
Security Audit Report for Poly Contracts

Date: Oct 11, 2021

Version: 2.0

Contact: contact@blocksecteam.com

mailto:contact@blocksecteam.com

Contents

1 Introduction 1
1.1 About Target Contracts . 1

1.2 Disclaimer . 2

1.3 Procedure of Auditing . 2

1.3.1 Software Security . 2

1.3.2 DeFi Security . 3

1.3.3 NFT Security . 3

1.3.4 Additional Recommendation . 3

1.4 Security Model . 3

2 Findings 4
2.1 Software Security . 4

2.1.1 The function removeUnderlying is not executed as expected 4

2.1.2 The function recoverEpochPk is not executed successfully 4

2.1.3 The events UnlockEvent and LockEvent may record wrong data 5

2.2 Additional Recommendation . 7

2.2.1 Remove the repeated verification to save gas consumption 7

2.2.2 Remove the redundant verification to save gas consumption 8

2.2.3 Add the logic to update whitelist . 8

2.3 Others . 9

Report Manifest

Item Description
Client Poly Network
Target Poly Contracts

Version History

Version Date Description
1.0 Sep 17, 2021 First Release
2.0 Oct 11, 2021 Second Release

About BlockSec The BlockSec Team focuses on the security of the blockchain ecosystem, and col-

laborates with leading DeFi projects to secure their products. The team is founded by top-notch security

researchers and experienced experts from both academia and industry. They have published multiple

blockchain security papers in prestigious conferences, reported several zero-day attacks of DeFi applica-

tions, and released detailed analysis reports of high impact security incidents. The team won first place in

the 2019 iDash competition (SGX Track). They can be reached at Email, Twitter and Medium.

https://wwww.blocksecteam.com
mailto:contact@blocksecteam.com
https://twitter.com/BlockSecTeam
https://blocksecteam.medium.com/

Chapter 1 Introduction

1.1 About Target Contracts

Information Description
Type Smart Contract
Language Solidity
Approach Semi-automatic and manual verification

The smart contracts that are audited in this report include the following ones.

Contract Name Github URL

EthCrossChainData
https://github.com/polynetwork/eth-contracts/
blob/master/contracts/core/cross_chain_
manager/data/EthCrossChainData.sol

EthCrossChainManager
https://github.com/polynetwork/eth-contracts/
blob/master/contracts/core/cross_chain_
manager/logic/EthCrossChainManager.sol

UpgradableECCM
https://github.com/polynetwork/eth-contracts/
blob/master/contracts/core/cross_chain_
manager/upgrade/UpgradableECCM.sol

EthCrossChainManagerProxy
https://github.com/polynetwork/eth-contracts/
blob/master/contracts/core/cross_chain_
manager/upgrade/EthCrossChainManagerProxy.sol

ECCUtils
https://github.com/polynetwork/eth-contracts/
blob/master/contracts/core/cross_chain_
manager/libs/EthCrossChainUtils.sol

LockProxy
https://github.com/polynetwork/eth-contracts/
blob/master/contracts/core/lock_proxy/
LockProxy.sol

swapper
https://github.com/polynetwork/poly-swap/
blob/dev/contracts/core/swapper/swapper_v3/
ETH_swapper.sol

SwapProxy
https://github.com/polynetwork/poly-swap/
blob/dev/contracts/core/lock_proxy/SwapProxy_
v2.sol

The commit hash values before the audit are shown in Table 1.1 on page 2.

We also checked the status of the fix based on the following commit hash value and pull request.

