
Security Audit Report for Radpie

Date: Sep 14, 2023

Version: 1.0

Contact: contact@blocksec.com

mailto:contact@blocksec.com

Contents

1 Introduction 1
1.1 About Target Contracts . 1

1.2 Disclaimer . 1

1.3 Procedure of Auditing . 2

1.3.1 Software Security . 2

1.3.2 DeFi Security . 2

1.3.3 NFT Security . 3

1.3.4 Additional Recommendation . 3

1.4 Security Model . 3

2 Findings 4
2.1 Software Security . 5

2.1.1 Inconsistent address parameter . 5

2.1.2 Potential reverts in the _refundETH function . 5

2.1.3 Incorrect parameter in the _harvestDlpRewards function 6

2.1.4 Incorrect return value of the assetPerShare function 7

2.1.5 Potential DoS risk in the claim function . 7

2.1.6 Potential overwriting on existing poolInfo . 8

2.2 DeFi Security . 8

2.2.1 Double-counting rewards . 8

2.2.2 Incorrect _onlyWhiteListed modifier . 10

2.2.3 Lack of duplicate checks for function arguments . 10

2.2.4 Incorrect fee removal logic . 11

2.2.5 Lack of sanity check on total fee . 12

2.2.6 Unclaimable rewards due to rewarder modification 13

2.2.7 Lack of health check . 14

2.3 Additional Recommendation . 15

2.3.1 Remove unused variable . 15

2.3.2 Remove redundant check in the _sendRewards function 16

2.3.3 Prevent multiple native tokens . 16

2.3.4 Prevent accidental native token transfers . 17

2.3.5 Avoid incorrect assignment . 17

2.4 Note . 18

2.4.1 The protocol will not support deflation/inflation tokens 18

2.4.2 Potential centralization risk . 18

2.4.3 Periodic invocation of batchHarvestDlpRewards . 19

2.4.4 Periodic invocation of batchHarvestEntitledRDNT 20

2.4.5 Ensure initial TVL in RadiantStaking pools . 22

2.4.6 The initialization of vdToken balance . 23

2.4.7 Periodic invocation of accrueStreamingFee . 23

i

Report Manifest

Item Description
Client Magpie XYZ
Target Radpie

Version History

Version Date Description
1.0 Sep 14, 2023 First Release

About BlockSec BlockSec focuses on the security of the blockchain ecosystem and collaborates with

leading DeFi projects to secure their products. BlockSec is founded by top-notch security researchers and

experienced experts from both academia and industry. They have published multiple blockchain security

papers in prestigious conferences, reported several zero-day attacks of DeFi applications, and successfully

protected digital assets that are worth more than 5 million dollars by blocking multiple attacks. They can

be reached at Email, Twitter and Medium.

ii

https://www.blocksec.com
mailto:contact@blocksec.com
https://twitter.com/BlockSecTeam
https://blocksecteam.medium.com/

Chapter 1 Introduction

1.1 About Target Contracts

Information Description
Type Smart Contract
Language Solidity
Approach Semi-automatic and manual verification

The target of this audit is the code repo of the Radpie smart contracts 1 of Magpie XYZ. Radpie is a

yield optimization protocol developed built upon Radiant 2. During this audit, our presumption is that the

dependencies from Radiant, which are being adopted by Radpie, are both reliable and secure. Specifically,

this audit only covers the following smart contracts:

radiant/RadiantStaking.sol

radiant/RadpiePoolHelper.sol

rewards/BaseRewardPoolV2.sol

rewards/MasterRadpie.sol

rewards/RadpieReceiptToken.sol

rewards/RDNTRewardManager.sol

rewards/RDNTVestManager.sol

The auditing process is iterative. Specifically, we would audit the commits that fix the discovered

issues. If there are new issues, we will continue this process. The commit SHA values during the audit are

shown in the following table. Our audit report is responsible for the code in the initial version (Version 1),

as well as new code (in the following versions) to fix issues in the audit report.

Project Version Commit Hash
Radpie Version 1 d603286c5ee0115914dea2f7fb8fa4381534f8ee

Version 2 155174988137bd6078d7d35c200f6a028a254383

1.2 Disclaimer

This audit report does not constitute investment advice or a personal recommendation. It does not

consider, and should not be interpreted as considering or having any bearing on, the potential economics

of a token, token sale or any other product, service or other asset. Any entity should not rely on this report

in any way, including for the purpose of making any decisions to buy or sell any token, product, service or

other asset.

This audit report is not an endorsement of any particular project or team, and the report does not

guarantee the security of any particular project. This audit does not give any warranties on discovering

all security issues of the smart contracts, i.e., the evaluation result does not guarantee the nonexistence

of any further findings of security issues. As one audit cannot be considered comprehensive, we always

1
https://github.com/magpiexyz/Radpie

2
https://github.com/radiant-capital/v2

1

https://github.com/magpiexyz/Radpie
https://github.com/radiant-capital/v2

recommend proceeding with independent audits and a public bug bounty program to ensure the security

of smart contracts.

The scope of this audit is limited to the code mentioned in Section 1.1. Unless explicitly specified,

the security of the language itself (e.g., the solidity language), the underlying compiling toolchain and the

computing infrastructure are out of the scope.

1.3 Procedure of Auditing

We perform the audit according to the following procedure.

- Vulnerability Detection We first scan smart contracts with automatic code analyzers, and then

manually verify (reject or confirm) the issues reported by them.

- Semantic Analysis We study the business logic of smart contracts and conduct further investiga-

tion on the possible vulnerabilities using an automatic fuzzing tool (developed by our research team).

We also manually analyze possible attack scenarios with independent auditors to cross-check the

result.

- Recommendation We provide some useful advice to developers from the perspective of good

programming practice, including gas optimization, code style, and etc.

We show the main concrete checkpoints in the following.

1.3.1 Software Security

∗ Reentrancy

∗ DoS

∗ Access control

∗ Data handling and data flow

∗ Exception handling

∗ Untrusted external call and control flow

∗ Initialization consistency

∗ Events operation

∗ Error-prone randomness

∗ Improper use of the proxy system

1.3.2 DeFi Security

∗ Semantic consistency

∗ Functionality consistency

∗ Permission management

∗ Business logic

∗ Token operation

∗ Emergency mechanism

∗ Oracle security

∗ Whitelist and blacklist

∗ Economic impact

∗ Batch transfer

2

1.3.3 NFT Security

∗ Duplicated item

∗ Verification of the token receiver

∗ Off-chain metadata security

1.3.4 Additional Recommendation

∗ Gas optimization

∗ Code quality and style�
Note The previous checkpoints are the main ones. We may use more checkpoints during the auditing

process according to the functionality of the project.

