
Security Audit Report for StakeTogether
st-v1-contracts

Date: Sep 04, 2023

Version: 1.1

Contact: contact@blocksec.com

mailto:contact@blocksec.com

Contents

1 Introduction 1
1.1 About Target Contracts . 1

1.2 Disclaimer . 1

1.3 Procedure of Auditing . 2

1.3.1 Software Security . 2

1.3.2 DeFi Security . 2

1.3.3 NFT Security . 2

1.3.4 Additional Recommendation . 3

1.4 Security Model . 3

2 Findings 4
2.1 Software Security . 4

2.1.1 Deposit revert for the first depositor . 4

2.2 DeFi Security . 5

2.2.1 Potential DoS attack when executing the report . 5

2.2.2 Lack of existence check when adding validators 6

2.2.3 Ineffective check due to incorrect initialization . 7

2.2.4 Lack of existence check when blacklisting the reportOracles 9

2.2.5 Potential DoS attack in the consensus process . 9

2.3 Additional Recommendation . 10

2.3.1 Add sanity checks for function parameters . 10

2.3.2 Remove duplicate checks . 11

2.4 Note . 11

2.4.1 Centralization risk . 11

2.4.2 Ensure the correctness of the configuration . 12

2.4.3 Risk of insufficient report oracles . 12

2.4.4 Potential off-chain risks . 12

i

Report Manifest

Item Description
Client StakeTogether
Target StakeTogether st-v1-contracts

Version History

Version Date Description
1.0 Sep 03, 2023 First Release
1.1 Sep 04, 2023 Add feedback for 2.4.4

About BlockSec BlockSec focuses on the security of the blockchain ecosystem and collaborates with

leading DeFi projects to secure their products. BlockSec is founded by top-notch security researchers and

experienced experts from both academia and industry. They have published multiple blockchain security

papers in prestigious conferences, reported several zero-day attacks of DeFi applications, and successfully

protected digital assets that are worth more than 5 million dollars by blocking multiple attacks. They can

be reached at Email, Twitter and Medium.

ii

https://www.blocksec.com
mailto:contact@blocksec.com
https://twitter.com/BlockSecTeam
https://blocksecteam.medium.com/

Chapter 1 Introduction

1.1 About Target Contracts

Information Description
Type Smart Contract
Language Solidity
Approach Semi-automatic and manual verification

The target of this audit is the code repo of the smart contracts 1 of StakeTogether project, which is

an Ethereum staking protocol designed especially for communities. Specifically, it allows users to deposit

ETH into staking pools, receiving stpETH tokens as collateral. When a pool reaches 32 ETH, a validator is

created on the Ethereum 2.0 beacon chain. Daily oracle reports trigger automated actions like restaking

rewards or processing withdrawal requests by burning stpETH to generate stwETH tokens.

The auditing process is iterative. Specifically, we would audit the commits that fix the discovered

issues. If there are new issues, we will continue this process. The commit SHA values during the audit are

shown in the following table. Our audit report is responsible for the code in the initial version (Version 1),

as well as new code (in the following versions) to fix issues in the audit report.

Project Version Commit Hash

st-v1-contracts
Version 1 9f887b12c195c6396ec0cf377c708b22417a215d

Version 2 85c0c7112954b25bb1b8e1af7bd1dabcfb84b50a

Version 3 ce28ea08185b31aca936f38be831aef21112f304

1.2 Disclaimer

This audit report does not constitute investment advice or a personal recommendation. It does not

consider, and should not be interpreted as considering or having any bearing on, the potential economics

of a token, token sale or any other product, service or other asset. Any entity should not rely on this report

in any way, including for the purpose of making any decisions to buy or sell any token, product, service or

other asset.

This audit report is not an endorsement of any particular project or team, and the report does not

guarantee the security of any particular project. This audit does not give any warranties on discovering

all security issues of the smart contracts, i.e., the evaluation result does not guarantee the nonexistence

of any further findings of security issues. As one audit cannot be considered comprehensive, we always

recommend proceeding with independent audits and a public bug bounty program to ensure the security

of smart contracts.

The scope of this audit is limited to the code mentioned in Section 1.1. Unless explicitly specified,

the security of the language itself (e.g., the solidity language), the underlying compiling toolchain and the

computing infrastructure are out of the scope.