* SwapProxy_v3 1: 7b356a4f3b34991c41f6edcd170e506d0dc75716

* EthCrossChainUtils and EthCrossChainManager 2

1https://github.com/polynetwork/poly-swap/blob/master/contracts/core/lock_proxy/SwapProxy_v3.sol

2https://github.com/polynetwork/eth-contracts/pull/22/files

https://github.com/polynetwork/eth-contracts/blob/master/contracts/core/cross_chain_manager/data/EthCrossChainData.sol
https://github.com/polynetwork/eth-contracts/blob/master/contracts/core/cross_chain_manager/data/EthCrossChainData.sol
https://github.com/polynetwork/eth-contracts/blob/master/contracts/core/cross_chain_manager/data/EthCrossChainData.sol
https://github.com/polynetwork/eth-contracts/blob/master/contracts/core/cross_chain_manager/logic/EthCrossChainManager.sol
https://github.com/polynetwork/eth-contracts/blob/master/contracts/core/cross_chain_manager/logic/EthCrossChainManager.sol
https://github.com/polynetwork/eth-contracts/blob/master/contracts/core/cross_chain_manager/logic/EthCrossChainManager.sol
https://github.com/polynetwork/eth-contracts/blob/master/contracts/core/cross_chain_manager/upgrade/UpgradableECCM.sol
https://github.com/polynetwork/eth-contracts/blob/master/contracts/core/cross_chain_manager/upgrade/UpgradableECCM.sol
https://github.com/polynetwork/eth-contracts/blob/master/contracts/core/cross_chain_manager/upgrade/UpgradableECCM.sol
https://github.com/polynetwork/eth-contracts/blob/master/contracts/core/cross_chain_manager/upgrade/EthCrossChainManagerProxy.sol
https://github.com/polynetwork/eth-contracts/blob/master/contracts/core/cross_chain_manager/upgrade/EthCrossChainManagerProxy.sol
https://github.com/polynetwork/eth-contracts/blob/master/contracts/core/cross_chain_manager/upgrade/EthCrossChainManagerProxy.sol
https://github.com/polynetwork/eth-contracts/blob/master/contracts/core/cross_chain_manager/libs/EthCrossChainUtils.sol
https://github.com/polynetwork/eth-contracts/blob/master/contracts/core/cross_chain_manager/libs/EthCrossChainUtils.sol
https://github.com/polynetwork/eth-contracts/blob/master/contracts/core/cross_chain_manager/libs/EthCrossChainUtils.sol
https://github.com/polynetwork/eth-contracts/blob/master/contracts/core/lock_proxy/LockProxy.sol
https://github.com/polynetwork/eth-contracts/blob/master/contracts/core/lock_proxy/LockProxy.sol
https://github.com/polynetwork/eth-contracts/blob/master/contracts/core/lock_proxy/LockProxy.sol
https://github.com/polynetwork/poly-swap/blob/dev/contracts/core/swapper/swapper_v3/ETH_swapper.sol
https://github.com/polynetwork/poly-swap/blob/dev/contracts/core/swapper/swapper_v3/ETH_swapper.sol
https://github.com/polynetwork/poly-swap/blob/dev/contracts/core/swapper/swapper_v3/ETH_swapper.sol
https://github.com/polynetwork/poly-swap/blob/dev/contracts/core/lock_proxy/SwapProxy_v2.sol
https://github.com/polynetwork/poly-swap/blob/dev/contracts/core/lock_proxy/SwapProxy_v2.sol
https://github.com/polynetwork/poly-swap/blob/dev/contracts/core/lock_proxy/SwapProxy_v2.sol
https://github.com/polynetwork/poly-swap/blob/master/contracts/core/lock_proxy/SwapProxy_v3.sol
https://github.com/polynetwork/eth-contracts/pull/22/files

Table 1.1: The commit hash of files before the audit

Contract Name Commit SHA
EthCrossChainData 2b1cbe073e40a7bd26022d1cda9341b4780d07ee
EthCrossChainManager 2b1cbe073e40a7bd26022d1cda9341b4780d07ee
UpgradableECCM 2b1cbe073e40a7bd26022d1cda9341b4780d07ee
EthCrossChainManagerProxy 2b1cbe073e40a7bd26022d1cda9341b4780d07ee
ECCUtils 2b1cbe073e40a7bd26022d1cda9341b4780d07ee
LockProxy 2b1cbe073e40a7bd26022d1cda9341b4780d07ee
swapper 13003c356706e61ff662fb8ff2ed6af8eb0f7ec9
SwapProxy 13003c356706e61ff662fb8ff2ed6af8eb0f7ec9

