
Security Audit Report for BridgeV2
Contracts

Date: Feb 20, 2024

Version: 1.0

Contact: contact@blocksec.com

mailto:contact@blocksec.com

Contents

1 Introduction 1
1.1 About Target Contracts . 1

1.2 Disclaimer . 1

1.3 Procedure of Auditing . 2

1.3.1 Software Security . 2

1.3.2 DeFi Security . 2

1.3.3 NFT Security . 2

1.3.4 Additional Recommendation . 3

1.4 Security Model . 3

2 Findings 4
2.1 Software Security . 4

2.1.1 Missing setter for the senderContractToEId mapping 4

2.1.2 Lack of token address check in the removeTokenFromWhitelist function 5

2.1.3 Withdrawal fee is charged while not transferred to fee recipient 5

2.1.4 Incorrect order of magnitude . 7

2.2 DeFi Security . 8

2.2.1 Potential failed bridging due to inconsistent token addresses 8

2.3 Additional Recommendation . 9

2.3.1 Remove duplicated codes . 9

2.3.2 Add a check on destChain . 10

2.3.3 Revise the duplicated handling logic in the deposit function 10

2.4 Notes . 11

2.4.1 Accidental native token transfers are not taken into consideration 11

2.4.2 Potential centralization risks . 11

2.4.3 A token cannot have both isMinted and isPegged attributes 12

2.4.4 Unverified LayerZero options . 13

i

Report Manifest

Item Description
Client Spherium
Target BridgeV2 Contracts

Version History

Version Date Description
1.0 Feb 20, 2024 First Version

About BlockSec The BlockSec Team focuses on the security of the blockchain ecosystem, and col-

laborates with leading DeFi projects to secure their products. The team is founded by top-notch security

researchers and experienced experts from both academia and industry. They have published multiple

blockchain security papers in prestigious conferences, reported several zero-day attacks of DeFi applica-

tions, and released detailed analysis reports of high-impact security incidents. They can be reached at

Email, Twitter and Medium.

ii

https://www.blocksec.com
mailto:contact@blocksec.com
https://twitter.com/BlockSecTeam
https://blocksecteam.medium.com/

Chapter 1 Introduction

1.1 About Target Contracts

Information Description
Type Smart Contract
Language Solidity
Approach Semi-automatic and manual verification

The target of this audit is the code repository 1 for the BridgeV2 Contracts. Spherium Bridge utilizes

LayerZero framework to bridge tokens from source chain to target chain.

The auditing process is iterative. Specifically, we will audit the commits that fix the discovered issues.

If there are new issues, we will continue this process. The commit SHA values during the audit are shown

in the following. Our audit report is responsible for the only initial version (i.e., Version 1), as well as new

codes (in the following versions) to fix issues in the audit report.

Project Commit SHA

BridgeV2 Contracts

Version 1 66909f2e70d5aeaf4590361c0f0ef966c4788787
Version 2 284bcb63a62af75503390b82c7c4e04cde9b03b8
Version 3 5b794c89c83076bd160113c4179fdc23f7360705
Version 4 8c9d06321e8ae9301202be91898425a5cee56f2a
Version 5 d813960a31a3ca0b492c40cc968d641734cd19d4
Version 6 7c2ff55df7af66b6796d88a22d1a102d8ecdc064

1.2 Disclaimer

This audit report does not constitute investment advice or a personal recommendation. It does not

consider, and should not be interpreted as considering or having any bearing on, the potential economics

of a token, token sale or any other product, service or other asset. Any entity should not rely on this report

in any way, including for the purpose of making any decisions to buy or sell any token, product, service or

other asset.

This audit report is not an endorsement of any particular project or team, and the report does not

guarantee the security of any particular project. This audit does not give any warranties on discovering

all security issues of the smart contracts, i.e., the evaluation result does not guarantee the nonexistence

of any further findings of security issues. As one audit cannot be considered comprehensive, we always

recommend proceeding with independent audits and a public bug bounty program to ensure the security

of smart contracts.

The scope of this audit is limited to the code mentioned in Section 1.1. Unless explicitly specified,

the security of the language itself (e.g., the solidity language), the underlying compiling toolchain and the

computing infrastructure are out of the scope.

1https://gitlab.com/spherium/spherium-bridge/bridgev2

1

https://gitlab.com/spherium/spherium-bridge/bridgev2

1.3 Procedure of Auditing

We perform the audit according to the following procedure.

- Vulnerability Detection We first scan smart contracts with automatic code analyzers, and then

manually verify (reject or confirm) the issues reported by them.