1.4 Security Model

To evaluate the risk, we follow the standards or suggestions that are widely adopted by both industry

and academy, including OWASP Risk Rating Methodology 3 and Common Weakness Enumeration 4.

The overall severity of the risk is determined by likelihood and impact. Specifically, likelihood is used to

estimate how likely a particular vulnerability can be uncovered and exploited by an attacker, while impact

is used to measure the consequences of a successful exploit.

In this report, both likelihood and impact are categorized into two ratings, i.e., high and low respec-

tively, and their combinations are shown in Table 1.1.

Table 1.1: Vulnerability Severity Classification

Im
pa

ct

High High Medium

Low Medium Low

High Low

Likelihood

Accordingly, the severity measured in this report are classified into three categories: High, Medium,

Low. For the sake of completeness, Undetermined is also used to cover circumstances when the risk

cannot be well determined.

Furthermore, the status of a discovered item will fall into one of the following four categories:

- Undetermined No response yet.

- Acknowledged The item has been received by the client, but not confirmed yet.

- Confirmed The item has been recognized by the client, but not fixed yet.

- Fixed The item has been confirmed and fixed by the client.

3https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
4https://cwe.mitre.org/

3

https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
https://cwe.mitre.org/

Chapter 2 Findings

In total, we find thirteen potential issues. Besides, we also have five recommendations and seven
notes.

- High Risk: 5

- Medium Risk: 6

- Low Risk: 2

- Recommendation: 5

- Note: 7

ID Severity Description Category Status
1 High Inconsistent address parameter Software Security Fixed
2 High Potential reverts in the _refundETH function Software Security Fixed

3 High
Incorrect parameter in the
_harvestDlpRewards function

Software Security Fixed

4 Medium
Incorrect return value of the assetPerShare

function
Software Security Fixed

5 Low Potential DoS risk in the claim function Software Security Fixed
6 Low Potential overwriting on existing poolInfo Software Security Fixed
7 High Double-counting rewards DeFi Security Fixed
8 High Incorrect _onlyWhiteListed modifier DeFi Security Fixed

9 Medium
Lack of duplicate checks for function argu-
ments

DeFi Security Fixed

10 Medium Incorrect fee removal logic DeFi Security Fixed
11 Medium Lack of sanity check on total fee DeFi Security Fixed

12 Medium
Unclaimable rewards due to rewarder modifi-
cation

DeFi Security Fixed

13 Medium Lack of health check DeFi Security Fixed
14 - Remove unused variable Recommendation Fixed

15 -
Remove redundant check in the _sendRewards

function
Recommendation Fixed

16 - Prevent multiple native tokens Recommendation Fixed
17 - Prevent accidental native token transfers Recommendation Fixed
18 - Avoid incorrect assignment Recommendation Fixed

19 -
The protocol will not support deflation/inflation
tokens

Note -

20 - Potential centralization risk Note -

21 -
Periodic invocation of
batchHarvestDlpRewards

Note -

22 -
Periodic invocation of
batchHarvestEntitledRDNT

Note -

23 - Ensure initial TVL in RadiantStaking pools Note -
24 - The initialization of vdToken balance Note -
25 - Periodic invocation of accrueStreamingFee Note -

The details are provided in the following sections.

4

2.1 Software Security

2.1.1 Inconsistent address parameter

Severity High

Status Fixed in Version 2

Introduced by Version 1

Description In Radpie, a underlying staking token is associated with a receipt token representing the

share of rewards for this kind of token. The updateFor function in the RDNTRewardManager contract expects

the receipt token address as its second parameter. However, in the _harvestRewards function of the

MasterRadpie contract, updateFor is called with the _stakingToken address as the second parameter,

which is the underlying staking token of the receipt token. This results in an inconsistency between the

expected and provided arguments.

151 function updateFor(address _account, address _receipt) external {

152 _updateForByReceipt(_account, _receipt);

153 }

Listing 2.1: RDNTRewardManager.sol

539 function _harvestRewards(address _stakingToken, address _account) internal {

540 if (userInfo[_stakingToken][_account].amount > 0) {

541 _harvestRadpie(_stakingToken, _account);

542 }

543
544 if (rdntRewardManager != address(0))

545 IRDNTRewardManager(rdntRewardManager).updateFor(_account, _stakingToken);

546
547 IBaseRewardPool rewarder = IBaseRewardPool(tokenToPoolInfo[_stakingToken].rewarder);

548 if (address(rewarder) != address(0)) rewarder.updateFor(_account);

549 }

Listing 2.2: MasterRadpie.sol

Impact The updateFor function will not update rewards properly.

Suggestion Revise the passed address parameter.

2.1.2 Potential reverts in the _refundETH function

Severity High

Status Fixed in Version 2

Introduced by Version 1

Description The _refundETH function utilizes send to transfer native tokens. However, this can fail if the

recipient is a proxy contract whose fallback function consumes significant gas. For example, logging the

ETH receipt in a minimalProxy fallback may expend more than the 2300 gas stipend provided by send,

causing an out-of-gas failure.

5

26 function _refundETH(address payable _dustTo, uint256 _refundAmt) internal {

27 if (_refundAmt > 0) {

28 bool success = _dustTo.send(_refundAmt);

29 require(success, "ETH transfer failed");

30 }

31 }

Listing 2.3: DustRefunder.sol

Impact Contract users using a proxy will loss their funds due to the revert in this function.

Suggestion Refund users with WETH when send returns false.

2.1.3 Incorrect parameter in the _harvestDlpRewards function

Severity High

Status Fixed in Version 2

Introduced by Version 1

Description The _harvestDlpRewards function in the RadiantStaking contract contains an improper in-

vocation of _sendRewards(address(mDLP), asset, amounts[i]) (line 671). The passed mDLP is an unini-

tialized empty address that is unrelated to the reward sending process.

Additionally, the _sendReward function calculates rewardLeft as the difference between _amount and

_rewardToken balances, but uses the _asset (which is uninitialized mDLP in this case) to send the rewardLeft

amount to the owner.

