracts.

1

https://github.com/chefcooper/pancake-contracts

1.3 Procedure of Auditing

We perform the audit according to the following procedure.

- Vulnerability Detection We first scan smart contracts with automatic code analyzers, and then

manually verify (reject or confirm) the issues reported by them.

- Semantic Analysis We study the business logic of smart contracts and conduct further investiga-

tion on the possible vulnerabilities using an automatic fuzzing tool (developed by our research team).

We also manually analyze possible attack scenarios with independent auditors to cross-check the

result.

- Recommendation We provide some useful advice to developers from the perspective of good

programming practice, including gas optimization, code style, and etc.

We show the main concrete checkpoints in the following.

1.3.1 Software Security

∗ Reentrancy

∗ DoS

∗ Access control

∗ Data handling and data flow

∗ Exception handling

∗ Untrusted external call and control flow

∗ Initialization consistency

∗ Events operation

∗ Error-prone randomness

∗ Improper use of the proxy system

1.3.2 DeFi Security

∗ Semantic consistency

∗ Functionality consistency

∗ Permission management

∗ Business logic

∗ Token operation

∗ Emergency mechanism

∗ Oracle security

∗ Whitelist and blacklist

∗ Economic impact

∗ Batch transfer

1.3.3 NFT Security

∗ Duplicated item

∗ Verification of the token receiver

∗ Off-chain metadata security

2

1.3.4 Additional Recommendation

∗ Gas optimization

∗ Code quality and style�
Note The previous checkpoints are the main ones. We may use more checkpoints during the auditing

process according to the functionality of the project.

1.4 Security Model

To evaluate the risk, we follow the standards or suggestions that are widely adopted by both industry

and academy, including OWASP Risk Rating Methodology 2 and Common Weakness Enumeration 3.

The overall severity of the risk is determined by likelihood and impact. Specifically, likelihood is used to

estimate how likely a particular vulnerability can be uncovered and exploited by an attacker, while impact

is used to measure the consequences of a successful exploit.

In this report, both likelihood and impact are categorized into two ratings, i.e., high and low respec-

tively, and their combinations are shown in Table 1.1.

Table 1.1: Vulnerability Severity Classification

Im
pa

ct

High High Medium

Low Medium Low

High Low

Likelihood

Accordingly, the severity measured in this report are classified into three categories: High, Medium,

Low. For the sake of completeness, Undetermined is also used to cover circumstances when the risk

cannot be well determined.

Furthermore, the status of a discovered item will fall into one of the following four categories:

- Undetermined No response yet.

- Acknowledged The item has been received by the client, but not confirmed yet.

- Confirmed The item has been recognized by the client, but not fixed yet.

- Fixed The item has been confirmed and fixed by the client.

2https://owasp.org/www-community/OWASP_Risk_Rating_Methodology

3https://cwe.mitre.org/

3

https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
https://cwe.mitre.org/

Chapter 2 Findings

In total, we find four potential issues. Besides, we also have two recommendations.

- Medium Risk: 1

- Low Risk: 3

- Recommendation: 2

ID Severity Description Category Status
1 Low Potential improper gas price estimation DeFi Security Acknowledged
2 Low Unchecked valid range for Chainlink prices DeFi Security Acknowledged
3 Low Being unable to disable pools DeFi Security Acknowledged

4 Medium
Potential double deposit or withdrawal in the
fallback situation

DeFi Security Fixed

5 - Remove unused inherited contract Recommendation Fixed

6 -
Follow the check-effect-interactions pat-
tern

Recommendation Fixed

The details are provided in the following sections.

2.1 DeFi Security

2.1.1 Potential improper gas price estimation

Severity Low

Status Acknowledged

Introduced by Version 1

Description The cross-farming project relies on a CrossFarmingSender contract to send messages to the

cross-chain forwarder contract on the source chain. In the sendFarmMessage function of the CrossFarmingSender

contract, the transaction fee in the destination chain is estimated by multiplying the gas price of the current

transaction (i.e., in the source chain) with the estimated gas limit in the destination chain. This estimation

would be improper because different chains may have different regular gas prices.

119 function sendFarmMessage(bytes calldata _message) external payable onlyVault {

120 // decode the message

121 DataTypes.CrossFarmRequest memory request = abi.decode((_message), (DataTypes.

CrossFarmRequest));

122
123 // ETH/USD price

124 int256 ethPrice = _getPriceFromOracle(Feeds.ETHUSD);

125 // BNB/USD price

126 int256 bnbPrice = _getPriceFromOracle(Feeds.BNBUSD);

127
128 require(bnbPrice > 0 && ethPrice > 0, "Abnormal prices");

129
130 uint256 exchangeRate = (uint256(bnbPrice) * EXCHANGE_RATE_PRECISION) / uint256(ethPrice);

131 // msgbus fee price by native token

132 uint256 msgBusFee = IMessageBus(messageBus).calcFee(_message);

4

133
134 uint256 totalFee = msgBusFee +

135 // destTxFee

136 (tx.gasprice *

137 estimateGaslimit(Chains.BSC, request.account, request.msgType) *

138 exchangeRate *

139 txFeeFloatRate) /

140 (EXCHANGE_RATE_PRECISION * FLOAT_RATE_PRECISION);