- Semantic Analysis We study the business logic of smart contracts and conduct further investiga-

tion on the possible vulnerabilities using an automatic fuzzing tool (developed by our research team).

We also manually analyze possible attack scenarios with independent auditors to cross-check the

result.

- Recommendation We provide some useful advice to developers from the perspective of good

programming practice, including gas optimization, code style, and etc.

We show the main concrete checkpoints in the following.

1.3.1 Software Security

∗ Reentrancy

∗ DoS

∗ Access control

∗ Data handling and data flow

∗ Exception handling

∗ Untrusted external call and control flow

∗ Initialization consistency

∗ Events operation

∗ Error-prone randomness

∗ Improper use of the proxy system

1.3.2 DeFi Security

∗ Semantic consistency

∗ Functionality consistency

∗ Access control

∗ Business logic

∗ Token operation

∗ Emergency mechanism

∗ Oracle security

∗ Whitelist and blacklist

∗ Economic impact

∗ Batch transfer

1.3.3 NFT Security

∗ Duplicated item

∗ Verification of the token receiver

∗ Off-chain metadata security

2

1.3.4 Additional Recommendation

∗ Gas optimization

∗ Code quality and style
�

Note The previous checkpoints are the main ones. We may use more checkpoints during the auditing

process according to the functionality of the project.

1.4 Security Model

To evaluate the risk, we follow the standards or suggestions that are widely adopted by both industry

and academy, including OWASP Risk Rating Methodology 2 and Common Weakness Enumeration 3.

The overall severity of the risk is determined by likelihood and impact. Specifically, likelihood is used to

estimate how likely a particular vulnerability can be uncovered and exploited by an attacker, while impact

is used to measure the consequences of a successful exploit.

In this report, both likelihood and impact are categorized into two ratings, i.e., high and low respec-

tively, and their combinations are shown in Table 1.1.

Table 1.1: Vulnerability Severity Classification

Im
pa

ct

High High Medium

Low Medium Low

High Low

Likelihood

Accordingly, the severity measured in this report are classified into three categories: High, Medium,

Low. For the sake of completeness, Undetermined is also used to cover circumstances when the risk

cannot be well determined.

Furthermore, the status of a discovered item will fall into one of the following four categories:

- Undetermined No response yet.

- Acknowledged The item has been received by the client, but not confirmed yet.

- Confirmed The item has been recognized by the client, but not fixed yet.

- Fixed The item has been confirmed and fixed by the client.

2https://owasp.org/www-community/OWASP_Risk_Rating_Methodology

3https://cwe.mitre.org/

3

https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
https://cwe.mitre.org/

Chapter 2 Findings

In total, we find five potential issues. Besides, we also have three recommendations and four notes.

- High Risk: 3

- Medium Risk: 1

- Low Risk: 1

- Recommendation: 3

- Note: 4

ID Severity Description Category Status

1 High
Missing setter for the senderContractToEId
mapping

Software Security Fixed

2 Medium
Lack of token address check in the
removeTokenFromWhitelist function

Software Security Fixed

3 Low
Withdrawal fee is charged while not transferred
to fee recipient

Software Security Fixed

4 High Incorrect order of magnitude Software Security Fixed

5 High
Potential failed bridging due to inconsistent to-
ken addresses

DeFi Security Fixed

6 - Remove duplicated codes Recommendation Fixed
7 - Add a check on destChain Recommendation Acknowledged

8 -
Revise the duplicated handling logic in the
deposit function

Recommendation Fixed

9 -
Accidental native token transfers are not taken
into consideration

Note -

10 - Potential centralization risks Note -

11 -
A token cannot have both isMinted and
isPegged attributes

Note -

12 - Unverified LayerZero options Note -

The details are provided in the following sections.

2.1 Software Security

2.1.1 Missing setter for the senderContractToEId mapping

Severity High

Status Fixed in Version 2

Introduced by Version 1

Description The BridgeReceiver contract lacks a setter function for the senderContractToEId mapping.

Due to this missing functionality, the _lzReceive function will revert. With no way to add new authorized

endpoints in the mapping, the contract cannot process withdrawals, rendering the bridge inoperable.

68 if (sender != senderContractToEId[senderEid]) {
69 revert Sender__Not__True(0);
70 }

4

Listing 2.1: BridgeV2.sol

Impact The contract will be inoperable due to non-set critical variables.

Suggestion Revise the logic accordingly.

