
Security Testing Report for Radiant V2

Date: Mar 21, 2023

Version: 2.0

Contact: contact@blocksec.com

mailto:contact@blocksec.com

Contents

1 Introduction 1
1.1 About Security Testing . 1

1.2 About Target Contracts . 1

1.3 Disclaimer . 2

1.4 Procedure of Security Testing . 3

1.4.1 Software Security . 3

1.4.2 DeFi Security . 3

1.4.3 NFT Security . 3

1.4.4 Additional Recommendation . 4

1.5 Security Model . 4

2 Automated Security Testing 5
2.1 Automated Static Security Testing . 5

2.2 Automated Dynamic Security Testing . 5

3 Manual Security Testing 6
3.1 Software Security . 6

3.1.1 No Reserved Interface for Resetting Function Pointers 6

3.2 DeFi Security . 8

3.2.1 Improper Calculation of the Oracle . 8

3.2.2 Potential Drain of Funds through BaseBounty . 9

3.2.3 Potential Invalid Emission Schedules . 10

3.2.4 Skippable Emission schedules . 11

3.2.5 Changeable Exchange Rate during Migration . 12

3.2.6 Improper Implementation of _transfer() (I) . 12

3.2.7 Lack of Check on Period in UniV2TwapOracle . 13

3.2.8 Non-Refundable Dust Tokens . 14

3.2.9 Improper Implementation of _transfer() (II) . 15

3.2.10 Manipulatable Compound Rewards . 16

3.2.11 Lack of Access Control in setLeverager() . 16

3.2.12 No Slippage Check in addLiquidityWETHOnly() . 17

3.2.13 Lack of Check of borrowRatio in loopETH() . 18

3.2.14 Lack of Check of Length between assets and poolIDs in setPoolIDs() 19

3.2.15 Lack of mint Privilege Revoke in addBountyContract() 20

3.2.16 Minters Can Only be Assigned Once . 20

3.3 Additional Recommendation . 20

3.3.1 Gas Optimization (zapVestingToLp() in Mfd) . 20

3.3.2 Non-empty Bounty Reserve in BountyManager . 21

3.3.3 Inconsistent Naming in requiredUsdValue() . 22

3.4 Notes . 22

i

3.4.1 Depreciated MFDPlus . 22

4 Appendix 23
4.1 Automated Static Security Testing Results . 23

4.2 Automated Dynamic Security Testing Results . 25

ii

Report Manifest

Item Description
Client Radiant Capital
Target Radiant V2

Version History

Version Date Description
1.0 March 15, 2023 First Version
2.0 March 21, 2023 Second Version

About BlockSec The BlockSec Team focuses on the security of the blockchain ecosystem, and col-

laborates with leading DeFi projects to secure their products. The team is founded by top-notch security

researchers and experienced experts from both academia and industry. They have published multiple

blockchain security papers in prestigious conferences, reported several zero-day attacks of DeFi applica-

tions, and released detailed analysis reports of high-impact security incidents. They can be reached at

Email, Twitter and Medium.

iii

https://www.blocksec.com
mailto:contact@blocksec.com
https://twitter.com/BlockSecTeam
https://blocksecteam.medium.com/

Chapter 1 Introduction

1.1 About Security Testing

We are invited by Radiant Capital to conduct a security testing (as the red team) for the Radiant V2’s

smart contracts to identify potential risks. As a responsible team, Radiant Capital takes security seriously.

Hence the team decided to put more efforts into securing those smart contracts, while they have been

audited by multiple security companies 1.

Note that security testing is different from security audit in both goals and requirements. Specifically,

security testing aims to discover extra/unusual vulnerable points by mimicking attackers to break the pro-

gram/protocol, while security audit aims to give a relatively comprehensive security check by enumerating

the possible attack surfaces. As such, security testing might not be able to cover some complicated logic

bugs that could be identified by security audit due to the limited time and resource.

1.2 About Target Contracts

Information Description
Type Smart Contract
Language Solidity

Approach
Static analysis, dynamic analysis, Semi-automatic
and manual verification

The target repository is Radiant_v2.1.1 2. The commit SHA values during the security testing are

shown in the following. Our report is responsible for the only initial version (i.e., Version 1), as well as new

codes (in the following versions) to fix issues in the report.

Project Commit SHA

Radiant

Version 1 1328c4d9015b035530b516de817252fb0df8e11e
Version 2 d104447bc5af84e0c62cfa814b3ecdf7c024c0f7
Version 3 bd641dd13ed52f2c731f47263e2f2bd144683d81
Version 4 bcc5ff3674c6d865115d69936b5744dd314fec0b
Version 5 77664d84ddcf77089dbb629700d2276fdedf1bca
Version 6 1cd1f60d3bc90ade88fcced8ed3406867c6dcc97
Version 7 acd3e5284e5069ac23ee08edace5520e31957d58
Version 8 3c877c12af60bb168231c4bc0254da51731bdb7a
Version 9 757288c422cabd63a97cf9fa6a9f3adee25abd76
Version 10 40776c3cd3c88e2d9d17dacdb28da63043054e43
Version 11 156d2b578d5a22ffca318fedf45e26bec872e932

Note that, this report only covers smart contracts under the radiant_v2.1.1/contracts folder of this

repository, including:

- bounties

1https://twitter.com/RDNTCapital/status/1625579906502475776

2https://github.com/radiant-capital/audit

1

- deployments

- flashloan

- leverage

- lock

- oracles

- staking

- zap

- eligibility

- misc

- oft

- protocol

- stargate

After the update in Version 8,the files covered in this security testing include:

- lending/AaveOracle.sol

- lending/AaveProtocolDataProvider.sol

- lending/ATokensAndRatesHelper.sol

- lending/StableAndVariableTokensHelper.sol

- lending/UiPoolDataProviderV2V3.sol

- lending/UiPoolDataProvider.sol

- lending/WETHGateway.sol

- lending/WalletBalanceProvider.sol

- lending/configuration

- lending/flashloan

- lending/lendingpool

- lending/tokenization

- radiant/accessories

- radiant/eligibility

- radiant/oracles

- radiant/staking

- radiant/token

- radiant/zap

1.3 Disclaimer

This report does not constitute investment advice or a personal recommendation. It does not consider,

and should not be interpreted as considering or having any bearing on, the potential economics of a token,

token sale or any other product, service or other asset. Any entity should not rely on this report in any way,

including for the purpose of making any decisions to buy or sell any token, product, service or other asset.

This report is not an endorsement of any particular project or team, and the report does not guarantee

the security of any particular project. This security testing does not give any warranties on discovering all

security issues of the smart contracts, i.e., the evaluation result does not guarantee the nonexistence of

any further findings of security issues. As the security testing cannot be considered comprehensive, we

always recommend proceeding with independent audits and a public bug bounty program to ensure the

2

security of smart contracts.