1.2 Disclaimer

This audit does not give any warranties on discovering all security issues of the smart contracts, i.e.,

the evaluation result does not guarantee the nonexistence of any further findings of security issues. As one

audit cannot be considered comprehensive, we always recommend proceeding with independent audits

and a public bug bounty program to ensure the security of smart contracts. Besides, this report does not

constitute personal investment advice or a personal recommendation.

1.3 Procedure of Auditing

We perform the audit according to the following procedure.

Vulnerability Detection We first scan smart contracts with automatic code analyzers, and then

manually verify (reject or confirm) the issues reported by them.

Semantic Analysis We study the business logic of smart contracts and conduct further investiga-

tion on the possible vulnerabilities using an automatic fuzzing tool (developed by our research team).

We also manually analyze possible attack scenarios with independent auditors to cross-check the

result.

Recommendation We provide some useful advice to developers from the perspective of good

programming practice, including gas optimization, code style, and etc.

We show the main concrete checkpoints in the following.

1.3.1 Software Security

Reentrancy

DoS

Access control

Data handling and data Flow

Exception handling

Untrusted external call and control flow

Initialization consistency

Events operation

Error-prone randomness

Improper use of the proxy system

2

1.3.2 DeFi Security

Semantic consistency

Functionality consistency

Access control

Business logic

Token operation

Emergency mechanism

Oracle security

Whitelist and blacklist

Economic impact

Batch transfer

1.3.3 NFT Security

Duplicated item

Verification of the token receiver

Off-chain metadata security

1.3.4 Additional Recommendation

Gas optimization

Code quality and style
�

Note The previous checkpoints are the main ones. We may use more checkpoints during the auditing

process according to the functionality of the project.

1.4 Security Model

To evaluate the risk, we follow the standards or suggestions that are widely adopted by both industry

and academy, including OWASP Risk Rating Methodology 3 and Common Weakness Enumeration 4.

Accordingly, the severity measured in this report are classified into four categories: High, Medium, Low
and Undetermined.

3https://owasp.org/www-community/OWASP_Risk_Rating_Methodology

4https://cwe.mitre.org/

3

https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
https://cwe.mitre.org/

Chapter 2 Findings

In total, we have identified three potential issues and three additional recommendations, as follows:

Medium Risk: 1

Low Risk: 3

ID Severity Description Category

1 Medium
The function removeUnderlying is not
executed as expected

Software Security

2 Low
The function recoverEpochPk is not
executed successfully

Software Security

3 Low
The events UnlockEvent and
LockEvent may record wrong data

Software Security

4 -
Remove the repeated verification to
save gas consumption

Recommendation

5 -
Remove the redundant verification to
save gas consumption

Recommendation

6 - Add the logic to update whitelist Recommendation

2.1 Software Security

2.1.1 The function removeUnderlying is not executed as expected

Status Confirmed and fixed.

Description
The fromChainId in the following code snippet should be replaced with toChainId. Otherwise, the

function removeUnderlying can not work as expected.

224 address outAssetAddress = assetPoolMap[args.toPoolId][fromChainId][args.toAssetHash];

Impact The function removeUnderlying is not executed as expected.

Suggestion Replace fromChainId in line 224 of the contract SwapProxy with toChainId.

2.1.2 The function recoverEpochPk is not executed successfully

Status Confirmed and fixed.

Description
The function recoverEpochPk can be executed only when the contract ECCM’s status (EthCross-

ChainManager) is paused, and it will call the function putCurEpochConPubKeyBytes of the contract ECCD

(EthCrossChainData), as shown in the following code snippet(line 47).