2.1.2 Lack of token address check in the removeTokenFromWhitelist function

Severity Medium

Status Fixed in Version 2

Introduced by Version 1

Description The removeTokenFromWhitelist function does not check the existence of token address

to be removed from the whitelist. Although this is a privileged function, a mistaken invocation passing

a non-existent address will lead to an inconsistent contract state. Specifically, it removes the first ele-

ment from the mapWhiltelistTokenNames mapping. However, the corresponding entries in other mappings

(whitelistedTokenAddress, whitelistedTokenName, isWhitelistedAdd, and isWhitelistedName) remain

unchanged. This inconsistency could enable unexpected behaviors.

317 function removeTokenFromWhitelist(
318 address tokenAddress
319) external onlyOwner returns (bool) {
320 require(tokenAddress != address(0), "Cannot be address 0");
321 string memory tokenName = whitelistedTokenName[tokenAddress];
322 delete whitelistedTokenAddress[tokenName];
323 delete whitelistedTokenName[tokenAddress];
324 uint256 i = mapWhiltelistTokenNames[tokenName];
325 string memory lastTokenName = whitelistedTokenNames[
326 ((whitelistedTokenNames.length) - 1)
327];
328 mapWhiltelistTokenNames[lastTokenName] = i;
329 whitelistedTokenNames[i] = lastTokenName;
330 whitelistedTokenNames.pop();
331 delete mapWhiltelistTokenNames[tokenName];
332 isWhitelistedAdd[tokenAddress] = false;
333 isWhitelistedName[tokenName] = false;
334 return true;
335 }

Listing 2.2: BridgeV2.sol

Impact Inconsistent variable updating may lead to unexpected behaviors.

Suggestion Revise the logic accordingly.

2.1.3 Withdrawal fee is charged while not transferred to fee recipient

Severity Low

Status Fixed in Version 5

Introduced by Version 4

5

Description In the withdrawNative function, the fee is deducted from the native tokens sent to the

_receiver, yet these fees are not transferred to the bridgedFeeAddress, unlike in the withdraw function.

417 function withdrawNative(
418 uint256 amount,
419 address payable _receiver
420) private returns (bool) {
421 require(_receiver != address(0), "Cannot be address 0");
422
423 require(
424 isWhitelistedAdd[address(0)],
425 "token not Whitelisted"
426);
427 uint256 feeAmount = (amount * bridgeFeePercent);
428 amount = (amount * 1000) - feeAmount;
429
430 (bool success,) = _receiver.call{value: amount/1000}("");
431 if (success) {
432 emit WITHDRAW((amount/1000), _receiver, address(0));
433 } else {
434 revert();
435 }
436 return success;
437 }

Listing 2.3: BridgeV2.sol

354 function withdraw(
355 uint256 amount,
356 string memory tokenName,
357 address receiver
358) private returns (bool) {
359 address tokenAddress = whitelistedTokenAddress[tokenName];
360 require(!isBlocked, "Bridge is blocked right now");
361 require(
362 isWhitelistedAdd[tokenAddress],
363 "token not Whitelisted"
364);
365
366 uint256 feeAmount = (amount * bridgeFeePercent);
367 amount = (amount * 1000) - feeAmount;
368
369 require(
370 IERC20Mintable(tokenAddress).transfer(receiver, (amount / 1000)),
371 "There was a problem transferring your tokens on destination chain"
372);
373 require(
374 IERC20Mintable(tokenAddress).transfer(
375 bridgeFeeAddress,
376 (feeAmount / 1000)
377),
378 "There was a problem transferring bridge fees to fee receiver"
379);
380

6

381 emit WITHDRAW((amount / 1000), receiver, tokenAddress);
382 return true;
383 }

Listing 2.4: BridgeV2.sol

Impact The untransferred fees are locked in the contract.

Suggestion Revise the logic accordingly.

2.1.4 Incorrect order of magnitude

Severity High

Status Fixed in Version 6

Introduced by Version 5

Description In the withdrawNative function, the transferred fee is not handled correctly due to the in-

correct order of magnitude. The correct amount should be feeAmount / 1000. Meanwhile, the function

compares the amplified amount with fees already deducted against address(this).balance for the bal-

ance check. This is incorrect, as the raw amount without any fees deducted should be used to perform

this check.