656 function _harvestDlpRewards(bool _force) internal nonReentrant {

657 if (!_force && lastHarvestTime + harvestTimeGap > block.timestamp) return;

658 (address[] memory rewardTokens, uint256[] memory amounts) = this.claimableDlpRewards();

659 if (rewardTokens.length == 0 || amounts.length == 0) return;

660
661 lastHarvestTime = block.timestamp;

662
663 multiFeeDistributor.getReward(rewardTokens);

664
665 for (uint256 i = 0; i < rewardTokens.length; i++) {

666 if (amounts[i] == 0 || rewardTokens[i] == rdnt) continue; // skipping RDNT for now

since it’s not rToken

667
668 address asset = IAToken(rewardTokens[i]).UNDERLYING_ASSET_ADDRESS();

669 ILendingPool(lendingPool).withdraw(asset, amounts[i], address(this));

670
671 _sendRewards(address(mDLP), asset, amounts[i]);

672 }

673 }

Listing 2.4: RadiantStaking.sol

678 function _sendRewards(address _asset, address _rewardToken, uint256 _amount) internal {

679 ...

703 // if there is somehow reward left, sent it to owner

704 uint256 rewardLeft = IERC20(_rewardToken).balanceOf(address(this));

6

705 if (rewardLeft > _amount) {

706 IERC20(_asset).safeTransfer(owner(), rewardLeft - _amount);

707 emit RewardFeeDustTo(_rewardToken, owner(), rewardLeft - _amount);

708 }

709 }

Listing 2.5: RadiantStaking.sol

Impact The function will not work as expected.

Suggestion Revise the parameter accordingly.

2.1.4 Incorrect return value of the assetPerShare function

Severity Medium

Status Fixed in Version 2

Introduced by Version 1

Description The assetPerShare function in the RadpieReceiptToken contract returns the exchange rate

from the receiptToken to the underlying asset. When the receiptToken is created in the MasterRadpie

contract, the radiantStaking address (there is also a typo here) is set to 0. Thus, the assetPerShare

function should return WAD rather than 10 ** setDecimal in line 50, since WAD represents an exchange rate

of 1:1 for the MasterRadpie contract.

48 function assetPerShare() external view returns(uint256) {

49 if (radiatnStaking == address(0))

50 return 10 ** setDecimal;

51
52 return IRadiantStaking(radiatnStaking).assetPerShare(underlying);

53 }

Listing 2.6: RadpieReceiptToken.sol

Impact Contracts that depend on the return value of assetPerShare may get incorrect results.

Suggestion Revise the function return value accordingly.

2.1.5 Potential DoS risk in the claim function

Severity Low

Status Fixed in Version 2

Introduced by Version 1

Description The claim function in the RDNTVestManager contract contains a vulnerability that may intro-

duce DoS risk. The vestingSchedules mapping is used to store vesting schedule information, but elements

are never removed from it after their associated vesting period expires. This can cause the mapping size

to increase over time as more vesting schedules are created. The lack of vesting schedule cleanup poses

a DoS risk due to the claim function’s gas cost scaling with the number of vesting schedules.

83 function claim() external nonReentrant {

84 VestingSchedule[] storage schedules = vestingSchedules[msg.sender];

85 uint256 totalClaimable;

7

86
87 for (uint256 i = 0; i < schedules.length; i++) {

88 VestingSchedule storage schedule = schedules[i];

89 if (block.timestamp >= schedule.endTime && schedule.amount > 0) {

90 totalClaimable += schedule.amount;

91 schedule.amount = 0;

92 }

93 }

94
95 if (totalClaimable > 0) {

96 IERC20(rdntToken).safeTransfer(msg.sender, totalClaimable);

97 emit RDNTClaimed(msg.sender, totalClaimable);

98 }

99 }

Listing 2.7: RDNTVestManager.sol

Impact Users may not be able to claim vested RDNT from the contract.

Suggestion Remove expired schedules from vestingSchedules.

2.1.6 Potential overwriting on existing poolInfo

Severity Low

Status Fixed In Version 2

Introduced by Version 1

Description The setPoolInfo function in the RadpiePoolHelper contract lacks a check for existing pools.

Thus, the current poolInfo for the corresponding asset may be inadvertently overwritten.

132 function setPoolInfo(

133 address Asset,

134 address rewarder,

135 bool isNative,

136 bool isActive

137) external _onlyOperator {

138 if (rewarder == address(0)) revert NullAddress();

139 poolInfo[Asset] = PoolInfo(rewarder, isNative, isActive);

140 }

Listing 2.8: RadpiePoolHelper.sol

Impact N/A

Suggestion Add checks for poolInfo.

Feedback from the Project This is intended in case we need to do necessary update/migration/fix.

2.2 DeFi Security

2.2.1 Double-counting rewards

Severity High

8

Status Fixed in Version 2

Introduced by Version 1

Description In Radpie, the receipt tokens represent staking shares, with rewards determined based on

users’ token holdings. To avoid any discrepancies in reward distribution, Radpie updates the corresponding

rewards for both the sender and receiver during a receipt token transfer.

Specifically, the beforeReceiptTokenTransfer function in the MasterRadpie contract is invoked prior

to a receipt token transfer. It triggers the _harvestRewards function separately for both the _from and

_to addresses during the transfer of receipt tokens. However, this results in a double-counting issue with

Radpie rewards when the _from and _to addresses are identical, as seen during a self-transfer of receipt

tokens. In such a case, the user’s unClaimedRadpie will be added with the same pending reward amount

twice.

384 function beforeReceiptTokenTransfer(

385 address _from,

386 address _to,

387 uint256 _amount

388) external _onlyReceiptToken {

389 address _stakingToken = receiptToStakeToken[msg.sender];

390 updatePool(_stakingToken);

391
392 if (_from != address(0)) _harvestRewards(_stakingToken, _from);

393
394 if (_to != address(0)) _harvestRewards(_stakingToken, _to);

395 }

Listing 2.9: MasterRadpie.sol

539 function _harvestRewards(address _stakingToken, address _account) internal {

540 if (userInfo[_stakingToken][_account].amount > 0) {

541 _harvestRadpie(_stakingToken, _account);

542 }

543
544 if (rdntRewardManager != address(0))

545 IRDNTRewardManager(rdntRewardManager).updateFor(_account, _stakingToken);

546
547 IBaseRewardPool rewarder = IBaseRewardPool(tokenToPoolInfo[_stakingToken].rewarder);

548 if (address(rewarder) != address(0)) rewarder.updateFor(_account);

549 }

Listing 2.10: MasterRadpie.sol

553 function _harvestRadpie(address _stakingToken, address _account) internal {

554 // Harvest Radpie

555 uint256 pending = _calNewRadpie(_stakingToken, _account);

556 userInfo[_stakingToken][_account].unClaimedRadpie += pending;

557 }

Listing 2.11: MasterRadpie.sol

560 function _calNewRadpie(

561 address _stakingToken,

9

562 address _account

563) internal view returns (uint256) {

564 UserInfo storage user = userInfo[_stakingToken][_account];

565 uint256 pending = (user.amount * tokenToPoolInfo[_stakingToken].accRadpiePerShare) /

566 1e12 -

567 user.rewardDebt;

568 return pending;

569 }

Listing 2.12: MasterRadpie.sol

Impact Users could receive extra rewards during self-transfer.