44 function recoverEpochPk(bytes memory EpochPkBytes) whenPaused public {
45 require(unsetEpochPkBytes[EpochPkBytes],"Don’t arbitrarily set");
46 unsetEpochPkBytes[EpochPkBytes] = false;
47 IEthCrossChainData(EthCrossChainDataAddress).putCurEpochConPubKeyBytes(EpochPkBytes);
48 }

However, the function putCurEpochConPubKeyBytes can be executed only when the contract ECCD’s

status is active, as shown in the following.

44 // Store Consensus book Keepers Public Key Bytes
45 function putCurEpochConPubKeyBytes(bytes memory curEpochPkBytes) public whenNotPaused onlyOwner

returns (bool) {
46 ConKeepersPkBytes = curEpochPkBytes;
47 return true;
48 }

Note that, according to the function pause of ECCM, the status of ECCM and ECCD is always consis-

tent, as shown in the following code snippet(line 21).

16 function pause() onlyOwner public returns (bool) {
17 if (!paused()) {
18 _pause();
19 }
20 IEthCrossChainData eccd = IEthCrossChainData(EthCrossChainDataAddress);
21 if (!eccd.paused()) {
22 require(eccd.pause(), "pause EthCrossChainData contract failed");
23 }
24 return true;
25 }

Therefore, the function recoverEpochPk will not be executed successfully.

Impact The function recoverEpochPk is useless, which wastes gas to store codes.

Suggestion Make the code logic consistent.

2.1.3 The events UnlockEvent and LockEvent may record wrong data

Status Confirmed and fixed.

Description
In the following functions addUnderlying, outAssetAddress equals to ISwap(poolAddres- s).lp_token()

(line 172), and the first parameter of the event LockEvent should records outAssetAddress. However, the

code in line 187 records poolAddress.

160 function addUnderlying(bytes memory argsBs, bytes memory fromContractAddr, uint64 fromChainId)
onlyThis external returns (bool) {

161 SwapArgs memory args = _deserializeSwapArgs(argsBs);
162
163 require(fromContractAddr.length != 0, "from contract address cannot be empty");
164 require(Utils.equalStorage(swapperHashMap[fromChainId], fromContractAddr), "from swapper

contract address error!");
165
166 address poolAddress = poolAddressMap[args.toPoolId];
167 require(poolAddress != address(0), "pool do not exsit");
168
169 address inAssetAddress = assetPoolMap[args.toPoolId][fromChainId][args.fromAssetHash];
170 require(inAssetAddress != address(0), "inAssetHash cannot be empty");
171
172 address outAssetAddress = ISwap(poolAddress).lp_token();
173

5

174 require(args.toAddress.length != 0, "toAddress cannot be empty");
175
176 bytes memory toAssetHash = assetHashMap[outAssetAddress][args.toChainId];
177 require(toAssetHash.length != 0, "empty illegal toAssetHash");
178
179
180 uint outAmount = _addInPool(poolAddress, inAssetAddress, args.amount, args.minOut);
181
182 require(_crossChain(args.toChainId, args.toAddress, toAssetHash, outAmount));
183
184
185 emit UnlockEvent(inAssetAddress, address(this), args.amount);
186 emit AddLiquidityEvent(args.toPoolId, inAssetAddress, args.amount, poolAddress, outAmount,

args.toChainId, toAssetHash, args.toAddress);
187 emit LockEvent(poolAddress, address(this), args.toChainId, toAssetHash, args.toAddress,

outAmount);
188
189 return true;
190 }

Similar with above, the code in line 234 of the following code snippet records poolAddress rather than

ISwap(poolAddress).lp_token().

