
Security Audit Report for pufETH
Contracts

Date: Apr 08, 2024

Version: 1.1

Contact: contact@blocksec.com

mailto:contact@blocksec.com


Contents

1 Introduction 1
1.1 About Target Contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Disclaimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 Procedure of Auditing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3.1 Software Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3.2 DeFi Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3.3 NFT Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.4 Additional Recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Security Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Findings 4
2.1 Software Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Potential txHash conflicts in the Timelock contract’s pending queue . . . . . . . . . 4

2.2 Additional Recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Remove duplicated code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.2 Revise the compiler version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.3 Add a sanity check on newPauser . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.4 Revise the inconsistent access controls on deposit logic . . . . . . . . . . . . . . . 6

2.3 Note . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.1 Potential risks of MEV attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.2 Ensure the standard implementation of accessManager . . . . . . . . . . . . . . . . 6

2.3.3 Necessity to implement a fair EigenLayer airdrop distribution mechansim . . . . . . 7

2.3.4 Ensure no stETH tokens remain in the PufferDepositor contract . . . . . . . . . . . 7

i



Report Manifest

Item Description
Client Puffer Finance
Target pufETH Contracts

Version History

Version Date Description
1.0 Jan 29, 2024 First Release
1.1 Apr 08, 2024 Fix the incorrect commit hash

About BlockSec BlockSec focuses on the security of the blockchain ecosystem and collaborates with

leading DeFi projects to secure their products. BlockSec is founded by top-notch security researchers and

experienced experts from both academia and industry. They have published multiple blockchain security

papers in prestigious conferences, reported several zero-day attacks of DeFi applications, and successfully

protected digital assets that are worth more than 5 million dollars by blocking multiple attacks. They can

be reached at Email, Twitter and Medium.

ii

https://www.blocksec.com
mailto:contact@blocksec.com
https://twitter.com/BlockSecTeam
https://blocksecteam.medium.com/


Chapter 1 Introduction

1.1 About Target Contracts

Information Description
Type Smart Contract
Language Solidity
Approach Semi-automatic and manual verification

The target of this audit is the code repository of pufETH Contracts1 of Puffer Finance. The pufETH

Contracts serve as a native liquid restaking token. Before the mainnet launch of Puffer, users could

deposit stETH into the PufferVault and receive pufETH in return. Additionally, users can also utilize in-

terfaces provided by PufferDepositor to swap tokens for stETH and deposit them into PufferVault. In

the protocol, three different multisignature wallets control sensitive operations via the Timelock contract.

These operations include modifying system configurations, suspending core contract functionality, deposit-

ing user-deposited stETH into EigenLayer, and initiating withdrawals from EigenLayer and Lido. Please

note that the scope of this audit is limited to the following files:

PufferDepositor.sol

PufferVault.sol

Timelock.sol

DeployPuffETH.s.sol

The auditing process is iterative. Specifically, we would audit the commits that fix the discovered

issues. If there are new issues, we will continue this process. The commit SHA values during the audit are

shown in the following table. Our audit report is responsible for the code in the initial version (Version 1),

as well as new code (in the following versions) to fix issues in the audit report.

Project Version Commit Hash

pufETH Contracts
Version 1 9a2a470bd276b850daf66b15463d0a9ad9b38a0f

Version 2 c46d4f1de6e22b2b8ff33111a7852225aef443e6

1.2 Disclaimer

This audit report does not constitute investment advice or a personal recommendation. It does not

consider, and should not be interpreted as considering or having any bearing on, the potential economics

of a token, token sale or any other product, service or other asset. Any entity should not rely on this report

in any way, including for the purpose of making any decisions to buy or sell any token, product, service or

other asset.

This audit report is not an endorsement of any particular project or team, and the report does not

guarantee the security of any particular project. This audit does not give any warranties on discovering

all security issues of the smart contracts, i.e., the evaluation result does not guarantee the nonexistence

of any further findings of security issues. As one audit cannot be considered comprehensive, we always

1
https://github.com/PufferFinance/pufETH

1

https://github.com/PufferFinance/pufETH


recommend proceeding with independent audits and a public bug bounty program to ensure the security

of smart contracts.