The scope of this security testing is limited to the code mentioned in Section 1.2. Unless explicitly

specified, the security of the language itself (e.g., the solidity language), the underlying compiling toolchain

and the computing infrastructure are out of the scope.

1.4 Procedure of Security Testing

We perform the security testing according to the following procedure. We will first go through/review

the code to understand the overall design and interactions between different modules, and then conduct

the security testing based on our in-house tools:

- the code review is based on our know-how of potential attack surfaces derived from our previous

research and experience.

- we will use some in-house tools including fuzzing tools to locate possible vulnerabilities. For each

issue being discovered, we will provide the PoC for confirmation.

We show the main concrete checkpoints in the following.

1.4.1 Software Security

∗ Reentrancy

∗ DoS

∗ Access control

∗ Data handling and data flow

∗ Exception handling

∗ Untrusted external call and control flow

∗ Initialization consistency

∗ Events operation

∗ Error-prone randomness

∗ Improper use of the proxy system

1.4.2 DeFi Security

∗ Semantic consistency

∗ Functionality consistency

∗ Access control

∗ Business logic

∗ Token operation

∗ Emergency mechanism

∗ Oracle security

∗ Whitelist and blacklist

∗ Economic impact

∗ Batch transfer

1.4.3 NFT Security

∗ Duplicated item

3

∗ Verification of the token receiver

∗ Off-chain metadata security

1.4.4 Additional Recommendation

∗ Gas optimization

∗ Code quality and style
�

Note The previous checkpoints are the main ones. We may use more checkpoints during the security

testing process according to the functionality of the project.

1.5 Security Model

To evaluate the risk, we follow the standards or suggestions that are widely adopted by both industry

and academy, including OWASP Risk Rating Methodology 3 and Common Weakness Enumeration 4.

The overall severity of the risk is determined by likelihood and impact. Specifically, likelihood is used to

estimate how likely a particular vulnerability can be uncovered and exploited by an attacker, while impact

is used to measure the consequences of a successful exploit.

In this report, both likelihood and impact are categorized into two ratings, i.e., high and low respec-

tively, and their combinations are shown in Table 1.1.

Table 1.1: Vulnerability Severity Classification

Im
pa

ct

High High Medium

Low Medium Low

High Low

Likelihood

Accordingly, the severity measured in this report are classified into three categories: High, Medium,

Low. For the sake of completeness, Undetermined is also used to cover circumstances when the risk

cannot be well determined.

Furthermore, the status of a discovered item will fall into one of the following four categories:

- Undetermined No response yet.

- Acknowledged The item has been received by the client, but not confirmed yet.

- Confirmed The item has been recognized by the client, but not fixed yet.

- Fixed The item has been confirmed and fixed by the client.

3https://owasp.org/www-community/OWASP_Risk_Rating_Methodology

4https://cwe.mitre.org/

4

https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
https://cwe.mitre.org/

Chapter 2 Automated Security Testing

2.1 Automated Static Security Testing

We use our in-house static analysis tool based on Slither to check the existence of the vulnerabilities.

After checking the results manually, no issues were found. Detailed testing results can be found in Table 4.1

in Appendix.

2.2 Automated Dynamic Security Testing

We utilize fuzzing techniques to test the robustness, reliability, and precision of the target contracts.

Specifically, the initial seed in the fuzzing process is determined based on the function semantics and

contract test scripts. To simulate the on chain environment, we also maintain a set of addresses that have

interacted with the contract LendingPool and MultiFeeDistribution.

Our fuzzer also considers function semantics during transaction sequence generation. For example,

function stake in contract MultiFeeDistribution and function deposit in contract LendingPool are likely

to be invoked first in the sequence. The mutation to the function parameters and sequence is guided

by the contract code coverage. If a certain parameter or sequence reaches higher code coverage, it will

has higher priority to be mutated in the next fuzzing round. To explore some path constrained by magic

number, we collect the values read from storage (i.e., the SLOAD instruction) at runtime and use them to

generate function parameters during the mutation process.

In total, we generate 100,000 test cases and utilize 31 oracles, which is used to detect if a failure has

occurred. For each test case, it contains 30 transactions with specified orders. Finally, we discovered one

critical issue (i.e., Section 3.2.6), which is also discovered in our manual security testing process. Detailed

testing results can be found in Tables 4.2, 4.3, and 4.4 in Appendix.

5

Chapter 3 Manual Security Testing

We involve manual efforts to understand the overall design and interactions between different mod-

ules, and then conduct the security testing based on our know-how of potential attack surfaces derived

from our previous research and experience.

In total, we find seventeen potential issues. Besides, we have three recommendations and one
notes as follows:

- High Risk: 2

- Medium Risk: 8

- Low Risk: 7

- Recommendations: 3

- Notes: 1

ID Severity Description Category Status

1 Medium
No Reserved Interface for Resetting Function
Pointers

Software Security Fixed

2 Medium Improper Calculation of the Oracle DeFi Security Fixed
3 High Potential Drain of Funds through BaseBounty DeFi Security Fixed
4 Low Potential Invalid Emission Schedules DeFi Security Fixed
5 Low Skippable Emission schedules DeFi Security Confirmed
6 Medium Changeable Exchange Rate during Migration DeFi Security Fixed
7 High Improper Implementation of _transfer() (I) DeFi Security Fixed
8 Low Lack of Check on Period in UniV2TwapOracle DeFi Security Fixed
9 Medium Non-Refundable Dust Tokens DeFi Security Fixed
10 Medium Improper Implementation of _transfer() (II) DeFi Security Fixed
11 Medium Manipulatable Compound Rewards DeFi Security Fixed
12 Medium Lack of Access Control in setLeverager() DeFi Security Fixed

13 Medium
No Slippage Check in
addLiquidityWETHOnly()

DeFi Security Confirmed

14 Low Lack of Check of borrowRatio in loopETH() DeFi Security Fixed

15 Low
Lack of Check of Length between assets and
poolIDs in setPoolIDs()

DeFi Security Fixed

16 Low
Lack of mint Privilege Revoke in addBounty-
Contract()

DeFi Security Confirmed

17 Low Minters Can Only be Assigned Once DeFi Security Confirmed
18 - Gas Optimization (zapVestingToLp() in Mfd) Recommendation Fixed
19 - Non-empty Bounty Reserve in BountyManager Recommendation Fixed
20 - Inconsistent Naming in requiredUsdValue() Recommendation Confirmed
21 - Depreciated MFDPlus Note Confirmed

The details are provided in the following sections.