212 function removeUnderlying(bytes memory argsBs, bytes memory fromContractAddr, uint64
fromChainId) onlyThis external returns (bool) {

213 SwapArgs memory args = _deserializeSwapArgs(argsBs);
214
215 require(fromContractAddr.length != 0, "from contract address cannot be empty");
216 require(Utils.equalStorage(swapperHashMap[fromChainId], fromContractAddr), "from swapper

contract address error!");
217
218 address poolAddress = poolAddressMap[args.toPoolId];
219 require(poolAddress != address(0), "pool do not exsit");
220 require(Utils.equalStorage(assetHashMap[ISwap(poolAddress).lp_token()][fromChainId], args.

fromAssetHash), "from Asset do not match pool token address");
221
222 // address outAssetAddress = assetPoolMap[args.toPoolId][args.toChainId][args.toAssetHash];
223 // NOT fromChainId !!!!!!!!!!
224 address outAssetAddress = assetPoolMap[args.toPoolId][fromChainId][args.toAssetHash];
225 require(outAssetAddress != address(0), "target asset do not exsit");
226
227 require(args.toAddress.length != 0, "toAddress cannot be empty");
228
229 uint outAmount = _removeInPool(poolAddress, args.amount, outAssetAddress, args.minOut);
230
231 require(_crossChain(args.toChainId, args.toAddress, args.toAssetHash, outAmount));
232
233
234 emit UnlockEvent(poolAddress, address(this), args.amount);
235 emit RemoveLiquidityEvent(args.toPoolId, poolAddress, args.amount, outAssetAddress,

outAmount, args.toChainId, args.toAssetHash, args.toAddress);
236 emit LockEvent(outAssetAddress, address(this), args.toChainId, args.toAssetHash, args.

toAddress, outAmount);

6

237
238 return true;
239 }

Impact The events LockEvent and UnlockEvent may records wrong information.

Suggestion Replace poolAddress with ISwap(poolAddress).lp_token() in line 187 and line 234 of the

contract SwapProxy.

2.2 Additional Recommendation

2.2.1 Remove the repeated verification to save gas consumption

Status Acknowledged.

Description
The internal functions _pull and _checkoutFee do the same validation: require(msg.v- alue ==

amount, "insufficient ether");, as shown in the following code snippet (line 271 and line 280).

268 // take input
269 function _pull(address fromAsset, uint amount) internal {
270 if (fromAsset == address(0)) {
271 require(msg.value == amount, "insufficient ether");
272 } else {
273 IERC20(fromAsset).safeTransferFrom(msg.sender, address(this), amount);
274 }
275 }
276
277 // take fee in the form of ether
278 function _checkoutFee(address fromAsset, uint amount, uint fee) internal view returns (uint) {
279 if (fromAsset == address(0)) {
280 require(msg.value == amount, "insufficient ether");
281 require(amount > fee, "amount less than fee");
282 return amount.sub(fee);
283 } else {
284 require(msg.value == fee, "insufficient ether");
285 return amount;
286 }
287 }

Furthermore, the two functions _pull and _checkoutFee are always executed consecutively, as shown

in the following code snippets. Therefore, the validation will be executed repeatedly every time.

216 function remove_liquidity(address fromAssetHash, uint64 toPoolId, uint64 toChainId, bytes
memory toAssetHash, bytes memory toAddress, uint amount, uint minOutAmount, uint fee, uint
id) public payable nonReentrant whenNotPaused returns (bool) {

217 _pull(fromAssetHash, amount);
218
219 amount = _checkoutFee(fromAssetHash, amount, fee);
220
221 _push(fromAssetHash, amount);
222
223 }

7

176 function add_liquidity(address fromAssetHash, uint64 toPoolId, uint64 toChainId, bytes memory
toAddress, uint amount, uint minOutAmount, uint fee, uint id) public payable nonReentrant
whenNotPaused returns (bool) {

177 _pull(fromAssetHash, amount);
178
179 amount = _checkoutFee(fromAssetHash, amount, fee);
180
181 _push(fromAssetHash, amount);
182
183 }

135 function swap(address fromAssetHash, uint64 toPoolId, uint64 toChainId, bytes memory
toAssetHash, bytes memory toAddress, uint amount, uint minOutAmount, uint fee, uint id)
public payable nonReentrant whenNotPaused returns (bool) {

136 _pull(fromAssetHash, amount);
137
138 amount = _checkoutFee(fromAssetHash, amount, fee);
139
140 _push(fromAssetHash, amount);
141
142 }

Impact Waste gas.