417 function withdrawNative(
418 uint256 amount,
419 address payable _receiver
420) private returns (bool success) {
421 require(_receiver != address(0), "Cannot be address 0");
422
423 require(isWhitelistedAdd[address(0)], "token not Whitelisted");
424 uint256 feeAmount = (amount * bridgeFeePercent);
425 amount = (amount * 1000) - feeAmount;
426
427 if (amount > address(this).balance) {
428 failedNativeTransfer[_receiver] = amount;
429
430 emit FailedNative(_receiver, amount, block.timestamp);
431 } else {
432 (success,) = _receiver.call{value: amount / 1000}("");
433 (bool done,) = bridgeFeeAddress.call{value: feeAmount}("");
434 if (success && done) {
435 emit WITHDRAW((amount / 1000), _receiver, address(0));
436 } else {
437 revert();
438 }
439 }
440 }

Listing 2.5: BridgeV2.sol

Impact incorrect order of magnitude may bring unexpected behaviors.

Suggestion Revise the logic accordingly.

7

2.2 DeFi Security

2.2.1 Potential failed bridging due to inconsistent token addresses

Severity High

Status Fixed in Version 2

Introduced by Version 1

Description The current bridging process relies on identical token addresses on the source and des-

tination chains. If the token addresses differ between chains, bridging that token will fail. The BridgeV2

contract lacks a mapping for token addresses to handle such conversions. Specifically, the deposit func-

tion directly embeds the source chain token address into the bridging payload. This payload is then sent

to the destination chain unchanged. Subsequently, the BridgeReceiver contract decodes the payload and

calls the withdraw function, still passing the same token address.

381 bytes memory payload = abi.encode(tokenAddress, msg.sender, amount);
382
383 MessagingFee memory fee = getFee(_destEid, payload, "", false);
384
385 _lzSend(_destEid, payload, "", fee, msg.sender);

Listing 2.6: BridgeV2.sol

52 function _lzReceive(
53 Origin calldata _origin,
54 bytes32 _guid,
55 bytes calldata payload,
56 address, // Executor address as specified by the OApp.
57 bytes calldata // Any extra data or options to trigger on receipt.
58) internal override {
59 // Decode the payload to get the message
60 (address _token, address user, uint256 amount) = abi.decode(
61 payload,
62 (address, address, uint256)
63);
64 // Extract the sender’s EID from the origin
65 uint32 senderEid = _origin.srcEid;
66 bytes32 sender = _origin.sender;
67
68 if (sender != senderContractToEId[senderEid]) {
69 revert Sender__Not__True(0);
70 }
71
72 chainBridge.withdraw(amount, _token, user);
73
74 //Emit the event
75
76 emit MessageReceived(_token, user, amount, senderEid, sender);
77 }

Listing 2.7: BridgeV2.sol

8

Impact Token bridging may fail because the token addresses may differ on source and target chains.

Suggestion Revise the logic accordingly.

2.3 Additional Recommendation

2.3.1 Remove duplicated codes

Status Fixed in Version 3

Introduced by Version 1

Description In the following contracts, there are redundant logic or functions that can be removed to

reduce code size and gas usage.

1. In the BridgeV2 contract, the inheritance from Ownable is already declared in the parent OAppCore

contract, and thus can be removed.

2. The onlyOwner modifier on the getTokensLocked function serves no purpose and can be removed.

254 function getTokensLocked(
255 address tokenAddress
256) public view onlyOwner returns (uint256) {
257 require(tokenAddress != address(0), "Cannot be address 0");
258 return IERC20Mintable(tokenAddress).balanceOf(address(this));
259 }

Listing 2.8: BridgeV2.sol

3. In the withdraw function, the check on line 427 is unnecessary and can be removed, since the

function will revert the transaction on line 432 or 439 if balances are insufficient. Besides, this check

is insufficient as it oversights the fee part.

427 require(
428 IERC20Mintable(tokenAddress).balanceOf(address(this)) >=
429 (amount / 1000),
430 "Not enough liquidity in the bridge"
431);
432 require(
433 IERC20Mintable(tokenAddress).transfer(
434 receiver,
435 (amount / 1000)
436),
437 "There was a problem transferring your tokens on destination chain"
438);
439 require(
440 IERC20Mintable(tokenAddress).transfer(
441 bridgeFeeAddress,
442 (feeAmount / 1000)
443),
444 "There was a problem transferring bridge fees to fee receiver"
445);

Listing 2.9: BridgeV2.sol

9

4. In the withdraw function, multiplying and dividing the amount and fee by 1,000 are unnecessary as

they fail to apply precision scaling. These duplicated arithemtic operations can be removed for gas

optimization.