3.1 Software Security

3.1.1 No Reserved Interface for Resetting Function Pointers

Severity Medium

6

Status Fixed in Version 7

Introduced by Version 1

Description Three functions, getLpMfdBounty(), getChefBounty(), and getAutoCompoundBounty(), are

invoked through function pointers in contract BountyManager. Meanwhile, the inheritance from Ownable-

Upgradable shows that this contract would be the implementation of a proxy. This indicates that the imple-

mentation contract can be upgraded in the future, which brings an issue related to the function pointers.

77 function initialize(
78 address _rdnt,
79 address _weth,
80 address _lpMfd,
81 address _mfd,
82 address _chef,
83 address _priceProvider,
84 address _eligibilityDataProvider,
85 uint256 _hunterShare,
86 uint256 _baseBountyUsdTarget,
87 uint256 _maxBaseBounty,
88 uint256 _bountyBooster
89) external initializer {
90 require(_rdnt != address(0));
91 require(_weth != address(0));
92 require(_lpMfd != address(0));
93 require(_mfd != address(0));
94 require(_chef != address(0));
95 require(_priceProvider != address(0));
96 require(_eligibilityDataProvider != address(0));
97 require(_hunterShare <= 10000);
98 require(_baseBountyUsdTarget != 0);
99 require(_maxBaseBounty != 0);

100
101 rdnt = _rdnt;
102 weth = _weth;
103 lpMfd = _lpMfd;
104 mfd = _mfd;
105 chef = _chef;
106 priceProvider = _priceProvider;
107 eligibilityDataProvider = _eligibilityDataProvider;
108
109 HUNTER_SHARE = _hunterShare;
110 baseBountyUsdTarget = _baseBountyUsdTarget;
111 bountyBooster = _bountyBooster;
112 maxBaseBounty = _maxBaseBounty;
113
114 bounties[1] = getLpMfdBounty;
115 bounties[2] = getChefBounty;
116 bounties[3] = getAutoCompoundBounty;
117 bountyCount = 3;
118
119 slippageLimit = 10;
120 minDLPBalance = uint256(5).mul(10 ** 18);
121

7

122
123 __Ownable_init();
124 __Pausable_init();
125 }

Listing 3.1: BountyManager.sol

Impact When the offsets of the above mentioned three functions are changed, the function pointers

cannot work as expected and the whole logic of the contract can be changed.

Suggestion The contract should provide interfaces for resetting the function pointers.

3.2 DeFi Security

3.2.1 Improper Calculation of the Oracle

Severity Medium

Status Fixed in Version 11

Introduced by Version 1 and Version 4

Description The function consult() in contract ComboOracle is used to compute the average price from

several sources. In the implementation of version 1, it uses arithmetic mean to calculate the final price,

which can be manipulated by influencing one of the source oracles.

36 function consult() public view override returns (uint256 price) {
37 require(sources.length != 0);
38
39 uint256 sum;
40 for (uint256 i = 0; i < sources.length; i++) {
41 uint256 price = sources[i].consult();
42 require(price != 0, "source consult failure");
43 sum = sum.add(price);
44 }
45 price = sum.div(sources.length);
46 }

Listing 3.2: ComboOracle.sol

In the implementation of version 4, when the average price is greater than the lowest price × 1.025,

lowest price will be returned. However, the return value can still be manipulated if the result returned from

one of the source oracles is abnormally low.

36 /**
37 * @notice Calculated price
38 * @return price Average price of several sources.
39 */
40 function consult() public view override returns (uint256 price) {
41 require(sources.length != 0);
42
43 uint256 sum;
44 uint256 lowestPrice;
45 for (uint256 i = 0; i < sources.length; i++) {

8

46 uint256 price = sources[i].consult();
47 require(price != 0, "source consult failure");
48 if (lowestPrice == 0) {
49 lowestPrice = price;
50 } else {
51 lowestPrice = lowestPrice > price ? price : lowestPrice;
52 }
53 sum = sum.add(price);
54 }
55 price = sum.div(sources.length);
56 price = price > ((lowestPrice * 1025) / 1000) ? lowestPrice : price;
57 }

Listing 3.3: ComboOracle.sol

Impact The price returned from ComboOracle can be manipulated, which allows the attacker to gain profit

from it.

Suggestion We suggest using medium value instead of the average value. If there are only two source

oracles and a rather big difference occurs, it is more reasonable to revert the transaction when the avarage

price is rather larger than the lowest price.

Feedback There will be only two source oracles. If there is a rather big difference occurs, we’ll use an

OZ Defender Sentinel to pause associated contracts.

Note The contract ComboOracle is removed and no longer used.

3.2.2 Potential Drain of Funds through BaseBounty

Severity High

Status Fixed in Version 4

Introduced by Version 1

Description A user can lock tokens (i.e., RDNT) for a fixed duration to earn rewards. When the lock

expires, other users can invoke the function executeBounty() to relock the tokens for this user to earn

the BaseBounty if this user has the AutoRelock enabled. During the relocking process, the expired locks

will be cleared and restaked into the pool in the internal function _cleanWithdrawableLocks(). However,

there is a variable maxLockWithdrawPerTxn limiting the maximum number of locks that can be cleared. In

this case, uncleared expired locks may still exist even after the function executeBounty() being executed.

This can further bypass the check in line 106 of function claimBounty() in the contract MFDPlus. The

issueBaseBounty will be set as true and returned back.

1074 **
1075 * @notice Withdraw all lockings tokens where the unlock time has passed
1076 */
1077 function _cleanWithdrawableLocks(
1078 address user,
1079 uint256 totalLock,
1080 uint256 totalLockWithMultiplier
1081) internal returns (uint256 lockAmount, uint256 lockAmountWithMultiplier) {
1082 LockedBalance[] storage locks = userLocks[user];
1083

9

1084 if (locks.length != 0) {
1085 uint256 length = locks.length <= maxLockWithdrawPerTxn ? locks.length :

maxLockWithdrawPerTxn;
1086 for (uint256 i = 0; i < length;) {
1087 if (locks[i].unlockTime <= block.timestamp) {
1088 lockAmount = lockAmount.add(locks[i].amount);
1089 lockAmountWithMultiplier = lockAmountWithMultiplier.add(
1090 locks[i].amount.mul(locks[i].multiplier)
1091);
1092 locks[i] = locks[locks.length - 1];
1093 locks.pop();
1094 length = length - 1;
1095 } else {
1096 i = i + 1;
1097 }
1098 }
1099 if (locks.length == 0) {
1100 lockAmount = totalLock;
1101 lockAmountWithMultiplier = totalLockWithMultiplier;
1102 delete userLocks[user];
1103
1104 userlist.removeFromList(user);
1105 }
1106 }
1107 }

Listing 3.4: MultiFeeDistribution.sol

Specifically, the attacker can stake 1 wei token with the same expiration time for multiple times, which

is rather larger than maxLockWithdrawPerTxn. After that, the attacker can set the action as getLpMfdBounty

and invoke executeBounty() repeatedly. As the amount of cleared locks is limited by the

maxLockWithdrawPerTxn, the BaseBounty in the contract BountyManager can be drained by the attacker.