Suggestion Combine the three internal functions _pull, _checkoutFee, and _push, and remove the re-

dundant validation.

2.2.2 Remove the redundant verification to save gas consumption

Status Acknowledged.

Description
The following code snippet comes from the function remove_liquidity of the contract swapper.

The code in line 223 makes fromAssetHash impossible to be address(0), and the code in line 225 re-

quires fromAddressHash equal to poolTokenMap[toPoolId]. Therefore, the code in line 224 that requires

poolTokenMap[toPoolId] not equal to address(0) is a redundant validation.

223 fromAssetHash = fromAssetHash==address(0) ? WETH : fromAssetHash ;
224 require(poolTokenMap[toPoolId] != address(0), "given pool do not exsit");
225 require(poolTokenMap[toPoolId] == fromAssetHash,"input token is not pool LP token");

Impact Waste gas.

Suggestion Remove the code in line 224.

2.2.3 Add the logic to update whitelist

Status Confirmed and fixed.

Description
The constructor of the contract ECCM initiate three whitelists: fromContractWhiteList, toContractWhiteList,

and methodWhiteList. The three whitelists are extremely important, which can be leveraged to block il-

legal cross-chain transactions. However, there is no update mechanism for the three whitelists, which is

8

not flexible. Particularly, if Poly Network want to add new cross-chain services, they must re-deploy the

ECCM contract.

24 constructor(
25 address _eccd,
26 uint64 _chainId,
27 address[] memory fromContractWhiteList,
28 address[] memory toContractWhiteList,
29 bytes[] memory methodWhiteList,
30 bytes memory curEpochPkBytes
31) UpgradableECCM(_eccd,_chainId) public {
32 for (uint i=0;i<fromContractWhiteList.length;i++) {
33 whiteListFromContract[fromContractWhiteList[i]] = true;
34 }
35 for (uint i=0;i<toContractWhiteList.length;i++) {
36 whiteListToContract[toContractWhiteList[i]] = true;
37 }
38 for (uint i=0;i<methodWhiteList.length;i++) {
39 whiteListMethod[methodWhiteList[i]] = true;
40 }
41 unsetEpochPkBytes[curEpochPkBytes] = true;
42 }

Impact No flexible mechanism to extend cross-chain services.

Suggestion Add the logic to update whitelists in the contract ECCM.

2.3 Others

We note that the cross-chain DEX service is relying on the SwapProxy and the pool module. These

contracts are deployed on a permissioned blockchain called the Curve chain. This audit does not include

the Curve chain itself and the pool module. We suggest the project owner can apply common security

practice to protect these modules.

9

	1 Introduction
	1.1 About Target Contracts
	1.2 Disclaimer
	1.3 Procedure of Auditing
	1.3.1 Software Security
	1.3.2 DeFi Security
	1.3.3 NFT Security
	1.3.4 Additional Recommendation

	1.4 Security Model

	2 Findings
	2.1 Software Security
	2.1.1 The function structurecolorremoveUnderlying is not executed as expected
	2.1.2 The function structurecolorrecoverEpochPk is not executed successfully
	2.1.3 The events structurecolorUnlockEvent and structurecolorLockEvent may record wrong data

	2.2 Additional Recommendation
	2.2.1 Remove the repeated verification to save gas consumption
	2.2.2 Remove the redundant verification to save gas consumption
	2.2.3 Add the logic to update whitelist

	2.3 Others