5. In both the BridgeReceiver and BridgeV2 contracts, the onlyOwner modifier on constructors is un-

necessary and can be removed.

Impact N/A

Suggestion Remove the duplicated codes.

2.3.2 Add a check on destChain

Status Acknowledged

Introduced by Version 1

Description The deposit function emits a DEPOSIT event that includes the user-specified destChain

parameter. However, there is no check that destChain matches _destEid used in the actual deposit. As a

result, backends relying on the DEPOSIT event for chain resolution would receive incorrect destination chain

information if destChain and _destEid differ. The DEPOSIT event could emit _destEid rather than unverified

destChain, which can also mitigate this problem.

338 function deposit(
339 uint32 _destEid,
340 uint256 amount,
341 address tokenAddress,
342 string memory destChain
343) external payable returns (bool) {
344 ...
385 _lzSend(_destEid, payload, "", fee, msg.sender);
386 emit DEPOSIT((amount), msg.sender, tokenAddress, destChain);
387 return true;
388 }

Listing 2.10: BridgeV2.sol

Impact N/A

Suggestion Revise the destChain check accordingly.

2.3.3 Revise the duplicated handling logic in the deposit function

Status Fixed in Version 3

Introduced by Version 1

Description The deposit function contains two conditional branches with identical logic, despite operat-

ing on different token types.

338 function deposit(
339 uint32 _destEid,
340 uint256 amount,
341 address tokenAddress,
342 string memory destChain
343) external payable returns (bool) {

10

344 ...
361 else if (isMinted[tokenAddress] == true) {
362 require(
363 IERC20Mintable(tokenAddress).transferFrom(
364 msg.sender,
365 address(this),
366 amount
367),
368 "There was a problem transferring your tokens on source chain"
369);
370 } else {
371 require(
372 IERC20Mintable(tokenAddress).transferFrom(
373 msg.sender,
374 address(this),
375 (amount)
376),
377 "There was a problem transferring your tokens on source chain"
378);
379 }
380
381 bytes memory payload = abi.encode(tokenAddress, msg.sender, amount);
382
383 MessagingFee memory fee = getFee(_destEid, payload, "", false);
384
385 _lzSend(_destEid, payload, "", fee, msg.sender);
386 emit DEPOSIT((amount), msg.sender, tokenAddress, destChain);
387 return true;
388 }

Listing 2.11: BridgeV2.sol

Impact N/A

Suggestion Revise the duplicated codes accordingly.

2.4 Notes

2.4.1 Accidental native token transfers are not taken into consideration

Introduced by Version 1

Description The BridgeReceiver contract currently does not implement a method to withdraw native

tokens. This poses a risk where users accidentally send native tokens to the contract and have their funds

locked. The locked assets can only be withdrawn by upgrading the contract.

Feedback from the Project Users will not interact with the BridgeReceiver. It’s only a message receiver

that will get executed by the LayerZero network. Users only interact with the BridgeV2 Contract.

2.4.2 Potential centralization risks

Introduced by Version 1

11

Description The BridgeV2’s owner can withdraw arbitrary tokens via the unlockToken function, which

brings centralization risk here. The same concern also exists in the withdraw function, where the with-

drawer is owner-approved.

469 function unlockToken(
470 address tokenAddress,
471 uint256 amount,
472 address receiver
473) external onlyOwner {
474 require(tokenAddress != address(0), "Cannot be address 0");
475 require(
476 IERC20Mintable(tokenAddress).transfer(receiver, amount),
477 "Token Unlock failed"
478);
479 }

Listing 2.12: BridgeV2.sol

391 function withdraw(
392 uint256 amount,
393 address tokenAddress,
394 address receiver
395) external onlyWithdrawer returns (bool)

Listing 2.13: BridgeV2.sol

Feedback from the Project This function will get handled by the governance contract which will act as

the owner of the bridge.

2.4.3 A token cannot have both isMinted and isPegged attributes

Introduced by Version 11

Description When isMinted and isPegged are both set to true for a single token, the deposit and

withdraw functions will execute inconsistent logic. Specifically, the deposit function enters the conditional

branch on line 355, which burns the deposited token to a dead address.

355 if (isPegged[tokenAddress] == true)
356 IERC20Mintable(tokenAddress).transferFrom(
357 msg.sender,
358 deadAddress,
359 amount
360); //Burn to dead address.
361 else if (isMinted[tokenAddress] == true) {
362 require(
363 IERC20Mintable(tokenAddress).transferFrom(
364 msg.sender,
365 address(this),
366 amount
367),
368 "There was a problem transferring your tokens on source chain"

1Fixed in Version 3

12

369);
370 }

Listing 2.14: BridgeV2.sol

However, the withdraw function enters the branch on Line 419, which transfers rather than mints

tokens to the receiver address.