141
142 // BNB change fee for new BNB user

143 if (!is1st[request.account]) {

144 totalFee += (BNB_CHANGE * exchangeRate) / EXCHANGE_RATE_PRECISION;

145 is1st[request.account] = true;

146 }

147
148 if (request.msgType >= DataTypes.MessageTypes.Withdraw) {

149 totalFee += (// executor call fee(Ack call on this contract ’executeMessage’ interface)

150 tx.gasprice *

151 estimateGaslimit(Chains.EVM, request.account, request.msgType) +

152 // withdraw ack msg messageBus fee on BSC chain

153 ((msgBusFee * exchangeRate) / EXCHANGE_RATE_PRECISION));

154 }

Listing 2.1: CrossFarmingSender.sol

Impact The estimation of the gas price in the destination chain is incorrect.

Suggestion The contract may charge insufficient or extraneous transaction fees.

Feedback from the Developers Yes, we can’t estimate accurate gas price, that’s the reality, that’s why

we add the compensationRate state variable to hedge the gas price fluctuate risk.

2.1.2 Unchecked valid range for Chainlink prices

Severity Low

Status Acknowledged

Introduced by Version 1

Description The CrossFarmingSender contract uses Chainlink prices to convert from ETH (or the native

tokens of other EVM-compatible chains if supported) to BNB (i.e., the native token of BSC). The prices

are checked if they are updated within a reasonable delay, but the valid range (i.e., the minAnswer and

maxAnswer range provided by the price oracle) is not checked. It is recommended to check the validity for

the prices retrieved from Chainlink to prevent attacks like the LUNA incident of the Venus Protocol 1.

305 function _getPriceFromOracle(Feeds _feed) internal view returns (int256) {

306 (, int256 price, , uint256 timestamp,) = oracle[_feed].latestRoundData();

307 require(timestamp + oracleUpdateBuffer[_feed] >= block.timestamp, "out of date oracle data"

);

308 return price;

309 }

1https://medium.com/venusprotocol/venus-protocol-official-statement-regarding-luna-6eb45c3cb058.

5

https://medium.com/venusprotocol/venus-protocol-official-statement-regarding-luna-6eb45c3cb058

Listing 2.2: CrossFarmingSender.sol

Impact Invalid prices may lead to unexpected behaviors.

Suggestion Check the valid range for the Chainlink price feeds.

Feedback from the Developers Got your concern, we can’t predict what will happen in the market, so

we don’t want to set upper limit and lower limit, we accept the price of the market and do not want to block

cross-chain transactions due to this factor

2.1.3 Being unable to disable pools

Severity Low

Status Acknowledged

Introduced by Version 1

Description The variable named whitelistPool in the CrossFarmingVault contract is used to allow de-

positing the trustworthy LP tokens. However, once an LP token is added to the vault as a pool, it is unable

to remove or disable this pool anymore.

141 function add(IERC20 _lpToken, uint256 _mcv2PoolId) public onlyOwner {

142 require(!exists[_lpToken], "Existed token");

143 require(whitelistPool[_mcv2PoolId], "Not whitelist pool");

144 require(poolMapping[_mcv2PoolId] == 0, "MCV2 pool already matched");

145 require(_lpToken.balanceOf(address(this)) >= 0, "Not ERC20 token");

146
147 // add poolInfo

148 poolInfo.push(PoolInfo({lpToken: _lpToken, mcv2PoolId: _mcv2PoolId, totalAmount: 0}));

149
150 // update mappping

151 exists[_lpToken] = true;

152 poolMapping[_mcv2PoolId] = poolInfo.length - 1;

153
154 emit AddedPool(address(_lpToken), _mcv2PoolId);

155}

Listing 2.3: CrossFarmingVault.sol

Impact The added pools could not be disabled or removed.

Suggestion Add the functionality to remove pools.

Feedback from the Developers Yes, we can’t disable the token, after we added the LP token to the

pool in the vault contract, that means there is a mirror LP token on MasterChefV2 pool, the LP token in

MasterChefV2 also can’t be removed or disabled. Because that means there are many users who staked

LP token in this pool, we can’t stop it. We can set the MasterChefV2 farm pool alloc point to zero if we want

to stop this pool, that means there is no CAKE reward.

2.1.4 Potential double deposit or withdrawal in the fallback situation

Severity Medium

6

Status Fixed in Version 2

Introduced by Version 1

Description The CrossFarmingProxy contract is used to delegate user operations for every user on BSC.

Specifically, to solve the problem that cross-farming transactions may revert for some reason, the contract

provides a mechanism that a special character can force a deposit or withdrawal. After that, the contract

will set a value stored in the state variable named fallbackNonce as true, to mark the nonce is forced to

execute.