Suggestion Revise the reward updating logic accordingly.

2.2.2 Incorrect _onlyWhiteListed modifier

Severity High

Status Fixed in Version 2

Introduced by Version 1

Description The incorrect implementation of the _onlyWhiteListed modifier in the MasterRadpie con-

tract renders any function declared with it unexecutable, regardless of the msg.sender.

185 modifier _onlyWhiteListed() {

186 if (AllocationManagers[msg.sender]) return;

187 if (PoolManagers[msg.sender]) return;

188 if (msg.sender == owner()) return;

189 revert OnlyWhiteListedAllocaUpdator();

190 _;

191 }

Listing 2.13: MasterRadpie.sol

Impact Functions decorated with this modifier becomes unusable.

Suggestion Revise the modifier.

2.2.3 Lack of duplicate checks for function arguments

Severity Medium

Status Fixed in Version 2

Introduced by Version 1

Description The addRegisteredReceipt function in the RDNTRewardManager contract allows the RewardQ-

ueuer role to add _receiptToken addresses to the registeredReceipts list. However, this function lacks a

check to verify if _receiptToken already exists in registeredReceipts, which could lead to duplicates.

Additionally, the poolTokenList in the RadiantStaking contract is append-only. If a pool becomes

inactive and the registerPool function is called again, it may also cause duplicates in poolTokenList.

229 function addRegisteredReceipt(address _receiptToken) external onlyRewardQueuer {

230 registeredReceipts.push(_receiptToken);

231 }

10

Listing 2.14: RDNTRewardManager.sol

229 function registerPool(

230 address _asset,

231 address _rToken,

232 address _vdToken,

233 uint256 _allocPoints,

234 uint256 _maxCap,

235 bool _isNative,

236 string memory name,

237 string memory symbol

238) external onlyOwner {

239 if (pools[_asset].isActive != false) {

240 revert PoolOccupied();

241 }

242 ...

518 poolTokenList.push(_asset);

519 ...

521 }

Listing 2.15: RadiantStaking.sol

Impact Duplicate items may affect reward calculations.

Suggestion Add checks to avoid duplicated items.

2.2.4 Incorrect fee removal logic

Severity Medium

Status Fixed in Version 2

Introduced by Version 1

Description The removeFee function in the RadiantStaking contract is designed to remove the fee from

either radiantFeeInfos or rTokenFeeInfos based on the _isRDNTFee parameter. However, it mistakenly

removes the fee from radiantFeeInfos regardless of _isRDNTFee, leaving elements in rTokenFeeInfos

unremovable. Furthermore, the value of the removed fee is not deducted from either totalRTokenFee or

totalRDNTFee.

634 function removeFee(uint256 _index, bool _isRDNTFee) external onlyOwner {

635 if (_index >= radiantFeeInfos.length) revert InvalidIndex();

636 Fees[] storage feeInfos;

637
638 if (_isRDNTFee) feeInfos = radiantFeeInfos;

639 else feeInfos = rTokenFeeInfos;

640
641 Fees memory feeToRemove = feeInfos[_index];

642 if (feeToRemove.isActive) revert StillActiveFee();

643
644 for (uint256 i = _index; i < radiantFeeInfos.length - 1; i++) {

645 radiantFeeInfos[i] = radiantFeeInfos[i + 1];

646 }

11

647
648 radiantFeeInfos.pop();

649 emit RemoveFee(feeToRemove.value, feeToRemove.to, feeToRemove.isAddress);

650 }

Listing 2.16: RadiantStaking.sol

Impact Elements in radiantFeeInfos might be mistakenly removed, whereas elements in rTokenFeeInfos

cannot be removed at all.

Suggestion Revise the removeFee function.

2.2.5 Lack of sanity check on total fee

Severity Medium

Status Fixed in Version 2

Introduced by Version 1

Description In the addFee function of the RadiantStaking contract, a sanity check exists to ensure that

the value of the added fee must not exceed DENOMINATOR. However, it should also validate that the total

fee, represented by totalRDNTFee or totalRTokenFee, does not surpass DENOMINATOR either. This total fee

sanity check is currently absent in both the addFee and setFee functions. Moreover, due to the limitation

that fees can only be appended and not removed within the removeFee function (refer to Issue 2.2.4), the

total fee exceeding DENOMINATOR becomes a more probable scenario.

557 function addFee(

558 uint256 _value,

559 address _to,

560 bool _isForRDNT,

561 bool _isAddress

562) external onlyOwner {

563 if (_value > DENOMINATOR) revert InvalidFee();

564
565 if (_isForRDNT) {

566 radiantFeeInfos.push(

567 Fees({ value: _value, to: _to, isAddress: _isAddress, isActive: true })

568);

569 totalRDNTFee += _value;

570 } else {

571 rTokenFeeInfos.push(

572 Fees({ value: _value, to: _to, isAddress: _isAddress, isActive: true })

573);

574 totalRTokenFee += _value;

575 }

576
577 emit AddFee(_to, _value, _isForRDNT, _isAddress);

578 }

Listing 2.17: RadiantStaking.sol

606 function setFee(

607 uint256 _index,

12

608 uint256 _value,

609 address _to,

610 bool _isRDNTFee,

611 bool _isAddress,

612 bool _isActive

613) external onlyOwner {

614 if (_value > DENOMINATOR) revert InvalidFee();

615 if (_index >= radiantFeeInfos.length) revert InvalidIndex();

616
617 Fees[] storage feeInfo;

618 if (_isRDNTFee) feeInfo = radiantFeeInfos;

619 else feeInfo = rTokenFeeInfos;

620
621 Fees storage fee = feeInfo[_index];

622 fee.to = _to;

623 fee.isAddress = _isAddress;

624 fee.isActive = _isActive;

625 totalRDNTFee = totalRDNTFee - fee.value + _value;

626 fee.value = _value;

627
628 emit SetFee(_to, _value);

629 }

Listing 2.18: RadiantStaking.sol

Impact If the fee exceeds the limit, the reward distribution will revert due to insufficient balances in the

contract.

Suggestion Add sanity checks for total fee.