406 if (isMinted[tokenAddress] == true) {
407 require(
408 IERC20Mintable(tokenAddress).balanceOf(address(this)) >= amount,
409 "Not enough liquidity in the bridge"
410);
411 require(
412 IERC20Mintable(tokenAddress).transfer(receiver, amount),
413 "There was a problem transferring your tokens on destination chain"
414);
415 } else {
416 feeAmount = (amount * bridgeFeePercent);
417 amount = (amount * 1000) - feeAmount;
418
419 if (isPegged[tokenAddress] == true) {
420 IERC20Mintable(tokenAddress).mint(receiver, amount / 1000);
421 IERC20Mintable(tokenAddress).mint(
422 bridgeFeeAddress,
423 (feeAmount / 1000)
424);
425 }

Listing 2.15: BridgeV2.sol

2.4.4 Unverified LayerZero options

Introduced by Version 22

Description The deposit function in the BridgeV2 contract passes the unchecked parameter _options

to _lzSend. The _options specifies _gas and _value, where _value denotes the native fee paid to Executor

or other workers. Not verifying the options poses a potential risk that malicious actors could specify fees

to steal funds from the BridgeV2 contract. However, since the contract is not designed to hold any native

tokens, the practical impact of this risk is negligible.

371 function deposit(
372 uint32 _destEid,
373 uint256 amount,
374 address tokenAddress,
375 string memory destChain,
376 bytes memory _options
377) external payable returns (bool) {
378 //require(tokenAddress != address(0), "Cannot be address 0");
379 require(isBlocked != true, "Bridge is blocked right now");
380 require(

2Fixed in Version 4

13

381 isWhitelistedAdd[tokenAddress] == true,
382 "This token is not Whitelisted on our platform"
383);
384 require(
385 amount <= IERC20Mintable(tokenAddress).balanceOf(msg.sender),
386 "Amount exceeds your balance"
387);
388
389 if (isPegged[tokenAddress] == true)
390 IERC20Mintable(tokenAddress).transferFrom(
391 msg.sender,
392 deadAddress,
393 amount
394); //Burn to dead address.
395 else if (isMinted[tokenAddress] == true) {
396 require(
397 IERC20Mintable(tokenAddress).transferFrom(
398 msg.sender,
399 address(this),
400 amount
401),
402 "There was a problem transferring your tokens on source chain"
403);
404 } else {
405 require(
406 IERC20Mintable(tokenAddress).transferFrom(
407 msg.sender,
408 address(this),
409 (amount)
410),
411 "There was a problem transferring your tokens on source chain"
412);
413 }
414
415 string memory tokenName = whitelistedTokenName[tokenAddress];
416
417 bytes memory payload = abi.encode(tokenName, msg.sender, amount);
418
419 MessagingFee memory fee = getFee(_destEid, payload, _options, false);
420
421 _lzSend(_destEid, payload, _options, fee, msg.sender);
422 emit DEPOSIT(amount, msg.sender, tokenAddress, destChain);
423 return true;
424 }

Listing 2.16: BridgeV2.sol

14

	1 Introduction
	1.1 About Target Contracts
	1.2 Disclaimer
	1.3 Procedure of Auditing
	1.3.1 Software Security
	1.3.2 DeFi Security
	1.3.3 NFT Security
	1.3.4 Additional Recommendation

	1.4 Security Model

	2 Findings
	2.1 Software Security
	2.1.1 Missing setter for the senderContractToEId mapping
	2.1.2 Lack of token address check in the removeTokenFromWhitelist function
	2.1.3 Withdrawal fee is charged while not transferred to fee recipient
	2.1.4 Incorrect order of magnitude

	2.2 DeFi Security
	2.2.1 Potential failed bridging due to inconsistent token addresses

	2.3 Additional Recommendation
	2.3.1 Remove duplicated codes
	2.3.2 Add a check on destChain
	2.3.3 Revise the duplicated handling logic in the deposit function

	2.4 Notes
	2.4.1 Accidental native token transfers are not taken into consideration
	2.4.2 Potential centralization risks
	2.4.3 A token cannot have both isMinted and isPegged attributes
	2.4.4 Unverified LayerZero options

		2024-03-19T17:48:13+0800
	BlockSec Audit Team

