
Report for PumpBTC
Contracts

Date: June 19, 2024 Version: 1.1
Contact: contact@blocksec.com

mailto:contact@blocksec.com

Contents

Chapter 1 Introduction 1
1.1 About Target Contracts . 1
1.2 Disclaimer . 1
1.3 Procedure of Auditing . 2

1.3.1 Software Security . 2
1.3.2 DeFi Security . 2
1.3.3 NFT Security . 3
1.3.4 Additional Recommendation . 3

1.4 Security Model . 3

Chapter 2Findings 5
2.1 DeFi Security . 5

2.1.1 Potential precision loss in the stake function 5
2.2 Additional Recommendation . 6

2.2.1 Remove redundant code . 6
2.2.2 Add checks on the new staking limit . 7
2.2.3 Follow CEI pattern in the PumpStaking contract 8

2.3 Note . 8
2.3.1 Potential precision loss in the unstakeInstant function 8
2.3.2 About the off-chain logic . 9
2.3.3 Potential centralization risks . 10

Report Manifest

Item Description
Client PumpBTC
Target PumpBTC Contracts

Version History

Version Date Description
1.0 June 13, 2024 First release
1.1 June 19, 2024 Add a new commit hash

Signature

About BlockSec BlockSec focuses on the security of the blockchain ecosystem and col-
laborates with leading DeFi projects to secure their products. BlockSec is founded by top-
notch security researchers and experienced experts from both academia and industry. They
have published multiple blockchain security papers in prestigious conferences, reported sev-
eral zero-day attacks of DeFi applications, and successfully protected digital assets that are
worth more than 14 million dollars by blocking multiple attacks. They can be reached at Email,
Twitter and Medium.

https://www.blocksec.com
mailto:contact@blocksec.com
https://twitter.com/BlockSecTeam
https://blocksecteam.medium.com/

Chapter 1 Introduction

1.1 About Target Contracts

Information Description
Type Smart Contract
Language Solidity
Approach Semi-automatic and manual verification

The focus of this audit is on the PumpBTC Contracts of PumpBTC 1. PumpBTC Contracts
allows users to stake Wrapped Bitcoin tokens (e.g. BTCB, WBTC, FBTC) into the PumpStaking con-
tract and mint pumpBTC tokens at a 11 ratio. These staked assets will be withdrawn and un-
wrapped into BTC to stake and earn rewards on Babylon. For unstake requests, the protocol
offers standard and instant options with fees.

Please note that only the contracts located within the contracts folder in the repository are
included in the scope of this audit. Other files are not within the scope of the audit. Additionally,
all dependencies of the smart contracts within the audit scope are considered reliable in terms
of both functionality and security, and are therefore not included in the audit scope.

The auditing process is iterative. Specifically, we would audit the commits that fix the dis-
covered issues. If there are new issues, we will continue this process. The commit SHA values
during the audit are shown in the following table. Our audit report is responsible for the code
in the initial version (Version 1), as well as new code (in the following versions) to fix issues in
the audit report.

Project Version Commit Hash

PumpBTC Contracts
Version 1 b1481f38f7f99342c6c607f1354c26a75112d4a7
Version 2 e4960e4edda06c5bf5375b5648ad7d3ce4c73cfd
Version 3 88c08a53a3b3cf7b753d2e26d519f4936a3047c7

1.2 Disclaimer

This audit report does not constitute investment advice or a personal recommendation.
It does not consider, and should not be interpreted as considering or having any bearing on,
the potential economics of a token, token sale or any other product, service or other asset.
Any entity should not rely on this report in any way, including for the purpose of making any
decisions to buy or sell any token, product, service or other asset.

This audit report is not an endorsement of any particular project or team, and the report
does not guarantee the security of any particular project. This audit does not give any war-
ranties on discovering all security issues of the smart contracts, i.e., the evaluation result does
not guarantee the nonexistence of any further findings of security issues. As one audit can-

1https://github.com/pumpbtc/pumpBTC-contract

https://github.com/pumpbtc/pumpBTC-contract

not be considered comprehensive, we always recommend proceeding with independent audits
and a public bug bounty program to ensure the security of smart contracts.

The scope of this audit is limited to the code mentioned in Section 1.1. Unless explicitly
specified, the security of the language itself (e.g., the solidity language), the underlying com-
piling toolchain and the computing infrastructure are out of the scope.

1.3 Procedure of Auditing

We perform the audit according to the following procedure.
- Vulnerability Detection We first scan smart contracts with automatic code analyzers,
and then manually verify (reject or confirm) the issues reported by them.