1https://github.com/staketogether/st-v1-contracts/

1

https://github.com/staketogether/st-v1-contracts/

1.3 Procedure of Auditing

We perform the audit according to the following procedure.

- Vulnerability Detection We first scan smart contracts with automatic code analyzers, and then

manually verify (reject or confirm) the issues reported by them.

- Semantic Analysis We study the business logic of smart contracts and conduct further investiga-

tion on the possible vulnerabilities using an automatic fuzzing tool (developed by our research team).

We also manually analyze possible attack scenarios with independent auditors to cross-check the

result.

- Recommendation We provide some useful advice to developers from the perspective of good

programming practice, including gas optimization, code style, and etc.

We show the main concrete checkpoints in the following.

1.3.1 Software Security

∗ Reentrancy

∗ DoS

∗ Access control

∗ Data handling and data flow

∗ Exception handling

∗ Untrusted external call and control flow

∗ Initialization consistency

∗ Events operation

∗ Error-prone randomness

∗ Improper use of the proxy system

1.3.2 DeFi Security

∗ Semantic consistency

∗ Functionality consistency

∗ Permission management

∗ Business logic

∗ Token operation

∗ Emergency mechanism

∗ Oracle security

∗ Whitelist and blacklist

∗ Economic impact

∗ Batch transfer

1.3.3 NFT Security

∗ Duplicated item

∗ Verification of the token receiver

∗ Off-chain metadata security

2

1.3.4 Additional Recommendation

∗ Gas optimization

∗ Code quality and style�
Note The previous checkpoints are the main ones. We may use more checkpoints during the auditing

process according to the functionality of the project.

1.4 Security Model

To evaluate the risk, we follow the standards or suggestions that are widely adopted by both industry

and academy, including OWASP Risk Rating Methodology 2 and Common Weakness Enumeration 3.

The overall severity of the risk is determined by likelihood and impact. Specifically, likelihood is used to

estimate how likely a particular vulnerability can be uncovered and exploited by an attacker, while impact

is used to measure the consequences of a successful exploit.

In this report, both likelihood and impact are categorized into two ratings, i.e., high and low respec-

tively, and their combinations are shown in Table 1.1.

Table 1.1: Vulnerability Severity Classification

Im
pa

ct

High High Medium

Low Medium Low

High Low

Likelihood

Accordingly, the severity measured in this report are classified into three categories: High, Medium,

Low. For the sake of completeness, Undetermined is also used to cover circumstances when the risk

cannot be well determined.

Furthermore, the status of a discovered item will fall into one of the following four categories:

- Undetermined No response yet.

- Acknowledged The item has been received by the client, but not confirmed yet.

- Confirmed The item has been recognized by the client, but not fixed yet.

- Fixed The item has been confirmed and fixed by the client.

2https://owasp.org/www-community/OWASP_Risk_Rating_Methodology

3https://cwe.mitre.org/

3

https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
https://cwe.mitre.org/

Chapter 2 Findings

In total, we find six potential issues. Besides, we also have two recommendations and four notes.

- Medium Risk: 1

- Low Risk: 5

- Recommendation: 2

- Note: 4

ID Severity Description Category Status
1 Low Deposit revert for the first depositor Software Security Fixed
2 Medium Potential DoS attack when executing the report DeFi Security Fixed

3 Low
Lack of existence check when adding
validators

DeFi Security Fixed

4 Low Ineffective check due to incorrect initialization DeFi Security Fixed

5 Low
Lack of existence check when blacklisting the
reportOracles

DeFi Security Fixed

6 Low Potential DoS attack in the consensus process DeFi Security Fixed
7 - Add sanity checks for function parameters Recommendation Fixed
8 - Remove duplicate checks Recommendation Fixed
9 - Centralization risk Note -
10 - Ensure the correctness of the configuration Note -
11 - Risk of insufficient report oracles Note -
12 - Potential off-chain risks Note -

The details are provided in the following sections.

2.1 Software Security

2.1.1 Deposit revert for the first depositor

Severity Low

Status Fixed in Version 2

Introduced by Version 1

Description To avoid inflation attacks, the StakeTogether contract creates dead shares (1e18) upon

initialization. However, the contract balance remains zero. For the first call to the _depositBase function,

the _processStakeEntry function is invoked to calculate shares based on the provided formula: _amount×
totalShares

(totalSupply()−_amount) . This formula uses a denominator that will be zero for the first depositor, resulting in

a divisionError error.