Impact The attacker can drain all funds in the contract BountyManager in one transaction, leading to the

disruption of designed bounty mechanisms.

Suggestion Ensure the function _cleanWithdrawableLocks() can clear all expired locks and set a mini-

mum staking amount in function _stake().

3.2.3 Potential Invalid Emission Schedules

Severity Low

Status Fixed in Version 10

Introduced by Version 1

Description In the contract ChefIncentivesController , function setEmissionSchedule() is invoked

by the owner to set schedules for different rewards rates. In this case, the start time for each sched-

ule (_startTimeOffsets[i] + startTime) should be validated to be larger than the current timestamp.

However, it only checks the first element in _startTimeOffsets, which is not enough. Furthermore, the

_startTimeOffsets[i] is converted from uint256 to uint128 when it’s being added to emissionSchedule,

which can be truncated if the original input is too large.

10

262 function setEmissionSchedule(
263 uint256[] calldata _startTimeOffsets,
264 uint256[] calldata _rewardsPerSecond
265) external onlyOwner {
266 uint256 length = _startTimeOffsets.length;
267 require(length > 0 && length == _rewardsPerSecond.length, "empty or mismatch params");
268 if (startTime > 0) {
269 require(_startTimeOffsets[0] > block.timestamp.sub(startTime), "invalid start time");
270 }
271
272 for (uint256 i = 0; i < length; i++) {
273 emissionSchedule.push(
274 EmissionPoint({
275 startTimeOffset: uint128(_startTimeOffsets[i]),
276 rewardsPerSecond: uint128(_rewardsPerSecond[i])
277 })
278);
279 }
280 emit EmissionScheduleAppended(_startTimeOffsets, _rewardsPerSecond);
281 }

Listing 3.5: ChefIncentivesController.sol

Impact If _startTimeOffsets is not in ascending order, some promised rewards will not be distributed to

the users. If _startTimeOffsets[i] is beyond the range of uint128 , an invalid emission schedule will be

added.

Suggestion Ensure the _startTimeOffsets is in ascending order and all elements are within the uint128

range.

3.2.4 Skippable Emission schedules

Severity Low

Status Confirmed

Introduced by Version 1

Description In contract ChefIncentivesController, the function setScheduleRewardsPerSecond() will

iterate emissionSchedule to locate the target schedule with the largest index that has already started, and

update the reward rate accordingly. However, in this case, some emission schedules may be skipped.

217 function setScheduledRewardsPerSecond() internal {
218 if (!persistRewardsPerSecond) {
219 uint256 length = emissionSchedule.length;
220 uint256 i = emissionScheduleIndex;
221 uint128 offset = uint128(block.timestamp.sub(startTime));
222 for (; i < length && offset >= emissionSchedule[i].startTimeOffset; i++) {}
223 if (i > emissionScheduleIndex) {
224 emissionScheduleIndex = i;
225 _massUpdatePools();
226 rewardsPerSecond = uint256(emissionSchedule[i - 1].rewardsPerSecond);
227 }

11

228 }
229 }

Listing 3.6: ChefIncentivesController.sol

Impact If the function setScheduledRewardsPerSecond() is not invoked for a long time, some promised

rewards may not be distributed to the users.

Suggestion The function setScheduledRewardsPerSecond() is invoked inside function claim() and

_handleActionAfterForToken(), so the only way the emissions schedule would be skipped would be for

no people to interact with the protocol during an emissions epoch.

3.2.5 Changeable Exchange Rate during Migration

Severity Medium

Status Fixed in Version 5

Introduced by Version 1

Description The contract Migration is implemented for users to exchange from tokenV1 to tokenV2

with a specified exchangeRate. However, during the process of migration, this exchangeRate can still be

adjusted by the owner via the function setExchangeRate().

75 /**
76 * @notice Migrate from V1 to V2
77 * @param amount of V1 token
78 */
79 function exchange(uint256 amount) external whenNotPaused {
80 uint256 v1Decimals = tokenV1.decimals();
81 uint256 v2Decimals = tokenV2.decimals();
82
83 uint256 outAmount = amount.mul(1e4).div(exchangeRate).mul(10**v2Decimals).div(10**v1Decimals

);
84 tokenV1.safeTransferFrom(_msgSender(), address(this), amount);
85 tokenV2.safeTransfer(_msgSender(), outAmount);
86
87 emit Migrate(_msgSender(), amount, outAmount);
88 }

Listing 3.7: Migration.sol

Impact It will be unfair to the other users, if the exchangeRate is changed during the migration process.

Suggestion Once the migration starts, the exchangeRate should be fixed.

3.2.6 Improper Implementation of _transfer() (I)

Severity High

Status Fixed in Version 7

Introduced by Version 1

Description In contract IncentivizedERC20, the function _transfer() does not consider the situation

that the sender and the recipient can be the same account (so-called self transfer). Specifically, if the

12

sender equals to the recipient, the sender’s balance will be overwritten when updating the recipient’s

balance. In this case, the hacker is able to increase his/her own balance infinitely by transferring to his/her

own account repeatedly.

176 function _transfer(
177 address sender,
178 address recipient,
179 uint256 amount
180) internal virtual {
181 require(sender != address(0), ’ERC20: transfer from the zero address’);
182 require(recipient != address(0), ’ERC20: transfer to the zero address’);
183
184 _beforeTokenTransfer(sender, recipient, amount);
185
186 uint256 senderBalance = _balances[sender].sub(amount, ’ERC20: transfer amount exceeds

balance’);
187 uint256 recipientBalance = _balances[recipient].add(amount);
188
189 if (address(_getIncentivesController()) != address(0)) {
190 // uint256 currentTotalSupply = _totalSupply;
191 _getIncentivesController().handleActionBefore(sender);
192 if (sender != recipient) {
193 _getIncentivesController().handleActionBefore(recipient);
194 }
195 }
196
197 _balances[sender] = senderBalance;
198 _balances[recipient] = recipientBalance;
199
200 if (address(_getIncentivesController()) != address(0)) {
201 uint256 currentTotalSupply = _totalSupply;
202 _getIncentivesController().handleActionAfter(sender, senderBalance, currentTotalSupply);
203 if (sender != recipient) {
204 _getIncentivesController().handleActionAfter(recipient, recipientBalance,

currentTotalSupply);
205 }
206 }
207 }

Listing 3.8: IncentivizedERC20.sol

Impact Tokens can be minted infinitely.