The scope of this audit is limited to the code mentioned in Section 1.1. Unless explicitly specified,

the security of the language itself (e.g., the solidity language), the underlying compiling toolchain and the

computing infrastructure are out of the scope.

1.3 Procedure of Auditing

We perform the audit according to the following procedure.

- Vulnerability Detection We first scan smart contracts with automatic code analyzers, and then

manually verify (reject or confirm) the issues reported by them.

- Semantic Analysis We study the business logic of smart contracts and conduct further investiga-

tion on the possible vulnerabilities using an automatic fuzzing tool (developed by our research team).

We also manually analyze possible attack scenarios with independent auditors to cross-check the

result.

- Recommendation We provide some useful advice to developers from the perspective of good

programming practice, including gas optimization, code style, and etc.

We show the main concrete checkpoints in the following.

1.3.1 Software Security

∗ Reentrancy

∗ DoS

∗ Access control

∗ Data handling and data flow

∗ Exception handling

∗ Untrusted external call and control flow

∗ Initialization consistency

∗ Events operation

∗ Error-prone randomness

∗ Improper use of the proxy system

1.3.2 DeFi Security

∗ Semantic consistency

∗ Functionality consistency

∗ Permission management

∗ Business logic

∗ Token operation

∗ Emergency mechanism

∗ Oracle security

∗ Whitelist and blacklist

∗ Economic impact

∗ Batch transfer

2



1.3.3 NFT Security

∗ Duplicated item

∗ Verification of the token receiver

∗ Off-chain metadata security

1.3.4 Additional Recommendation

∗ Gas optimization

∗ Code quality and style�
Note The previous checkpoints are the main ones. We may use more checkpoints during the auditing

process according to the functionality of the project.

1.4 Security Model

To evaluate the risk, we follow the standards or suggestions that are widely adopted by both industry

and academy, including OWASP Risk Rating Methodology 2 and Common Weakness Enumeration 3.

The overall severity of the risk is determined by likelihood and impact. Specifically, likelihood is used to

estimate how likely a particular vulnerability can be uncovered and exploited by an attacker, while impact

is used to measure the consequences of a successful exploit.

In this report, both likelihood and impact are categorized into two ratings, i.e., high and low respec-

tively, and their combinations are shown in Table 1.1.

Table 1.1: Vulnerability Severity Classification

Im
pa

ct

High High Medium

Low Medium Low

High Low

Likelihood

Accordingly, the severity measured in this report are classified into three categories: High, Medium,

Low. For the sake of completeness, Undetermined is also used to cover circumstances when the risk

cannot be well determined.

Furthermore, the status of a discovered item will fall into one of the following four categories:

- Undetermined No response yet.

- Acknowledged The item has been received by the client, but not confirmed yet.

- Confirmed The item has been recognized by the client, but not fixed yet.

- Fixed The item has been confirmed and fixed by the client.

2https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
3https://cwe.mitre.org/

3

https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
https://cwe.mitre.org/


Chapter 2 Findings

In total, we find one potential issue. Besides, we also have four recommendations and four notes.

- Low Risk: 1

- Recommendation: 4

- Note: 4

ID Severity Description Category Status

1 Low
Potential txHash conflicts in the Timelock con-
tract’s pending queue

Software Security Fixed

2 - Remove duplicated code Recommendation Fixed
3 - Revise the compiler version Recommendation Fixed
4 - Add a sanity check on newPauser Recommendation Fixed

5 -
Revise the inconsistent access controls on de-
posit logic

Recommendation Fixed

6 - Potential risks of MEV attacks Note -

7 -
Ensure the standard implementation of
accessManager

Note -

8 -
Necessity to implement a fair EigenLayer air-
drop distribution mechansim

Note -

9 -
Ensure no stETH tokens remain in the
PufferDepositor contract

Note -

The details are provided in the following sections.