346 function _depositBase(address _to, DepositType _depositType, address _referral) private {

347 require(config.feature.Deposit, ’FD’); // FD = Feature Disabled

348 require(msg.value >= config.minDepositAmount, ’MD’); // MD = Min Deposit

349
350 _resetLimits();

351
352 if (msg.value + totalDeposited > config.depositLimit) {

353 emit DepositLimitReached(_to, msg.value);

4

354 revert(’DLR’);

355 }

356
357 _processStakeEntry(_to, msg.value);

358
359 totalDeposited += msg.value;

360 emit DepositBase(_to, msg.value, _depositType, _referral);

361 }

Listing 2.1: StakeTogether.sol

710 function _processStakeEntry(address _to, uint256 _amount) private {

711 uint256 sharesAmount = MathUpgradeable.mulDiv(_amount, totalShares, totalSupply() - _amount

);

712 _distributeFees(FeeType.StakeEntry, sharesAmount, _to);

713 }

Listing 2.2: StakeTogether.sol

Impact The first deposit will revert with divisionError.

Suggestion Enforce an increase of the totalSupply value before enabling deposits.

2.2 DeFi Security

2.2.1 Potential DoS attack when executing the report

Severity Medium

Status Fixed in Version 2

Introduced by Version 1

Description In the Router contract, any oracle can execute a valid and executable report via the executeReport

function. This function initially checks the report’s validity by invoking the isReadyToExecute function.

Within isReadyToExecute, there is a restriction on Line 362 that requires the beaconBalance in the StakeTogether

contract to be greater than or equal to the sum of lossAmount and withdrawRefundAmount specified in the

report.

354 function isReadyToExecute(Report calldata _report) public view returns (bytes32) {

355 bytes32 hash = keccak256(abi.encode(_report));

356 require(!revokedReports[_report.epoch], ’REVOKED_REPORT’);

357 require(!executedReports[_report.epoch][hash], ’REPORT_ALREADY_EXECUTED’);

358 require(consensusReport[_report.epoch] == hash, ’REPORT_NOT_CONSENSUS’);

359 require(totalOracles >= config.minOracleQuorum, ’MIN_ORACLE_QUORUM_NOT_REACHED’);

360 require(block.number >= reportDelayBlocks[hash] + config.reportDelayBlocks, ’

TOO_EARLY_TO_EXECUTE’);

361 require(

362 _report.lossAmount + _report.withdrawRefundAmount <= stakeTogether.beaconBalance(),

363 ’NOT_ENOUGH_BEACON_BALANCE’

364);

365 require(

366 address(this).balance >=

367 (_report.profitAmount +

5

368 _report.withdrawAmount +

369 _report.withdrawRefundAmount +

370 _report.routerExtraAmount),

371 ’NOT_ENOUGH_ETH’

372);

373 return hash;

374 }

Listing 2.3: Router.sol

However, the beaconBalance can be manipulated within the withdrawValidator function.

420 function withdrawValidator(

421 uint256 _amount,

422 Delegation[] memory _delegations

423) external nonReentrant whenNotPaused {

424 require(config.feature.WithdrawValidator, ’FD’); // FD = Feature Disabled

425 require(_amount <= beaconBalance, ’IB’); // IB = Insufficient Balance

426 _withdrawBase(_amount, WithdrawType.Validator);

427 _updateDelegations(msg.sender, _delegations);

428 _setBeaconBalance(beaconBalance - _amount);

429 withdrawals.mint(msg.sender, _amount);

430 }

Listing 2.4: StakeTogether.sol

For example, an attacker could front-run the executeReport transaction of the reportOracle. They

could first deposit into the StakeTogether contract and then withdraw all funds via the withdrawValidator

function, thereby reducing the beaconBalance. Consequently, the executeReport transaction would revert

with the NOT_ENOUGH_BEACON_BALANCE error in the isReadyToExecute function.

Impact The execution of a report approved by consensus may be blocked.

Suggestion Prevent manipulation of the beaconBalance within the StakeTogether contract.