Suggestion Implement the function _transfer() properly. For example, the standard _transfer() im-

plementation of ERC20 in OpenZeppelin.

1_balances[sender] = _balances[sender].sub(amount, ’ERC20: transfer amount exceeds balance’);
2_balances[recipient] = _balances[recipient].add(amount);

Listing 3.9: ERC20.sol in OpenZeppelin

3.2.7 Lack of Check on Period in UniV2TwapOracle

Severity Low

13

Status Fixed in Version 9

Introduced by Version 1

Description In the contract UniV2TwapOracle, the attribute _period is not validated in the function

initialize() and setPeriod().

35 function initialize(
36 address _pair,
37 address _rdnt,
38 address _ethChainlinkFeed,
39 uint _period,
40 uint _consultLeniency,
41 bool _allowStaleConsults
42) external initializer {
43 __Ownable_init();
44
45 pair = IUniswapV2Pair(_pair);
46 token0 = pair.token0();
47 token1 = pair.token1();
48 price0CumulativeLast = pair.price0CumulativeLast(); // Fetch the current accumulated price

value (1 / 0)
49 price1CumulativeLast = pair.price1CumulativeLast(); // Fetch the current accumulated price

value (0 / 1)
50 uint112 reserve0;
51 uint112 reserve1;
52 (reserve0, reserve1, blockTimestampLast) = pair.getReserves();
53 require(reserve0 != 0 && reserve1 != 0, ’UniswapPairOracle: NO_RESERVES’); // Ensure that

there’s liquidity in the pair
54
55 PERIOD = _period;
56 CONSULT_LENIENCY = _consultLeniency;
57 ALLOW_STALE_CONSULTS = _allowStaleConsults;
58
59 baseInitialize(_rdnt, _ethChainlinkFeed);
60 }
61
62 function setPeriod(uint _period) external onlyOwner {
63 PERIOD = _period;
64 }

Listing 3.10: UniV2TwapOracle.sol

Impact In this case, the oracle can return unexpected value if the _period is too small.

Suggestion Set a minimum limit on the _period in the function initialize and setPeriod.

3.2.8 Non-Refundable Dust Tokens

Severity Medium

Status Fixed in Version 5

Introduced by Version 1

Description In contract UniswapPoolHelper, the function zapWETH() is designed to help the user convert

WETH tokens to LP tokens. It will invoke the function addLiquidityWETHOnly() to add liquidity in the pool for

14

LP tokens. In this process, there may exist dust tokens which should be returned back to users. However,

the UniswapPoolHelper doesn’t implement such functionality to handle these dust tokens.

83 function zapWETH(uint256 amount)
84 public
85 returns (uint256 liquidity)
86{
87 IWETH WETH = IWETH(wethAddr);
88 WETH.transferFrom(msg.sender, address(liquidityZap), amount);
89 liquidity = liquidityZap.addLiquidityWETHOnly(amount, address(this));
90 IERC20 lp = IERC20(lpTokenAddr);
91
92 liquidity = lp.balanceOf(address(this));
93 lp.safeTransfer(msg.sender, liquidity);
94}

Listing 3.11: UniswapPoolHelper.sol

Impact The dust tokens will remain in the contract, which can be extracted by others via the function

zapTokens(0,0).

Suggestion Implement the function to return dust tokens after adding liquidity.

3.2.9 Improper Implementation of _transfer() (II)

Severity Medium

Status Fixed in Version 9

Introduced by Version 7

Description In contract IncentivizedERC20, the function _transfer() will invoke the function handle-

ActionAfter() to update the status of the user in the contract ChefIncentivesController accordingly.

However, the parameter senderBalance will not be updated if the sender equals the recipient, which is

incorrect.

176 function _transfer(
177 address sender,
178 address recipient,
179 uint256 amount
180) internal virtual {
181 require(sender != address(0), ’ERC20: transfer from the zero address’);
182 require(recipient != address(0), ’ERC20: transfer to the zero address’);
183
184 _beforeTokenTransfer(sender, recipient, amount);
185
186 uint256 senderBalance = _balances[sender].sub(amount, ’ERC20: transfer amount exceeds

balance’);
187
188 if (address(_getIncentivesController()) != address(0)) {
189 // uint256 currentTotalSupply = _totalSupply;
190 _getIncentivesController().handleActionBefore(sender);
191 if (sender != recipient) {
192 _getIncentivesController().handleActionBefore(recipient);
193 }

15

194 }
195
196 _balances[sender] = senderBalance;
197 uint256 recipientBalance = _balances[recipient].add(amount);
198 _balances[recipient] = recipientBalance;
199
200 if (address(_getIncentivesController()) != address(0)) {
201 uint256 currentTotalSupply = _totalSupply;
202 _getIncentivesController().handleActionAfter(sender, senderBalance, currentTotalSupply);
203 if (sender != recipient) {
204 _getIncentivesController().handleActionAfter(recipient, recipientBalance,

currentTotalSupply);
205 }
206 }
207 }

Listing 3.12: IncentivizedERC20.sol

Impact When users transfer to themselves, their state in contract ChefIncentivesController will not be

updated properly, which will bring further issues for the rewards.

Suggestion Correct the senderBalance in the function handleActionAfter().

3.2.10 Manipulatable Compound Rewards

Severity Medium

Status Fixed in Version 10

Introduced by Version 5

Description In MFDPlus contract, the function _convertPendingRewardsToWeth() swaps the user’s re-

wards to WETH through the Uniswap router for relocking. However, there is no slippage check after the

swapping.

385 IERC20(underlying).safeApprove(uniRouter, removedAmount);
386 uint256[] memory amounts = IUniswapV2Router02(uniRouter)
387 .swapExactTokensForTokens(
388 removedAmount,
389 0, // slippage handled after this function
390 mfdHelper.getRewardToBaseRoute(underlying),
391 address(this),
392 block.timestamp + 10
393);

Listing 3.13: MFDPlus.sol

Impact The attacker can front-run the transaction to manipulate the price and gain the profit.

Suggestion Add the slippage check in function claimCompound().

3.2.11 Lack of Access Control in setLeverager()

Severity Medium

16

Status Fixed in Version 9

Introduced by Version 1

Description Function setLeverager() in the contract LendingPool has no access control.

904 uint256[] memory amounts = IUniswapV2Router02(uniRouter)
905 .swapExactTokensForTokens(
906 removedAmount,
907 0, // slippage handled after this function
908 mfdHelper.getRewardToBaseRoute(underlying),
909 address(this),
910 block.timestamp + 10
911);

Listing 3.14: LendingPool.sol

Impact If the leverager was not set at the beginning, an attacker could set the leverager to any address,

thereby gaining control over the logic of the function depositWithAutoDLP().