2.1 Software Security

2.1.1 Potential txHash conflicts in the Timelock contract’s pending queue

Severity Low

Status Fixed in Version 2

Introduced by Version 1

Description In the Timelock contract, the queueTransaction function keeps track of pending operations

using the queue mapping, with the txHash serving as the key. This txHash is the keccak256 hash resulting

from the encoding of target and callData, as shown on line 123. Operations are eligible for execution

only after the lockedUntil time has passed. However, there is a risk that a new operation with the same

target and callData could overwrite an existing one in the queue.

118 function queueTransaction(address target, bytes memory callData) public returns (bytes32) {

119 if (msg.sender != OPERATIONS_MULTISIG) {

120 revert Unauthorized();

121 }

122
123 bytes32 txHash = keccak256(abi.encode(target, callData));

124 uint256 lockedUntil = block.timestamp + delay;

125 queue[txHash] = lockedUntil;

126

4



127 emit TransactionQueued(txHash, target, callData, lockedUntil);

128
129 return txHash;

130 }

Listing 2.1: Timelock.sol

Impact The previous conflicting operation cannot be executed due to the overwriting.

Suggestion Add a unique operation_id for each operation.

2.2 Additional Recommendation

2.2.1 Remove duplicated code

Status Fixed in Version 2

Introduced by Version 1

Description In the initiateStETHWithdrawalFromEigenLayer function of the PufferVault contract, the

assignment on line 171 is duplicated and can be removed.

170 uint256[] memory strategyIndexes = new uint256[](1);

171 strategyIndexes[0] = 0;

Listing 2.2: PufferVault.sol

Impact N/A

Suggestion Remove the duplicated code.

2.2.2 Revise the compiler version

Status Fixed in Version 2

Introduced by Version 1

Description To enable naming the mapping parameters, the Timelock contract should specify that the

compiler version is equal to or greater than 0.8.18.

95 mapping(bytes32 transactionHash => uint256 lockedUntil) public queue;

Listing 2.3: Timelock.sol

Impact N/A

Suggestion Revise the compiler version.

2.2.3 Add a sanity check on newPauser

Status Fixed in Version 2

Introduced by Version 1

Description The _setPauser function in the Timelock contract does not verify whether the newPauser is

non-zero.

5



225 function setPauser(address newPauser) public {

226 if (msg.sender != address(this)) {

227 revert Unauthorized();

228 }

229 _setPauser(newPauser);

230 }

Listing 2.4: Timelock.sol

Impact N/A

Suggestion Add the corresponding sanity check.

2.2.4 Revise the inconsistent access controls on deposit logic

Status Fixed in Version 2

Introduced by Version 1

Description An inconsistency exists in the access controls between the PufferDepositor and PufferVault

contracts regarding the deposit functionality.

Specifically, the PufferDepositor contract declares the depositing functions (swapAndDeposit1Inch,

swapAndDepositWithPermit1Inch, swapAndDeposit, swapAndDepositWithPermit, and depositWstETH) with

a restricted modifier for access control. However, this access control is not applied to the deposit and

mint functions in the PufferVault contract. This means that, even when the PufferDepositor contract is

paused, the deposit and mint functions can still be invoked without limitations. Consequently, users can

still exchange tokens for stETH directly on a third-party DEX and deposit them into the PufferVault without

any restrictions.

Impact N/A

Suggestion Apply consistent access control logic for depositing functions.

2.3 Note

2.3.1 Potential risks of MEV attacks

Description The swapAndDeposit1Inch function in the PufferDepositor contract allows users to specify

swap parameters for swapping tokens for stETH via the _1INCH_ROUTER. However, the function does not

verify whether slippage protection is set in the callData, potentially exposing users to sandwich attacks.

Feedback from the Project We acknowledge this as a risk and will have warnings on the frontend to set

their slippage accordingly when interfacing with 1inch / sushi.

2.3.2 Ensure the standard implementation of accessManager

Description The accessManager contract code is not included in the provided repository or dependencies

and is therefore outside the scope of this audit. Given that the accessManager manages critical access

controls, it is assumed for the purposes of this audit that its implementation follows the standardized

OpenZeppelin AccessManager. Furthermore, it is recommended that the accessManager be governed by a

multisignature wallet to mitigate potential risks of centralization.