2.2.6 Unclaimable rewards due to rewarder modification

Severity Medium

Status Fixed in Version 2

Introduced by Version 1

Description The set function in the MasterRadpie contract provides the functionality to modify the re-

warder for a pool. However, users cannot retrieve unclaimed rewards from the previous rewarder af-

ter a modification. Because the previous rewarder information vanishes in the MasterRadpie and the

getReward/getRewards functions in the BaseRewardPoolV2 contract (rewarder contract) can only be called

by MasterRadpie.

732 function set(

733 address _stakingToken,

734 uint256 _allocPoint,

735 address _rewarder

736) external _onlyPoolManager {

737 if (!Address.isContract(address(_rewarder)) && address(_rewarder) != address(0))

738 revert MustBeContractOrZero();

739
740 if (!tokenToPoolInfo[_stakingToken].isActive) revert OnlyActivePool();

741

13

742 massUpdatePools();

743
744 totalAllocPoint = totalAllocPoint - tokenToPoolInfo[_stakingToken].allocPoint + _allocPoint;

745
746 tokenToPoolInfo[_stakingToken].allocPoint = _allocPoint;

747 tokenToPoolInfo[_stakingToken].rewarder = _rewarder;

748
749 emit Set(

750 _stakingToken,

751 _allocPoint,

752 IBaseRewardPool(tokenToPoolInfo[_stakingToken].rewarder)

753);

754 }

Listing 2.19: MasterRadpie.sol

220 function getReward(address _account, address _receiver)

221 public

222 onlyMasterPenpie

223 updateReward(_account)

224 returns (bool)

225 {

226 uint256 length = rewardTokens.length;

227
228 for (uint256 index = 0; index < length; ++index) {

229 address rewardToken = rewardTokens[index];

230 uint256 reward = userInfos[rewardToken][_account].userRewards; // updated during

updateReward modifier

231 if (reward > 0) {

232 _sendReward(rewardToken, _account, _receiver, reward);

233 }

234 }

235
236 return true;

237 }

Listing 2.20: BaseRewardPoolV2.sol

98 modifier onlyMasterPenpie() {

99 if (msg.sender != operator)

100 revert OnlyMasterPenpie();

101 _;

102 }

Listing 2.21: BaseRewardPoolV2.sol

Impact The accrued rewards from a previous rewarder are inaccessible.

Suggestion Revise the contraints on getReward and getRewards function caller.

2.2.7 Lack of health check

Severity Medium

14

Status Fixed in Version 2

Introduced by Version 1

Description In the RadiantStaking contract, the depositAssetFor function leverages user deposits au-

tomatically based on the current contract position. However, the health factor of the position is not checked.

A fully leveraged position can become risky when the borrow interest rate exceeds the deposit interest rate.

311 function depositAssetFor(

312 address _asset,

313 address _for,

314 uint256 _assetAmount

315) external payable whenNotPaused _onlyActivePoolHelper(_asset) {

316 Pool storage poolInfo = pools[_asset];

317
318 // we need to calculate share before changing r, vd Token balance

319 uint256 shares = _assetAmount * WAD / this.assetPerShare(_asset);

320 // only direct deposit should be considered for max cap

321 if (poolInfo.maxCap != 0 && IERC20(poolInfo.receiptToken).totalSupply() + shares > poolInfo

.maxCap) revert ExceedsMaxCap();

322
323 uint256 rTokenPrevBal = IERC20(poolInfo.rToken).balanceOf(address(this));

324 _depositHelper(_asset, poolInfo.vdToken, _assetAmount, poolInfo.isNative, false);

325 uint256 vdTokenBal = IERC20(poolInfo.vdToken).balanceOf(address(this));

326
327 if (rTokenPrevBal != 0) {

328 // calculate target vd balance to start looping, target vd is calculated based on

health factor for this asset should be consistent before and after looping

329 uint256 targetVD = ((vdTokenBal * _assetAmount) / (rTokenPrevBal - vdTokenBal));

330 targetVD += vdTokenBal;

331 (address[] memory _assetToLoop, uint256[] memory _targetVDs) = _loopData(_asset,

targetVD);

332
333 _loop(_assetToLoop, _targetVDs);

334 }

335
336 IMintableERC20(poolInfo.receiptToken).mint(_for, shares);

337
338 emit NewAssetDeposit(_for, _asset, _assetAmount, poolInfo.receiptToken, shares);

339 }

Listing 2.22: RadiantStaking.sol

Impact Fully leveraged position can be liquidated and cause financial losses.

Suggestion Add checks for health factor.

2.3 Additional Recommendation

2.3.1 Remove unused variable

Status Fixed in Version 2

Introduced by Version 1

15

Description Since rewardToken is already used as the key for the rewards mapping, The rewardToken

within the Reward structure is redundant and can be removed.

27 struct Reward {

28 address rewardToken;

29 uint256 rewardPerTokenStored;

30 uint256 queuedRewards;

31 }

32 ...

38 mapping(address => Reward) public rewards; // [rewardToken]

Listing 2.23: BaseRewardPoolV2.sol

Suggestion Remove the unused variable.

2.3.2 Remove redundant check in the _sendRewards function

Status Fixed in Version 2

Introduced by Version 1

Description Both _rewardToken and _amount have been validated in the _harvestDlpRewards function,

thus eliminating the need for redundant checks in the _sendRewards function.

666 if (amounts[i] == 0 || rewardTokens[i] == rdnt) continue; // skipping RDNT for now since it’s

not rToken

667
668 address asset = IAToken(rewardTokens[i]).UNDERLYING_ASSET_ADDRESS();

669 ILendingPool(lendingPool).withdraw(asset, amounts[i], address(this));

670
671 _sendRewards(address(mDLP), asset, amounts[i]);

Listing 2.24: RadiantStaking.sol

678 function _sendRewards(address _asset, address _rewardToken, uint256 _amount) internal {

679 if (_amount == 0) return;

680 Fees[] storage feeInfos;

681
682 if (_rewardToken == address(rdnt)) feeInfos = radiantFeeInfos;

683 else feeInfos = rTokenFeeInfos;

684 ...

709 }

Listing 2.25: RadiantStaking.sol

Suggestion Remove the redundant check.

2.3.3 Prevent multiple native tokens

Status Fixed in Version 2

Introduced by Version 1

Description It is recommended to include a check in the setPoolInfo function to prevent multiple native

tokens from being added to the poolInfo mapping.

16

132 function setPoolInfo(

133 address Asset,

134 address rewarder,

135 bool isNative,

136 bool isActive

137) external _onlyOperator {

138 if (rewarder == address(0)) revert NullAddress();

139 poolInfo[Asset] = PoolInfo(rewarder, isNative, isActive);

140 }

Listing 2.26: RadpiePoolHelper.sol

Suggestion Add checks for multiple native tokens.