Suggestion Set the leverager in the function initialize() or add the access control for function

setLeverager().

3.2.12 No Slippage Check in addLiquidityWETHOnly()

Severity Medium

Status Confirmed

Introduced by Version 1

Description The user can use either borrowed WETH tokens (or his/her own ETH tokens) or vesting RDNT

tokens in MFD contracts to get LP tokens (i.e., WETH-RDNT).

However, when adding the liquidity to the pool, the calculation of the required tokens is based on the

amount of reserves in the pool, which can be manipulated. In this case, if the user only has WETH tokens,

the function addLiquidityWETHOnly() will be invoked to swap half of the WETH tokens to RDNT tokens in the

unbalanced pool without checking slippage.

92function addLiquidityWETHOnly(uint256 _amount, address payable to)
93 public
94 returns (uint256 liquidity)
95{
96 require(to != address(0), "LiquidityZAP: Invalid address");
97 uint256 buyAmount = _amount.div(2);
98 require(buyAmount > 0, "LiquidityZAP: Insufficient ETH amount");
99

100 (uint256 reserveWeth, uint256 reserveTokens) = getPairReserves();
101 uint256 outTokens = UniswapV2Library.getAmountOut(
102 buyAmount,
103 reserveWeth,
104 reserveTokens
105);
106
107 _WETH.transfer(_tokenWETHPair, buyAmount);
108

17

109 (address token0, address token1) = UniswapV2Library.sortTokens(
110 address(_WETH),
111 _token
112);
113 IUniswapV2Pair(_tokenWETHPair).swap(
114 _token == token0 ? outTokens : 0,
115 _token == token1 ? outTokens : 0,
116 address(this),
117 ""
118);
119
120 return _addLiquidity(outTokens, buyAmount, to);
121}

Listing 3.15: LiquidityZap.sol

43 function getAmountOut(uint amountIn, uint reserveIn, uint reserveOut) internal pure returns (
uint amountOut) {

44 require(amountIn > 0, ’UniswapV2Library: INSUFFICIENT_INPUT_AMOUNT’);
45 require(reserveIn > 0 && reserveOut > 0, ’UniswapV2Library: INSUFFICIENT_LIQUIDITY’);
46 uint amountInWithFee = amountIn.mul(997);
47 uint numerator = amountInWithFee.mul(reserveOut);
48 uint denominator = reserveIn.mul(1000).add(amountInWithFee);
49 amountOut = numerator / denominator;
50 }

Listing 3.16: UniswapV2Library.sol

Impact The attacker can front-run the transaction to manipulate the price and gain the profit.

Suggestion Check slippage in the function addLiquidityWETHOnly() or ensure it can only be invoked by

UniswapPoolHelper.

3.2.13 Lack of Check of borrowRatio in loopETH()

Severity Low

Status Fixed in Version 10

Introduced by Version 1

Description Function loopETH() is used for leverage borrowing and receives a parameter borrowRatio

to specify the borrow ratio. However, the borrowRatio is not checked before the loop starts.

212 function loopETH(
213 uint256 interestRateMode,
214 uint256 borrowRatio,
215 uint256 loopCount
216) external payable {
217 uint16 referralCode = 0;
218 uint256 amount = msg.value;
219 if (IERC20(address(weth)).allowance(address(this), address(lendingPool)) == 0) {
220 IERC20(address(weth)).safeApprove(address(lendingPool), type(uint256).max);
221 }
222 if (IERC20(address(weth)).allowance(address(this), address(treasury)) == 0) {

18

223 IERC20(address(weth)).safeApprove(treasury, type(uint256).max);
224 }
225
226 uint256 fee = amount.mul(feePercent).div(RATIO_DIVISOR);
227 _safeTransferETH(treasury, fee);
228
229 amount = amount.sub(fee);
230
231 weth.deposit{value: amount}();
232 lendingPool.deposit(address(weth), amount, msg.sender, referralCode);
233
234 for (uint256 i = 0; i < loopCount; i += 1) {
235 amount = amount.mul(borrowRatio).div(RATIO_DIVISOR);
236 lendingPool.borrow(address(weth), amount, interestRateMode, referralCode, msg.sender);
237 weth.withdraw(amount);
238
239 fee = amount.mul(feePercent).div(RATIO_DIVISOR);
240 _safeTransferETH(treasury, fee);
241
242 weth.deposit{value: amount.sub(fee)}();
243 lendingPool.deposit(address(weth), amount.sub(fee), msg.sender, referralCode);
244 }
245
246 zapWETHWithBorrow(wethToZap(msg.sender), msg.sender);
247 }

Listing 3.17: Leverager.sol

Impact The borrowRatio may be higher than RATIO_DIVISOR which is inconsistent with the original de-

sign.

Suggestion Make sure that borrowRatio is less or equal to RATIO_DIVISOR.

3.2.14 Lack of Check of Length between assets and poolIDs in setPoolIDs()

Severity Low

Status Fixed in Version 10

Introduced by Version 1

Description The function setPoolIDs() allows the owner to set different poolIDs for different assets.

However, the lengths of these two arrays are not checked to be equal.

158 // Set pool ids of assets
159 function setPoolIDs(address[] memory assets, uint256[] memory poolIDs) external onlyOwner {
160 for (uint256 i = 0; i < assets.length; i += 1) {
161 poolIdPerChain[assets[i]] = poolIDs[i];
162 }
163 emit PoolIDsUpdated(assets, poolIDs);
164 }

Listing 3.18: StarBorrow.sol

Impact The assets will not be assigned to correct poolIDs.

Suggestion Make sure the lengths of assets and poolIDs are equal.

19

3.2.15 Lack of mint Privilege Revoke in addBountyContract()

Severity Low

Status Confirmed

Introduced by Version 1

Description Function addBountyContract() is used to set the new BountyManager. However, the original

bounty contract still holds the mint privilege, which is against the original design.

250 function addBountyContract(address _bounty) external onlyOwner {
251 BountyManager = _bounty;
252 minters[_bounty] = true;
253 }

Listing 3.19: Leverager.sol

Impact The deprecated BountyManager still has mint privileges.

Suggestion Revoke the mint privilege of origin BountyManager contract.

Feedback The function addBountyContract will only be called once to initialize the BountyManager.

3.2.16 Minters Can Only be Assigned Once

Severity Low

Status Confirmed

Introduced by Version 1

Description The minters is used to record those who have the permission to access the function mint()

and addReward(). However, when one of the minters (e.g., the contract ChefIncentivesController) is

updated, the outdated minters can not be removed.