2.2.2 Lack of existence check when adding validators

Severity Low

Status Fixed in Version 2

Introduced by Version 1

Description In the StakeTogether contract, the role identified by VALIDATOR_ORACLE_MANAGER_ROLE can

add or remove instances of validatorOracle using the addValidatorOracle and removeValidatorOracle

functions, respectively. New validatorOracles are appended to the validatorsOracle array, and their

corresponding indices are recorded in validatorsOracleIndices.

It’s crucial to highlight that the addValidatorOracle function does not verify the existence of the

validatorOracle being added. As a result, if a duplicate ValidatorOracle is added, the original one

cannot be removed from the validatorsOracle array, because the removeValidatorOracle function will

have already deleted the associated index.

503 function addValidatorOracle(address _account) external onlyRole(VALIDATOR_ORACLE_MANAGER_ROLE)

{

504 _grantRole(VALIDATOR_ORACLE_ROLE, _account);

6

505 validatorsOracle.push(_account);

506 validatorsOracleIndices[_account] = validatorsOracle.length;

507 emit AddValidatorOracle(_account);

508 }

Listing 2.5: StakeTogether.sol

512 function removeValidatorOracle(address _account) external onlyRole(

VALIDATOR_ORACLE_MANAGER_ROLE) {

513 require(validatorsOracleIndices[_account] > 0, ’NF’);

514
515 uint256 index = validatorsOracleIndices[_account] - 1;

516
517 if (index < validatorsOracle.length - 1) {

518 address lastAddress = validatorsOracle[validatorsOracle.length - 1];

519 validatorsOracle[index] = lastAddress;

520 validatorsOracleIndices[lastAddress] = index + 1;

521 }

522
523 validatorsOracle.pop();

524
525 delete validatorsOracleIndices[_account];

526 _revokeRole(VALIDATOR_ORACLE_ROLE, _account);

527 emit RemoveValidatorOracle(_account);

528 }

Listing 2.6: StakeTogether.sol

Impact Duplicates of ValidatorOracle added cannot be removed.

Suggestion Check the existence in the addValidatorOracle function.

2.2.3 Ineffective check due to incorrect initialization

Severity Low

Status Fixed in Version 2

Introduced by Version 1

Description The state variable nextReportBlock in the Router contract is used for comparing with

block.number and incrementing config.reportFrequency after a report submission. However, it is as-

signed a value of 1 in the initialize function, a value that is significantly lower than the current block.number.

69 function initialize(address _airdrop, address _withdrawals) external initializer {

70 __Pausable_init();

71 __AccessControl_init();

72 __UUPSUpgradeable_init();

73
74 _grantRole(DEFAULT_ADMIN_ROLE, msg.sender);

75 _grantRole(ADMIN_ROLE, msg.sender);

76 _grantRole(UPGRADER_ROLE, msg.sender);

77 _grantRole(ORACLE_REPORT_MANAGER_ROLE, msg.sender);

78
79 version = 1;

7

80
81 airdrop = Airdrop(payable(_airdrop));

82 withdrawals = Withdrawals(payable(_withdrawals));

83
84 totalOracles = 0;

85 nextReportBlock = 1;

86 lastConsensusEpoch = 0;

87 lastExecutedEpoch = 0;

88 }

Listing 2.7: Router.sol

It’s important to note that the increment here is significantly smaller than the block.number.

241 function submitReport(

242 uint256 _epoch,

243 Report calldata _report

244) external nonReentrant whenNotPaused activeReportOracle {

245 bytes32 hash = isReadyToSubmit(_epoch, _report);

246
247 if (block.number >= nextReportBlock + config.reportFrequency) {

248 nextReportBlock += config.reportFrequency;

249 emit SkipNextReportFrequency(_epoch, nextReportBlock);

250 }

251
252 reports[_epoch][hash].push(msg.sender);

253 reportVotes[_epoch][hash]++;

254 oracleVotes[_epoch][msg.sender] = true;

255
256 if (consensusReport[_epoch] == bytes32(0)) {

257 if (reportVotes[_epoch][hash] >= config.oracleQuorum) {

258 consensusReport[_epoch] = hash;

259 lastConsensusEpoch = _report.epoch;

260 reportDelayBlocks[hash] = block.number;

261 emit ConsensusApprove(_report, hash);

262 } else {

263 emit ConsensusNotReached(_report, hash);

264 }

265 }

266
267 emit SubmitReport(_report, hash);

268 }

Listing 2.8: Router.sol

As a result, the check for the verification for nextReportBlock on Line 342 will always succeed.