2.3.4 Prevent accidental native token transfers

Status Fixed in Version 2

Introduced by Version 1

Description In the depositAsset function, it is recommended to include a an additional check in the else

branch (line 101) to prevent accidental transfers of native tokens from depositors.

96 function depositAsset(address _asset, uint256 _amount) external payable onlyActivePool(_asset)

{

97 if (poolInfo[_asset].isNative) {

98 if (msg.value == 0) revert InvalidAmount();

99 uint256 _amt = msg.value;

100 _depositAssetNative(_asset, msg.sender, _amt);

101 } else {

102 if (_amount == 0) revert InvalidAmount();

103 _depositAsset(_asset, msg.sender, _amount);

104 }

105 } poolInfo[Asset] = PoolInfo(rewarder, isNative, isActive);

Listing 2.27: RadpiePoolHelper.sol

Suggestion Add checks to prevent accidental transfers.

2.3.5 Avoid incorrect assignment

Status Fixed in Version 2

Introduced by Version 1

Description In the updateEmissionRate function, oldEmissionRate is supposed to record the previ-

ous value of radpiePerSec before updating it. Therefore, oldEmissionRate should be assigned with

radpiePerSec rather than _radpiePerSec (line 759).

757 function updateEmissionRate(uint256 _radpiePerSec) public onlyOwner {

758 massUpdatePools();

759 uint256 oldEmissionRate = _radpiePerSec;

760 radpiePerSec = _radpiePerSec;

761

17

762 emit UpdateEmissionRate(msg.sender, oldEmissionRate, radpiePerSec);

763 }

Listing 2.28: MasterRadpie.sol

Suggestion Revise the assignment accordingly.

2.4 Note

2.4.1 The protocol will not support deflation/inflation tokens

Description The MasterRadpie contract mints or burns receipt tokens at a 1:1 ratio based on the speci-

fied deposited or withdrawn amounts. However, if _stakingToken is a deflationary or inflationary token, the

actual transferred amount in the deposit function will diverge from the specified amount. To avoid potential

side effects, the protocol should not support such tokens.

300 function deposit(address _stakingToken, uint256 _amount) external whenNotPaused nonReentrant {

301 PoolInfo storage pool = tokenToPoolInfo[_stakingToken];

302 IMintableERC20(pool.receiptToken).mint(msg.sender, _amount);

303
304 IERC20(pool.stakingToken).safeTransferFrom(address(msg.sender), address(this), _amount);

305 emit Deposit(msg.sender, _stakingToken, pool.receiptToken, _amount);

306 }

Listing 2.29: MasterRadpie.sol

2.4.2 Potential centralization risk

Description The privileged withdrawRDNT function in the RDNTVestManager contract enables the owner

to withdraw all RDNT rewards. This introduces a centralization risk since the owner may potentially cause

losses to users.

119 function withdrawRDNT(uint256 _amount) external onlyOwner {

120 require(_amount > 0, "Amount must be greater than zero");

121 IERC20(rdntToken).transfer(msg.sender, _amount);

122 }

Listing 2.30: RDNTVestManager.sol

In Version 2, the IMasterRapie interface adds a emergencyWithdraw function. This privileged func-

tion can call the emergencyWithdraw function in the BaseRewardPoolV3 contract to withdraw all reward

tokens, introducing a centralization risk. The MasterRadpie contract currently does not implement this

emergencyWithdraw function.

110 function emergencyWithdraw(address _stakingToken, address sender) external;

Listing 2.31: IMasterRadpie.sol

296 function emergencyWithdraw(address _rewardToken, address _to) external onlyMasterRadpie {

297 uint256 amount = IERC20(_rewardToken).balanceOf(address(this));

298 IERC20(_rewardToken).safeTransfer(_to, amount);

18

299 emit EmergencyWithdrawn(_to, amount);

300 }

Listing 2.32: BaseRewardPoolV3.sol

Feedback from the Project Radpie will use multisig.

For the update in Version 2: This is intended for now, since emergent withdraw usually involves

migration, which is not needed now.

2.4.3 Periodic invocation of batchHarvestDlpRewards

Description The batchHarvestDlpRewards function in the RadiantStaking contract can be invoked by

anyone to collect rewards from Radiant and queue them to rewarders. Before each receiptToken transfer,

the rewarders are invoked to update the claimable rewards of users based on their current receiptToken

balances (shares). This leads to a potential flashloan attack where an attacker can temporarily inflate

shares to manipulate rewards.

Specifically, the attacker could take the following steps to launch the attack:

Borrow a significant amount of funds through a flashloan.

Deposit into RadiantStaking and acquire a substantial quantity of receipt tokens.

Invoke the batchHarvestDlpRewards function.

Withdraw from RadiantStaking. This invokes the _harvestRewards function which unfairly updates

the attacker’s claimable rewards due to their temporarily inflated shares.

Repay the flashloan.

To mitigate potential loss, the protocol promises the periodic invocation of batchHarvestDlpRewards to

prevent the accumulation of excessive rewards. This limits the amount of manipulable rewards to attackers,

making an attack unprofitable.

380 function batchHarvestDlpRewards() external whenNotPaused {

381 _harvestDlpRewards(true);

382 }

Listing 2.33: RadiantStaking.sol

538 function _harvestRewards(address _stakingToken, address _account) internal {

539 if (userInfo[_stakingToken][_account].amount > 0) {

540 _harvestRadpie(_stakingToken, _account);

541 }

542
543 if (rdntRewardManager != address(0))

544 IRDNTRewardManager(rdntRewardManager).updateFor(_account, _stakingToken);

545
546 IBaseRewardPool rewarder = IBaseRewardPool(tokenToPoolInfo[_stakingToken].rewarder);

547 if (address(rewarder) != address(0)) rewarder.updateFor(_account);

548 }

Listing 2.34: MasterRadpie.sol

Feedback from the Project HarvestDlpRewards are reward only for mDLP pools, I’m not too concerned

about sandwich attack:

19

1. _harvestDlpRewards is a bit gas intense operation.

2. Hacked will have to convert dlp -> mDlp and stake to get reward, but converting mDlp -> dlp will for

sure get a significant discount (like around 20%), so it’s not economically beneficial to do sandwich attack.

3. Currently, we have cronjob to harvest 1 time every other 3 days, which won’t cause much reward

accumulated but not harvested.