- Semantic Analysis We study the business logic of smart contracts and conduct further
investigation on the possible vulnerabilities using an automatic fuzzing tool (developed by
our research team). We alsomanually analyze possible attack scenarioswith independent
auditors to cross-check the result.

- Recommendation We provide some useful advice to developers from the perspective
of good programming practice, including gas optimization, code style, and etc.
We show the main concrete checkpoints in the following.

1.3.1 Software Security

∗ Reentrancy
∗ DoS
∗ Access control
∗ Data handling and data flow
∗ Exception handling
∗ Untrusted external call and control flow
∗ Initialization consistency
∗ Events operation
∗ Error-prone randomness
∗ Improper use of the proxy system

1.3.2 DeFi Security

∗ Semantic consistency
∗ Functionality consistency
∗ Permission management
∗ Business logic
∗ Token operation
∗ Emergency mechanism
∗ Oracle security
∗ Whitelist and blacklist
∗ Economic impact
∗ Batch transfer

2

1.3.3 NFT Security

∗ Duplicated item
∗ Verification of the token receiver
∗ Off-chain metadata security

1.3.4 Additional Recommendation

∗ Gas optimization
∗ Code quality and style�

Note The previous checkpoints are the main ones. We may use more checkpoints during the
auditing process according to the functionality of the project.

1.4 Security Model

To evaluate the risk, we follow the standards or suggestions that arewidely adopted by both
industry and academy, including OWASP Risk Rating Methodology 2 and Common Weakness
Enumeration 3. The overall severity of the risk is determined by likelihood and impact. Specif-
ically, likelihood is used to estimate how likely a particular vulnerability can be uncovered and
exploited by an attacker, while impact is used to measure the consequences of a successful
exploit.

In this report, both likelihood and impact are categorized into two ratings, i.e., high and low
respectively, and their combinations are shown in Table 1.1.

Table 1.1: Vulnerability Severity Classification

Im
pa
ct

High High Medium

Low Medium Low

High Low
Likelihood

Accordingly, the severity measured in this report are classified into three categories: High,
Medium, Low. For the sake of completeness, Undetermined is also used to cover circum-
stances when the risk cannot be well determined.

Furthermore, the status of a discovered item will fall into one of the following four cate-
gories:

- Undetermined No response yet.
- Acknowledged The item has been received by the client, but not confirmed yet.

2https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
3https://cwe.mitre.org/

3

https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
https://cwe.mitre.org/

- Confirmed The item has been recognized by the client, but not fixed yet.
- Fixed The item has been confirmed and fixed by the client.

4

Chapter 2 Findings

In total, we found one potential security issue. Besides, we have three recommendations
and three notes.

- High Risk: 1
- Recommendation: 3
- Note: 3

ID Severity Description Category Status

1 High Potential precision loss in the stake func-
tion DeFi Security Fixed

2 - Remove redundant code Recommendation Acknowledged
3 - Add checks on the new staking limit Recommendation Fixed

4 - Follow CEI pattern in the PumpStaking
contract Recommendation Fixed

5 - Potential precision loss in the
unstakeInstant function Note -

6 - About the off-chain logic Note -
7 - Potential centralization risks Note -

The details are provided in the following sections.

2.1 DeFi Security

2.1.1 Potential precision loss in the stake function

Severity High
Status Fixed in Version 2

Introduced by Version 1

Description In the PumpStaking contract, a precision loss issue exists in the stake function.
Specifically, in this function, the pumpBTC amount to beminted is accepted, and the _adjustAmount
function is used to calculate the required deposited assets. However, this resultmaybe rounded
down to zero, allowing users to mint pumpBTC without depositing assets. By exploiting this pre-
cision loss issue, attackers can arbitrarily mint pumpBTC tokens. Once the PumpStaking contract
holds assets, attackers can then unstake to drain assets from it.
178 function stake(uint256 amount) public whenNotPaused {
179 require(amount > 0, "PumpBTC: amount should be greater than 0");
180 require(
181 totalStakingAmount + amount <= totalStakingCap,
182 "PumpBTC: exceed staking cap"
183);
184
185 asset.safeTransferFrom(_msgSender(), address(this), _adjustAmount(amount));
186 pumpBTC.mint(_msgSender(), amount);
187
188 totalStakingAmount += amount;

189 pendingStakeAmount += amount;
190
191 emit Stake(_msgSender(), amount);
192 }

Listing 2.1: contracts/PumpStaking.sol

90 function _adjustAmount(uint256 amount) public view returns (uint256) {
91 return assetDecimal > 18 ? amount * 10 ** (assetDecimal - 18) : amount / 10 ** (18 -

assetDecimal);
92 }

Listing 2.2: contracts/PumpStaking.sol

Impact The precision loss issue may allow attackers to drain assets or instantly unstake with-
out fees.
Suggestion Properly handle the precision loss.