340 function isReadyToSubmit(uint256 _epoch, Report calldata _report) public view returns (bytes32

) {

341 bytes32 hash = keccak256(abi.encode(_report));

342 require(block.number > nextReportBlock, ’BLOCK_NUMBER_NOT_REACHED’);

343 require(totalOracles >= config.minOracleQuorum, ’MIN_ORACLE_QUORUM_NOT_REACHED’);

344 require(_report.epoch > lastConsensusEpoch, ’EPOCH_NOT_GREATER_THAN_LAST_CONSENSUS’);

345 require(!executedReports[_report.epoch][hash], ’REPORT_ALREADY_EXECUTED’);

346 require(!oracleVotes[_epoch][msg.sender], ’ORACLE_ALREADY_VOTED’);

8

347 return hash;

348 }

Listing 2.9: Router.sol

Impact N/A

Suggestion Revise the logic accordingly.

2.2.4 Lack of existence check when blacklisting the reportOracles

Severity Low

Status Fixed in Version 2

Introduced by Version 1

Description The blacklistReportOracle function in the Router contract is used to blacklist a reportOracle.

However, this function neither verifies the existence of the reportOracle nor checks if it’s already black-

listed. Furthermore, the function decreases the totalOracle count subsequently. Thus, blacklisting an

invalid reportOracle could potentially lead to an inconsistent totalOracle count.

69 function blacklistReportOracle(address _oracle) external onlyRole(ORACLE_SENTINEL_ROLE) {

70 oraclesBlacklist[_oracle] = true;

71 if (totalOracles > 0) {

72 totalOracles--;

73 }

74 emit BlacklistReportOracle(_oracle);

75 }

Listing 2.10: Router.sol

Impact N/A

Suggestion Check the existence in the blacklistReportOracle function.

2.2.5 Potential DoS attack in the consensus process

Severity Low

Status Fixed in Version 3

Introduced by Version 2

Description The reportBlock in the Router contract is used to record the starting block of the cur-

rent consensus process. The submitReport function allows report oracles to submit reports after the

reportBlock and proceeds to the next reportBlock if consensus fails.

The condition in the submitReport function (on Line 252) compares the count of unvoted report ora-

cles with the votes required for any submitted report. However, this may introduce a level of unfairness,

as the more votes a report received, the fewer votes it requires. A malicious report oracle could exploit

this by submitting a fraudulent report to disrupt the consensus when a legitimate report is on the verge of

reaching the oracleQuorum.

For example, assume a scenario where totalReportOracles is 9, oracleQuorum is 6, and a valid

report R1 in the current reportBlock has received votes from 5 report oracles. A malicious oracle can

9

submit a fake report R2, as the remainingOracles is 4 (totalReportOracles − totalV otes = 9 − 5 =

4) and the votes needed is 5 (oracleQuorum − reportV otesForBlock = 6 − 1 = 5), resulting in a

failed consensus and the reportBlock being forcibly updated. Consequently, the valid report R1 would be

compromised.

232 function submitReport(Report calldata _report) external nonReentrant whenNotPaused

activeReportOracle {

233 bytes32 hash = isReadyToSubmit(_report);

234
235 reports[reportBlock][hash].push(msg.sender);

236 reportForBlock[reportBlock][msg.sender] = true;

237 reportVotesForBlock[reportBlock][hash]++;

238 totalVotes[reportBlock]++;

239
240 if (consensusReport[reportBlock] == bytes32(0)) {

241 if (totalVotes[reportBlock] >= config.oracleQuorum) {

242 if (reportVotesForBlock[reportBlock][hash] >= config.oracleQuorum) {

243 consensusReport[reportBlock] = hash;

244 lastConsensusBlock = reportBlock;

245 reportDelayBlock[reportBlock] = block.number;

246 pendingExecution = true;

247 emit ConsensusApprove(reportBlock, _report, hash);

248 }

249 }

250
251 uint remainingOracles = totalReportOracles - totalVotes[reportBlock];

252 if ((config.oracleQuorum - reportVotesForBlock[reportBlock][hash]) > remainingOracles) {

253 emit ConsensusFail(reportBlock, _report, hash);

254 _advanceNextReportBlock();

255 }

256 }

257
258 emit SubmitReport(_report, hash);

259 }

Listing 2.11: Router.sol

Impact Undermine the fairness of the consensus process.