2.4.4 Periodic invocation of batchHarvestEntitledRDNT

Description The batchHarvestEntitledRDNT function in the RadiantStaking contract can be invoked by

anyone to distribute claiamble RDNT across different pools. Before updating, weights are calculated in the

entitledRdntGauge function to determine the reward proportions each pool is entitled to. Specifically, the

weight of each pool is determined by the proportion of rToken and vdToken held by the staking contract in

that pool relative to the total supply. This leads to a potential unfair reward distribution where an attacker

inflate the rToken total supply, thus manipulating a specified pool’s weight.

An attacker could take the following steps to launch the attack:

Mint substantial rTokens in Radiant to artificially inflate the total rToken supply.

Invoke the batchHarvestEntitledRDNT function to update rewards based on the manipulated weight.

Profit from the unfair reward distribution.

Additionally, the batchHarvestEntitledRDNT function updates entitledPerTokenStored of each pool,

but do not update userInfos. The userInfos stores each user’s entitled RDNT (presented by userEntitled)

and entitledPerTokenStored in last userEntitled updates (presented by userEntitledPerTokenPaid).

Only when the _updateForByReceipt function is invoked and entitledPerTokenStored is updated, will

users’ entitled RDNT be updated. Therefore, an attacker can take the following steps to temporarily inflate

shares and manipulate entitled RDNT:

Mint substantial receipt tokens in RadiantStaking.

Invoke the batchHarvestEntitledRDNT function to update entitledPerTokenStored.

Invoke the vestRDNT function in RDNTRewardManager to update entitled RDNT and start vesting.

Since entitledPerTokenStored is changed, the _updateForByReceipt function automatically update

userEntitled based on the inflated shares, presenting inflated entitled RDNT rewards. The vesting

is then scheduled via the scheduleVesting function and rewards can be claimed after vestedTime.

Burn the receipt tokens and withdraw the assets.

To mitigate potential loss, the protocol promises the periodic invocation of batchHarvestEntitledRDNT

to prevent the accumulation of excessive rewards. This limits the amount of manipulable rewards to at-

tackers, making an attack unprofitable.

391 function batchHarvestEntitledRDNT(bool _force) external whenNotPaused {

392 (uint256 totalWeight, ,uint256[] memory weights) = this.entitledRdntGauge();

393 ...

412 uint256 updatedClamable = chefIncentivesController.userBaseClaimable(address(this));

413
414 for (uint256 i = 0; i < poolTokenList.length; i++) {

415 Pool storage poolInfo = pools[poolTokenList[i]];

416 /// diff of current updated userBaseClaimable and previosly seen userBaseClaimable is

the new RDNT emitted for Radpie.

417 uint256 toEntitled = (updatedClamable - lastSeenClaimableRDNT) * weights[i] /

totalWeight;

20

418
419 if (toEntitled > 0) _enqueueEntitledRDNT(poolInfo.receiptToken, toEntitled);

420 }

421
422 lastSeenClaimableTime = block.timestamp;

423 lastSeenClaimableRDNT = updatedClamable;

424 }

Listing 2.35: RadiantStaking.sol

284 function entitledRdntGauge() external view returns(uint256 totalWeight, address[] memory

assets, uint256[] memory weights) {

285 uint256 length = poolTokenList.length;

286 assets = new address[](length);

287 weights = new uint256[](length);

288
289 for (uint256 i = 0; i < poolTokenList.length; i++) {

290 Pool storage poolInfo = pools[poolTokenList[i]];

291 assets[i] = poolTokenList[i];

292
293 if (!poolInfo.isActive) continue;

294
295 uint256 rTokenBal = IERC20(poolInfo.rToken).balanceOf(address(this));

296 uint256 vdTokenBal = IERC20(poolInfo.vdToken).balanceOf(address(this));

297
298 (uint256 rTokenTotalSup, uint256 rAlloc,,,) = chefIncentivesController.poolInfo(

poolInfo.rToken);

299 (uint256 vdTokenTotalSup, uint256 vdAlloc,,,) = chefIncentivesController.poolInfo(

poolInfo.vdToken);

300
301 uint256 weight = 10 ** 12 * rTokenBal * rAlloc / rTokenTotalSup + 10 ** 12 * vdTokenBal

* vdAlloc / vdTokenTotalSup;

302 weights[i] = weight;

303 totalWeight += weight;

304 }

305 }

Listing 2.36: RadiantStaking.sol

249 function _updateForByReceipt(address _account, address _receipt) internal {

250 UserInfo storage userInfo = userInfos[_receipt][_account];

251 RDNTRewardStats storage rewardStat = rdntRewardStats[_receipt];

252
253 if (userInfo.userEntitledPerTokenPaid == rewardStat.entitledPerTokenStored) return;

254
255 userInfo.userEntitled = entitledRDNTByReceipt(_account, _receipt);

256 userInfo.userEntitledPerTokenPaid = rewardStat.entitledPerTokenStored;

257
258 emit EntitledRDNTUpdated(

259 _account,

260 _receipt,

261 userInfo.userEntitled,

262 userInfo.userEntitledPerTokenPaid

21

263);

264 }

Listing 2.37: RDNTRewardManager.sol

Feedback from the Project Since batchHarvestEntitledRDNT might be intense gas consumption, that’s

why we are currently not adding this upon deposit/Withdraw Asset, but we’re leaving a force argument to

see if on mainnet, the gas is ok, we might add batchHarvestEntitledRDNT in deposit/Withdraw Asset with

false for force argument.

But currently, there will be a cap for each pool, so technically an attacker won’t be able to deposit a

large amount into Radpie and withdraw. Also, I think the pool might be cap full most of the time due to the

constraints of RDNT eligibility.

The batchHarvestEntitledRDNT now is designed to be called at most 1 time every other 3 days, if

gas fee allowed, we might do at a higher frequency. (Other provide incentives so community can help to

harvest ensure seamless reward distribution)

2.4.5 Ensure initial TVL in RadiantStaking pools

Description The depositAssetFor function in the RadiantStaking contract is vulnerable to an inflation

attack. It calculates the minted shares using:

shares =
_assetAmount ∗WAD

asserPerShare(_asset)
The asserPerShare function returns WAD when receiptTokenTotal or rTokenBal equals 0. Otherwise, the

pricePerShare of an asset is calculated as:

pricePerShare =
(rTokenBal − vdTokenBal) ∗WAD

receiptTokenTotal

Additionally, the pricePerShare carries WAD, leading to potential precision loss when _assetAmount is

converted to shares. The shares could be rounded down to zero. The depositAssetFor function does not

validate that minted shares is greater than zero, resulting in a potential inflation attack:

Initially, an attacker mints 1 receipt token with 1 rToken.