242 function setMinters(address[] memory _minters) external onlyOwner {
243 require(!mintersAreSet);
244 for (uint256 i; i < _minters.length; i++) {
245 minters[_minters[i]] = true;
246 }
247 mintersAreSet = true;
248 }

Listing 3.20: MultiFeeDistribution.sol

Impact The outdated minters can not be removed when they are upgraded.

Suggestion Implement a privileged function to modify minters.

Feedback Because the BountyManager, ChefIncentivesController and MultiFeeDistribution will be

upgradable, so minters always keep the same proxy address.

3.3 Additional Recommendation

3.3.1 Gas Optimization (zapVestingToLp() in Mfd)

Status Fixed in Version 10

20

Introduced by Version 1

Description The function zapVestingToLp() can only be invoked by the contract LockZap to transfer the

locked earning of the user out. It iterates the earnings array of the user starting from the index 0, and

checks whether the unlockTime is larger than the current timestamp. If so, this earning will be removed

from the array and transferred out. However, since the unlockTime in the array is increasing with the index,

it will be more efficient to start the iteration from the end of array to the beginning. If the unlockTime is

smaller than the current timestamp, the loop can be broken.

1204 function zapVestingToLp(address _user)
1205 external
1206 override
1207 returns (uint256 zapped)
1208 {
1209 require(msg.sender == lockZap);
1210
1211 LockedBalance[] storage earnings = userEarnings[_user];
1212 uint256 length = earnings.length;
1213
1214 for (uint256 i = 0; i < length;) {
1215 // only vesting, so only look at currently locked items
1216 if (earnings[i].unlockTime > block.timestamp) {
1217 zapped = zapped.add(earnings[i].amount);
1218 // remove + shift array size
1219 earnings[i] = earnings[earnings.length - 1];
1220 earnings.pop();
1221 length = length.sub(1);
1222 } else {
1223 i = i.add(1);
1224 }
1225 }
1226
1227 rdntToken.safeTransfer(lockZap, zapped);
1228
1229 Balances storage bal = balances[_user];
1230 bal.earned = bal.earned.sub(zapped);
1231 bal.total = bal.total.sub(zapped);
1232
1233 return zapped;
1234 }

Listing 3.21: MultiFeeDistribution.sol

Suggestion Start the iteration from the end of earnings to the beginning. If the unlockTime is smaller

than the current timestamp, the loop can be broken.

3.3.2 Non-empty Bounty Reserve in BountyManager

Status Fixed in Version 10

Introduced by Version 1

Description In function _sendBounty(), if there are not enough RDNT tokens for the transfer in the contract

21

BountyManager, the event BountyReseveEmpty() will be emitted, and the contract will be paused. However,

it’s possible that there are still some RDNT tokens left, which is inconsistent with the emitted event.

354 function _sendBounty(address _to, uint256 _amount)
355 internal
356 returns (uint256)
357 {
358 if (_amount == 0) {
359 return 0;
360 }
361
362 uint256 bountyReserve = IERC20(rdnt).balanceOf(address(this));
363 if(_amount > bountyReserve) {
364 emit BountyReserveEmpty(bountyReserve);
365 _pause();
366 } else {
367 IERC20(rdnt).safeTransfer(address(mfd), _amount);
368 IMFDPlus(mfd).mint(_to, _amount, true);
369 return _amount;
370 }
371 }

Listing 3.22: BountyManager.sol

Suggestion Transfer the left RDNT tokens out even if it’s not enough.

3.3.3 Inconsistent Naming in requiredUsdValue()

Status Confirmed

Introduced by Version 1

Description The function requiredUsdValue() is used to check the required locked value of the user

who wants to be qualified to earn rewards by holding RTokens. The calculation is based on the collateral

value of the user, which is returned from the function getUserAccountData(). However, the returned value

is named as totalCollateralETH, which is inconsistent with that in the function requiredUsdValue() (i.e.,

totalCollateralUSD).

Suggestion Standardize the naming conventions of functions with the right token name. For example,

rename requiredUsdValue() to requiredEthValue().

Feedback We’d rather keep the AAVE contracts as similar as possible so we didn’t update the name.

3.4 Notes

3.4.1 Depreciated MFDPlus

Status Confirmed

Introduced by version 10

Description The contract MFDPlus is no longer used. The logic of compounding is moved into the con-

tract AutoCompounder and other logic is moved into the contract MiddleFeeDistribution.

22

Chapter 4 Appendix

4.1 Automated Static Security Testing Results

Table 4.1: Automated Static Security Testing Results. Found indidates the number of issues reported by
the tools. FP means the number of false positives after our manual verification.

ID Detector Description Impact Found FP Result

1
arbitrary-
send-erc20

Calling transferFrom with arbitrary
from

High 1 1 Passed

2
array-by-
reference

Modifying storage array by value High 0 0 Passed

3
incorrect-
shift

Incorrect order of parameters in a
shift instruction

High 0 0 Passed

4
multiple-
constructors

Multiple constructor schemes High 0 0 Passed

5
name-
reused

Reusing contract’s name High 0 0 Passed

6
protected-
vars

Modifying variables directly without
access control

High 0 0 Passed

7 rtlo
Using Right-To-Left-Override control
character

High 0 0 Passed

8
shadowing-
state

State variables shadowing High 1 1 Passed

9 suicidal
Functions allowing anyone to de-
struct the contract

High 0 0 Passed

10
uninitialized-
state

Uninitialized state variables High 3 3 Passed

11
uninitialized-
storage

Uninitialized storage variables High 0 0 Passed

12
unprotected-
upgrade

Unprotected upgradeable contract High 1 1 Passed

13
arbitrary-
send-erc20-
permit

transferFrom uses arbitrary from
with permit

High 0 0 Passed

14
arbitrary-
send-eth

Functions that send Ether to arbitrary
destinations

High 0 0 Passed

15
controlled-
array-length

Tainted array length assignment High 0 0 Passed

16
controlled-
delegatecall

Controlled delegatecall destination High 0 0 Passed

17
delegatecall-
loop

Payable functions using
delegatecall inside a loop

High 0 0 Passed

18
msg-value-
loop

Using msg.value inside a loop High 0 0 Passed

23

ID Detector Description Impact Found FP Result

19
reentrancy-
eth

Reentrancy vulnerabilities (theft of
ethers)

High 5 5 Passed

20
storage-
array

Signed storage integer array compiler
bug

High 0 0 Passed

21
unchecked-
transfer

Unchecked tokens transfer High 12 12 Passed

22 weak-prng Weak PRNG High 0 0 Passed

23
domain-
separator-
collision

Detects ERC20 tokens that have
a function whose signature collides
with EIP-2612’s DOMAIN_SEPARATOR()