Suggestion Fix the conditions leading to consensus failure, or promptly blacklist malicious report ora-

cles.

2.3 Additional Recommendation

2.3.1 Add sanity checks for function parameters

Status Fixed in Version 2

Introduced by Version 1

Description For example, in the StakeTogether contract, verify that the _address is not zero within the

setFeeAddress function.

10

632 function setFeeAddress(FeeRole _role, address payable _address) external onlyRole(ADMIN_ROLE)

{

633 feesRole[_role] = _address;

634 emit SetFeeAddress(_role, _address);

635 }

Listing 2.12: StakeTogether.sol

Impact N/A

Suggestion Add sanity checks to avoid unexpected behaviors.

2.3.2 Remove duplicate checks

Status Fixed in Version 2

Introduced by Version 1

Description In the Router contract, the second condition (i.e., !isReportOracleBlackListed(msg.sender))

in the activateReportOracle modifier is redundant as it’s already checked in the first condition (i.e.,

isReportOracle(msg.sender)).

145 modifier activeReportOracle() {

146 require(isReportOracle(msg.sender) && !isReportOracleBlackListed(msg.sender), ’

ONLY_ACTIVE_ORACLE’);

147 _;

148 }

Listing 2.13: Router.sol

Impact N/A

Suggestion Remove duplicate checks.

2.4 Note

2.4.1 Centralization risk

Description Several privileged functions exist within the StakeTogether protocol that possess the ability

to modify the protocol’s state. This introduces a centralization risk, as these privileged accounts can

influence the functionality and security of the protocol. Here are a few examples:

The DEFAULT_ADMIN_ROLE has the authority to grant other roles within the protocol.

The ADMIN_ROLE is responsible for modifying relationships between different contracts, such as the

setStakeTogether function.

The UPGRADER_ROLE facilitates the upgrade of the implementation contract using the UUPS proxy

pattern.

Specifically, take the StakeTogether and Router contracts as examples.

In the StakeTogether contract:

The ADMIN_ROLE has the following privileges

1) Modify the configuration settings through the setConfig function.

11

2) Change the fee addresses for any feeRole using the setFeeAddress function.

3) Config the fee ratio and its distributions through the setFee function.

The POOL_MANAGER_ROLE has the privilege to remove a pool by its address using the removePool

function.

The VALIDATOR_ORACLE_MANAGER_ROLE has the privilege to add or remove a validator oracle

through the addValidatorOracle and removeValidatorOracle functions.

In the Router contract:

The ADMIN_ROLE has the following privileges:

1) Grant/Revoke an ORACLE_SENTINEL_ROLE using the addSentinel/removeSentinel functions.

2) Update the lastConsensusEpoch through the setLastConsensusEpoch function.

The ORACLE_SENTINEL_ROLE can:

1) Revoke a consensus-approved report by utilizing the revokeConsensusReport function.

2) Blacklist/Unblacklist a report oracle through the blacklistReportOracle/unBlacklistReportOracle

functions.

The ORACLE_REPORT_MANAGER_ROLE can add or remove a report oracle via the addReportOracle

and removeReportOracle functions.

Feedback from the Project In this case I will update to DEFAULT_ADMIN_ROLE for 1 wallet. And this wallet

will be on a multisig with time lock actions. This wallet will be responsible for allowing other roles. All

actions will have time lock actions with OpenZeppelin Defender.

2.4.2 Ensure the correctness of the configuration

Description Several crucial configuration parameters in the StakeTogether and Router contracts have

been manually set without sufficient constraints. It’s important to handle these configurations with care,

implementing appropriate validation and security measures to ensure safe operation of the system.

2.4.3 Risk of insufficient report oracles

Description In the Router contract, the report oracle plays a vital role in submitting and voting for reports.

Once the votes exceed the threshold defined in config.oracleQuorum, the submitted report becomes

executable at a later date.