2.2 Additional Recommendation

2.2.1 Remove redundant code

Status Acknowledged
Introduced by Version 1

Description In the PumpStaking contract, the claimAll function utilizes the pendingCount vari-
able to count the user’s pending requests and checks that it is a non-zero value (line 251 be-
fore transfers. However, this logic is redundant as the check on totalAmount already ensures
that the user has claimable assets.
234 function claimAll() public whenNotPaused {
235 address user = _msgSender();
236 uint256 totalAmount = 0;
237 uint256 pendingCount = 0;
238
239 for(uint8 slot = 0; slot < MAX_DATE_SLOT; slot++) {
240 uint256 amount = pendingUnstakeAmount[user][slot];
241 bool readyToClaim = block.timestamp - pendingUnstakeTime[user][slot] >= (MAX_DATE_SLOT -

1) * 1 days;
242 if (amount > 0) {
243 pendingCount += 1;
244 if (readyToClaim) {
245 totalAmount += amount;
246 pendingUnstakeAmount[user][slot] = 0;
247 }
248 }
249 }
250
251 require(pendingCount > 0, "PumpBTC: no pending unstake");
252 require(totalAmount > 0, "PumpBTC: haven't reached the claimable time");
253

6

254 asset.safeTransfer(user, _adjustAmount(totalAmount));
255
256 totalClaimableAmount -= totalAmount;
257 totalRequestedAmount -= totalAmount;
258
259 emit ClaimAll(user, totalAmount);
260 }

Listing 2.3: contracts/PumpStaking.sol

Impact N/A
Suggestion Remove the redundant code for gas optimization.
Feedback from the Project The pendingCount is introduced to distinguish between two sce-
narios where claiming is not allowed:

There is no pending unstaking.
Pending requests exist while the claimable time has yet to arrive.

The claimAll function reports different error messages for the above scenarios. This is aligned
with the two error reports in the claimSlot function.

2.2.2 Add checks on the new staking limit

Status Fixed in Version 2

Introduced by Version 1

Description In the PumpStaking contract, the setStakeAssetCap function should verify that the
newTotalStakingCap parameter is larger than the total staking amount. If totalStakingCap is
set to a value lower than the totalStakingAmount, this will cause the stake function to revert,
preventing users from staking.
104 function setStakeAssetCap(uint256 newTotalStakingCap) public onlyOwner {
105 emit SetStakeAssetCap(totalStakingCap, newTotalStakingCap);
106 totalStakingCap = newTotalStakingCap;
107 }

Listing 2.4: contracts/PumpStaking.sol

178 function stake(uint256 amount) public whenNotPaused {
179 require(amount > 0, "PumpBTC: amount should be greater than 0");
180 require(
181 totalStakingAmount + amount <= totalStakingCap,
182 "PumpBTC: exceed staking cap"
183);

Listing 2.5: contracts/PumpStaking.sol

Impact Users may be unable to stake if totalStakingCap is set to an improper value.
Suggestion Add checks on the newTotalStakingCap parameter.

7

2.2.3 Follow CEI pattern in the PumpStaking contract

Status Fixed in Version 2

Introduced by Version 1

Description In the PumpStaking contract, several functions do not follow the common CEI
Checks-Effects-Interactions) programming pattern. This pattern dictates that the state vari-
able should be updated before conducting the external call. For example, the claimSlot func-
tion invokes asset.safeTransfer before updating the state variables. It is recommended to
follow the CEI pattern to mitigate potential security risks.
215 function claimSlot(uint8 slot) public whenNotPaused {
216 address user = _msgSender();
217 uint256 amount = pendingUnstakeAmount[user][slot];
218
219 require(amount > 0, "PumpBTC: no pending unstake");
220 require(
221 block.timestamp - pendingUnstakeTime[user][slot] >= (MAX_DATE_SLOT - 1) * 1 days,
222 "PumpBTC: haven't reached the claimable time"
223);
224
225 asset.safeTransfer(user, _adjustAmount(amount));
226
227 pendingUnstakeAmount[user][slot] = 0;
228 totalClaimableAmount -= amount;
229 totalRequestedAmount -= amount;
230
231 emit ClaimSlot(user, amount, slot);
232 }

Listing 2.6: contracts/PumpStaking.sol

Impact N/A
Suggestion Update the state variables before making any external calls.