6



98 function initialize(address accessManager) external initializer {

99 __AccessManaged_init(accessManager);

100 __ERC20Permit_init("pufETH");

101 __ERC4626_init(_ST_ETH);

102 __ERC20_init("pufETH", "pufETH");

103 }

Listing 2.5: PufferDepositor.sol

Feedback from the Project We deploy OZ’s AccessManager in the deployPufETH.s.sol, the ownership

of AccessManager is transferred to TimeLock after deployment.

2.3.3 Necessity to implement a fair EigenLayer airdrop distribution mechansim

Description The PufferVault deposits stETH into EigenLayer on behalf of users to farm points for

EigenLayer airdrops. However, in the current PufferVault contract implementation, there is no mech-

anism to distribute airdrops to depositors. The project should ensure that there is a fair mechanism for

distributing airdrops from EigenLayer. If the distribution relies solely on user shares in the vault, it may

introduce the potential for front-running arbitrage.

Feedback from the Project This would be done in mainnet implementation of the contract. Will likely

transfer Eigen tokens to a distributor contract.

2.3.4 Ensure no stETH tokens remain in the PufferDepositor contract

Description The PufferDepositor contract allows users to swap any tokens on third-party DEXes (e.g.,

1inch, SushiSwap) for stETH and deposits the acquired stETH into the PufferVault contract. However, any

remaining stETH in the PufferDepositor contract could potentially be claimed by anyone. For instance,

the swapAndDeposit1Inch function does not validate the swapData passed to 1inch. Exploiting this, users

could manipulate the amountOut returned and claim extra stETH.

50 function swapAndDeposit1Inch(address tokenIn, uint256 amountIn, bytes calldata callData)

51 public

52 virtual

53 restricted

54 returns (uint256 pufETHAmount)

55 {

56 SafeERC20.safeTransferFrom(IERC20(tokenIn), msg.sender, address(this), amountIn);

57 SafeERC20.safeIncreaseAllowance(IERC20(tokenIn), address(_1INCH_ROUTER), amountIn);

58
59 // PUFFER_VAULT.deposit will revert if we get no stETH from this contract

60 (bool success, bytes memory returnData) = _1INCH_ROUTER.call(callData);

61 if (!success) {

62 revert SwapFailed(address(tokenIn), amountIn);

63 }

64
65 uint256 amountOut = abi.decode(returnData, (uint256));

66
67 if (amountOut == 0) {

68 revert SwapFailed(address(tokenIn), amountIn);

7



69 }

70
71 return PUFFER_VAULT.deposit(amountOut, msg.sender);

72 }

Listing 2.6: PufferDepositor.sol

According to the protocol design, the PufferDepositor contract is not intended to hold assets, ren-

dering the aforementioned attack vector unfeasible. The only exception applies to scenarios involving

accidental token transfers to this contract.

Feedback from the Project The PufferDepositor does not custody funds. We are relying on the 1inch

backend to supply a correct route and then the stETH is deposited to the PufferVault.

8


	1 Introduction
	1.1 About Target Contracts
	1.2 Disclaimer
	1.3 Procedure of Auditing
	1.3.1 Software Security
	1.3.2 DeFi Security
	1.3.3 NFT Security
	1.3.4 Additional Recommendation

	1.4 Security Model

	2 Findings
	2.1 Software Security
	2.1.1 Potential txHash conflicts in the Timelock contract's pending queue

	2.2 Additional Recommendation
	2.2.1 Remove duplicated code
	2.2.2 Revise the compiler version
	2.2.3 Add a sanity check on structurecolornewPauser
	2.2.4 Revise the inconsistent access controls on deposit logic

	2.3 Note
	2.3.1 Potential risks of MEV attacks
	2.3.2 Ensure the standard implementation of accessManager
	2.3.3 Necessity to implement a fair EigenLayer airdrop distribution mechansim
	2.3.4 Ensure no stETH tokens remain in the PufferDepositor contract



		2024-04-08T12:09:54+0800
	BlockSec Audit Team