The ORACLE_REPORT_MANAGER_ROLE can add or remove a report oracle and synchronously update the

_updateQuorum. Specifically, if the count of active report oracles is insufficient, the _updateQuorum function

adjusts the oracleQuorum to match the minOracleQuorum stored in the config. However, this adjustment

poses a potential risk. If a submitted report fails to gather the necessary votes for consensus, it could

result in asset lockup.

2.4.4 Potential off-chain risks

Description Some features in the StakeTogether contract, such as referral and delegations, are imple-

mented off-chain and might affect the airdrop distribution program. Since off-chain logic isn’t covered by

this audit, its design and correctness can’t be guaranteed, which consequently poses some potential risks.

For example, the _referral parameter in the _depositBase function is used to incentivize users to

encourage others to stake. However, _referral isn’t necessarily different from the depositor themselves,

12

and it’s unclear whether the backend service will filter out duplicate events. This introduces a potential risk:

a malicious user might inflate their airdrop rewards shares by repeatedly depositing on their own behalf

and then immediately withdrawing, thus emitting duplicate events.

346 function _depositBase(address _to, DepositType _depositType, address _referral) private {

347 require(config.feature.Deposit, ’FD’); // FD = Feature Disabled

348 require(msg.value >= config.minDepositAmount, ’MD’); // MD = Min Deposit

349
350 _resetLimits();

351
352 if (msg.value + totalDeposited > config.depositLimit) {

353 emit DepositLimitReached(_to, msg.value);

354 revert(’DLR’);

355 }

356
357 _processStakeEntry(_to, msg.value);

358
359 totalDeposited += msg.value;

360 emit DepositBase(_to, msg.value, _depositType, _referral);

361 }

Listing 2.14: StakeTogether.sol

Moreover, the _validateDelegations function in the StakeTogether contract only verifies the dele-

gations provided by users when their shares are non-zero. However, the _updateDelegations function

always emits an UpdateDelegations event subsequently. This introduces a potential vulnerability: a rogue

user could zero out their shares first, bypass the _validateDelegations function, and emit an invalid event,

such as delegating 10000e18 (10,000%) to a pool.

477 function _updateDelegations(address _account, Delegation[] memory _delegations) private {

478 _validateDelegations(_account, _delegations);

479 emit UpdateDelegations(_account, _delegations);

480 }

Listing 2.15: StakeTogether.sol

485 function _validateDelegations(address _account, Delegation[] memory _delegations) private view

{

486 if (shares[_account] > 0) {

487 require(_delegations.length <= config.maxDelegations, ’MD’); // MD = Max Delegations

488 uint256 delegationShares = 0;

489 for (uint i = 0; i < _delegations.length; i++) {

490 require(pools[_delegations[i].pool], ’PNF’); // PNF = Pool Not Found

491 delegationShares += _delegations[i].percentage;

492 }

493 require(delegationShares == 1 ether, ’IPS’); // IPS = Invalid Percentage Sum

494 }

495 }

Listing 2.16: StakeTogether.sol

Feedback from the Project I believe items 2.15 and 2.16 were already fixed in version 3; this behavior

can’t occur because of the nature of our product.

13

	1 Introduction
	1.1 About Target Contracts
	1.2 Disclaimer
	1.3 Procedure of Auditing
	1.3.1 Software Security
	1.3.2 DeFi Security
	1.3.3 NFT Security
	1.3.4 Additional Recommendation

	1.4 Security Model

	2 Findings
	2.1 Software Security
	2.1.1 Deposit revert for the first depositor

	2.2 DeFi Security
	2.2.1 Potential DoS attack when executing the report
	2.2.2 Lack of existence check when adding validators
	2.2.3 Ineffective check due to incorrect initialization
	2.2.4 Lack of existence check when blacklisting the reportOracles
	2.2.5 Potential DoS attack in the consensus process

	2.3 Additional Recommendation
	2.3.1 Add sanity checks for function parameters
	2.3.2 Remove duplicate checks

	2.4 Note
	2.4.1 Centralization risk
	2.4.2 Ensure the correctness of the configuration
	2.4.3 Risk of insufficient report oracles
	2.4.4 Potential off-chain risks

		2023-09-04T11:06:41+0800
	BlockSec Audit Team