2.3 Note

2.3.1 Potential precision loss in the unstakeInstant function

Introduced by Version 1

Description In the PumpStaking contract, a precision loss issue exists in the unstakeInstant
function.Specifically, in this function, the calculated fee may also be rounded down to zero.
This allows users to avoid the fee and unstake instantly from the contract.
262 function unstakeInstant(uint256 amount) public whenNotPaused {
263 address user = _msgSender();
264 uint256 fee = amount * instantUnstakeFee / 10000;
265
266 require(amount > 0, "PumpBTC: amount should be greater than 0");
267 require(amount <= pendingStakeAmount, "PumpBTC: insufficient pending stake amount");
268

8

269 pumpBTC.burn(user, amount);
270 asset.safeTransfer(user, _adjustAmount(amount - fee));
271
272 totalStakingAmount -= amount;
273 pendingStakeAmount -= amount;
274 collectedFee += fee;
275
276 emit UnstakeInstant(user, amount);
277 }

Listing 2.7: contracts/PumpStaking.sol

Feedback from the Project The fee calculation logic used in the unstakeInstant is aligned
with the design.

2.3.2 About the off-chain logic

Introduced by Version 1

Description The operator role of the PumpStaking contract has the ability to deposit and with-
draw assets (e.g., WBTC into Babylon to earn rewards. However, the logic for earning and
distributing rewards is controlled by off-chain processes, which fall outside the scope of this
audit.

Additionally, the withdrawAndDeposit function of the PumpStaking contract aims to stream-
line operations by combining withdrawal and deposit processes. However, if the depositAmount
exceeds both the pendingStakeAmount and the required amount, surplus funds intended for
staking in Babylon will inadvertently be locked in this contract. While this situation can be man-
aged, it’s advisable to carefully conduct off-chain calculations to determine the appropriate
depositAmount and avoid complicated remedy operations.
159 function withdrawAndDeposit(uint256 depositAmount) public onlyOperator {
160 if (pendingStakeAmount > depositAmount) {
161 asset.safeTransfer(_msgSender(), _adjustAmount(pendingStakeAmount - depositAmount));
162 }
163 else if (pendingStakeAmount < depositAmount){
164 asset.safeTransferFrom(
165 _msgSender(), address(this), _adjustAmount(depositAmount - pendingStakeAmount)
166);
167 }
168
169 emit AdminWithdraw(_msgSender(), pendingStakeAmount);
170 emit AdminDeposit(_msgSender(), depositAmount);
171
172 pendingStakeAmount = 0;
173 totalClaimableAmount += depositAmount;
174 }

Listing 2.8: contracts/PumpStaking.sol

9

2.3.3 Potential centralization risks

Introduced by Version 1

Description The PumpStaking contract carries potential centralization risks. Specifically, the
privileged owner role has the ability to perform sensitive operations, such as pausing/unpausing
the contract and modifying key configurations. Additionally, the operator role of this contract
is granted the ability to deposit and withdraw assets (e.g., WBTC into and from the contract.
This unavoidably introduces centralization risks, as compromising these key accounts could
lead to incorrect functionality of the entire protocol.

In Version 3, the owner is further granted the ability to enable or disable any unstake oper-
ations via the setOnlyAllowStake function. The project confirms that unstake operations will be
disabled for a few months after Babylon’s launch, during which BTC withdrawals from Baby-
lon will be forbidden. Unstaking operations will be allowed once Babylon opens the withdrawal
functionality.

10

	1 Introduction
	1.1 About Target Contracts
	1.2 Disclaimer
	1.3 Procedure of Auditing
	1.3.1 Software Security
	1.3.2 DeFi Security
	1.3.3 NFT Security
	1.3.4 Additional Recommendation

	1.4 Security Model

	2 Findings
	2.1 DeFi Security
	2.1.1 Potential precision loss in the stake function

	2.2 Additional Recommendation
	2.2.1 Remove redundant code
	2.2.2 Add checks on the new staking limit
	2.2.3 Follow CEI pattern in the PumpStaking contract

	2.3 Note
	2.3.1 Potential precision loss in the unstakeInstant function
	2.3.2 About the off-chain logic
	2.3.3 Potential centralization risks

		2024-06-19T14:45:59+0800