178 function fallbackDeposit(uint256 _pid, uint64 _nonce) external onlyFactory onlyNotFallback(

_pid, _nonce) {

179 // only mark fallback nonce used

180 fallbackNonce[_pid][_nonce] = true;

181
182 emit FallbackDeposit(user, _pid, _nonce);

183 }

Listing 2.4: CrossFarmingProxy.sol

However, the withdraw function of the CrossFarmingProxy contract does not update fallbackNonce,

which leads to a potential attack surface. Specifically, if there is a completely reverted transaction to

the MessageBus (i.e., the cross-chain forwarder contract of cBridge SGN network to relay the withdrawal

message), making the operator (probably a bot) be triggered to call the fallbackWithdraw function.

107 function withdraw(

108 uint256 _pid,

109 uint256 _amount,

110 uint64 _nonce

111) external payable nonReentrant onlyFactory onlyNotFallback(_pid, _nonce) {

112 require(userInfo[_pid] >= _amount && _amount > 0, "Insufficient token");

113
114 // withdraw from MCV2 pool

115 MASTER_CHEF_V2.withdraw(_pid, _amount);

116 // burn LP token which equal to withdraw amount

117 IMintable(MASTER_CHEF_V2.lpToken(_pid)).burn(_amount);

118 // send CAKE reward

119 _safeTransfer(user);

120
121 // update state

122 userInfo[_pid] -= _amount;

123
124 if (_nonce > latestNonce[_pid]) {

125 latestNonce[_pid] = _nonce;

126 }

127
128 emit Withdraw(user, _pid, _amount, _nonce);

129 }

Listing 2.5: CrossFarmingProxy.sol

187 function fallbackWithdraw(

188 uint256 _pid,

189 uint256 _amount,

7

190 uint64 _nonce

191) external onlyFactory onlyNotFallback(_pid, _nonce) {

192 require(userInfo[_pid] >= _amount && _amount > 0, "Insufficient token");

193
194 // withdraw from MCV2 pool

195 MASTER_CHEF_V2.withdraw(_pid, _amount);

196 // burn LP token which equal to withdraw amount

197 IMintable(MASTER_CHEF_V2.lpToken(_pid)).burn(_amount);

198 // send CAKE reward

199 _safeTransfer(user);

200
201 userInfo[_pid] -= _amount;

202 // mark nonce used

203 fallbackNonce[_pid][_nonce] = true;

204
205 emit FallbackWithdraw(user, _pid, _amount, _nonce);

206 }

Listing 2.6: CrossFarmingProxy.sol

The attack sequence is as follows:

1. The attacker first needs to send a failed transaction to relay the withdrawal message to the MessageBus,

and this transaction should be completely reverted.

2. The failure transaction will trigger the operator to initiate a call to the fallbackWithdraw function.

3. The attacker could front-running the fallbackWithdraw function using a call to the withdraw function.

Note that both invocations would succeed because the withdraw function does NOT update fallbackNonce.

Impact In the case of the failed cross-chain request triggering the fallback logic, the fallback invocation

initiated by the operator can be front-run.

Suggestion Refactor the nonce-related logic to mitigate the potential risk.

Feedback from the Developers Yes, that’s what we concern. We have replace the fallbackNonce to

the usedNonce, which means all deposit/withdraw/emergencywithdraw and fallback functions all update the

same used nonce.

2.2 Additional Recommendation

2.2.1 Remove unused contract

Status Fixed in Version 2

Introduced by Version 1

Description The CrossFarmingSender contract does not need to inherit from MessageSenderApp, because

the corresponding functionalities are not used.

13 /// @title A cross chain contract for users from other EVM chain participate Pancakeswap MCV2

farm pool in BSC chain.

14 /// @dev deployed on EVM chain(source chain, not BSC chain).

15 contract CrossFarmingSender is MessageSenderApp, MessageReceiverApp {

16 using SafeERC20 for IERC20;

17

8

18 // oracle data feeds

19 enum Feeds {

20 BNBUSD,

21 ETHUSD

22 }

Listing 2.7: CrossFarmingSender.sol

Impact May cause extra gas usage.

Suggestion Remove the unused contract.

2.2.2 Follow the check-effect-interactions pattern

Status Fixed in Version 2

Introduced by Version 1

Description It is recommended to follow the check-effect-interactions pattern in the contract code,

which specifies that interactions like token transfers should be placed after the checks and effects on the

contract state, including:

1. The ackWithdraw function in the CrossFarmingVault contract.

2. The ackEmergencyWithdraw function in the CrossFarmingVault contract.

3. The sendFarmMessage function in the CrossFarmingSender contract.

Impact N/A

Suggestion Revise code accordingly.

9

	1 Introduction
	1.1 About Target Contracts
	1.2 Disclaimer
	1.3 Procedure of Auditing
	1.3.1 Software Security
	1.3.2 DeFi Security
	1.3.3 NFT Security
	1.3.4 Additional Recommendation

	1.4 Security Model

	2 Findings
	2.1 DeFi Security
	2.1.1 Potential improper gas price estimation
	2.1.2 Unchecked valid range for Chainlink prices
	2.1.3 Being unable to disable pools
	2.1.4 Potential double deposit or withdrawal in the fallback situation

	2.2 Additional Recommendation
	2.2.1 Remove unused contract
	2.2.2 Follow the structurecolorcheck-effect-interactions pattern

		2022-09-28T23:09:22+0800
	BlockSec Audit Team