The attacker transfers a substantial amount of rTokens to RadiantStaking, inflating assetPerShare.

Another user deposits rTokens into RadiantStaking. Due to the manipulated assetPerShare, the

user deposits rTokens but receives 0 receipt token. This further inflates assetPerShare.

With 1 receipt token, the attacker can withdraw all rTokens from the pool to gain profits.

To imitate such inflation attacks, the protocol promises there must be a certain amount of initial total

value locked (TVL) before any deposits can occur. This ensures that assetPerShare cannot be arbitrarily

inflated before any legitimate users interact with the contract.

311 function depositAssetFor(

312 address _asset,

313 address _for,

314 uint256 _assetAmount

315) external payable whenNotPaused _onlyActivePoolHelper(_asset) {

316 Pool storage poolInfo = pools[_asset];

317
318 // we need to calculate share before changing r, vd Token balance

319 uint256 shares = _assetAmount * WAD / this.assetPerShare(_asset);

320 ...

22

339 }

Listing 2.38: RadiantStaking.sol

270 function assetPerShare(address _asset) external view returns (uint256) {

271 Pool storage poolInfo = pools[_asset];

272
273 uint256 reciptTokenTotal = IERC20(poolInfo.receiptToken).totalSupply();

274 uint256 rTokenBal = IERC20(poolInfo.rToken).balanceOf(address(this));

275 if (reciptTokenTotal == 0 || rTokenBal == 0) return WAD;

276
277 uint256 vdTokenBal = IERC20(poolInfo.vdToken).balanceOf(address(this));

278
279 return (rTokenBal - vdTokenBal) * WAD / reciptTokenTotal;

280 }

Listing 2.39: RadiantStaking.sol

Feedback from the Project We will make sure the core team supplies the initial TVL with a certain amount

of TVL.

2.4.6 The initialization of vdToken balance

Description For a new pool in the RadiantStaking contract, the owner must manually call the loop

function before any deposits to properly initialize the vdToken balance.

This is because the depositAssetFor function calculates targetVD and leverage borrows on Radiant

until vdTokens reaches this targetVD amount or cannot borrow further. The targetVD is calculated as:

targetV D =
vdTokenBal ∗ _assetAmount

rTokenPrevBal − vdTokenBal

On the first deposit, rTokenPrevBal is 0, so targetVD will not be calculated. On subsequent deposits,

targetVD stays 0 as long as vdTokenBal is 0.

Without an initial vdToken balance, the depositAssetFor function cannot properly leverage borrow

for each deposit. Accordingly, the owner must invoke loop to set the initial vdToken balance and ensure

depositAssetFor functions properly.

Feedback from the Project Yes, this is intended behavior. Leverage position must be started by admin

since looping upon depositAssetFor assumes health factor of that asset should not changed, that’s why

we need admin do initialize vdToken balance to secure health factor

2.4.7 Periodic invocation of accrueStreamingFee

Description In Version 2, Radpie introduces a new streaming fee mechanism. The accrueStreamingFee

function in the RadiantStaking contract mints receipt tokens as a management fee to the owner. As a

result, users may receive fewer rewards because the total supply of receipt tokens increases from the

minted streaming fees. However, this impact can be minimized if the accumulated fees do not become

excessive. Therefore, Radpie needs to ensure the periodic invocation of the accrueStreamingFee function

to prevent excessive fee accumulation.

23

474 function accrueStreamingFee(address _receiptToken) external nonReentrant onlyOwner {

475 uint256 feeQuantity;

476
477 if (IRewardDistributor(rewardDistributor).streamingFeePercentage(_receiptToken) > 0) {

478 uint256 inflationFeePercentage = IRewardDistributor(rewardDistributor).

getCalculatedStreamingFeePercentage(_receiptToken);

479 feeQuantity = IRewardDistributor(rewardDistributor).calculateStreamingFeeInflation(

_receiptToken, inflationFeePercentage);

480 IMintableERC20(_receiptToken).mint(owner(), feeQuantity);

481 }

482
483 IRewardDistributor(rewardDistributor).updatelastStreamingLastFeeTimestamp(_receiptToken,

block.timestamp);

484
485 emit StreamingFeeActualized(_receiptToken, feeQuantity);

486 }

Listing 2.40: RadiantStaking.sol

Feedback from the Project Yes, we’re looking at 0.5% 1% streaming fee, depending on the pool’s APR

performance (USDC might be higher while wETH, wBTC might be lower), so the fee should not go too

large.

The fee receiver can withdraw so that it no longer take too much reward away from user, but I don’t

think the minted receipt token amount won’t go too much due to streaming fee.

Yes, we need periodic invocation, and we’re looking like once every other 2 weeks or even longer (at

most a month I think).

24

	1 Introduction
	1.1 About Target Contracts
	1.2 Disclaimer
	1.3 Procedure of Auditing
	1.3.1 Software Security
	1.3.2 DeFi Security
	1.3.3 NFT Security
	1.3.4 Additional Recommendation

	1.4 Security Model

	2 Findings
	2.1 Software Security
	2.1.1 Inconsistent address parameter
	2.1.2 Potential reverts in the _refundETH function
	2.1.3 Incorrect parameter in the _harvestDlpRewards function
	2.1.4 Incorrect return value of the assetPerShare function
	2.1.5 Potential DoS risk in the claim function
	2.1.6 Potential overwriting on existing poolInfo

	2.2 DeFi Security
	2.2.1 Double-counting rewards
	2.2.2 Incorrect _onlyWhiteListed modifier
	2.2.3 Lack of duplicate checks for function arguments
	2.2.4 Incorrect fee removal logic
	2.2.5 Lack of sanity check on total fee
	2.2.6 Unclaimable rewards due to rewarder modification
	2.2.7 Lack of health check

	2.3 Additional Recommendation
	2.3.1 Remove unused variable
	2.3.2 Remove redundant check in the _sendRewards function
	2.3.3 Prevent multiple native tokens
	2.3.4 Prevent accidental native token transfers
	2.3.5 Avoid incorrect assignment

	2.4 Note
	2.4.1 The protocol will not support deflation/inflation tokens
	2.4.2 Potential centralization risk
	2.4.3 Periodic invocation of batchHarvestDlpRewards
	2.4.4 Periodic invocation of batchHarvestEntitledRDNT
	2.4.5 Ensure initial TVL in RadiantStaking pools
	2.4.6 The initialization of vdToken balance
	2.4.7 Periodic invocation of accrueStreamingFee

		2023-09-14T16:40:04+0800
	BlockSec Audit Team