Medium 0 0 Passed

24
enum-
conversion

Detects dangerous enum conversion Medium 0 0 Passed

25
erc20-
interface

Incorrect ERC20 interfaces Medium 0 0 Passed

26
erc721-
interface

Incorrect ERC721 interfaces Medium 0 0 Passed

27
incorrect-
equality

Dangerous strict equalities Medium 23 23 Passed

28 locked-ether Contracts that lock ether Medium 1 1 Passed

29
mapping-
deletion

Deletion on mapping containing a
structure

Medium 0 0 Passed

30
shadowing-
abstract

State variables shadowing from ab-
stract contracts

Medium 0 0 Passed

31 tautology Tautology or contradiction Medium 0 0 Passed

32
write-after-
write

Unused write Medium 3 3 Passed

33 boolean-cst Misuse of Boolean constant Medium 0 0 Passed

34
constant-
function-
asm

Constant functions using assembly
code

Medium 0 0 Passed

35
constant-
function-
state

Constant functions changing the
state

Medium 0 0 Passed

36
divide-
before-
multiply

Imprecise arithmetic operations order Medium 20 20 Passed

37
reentrancy-
no-eth

Reentrancy vulnerabilities (no theft of
ethers)

Medium 12 12 Passed

38
reused-
constructor

Reused base constructor Medium 0 0 Passed

39 tx-origin Dangerous usage of tx.origin Medium 1 1 Passed

40
unchecked-
lowlevel

Unchecked low-level calls Medium 0 0 Passed

41
unchecked-
send

Unchecked send Medium 0 0 Passed

42
uninitialized-
local

Uninitialized local variables Medium 33 33 Passed

43
unused-
return

Unused return values Medium 19 19 Passed

24

4.2 Automated Dynamic Security Testing Results

Table 4.2: Tested Properties for Lending related Logic

ID Property Result

1
Calling deposit never leads to a decrease of onBehalfOf’s
RToken amount

Passed

2
Calling withdraw never leads to an increase of msg.sender’s
RToken amount

Passed

3
Calling borrow with stable interest rate mode never leads to a
decrease of onBehalfOf’s StableDebtToken.

Passed

4
Calling borrow with variable interest rate mode never leads to
a decrease of onBehalfOf’s VariableDebtToken.

Passed

5
Calling borrow with onBehalfOf that does not equal to
msg.sender never leads to an increase of msg.sender’s bor-
row allowance.

Passed

6
Calling repay with stable interest rate mode never leads to an
increase of onBehalfOf’s StableDebtToken.

Passed

7
Calling repay with variable interest rate mode never leads to
an increase of onBehalfOf’s VariableDebtToken.

Passed

8 liquidityIndex will never decrease. Passed
9 liquidityIndex will remain constant within the same block. Passed
10 variableBorrowIndex will never decrease. Passed

11
variableBorrowIndex will remain constant within the same
block.

Passed

12
Decreasing collateral amounts will never lead to health factor
less than 1.

Passed

13
Increasing borrowing amounts will never lead to health factor
less than 1.

Passed

25

Table 4.3: Tested Properties for Staking related Logic

ID Property Result

1
User’s total balance always equals the sum of locked bal-
ance, unlocked balance and earned balance.

Passed

2
User’s locked balance always equals the sum of userLocks
amount

Passed

3
User’s lockedWithMultiplier balance always equals the sum
of userLocks amount times userLocks multiplier

Passed

4 lockedSupply always equals the sum of users’ locked balance Passed

5
lockedSupplyWithMultiplier always equals the sum of users’
lockedWithMultiplier balance

Passed

6 rewardPerTokenStored never decreases. Passed

7
rewardPerTokenStored will remain constant within the same
block.

Passed

8 totalSupply always equals the sum of users’ amount Passed
9 accRewardPerShare never decreases. Passed
10 accRewardPerShare will remain constant within the same block. Passed

Table 4.4: Tested Properties for Other Features

ID Property Result

1
WETH and RDNT balance of the contract LockedZap will always
be zero.

Passed

2
WETH and RDNT balance of the contract LiquidityZap will always
be zero.

Passed

3
WETH and RDNT balance of the contract BalancerPoolHelper will
always be zero.

Passed

4
WETH and RDNT balance of the contract UniswapPoolHelper will
always be zero.

Passed

5 Calling loop will always lead to user eligible for rewards Passed
6 Calling loopETH will always lead to user eligible for rewards Passed

7
Calling executeBounty with _execute equals false will never
lead to storage change.

Passed

8
Calling transfer with sender equals to receiver never leads
to balance change.

Failed in
Version 1.
Passed in
Version 7

26

	1 Introduction
	1.1 About Security Testing
	1.2 About Target Contracts
	1.3 Disclaimer
	1.4 Procedure of Security Testing
	1.4.1 Software Security
	1.4.2 DeFi Security
	1.4.3 NFT Security
	1.4.4 Additional Recommendation

	1.5 Security Model

	2 Automated Security Testing
	2.1 Automated Static Security Testing
	2.2 Automated Dynamic Security Testing

	3 Manual Security Testing
	3.1 Software Security
	3.1.1 No Reserved Interface for Resetting Function Pointers

	3.2 DeFi Security
	3.2.1 Improper Calculation of the Oracle
	3.2.2 Potential Drain of Funds through BaseBounty
	3.2.3 Potential Invalid Emission Schedules
	3.2.4 Skippable Emission schedules
	3.2.5 Changeable Exchange Rate during Migration
	3.2.6 Improper Implementation of _transfer() (I)
	3.2.7 Lack of Check on Period in UniV2TwapOracle
	3.2.8 Non-Refundable Dust Tokens
	3.2.9 Improper Implementation of _transfer() (II)
	3.2.10 Manipulatable Compound Rewards
	3.2.11 Lack of Access Control in setLeverager()
	3.2.12 No Slippage Check in addLiquidityWETHOnly()
	3.2.13 Lack of Check of borrowRatio in loopETH()
	3.2.14 Lack of Check of Length between assets and poolIDs in setPoolIDs()
	3.2.15 Lack of mint Privilege Revoke in addBountyContract()
	3.2.16 Minters Can Only be Assigned Once

	3.3 Additional Recommendation
	3.3.1 Gas Optimization (zapVestingToLp() in Mfd)
	3.3.2 Non-empty Bounty Reserve in BountyManager
	3.3.3 Inconsistent Naming in requiredUsdValue()

	3.4 Notes
	3.4.1 Depreciated MFDPlus

	4 Appendix
	4.1 Automated Static Security Testing Results
	4.2 Automated Dynamic Security Testing Results

		2023-03-22T13:56:06+0800
	BlockSec Audit Team

